Address Allocation Models

Clean Slate Research “Agenda”

R. Guerin
University of Pennsylvania

Some Level Setting

• What does “clean slate research” have to do with allocation of IP addresses?
 – Learn from past mistakes and try to avoid repeating them
 – Identify existing weaknesses and figure out how to exploit them to displace IP
 – As a matter of fact the IPv6 vs. IPv4 story holds many lessons that clean slate proposals can benefit from

• Any clean slate proposal will have to
 – Articulate its value over the incumbent technology
 – Evaluate the need for and trade-off associated with gateways
 – Set its price so as to be competitive
 – Understand the dynamics and ultimate targets (equilibrium points) of technology migration
Truth in Advertising

• I don’t claim to
 – Be an expert in clean slate proposals (no crystal ball, yet!)
 – Understand all/any of the issues associated with allocation of addresses, be they IPv4 or IPv6
 – Have a specific proposal for allocating new IPv6 addresses or the remaining IPv4 addresses
 – Understand the many ways in which address allocation can affect network neutrality
• I will attempt to
 – Outline a FIND (clean slate) project whose motivations may be relevant to the issue of address allocation
 • Present some initial findings that illustrate the kind of issues one may face when dealing with IPv4 and IPv6 address allocation
 • “Dynamics of technology diffusion in the presence of network externalities” – Joint work with K. Hosanagar, Y. Jin, A. Odlyzko, S. Sen and Z.-L. Zhang

Project Motivations

• Success of new technologies depends not only on their technical advantages, but also on economic factors
 – Many technologies have failed to widely deploy
 – Ex: IPv6, various QoS services

• How do we assess (design?) new network architectures that are not only technically superior but also economically viable?
Grand Objectives

• Identify key economic factors that influence design choices and trade-offs in developing, deploying and evolving network architectures

• Model the functional relationships between the economic factors and new technologies in network architecture designs

• Compare alternative network architectures in terms of their economic viability

Actual Research Topics

Identify the impact of incumbent technology on new network architecture adoption
 – Model the dynamics of technology adoption in a network setting

• Quantify the trade-off between diversity and integration in network offerings
 – Many services over a single network vs.
 – Many services over separate multiple networks and the impact of virtualization on those choices

• Assess the benefits of open and flexible network architectures
Parameters of Interest

- Intrinsic benefits of an architecture/technology
- Network externalities
 - From users of the same technology
 - Across technologies when converters/gateways are available
- Costs
 - Fixed cost: deployment cost
 - Variable cost: operation and maintenance cost
 - Switching costs (getting to learn a new technology)
 - How they vary over time (learning curve) and as a function of technology complexity
- Pricing
 - Initial settings and dynamic strategies
- Many if not all of these apply equally to IPv4→IPv6 migration

Our Focus and Initial Goals

- Develop a quantitative understanding of what can happen (dynamics and possible equilibria) when introducing a new network technology aimed at displacing an incumbent
 - And yes, that means models
- Identify possible outcomes and the parameters affecting them
 - How many equilibria, are they stable or not?
 - Effect of incumbent market penetration
 - Need for seeding of new technology
 - Sensitivity to initial pricing
 - Dynamics of technology adoption
 - When do technologies coexist vs. having one dominate?
- Non Goals
 - Not seeking "recipes" that can be readily applied to predict the outcome for specific technology configurations, e.g., IPv6 at $2/address wipes out IPv4 but at $5/address it never takes off...
First Step

- What does it take to displace a (strong) incumbent (IPv4) with a new, niftier (clean slate or IPv6) technology
 - Each technology delivers a certain intrinsic utility \((q_i, i=1,2)\) with presumably \(q_1 \leq q_2\), and charges a certain price \((p_i, i=1,2)\)
 - All these are \textit{generic} quantities with a common unit (no attempt – yet – at “dollaring” these quantities)
 - Users have individual preferences \((\theta)\) that shape their technology adoption behavior
 - User preferences have a certain (known) distribution, e.g., uniform
 - Technology 1 enjoys an existing market penetration when technology 2 is first introduced at time \(t=0\) \((x_1(0)>0, x_2(0)=0)\)
 - Network externalities increase utility of each technology in “proportion” to its number of adopters

- Model should capture the dynamics of technology adoption in this scenario
 - Identification of (stable) equilibrium points
 - Trajectory of equilibrium
 - More importantly, we should extract a better understanding/insight of what can happen and the key parameters affecting the outcome

Basic Notation

- Basic parameters
 - \(x_i\): fraction of technology \(i\) adopters \((0 \leq x_i \leq 1, i=1,2; x_1 + x_2 \leq 1)\)
 - \(\theta\): individual user preference (uniformly distributed in \([0,1]\))
 - \(q_i\): utility of technology \(i\)
 - \(v(x_i)\): network externality (assume \(v(x_i) = x_i\))
 - \(p_i\): price of technology \(i, i=1,2\)

- Utility of technology \(i\): \(U_i(\theta, x_i) = \theta q_i + x_i \cdot p_i, i=1,2\)

- User behavior (rational decision)
 \[
 \begin{cases}
 \text{no technology} & \text{if } U_i < 0 \text{ for } i = 1,2 \\
 \text{technology } 1 & \text{if } U_1 > 0 \text{ and } U_1 > U_2 \\
 \text{technology } 2 & \text{if } U_2 > 0 \text{ and } U_2 > U_1
 \end{cases}
 \]
Technology Adoption Model

- Indifference points for technology adoption
 \[\theta_1^0 : U_1(\theta) \geq 0 \text{ if } \theta \geq \theta_1^0, \text{ users adopt technology 1} \]
 \[\theta_2^0 : U_2(\theta) \geq 0 \text{ if } \theta \geq \theta_2^0, \text{ users adopt technology 2} \]
 \[\theta_1^1 : U_2(\theta) \geq U_1(\theta) \text{ if } \theta \geq \theta_1^1, \text{ users prefer technology 2} \]

- Sample outcome

Technology Diffusion

- Let \(H(x), i=1,2 \) and \(x= (x_1, x_2) \) denote the "measure" of the set of adopters of technology \(i \) (how many users have adopted it)
 - At equilibrium, we must have \(H(x_i) = x_i, i=1,2 \)

- Diffusion of technology proceeds iteratively
 - In each interval of duration \(\Delta t \), \(x(t + \Delta t) = H(x(t)) \)
 - This can be used to define a differential equation

- Solution identifies different "regions" of the parameter space \((p_1, q_1, p_2, q_2) \)
 - In each region we can
 - Characterize and validate candidate equilibrium points and determine if they are stable or unstable
 - Solve the differential equation to identify the trajectory of technology diffusion

- Most importantly, use this machinery to gain some insight into possible behaviors of technology competition
 - Some representative examples to follow
The Impact of Pricing – (1a)

- Two technologies
 - $q_1 = 2.95, p_1 = 1.01$
 - $q_2 = 5.5, p_2 = 2.57$
- Technology 2 prices itself out of (eventual) existence
 - Note that it does take off and gain some traction, but technology 1 is still growing faster and eventually wins
 - Outcome is independent of initial technology 1 penetration

The Impact of Pricing – (1b)

- Two technologies
 - $q_1 = 2.95, p_1 = 1.01$
 - $q_2 = 5.5, p_2 = 2.55$
- Technology 2 prices itself competitively
 - The two technologies converge to unhappy coexistence (roughly equal market shares)
 - Outcome is again independent of initial technology 1 penetration
The Impact of Pricing – (1c)

- Two technologies
 - \(q_1 = 2.95, p_1 = 1.01 \)
 - \(q_2 = 5.5, p_2 = 2.54 \)
- Technology 2 prices itself to win
 - Technology 1 continues growing for some time after the introduction of technology 2, but is eventually wiped out
 - Outcome is again independent of initial technology 1 penetration

Taking Stock – (1)

- A better technology does not always win
 - No surprise there
- A full range of possible outcomes
 - Either or both technology can survive
- Rapid transitions between different outcomes based on small price changes
 - \(p_2 = 2.54 \): only technology 1 survives
 - \(p_2 = 2.55 \): both technologies survive
 - \(p_2 = 2.57 \): only technology 2 survives
- The initial penetration of technology 1 did not affect the outcome
- Are these general conclusions or can we see different behaviors?
The Impact of Pricing – (2a)

- Two technologies
 - \(q_1 = 2.95, p_1 = 1.2 \) (higher)
 - \(q_2 = 5.1, p_2 = 2.7 \)
- Technology 2 again prices itself out of (eventual) existence
 - As before, it takes off, but grows more slowly than technology 1 which eventually wins
 - Outcome still independent of the initial penetration of technology 1

The Impact of Pricing – (2b)

- Two technologies
 - \(q_1 = 2.95, p_1 = 1.2 \) (higher)
 - \(q_2 = 5.1, p_2 = 2.55 \)
- The outcome now depends on the initial penetration of technology 1
 - Above a certain threshold (~0.4), it eventually prevails
 - Below the threshold, only technology 2 survives in spite of continued robust growth of technology 1 after technology 2 is first introduced
 - Note the presence of an unstable equilibrium \(\triangle \), where both technologies would have survived
The Impact of Pricing – (2c)

- Two technologies
 - \(q_1 = 2.95, p_1 = 1.2 \) (higher)
 - \(q_2 = 5.1, p_2 = 2.4 \)
- As in scenario 1, technology 2 now prices itself to be the only one to survive
 - Technology 1 continues to grow (slowly) for some time after the introduction of technology 2, but is eventually wiped out
 - Outcome is back to being independent of initial technology 1 penetration

Taking Stock – (2)

- We have now seen scenarios where both pricing and the initial penetration of the incumbent play a role
 - Technology 1 was the same as before, just a bit more expensive
 - Technology 2 was slightly less performant than in the previous examples
- Basically we went, using two mostly similar configurations, from an environment with a stable equilibrium where both technology co-existed to one where only one of the two technologies survived
One Last Example – (3a)

- Two technologies
 - \(q_1 = 0.3, p_1 = 0.5 \)
 - \(q_2 = 9.6, p_2 = 5.2 \)
- We now have a low-quality but cheap technology competing against a high-quality but expensive one
- The outcome depends on the initial penetration of the cheaper technology
 - Above a threshold, both technologies end-up coexisting and achieve full market penetration
 - Below the threshold only the better technology survives

What Is Missing? Lots of Things

- Time-varying technology quality and price
 - It gets better and cheaper over time
- Pricing that depends on the number of adopters
 - The more people are using the technology the cheaper it gets
- Profit model and profit maximization strategies
 - How to charge to maximize profit over a certain time period
- Dynamic pricing strategies
 - How does each technology react to maximize its chances of survivals and/or its profit
- Addition of gateways that deliver cross-technology externalities
- Validation
 - Identify existing/ongoing deployment scenarios on which to try to apply this, i.e., examples of prices, costs, qualities, etc.
 - And yes that means that we need more DATA!

- And the list goes on…
Conclusion

- Interactions of competing technologies with network externalities can give rise to a wide range of outcomes based on
 - Pricing, technology quality, level of penetration of the incumbent, etc.
- We are starting to develop some basic models to explore these complex interactions
 - Much work remains, but the end-result should offer improved insight of what to watch for or take into account when assessing how to best introduce new network technologies
- And yes, this might be applicable to IPv4-IPv6 migration