ESE535: Electronic Design Automation

Day 8: February 11, 2015
Scheduling Introduction

Today

• Scheduling
 – Basic problem
 – Variants
 – List scheduling approximation

General Problem
• Resources are not free
 – Wires, io ports
 – Functional units
 • LUTs, ALUs, Multipliers,
 – Memory access ports
 – State elements
 • memory locations
 • Registers
 – Flip-flop
 – loadable master-slave latch
 – Multiplexers (mux)

Trick/Technique
• Resources can be shared (reused) in time
• Sharing resources can reduce
 – instantaneous resource requirements
 – total costs (area)
• Pattern: scheduled operator sharing

Example
Assume unit delay operators.
How many operators do I need to evaluate this computation in ~5 time units?

Sharing
• Does not have to increase delay
 – w/ careful time assignment
 – can often reduce peak resource requirements
 – while obtaining original (unshared) delay
• Alternately: Minimize delay given fixed resources
Scheduling

- **Task**: assign time slots (and resources) to operations
 - **time-constrained**: minimizing peak resource requirements
 - n.b. time-constrained, not always constrained to minimum execution time
 - **resource-constrained**: minimizing execution time

Scheduling Use

- Very general problem formulation
 - HDL/Behavioral → RTL
 - Register/Memory allocation/scheduling
 - Instruction/Functional Unit scheduling
 - Processor tasks
 - Time-Switched Routing
 - TDMA, bus scheduling, static routing
 - Routing (share channel)

Resource-Time Example

- Time Constraint:
 - <5 → --
 - 5 → 4
 - 6, 7 → 2
 - >7 → 1

Preclass 2

- Schedule onto two adders
 - Does the number of cycles depend on i[7], i[6], ... i[0]?
 - How many cycles?
Preclass 3

- Schedule onto:
 - 2 adders (+)
 - 2 increminter (++)
 - 2 comparator (>)
- Does the number of cycles depend on i[7], i[6], ... i[0]?
- How many cycles?

Two Types (1)

- Data independent
 - graph static
 - resource requirements and execution time
 - independent of data
 - schedule statically
 - maybe bounded-time guarantees
 - typical ECAD problem

Two Types (2)

- Data Dependent
 - execution time of operators variable
 - depend on data
 - flow/requirement of operators data dependent
 - if cannot bound range of variation
 - must schedule online/dynamically
 - cannot guarantee bounded-time
 - general case (i.e. halting problem)
 - typical “General-Purpose” (non-real-time) OS problem

Unbounded Resource Problem

- Easy:
 - compute ASAP schedule
 - i.e. schedule everything as soon as predecessors allow
 - will achieve minimum time
 - won’t achieve minimum area
 - (meet resource bounds)

ASAP Schedule

As Soon As Possible (ASAP)

- For each input
 - mark input on successor
 - if successor has all inputs marked, put in visit queue
- While visit queue not empty
 - pick node
 - update time-slot based on latest input
 - Time-slot = max(time-slot-of-inputs)+1
 - mark inputs of all successors, adding to visit queue when all inputs marked

ASAP Example
Also Useful to Define ALAP

• As Late As Possible
• Work backward from outputs of DAG
• Also achieve minimum time with unbounded resources

ALAP and ASAP

• Difference in labeling between ASAP and ALAP is slack of node
 – Freedom to select timeslot
 – Class theme: exploit freedom to reduce costs
• If ASAP=ALAP, no freedom to schedule

ASAP, ALAP, Difference

Two Bounds
Bounds

- Useful to have bounds on solution
- Two:
 - CP: Critical Path
 - Sometimes call it “Latency Bound”
 - RB: Resource Bound
 - Sometimes call it “Throughput Bound” or “Compute Bound”

Critical Path Lower Bound

- ASAP schedule ignoring resource constraints
 - (look at length of remaining critical path)
- Certainly cannot finish any faster than that

Resource Capacity Lower Bound

- Sum up all capacity required per resource
- Divide by total resource (for type)
- Lower bound on remaining schedule time
 - (best can do is pack all use densely)
 - Ignores schedule constraints

Example

- Critical Path
- Resource Bound (2 resources)
 - $7/2 = 4$
- Resource Bound (4 resources)
 - $7/4 = 2$

Example

- Critical Path
- Resource Bound (2 resources)
- Resource Bound (4 resources)

Why hard?

- Start with Critical Path?
- Schedule on:
 - 1 Red Resource
 - 1 Green Resource
General

- When selecting, don’t know
 - need to tackle **critical path**
 - need to run task to **enable work** (parallelism)

- Can generalize example to single resource case

Single Resource Hard (1)

```
A1  A2  A3  A4  A5  A6  A7  A8  A9  A10  A11  A12  A13
B1  B2  B3  B4  B5  B6  B7  B8  B9  B10  B11
```

Crit. Path:

- A1
- A2
- A3
- A4
- A5
- A6
- A7
- B1
- A8
- B2
- A9
- B3
- A10
- B4
- A11
- B5
- A12
- B6
- A13
- B7
- B8
- B9
- B10
- B11

Single Resource Hard (2)

```
A1  A2  A3  A4  A5  A6  A7  A8  A9  A10  A11  A12  A13
B1  B2  B3  B4  B5  B6  B7  B8  B9  B10  B11
```

PFirst

- A1
- B1
- A2
- B2
- A3
- B3
- A4
- B4
- A5
- B5
- A6
- B6
- A7
- B7
- A8
- B8
- A9
- B9
- A10
- B10
- B11

Single Resource Hard (3)

```
A1  A2  A3  A4  A5  A6  A7  A8  A9  A10  A11  A12  A13
B1  B2  B3  B4  B5  B6  B7  B8  B9  B10  B11
```

Balance1

- A1
- B1
- A2
- B2
- A3
- B3
- A4
- B4
- A5
- B5
- A6
- B6
- A7
- B7
- A8
- B8
- A9
- B9
- A10
- B10
- B11
- A12
- A13

List Scheduling

Greedy Algorithm → Approximation

List Scheduling (basic algorithm flow)

- Keep a ready list of “available” nodes
 - (one whose predecessors have already been scheduled)
 - Like ASAP queue
 - But won’t necessary process in FIFO order

- While there are unscheduled tasks
 - Pick an unscheduled task and schedule on first available resource after its predecessors
 - Put any tasks enabled by this one on ready list
List Scheduling

- Greedy heuristic
- **Key Question**: How prioritize ready list?
 - What is dominant constraint?
 - least slack (worst critical path) \(\Rightarrow\) LPT
 - LPT = Longest Processing Time first
 - enables work
 - utilize most precious (limited) resource
- So far:
 - seen that no single priority scheme would be optimal

LPT Schedule

- Use for
 - resource constrained
 - time-constrained
 - give resource target and search for minimum resource set
- Fast: \(O(N) \rightarrow O(N\log(N))\) depending on prioritization
- Simple, general
- Good for upper bound – results is achievable
- Not always optimal
- How good?

Approximation

- Can we say how close an algorithm comes to achieving the optimal result?
- Technically:
 - **If** can show
 - \(\text{Heuristic(Prob)}/\text{Optimal(Prov)} \leq \alpha\) \(\forall\) Prob
 - **Then** the Heuristic is an \(\alpha\)-approximation

Scheduled Example

Without Precedence
Observe

- \(\exists \) optimal length \(L \)
- No idle time up to start of last job to finish
- Start time of last job \(\leq L \)
- Last job length \(\leq L \)
- Total LS length \(\leq 2L \)
- What can say about optimality?
 - Algorithm is within factor of 2 of optimum

Results

- Scheduling of identical parallel machines has a 2-approximation
 - i.e. we have a polynomial time algorithm which is guaranteed to achieve a result within a factor of two of the optimal solution.
- In fact, for precedence unconstrained there is a 4/3-approximation
 - i.e. schedule Longest Processing Time first

Recover Precedence

- With precedence we may have idle times, so need to generalize
- Work back from last completed job
 - two cases:
 - entire machine busy
 - some predecessor in critical path is running
- Divide into two sets
 - whole machine busy times
 - critical path chain for this operator

Precedence Constrained

- Optimal Length > All busy times
 - Optimal Length \(\geq \) Resource Bound
 - Resource Bound \(\geq \) All busy
- Optimal Length>This Path
 - Optimal Length \(\geq \) Critical Path
 - Critical Path \(\geq \) This Path
- List Schedule = This path + All busy times
- List Schedule \(\leq 2 \times (\text{Optimal Length}) \)

Conclude

- Scheduling of identical parallel machines with precedence constraints has a 2-approximation.
Tightening

• How could we do better?

• What is particularly pessimistic about the previous cases?
 – List Schedule = This path + All busy times
 – List Schedule ≤ 2 * (Optimal Length)

Tighten

• LS schedule ≤ Critical Path + Resource Bound
• LS schedule ≤ Min(CP, RB) + Max(CP, RB)
• Optimal schedule ≥ Max(CP, RB)
• LS/Opt ≤ 1 + Min(CP, RB)/Max(CP, RB)

 • The more one constraint dominates
 ➔ the closer the approximate solution to optimal
 % (EEs think about 3dB point in frequency response)

Tightening

• Example of
 – More information about problem
 – More internal variables
 – …allow us to state a tighter result

• 2-approx for any graph
 – Since CP may = RB

• Tighter approx as CP and RB diverge

Multiple Resource

• Previous result for homogeneous functional units

• For heterogeneous resources:
 – also a 2-approximation
 • Lenstra+Shmoys+Tardos, Math. Programming v46p259
 • (not online, no precedence constraints)

Bounds

• Precedence case, Identical machines
 – no polynomial approximation algorithm can achieve better than 4/3 bound
 • (unless P=NP)

• Heterogeneous machines (no precedence)
 – no polynomial approximation algorithm can achieve better than 3/2 bound

Summary

• Resource sharing saves area
 – allows us to fit in fixed area

• Requires that we schedule tasks onto resources

• General kind of problem arises

• We can, sometimes, bound the “badness” of a heuristic
 – get a tighter result based on gross properties of the problem
 – approximation algorithms often a viable alternative to finding optimum

• play role in knowing “goodness” of solution
Relate HMC

• How does this relate to our mapping for Heterogeneous multicontext computing array?

Big Ideas:

• Exploit freedom in problem to reduce costs
 – (slack in schedules)
• Use dominating effects
 – (constrained resources)
 – the more an effect dominates, the “easier” the problem
• Technique: Approximation

Admin

• Reading on web for Monday
 – Same reading for today and Monday
• Assignment 4 Due Thursday