ESE535: Electronic Design Automation

Day 4: January 28, 2015
Partitioning
(Intro, KLFM)

Today

• Partitioning
 – why important
 • Can be used as tool at many levels
 – practical attack
 – variations and issues

Motivation (1)

• Cut size (bandwidth) can determine
 – Area, energy
• Minimizing cuts
 – minimize interconnect requirements
 – increases signal locality
• Chip (board) partitioning
 – minimize IO
• Direct basis for placement
 – Particularly for our heterogeneous multicontext computing array

Motivation (2)

• Divide-and-conquer
 – trivial case: decomposition
 – smaller problems easier to solve
 • net win, if super linear
 – Part(n) + 2\cdot T(n/2) < T(n)
 – problems with sparse connections or interactions
 – Exploit structure
 • limited cutsize is a common structural property
 • random graphs would not have as small cuts

Bisection Width

• Partition design into two equal size halves
 – Minimize wires (nets) with ends in both halves
• Number of wires crossing is **bisection width**
• lower \(\text{bw} \) = more locality
Interconnect Area

- Bisection width is lower-bound on IC width
 - When wire dominated, may be tight bound
- (recursively)

Classic Partitioning Problem

- **Given:** netlist of interconnect cells
- **Partition into two (roughly) equal halves** \((A,B)\)
- minimize the number of nets shared by halves
- “Roughly Equal”
 - balance condition: \((0.5-\delta)N \leq |A| \leq (0.5+\delta)N\)

Balanced Partitioning

- NP-complete for general graphs
 - \([ND17: \text{Minimum Cut into Bounded Sets}, \text{Garey and Johnson}]\)
 - Reduce SIMPLE MAX CUT
 - Reduce MAXIMUM 2-SAT to SMC
 - Unbalanced partitioning poly time
- Many heuristics/attacks

KL FM Partitioning Heuristic

- Greedy, iterative
 - pick cell that decreases cut and move it
 - repeat
- small amount of non-greediness:
 - look past moves that make locally worse
 - randomization

Fiduccia-Mattheyses
(Kernighan-Lin refinement)

- Start with two halves (random split?)
- Repeat until no updates
 - Start with all cells free
 - Repeat until no cells free
 - Move cell with largest gain (balance allows)
 - Update costs of neighbors
 - Lock cell in place (record current cost)
 - Pick least cost point in previous sequence and use as next starting position
- Repeat for different random starting points

Efficiency

Tricks to make efficient:
- Expend little work picking move candidate
 - Constant work \(\equiv O(1)\)
 - Means amount of work not dependent on problem size
- Update costs on move cheaply \([O(1)]\)
- Efficient data structure
 - update costs cheap
 - cheap to find next move
Ordering and Cheap Update

- Keep track of Net gain on node \(\delta \) delta net crossings to move a node
 - cut cost after move = cost - gain
- Calculate node gain as \(\Sigma \) net gains for all nets at that node
 - Each node involved in several nets
- Sort nodes by gain
 - Avoid full resort every move

After move node?

- Update cost
 - Newcost=cost-gain
- Also need to update gains
 - on all nets attached to moved node
 - but moves are nodes, so push to
 - all nodes affected by those nets

FM Recompute Cell Gain

- For each net, keep track of number of cells in each partition \([F(net), T(net)]\)
- Move update: (for each net on moved cell)
 - if \(T(net) = 0 \), increment gain on F side of net
 - (think \(-1 \Rightarrow 0 \))
 - if \(T(net) = 1 \), decrement gain on T side of net
 - (think \(1 \Rightarrow 0 \))

Composability of Net Gains

Gain = Delta in number of nets crossing between partitions
= Sum of net deltas for nets on the node

FM Cell Gains

Gain = Delta in number of nets crossing between partitions
= Sum of net deltas for nets on the node
FM Recompute Cell Gain

- Move update: (for each net on moved cell)
 - if $T\text{(net)}=0$, increment gain on F side of net
 - if $T\text{(net)}=1$, decrement gain on T side of net
 - decrement $F\text{(net)}$, increment $T\text{(net)}$

- For each net, keep track of number of cells in each partition [$F\text{(net)}$, $T\text{(net)}$]
 - Move update: (for each net on moved cell)
 - if $T\text{(net)}=0$, increment gain on F side of net
 - (think $-1 \Rightarrow 0$)
 - if $T\text{(net)}=1$, decrement gain on T side of net
 - (think $1 \Rightarrow 0$)
 - decrement $F\text{(net)}$, increment $T\text{(net)}$
 - if $F\text{(net)}=1$, increment gain on F cell
 - if $F\text{(net)}=0$, decrement gain on all cells (T)

FM Recompute (example)

[Note markings here are deltas...earlier pix were absolutes]
FM Recompute (example)

FM Recompute (example)

FM Recompute (example)

FM Recompute (example)

FM Data Structures

- Partition Counts A,B
- Two gain arrays
 - One per partition
 - Key: constant time cell update
- Cells
 - successors (consumers)
 - inputs
 - locked status

Binned by cost \rightarrow constant time update

Use FM to Partition Preclass Example

- Allow partition of size 5

[diagram of FM data structure and example]
Use FM to Partition Preclass Example

- Initial Partition
- Initial cut size?
- Identify Gains?

Use FM to Partition Preclass Example

- Initial Partition (cut 6)
- Move lists:
 - Left:
 - 2: A
 - 1: E, G
 - 0: B
 - Right:
 - 3: D
 - 1: H
 - 0: F
 - -1: C

Use FM to Partition Preclass Example

- Initial Partition
- Move D
 - Cut: 6-3 = 3
 - Update Gains

Use FM to Partition Preclass Example

- Move lists:
 - Left:
 - 1: G
 - 0: A
 - -1: E
 - -2: B
 - Right:
 - 2:
 - 1: H
 - 0: F
 - -1: C

Use FM to Partition Preclass Example

- Move G
 - Cost: 3-1=2
 - Update Gains?
Use FM to Partition Preclass Example

• Move G
 • Cost: 3-1=2
 • Update Gains?

Use FM to Partition Preclass Example

• Move lists:
 • Left:
 0: A
 -1: E
 -2: B
 • Right:
 2:
 1: H
 -1: C
 -2: F

Use FM to Partition Preclass Example

• Move H
 • Cost: 2-1=1
 • Update Gains?

Use FM to Partition Preclass Example

• Move lists:
 • Left:
 0:
 -1: A
 -2: B
 -3: E
 • Right:
 2:
 -1: C
 -2: F
FM Optimization Sequence (ex)

- Gain sequence:
 - +3
 - +3
 - +2
 - +2
 - +1
 - +1
 - 0
 - 0
 - 0
 - 0
 - -1
 - -1
 - -1
 - -1
 - -2
 - -2
 - -2
 - -2
 - -3
 - -3
 - -3
 - -3
 - +3
 - +3
 - 0

FM Running Time?

- **Assume:**
 - constant number of passes to converge
 - constant number of random starts
- **N cell updates each round (swap)**
- **Updates K + fanout work (avg. fanout K)**
 - assume at most K inputs to each node
 - For every net attached (K+1)
 - For every node attached to those nets (O(K))
- **Maintain ordered list O(1) per move**
 - every io move up/down by 1
- **Running time:** O(K^N)
 - Algorithm significant for its speed
 - (more than quality)

FM Starts?

- 21K random starts, 3K network -- Alpert/Kahng
- So, FM gives a not bad solution quickly
Weaknesses?

- Local, incremental moves only
 - hard to move clusters
 - no lookahead
 - Stuck in local minima?
- Looks only at local structure

Time Permit

Improving FM

- Clustering
- Initial partitions
- Runs
- Partition size freedom

Following comparisons from Hauck and Boriello '96

Clustering

- Group together several leaf cells into cluster
- Run partition on clusters
- Uncluster (keep partitions)
 - iteratively
- Run partition again
 - using prior result as starting point
 - instead of random start

Clustering Benefits

- Catch local connectivity which FM might miss
 - moving one element at a time, hard to see move whole connected groups across partition
- Faster (smaller N)
 - METIS – fastest research partitioner exploits heavily

How Cluster?

- Random
 - cheap, some benefits for speed
- Greedy “connectivity”
 - examine in random order
 - cluster to most highly connected
 - 30% better cut, 16% faster than random
- Spectral (next week)
 - look for clusters in placement
 - (ratio-cut like)
- Brute-force connectivity (can be O(N^2))
Initial Partitions?

- Random
- Pick Random node for one side
 - start imbalanced
 - run FM from there
- Pick random node and Breadth-first search to fill one half
- Pick random node and Depth-first search to fill half
- Start with Spectral partition

Initial Partitions

- If run several times
 - pure random tends to win out
 - more freedom / variety of starts
 - more variation from run to run
 - others trapped in local minima

Number of Runs

- 2 - 10%
- 10 - 18%
- 20 < 20%
- 50 < 22%
- ...but?

Unbalanced Cuts

- Increasing slack in partitions
 - may allow lower cut size

Unbalanced Partitions

Following comparisons from Hauck and Boriello '96
Partitioning Summary

- Decompose problem
- Find locality
- NP-complete problem
- Linear heuristic (KLFM)
- Many ways to tweak
 - Hauck/Boriello, Karypis

Today’s Big Ideas:

- Divide-and-Conquer
- Exploit Structure
 - Look for sparsity/locality of interaction
- Techniques:
 - greedy
 - incremental improvement
 - randomness avoid bad cases, local minima
 - incremental cost updates (time cost)
 - efficient data structures

Admin

- Reading for Monday online
- Assignment 2 due on tomorrow
- Assignment 3 (4, 5, 6) out today