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Mailing List

Active users of Boomerang are encouraged to subscribe to the harmony-hackers mail-
ing list by visiting the following URL:

http://lists.seas.upenn.edu/mailman/listinfo/harmony-hackers

Caveats

The Boomerang system is a work in progress. We are distributing it in hopes that others
may find it useful or interesting, but it has some significant shortcomings that we know
about (and, surely, some that we don’t) plus a multitude of minor ones. In particular, the
documentation and user interface are... minimal. Also, the Boomerang implementation
has not been carefully optimized. It’s fast enough to run medium-sized (thousands of
lines) programs on small to medium-sized (kilobytes to tens of kilobytes) inputs, but it’s
not up to industrial use.

Copying

Boomerang is free software; you may redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation; ei-
ther version 2.1 of the License, or (at your option) any later version. See the file COPYING
in the source distribution for more information.

Contributing

Contributions to Boomerang—especially in the form of interesting or useful lenses—are
very welcome. By sending us your code for inclusion in Boomerang, you are signalling
your agreement with the license described above.
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Chapter 1

Introduction

This manual describes Boomerang, a bidirectional programming language for ad-hoc, textual
data formats. Most programs compute in a single direction, from input to output. But
sometimes it is useful to take a modified output and “compute backwards” to obtain a
correspondingly modified input. For example, if we have a transformation mapping a
simple XML database format describing classical composers...

<composers>
<composer>
<name>Jean Sibelius</name>
<years birth="1865" death="1956"/>
<nationality>Finnish</nationality>

</composer>
</composers>

... to comma-separated lines of ASCII...

Jean Sibelius, 1865-1956

... we may want to be able to edit the ASCII output (e.g., to correct the erroneous death
date above) and push the change back into the original XML. The need for bidirectional
transformations like this one arises in many areas of computing, including in data con-
verters and synchronizers, parsers and pretty printers, marshallers and unmarshallers,
structure editors, graphical user interfaces, software model transformations, system con-
figuration management tools, schema evolution, and databases.

1.1 Lenses

Of course, we are not interested in just any transformations that map back and forth be-
tween data—we want the two directions of the transformation to work together in some
reasonable way. Boomerang programs describe a certain class of well-behaved bidirec-
tional transformations that we call lenses. Mathematically, a lens l mapping between a set
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Figure 1.1: Lens Terminology

C of “concrete” strings and a set A of “abstract” ones has three components:

l.get ∈ C −→ A
l.put ∈ A −→ C −→ C

l.create ∈ A −→ C

get is the forward transformation and is a total function from C to A. The backwards
transformation comes in two flavors. The first, put, takes two arguments, a modified A
and an old C, and produces an updated C. The second, create, handles the special case
where we need to compute a C from an A but have no C to use as the “old value”. It fills
in any information in C that was discarded by the get function (such as the nationality of
each composer in the example above) with defaults. The components of a lens are shown
graphically in Figure 1.1.

We say that are “well-behaved” because they obey the following “round-tripping”
laws for every c ∈ C and a ∈ A:

l.put (l.get c) c = c (GETPUT)

l.get (l.put a c) = a (PUTGET)

l.get (l.create a) = a (CREATEGET)

The first law requires that if put is invoked with an abstract string that is identical to the
string obtained by applying get to the old concrete string—i.e., if the edit to the abstract
string is a no-op—then it must produce the same concrete string. The second and third
laws state that put and create must propagate all of the information in their A arguments
to the C they produce. These laws capture fundamental expectations about how the com-
ponents of a lens should work together.
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1.2 Boomerang Overview

Boomerang is a language for writing lenses that work on strings. The key pieces of its
design can be summarized as follows.

• The core of the language is a set of string lens combinators—primitive lenses that
copying and delete strings, and ones that combine lenses using the familiar “regu-
lar operators” of union, concatenation, and Kleene-star. This core set of operators
has a simple and intuitive semantics and is capable of expressing many useful trans-
formations.

• Of course, programming with low-level combinators alone would be tedious and
repetitive; we don’t do this. The core combinators are embedded in a full-blown
functional language with all of the usual features: let definitions, first-class func-
tions, user-defined datatypes, polymorphism, modules, etc. This infrastructure can
be used to abstract out common patterns and to build generic bidirectional libraries.
We have found that they make high-level lens programming quite convenient.

• To correctly handle ordered data structures such as strings, many applications re-
quire that lenses match up corresponding pieces of the concrete and abstract strings.
Boomerang includes combinators for describing how data should be aligned using
natural notions of “chunk” and “keys”. We call lenses that use these features dictio-
nary lenses.

• Finally, in many applications, is often useful to be able to break the lens laws. For
example, when we process XML data in Boomerang, we usually don’t care whether
the whitespace around elements is preserved. Boomerang includes combinators
for “quotienting” lenses using “canonizers” that explicitly discard such inessential
features. We call lenses that use these features quotient lenses.

1.3 An Example Lens

To give a sense of what programming in Boomerang is like, we will define the lens imple-
menting the transformations between XML and CSV composers shown above.

First we define a lens c that handles a single <composer> element. It uses a number
of functions defined in our XML library, as well as primtives for copying (copy) and
deleting (del) strings, and for concatenating lenses (.).

let c : lens =
Xml.elt NL2 "composer"
begin
Xml.simple_elt NL4 "name"
(copy [A-Za-z ]+ . ins ", ") .

Xml.attr2_elt_no_kids NL4 "years"
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"birth" (copy NUMBER . ins "-")
"death" (copy NUMBER) .

Xml.simple_elt NL4 "nationality" (del [A-Za-z]+)
end

Using c, we then define a lens that handles a top-level <composers> element, en-
closing a list of <composers>. This lens is defined using the features already described,
a primitive for inserting a string (ins), as well as union (|) and Kleene star (*).

let cs : lens =
Xml.elt NL0 "composers"
begin
copy EPSILON |
c . (ins newline . c)*

end

We can check that this lens actually does the transformation we want by running its
get and put components on some sample data. First, let us bind the XML database to
a variable (to avoid printing it many times). The << ... >> is heredoc notation for a
multi-line string literal.

let original_c : string =
<<
<composers>
<composer>
<name>Jean Sibelius</name>
<years birth="1865" death="1956"/>
<nationality>Finnish</nationality>

</composer>
</composers>

>>

Now we test the get function...

test cs.get original_c =
<<
Jean Sibelius, 1865-1956

>>

...and obtain the expected result. To check the put function, let us fix the error in Sibelius’s
death date, and put it back into the original XML database...

test cs.put
<<
Jean Sibelius, 1865-1957
>>
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into original_c
=
<<

<composers>
<composer>
<name>Jean Sibelius</name>
<years birth="1865" death="1957"/>
<nationality>Finnish</nationality>

</composer>
</composers>

>>

... again, we obtain the expected result: the new XML database reflects the change to the
death date we made in the CSV string.

1.4 Getting Started

The best way to to get going with Boomerang, is by working through the next “Quick-
Start” chapter. It contains a lightning tour of some of the main features of Boomerang
the language and the system. After that, we suggest exploring the examples directory,
which contains some of the larger demos we’ve built, and consulting the rest of this man-
ual as needed. Many more details can be found in our research papers on Boomerang
(Bohannon et al. [2008], Foster et al. [2008]) and on lenses in general (Foster et al. [2007],
Bohannon et al. [2005]). These papers are all available from the Boomerang web page.

Good luck and have fun!
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Chapter 2

Quick Start

2.1 Installation

1. Download or build the Boomerang binary:

• Pre-compiled binaries for Linux (x86), Mac OS X (x86), and Windows (Cygwin)
are available on the Boomerang webpage.

• Alternatively, to build Boomerang from source, grab the most recent tarball
and follow the instructions in boomerang/INSTALL.txt

2. Add the directory containing trunk/bin to your PATH environment variable.

• In Bash:

> export PATH=$PATH:/path/to/trunk/bin

• In Csh

> setenv PATH $PATH:/path/to/trunk/bin

2.2 Simple Lens Programming

Now lets roll up our sleeves and write a few lenses. We will start with some very simple
lenses that demonstrate how to interact with the Boomerang system. The source file we
will work with is this very text file, which is literate Boomerang code. Every line in this
file that begins with #* marks a piece of Boomerang code, and all other lines are ignored
by the Boomerang interpreter.

You can run the Boomerang interpreter from the command line like this:

> boomerang QuickStart.src

You should see several lines of output beginning like this
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Test result:
"Hello World"
Test result:
"HELLO WORLD"
...

Let’s define the lens that was used to generate this text.

let l : lens = copy [A-Za-z ]+

This line declares a lens named ’l’ using syntax based on explicitly-typed OCaml (for
the functional parts, like the let declaration) and POSIX (for regular expressions). Its get
and put components both copy non-empty strings of alphabetic characters or spaces.

2.2.1 Unit Tests

An easy way to interact with Boomerang is using its syntax for running unit tests (other
modes of interaction, such as batch processing of files via the command line, are discussed
below). For example, the following test:

test l.get "Hello World" = ?

instructs the Boomerant interpreter to calculate the result obtained by applying the get
component of l to the string literal Hello World and print the result to the terminal (in
fact, this unit test generated the output in the display above).

Example 1. Try changing the ? above to Hello World. This changes the unit test from
a calculation to an assertion, which silently succeeds.

Example 2. Try changing the ? above to HelloWorld instead. Now the assertion fails.
You should see:

File "./quickStart.src", line 68, characters 3-32: Unit test failed
Expected "HelloWorld" but found "Hello World"

When you are done with this exercise, reinsert the space to make the unit test succeed
again.

Now let’s examine the behavior of l’s put component.

test (l.put "HELLO WORLD" into "Hello World") = ?

You should see the following output printed to the terminal:

Test Result:
HELLO WORLD

which reflects the change made to the abstract string.

10



2.2.2 Type Checking

The get and put components of lenses check that their arguments have the expected type.
We can test this by passing an ill-typed string to l’s GET component:

test (l.get "Hello World!!") = error

Example 3. To see the error message that is printed by Boomerang, change the error
above to ? and re-run Boomerang. You should see the following message printed to the
terminal:

File "./QuickStart.src", line 107, characters 3-35: Unit test failed
Test result: error
copy built-in: type errors in
[Hello World]

<<HERE>>
[!!]

Notice that Boomerang identifies a location in the string where matching failed (¡¡HERE¿¿).
When you are done, change the ? back to error.

2.3 The Composers Lens

Now let’s build a larger example. We will write a lens whose GET function transforms
newline-separated records of comma-separated data about classical music composers:

let c : string =
Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English

into comma-separated lines where the year data is deleted:

let a : string =
Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, English

2.3.1 Basic Composers Lens

The lens that maps—bidirectionally—betweeen these strings is written as follows:

let ALPHA : regexp = [A-Za-z ]+
let YEARS : regexp = [0-9]{4} . "-" . [0-9]{4}
let comp : lens =
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ALPHA . ", "
. del YEARS . del ", "
. ALPHA

let comps : lens = "" | comp . (newline . comp)*

We can check that comp works as we expect using unit tests:

test comps.get c = a
test comps.put a into c = c

There are several things to note about this program. First, we have use let-bindings to
factor out repeated parts of programs, such as the regular expression named ALPHA. This
makes programs easier to read and maintain. Second, operators like concatenation (.)
automatically promote their arguments, according to the following subtyping relation-
ships: string <: regexp <: lens. Thus, the string ", " is automatically promoted
to the (singleton) regular expression containing it, and the regular expression ALPHA is
automatically promoted to the lens copy ALPHA.

Example 4. Edit the comp lens to abstract away the separator between fields and verify
that your version has the same behavior on c and a by re-running Boomerang. Your
program should look roughly like the following one:

let comp (sep:string) : lens = ...
let comps : lens =
let comp_comma = comp ", " in
...

or, equivalently, one that binds comp to an explicit function:

let comp : string -> lens = (fun (sep:string) -> ... )

2.3.2 Dictionary Composers Lenses

The behavior of comps lens is not very satisfactory when the updated abstract view
is obtained by changing the order of lines. For example if we swap the order of Brit-
ten and Copland, the year data from Britten gets associated to Copland, and vice versa
(<< ... >> is Boomerang syntax for a string literal in heredoc notation.)

test comps.put
<<
Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American

>>
into
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<<
Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English

>>
=
<<
Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1910-1990, English
Aaron Copland, 1913-1976, American

>>

The root of this problem is that the PUT function of the Kleene star operator works
positionally—it divides the concrete and abstract strings into lines, and invokes the PUT
of comp on each pair.

Our solution is to add new combinators for specifying reorderable “chunks” (<comp>)
and a key for each chunk (key ALPHA). The put function of the following lens:

let ALPHA : regexp = [A-Za-z ]+
let YEARS : regexp = [0-9]{4} . "-" . [0-9]{4}
let comp : lens =

key ALPHA . ", "
. del YEARS . del ", "
. ALPHA

let comps : lens = "" | <comp> . (newline . <comp>)*

restores lines using the name on each line as a key, rather than by position. For the
details of how this all works, see Bohannon et al. [2008]. To verify it on this example, try
out this unit test:

test comps.put
<<
Jean Sibelius, Finnish
Benjamin Britten, English
Aaron Copland, American

>>
into
<<
Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English

>>
= ?

Note that the year data is correctly restored to each composer.
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Chapter 3

The Boomerang Language

The Boomerang language provides convienent concrete syntax for writing lenses (and
strings, regular expressions, canonizers, etc.). The concrete syntax is based on an explicitly-
typed core fragment of OCaml. It includes user-defined datatypes and functions, mod-
ules, unit tests, and special syntax for constructing regular expressions and for accessing
the components of lenses.

3.1 Lexing

Space, newline and tab characters are whitespace. Comments equivalent to whitespace
and are delimited by (* and *); comments may be nested.

3.1.1 String Literals

String literals can be any sequence of characters and escape sequences enclosed in double-
quotes. The escape sequences \", \\, \b, \n, \r, and \t stand for the characters double-
quote, backslash, backspace, newline, vertical tab, and tab. To facilitate lining up columns
in indented string literals, within a string, a newline followed by whitespace and then |
is equivalent to a single newline. For example,

"University
|of
|Pennsylvania"

is equivalent to both

"University
of
Pennsylvania"

(in the leftmost column) and
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"University\nof\nPennsylvania"

(anywhere). String literals can also be specified using “here document” (heredoc) nota-
tion, delimited by << and >>. If the initial << is followed by a newline and sequence
of space characters, that indentation is used for the rest of the block. For example, the
following string

<<
University
of
Pennsylvania

>>

is equivalent to the previous ones.

3.1.2 Identifiers

Ordinary identifiers are non-empty strings drawn from the following set of characters

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
′ _ - @

The first symbol of an identifier must be a non-numeric character. The following key-
words

module open let in fun
begin end test match with
type error char string regexp
lens int bool canonizer unit
of into where forall lt
leq gt geq true false
.get .put .create .canonize .choose
.ctype .domain_type .atype .codomain_type .bij

and symbols

( ) ; . & * - _ + ! -> => <=> <-> =
{ } # [ ] < > , : ˆ ˜ / ? \

are reserved.
Some of the parsing rules distinguish several different kinds of identifiers. The lexer

produces different tokes for uppercase (UIdent) and lowercase (LIdent) identifiers. Addi-
tionally, the lexer produces special tokens for qualified identifiers (QualIdent), which have
the form M.N.x, and type variable identifiers (TyVarIdent), which have the form ′a.
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3.1.3 Regular Expressions

Character classes are specified within [ and ] using POSIX notation. The ˆ character
indicates a negated character class. For example, [A-Z] is the set of upper case characters,
[0-9] the set of decimal digits, [ˆ] the full set of ASCII characters, and [ˆ\n\t ] the
set of non-newline, non-tab, non-space characters.

String literals enclosed in / and / are lexed as singleton regular expressions.

3.2 Parsing

This section gives a formal definition of Boomerang syntax as an EBNF grammar. The
productions for each syntactic category are followed by a brief explanation. In grammar
rules we adopt the following conventions:

• Literals are written in a typewriter font and enclosed in quotes: e.g., ‘module’;

• Non-terminals and tokens are enclosed in angle brackets: e.g., 〈Exp〉;

• Optional elements are enclosed in square brackets: e.g., [‘:’ 〈Sort〉];

• Terms are grouped using parentheses;

• Optional and repeated terms are specified using ? (optional), * (0 or more), and + (1
or more).

3.2.1 Modules and Declarations
〈CompilationUnit〉 ::= ‘module’ 〈UIdent〉 ‘=’ (‘open’ 〈Qid〉)* 〈Decl〉*

〈Decl〉 ::= ‘module’ 〈LIdent〉 ‘=’ 〈Decl〉* ‘end’
| ‘type’ 〈TyVarList〉 〈LIdent〉 ‘=’ 〈DTSortList〉
| ‘let’ 〈Id〉 (〈Param〉)+ (‘:’ 〈Sort〉)? ‘=’ 〈Exp〉
| ‘let’ 〈PairPat〉 (〈Param〉)+ (‘:’ 〈Sort〉)? ‘=’ 〈Exp〉
| ‘test’ 〈InfixExp〉 ‘=’ 〈TestResExp〉
| ‘test’ 〈InfixExp〉 ‘:’ 〈TestResSort〉

A Boomerang compilation unit contains a single module declaration, such as module Foo,
which must appear in a file named foo.src (for “literate” sources) or foo.boom (for
plain sources). Boomerang modules are only used to group declarations into a common
namespace (in particular, Boomerang does not support module signatures or sealing. A
module consists of a sequence of open declarations, which import all the declarations
from another module into the namespace, followed by a sequence of declarations. A
declaration is either a nested module, a type, a let, or a unit test.
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Unit Tests

Boomerang supports inline unit tests, which are executed when the system is run in test-
ing mode (see Section ??).

〈TestResExp〉 ::= ‘?’
| ‘error’
| 〈AppExp〉

〈TestRestSort〉 ::= ‘?’
| 〈Sort〉

Unit tests have one of the following forms:

test (copy [A-Z]*).get "ABC" = "ABC"
test (copy [A-Z]*).get "ABC" = ?
test (copy [A-Z]*).get "123" = error
test (copy [A-Z]*).get "ABC" : string
test (copy [A-Z]*).get "ABC" : ?

The first form, test e1 = e2, checks that e1 and e2 evaluate to identical values. The two
expressions must have compatible sorts with a defined equality operation. We often use
this kind of test to print and check the behavior of the get, put, and create components of
lenses. A unit test of the form test e = ? evaluates e and prints the result. The third
form of unit test, test e = error, checks that an exception is raised during evaluation
of e. This kind of test is used to check that a lens correctly checks the side conditions on
its inputs. Finally, unit tests of the form test e : s and test e : ? test the sort of e rather
than its value.

3.2.2 Expressions
〈Exp〉 ::= ‘let’ 〈Id〉 (〈Param〉)+ (‘:’ 〈Sort〉)? ‘=’ 〈Exp〉 ‘in’ 〈Exp〉
| ‘let’ 〈PairPat〉 (‘:’ 〈Sort〉)? ‘=’ 〈Exp〉 ‘in’ 〈Exp〉
| ‘fun’ (〈Param〉)+ (‘:’ 〈Sort〉)? ‘->’ 〈Exp〉
| 〈CaseExp〉

〈CaseExp〉 ::= ‘match’ 〈Exp〉 ‘with’ 〈BranchList〉 ‘:’ 〈Sort〉
| ‘(’ ‘match’ 〈Exp〉 ‘with’ 〈BranchList〉 ‘)’ ‘:’ 〈Sort〉
| ‘begin’ ‘match’ 〈Exp〉 ‘with’ 〈BranchList〉 ‘end’ ‘:’ 〈Sort〉
| 〈ComposeExp〉

Parameters

〈Param〉 ::= ‘(’ 〈Id〉 ‘:’ 〈Sort〉 ‘)’
| ‘(’ 〈TyVarIdent〉 ‘)’
| 〈TyVarIdent〉
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Branches

〈Branch〉 ::= 〈Pat〉 ‘->’ 〈InfixExp〉

〈BranchList〉 ::= (‘|’)? 〈Branch〉 (‘|’ 〈Branch〉)*

〈ComposeExp〉 ::= 〈ComposeExp〉 ‘;’ 〈BarExp〉
| 〈BarExp〉

〈BarExp〉 ::= 〈OBarExp〉
| 〈DBarExp〉
| 〈EqualExp〉

〈OBarExp〉 ::= 〈OBarExp〉 ‘|’ 〈EqualExp〉
| 〈EqualExp〉 ‘|’ 〈EqualExp〉

〈DBarExp〉 ::= 〈DBarExp〉 ‘||’ 〈EqualExp〉
| 〈EqualExp〉 ‘||’ 〈EqualExp〉

〈EqualExp〉 ::= 〈AppExp〉 ‘=’ 〈AppExp〉
| 〈CommaExp〉

〈CommaExp〉 ::= 〈CommaExp〉 ‘,’ 〈InfixExp〉
| 〈InfixExp〉

〈InfixExp〉 ::= 〈DotExp〉
| 〈TildeExp〉
| 〈AmpExp〉
| 〈LensComponentExp〉
| 〈AppExp〉 ‘-’ 〈AppExp〉
| 〈AppExp〉 ‘&&’ 〈AppExp〉
| 〈AppExp〉 ‘<->’ 〈AppExp〉
| 〈AppExp〉 ‘<=>’ 〈AppExp〉
| 〈AppExp〉 ‘<’ 〈AppExp〉
| 〈AppExp〉 ‘<=’ 〈AppExp〉
| 〈AppExp〉 ‘>’ 〈AppExp〉
| 〈AppExp〉 ‘>=’ 〈AppExp〉
| 〈AppExp〉

〈DotExp〉 ::= 〈DotExp〉 ‘.’ 〈AppExp〉
| 〈AppExp〉 ‘.’ 〈AppExp〉

〈TildeExp〉 ::= 〈TildeExp〉 ‘˜’ 〈AppExp〉
| 〈AppExp〉 ‘˜’ 〈AppExp〉
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〈AmpExp〉 ::= 〈AmpExp〉 ‘&’ 〈AppExp〉
| 〈AppExp〉 ‘&’ 〈AppExp〉

〈LensComponentExp〉 ::= 〈AppExp〉 (‘.get’ 〈AppExp〉
| 〈AppExp〉 (‘.put’ 〈AppExp〉 ‘into’ 〈AppExp〉
| 〈AppExp〉 (‘.create’ 〈AppExp〉
| 〈AppExp〉 (‘.canonize’ 〈AppExp〉
| 〈AppExp〉 (‘.choose’ 〈AppExp〉
| 〈AppExp〉 (‘.ctype’
| 〈AppExp〉 (‘.atype’
| 〈AppExp〉 (‘.domain_type’
| 〈AppExp〉 (‘.codomain_type’
| 〈AppExp〉 (‘.bij’

〈AppExp〉 ::= 〈AppExp〉 〈RepExp〉
| 〈RepExp〉

〈RepExp〉 ::= 〈TyExp〉 〈Rep〉
| 〈TyExp〉

〈TyExp〉 ::= 〈TyExp〉 ‘{’ 〈Sort〉 ‘}’
| 〈TyExp〉

〈AExp〉 ::= ‘(’ 〈Exp〉 ‘)’
| ‘begin’ 〈Exp〉 ‘end’
| 〈Qid〉
| 〈MatchExp〉
| ‘#’ ‘{’ 〈SortList〉 ‘}’ 〈List〉
| 〈Character〉
| 〈Integer〉
| 〈Boolean〉
| 〈CharSet〉
| 〈NegCharSet〉
| 〈String〉
| 〈RegExpString〉
| ‘()’

〈MatchExp〉 ::= <〈Qid〉 >
| <〈LIdent〉 ‘:’ 〈Qid〉 >
| <‘˜’ 〈Qid〉 >
| <‘˜’ 〈LIdent〉 ‘:’ 〈Qid〉 >
| <‘˜’ ‘{’ 〈Float〉 ‘}’ 〈Qid〉 >
| <‘˜’ ‘{’ 〈Float〉 ‘}’ 〈LIdent〉 ‘:’ 〈Qid〉 >
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3.2.3 Repetitions
〈Rep〉 ::= ‘*’
| ‘+’
| ‘?’
| ‘{’ 〈Integer〉 ‘}’
| ‘{’ 〈Integer〉 ‘,’ 〈Integer〉 ‘}’

3.2.4 Lists
〈List〉 ::= ‘[]’
| ‘[’ 〈BarExp〉 (‘;’ 〈BarExp〉)* ‘]’

3.2.5 Patterns
〈Pat〉 ::= 〈UIdent〉 〈PairPat〉
| 〈QualIdent〉 〈PairPat〉
| 〈PairPat〉

〈PairPat〉 ::= 〈PairPat〉 ‘,’ 〈APat〉
| 〈APat〉

〈APat〉 ::= ‘_’
| 〈LIdent〉
| ‘()’
| 〈Integer〉
| 〈Boolean〉
| 〈String〉
| 〈UIdent〉
| 〈Qident〉
| ‘(’ 〈Pat〉 ‘)’

3.2.6 Sorts
〈Sort〉 ::= ‘forall’ 〈TyVarIdent〉 ‘=>’ 〈Sort〉
| 〈ArrowSort〉

〈ArrowSort〉 ::= 〈ProductSort〉 ‘->’ 〈ArrowSort〉
| 〈ProductSort〉

〈ProductSort〉 ::= 〈ProductSort〉 ‘->’ 〈DataTypeSort〉
| 〈DataTypeSort〉
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〈DataTypeSort〉 ::= 〈BSort〉 (〈QVar〉)?
| ‘(’ 〈Sort〉 ‘,’ 〈SortList〉 ‘)’ 〈QVar〉

〈BSort〉 ::= ‘(’ 〈Sort〉 ‘)’
| 〈ASort〉

〈BSort〉 ::= 〈QVar〉
| ‘char’
| ‘string’
| ‘regexp’
| ‘lens’
| ‘int’
| ‘bool’
| ‘canonizer’
| ‘unit’
| 〈TyVar〉

〈TyVar〉 ::= 〈TyVarIdent〉

〈TyVarList〉 ::= 〈TyVar〉
| ‘(’ 〈TyVar〉 (‘,’ 〈TyVar〉)* ‘)’

〈DTSort〉 ::= 〈UIdent〉
| 〈UIdent〉 ‘of’ 〈Sort〉

〈DTSortList〉 ::= 〈DTSort〉 (‘|’ 〈DTSort〉)*

3.2.7 Identifiers
〈Id〉 ::= 〈LIdent〉
| 〈UIdent〉

〈QId〉 ::= 〈LIdent〉
| 〈UIdent〉
| 〈QualIdent〉

〈QVar〉 ::= 〈LIdent〉
| 〈QualIdent〉
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Chapter 4

The Boomerang Libraries

The Boomerang system includes an assortment of useful primitive lenses, regular ex-
pressions, canonizers, as well as derived forms. All these are described in this chapter,
grouped by module.

In most cases, the easiest way to understand what a lens does is to see it in action on
examples; most lens descriptions therefore include several unit tests, using the notation
explained in Section 3.2.1.

More thorough descriptions of most of the primitive lenses can be found in our tech-
nical papers Bohannon et al. [2008], Foster et al. [2008]. The long versions of those papers
include proofs that all of our primtitives are “well behaved,”. However, for getting up to
speed with Boomerang programming, the shorter (conference) versions should suffice.

4.1 The Core Definitions

The first module, Core, imports primitive values (defined in the host language, OCaml)
to Boomerang. In Core, we do not use any overloaded or infix operators (e.g., ., |, ˜, -, *)
because the Boomerang type checker resolves these symbols to applications of functions
defined in Core. The reason that we do this, rather than resolving them directly to the
primitive values, is that it facilitates checking the preconditions on primtive values using
dependent refinement types.

Every value defined in Core is available by default in every Boomerang program.

4.1.1 Equality

equals The polymorphic equals operator is partial: comparing function, lens, or
canonizer values results in a run-time expception. The infix = operator desugars into
equals.

let equals : forall ’a => ’a -> ’a -> bool
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test equals{string} "ABC" "ABC" = true
test equals{string} "ABC" "123" = false
test equals{char} ’A’ ’\065’ = true
test equals{string -> string}
(fun (x:string) -> x) (fun (y:string) -> y) = error

4.1.2 Booleans

land, lor, not These operators are the standard functions on booleans. The infix
operators && and || resolve to land and lor respectively (when applied to booleans; ||
also resolves to lens_union when applied to lenses.)

let land : bool -> bool -> bool
let lor : bool -> bool -> bool
let land : bool -> bool -> bool

4.1.3 Integers

string_of_int The operator string_of_int converts an integer to a string in the
obvious way.

let string_of_int : int -> string

bgt, blt, bgeq, bleq These operators are the standard comparisons on integers. Infix
operators >, <, >=, <= resolve to these operators. In this module, we bind them to names
like bgt here because gt is a reserved keyword.

let bgt : int -> int -> bool
let blt : int -> int -> bool
let bgeq : int -> int -> bool
let bleq : int -> int -> bool

plus, minus, times, div, mod These operators are the standard arithmetic func-
tions on integers.

let plus : int -> int -> int
let minus : int -> int -> int
let times : int -> int -> int
let bdiv : int -> int -> int
let bmod : int -> int -> int

4.1.4 Characters

string_of_char The string_of_char function converts a character to a string.

let string_of_char : char -> string
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4.1.5 Strings

string_concat The string_concat operator is the standard string concatenation
function. The overloaded infix . operator resolves to string_concat when it is applied
to strings.

let string_concat : string -> string -> string

4.1.6 Regular Expressions

str The str function converts a string to the singleton regexp containing it. This
coercion is automatically inserted by the type checker on programs that use subtyping.
However, it is occasionally useful to explicitly promote strings to regexps, so we include
it here. (Also, strings delimited by / in the lexer desugar into applications of str.)

let str : string -> regexp

string_of_regexp The string_of_regexp function a regular expression to a string.

let string_of_regexp : regexp -> string

regexp_union The regexp_union operator forms the union of two values of type
regexp. The overloaded infix symbol | desugars into regexp_union when used with
values of type regexp.

let regexp_union : regexp -> regexp -> regexp

regexp_concat The regexp_concat operator forms the concatenation of two val-
ues of type regexp. The overloaded infix symbol . desugars into regexp_concatwhen
used with values of type regexp.

let regexp_concat : regexp -> regexp -> regexp

regexp_iter The regexp_iter operator iterates a regexp. The overloaded sym-
bols *, +, and ?, as well as iterations {n,m} and {n,} all desugar into regexp_iter
when used with values of type regexp. If the second argument is negative, then the
iteration is unbounded. For example, R* desugars into regexp_iter R 0 (-1).

let regexp_iter : regexp -> int -> int -> regexp

inter The inter operator forms the intersection of two regexp values. The infix
symbol & desugars into inter.

let inter : regexp -> regexp -> regexp
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diff The diff operator forms the difference of two regexp values. The infix symbol
- desugars into diff.

let diff : regexp -> regexp -> regexp

shortest The function shortest computes a representative of a regular expression
whose length is minimal.

let shortest : regexp -> string

If the regular expression denotes the empty language, an exception is raised, as the
unit test below demonstrates.

test shortest (regexp_iter [A-Z] 1 3) = "A"
test shortest [] = error

is_empty The is_empty function tests if a regular expression denotes the empty
language.

let is_empty : regexp -> bool

test is_empty [] = true
test is_empty [A-Z] = false
test is_empty (diff [A-Z] [ˆ]) = true

equiv The equiv function tests if two regular expressions denote the same language.

let equiv : regexp -> regexp -> bool

test equiv [A-Z] [\065-\090] = true

matches The matches function tests if a string belongs to the language denoted by a
regular expression.

let matches : regexp -> string -> bool

test matches [A-Z] "A" = true
test matches [A-Z] "0" = false
test matches (diff [ˆ] [A-Z]) "X" = false
test matches (diff [ˆ] [A-Z]) "0" = true
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disjoint The disjoint function tests whether two regular expressions denote dis-
joint languages. It is defined using is_empty and inter.

let disjoint (r1:regexp) (r2:regexp) : bool =
is_empty (inter r1 r2)

test disjoint [A-Z] [0-9] = true
test disjoint [A-Z] [M] = false

splittable The splittable function tests whether the concatenation of two regu-
lar expressions is ambiguous.

let splittable : regexp -> regexp -> bool

test splittable (regexp_iter [A] 0 1) (regexp_iter [A] 0 1) = false
test splittable (regexp_iter [A] 1 1) (regexp_iter [A] 0 1) = true

iterable The iterable function tests whether the iteration of a regular expression
is ambiguous.

let iterable : regexp -> bool

test iterable (regexp_iter [A] 0 1) = false
test iterable (regexp_iter [A] 1 1) = true

count The count function takes as arguments a regular expresion R and a string w. It
returns the maximum number of times that w can be split into substrings, such that each
substring belongs to R.

let count : regexp -> string -> int

test count [A-Z] "" = 0
test count [A-Z] "ABC" = 3
test count (regexp_iter [A-Z] 0 1) "ABC" = 3
test count (regexp_iter [A-Z] 0 1) "123" = 0

4.1.7 Lens Components

get The get function extracts the get component of a lens. The record-style projection
notation l.get desguars into get.

let get : lens -> string -> string
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put The put function extracts the put component of a lens. The record-style projection
notation l.put desguars into put.

let put : lens -> string -> string -> string

create The create function extracts the create component of a lens. The record-style
projection notation l.create desguars into create.

let create : lens -> string -> string

ctype The ctype function extracts the concrete type component (i.e., the type of the
domain of its get function) of a lens. The record-style projection notation l.ctype and
l.domain_type both desguar into ctype.

let ctype : lens -> regexp

atype The atype function extracts the abstract type component (i.e., the type of the
codomain of its get function) of a lens. The record-style projection notation l.atype and
l.codomain_type both desguar into atype.

let atype : lens -> regexp

bij The bij function tests whether a lens is bijective. The record-style projection
notation l.bij desugars into bij.

let bij : lens -> bool

4.1.8 Lenses

copy The copy lens takes a regular expression R as an argument and copies strings
belonging to R in both directions.

let copy (R:regexp) : lens

test get (copy [A-Z]) "A" = "A"
test put (copy [A-Z]) "B" "A" = "B"
test create (copy [A-Z]) "Z" = "Z"
test get (copy [A-Z]) "1" = error
test ctype (copy [A-Z]) = [A-Z]
test atype (copy [A-Z]) = ctype (copy [A-Z])
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const The const lens takes as arguments a regular expression R, a string u, and a
string v. Its get function is the constant function that returns u, its put function restores its
concrete argument, and its create function returns the default string v.

let const : regexp -> string -> string -> lens

test get (const [A-Z] "x" "A") "A" = "x"
test put (const [A-Z] "x" "A") "x" "B" = "B"
test create (const [A-Z] "x" "A") "x" = "A"

set The set derived lens is like const but uses an arbitrary representative of R as the
default string. The infix operator <-> desugars to set.

let set (r:regexp) (s:string) : lens =
const r s (shortest r)

rewrite The rewrite derived lens is like set but only rewrites strings, and so is
bijective. The infix operator <=> desugars to rewrite.

let rewrite (s1:string) (s2:string) : lens =
const (str s1) s2 s1

lens_union The lens_union operator forms the union of two lenses. The concrete
types of the two lenses must be disjoint. The overloaded infix operator || desugars into
lens_union when applied to lens values.

let lens_union : lens -> lens -> lens

test get (lens_union (copy [A-Z]) (copy [0-9])) "A" = "A"
test get (lens_union (copy [A-Z]) (copy [0-9])) "0" = "0"
test create (lens_union (copy [A-Z]) (copy [0-9])) "A" = "A"
test lens_union (copy [A-Z]) (copy [ˆ]) = error

lens_disjoint_union The lens_disjoint_union operator also forms the union
of two lenses. However, it requires that the concrete and abstract types of the two lenses
be disjoint. The overloaded infix operator | desugars into lens_disjoint_union
when applied to lens values.

let lens_disjoint_union : lens -> lens -> lens

test get (lens_disjoint_union (copy [A-Z]) (copy [0-9])) "A" = "A"
test get (lens_disjoint_union (copy [A-Z]) (copy [0-9])) "0" = "0"
test lens_disjoint_union (copy [A-Z]) (const [0-9] "A" "0") = error
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lens_concat The lens_concat operator forms the concatenation of two lenses.
The concrete and abstract types of the two lenses must each be unambiguously concaten-
able. The overloaded infix operator . desugars into lens_concat when applied to lens
values.

let lens_concat : lens -> lens -> lens

test get (lens_concat (copy [A-Z]) (copy [0-9])) "A1" = "A1"
test put (lens_concat (copy [A-Z]) (copy [0-9])) "B2" "A1" = "B2"
test create (lens_concat (copy [A-Z]) (copy [0-9])) "B2" = "B2"

compose The compose operator puts two lenses in sequence. The abstract type of the
lens on the left and the concrete type of the lens on the right must be identical.

let compose : lens -> lens -> lens

test get (compose (const [A-Z] "Z" "A")
(const [Z] "X" "Z")) "A" = "X"

lens_swap The lens_swap operator also concatenates lenses. However, it swaps the
order of the strings it creates on the abstract side. As with lens_concat, the concrete
and abstract types of the two lenses must each be unambiguously concatenable. The
overloaded infix operator ˜ desugars into lens_swap when applied to lens values.

let lens_swap : lens -> lens -> lens

test get (lens_swap (copy [A-Z]) (copy [0-9])) "A1" = "1A"
test put (lens_swap (copy [A-Z]) (copy [0-9])) "2B" "A1" = "B2"
test create (lens_swap (copy [A-Z]) (copy [0-9])) "2B" = "B2"

lens_iter The lens_iter operator iterates a lens. The iterations of the concrete
and abstract types of the lens must both be unambiguous. The overloaded operators *,
+, ?, {m,n} and {n,} all desugar into instances of lens_iter when applied to a lens.
If the second argument is negative, then the iteration is unbounded. For example, l*
desugars into lens_iter l 0 (-1).

let lens_iter : lens -> int -> int -> lens

test get (lens_iter (copy [A-Z]) 0 4) "" = ""
test get (lens_iter (copy [A-Z]) 0 4) "ABCD" = "ABCD"
test put (lens_iter (copy [A-Z]) 0 4) "AB" "ABCD" = "AB"
test create (lens_iter (copy [A-Z]) 0 4) "A" = "A"
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invert The invert operator swaps the get and create components of a lens, which
must be bijective.

let invert : lens -> lens

test get (invert (const [A] "B" "A")) "B" = "A"
test invert (const [A-Z] "B" "A") = error

default The default operator takes a lens l and a string d as arguments. It over-
rides l’s create function to use put with d.

let default : lens -> string -> lens

test create (default (const [A-Z] "X" "A") "B") "X" = "B"

filter The filter operator takes two regular expressions R and S as arguments
and produces a lens whose get function transforms a string belonging to the iteration of
the union of R and S by discarding all of the substrings belonging to R. The regular ex-
pressions R and S must be disjoint and the iteration of their union must be unambiguous.

let filter : regexp -> regexp -> lens

test get (filter [A-Z] [0-9]) "A1B2C3" = "123"
test put (filter [A-Z] [0-9]) "123456" "A1B2C3" = "A1B2C3456"

4.1.9 Dictionary Lenses

The next few primitives construct lenses for handling ordered data called dictionary
lenses. For details, see Bohannon et al. [2008].

key The key operator takes a regular expression as an argument. Its get, put, and create
components are like copy, but its key component is the identity function on the abstract
string.

let key : regexp -> lens

dmatch The dmatch operator takes as arguments a string t and a lens l. It builds
a dictionary lens that applies l in the t “chunk”. The type checker requires that the
same lens be used for every instance of dmatch with the same tag. In Boomerang, we
check this condition using a conservative approximation: we assign every lens an integer
unique identifier when it is constructed and require that for each tag t, the lenses in each
occurrence of dmatch with t have the same unique identifier.

let dmatch : string -> lens -> lens
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smatch The smatch operator is like dmatch but uses a similarity-based lookup op-
erator for chunks. The first string must represent a floating point number, which is used
as the threshold.

let smatch : string -> string -> lens -> lens

forgetkey The forgetkey operator takes a lens l as an argument. It behaves like
l, but overrides its key component with the constant function returning the empty string.

let forgetkey : lens -> lens

4.1.10 Canonizers

canonize The canonize function extracts the canonize component of a canonizer.
The record-style projection notation q.canonize desguars into canonize.

let canonize : canonizer -> string -> string

choose The choose function extracts the choose component of a canonizer. The record-
style projection notation q.choose desguars into choose.

let choose : canonizer -> string -> string

uncanonized_type The rtype function extracts the “representative” type compo-
nent (i.e., the type of the domain of its canonize function) of a canonizer.

let uncanonized_type : canonizer -> regexp

canonized_type The qtype function extracts the “quotient” type component (i.e.,
the type of the codomain of its canonize function) of a canonizer.

let canonized_type : canonizer -> regexp

canonizer_of_lens The canonizer_of_lens operator builds a canonizer out of
a lens with the lens’s get function as the canonize component and create as choose.

let canonizer_of_lens : lens -> canonizer

canonizer_concat The canonizer_concat operator concatenates canonizers. Only
the concatenation of types on the left side needs to be unambiguous.

let canonizer_concat : canonizer -> canonizer -> canonizer
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canonizer_union The canonizer_union operator forms the union of two canon-
izers. The types on the left need to be disjoint.

let canonizer_union : canonizer -> canonizer -> canonizer

canonizer_iter The canonizer_iter operator iterates a canonizer. The iteration
of the type on the left needs to be unambiguous. The overloaded operators *, +, ?, {m,n}
and {n,} all desugar into instances of canonizer_iter when applied to a canonizer.
If the second argument is negative, then the iteration is unbounded. For example, q*
desugars into canonizer_iter q 0 (-1).

columnize The columnize primitive canonizer wraps long lines of text. It takes as
arguments an integer n, a regular expression R, a character s and a string nl. It pro-
duces a canonizer whose canonize component takes strings belonging to the iteration of
R, extended so that s and nl may appear anywhere that s may, and replaces nl with s
globally. Its choose component wraps a string belonging to the iteration of R by replacing
s with nl to obtain a string in which (if possible) the length of every line is less than or
equal to n.

let columnize : int -> regexp -> char -> string -> canonizer

The following unit test illustrates the choose component of columnize (we would nor-
mally write [a-z ]* instea of (regexp_iter [a-z ] 0 (minus 0 1)) in any mod-
ule other than Core.)

test choose (columnize 5 (regexp_iter [a-z ] 0 (minus 0 1)) ’ ’ "\n")
"a b c d e f g" =

<<
a b c
d e f
g

>>

4.1.11 Quotient Lenses

The next few primitives construct lenses that work up to programmer-specified equiv-
alence relations. We call these structures quotient lenses. For details, see Foster et al.
[2008].

left_quot The left_quot operator quotients a lens l by a canonizer q on the left
by passing concrete strings through q.

let left_quot : canonizer -> lens -> lens
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test get
(left_quot (columnize 5 (regexp_iter [a-z ] 0 (minus 0 1)) ’ ’ "\n")

(copy (regexp_iter [a-z ] 0 (minus 0 1))))
<<
a b c
d e f
g

>>
= "a b c d e f g"

test create
(left_quot (columnize 5 (regexp_iter [a-z ] 0 (minus 0 1)) ’ ’ "\n")

(copy (regexp_iter [a-z ] 0 (minus 0 1))))
"a b c d e"
=
<<
a b c
d e

>>

right_quot The right_quot operator quotients a lens l by a canonizer q on the
right by passing abstract strings through q.

let right_quot : lens -> canonizer -> lens

dup1 The dup1 operator takes as arguments a lens l, a function f, and a regular ex-
pression R, which should denote the codomain of f. Its get function supplies one copy
of the concrete string to l’s get function and one to f, and concatenates the results. The
put and create functions simply discard the part of the string computed by f and use the
corresponding from l on the rest of the string. The concatenation of l’s abstract type and
the codomain of f must be unambiguous.

let dup1 : lens -> (string -> string) -> regexp -> lens

test get (dup1 (copy [A-Z]) (get (copy [A-Z])) [A-Z]) "A" = "AA"
test put (dup1 (copy [A-Z]) (get (copy [A-Z])) [A-Z]) "BC" "A" = "B"

dup2 The dup2 operator is like dup1 but uses f to build the first part of the output.

let dup2 : lens -> (string -> string) -> regexp -> lens

test get (dup2 (copy [A-Z]) (get (copy [A-Z])) [A-Z]) "A" = "AA"
test put (dup2 (copy [A-Z]) (get (copy [A-Z])) [A-Z]) "BC" "A" = "C"
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4.1.12 Miscellaneous

read The read function reads the contents of a file from the local filesystem.

let read : string -> string

blame The blame function (not shown) is used in the Boomerang intepreter to report
dynamic contract failures.

4.1.13 Synchronization

sync The sync function takes a lens an three strings as arguments. It synchronizes
three strings using a type-respecting synchronization algorithm based on diff3. (The syn-
chronization type is extracted from the the lens argument.)

let sync : lens -> string -> string -> string ->
(string * string * string * string)

4.2 The Standard Prelude

The second module, Prelude, defines some common derived forms. Like Core, its val-
ues are available by default in every Boomerang program.

4.2.1 Regular Expressions

EMPTY The regular expression empty denotes the empty set of strings.

let EMPTY : regexp = []

EPSILON The regular expression epsilon denotes the singleton set containing the
empty string.

let EPSILON : regexp = //

ANYCHAR, ANY, ANYP The regular expression ANYCHAR denotes the set of ASCII
characters, ANY denotes the set of all ASCII strings, and ANYP denotes the set of all ASCII
strings except for the empty string. By convention, we append a “P” to the name of a
regular expression to denote its “positive” variant (i.e., not containing the empty string).

let ANYCHAR : regexp = [ˆ]
let ANY : regexp = ANYCHAR*
let ANYP : regexp = ANYCHAR+
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containing The function containing takes a regular expression R as an argument
and produces a regular expression describing the set of all strings that contain a substring
described by R.

let containing (R:regexp) : regexp = ANY . R . ANY

SCHAR, S, SP The regular expressions SCHAR, S, and SP denote sets of space char-
acters.

let SCHAR : regexp = [ ]
let S : regexp = SCHAR*
let SP : regexp = SCHAR+

WSCHAR, WS, WSP The regular expressions WSCHAR, WS, and WSP denote sets of whites-
pace characters.

let WSCHAR : regexp = [ \t\r\n]
let WS : regexp = WSCHAR*
let WSP : regexp = WSCHAR+

NWSCHAR, NWS, NWSP The regular expressions WSCHAR, WS, and WSP denote sets of
non-whitespace characters.

let NWSCHAR : regexp = [ˆ \t\r\n]
let NWS : regexp = NWSCHAR*
let NWSP : regexp = NWSCHAR+

newline, NLn The string newline contains the newline character. The strings given
by NLn each denote a newline followed by n spaces. These are used for indentation, for
example, in the Xml module.

let newline : string = "\n"
let NL0 : string= newline
let NL1 : string= NL0 . " "
let NL2 : string= NL1 . " "
let NL3 : string= NL2 . " "
let NL4 : string= NL3 . " "
let NL5 : string= NL4 . " "
let NL6 : string= NL5 . " "
let NL7 : string= NL6 . " "
let NL8 : string= NL7 . " "
let NL9 : string= NL8 . " "
let NL10 : string = NL9 . " "
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DIGIT, NUMBER, FNUMBER The regular expressions DIGIT, NUMBER, and FNUMBER
represent strings of decimal digits, integers, and floating point numbers respectively.

let DIGIT : regexp = [0-9]
let NUMBER : regexp = /0/ | [1-9] . DIGIT*
let FNUMBER : regexp = NUMBER . (/./ . DIGIT+)?

UALPHACHAR, UALPHANUMCHAR The regular expression UALPHACHAR and UALPHANUMCHAR
denote the set of upper case alphabetic and alphanumeric characters respectively.

let UALPHACHAR : regexp = [A-Z]
let UALPHANUMCHAR : regexp = [A-Z0-9]

4.2.2 Lenses

ins The lens insmaps the empty concrete string to a fixed abstract string. It is defined
straightforwardly using <->.

let ins (s:string) : lens = "" <-> s
test get (ins "ABC") "" = "ABC"
test put (ins "ABC") "ABC" "" = ""

del The lens del deletes a regular expression. It is also defined using <->.

let del (R:regexp) : lens = R <-> ""

test get (del ANY) "Boomerang" = ""
test put (del ANY) "" "Boomerang" = "Boomerang"
test create (del ANY) "" = ""

4.2.3 Quotient Lenses

qconst The lens qconst is like const, but accepts an entire regular expression on the
abstract side. It is defined using quotienting on the right, the lens const, and a canonizer
built from const.

let qconst (C:regexp) (A:regexp) (a:string) (c:string) : lens =
right_quot
(const C a c)
(canonizer_of_lens (const A a a))

test get (qconst [A-Z] [a-z] "a" "A") "A" = "a"
test put (qconst [A-Z] [a-z] "a" "A") "b" "B" = "B"
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qset The lens qconst is like set (i.e., <->), but takes an entire regular expression on
the abstract side. It is defined using qconst.

let qset (C:regexp) (A:regexp) : lens =
qconst C A (shortest A) (shortest C)

test get (qset [A-Z] [a-z]) "A" = "a"
test get (qset [A-Z] [a-z]) "Z" = "a"
test put (qset [A-Z] [a-z]) "z" "A" = "A"
test put (qset [A-Z] [a-z]) "z" "Z" = "Z"

qins The lens qins is like ins but accepts a regular expression in the put direction. It
is defined using right quotienting and ins.

let qins (E:regexp) (e:string) : lens =
right_quot
(ins e)
(canonizer_of_lens (const E e e))

test (get (qins [A-Z]+ "A") "") = "A"
test (create (qins [A-Z]+ "A") "ABC") = ""

qdel The lens qdel is like del but produces a canonical representative in the back-
wards direction. It is defined using left quotienting.

let qdel (E:regexp) (e:string) : lens =
left_quot
(canonizer_of_lens (default (del E) e))
(copy EPSILON)

test (get (qdel [A-Z]+ "ZZZ") "ABC") = ""
test (put (qdel [A-Z]+ "ZZZ") "" "ABC") = "ZZZ"
test (put (qdel [A-Z]+ "ZZZ") "1" "ABC") = error

4.2.4 Standard Datatypes
′a option, (′a,′b) maybe The polymorphic datatypes option and maybe repre-

sents optional and alternative values respectively.

type ’a option =
None | Some of ’a

type (’a,’b) maybe =
Left of ’a | Right of ’b

37



4.2.5 Pairs

fst,snd The polymorphic functions fst and snd are the standard projections on
pairs.

let fst (’a) (’b) (p:’a * ’b) : ’a =
let x,_ = p in x

let snd (’a) (’b) (p:’a * ’b) : ’b =
let _,y = p in y

4.2.6 Lenses with List Arguments

These final two combinators take lists as arguments (and so have to be defined here in-
stead of Core.)

permute The lens permute is an n-ary, permuting concatenation operator on lenses.
Given a concrete string, it splits it into n pieces, applies the get function of the correspond-
ing lens to each piece, reorders the abstract strings according to the fixed permutation
specified by sigma, and concatenates the results.

let permute : int List.t -> lens List.t -> lens

test get (permute
#{int}[2;1;0]
#{lens}[(copy UALPHACHAR);

(copy UALPHACHAR);
(copy UALPHACHAR)]) "ABC" = "CBA"

sort The canonizer sort puts substrings into sorted order according to a list of reg-
ular expressions. An exception is raised if the unsorted string does not have exactly one
substring belonging to each regular expression. This allows us to assign sort a type that
is compact (though imprecise); see ? for an extended discussion.

let sort : regexp List.t -> canonizer

test canonize (sort #{regexp}[UALPHACHAR; DIGIT]) "A1" = "A1"
test canonize (sort #{regexp}[UALPHACHAR; DIGIT]) "1A" = "A1"
test canonize (sort #{regexp}[UALPHACHAR; DIGIT]) "A" = error

test uncanonized_type (sort #{regexp}[UALPHACHAR; DIGIT]) =
(UALPHACHAR | DIGIT)*

test canonized_type (sort #{regexp}[UALPHACHAR; DIGIT]) =
(UALPHACHAR . DIGIT)
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4.3 Lists

The List module defines a datatype for fpolymorphic list structures.

′a t A list is either the Nil list or a Cons of a head and a tail.

type ’a t = Nil | Cons of ’a * ’a t

fold_left Boomerang does not support recursion. However, we provide the fold_left
function on lists via a built-in primitive.

let fold_left (’a) (’b) (f:’b -> ’a -> ’b) (acc:’b) (l:’a t) : ’b

reverse The function reverse can be defined straightforwardly using fold_left.

let reverse (’a) (l : ’a t) : ’a t =
fold_left{’a}{’a t}
(fun (t:’a t) (h:’a) -> Cons{’a}(h,t))
Nil{’a}
l

map The function map can be defined (inefficiently) using fold_left and reverse.

let map (’a) (’b) (f:’a -> ’b) (l:’a t) : ’b t =
let rev_fl : ’b t =
fold_left{’a}{’b t}
(fun (t:’b t) (h:’a) -> Cons{’b}(f h,t))
Nil{’b}
l in

reverse{’b} rev_fl

exists The function exists tests if a predicate holds of some element of the list

let exists (’a) (t:’a -> bool) (l:’a t) : bool =
fold_left {’a}{bool} (fun (b:bool) (h:’a) -> b || t h)
false
l

member The function member tests if an element is a member of the list. It is defined
using exists.

let member (’a) (x:’a) (l:’a t) : bool =
exists{’a} (fun (h:’a) -> x = h) l
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Chapter 5

The Boomerang System

5.1 Running Boomerang

All of the interactions with Boomerang we have seen so far have gone via unit tests. This
works well for interactive lens development, but is less useful for batch processing of
files. Boomerang can also be involved from the command line:

Usage:
boomerang [get] l C [options] : get

or boomerang [put] l A C [options] : put
or boomerang create l A [options] : create
or boomerang sync l O C A [options] : sync
or boomerang M.boom [N.boom...] [options] : run unit tests for M, N, ...

To try this out, create a file comps-conc.txt containing the following lines:

Jean Sibelius, 1865-1957, Finnish
Aaron Copland, 1910-1990, American
Benjamin Britten, 1913-1976, English

and run the command

boomerang get QuickStart.comps comps-conc.txt

You should see

Jean Sibelius, Finnish
Aaron Copland, American
Benjamin Britten, English

written to the terminal.
Now let’s do the same thing, but save the results to a file:

boomerang get QuickStart.comps_cmdline comps-conc.txt -o comps-abs.txt
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Next let’s edit the abstract file to

Jean Sibelius, Finnish
Benjamin Britten, English
Alexandre Tansman, Polish

and put the results back:

boomerang put QuickStart.comps_cmdline comps-abs.txt comps-conc.txt

You should see

Jean Sibelius, 1865-1957, Finnish
Benjamin Britten, 1913-1976, English
Alexandre Tansman, 0000-0000, Polish

printed to the terminal.

5.2 Navigating the Distribution

If you want to check out the code, here is one reasonable order to look at the files:

src/lenses/core.boom core lenses
src/lenses/prelude.boom important derived lenses
src/blenses.ml native definitions of lenses and canonizers
examples/* many real-world lenses
src/bcompiler.ml the Boomerang interpreter
src/sync.ml a synchronization algorithm
src/toplevel.ml the top-level program
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Chapter 6

Case Studies

Under construction. For now, see the demos in the examples directory.
In the boomerang/examples directory, you can find some of the other Boomerang

programs we have written:

• demo.boom: A simple demo, similar to composers lens.

• addresses.boom : VCard, CSV, and XML-formatted address books.

• bibtex.boom: BiBTeX and RIS-formatted bibliographies.

• uniprot.boom: UniProtKB / SwissProt lens.

• xsugar/*: example transformations from the XSugar project.

We will continue adding to this set of examples as we tidy and package our code...
and we hope you’ll write and let us know about the lenses you write!
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