Procedural Visualization of Knitwear and Woven Cloth

Funda Durupınar and Uğur Güdükbay

Department of Computer Engineering
Bilkent University
Bilkent 06800 Ankara, Turkey
Phone: (+90) 312 290 1945, (+90) 312 290 1386
Fax: (+90) 312 266 4047
E-mail: {fundad, gudukbay}@cs.bilkent.edu.tr

Abstract

In this paper, a procedural method for the visualization of knitted and woven fabrics is presented. The proposed method is based on a mass-spring model and makes use of the regular warp-weft structure of the cloth. The correspondence of the rendering scheme with the mass-spring model enables the physical animation of loops and threads. The simulation idea underlying both knitted and woven fabrics is similar as we represent both structures in 3D. As the proposed method is simple and practical, we can achieve near-real-time rendering performance with good visual quality.

Keywords: Fabric rendering; knitwear; woven cloth; physically-based modeling.

1 Introduction

Modeling the visual appearance of cloth is as important as the simulation of its draping behavior for the sake of realism in computer graphics. There are various methods to produce fabrics from yarn, such as knitting, weaving, braiding or knotting. Particularly, knitting and weaving are the most common techniques and they have been studied in the literature.

Meissner and Eberhardt introduce a system that simulates the physically correct appearance of knitted fabrics [1]. Zhong et al. propose a method for rendering knitwear on free-form surfaces [2]. Another study that uses free-form surfaces is presented by Xu et al., where photorealistic rendering of knitwear is handled by introducing an element called the lumislice [3]. Later, Chen et al. extend this study to include the realistic animation of knitwear [4]. In the case of woven cloth, we cannot do simple

*This work is supported in part by EC 6th Framework Program under grant no. FP6-511568 (3DTV Network of Excellence Project) and the Scientific and Technical Research Council of Turkey (TUBITAK) under grant no. EEEAG-105E065.
†Correspondence Author
texture mapping because occlusion and self-shadowing terms come into play due to the structure of the individual threads and their interweaving pattern. In [5], woven cloth is simulated by computing the lighting using a geometrical model of a stitch. Then by sampling the stitch regularly within a plane, a view-dependent texture with per-pixel normals and material properties is generated. In [6], the weave of the texture is simulated by procedural displacements of the geometry and the loop is represented as a 2D curve. The 3D appearance is given by displacing the loop. A recent study that supports a wide variety of weave patterns and captures the difference in appearance of the front and back surfaces of woven cloth is presented by Adabala et al. [7]. The color texture, BRDF texture and the horizon maps are pre-computed and the rendering of the images using these textures is achieved in real-time with a good visual quality.

In this paper, we propose a simple and efficient procedural method for the visualization of knitted and woven textiles. For this purpose, we use rectangular mass-spring meshes and cut out regular garment patterns composed of quadrilaterals from the meshes. Regularity both preserves the general cloth behavior such as shearing and bending, thus preserving physical accuracy and enables the definition of complex knit and weave patterns. In most of the existing systems, woven fabrics are not simulated physically; they are simplified as 2D structures. Knitwear is usually represented as free-form surfaces, ignoring the physical properties of the fabric. We exploit the regular structure of cloth models and parametrically define the repetitious structure of woven and knitted fabric. The weave and knit patterns can be as complex as desired and can support any color pattern. As the structure is 3D, the resulting garments have different appearances for the front and back surfaces of the fabrics depending on the weave or knit pattern as in [7]. However, our method does not require preprocessing for texture generation; all the calculations are done on-the-fly. We achieve near-real-time rendering performance with good visual quality.

2 Garment Visualization

In this section, the simulation of the two methods of fabric production, i.e., weaving and knitting, are introduced. The cloth model used is a mass-spring model [8]. This is a specific case of a particle system in which the particles are connected by spring forces. The type and behavior of the cloth is determined by the strength of the spring forces and the topology of the cloth, which in turn is determined by how the springs connect the particles. Three types of springs are used to reproduce the stretching, shearing and bending behavior of cloth. The mass-spring model is adopted due to its simplicity, efficiency and capacity to simulate the physical behavior of cloth. The initial grid structure is a rectangular mesh of particles and springs connecting these particles in horizontal, vertical and diagonal directions. In addition, contrary to the irregular triangular meshes, the mesh structures of garment patterns are regular, which is compatible with the warp and weft directions of the woven cloth. Thus, instead of drawing the 2D garment pattern and discretizing it by triangulation, we use an initial rectangular mesh composed of quadrilaterals and cut out the desired shape by preserving the regularity.
2.1 Knitwear

The structure of knitwear is complicated compared to other techniques like weaving. This is due to the 3D geometry of a knit loop. In our system, we make use of the particle system and the mass-spring model of our cloth mesh in order to consider the interaction of neighboring loops. For this purpose, the cloth mesh must be a regular lattice consisting of quadrilaterals. There are two types of basic stitches when knitting: left and right loops. The knitwear pattern, which shows the order of the right and left loops is read from an input file and can be changed interactively in the program. Each quadrilateral contains one type of loop. The structure of the loop in a quadrilateral is defined by the bonding points (BPs). The positions of the bonding points can be determined parametrically using the vertices of the enclosing quadrilateral as follows:

\[
BP_1 = \frac{6}{7}p_{3\text{pos}} + \frac{1}{7}p_{4\text{pos}} \quad BP_2 = \frac{5.5}{27}p_{1\text{pos}} + \frac{1.5}{27}p_{2\text{pos}} + \frac{11}{27}p_{3\text{pos}} + \frac{3}{27}p_{4\text{pos}}
\]

\[
BP_3 = \frac{1.5}{27}p_{1\text{pos}} + \frac{5.5}{27}p_{2\text{pos}} + \frac{3}{27}p_{3\text{pos}} + \frac{11}{27}p_{4\text{pos}} \quad BP_4 = \frac{1}{7}p_{3\text{pos}} + \frac{6}{7}p_{4\text{pos}}
\]

\[
BP_5 = p_{3\text{pos}} \quad BP_6 = \frac{5}{7}p_{3\text{pos}} + \frac{2}{7}p_{4\text{pos}}
\]

\[
BP_7 = \frac{4.5}{28}p_{1\text{pos}} + \frac{2.5}{28}p_{2\text{pos}} + \frac{12.5}{28}p_{3\text{pos}} + \frac{7.5}{28}p_{4\text{pos}} \quad BP_8 = \frac{6}{7}p_{1\text{pos}} + \frac{1}{7}p_{2\text{pos}}
\]

\[
BP_9 = p_{4\text{pos}} \quad BP_{10} = \frac{2}{7}p_{3\text{pos}} + \frac{5}{7}p_{4\text{pos}}
\]

\[
BP_{11} = \frac{2.5}{28}p_{1\text{pos}} + \frac{4.5}{28}p_{2\text{pos}} + \frac{7}{28}p_{3\text{pos}} + \frac{12.5}{28}p_{4\text{pos}} \quad BP_{12} = \frac{1}{7}p_{1\text{pos}} + \frac{6}{7}p_{2\text{pos}}
\]

where \(BP_i\) is the \(i\)th bonding point and \(p_{j\text{pos}}\) is the 3D position of vertex \(j\).

Due to the thickness of the yarn, these bonding points are moved slightly taking the normal of that quadrilateral into consideration. Then, each bonding point \(BP_i\) is assigned the value \(BP_i + c_iN\), where \(N\) is the surface normal and \(c_i\) is a constant that is defined according to the type of the loop and bonding point. Thus the knitted fabric looks different when front and back views are considered. Figure 1 shows the construction of the loops.

In order to maintain interactivity, complex volumetric models or time consuming methods like [3, 9] for rendering the yarns in a loop cannot be utilized. Three-dimensionality is achieved by drawing cylinders around each yarn and applying texture mapping on these cylinders (see Figure 2 for a close-up view of a knitwear). Using the position information of consecutive bonding points, a cylinder of height \(|\overrightarrow{V}|\) lying along the positive z axis is found. Then, the cylinder is transformed by a composite transformation matrix so as to be oriented in the direction of the vector between the two consecutive bonding points. The composite transformation matrix \(M\) includes a rotation around y-axis, a rotation around x-axis, and a translation:

\[
M = T(BP_i) \cdot R_x(-\alpha) \cdot R_y(-\beta)
\]

\[
\alpha = \arcsin((BP_{i+1}.y-BP_i.y)/|\overrightarrow{V}|)/\sqrt{(BP_{i+1}.y-BP_i.y)^2+(BP_{i+1}.z-BP_i.z)^2}
\]

\[
\beta = \arccos\sqrt{(BP_{i+1}.y-BP_i.y)^2+(BP_{i+1}.z-BP_i.z)^2}
\]

In order to optimize the performance, varying levels of detail from different viewing distances are shown. For distant views, since the yarn structure cannot be distinguished, instead of drawing cylinders by performing explicit transformations, we simply draw texture-mapped, anti-aliased line primitives between the bonding points by hardware supported line drawing. The line
size, which is determined by the number of pixels, is proportional to the proximity of the viewer to the cloth. Another issue
to consider is the popping artifacts for the transition between the two modes of rendering yarns. The transition should be
gradual and devoid of sudden leaps. We achieve smooth transition by image blending. For intermediate distance ranges, the
knitwear is generated with line primitives and with cylinders separately. These knitwear images are blended and the resulting
image is rendered. The blending weights of the two images are determined according to the distance of the viewer to the cloth.
Blending is handled using hardware support. The blending operation is illustrated in Figure 3. In the most distant view, the
cloth is rendered with line primitives. Then, at intermediate distance range, the blended image is rendered. The closest view
is generated with cylinders. The images at the bottom row demonstrate magnified fragments from each image. The knitwear
rendering algorithms are as follows:

Algorithm RenderKnitwear (cloth, pattern)

1. Compute viewing distance to cloth
2. if viewing distance > high
3. line width ← c / viewing distance
4. I ← GENERATELINETHREADS (cloth, pattern, line width)
5. else if viewing distance ∈ [low, high]
6. line width ← c / viewing distance
7. I₁ ← GENERATELINETHREADS (cloth, pattern, line width)
8. I₂ ← GENERATECYLINDRICALTHREADS (cloth, pattern)
9. I ← ((I₂ * (viewing distance − low) + I₁ * (high − viewing distance)) / (high − low))
10. else
11. I ← GENERATECYLINDRICALTHREADS (cloth, pattern)
12. Render I

Algorithm GENERATECYLINDRICALTHREADS (cloth, pattern)

1. for each quadrilateral in cloth
2. Compute bonding points BP using Equation 1 and according to pattern
3. for each i ← 1, . . . , 11
4. V ← BP_{i+1} − BP_i
5. Find cylinder of height |V| lying along the positive z-axis
6. Align cylinder with the direction of V by the transformation matrix in Equation 2
7. Draw cylinder in image
8. return image
The algorithm for \texttt{GENERATELINETHREADS}(cloth, pattern, lineWidth) is similar to \texttt{GENERATECYLINDRICALTHREADS}(cloth, pattern) with the exception of drawing line primitives of size \textit{lineWidth} instead of cylinders.

Figure 4 shows a knitted shirt from different distances, where the close-up views are rendered with cylinders and the distant view is rendered with lines. Figure 5 shows examples of knitwear rendered with line primitives. Finally, Figure 6 demonstrates the physical behavior of knit loops, whereby the correlation between the forces acting on the cloth and the distance between the threads can be observed.

2.2 Woven Cloth

In real life, weaving can be performed by means of a loom. The idea of the loom is to interleave two sets of perpendicular threads [10]. These threads are the warp and the weft threads. Warp threads are the vertical ones, whereas weft threads are the horizontal ones. Weaving patterns can be obtained from two types of interleaving of threads, i.e., \textit{warp on weft} and \textit{weft on warp}. Various weaving patterns can be created by ordering these two thread interleaving types. Our system works as follows: (i) we read the patterns from a pattern description file, (ii) draw them in 3D as warp and weft threads by calculating their positions and (iii) do texture-mapping on them to capture the detailed appearance of the component fibers. The texture is simply an image of a thread surface, which depicts the twists of the yarn clearly. Texture coordinates are calculated after the weave pattern is read from the file. The 3D structure of each weave unit is shown in Figure 7.

We render the threads one by one at each iteration. In this way, our method for rendering woven cloth is similar to the rendering of knitwear since the three-dimensional structure is not ignored. The indices of each of the fibers are calculated and they are moved in the direction of the normal of the quadrilateral they are on. Since the weaving structure is defined procedurally, there is no need to use alpha values for the gaps between the warp and weft threads. When the weave pattern is read from the file, each quadrilateral in the cloth mesh is subdivided into smaller quadrilaterals in order to construct the pattern. The input file consists of a matrix of binary numbers, where 0 denotes weft on warp and 1 denotes warp on weft. Figure 8 exhibits examples of woven cloth. The woven cloth in Figure 8 (b) shows the difference in the appearance of front and back surfaces. Figure 9 shows a woven shirt with different thread sizes and from different distances. Transparent cloth can be obtained by simply reducing the thickness of the threads.

3 Results and Conclusion

The implementation is tested on a PC (T2500, 2.00 GHz) with 2 GB of RAM. The graphics card is NVIDIA GeForce Go 7400 with 256 MB memory size. The software platform is Microsoft Visual C++ 6.0 with OpenGL libraries. The timestep for each iteration is taken as 0.05 seconds. The average frame rates per second for rendering a cloth with 5000 loops (threads) are 208 for texture mapping, 25.64 for knitwear with line threads, 10 for knitwear with cylindrical yarns and 62.5 for woven
cloth. When the same cloth patch is animated including the gravitational force and self-collisions, the average frame rates per second are 40.8 for texture mapping, 1.46 for simple knitwear, 0.28 for knitwear with cylindrical yarns, and 6.1 for woven cloth. The higher frame rates for texture mapped cloth is due to handling texture mapping on GPU. The difference between the time of the rendering of knitwear and woven cloth is due to the complexity of the threading structure. The correspondence of the spring-mass system with the warp/weft structure of the cloth is more suitable for woven cloth rather than knitwear.

Due to the thin rendering primitives, some aliasing artifacts occur for distant views. This is prevented by applying scene antialiasing using the accumulation buffer mechanism. The images before and after antialiasing can be seen in Figure 10.

Owing to the simplicity of the method, the rendering performance is mostly real-time. As a future work, approaches for real-time animation will also be investigated. In addition, currently, knitting is only applicable to simple stitching structures, i.e., left and right loops; thus, further study on complex stitching techniques with a procedural method can be a future research direction.

References

Figure 1: Bonding points of a knit loop.
Figure 2: The close-up view of a knitwear.
Figure 3: Transition from line primitives to cylinders: (a) distant view with lines; (b) intermediate distance with blended image; (c) close-up view with cylinders. Images at the bottom part show magnified views for each distance.
Figure 4: Appearance of a knitted shirt from different distances. Close-up view is rendered with cylinders and distant view is rendered with lines.
Figure 5: Knitwear garments rendered with line primitives.
Figure 6: The physical behavior of knitwear.
Figure 7: 3D structure of a weave unit.
Figure 8: Examples of woven cloth. The woven cloth in (b) shows the difference in the appearance of front and back surfaces.
Figure 9: (a) Woven outfit with thick threads for magnified, distant and close-up views; (b) woven outfit with thin threads for magnified, distant and close-up views.
Figure 10: Clothes before and after antialiasing.