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Mailing List

Active users of Harmony are encouraged to subscribe to the harmony-hackers mailing list by visiting
the following URL:

http://lists.seas.upenn.edu/mailman/listinfo/harmony-hackers

Caveats

The Harmony system is a work in progress. We are distributing it in hopes that others may find it useful or
interesting, but it has some significant shortcomings that we know about—as well as, surely, some that we
don’t—plus a multitude of minor ones. In particular, the documentation and user interface are... minimal.
Also, the Focal implementation has not been carefully optimized. It’s fast enough to run medium-sized
(hundreds of lines) programs on small to medium-sized (kilobytes to tens of kilobytes) trees, but it’s not up
to industrial use.

Copying

Harmony is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See the file COPYING in the source distribution for more information.

Contributing

Contributions to Harmony—especially in the form of interesting or useful lenses—are very welcome. By
sending us your code for inclusion in Harmony, you are signalling your agreement with the copying policy
described above.



Contents

1 Introduction 4

2 Quick Start 5

3 The Focal Language 8
3.1 Lexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Syntactic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Modules and Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.5 Quoted Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.6 Qualified Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The Focal Libraries 14
4.1 The Standard Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Predefined Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Generic Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.3 Forking Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.4 Lenses for Structural Transformations on Trees . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.5 Mapping Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.6 Conditional Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.7 Merging and Copying Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.8 Lenses for “Keyed Relations” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.9 Debugging Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.10 I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.11 Viewer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.12 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Module List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 The List Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Names and Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.4 Lenses for “Keyed Lists” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.5 Conversions Between Names and Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Module Xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Names and Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



4.4 Module Plist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Module Relational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Synchronization 35

6 The Harmony System 36
6.1 Running Harmony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Running the Web Demos Locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Navigating the Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Using Harmony From Unison 38

8 Case Studies 41

3



Chapter 1

Introduction

Optimistic replication strategies are attractive in a growing range of settings where weak consistency guar-
antees can be accepted in return for higher availability and the ability to update data while disconnected.
These uncoordinated updates must later be synchronized (or reconciled) by automatically combining non-
conflicting updates while detecting and reporting conflicting updates.

The Harmony project aims to develop a generic framework that can be used to build high-quality syn-
chronizers for a wide variety of application data formats with minimal effort. The current Harmony system
is the realization of our progress toward this goal, focusing on the important special cases of unordered and
rigidly ordered data (including sets, relations, tuples, records, feature trees, etc.), with only limited support
for list-structured data such as structured documents.

The Harmony system has two main components: (1) a domain-specific programming language, called
Focal, for writing lenses—bi-directional transformations on trees—which we use to convert low-level (and
possibly heterogeneous) concrete data formats into a high-level synchronization schema, and (2) a generic
synchronization algorithm, whose behavior is controlled by the synchronization schema.

This document describes both components in detail.
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Chapter 2

Quick Start

This chapter is intended for people who are installing Harmony on their own machines. If you are only using the web
demo, you’ll want to skip on to later sections.

Installation

1. Grab and unpack the most recent tarball from here:

http://www.cis.upenn.edu/˜bcpierce/harmony/download

2. Follow the instructions in the file src/INSTALL to install the OCaml compiler (if necessary) and the
libraries on which Harmony depends.

3. Type make test in the top-level directory to build the Harmony executable and run all the regression
tests.

Using Harmony with Unison

If you just want to run Harmony instances from Unison (rather than experimenting with writing your own),
you should now skip to page 38.

Playing with the Demos

The examples directory contains a number of different Harmony instances. Most of them are also available
for live experimentation via the web. (Go to the main Harmony page and follow the “demo” link.) Play
with some of these to familiarize yourself with the basic concepts and capabilities of Harmony.

You’ll find the Focal source code for demo XXX in a file called examples/XXX/demos.php, if you want
to see how things work.

First Steps in Lens Programming

Now let’s roll up our sleeves and write a few lenses.

1. Make a copy of the directory examples/template in a place where you can play with it:

cp -r examples/template experimental/play
cd experimental/play

5



2. Type make test. You should see this:

Test result: {a = {1}, b = {2}}

3. Open the file main.fcl in your favorite text editor. Edit the tree in the last line to add a new
child named c with a subtree {3} (i.e., add c={3} just before the closing curly brace) and re-run
make test.

The three-line Focal program in main.fcl can be read as follows:

• The first line declares that this file contains a module named Main.

• The second line defines a new lens named l, which behaves the same as the predefined identity
lens, id.

• The third line asks the Focal system to evaluate the get direction of l on the concrete argument
(an expression of type tree) following the /. The ? on the right of the = asks that the result be
printed out.

4. Replace the ? by the same tree as on the left of the = and re-run make test. This time, nothing at all
should be printed. You’ve just written your first unit test.

Edit the tree on the left-hand side of the = and run make test. You should now see an error message
indicating that the test is failing.

Change the right-hand side of the = back to ?.

5. Change the id in the second line to filter {a,c} {}. Re-run make test. You should see this:

Test result: {a = {1}, c = {3}}

Note that the b child has been filtered away.

Edit the tree in the test to add a d child, re-run the test, and note that this child is also filtered away.

6. Now let’s see what this lens does in the putback direction. In the third line, change the / to \ and
add, just after the \, the tree {a={5}}. Run make test. You should see a new concrete tree with
an updated value for a, with c missing, and with the subtrees under b and d carried over from the
second argument tree.

7. Now let’s play with some XML. Change the right-hand side of the definition of l back to id and
replace the third line with this:

let myxml : name = "<a><b>hello world</b></a>"

let myxmltree : tree = (load "xml" myxml)

test l / myxmltree = ?

Run make test. What’s printed is the low-level internal representation of XML in Focal—the way
an XML string is parsed as a tree.

8. Change the definition of l to Xml.squash. Run make test. That looks a little better.

9. Change the definition of l again to

let l : lens = Xml.squash; hoist "a"; hoist "b"; hoist Xml.PCDATA

and note that the result of running the test changes to just the string hello world (encoded as the
unique edge in a tree with an empty subtree).
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10. Change the final test to

test l \ {"goodbye cruel world"} myxmltree = ?

and note how the new string has been re-inserted into the original XML structure. (The quote marks
are needed here because we are defining a tree with an edge label containing the space character.)

11. Now let’s play with transforming an external file. Change the definition of l to just Xml.squash and
type:

make get

So far, we’ve just been running Harmony in its testing mode, which causes unit tests embedded in the
code to be evaluated and their results printed. Doing make get runs Harmony in a different mode,
asking it to run the lens Main.l over the contents of the file test.xml (which is parsed as XML
because of its extension) and put the resulting tree (in Focal’s tree notation) in the file temp.meta.

12. Change the definition of l to

let l : lens = Xml.squash; focus "a" {}; focus "b" {}

and observe the results of make get.

13. Now let’s synchronize. Make two copies of the file test.xml:

cp test.xml r1.xml
cp test.xml r2.xml

Now synchronize them by doing

make sync

Observe that a new file archive.xml has been created and that its contents are equal to those of
r1.xml and r2.xml.

14. Change the string hello in the file r1.xml to goodbye. Change world to cruel world in r2.xml.
Do make sync again and observe the results.

Hooray.

This has been a lightning tour of some of the main features of the Harmony system. If you want to go
further, the first thing to do is to read over the two main technical papers on which the system is based [?, ?],
both of which are available from the Harmony home page:

http://www.cis.upenn.edu/˜bcpierce/harmony

After that, you should skim the rest of this document to get a sense of what is there. Then you should have
a look at the examples directory and play with some of the larger demos that we’ve implemented.

Good luck and have fun!
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Chapter 3

The Focal Language

The Focal language provides convienent concrete syntax for writing lenses programs along with names,
trees, schemas, functions, and embedded unit tests. The concrete syntax is based on the fully-annotated,
monomorphic core of OCaml.

3.1 Lexing

Whitespace characters are space, newline and tab. Comments are delimited by (* and *) and may be
nested. Comments are equivalent to white space.

String literals can be any sequence of characters and escape sequences enclosed in double-quotes. The
escape sequences \", \\, \b, \n, \r, and \t stand for the characters double-quote, backslash, backspace,
newline, vertical tab, and tab. To facilitate lining up columns in indented string literals, within a string, a
newline followed by whitespace and then | is equivalent to a single newline. For example,

"University
of
Pennsylvania"

is equivalent to both

"University
of
Pennsylvania"

(in the leftmost column) and

"University\nof\nPennsylvania"

(anywhere).

3.1.1 Identifiers

Identifiers are non-empty strings drawn from the following set of characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
′ _ - @

and the following keywords and symbols are reserved and are not valid as identifers:
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and assert at begin end error fun in lens let
missing module name open protect sync test view schema with
check fmap where pred fds TRUE FALSE
-> ( ) ; . * ! | = {
} [ ] , : \ / , : +
? ‘ ˜ - & <<˜> <<=> <<->

3.2 Syntactic Structure

This section gives the formal definition of Focal syntax, using an EBNF grammar. The productions for
each syntactic category are followed by a brief, informal discussion. In the rules we adopt the following
conventions:

• Literals are written in a typewriter font and enclosed in single quotes, like this: ‘module’;

• Non-terminals are enclosed in angle brackets, like this: 〈Exp〉.

• Optional elements are enclosed in square brackets: [‘:’ 〈Sort〉];

• Terms may be grouped using parentheses;

• Repeated elements are specified using * (0 or more) and + (1 or more).

3.2.1 Modules and Declarations
〈CompilationUnit〉 ::= ‘module’ 〈Ident〉 ‘=’ (‘open’ 〈Qid〉)* 〈Decl〉*

〈Decl〉 ::= ‘let’ 〈BindingList〉
| ‘schema’ 〈SchemaBindingList〉
| ‘module’ 〈Ident〉 ‘=’ 〈Decl〉* ‘end’
| ‘test’ 〈Exp〉 ‘=’ 〈Exp〉
| ‘test’ 〈Exp〉 ‘=’ ‘error’
| ‘test’ 〈Exp〉 ‘=’ ‘?’
| ‘sync’ ‘with’ 〈AExp〉 ‘at’ 〈AExp〉 〈AExp〉 ‘=’ 〈AExp〉
| ‘sync’ ‘with’ 〈AExp〉 〈AExp〉 〈AExp〉 ‘at’ 〈AExp〉 〈AExp〉 ‘=’ 〈AExp〉

A Focal compilation unit contains a single module declaration, such as module Foo, that must appear in a
file named foo.src (for “literate” sources) or foo.fcl (for plain sources). A module contains a sequence
of open declarations, which import all the declarations from another module, followed by a sequence of
declarations. A declaration is either a let, a schema, a nested module, or a unit test. Focal modules are
currently only used to group declarations in a common namespace. In particular, Focal does not yet support
module signatures or sealing.

Unit Tests

The syntax includes several forms of unit tests (which are only tested when the system is run in testing
mode; see Section 6.1). The first form, test t1 = t2, checks that t1 and t2, which must both be expres-
sions of sort view, evaluate to equal values. This kind of test is often used to check the behavior of
the get and putback components of lenses, as in the following snippet: test id / {} = {}. The sec-
ond form, test l1 /\ t1 = t3, is shorthand for two tests of a bijective lens: test l1 / t1 = t2 and
test l1 \ t2 missing = t1. The third form, test t1 = error, checks that t1 raises an exception when
it evaluates t1. This kind of test is used to ensure that native lenses, such hoist, check side conditions on
their inputs correctly; for example, test hoist "n" {} = error. The fourth form, test t1 =?, causes
Harmony to run the unit test and print out the result. The final two forms are used to test the behavior of
the synchronization algorithm:
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sync with l at s {O=o, A=a, B=b} = {O= o′ , A= a′ , B= b′}.

applies l↗ to the trees o, a, and b, synchronizes those trees at schema s, and then applies l↘ to the results,
yielding o′, a′ and b′. The unit test

sync with lo la lb at s {O=o, A=a, B=b} = {O= o′ , A= a′ , B= b′}.

is similar, but applies a different lens to o, a, and b.

3.2.2 Bindings
〈Binding〉 ::= 〈Ident〉 (〈Ident〉‘:’〈Sort〉)+ ‘:’ 〈ASort〉 ‘=’ 〈Exp〉
| 〈Ident〉 (〈Ident〉‘:’〈Sort〉)+ ‘:’ 〈AExp〉 〈LensArrow〉 〈AExp〉 ‘=’ 〈Exp〉

〈BindingList〉 ::= 〈Binding〉
| 〈Binding〉 ‘and’ 〈BindingList〉

〈SchemaBinding〉 ::= 〈Ident〉 ‘=’ 〈Exp〉

〈SchemaBindingList〉 ::= 〈SchemaBinding〉
| 〈SchemaBinding〉 ‘and’ 〈SchemaBindingList〉

Focal let-bindings are identical to OCaml let-bindings except that the let-bound variable and the ex-
pression must both be annotated with their sorts.

In a schema declaration, the bound variable may be used recursively, as in the following declaration:
schema X = { "n" = X } | {}, which denotes the infinite set of trees containing the empty tree and
every tree with a single child n whose subtree is also in the schema. For more on schemas, see Sections 3.2.4
and 3.3.

3.2.3 Sorts
〈Sort〉 ::= 〈ASort〉 ‘->’ 〈Sort〉
| 〈ASort〉

〈ASort〉 ::= ‘lens’
| ‘name’
| ‘view’
| ‘schema’
| ‘(’ 〈Sort〉 ‘)’

〈LensArrow〉 ::= ‘<<˜>’
| ‘<<=>’
| ‘<<->’

Focal does not yet have a full-blown lens type system. However, the compiler performs rudimentary sort
checking. The sorts are lens, name, view, schema, and function sorts, of the form s1->s2. The sort
checker supports exactly one form of subtyping: it automatically promotes an expressions with sort view
to the singleton schema containing that tree.

3.2.4 Expressions
〈Exp〉 ::= ‘let’ 〈BindingList〉 ‘in’ 〈Exp〉
| ‘schema’ 〈SchemaBindingList〉 ‘in’ 〈Exp〉
| ‘fun’ ([‘(’]〈Ident〉‘:’〈Sort〉[‘)’])+ [‘:’〈Sort〉] ‘->’ 〈Exp〉
| 〈GetPutExp〉
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〈ExpList〉 ::= 〈Exp〉
| 〈Exp〉 ‘,’ 〈ExpList〉

〈GetPutExp〉 ::= 〈ComposeExp〉 ‘/’ 〈PlusExp〉
| 〈ComposeExp〉 ‘\’ 〈AExp〉 〈AExp〉
| 〈ComposeExp〉 ‘\’ 〈AExp〉 ‘missing’
| 〈ComposeExp〉

〈ComposeExp〉 ::= 〈ComposeExp〉 ‘;’ 〈BarExp〉
| 〈BarExp〉

〈BarExp〉 ::= 〈BarExp〉 ‘|’ 〈AndExp〉
| 〈AndExp〉

〈InterExp〉 ::= 〈InterExp〉 ‘&’ 〈MinusExp〉
| 〈MinusExp〉 〈MinusExp〉 ::= 〈MinusExp〉 ‘+’ 〈PlusExp〉
| 〈PlusExp〉

〈PlusExp〉 ::= 〈PlusExp〉 ‘+’ 〈ConsExp〉
| 〈ConsExp〉

〈ConsExp〉 ::= 〈AppExp〉 ‘::’ 〈ConsExp〉
| 〈AppExp〉 ‘:|:’ 〈ConsExp〉
| 〈AppExp〉

〈AppExp〉 ::= 〈AppExp〉 〈AExp〉
| 〈AExp〉

〈AExp〉 ::= 〈String〉
| 〈QId〉
| ‘˜’ 〈AExp〉
| ‘{’ 〈MapList〉 ‘}’
| ‘{’ 〈TreeEltList〉 ‘}’
| ‘[’ 〈ExpList〉 ‘]’
| ‘[|’ 〈ExpList〉 ‘|]’
| ‘(’ 〈Exp〉 ‘)’
| ‘begin’ 〈Exp〉 ‘end’
| ‘protect’ 〈AExp〉
| ‘assert’ 〈AExp〉

〈Map〉 ::= 〈QuotedName〉 ‘->’ 〈Exp〉

〈MapList〉 ::= 〈Map〉
| 〈Map〉 ‘,’ 〈MapList〉

〈TreeElt〉 ::= 〈QuotedName〉
| [‘?’] 〈QuotedName〉 ‘=’ 〈Exp〉
| ‘*’ [‘\’ [‘(’] 〈QuotedNameList〉 [‘)’]] ‘=’ 〈Exp〉
| ‘!’ [‘\’ [‘(’] 〈QuotedNameList〉 [‘)’]] ‘=’ 〈Exp〉
| ‘?’ [‘\’ [‘(’] 〈QuotedNameList〉 [‘)’]] ‘=’ 〈Exp〉
| ‘+’ [‘\’ [‘(’] 〈QuotedNameList〉 [‘)’]] ‘=’ 〈Exp〉
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〈TreeEltList〉 ::= 〈TreeElt〉
| 〈TreeElt〉 ‘,’ 〈TreeEltList〉

Focal expressions are similar to OCaml expressions with only a few special forms for composing and ap-
plying lenses, and for writing down trees and schemas. The main forms, in decreasing order of precedence,
are:

• Fully annotated let-expressions,

• Anonymous λ-expressions, written fun x1:s1 . . . xk:sk :s-> e, where each xi is a plain identifier
and si a sort. The parameters and sorts may optionally be enclosed in parentheses, and the return sort
may be omitted.

• get and put expressions, which apply the ↗ and ↘ components of a lens respectively. A get expres-
sion is written e1 / e2, where e1 has sort lens and e2 has sort view. Put expressions are written
e1 \ e2 e3 or e1 \ e2 missing, if the concrete argument is missing.

• Lens composition, written e1;e2,

• Schema unions, written e1 | e2,

• Tree and schema concatenations, written e1 + e2,

• Tree and schema cons cells, written e1::e2,

• Application expressions, written e1 e2,

• and “atomic” expressions

– Name literals, written "n",

– Qualified identifiers, written M.N.x, and described below,

– Finite maps from names to lenses, written {n1->L e1, . . ., nk->L ek}, where each ni is a
quoted name (see below) and ei is an expression with sort lens.

– Trees and schemas, written { t1, . . ., tk}, where each ti is a “tree element”; i.e., either a:

∗ named atom of the form n=e, where n is a quoted name (see below) and e an expression,
∗ or in schemas, a wildcard of the form ?=e, !=e, +=e, *=$e$, or *=e, where ? matches trees

with zero or one children, ! trees with exactly one child, + trees with one or more children,
and * trees with any number of children. Each of these wildcards may also optionally be
annotated with “exception lists” that exclude finite sets of names from the schema. Exception
lists are written \(n1,. . . ,nk); the parentheses enclosing the exception list may optionally be
omitted. As an example, the schema !\(n)=t denotes the set of trees with exactly one child
not named n that has a subtree in t.

– Trees representing lists and list schemas, written [e1, . . ., en],

– Constant relational databases, written {{ A_1(fields_1) = relation_1, . . ., A_m(fields_m) = relation_m}},
where each fields_i has the form x_1 ... x_k, each relation_i has the form {tuple_1,...,tuple_n},
and tuple_i has the form (y_1 ... y_n).

– Arbitrary expressions enclosed in parentheses (or equivalently, in begin and end).

– protect expressions, which cause the enclosed expression to be evaluated using lazy (call-by-
need) evaluation strategy instead of an eager strategy.
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– assert expressions, which behave like the identity lens but perform some run-time type check-
ing. If the get function of assert T is invoked with a concrete argument not belonging to the
schema T or its putback direction is invoked with either argument not belonging to T, then it
prints a message to this effect and halts the interpreter.
assert expressions take an argument with sort schema and yield a lens. The lens checks the
trees, in both directions, for membership in the schema. If the membership test succeeds, then
the entire expression behaves like the identity lens; otherwise the lens prints an error message
and halts.

3.2.5 Quoted Names
〈QuotedName〉 ::= 〈Ident〉
| 〈String〉
| ‘‘’ 〈AExp〉

〈QuotedNameList〉 ::= 〈QuotedName〉
| 〈QuotedName〉 ‘,’ 〈QuotedNameList〉

Within a map, tree or schema expression, such as {a={},b=[]}, the tokens appearing to the left of the
“->” and “=” symbols (in maps and in trees and schemas respectively) symbols are treated as names (string
literals), not as variables. The anti-quotation token, “‘”, allows one to refer to the expression a, which will
typically be a variable, rather than the name.

3.2.6 Qualified Identifiers
〈QId〉 ::= 〈Ident〉
| 〈QId〉 ‘.’ 〈Ident〉

An identifier may be qualified with an optional module prefix. Thus, M.N.x refers to x from module M.N.

3.3 Schemas

When constructing schemas, the Focal compiler checks three well-formedness constraints:

• All schemas must be contractive. The compiler ensures that the schemas it produces are contractive
using a syntactic check: all recursive uses of schema-bound variables must appear at least one level
deeper in the schema. The compiler rejects non-contractive schemas such as schema X = X + {}
and schema Y = Y | { "n" = {} } but allows schema X = { n = X } | {}.

• When concatenating two schemas, the sets of names that may appear as immediate children in the
two schemas must be disjoint, except for the infinite sets generated by wildcards. For example, the
schemas {"n" = {}} + {"n" = []} and {"n" = {}} + {!=[]} are both rejected because the
name n appears on both sides of the concatenation. However, the schema {! = {}} + {! = {}}
is allowed since the overlap is on every child.

• When forming a schema using union (or concatenation), for every name, the subschema below each
name appearing on both sides of the union (or concatenation) must be equivalent. This restric-
tion is analogous to the restriction on tree grammars embodied in W3C schema. The Focal com-
piler currently only supports a simple syntactic approximation of schema equivalence (e.g., it does
not equate a recursive variable with its expansion or distribute unions). For example, the schemas
{"n" = {}} | {"n" = []} and {"n" = []} | {! = {}} are both rejected since the subschemas
below n, {} and {} are not equivalent.
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Chapter 4

The Focal Libraries

The Harmony programming environment includes an assortment of primitive lenses and many useful de-
rived lenses, along with associated schemas and predefined names. All these are described in this chapter,
grouped according to module.

In most cases, the easiest way to understand what a lens does is to see it in action on examples; most
lens descriptions therefore include several unit tests, using the notation explained in Section 3.2.1.

More thorough descriptions of most of the primitive lenses can be found in an earlier technical paper [?].
The technical report version of this paper includes full proofs that the definitions are “well behaved,” but
the shorter conference version should be sufficient for getting up to speed with Focal programming.

4.1 The Standard Prelude

The lenses and schemas described in this section are available by default and need not be qualified with a
module name. For the sake of coherent grouping, some of the unit tests and derived forms mention lenses
that are only defined later in the section.

4.1.1 Predefined Schemas

Any The schema Any denotes the set of all trees.

KeyedTree A “keyed” tree consists of a single name pointing to some subtree.

let KeyedTree (X:schema) : schema = {!=X}

Value The schema Value describes trees with just one child pointing to an empty tree:

schema Value = KeyedTree {}

NonNullValue The schema NonNullValue describes all values except {""}:

schema NonNullValue = {!\""={}}

4.1.2 Generic Lenses

id The id lens returns its concrete argument unchanged in the get direction and its abstract argument
unchanged in the putback direction.

test id / \ {a={b}} = {a={b}}
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const The lens const t d always return the tree t in the get direction.

test const {a} {b} / {} = {a}
test const {} {b} / {a} = {}

In the putback direction, it is only defined if the abstract tree has not changed (if it is exactly t).

test const {a} {b} \ {b} {} = error

In this case, it returns the original concrete tree if there is one, and the default tree d otherwise.

test const {a} {b} \ {a} {} = {}
test const {a} {b} \ {a} {c} = {c}
test const {a} {b} \ {a} missing = {b}

; The lens composition operation is written as an infix semicolon. In the get direction, l;k simply
applies the get component of l followed by the get component of k. In the other direction, the two putback
functions are applied in turn: first, the putback function of k is used to put the abstract tree a into the concrete
tree that the get of k was applied to, i.e., l↗ c; the result of this putback is then put into c using the putback
function of l. (If the concrete tree c is missing, then, l↗ c is also defined to be missing, so the effect of
l;k↘a missing is to use k to put a into missing and then l to put the result into missing.)

test (hoist "x"; hoist "y") / \ {x = {y = {z}}} = {z}

A similar test case using two instances of const illustrates the strong schema constraint imposed by const
(the second argument of the second const must be {a}).

test (const {a} {d}; const {b} {a}) / {} = {b}
test (const {a} {d}; const {b} {a}) \ {b} {foo,bar} = {foo,bar}
test (const {a} {d}; const {b} {a}) \ {b} missing = {d}
test (const {a} {d}; const {b} {foo}) \ {b} missing = error

4.1.3 Forking Lenses

xfork The lens combinator xfork applies different lenses to different parts of a tree: it splits the tree
into two parts according to the names of its immediate children, applies a different lens to each, and con-
catenates the results. Formally, xfork takes as arguments two sets of names and two lenses. For example:

test (xfork {a} {x,y,z} (hoist "a") id) / {a={x,y}, b={z}, c} = {x,y,b={z},c}

(Note that sets of names are represented syntactically as trees of values.) The first set of names, {a}, spec-
ifies how concrete trees should be split: in the get direction, the input tree (here {a={x,y},b={z},c}) is
split into a tree with just the top-level edge labeled a (i.e., {a={x,y}}), which is passed through hoist "a",
and a tree with the edges b and c (i.e., {b={z},c}), which is passed through id. The resulting trees ({x,y}
and {b={z},c}) are merged to form the result.

The second set of names, {x,y,z}, specifies that only the names x, y, and z may appear at the top level
in the tree returned by the first get, and also that these three names may not appear at the top level in the
tree returned by the second get; these conditions ensure that the final merge always makes sense.

test (xfork {a} {x} (hoist "a") id) / {a={x,y}, b={z}, c} = error
test (xfork {a} {x,y,z,b,c} (hoist "a") id) / {a={x,y}, b={z}, c} = error

The putback direction of xfork works similarly: the concrete argument is split according to the first set
of names, the abstract argument according to the second set of names, the two lenses are applied to the
corresponding pairs of constituent trees, and the results are merged. Again, the putback direction of the first
lens must always yield trees whose top-level names fall in the first set, and the second lens must yield trees
whose names fall in the second set.
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test (xfork {a} {x,y,z} (hoist "a") id)
\ {x, z={foo}, b, d}
{a={x,y}, b, c}

= {a={x,z={foo}}, b, d}

fork Often, the two sets of names passed to xfork are the same. The derived lens fork packages this
case for convenience:

let fork (p:view) (l1:lens) (l2:lens) : lens = xfork p p l1 l2

bfork Another way to divide a tree is using a schema. The lens bfork C pa splits the concrete view
into one tree whose children all lead to subtrees belonging to C, and another whose children all lead to
subtrees belonging to not C. The putback function, divides the abstract tree using a set of names like
xfork.

test (bfork {!={}} {"tmp"} (const {tmp} {})
(fork {tmp} (const {} {}) id))
/ {tmp = {1, 2}, a = {1}, b = {2, 3}} = { tmp = {}, b = {2,3}}

4.1.4 Lenses for Structural Transformations on Trees

hoist The lens hoist n is used to shorten a tree by removing an edge at the top. In the get direction,
it expects a tree that has exactly one child, named n. It returns this child, removing the edge n. In the
putback direction, the value of the old concrete tree is ignored and a new one is created, with a single edge
n pointing to the given abstract tree.

test (hoist "n") /\ {n} = {}
test (hoist "n") /\ {n={a}} = {a}

It is an error to apply hoist n to a concrete tree whose domain is not exactly n.

test (hoist "n") / {} = error
test (hoist "n") / {a} = error
test (hoist "n") / {n,a} = error

hoist_nonunique The derived lens hoist_nonunique n is a generalized variant of hoist that re-
moves the restriction that its concrete argument have domain exactly n.

let hoist_nonunique (n:name) (p:view) : lens = xfork {‘n} p (hoist n) id

It takes an extra argument, a set of names represented as a tree, specifying the possible names of top-level
edges in the subtree reached under n, which must be disjoint from the names of top-level edges other
than n.

test (hoist_nonunique "n" {a,b,c}) /\ {n={a},x={b}} = {a, x={b}}

plunge The lens plunge n, defined as

let plunge (n:name) : lens = invert (hoist n)

is the exact inverse of hoist n.

test (plunge "n") /\ {a} = {n={a}}

let smash : (name -> lens) = Native.Prelude.smash
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filter The filter lens allows all but a given set of children (specified as a tree) to be projected away
in the get direction and restored in the putback direction.

let filter (p:view) (d:view) : lens = fork p id (const {} d)

test (filter {x,y,z} {new}) / {x,y,a,b,c} = {x,y}
test (filter {x,y,z} {new}) \ {x,z} {x,y,a,b,c} = {x,z,a,b,c}

The second argument to filter is a tree (with top-level names not in the given set) that is used as a
default value for the projected away part of the tree in the case where the putback part of filter is applied
to missing.

test (filter {x,y,z} {new}) \ {x,y} missing = {x,y,new}

focus The lens focus n d, defined as
let focus (n:name) (d:view) : lens = filter {‘n} d ; hoist n

projects away all the top-level names except n (restoring them in the putback direction) and then hoists the
children of n up to the top level.

test (focus "n" {new}) / {x={a},n={b={c}}} = {b={c}}
test (focus "n" {new}) \ {b={d},e} {x={a},n={b={c}}} = {x={a},n={b={d},e}}

As for filter, the second argument is used when the putback direction of focus is applied to missing.
test (focus "n" {new}) \ {b={d},e} missing = {n={b={d},e}, new}

prune The lens prune n removes just the name n in the get direction (if it is present) and restores it in
the putback direction.

let prune (n:name) (d:view) : lens = fork {‘n} (const {} {‘n=d}) id

test (prune "n" {new}) / {} = {}
test (prune "n" {new}) / {n={a},m={b}} = {m={b}}
test (prune "n" {new}) \ {m={c},d} {n={a},m={b}} = {n={a}, m={c}, d}
test (prune "n" {new}) \ {m={c},d} missing = {n={new}, m={c}, d}

add The lens add n v adds a new subtree v named n in the get direction and removes it in the putback
direction.

let add (n:name) (v:view) : lens = xfork {} {‘n} (const {‘n=v} {}) id

test (add "n" {x}) / \ {a={z}} = {a={z},n={x}}

rename The lens rename m n renames m to n in the get direction and n to m in the putback direction.
let rename (m:name) (n:name) : lens = xfork {‘m} {‘n} (hoist m; plunge n) id

test (rename "m" "n") /\ {m={a}, x={b}} = {n={a}, x={b}}

rename if present The lens rename_if_present m n is just like rename m n except that it does
not demand that its concrete argument actually possess a subtree named m or that its abstract argument
possess a subtree named n.

let rename_if_present (m:name) (n:name) : lens =
acond {‘m=Any, * \ ‘m = Any } {‘n=Any, * \ ‘n = Any }
(rename m n)
id

test (rename_if_present "m" "n") /\ {m={a}, x={b}} = {n={a}, x={b}}
test (rename_if_present "m" "n") /\ {x={b}} = {x={b}}
test (rename "m" "n") / {x={b}} = error
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pivot The lens pivot k performs a “rotation” on the root of the tree, taking a tree of the form {k={x}}+w

to one of the form {x=w}—i.e., promoting the value under k to the top so that it becomes a key for the re-
maining children, w.

test (pivot "k") / \ {k={x},a,b={c}} = {x={a,b={c}}}

The most common use of pivot is in the idiom List.map (pivot "k"); List.flatten.

4.1.5 Mapping Lenses

map The lens map l applies l to each of the children of the argument tree. In the get direction, it applies
l↗ to each subtree of the root and combines the results together into a new tree.

test (map (const {x} {new})) / {a={b},c} = {a={x},c={x}}

In the putback direction, there are three cases to consider.

1. Names that appear only in the concrete tree (i.e., they have been deleted in the abstract tree) are
deleted in the resulting concrete tree.

test (map (const {x} {new})) \ {a={x}} {a={b},c} = {a={b}}

2. Names that appear only in the abstract tree (i.e., they have been created) are put back into missing.

test (map (const {x} {new})) \ {a={x}} {} = {a={new}}

3. For names that appear in both the concrete and abstract arguments, the putback direction of l is ap-
plied to corresponding subtrees.

test (map (const {x} {new})) \ {a={x}} {a={b},c} = {a={b}}
test (map (plunge "n")) \ {a={n={x,foo}}} {a={x}} = {a={x,foo}}

mapp The lens mapp p l is just like map l except that it ignores subtrees whose names are not in the
set p (which is specified as a tree).

let mapp (p:view) (l:lens) : lens = fork p (map l) id

test (mapp {a,b} (const {x} {new})) / {a={b},c} = {a={x},c}

mapn The lens mapn n l performs l just on the child named n.

let mapn (n:name) (l:lens) : lens = mapp {‘n} l

test (mapn "a" (const {x} {new})) / {a={b},c} = {a={x},c}
test (mapn "a" (const {x} {new})) \ {a={x},c} missing = {a={new},c}

wmap The wmap combinator is a generalized variant of map that can apply a different lens to each subtree.
Its argument is a finite map from names to lenses (see Section ??).

test (wmap { a -> const {x} {new}, b -> plunge "n" })
/ {a,b={foo}}
= {a={x}, b={n={foo}}}
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4.1.6 Conditional Lenses

ccond The “concrete conditional” ccond C lt lf tests whether its concrete argument belongs to the
schema C, acting like lt if so and lf if not, in both get and putback directions.

test (ccond {a=Any} (hoist "a") id) / {a={x}} = {x}
test (ccond {a=Any} (hoist "a") id) \ {y,z} {a={x}} = {a={y,z}}
test (ccond {a=Any} (hoist "a") id) / {b={x}} = {b={x}}
test (ccond {a=Any} (hoist "a") id) \ {y,z} {b={x}} = {y,z}

Note that, to ensure well-behavedness, the lenses lt and lf must have exactly the same range. That
is, if T is the entire set of trees that the lens ccond C lt lf is ever going to be applied to, then the set of
possible results of the get direction of lt when applied to trees in C should coincide with the set of possible
results of the get direction of lf when applied to trees in T \ C. See [?] for more discussion of this point.

acond The “abstract conditional” acond C A lt lf tests its concrete argument against the schema C
in the get direction and tests its abstract argument against the schema A in the putback direction, sending its
arguments through lt or lf in each case.

let acond_test : lens = acond {a=Any,b=Any} {a=Any} (filter {a} {new}) id

test acond_test / {a={x},b={y}} = {a={x}}
test acond_test / {a={x},c={z}} = {a={x},c={z}}
test acond_test / {} = {}

test acond_test \ {a={foo}} {a={x},b={y}} = {a={foo},b={y}}
test acond_test \ {a={foo},c={z}} {a={x},b={y}} = {a={foo},c={z}}
test acond_test \ {a={foo}} {a={x}} = {a={foo},new}

(The final example shows an important detail: if the putback of acond C A lt lf is applied to a tree a
that does belong to A together with a tree c that does not belong to C, then the putback of lt is used to put a
into missing.)

Note that the lenses lt and lf should have disjoint ranges. If T is the entire set of trees that the lens
acond C A lt lf is ever going to be applied to, then the set of possible results of the get direction of lt
when applied to trees in C should be exactly A, and the set of possible results of the get direction of lf when
applied to trees in T \ C should be disjoint from A.

cond The lens combinator cond is a “generalized conditional.” It is seldom used by itself—most often,
either ccond or acond suffices—but occasionally its full power is needed. Please see [?] for more details.
(The standard prelude also provides four variants, called cond_ww, cond_fw, cond_wf, cond_ff, that
treat the “fixup functions” in slightly different ways. For details, read the source.)

4.1.7 Merging and Copying Lenses

merge It sometimes happens that a concrete representation requires equality between two distinct sub-
trees within a view. A merge lens is one way to preserve this invariant when the abstract view is updated.
In the get direction, merge takes a tree with two (equal) branches and deletes one of them. In the putback
direction, merge copies the updated value of the remaining branch to both branches in the concrete view.

test (merge "m" "n") / {m={a}, n={a}} = {m={a}}
test (merge "m" "n") / {m={a}, n={b}} = {m={a}}
test (merge "m" "n") / {m={b}, n={b}} = {m={b}}
test (merge "m" "n") \ {m={a}} missing = {m={a}, n={a}}
test (merge "m" "n") \ {m={a}} {m={a}, n={b}} = {m={a}, n={b}}
test (merge "m" "n") \ {} missing = error
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copy In the get direction, copy m n takes a tree, c, that has no child labeled n. If c(m) exists, then
copy m n duplicates c(m) by setting both a(m) and a(n) equal to c(m). In the putback direction, copy
simply discards a(n).

test (copy "m" "n") / {m={a}} = {m={a}, n={a}}
test (copy "m" "n") \ {m={a}, n={a}} missing = {m={a}}
test (copy "m" "n") \ {m={a}, n={a}} {m={a}} = {m={a}}
test (copy "m" "n") \ {m={a}, n={a}} {m={b}} = {m={a}}
test (copy "m" "n") / {} = error
test (copy "m" "n") \ {m={a}} missing = error
test (copy "m" "n") \ {m={a}, n={b}} missing = error

The putback of the copy lens is only guaranteed to be well behaved if the subtrees under m and n in the
abstract view are always identical. This is a very strong constraint, which makes copy nearly uselesss in
practical programming. See [?] for more discussion.

4.1.8 Lenses for “Keyed Relations”

join The join lens, based on an idea by Daniel Spoonhower [?], is related to the full outer join operator
from databases.

test (join "x" "y") / {x, y} = {}
test (join "x" "y") / {x={1={a}, 2={b}}, y={2={c}}}

= {1={x={a}}, 2={x={b}, y={c}}}
test (join "x" "y") / {x={1,2}, y={2}}

= {1={x}, 2={x,y}}
test (join "x" "y") / {x={1}, y}

= {1={x}}

test (join "x" "y") \ {} missing = {x, y}
test (join "x" "y") \ {} {x={1}, y={2}} = {x, y}
test (join "x" "y") \ {a={x={1}, y={3}}, b={x={2}}, c={y={4}}}

missing
= {x={a={1}, b={2}}, y={a={3}, c={4}}}

Section 4.5 describes a more sophisticated set of relational lenses, relying on a heavier-weight

4.1.9 Debugging Lenses

probe The lens probe msg behaves like id except that, whenever it is invoked, it dumps its arguments
(along with the identifying string msg) to the standard output.

progress The lens progress msg behaves like id except that, whenever it is invoked, it prints msg
to the standard output. It is used by potentially long-running lenses to give an indication of what part of a
large tree they are currently working on.

tracepoint The lens tracepoint msg l behaves just like l except that, when it is invoked, it places
a marker on the call stack. If the execution of l results in a run-time exception (because of a bad argument
to a lens, for example), these stack markers and their associated arguments are printed as part of the termi-
nation message.
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4.1.10 I/O Functions

read The expression read f reads the file f from the disk and returns its whole contents as a single
name.

4.1.11 Viewer Functions

load The expression load ekey blob parses the name blob using the viewer identified by the en-
coding key ekey (see Section 6.1) and yields a tree. Section 4.3 shows some examples of its use.

save The expression save ekey v converts the view v using the viewer identified by the encoding
key ekey (see Section 6.1) and yields a view.

load file The expression load_file name parses a file into a tree, using the encoding key specified
as part of the file name or the default encoding key for this file schema if none is specified explicitly.

4.1.12 Miscellaneous

fconst The lens fconst v cmd behaves exactly like const, except that instead of using a default tree
d in the case of creation, it executes cmd and uses the value returned by the command.

test (fconst {} "echo youpi") \ {} missing = { "youpi" }

invert The function invert maps a bijective lens l to a bijective lens whose get is the putback of l and
vice versa.

4.2 Module List

4.2.1 The List Encoding

Lists are represented in Focal as trees of “cons cells.” For example, the list [1,2] is represented by the
tree {HD={1}, TL={HD={2}, TL={NIL}}}. This encoding is recognized and treated specially by Har-
mony’s parsing and printing functions, so the concrete syntax [1,2] can be used freely in both trees and
schemas.

4.2.2 Names and Schemas

HD, TL, NIL The actual string names of the tags HD, TL, and NIL in the encoding are an implemen-
tation detail. To avoid writing them in code, we define three variables of sort name that hold their actual
values and use these variables instead of the literal tags in Focal programming.

tags It is also convenient to have a tree whose domain is exactly these three names (for situations where
we want to fork on these names, for example):

let tags : view = {‘HD, ‘TL, ‘NIL}

Nil The schema Nil denotes just the empty list.

let Nil : schema = {‘NIL={}}
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Cons The schema Cons X Y denotes the set of cons cells whose head is of type X and whose tail is of
type Y. (Note that Y need not necessarily be List, though it typically will be.)

let Cons (X: schema) (Y: schema) : schema = {‘HD=X, ‘TL=Y}

T The schema T X (which is written List.T X in other modules) denotes all lists whose elements have
type X.

let T (X:schema) : schema =
schema F = Nil | Cons X F in F

NonEmptyList It is also convenient to have a schema denoting just non-empty lists:

let NonEmptyList (X:schema) : schema = Cons X (T X)

4.2.3 Lenses

hd In the get direction, hd d yields the head of its concrete argument (which must be a non-empty
list). In the putback direction, it yields a list consisting of its abstract argument as the head and the tail of
its concrete argument as the tail. When the concrete argument to putback is missing, it uses its default
argument d as the tail of the result list.

let hd (d:view) : lens = focus HD { ‘TL = d }

test (hd [{2}]) / [{1}] = {1}
test (hd [{2}]) / [] = error
test (hd [{2}]) \ {1} [{2},{3}] = [{1},{3}]
test (hd [{2}]) \ {1} missing = [{1},{2}]

tl Similarly, tl d yields the tail of its (non-empty) concrete argument in the get direction; in the putback
direction, it recombines a new abstract tail with the original concrete head (or with d when the concrete
argument to the putback is missing).

let tl (d:view) : lens = focus TL { ‘HD = d }

test (tl {}) / [{1},{2},{3}] = [{2},{3}]
test (tl {}) \ [{2},{3}] missing = [{},{2},{3}]
test (tl {}) \ [{2},{3}] [{1}] = [{1},{2},{3}]
test (tl {}) / [] = error

map The lens map l applies l to each element of its argument, which must be a list. In the putback
direction, the resulting list will have the same length as the abstract argument; if the abstract argument is
longer than the concrete one, then the elements at the end will be putback into missing.

let map (l:lens) : lens =
wmap { ‘HD -> l, ‘TL -> (protect (map l)) }

test (map (const {b} {c})) / [] = []
test (map (const {b} {c})) / [{1},{2},{3}] = [{b},{b},{b}]
test (map (const {b} {c})) \ [{b}] [{1},{2}] = [{1}]
test (map (const {b} {c})) \ [{b},{b},{b}] [{1},{2}] = [{1},{2},{c}]
test (map (const {b} {c})) \ [{b}] missing = [{c}]
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fold right The lens fold_right init l is analogous to the familiar fold_right function on
lists in any functional programming language. In the get direction, the lens l is recursively applied to the
tail of the list, or the init tree is used if the list is empty. In the putback direction, l↘ is recursively applied
to the abstract tree and the concrete list, until the abstract tree is exactly init. For that reason, note that l
must not return init.

let fold_right (init:view) (l:lens) : lens =
mapn TL (protect (fold_right init l));
acond [] init
(const init [])
l

The following lens uses fold_right to transform a list of values into a chain of values.

let fold_right_test : lens = fold_right {} (pivot HD; Prelude.map (hoist TL))

test fold_right_test / [] = {}
test fold_right_test / [{1},{2},{3}] = {1={2={3}}}
test fold_right_test \ {2={4={6}}} [{1},{hello}] = [{2},{4},{6}]

test fold_right {bar} (const {foo} {new}) / [{1},{2}] = {foo}
test fold_right {bar} (const {foo} {new}) / [] = {bar}
test fold_right {bar} (const {foo} {new}) \ {foo} [{1},{2}] = [{1},{2}]
test fold_right {bar} (const {foo} {new}) \ {foo} missing = {new}
test fold_right {bar} (const {foo} {new}) \ {baz} {anyway} = error

reverse The bijective lens reverse simply reverses its argument list in both directions.

let reverse : lens =
let old_HD : name = "old_hd" in
let rotate : lens =
acond ([] | [Any]) ([] | [Any])

id
(rename HD old_HD;
hoist_nonunique TL tags;
xfork {‘old_HD, ‘TL} {‘TL}
(rename old_HD HD;
plunge TL;
mapn TL (protect rotate))
id)

in
mapn TL (protect reverse);
rotate

test reverse / \ [] = []
test reverse / \ [{1},{2},{3}] = [{3},{2},{1}]

concat2 The bijective lens concat2 sep transforms (in the get direction) a list of two lists into a single
list consisting of the elements of the two given lists appended together and separated by sep (which must
not occur in either of the given lists). In the putback direction, a single abstract list is split (at the single
occurrence of sep) into a pair of concrete lists.

let concat2 (sep:name) : lens =
acond ([]::Any) ({‘sep={}}::Any)
(mapn HD (const {‘sep} []); mapn TL (hd []))
(fork {‘TL} id (hoist HD; rename TL "tmp");
fork {‘HD} id (rename "tmp" HD; protect (concat2 sep); plunge TL))
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test (concat2 " ") / \ [[],[]]
= [{" "}]

test (concat2 " ") / \ [[{u}],[{p},{e},{n},{n}]]
= [{u},{" "},{p},{e},{n},{n}]

test (concat2 " ") / \ [[{u},{n},{i},{v}],[{p},{e},{n},{n}]]
= [{u},{n},{i},{v},{" "},{p},{e},{n},{n}]

groupby2 The bijective lens groupby2 takes a list (in the get direction) and yields a list of lists, all of
whose elements are of length exactly two, except the last, which can have length either one or two. I.e.,
groupby2 groups a list into pairs, possibly with a leftover singleton at the end. The putback direction
simply concatenates such a list of lists.

let groupby2 : lens =
acond [] []
id
(acond [Any] [[Any]]

(plunge HD; add TL { ‘NIL={} })
(rename HD "tmp";
hoist_nonunique TL tags;
fork { ‘TL }
(Prelude.map (protect groupby2))
(xfork { ‘HD } { ‘TL }

(add TL { ‘NIL={} }; plunge TL)
(rename "tmp" HD);

plunge HD)))

test groupby2 / \ [] = []
test groupby2 / \ [{1}] = [[{1}]]
test groupby2 / \ [{1},{2},{3},{4}] = [[{1},{2}], [{3},{4}]]
test groupby2 / \ [{1},{2},{3},{4},{5}] = [[{1},{2}], [{3},{4}], [{5}]]

filter The lens filter D E d maps a concrete list consisting of elements belonging to D|E and
yields (in the get direction) a list containing just those elements belonging to D. In the putback direction, a
new abstract list of Ds is “woven back” into the concrete list, retaining all the concrete Es (and maintaining
their positions in the list) and replacing concrete Ds by elements from the new abstract list. A detailed
explanation of filter’s implementation may be found in [?].

let simple_filter (E:schema) : lens =
mapn TL (protect (simple_filter E));
ccond (E::Any)
(tl {"error"})
id

let filter (D:schema) (E:schema) (some_D:view) : lens =
let append (v:view) : lens =
acond [] [Any]
(const v {})
(mapn TL (protect (append v)))

in
let filter_aux (D:schema) (E:schema) (some_D:view) : lens =
cond_ff (T E) [] (D::(T D))
(protect (filter E D {}))
(append [some_D])
(const [] [])
(inner_filter)
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and inner_filter : lens =
ccond (E::Any)
(mapn TL (protect inner_filter); tl {"error"})
(mapn TL (protect (filter_aux D E some_D)))

in
filter_aux D E some_D

let filter_test : lens = filter {a=Any} {b=Any} {a}

test filter_test / [] = []
test filter_test / [{a={1}}, {a={2}}, {b={3}}, {a={4}}]

= [{a={1}}, {a={2}}, {a={4}}]
test filter_test / [{a={1}}, {a={2}}, {a={3}}]

= [{a={1}}, {a={2}}, {a={3}}]

test filter_test \ [{a={1}}, {a={2}}, {a={3}}]
[{a={1}}, {a={2}}, {b={3}}, {a={4}}]

= [{a={1}}, {a={2}}, {b={3}}, {a={3}}]
test filter_test \ [{a={1}}, {a={2}}, {a={3}}]

[{b={3}}]
= [{b={3}}, {a={1}}, {a={2}}, {a={3}}]

test filter_test \ [{a={1}}, {a={2}}, {a={3}}]
[{a}, {b={3}}]

= [{a={1}}, {b={3}}, {a={2}}, {a={3}}]
test filter_test \ [{a={1}}]

[{a},{a},{b={3}}]
= [{a={1}}, {b={3}}]

4.2.4 Lenses for “Keyed Lists”

flatten The flatten lens takes a list of keyed trees and flattens it into a bush whose top-level children
are the keys from the original list:

test flatten / [{k1={a}}, {k2={b}}] = {k1=[{a}], k2=[{b}]}

The “keys” in the concrete list need not be distinct. If a key k is repeated, the corresponding subtrees from
the original concrete list are collected into a list under k in the resulting abstract tree:

test flatten / [{a={1}}, {b={2}}, {a={3}}] = {a=[{1},{3}], b=[{2}]}

In the putback direction, the list of subtrees under each key in the abstract tree is distributed into the corre-
sponding positions in the concrete list.

test flatten \ {a=[{4},{6}], b=[{5}]}
[{a={1}}, {b={2}}, {a={3}}]

= [{a={4}}, {b={5}}, {a={6}}]

Any “left over” subtrees from the abstract list are placed at the end of the new concrete list (in some fixed
but unspecified order).

test flatten \ {a=[{4},{6}], b=[{5}]}
[{b={1}}, {a={2}}]

= [{b={5}}, {a={4}}, {a={6}}]

Left over elements of the concrete list are deleted from the result.

test flatten \ {a=[{1}], b=[{2}]}
[{b={1}}, {a={2}}, {a={3}}]

= [{b={2}}, {a={1}}]
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Note that flatten does not obey PutPut:

test flatten \ {a=[{}], b=[{}]} [{a},{b}] = [{a},{b}]
test flatten \ {a=[{}], b=[{}]} ( flatten \ {b=[{}]} [{a},{b}]) = [{b},{a}]

The flatten lens is in fact built from the flatten op lens operator, as flatten = flatten_op id.
In the get direction, flatten_op l applies l to each element then proceeds as flatten. In the putback
direction, the list of subtrees under each key in the abstract tree is distributed into the corresponding posi-
tions in the concrete list, the position being determined by the key exhibited by an element of the concrete
list after apply the get of l. The new concrete element is created by the putback of l.

let l : lens = flatten_op (Prelude.filter {a,b} {})

test l / [{a={1}, z={junk}}, {b={3}}] = {a=[{1}], b=[{3}]}

test l \ {b=[{3}]} [{a={1}, z={junk}}, {b={3}}] = [{b={3}}]

It is interesting to notice that flatten_op l is not simply List.map l; flatten, as List.map
does not know which elements in the concrete list where deleted, it simply applies putback according to the
order:

let f : lens = Prelude.filter {a,b} {}
let l’ : lens = map f; flatten
test l’ / [{a={1}, z={junk}}, {b={3}}] = {a=[{1}], b=[{3}]}

test l’ \ {b=[{3}]} [{a={1}, z={junk}}, {b={3}}] = [{b={3},z={junk}}]

This surprising result is because of the putback of List.map:

test (map f) \ [{b={3}}] [{a={1}, z={junk}}, {b={3}}] = [{b={3},z={junk}}]

Currently, flatten_op is defined as a built-in lens. We conjecture that it can be defined in terms of
other, more primitive, lenses, but we have not (yet) been able to do this.

4.2.5 Conversions Between Names and Lists

It is sometimes necessary to write lenses that manipulate single names as strings. The following primitives
form the basis of such lenses: we first (in the get direction) use explode or lines to convert the name
to a list of either single characters or lines, as appropriate, then process this list using the list-processing
lenses above, and finally use implode or unlines to convert the processed list back to a single name. The
structuredtext example shows this process in detail.

explode The lens explode converts a Value to a list of single characters.

test explode / \ {""} = []
test explode / \ {focal} = [{f},{o},{c},{a},{l}]
test explode / {} = error

implode The lens implode reverses the action of explode.

let implode : lens = invert (explode)

test implode / \ [{f},{o},{c},{a},{l}] = {focal}

split The lens split k converts a Value to a list of values by splitting it at k characters.
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unsplit The lens unsplit reverses the action of split.

let unsplit (k:name) : lens = invert (split k)

lines The lens lines converts a Value to a list of values by splitting it at newline characters.

test lines / {""} = [{""}]
test lines / {focal} = [{focal}]
test lines / {"lenses

|focal"}
= [{lenses},{focal}]

test lines / {"focal\n"} = [{focal},{""}]
test lines / {} = error
test lines \ [] missing = error

unlines The lens unlines reverses the action of lines.

let unlines : lens = invert (lines)

4.3 Module Xml

4.3.1 Encoding

The encoding of XML documents as trees is a simple extension of the encoding of lists described in Sec-
tion 4.2.1. A sequence of XML elements is encoded as a list of keyed trees, where the keys are the ele-
ment names and where each element consists of a subtree labeled with a special tag (we use the variable
CHILDREN to refer to it) representing the sequence of child elements.

test id / (load "xml" "<a></a>") =
[{a = {‘CHILDREN = []}}]

test id / (load "xml" "<a><b/><c/><b/></a>") =
[{a = {‘CHILDREN = [{b = {‘CHILDREN = []}},

{c = {‘CHILDREN = []}},
{b = {‘CHILDREN = []}}]}}]

Attributes are represented by an (unordered) collection of additional children of each element node, at the
same level as the required CHILDREN subtree.

test id / (load "xml" "<a attr=’foo’></a>") =
[{a = {‘CHILDREN = [], attr = {foo}}}]

Parsed character data (PCDATA) is represented by a special tag (we use the variable PCDATA to refer to it):

test id / (load "xml" "<a>foo<b>bar</b>baz</a>") =
[{a = {‘CHILDREN = [{‘PCDATA = {foo}},

{b = {‘CHILDREN = [{‘PCDATA = {bar}}]}},
{‘PCDATA = {baz}}]}}]

4.3.2 Names and Schemas

CHILDREN, PCDATA CHILDREN and PCDATA are predefined names that denote the special tags used
by the XML viewer.
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Pcdata, XmlElt, T The encoding of XML described above is expressed by the following schemas:

schema Pcdata = {‘PCDATA = NonNullValue}
schema XmlElt = {! \ ‘PCDATA = {‘CHILDREN = T, (* subelts *)

*\‘CHILDREN = Value }} (* attrs *)
| Pcdata

and T = List.T XmlElt

(Note that the value under PCDATA is never the empty string: our XML parser throws away whitespace-
only character sequences, so they never show up as PCDATA.)

4.3.3 Lenses

hoist pcdata The hoist_pcdata lens behaves almost like hoist PCDATA, but also handles the
case where the whole tree is empty (corresponding to a null PCDATA at this point).

let hoist_pcdata : lens =
acond Pcdata NonNullValue
(hoist PCDATA)
(const {""} {})

flatten The flatten lens for XML is a generalized version of List.flatten. It removes all the
ordering from an XML structure, leaving a “bush” of schema FlattenedXML:

let ATTRS : name = "@attrs"
schema FlattenedXML = { ¿PCDATA = (List.T NonNullValue),

¿ATTRS = {!*=Value},

* \ (‘PCDATA,‘ATTRS) = (List.T FlattenedXML) }

The recursive definition of flatten uses an auxiliary lens

let flatten : lens =
assert T;
List.map (protect flatten_elt);
List.flatten;
assert FlattenedXML

and flatten_elt : lens =
assert XmlElt;
acond Pcdata Pcdata
id
(map (acond {‘CHILDREN=Any} {*\‘ATTRS=Any}

(* no attributes: *)
(hoist CHILDREN; protect flatten)
(* one or more attributes: *)
(fork {‘CHILDREN} (map (protect flatten)) (plunge ATTRS);
fork {‘ATTRS} id (hoist CHILDREN))))

test flatten_elt /
((List.hd []) / (load "xml" "<a>text</a>"))

= {a = {‘PCDATA = [{text}]}}

test flatten /
(load "xml" "<a> <c/> <b/> </a>")

= {a = [{b = [{}],
c = [{}]}]}
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test flatten /
(load "xml" "<a>foo</a>")

= {a = [{‘PCDATA = [{foo}]}]}

test flatten /
(load "xml" "<a> <b/> <c/> <b/> </a>")

= {a = [{b = [{}, {}],
c = [{}]}]}

test flatten /
(load "xml" "<a>foo<b/></a>")

= {a = [{‘PCDATA = [{foo}], b = [{}]}]}

test flatten /
(load "xml" "<a foo=’attrfoo’><b/>text</a>")

= {a = [{‘ATTRS = {foo = {attrfoo}},
‘PCDATA = [{text}],
b = [{}]}]}

squash_flattened The squash lens defined below goes a step further. It assumes that its concrete
argument is “non-repetitive” in the sense that each element contains at most one sub-element with a given
tag (and at most one PCDATA sub-element).

schema FlattenedPcdata = { ‘PCDATA = [Value] }
schema SimpleFlattenedXML = { ¿PCDATA = [Value],

¿ATTRS = {!=Value,*=Value},

*\‘PCDATA,‘ATTRS = [SimpleFlattenedXML] }

For such XML structures, there is no need for any list structure in their abstract representations—i.e., we
can take just the head elements of all the lists, yielding something of this schema:

schema SquashedPCDATA = { ‘PCDATA = Value }
schema SquashedXML = { ¿ATTRS = {!=Value,*=Value},

¿PCDATA = Value,

*\‘PCDATA,‘ATTRS = SquashedXML }

The squash_flattened lens is defined as follows:

let squash_flattened : lens =
assert SimpleFlattenedXML;
fork {‘ATTRS}
id
(fork {‘PCDATA}
(map (List.hd []))
(map (List.hd []; protect squash_flattened)));

assert SquashedXML

squash Often, flatten and squash_flattened are used together, so we give the combination a
name.

let squash : lens = flatten; squash_flattened

test squash /
(load "xml" "<a>foo</a>")

= {a = {‘PCDATA = {foo}}}

test squash /
(load "xml" "<a>foo<b>bar</b><c>baz</c></a>")

= {a = {‘PCDATA = {foo}, b = {‘PCDATA = {bar}}, c = {‘PCDATA = {baz}}}}
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test squash /
(load "xml" "<a attr=’foo’>text<b/></a>")

= {a = {‘ATTRS = {attr = {foo}}, ‘PCDATA = {text}, b = {}}}

It is also useful to squash a single element:

let squash_elt : lens = flatten_elt; map squash_flattened

test squash_elt /
((List.hd []) / (load "xml" "<a attr=’foo’>text<b/></a>"))

= {a = {‘ATTRS = {attr = {foo}}, ‘PCDATA = {text}, b = {}}}

The above tests actually happen to work in both directions. In general, though, the putback direction of
squash doesn’t have enough information to determine the ordering of newly created elements, so it just
inserts them in alphabetical order. This means that completely new structures will be completely sorted:

test squash \
{a = {‘PCDATA={foo},

d={‘PCDATA={bar},A={first}},
c={‘PCDATA={baz},z={second}}}}

missing
=
(load "xml" "<a>foo

| <c>baz<z><second/></z></c>
| <d>bar
| <A><first/></A>
| </d>
|</a>")

(Note that PCDATA sorts before elements.)
More interestingly, if we putback an abstract structure into an existing concrete one, the existing struc-

tures will retain their old order. New substructures will be placed at the end.

test squash \
{a = {‘PCDATA = {foo},

extra = {},
b = {‘PCDATA = {bar}, extra={}},
c = {‘PCDATA = {baz}}}}

(load "xml" "<a> foo <b>bar</b> <c>baz</c> </a>")
=
(load "xml" "<a> foo <b>bar<extra/></b> <c>baz</c> <extra/> </a>")

4.4 Module Plist

The plist format is a generic XML representation for structured data (strings, arrays, and finite maps). It
is heavily used in OS X for storage of application preference files, system configuration information, etc.

The abstract form of plists is described by the following schema:

schema T =
{dict = {*=T}}
{array = List.T T}
{string = Value}
{integer = Value}

and DictElt = List.Cons Value (List.Cons T List.Nil)
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The core of the module is a group of mutually recursive lenses that walk over the plist structure and
perform an appropriate transformation at each node.

let plist_object_lens : lens =
mapn "dict" (protect dict_lens);
mapn "array" (protect array_lens);
mapp {"string","integer"} (protect leaf_lens)

and array_lens : lens =
mapn Xml.CHILDREN (List.map (protect plist_object_lens));
hoist Xml.CHILDREN

and dict_lens : lens =
mapn Xml.CHILDREN
(List.groupby2;
List.map (protect keypair_lens; pivot List.HD; map (focus List.TL {}; List.hd []));
List.flatten;
map (List.hd []));

hoist Xml.CHILDREN

and keypair_lens : lens =
mapn List.HD (hoist "key"; protect leaf_lens);
mapn List.TL (mapn List.HD (protect plist_object_lens))

and leaf_lens : lens =
hoist Xml.CHILDREN;
acond [] { ‘(List.TL)=[], ‘(List.HD)={‘ Xml.PCDATA = {"BLANK"={}, *\("BLANK")=Any}}}
(const [{‘Xml.PCDATA={"BLANK"}}] [])
id;

List.hd [];
hoist Xml.PCDATA

The module’s main lens, l, deals with a little top-level boilerplate and invokes plist_object_lens
to process the body of the file.

let l : lens =
List.hd [];
hoist "plist";
focus Xml.CHILDREN { "version" = {"1.0"} };
List.hd [];
plist_object_lens

4.5 Module Relational
let _ : lens =
check (rename "R" "S" "A" "D") :
{{ R(A, B, C) with {(A, C) -> B} where A <> B }}
<<˜>
{{ S(B, C, D) with {(C, D) -> B} where B = D -> FALSE }}

test rename "R" "S" "A" "C" /
{{{ R(A, B) = {(1, 2)} }}}

= {{{ S(B, C) = {(2, 1)} }}}
test rename "R" "S" "A" "C" \
{{{ S(B, C) = {(3, 4),

(2, 1)} }}}
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{{{ R(A, B) = {(1, 2)} }}}
= {{{ R(A, B) = {(1, 2),

(4, 3)} }}}

let _ : lens =
check (select "R" with {A -> B} "S" where C = "1") :
{{ R(A, B, C) with {A -> B} }}
<<->
{{ S(A, B, C) where C = "1" with {A -> B} }}

test select "R" with {} "S" where (A = "1" \/ B = C) /
{{{ R(A, B, C) = {(1, 1, 1),

(2, 2, 2),
(1, 2, 3),
(3, 2, 1)} }}}

= {{{ S(A, B, C) = {(1, 1, 1),
(2, 2, 2),
(1, 2, 3)} }}}

test select "R" with {A -> B} "S" where C = "1" /
{{{ R(A, B, C) = {(1, 2, 1),

(1, 2, 3),
(3, 2, 1),
(3, 2, 3)} }}}

= {{{ S(A, B, C) = {(1, 2, 1),
(3, 2, 1)} }}}

test select "R" with {A -> B} "S" where C = "1" \
{{{ S(A, B, C) = {(1, 3, 1),

(4, 4, 1)} }}}
{{{ R(A, B, C) = {(1, 2, 1),

(1, 2, 3),
(3, 2, 1),
(3, 2, 3)} }}}

= {{{ R(A, B, C) = {(1, 3, 1),
(1, 3, 3),
(4, 4, 1),
(3, 2, 3)} }}}

(* "Surprising" example from PODS paper. *)
test select "R" with {A -> B} "S" where B = "2" \
{{{ S(A, B, C) = {(1, 2, 2)} }}}
{{{ R(A, B, C) = {(1, 1, 1)} }}}

= {{{ R(A, B, C) = {(1, 2, 2)} }}}

let _ : lens =
check (drop "R" "S" "B" {B} "0") :
{{ R(A, B) }}
<<->
{{ S(A) }}

let _ : lens =
check (drop "R" "S" "B" {B} "0") :
{{ R(A, B, C) where (A = C /\ B = "0") /\ (C = "3" /\ A <> B) }}
<<->
{{ S(A, C) where A = "3" /\ A = C }}
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let _ : lens =
check (drop "R" "S" "D" {B, C} "0") :
{{ R(A, B, C, D) with {A -> C, (B, C) -> D} }}
<<->
{{ S(A, B, C) with {A -> C} }}

test drop "R" "S" "C" {C} "0" /
{{{ R(A, B, C) = {(1, 1, 1)} }}}

= {{{ S(A, B) = {(1, 1)} }}}

test drop "R" "S" "C" {C} "0" \
{{{ S(A, B) = {(1, 1)} }}}
{{{ R(A, B, C) = {(1, 1, 1),

(1, 1, 2),
(1, 2, 3)} }}}

= {{{ R(A, B, C) = {(1, 1, 1),
(1, 1, 2)} }}}

test drop "R" "S" "C" {B} "0" \
{{{ S(A, B) = {(1, 1),

(2, 1),
(2, 2)} }}}

{{{ R(A, B, C) = {(1, 1, 3)} }}}
= {{{ R(A, B, C) = {(1, 1, 3),

(2, 1, 3),
(2, 2, 0)} }}}

test drop "R" "S" "C" {B} "0" \
{{{ S(A, B) = {(1, 1),

(2, 1),
(2, 2)} }}}

{{{ R(A, B, C) = {(3, 1, 3)} }}}
= {{{ R(A, B, C) = {(1, 1, 3),

(2, 1, 3),
(2, 2, 0)} }}}

let _ : lens =
check (join_dl "R" with {A -> (B,C)} "S" with {B -> (C,D)} "R") :
{{ R(A, B, C) with {A -> (B,C)},

S(B, C, D) with {B -> (C,D)} }}
<<->
{{ R(A, B, C, D) with {A -> (B,C), B -> (C,D)} }}

test join_dl "R" with {} "S" with {B -> C} "T" /
{{{ R(A, B) = {(1, 1),

(2, 1),
(3, 3)}

S(B, C) = {(1, 1),
(2, 4),
(3, 9),
(4, 16)} }}}

= {{{ T(A, B, C) = {(1, 1, 1),
(2, 1, 1),
(3, 3, 9)} }}}

test join_dl "R" with {} "S" with {B -> C} "T" \
{{{ T(A, B, C) = {(1, 1, 2),
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(3, 4, 9)} }}}
{{{ R(A, B) = {(1, 1),

(2, 1),
(3, 3)}

S(B, C) = {(1, 1),
(2, 4),
(3, 9),
(4, 16)} }}}

= {{{ R(A, B) = {(1, 1),
(3, 4)}

S(B, C) = {(1, 2),
(2, 4),
(3, 9),
(4, 9)} }}}
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Chapter 5

Synchronization

Under construction. For now, see [?].
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Chapter 6

The Harmony System

Under construction.

6.1 Running Harmony

• command-line arguments

• FOCALPATH

• encoding keys

6.2 Running the Web Demos Locally

If you want to build new demos and make them available on the web for others to play with, you’ll need
to run the demo script on your own web server. The basic steps are as follows:

1. * Start a local webserver and make sure it can serve PHP pages. On OSX, for example, it can be done
something like this. First, edit the web server configuration file

sudo emacs /private/etc/httpd/httpd.conf

and uncomment two lines involving PHP.

Now put a symlink from the web server’s default location to wherever you keep your personal web
space.

sudo mv /Library/WebServer/Documents /Library/WebServer/Documents.orig
sudo ln -s ˜/pub /Library/WebServer/Documents

Next, restart the web server by toggling “Personal web sharing” control in the “Sharing” system
preference panel.

2. Make a symlink to your harmony directory from somewhere in your web space:

ln -s ˜/current/harmony ˜/pub

3. Point your browser to http://localhost/harmony/html/demobody.php and see if the usual
demo page gets displayed.
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4. Put your demos in a new subdirectory (say, mydemo) under harmony/examples. This directory
should definitely contain a file demos.php and an executable file harmonize-mydemos — see the
existing subdirectories of examples to see how this is done.

5. Edit harmony/html/demobody.php, search for get_demos_from, and add a line

get_demos_from("mydemo");

to what’s already there.

6.3 Navigating the Distribution

If you want to check out the code, here is one reasonable order to look at the files:
src/v.mli basic definitions of trees
src/lens.mli basic definitions of lenses
src/lib/native/prelude.ml the most important primitive lenses
src/lib/lenses/prelude.fcl some important derived lenses
examples/* lots of real-world lenses
src/sync.ml the synchronization algorithm
src/harmony.ml the top-level program
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Chapter 7

Using Harmony From Unison

Harmony is designed to work with files on a single machine. To support cross-machine harmonization,
we have extended the Unison file synchronizer so that it can call out to Harmony as an external merge
program. Here are the steps for setting this up:

1. Build the harmony instances you plan to use and install them someplace on your search path on the
machine that is going to act as client when Unison runs (i.e., the machine where Unison is invoked
and where the user interface is displayed).

You can install all of the Harmony instance binaries at once (in your $HOME/bin directory by default)
by typing make install at the top level.

There is no need to put Harmony’s Focal library files anywhere special: the needed libraries are
embedded in the binary of each Harmony instance when it is linked.

2. Get yourself a recent version of Unison, either from the Unison home page (if you’re willing to re-
compile from source)

http://www.cis.upenn.edu/˜bcpierce/unison

or from one of the many binary distributions.

Version 2.17 has the basic functionality needed here, but we continue making improvements and
fixing bugs, so later versions may work better.

3. Add merge commands to your Unison profile(s) to tell it how to call the appropriate Harmony in-
stances for different sorts of files. For example, if you want to use the structured text instance of
Harmony for all .txt files and the bookmark instance for the Safari bookmark file, you might add
this to your profile:

merge = Name *.txt -> harmonize-structuredtext
-ar ’CURRENTARCH’ -r1 ’CURRENT1’ -r2 ’CURRENT2’
-newar ’NEWARCH’ -newr1 ’NEW1’ -newr2 ’NEW2’

merge = Name Bookmarks.plist -> harmonize-bookmarks
-ar CURRENTARCH -r1 CURRENT1 -r2 ’CURRENT2’
-newar ’NEWARCH’ -newr1 ’NEW1’ -newr2 ’NEW2’

(These rules are written out on several lines here to avoid going off the edge of the page; in your
profile, there should be just a single long line for each merge rule.)

These rules will apply only when Unison is not running in batch mode. Use mergebatch instead of
merge if you want to live dangerously.
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4. Add the rules

backupcurrent = Name *.txt
backupcurrent = Name Bookmarks.plist

to your Unison profile.
The effect of these rules is to make Unison keep backups for these files more aggressively than usual:
instead of just making backups when it overwrites some file with a new version from the other replica
(or not making any backups at all, depending on how you’ve set the backup preference), it will make
sure that there is always a backup copy corresponding to the current, synchronized state at the end of
every successful run. This means that, if both replicas should be changed between runs of Unison (so
that Unison sees a conflict), it will always have an appropriate file to pass to Harmony to use as the
last common state for this file.

5. Test your setup. (The test will be illustrated using the structured text instance of Harmony, but you
can substitute another if you like.)

(a) Create a test file (e.g., foo.txt) on one replica containing several lines of text

A
b
c
D
e

and run Unison to propagate it to the other:

unison myprofile -path foo.txt

(Assuming that you put the above rules, together with the usual rules for root and so on, into
myprofile.prf in your Unison directory and that you created foo.txt the root directory of your
replica.)

(b) Edit foo.txt on one replica and run Unison again (with the same command line). Note that,
because only one replica has changed, there is no conflict and Unison just copies the file directly
without invoking Harmony.

(c) Now edit both copies of foo.txt in different ways (e.g., change A to —AAAAY— in one copy
and e to aieee in the other). Run Unison again. You should see something like this:

changed <-M-> changed foo.txt

The two arrowheads signal a conflict (as usual in Unison), and the M signals that, by default,
Unison is going to attempt to merge the two versions. (You can override this default as usual, to
tell it to skip this file or just copy one version over the other.)
Tell Unison to proceed. After a pause (while Unison transfers the server’s copy of the file onto
the client machine), you should see Harmony running.

(d) Harmony itself has no user interface: it just tells you what it thinks needs to be done to syn-
chronize the changes in the two copies of the file and then does it and outputs the updated files.
Unison, however, will ask you for confirmation before actually overwriting the real files on both
replicas. It is a good idea to look carefully at what Harmony has done before agreeing to this!

(e) Now, change the foo.txt in conflicting ways — e.g., change c to see in one replica and to sea
in the other. At the same time, make a non-conflicting change to each file (e.g., change the second
line in one and the last line in the other; make sure to keep at least one lowercase letter in each
of these lines, so as not to complicate the example by changing the way the file is parsed into a
tree).
Run Unison and Harmony again. Notice, in Harmony’s output, that the non-conflicting changes
have been accepted and the conflicting one marked as such.
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(f) Take a look at both copies of foo.txt. Notice that the non-conflicting changes are now reflected
in both, while the conflicting changes are left alone.
Since this run of Harmony ended with at least one unresolved conflict, Unison will not update
its own archive to reflect any of the changes that have been made. That is, as far as Unison
is concerned, this file has not been successfully synchronized, so it does not update its own
recollection of the file’s last synchronized state. This means that

i. if you change the third line in one of the copies back to c and run Unison (and Harmony),
the third line from the other replica will be copied into this one; and

ii. if you make another change to one of the lines where you made non-conflicting changes
before, this change will be flagged as a conflict rather than being propagated.

The bottom line is that, when Harmony signals a conflict, you should repair it as soon as possible.
This can be achieved either by editing the two copies so that they become equal or by editing one
of the copies to “back out” its version of the conflicting change.

6. That’s it!

7. OK, not quite it. A couple of fine points should be noted:

• This combination of Unison and Harmony can handle only homogeneous harmonization: it is
not currently possible to synchronize a Safari bookmarks file with a Mozilla bookmarks file on
another host.

• If Harmony signals that it has succeeded with no conflicts but the final versions of the files are
not byte-for-byte identical (which can happen if the lens used by this Harmony instance omits
some of the information in the concrete files for purposes of synchronbization), then Unison will
overwrite one of the copies with the other. (This may seem a little surprising, but it is consistent
with the fact that Unison deals with updates to just one of the replicas at a time by simply copying
the updated one over the unchanged one. This avoids the cost of running Harmony most of the
time.)
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Chapter 8

Case Studies

Under construction. For now, see the demos in the examples directory.
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