Development of a fluorescent microsphere technique for rapid histological determination of cerebral blood flow

Stephanie A. Eucker, Brenton D. Hoffman, Rahul Natesh, Jill Ralston, William M. Armstead, Susan S. Margulies

A Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
b Robert M. Berne Cardiovascular Research Center, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
c Department of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA 19104, USA

ARTICLE INFO

Article history:
Accepted 21 February 2010
Available online 1 March 2010

Keywords:
Cerebral blood flow
Fluorescent microsphere
Pig

ABSTRACT

The purpose of this study was to develop a more efficient fluorescent microsphere method to facilitate the rapid use of the histological technique and to enable its use in large tissue regions. Using fluorescent plate/slide imaging technology and automated detection and analysis software, we were able to rapidly image, detect, and count 3 separate microsphere colors in 200 μm thick tissue sections from piglet brain. In resting newborn piglets (n=6) on isoflurane anesthesia, we measured a median total cerebral blood flow (CBF) of 105 ml/min/100 g (range 27–206 ml/min/100 g). Compared with other FM analysis methods, our method reduces the time required to determine blood flow, improves accuracy in lipid-rich tissues and large tissue regions and, unlike the radiolabeled microsphere method, can be combined with histological analysis.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The microsphere technique, using either radiolabeled or fluorescently labeled microspheres, has been developed as one of the reference standards for measuring regional tissue blood flow (Heymann et al., 1977; Prinzen and Glenny, 1994). While radiolabeled microspheres require minimal tissue and signal processing, differences in tissue sectioning from those used for histology and the health risks from radioactivity exposure limit their utility for coupling blood flow with histological measurements. Fluorescent microspheres do not have the same health hazards, but most quantitative methods require tissue digestion (Glenny et al., 1993; Powers et al., 1999), which again eliminates the opportunity to compare blood flow with histology in the same tissue sample. Furthermore, the use of the tissue digestion technique on brain tissue of large animals is particularly problematic. The large white matter content increases the amount of lipid material, which is difficult to break down (Powers et al., 1999) and may result in variable amounts of tissue digestion and variable microsphere capture.

More recently, a histological fluorescent microsphere method has been developed that allows preservation of tissue for histopathological assessment (De Visscher et al., 2003; Luchtel et al., 1998). This method involves cutting tissue into 100 μm thick histological slices, imaging the microspheres

*Corresponding author. Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA. Fax: +1 215 573 2071.
E-mail address: margulie@seas.upenn.edu (S.S. Margulies).

Abbreviations: CBF, cerebral blood flow; FM, fluorescent microsphere; MAP, mean arterial blood pressure

0006-8993/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.brainres.2010.02.059
using epifluorescent microscopy, and manual counting of spheres. While this method only takes 3 h of tissue processing per brain in the rat (De Visscher et al., 2006), it becomes impractical in large animal models where the region of interest sizes and number of microspheres counted increase dramatically. In the piglet brain, for example, the area of a typical coronal hemisection slice occupies 3–4 cm², compared with 0.5–0.6 cm² in a rat brain, and a 3 mm-thick section generates 30 such 100 μm slices. In our experience, this corresponds to 4–5 h of tissue processing for just one microsphere color in one brain region. When the processing time is multiplied by the number of time points and regions of interest in large brains, this traditional microsphere counting technique becomes laborious and unrealistically time-consuming.

We present here a novel adaptation of a previously established fluorescent microsphere method (De Visscher et al., 2003) and demonstrate its utility by measuring cerebral blood flow (CBF) in piglets. We have improved the efficiency of this technique by using fluorescent plate/slide imaging technology that can image an entire slide at once coupled with a novel automated detection software algorithm. Our method reduces the amount of time required to determine blood flow by 80–90%, with a greater added time-savings for larger numbers of time points and regions, improves measurement accuracy in lipid-rich tissues as well as large tissue regions, and is easily combined with histological analysis.

2. Results

Imaging in each of the 3 fluorescent excitation–emission channels produces 3 separate gray-scale images (Fig. 1a) for each tissue slice. The brightness–radius distribution of particles demonstrates a clear region of high-intensity FM pixels for each image, which is delineated by a polygon (Fig. 1d). The automated program counts the particles within the polygon, and good correspondence between visible particles and

Fig. 1 – Fluorescent image processing example. Computer generated counts are overlaid in color without altering the original gray-scale captured images. (a) Gray-scale fluorescent image from a single channel (FITC) of a representative tissue section. (b) Image from (a) with FMs identified by the counting program corresponding to that channel (x) overlaid with an offset up and to the right. (c) Image from (a) with counts from all 3 channels (x = yellow-green, x = orange, x = crimson) overlaid with offsets up and to the right of the FM in the tissue. Note that colors do not overlap, demonstrating good separation among channels. (d) Brightness–radius plot for image (a) including the 4-sided polygon delineating the high-intensity region corresponding to FMs. (e) Gray-scale fluorescent image from a single channel (FITC) of a representative blood filter. For images (a–c), brightness and contrast have been artificially enhanced for the purposes of visualizing the brain tissue in which the FMs are embedded.
counted particles is visualized by overlaying the counts onto the original image (Fig. 1b). Occasionally, FMs in retained meningeal tissue are present on the slide which do not lie within the brain parenchyma and should not be included in CBF calculations. These few FMs (<2% of total counts) are easily visualized in this image overlay (Fig. 1b, center), and counts are manually corrected. An overlay of the 3 resulting images as 3 different colors demonstrates clear separation of the FMs in each channel (Fig. 1c).

The physiologic conditions did not vary significantly among the three colored FM injections (Table 1). We measured resting cerebral blood flow at three separate times in these piglets under 1 MAC isoflurane anesthesia (Fig. 2). We found no right-to-left sided differences in the cerebrum by paired t-test \((p = 0.15) \) and no significant differences based on color of FM injection \((p = 0.65) \), or between animals receiving crimson FMs and those receiving red FMs \((p = 0.68) \) by nonparametric analysis. Median CBF (ml/min/100 g, range) differed significantly by brain region \((p < 0.003) \), and was calculated as 105 ml/min/100 g (27–206) in the cerebrum, 186 ml/min/100 g (38–388) in the midbrain-pons, 235 ml/min/100 g (72–622) in the medulla, and 166 ml/min/100 g (36–346) in the cerebellum, over all colors in all animals.

Table 2 lists the FM counts of representative tissue slices from randomly selected animals imaged face up and face down in each of the 3 channels. None of the face up and corresponding face down counts differed by more than 10%, demonstrating good tissue penetration of the fluorescent signal through 200 \(\mu \)m thick tissue.

<table>
<thead>
<tr>
<th>Slide #</th>
<th>FITC counts</th>
<th>FITC flipped</th>
<th>Cy3HF counts</th>
<th>Cy3HF flipped</th>
<th>Cy5HF counts</th>
<th>Cy5HF flipped</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20</td>
<td>12</td>
<td>13</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>11</td>
<td>30</td>
<td>31</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>14</td>
<td>19</td>
<td>21</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>148</td>
<td>150</td>
<td>71</td>
<td>70</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>155</td>
<td>155</td>
<td>64</td>
<td>64</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>171</td>
<td>166</td>
<td>75</td>
<td>77</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>89</td>
<td>89</td>
<td>27</td>
<td>25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>103</td>
<td>105</td>
<td>28</td>
<td>27</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>71</td>
<td>70</td>
<td>30</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
anesthesia, as inhaled anesthetics have been shown to increase basal CBF (Moore et al., 1994). Moore et al. reported forebrain CBF values in untreated controls of 97–127 ml/100 g/min in 8–10 week piglets under isoflurane (Moore et al., 1994). Similarly, newborn piglets on a mixture of halothane and nitrous oxide had total CBF values of 95 ± 8 ml/min/100 g (Leffler et al., 1989).

We were able to get good separation of 3 FM colors in the 3 optical filter channels of the fluorescent plate reader using optical bandwidths (Table 3) that are fairly broad relative to those typically used in spectrophotometry (Glenny et al., 1993; Walter et al., 1997), but narrower than those typical in epifluorescent microscopy (De Visscher et al., 2006). For colors in which bleed-through into multiple channels did occur, we were able to correct for this without significant loss of accuracy. While our particular filter sets limited the number of colors and, therefore, time points we were able to measure, the use of even narrower bandwidth filters would significantly decrease bleed-through and allow the inclusion of more colors.

An important consideration when using this technique is that imaging at a tissue’s auto-fluorescence wavelength requires a careful balance between maximizing the signal-to-noise ratio and minimizing bleed-through into other channels. For instance, brain tissue auto-fluorescence is greatest in the visible blue range, and decreases as the excitation wavelength increases. However, the blue-green microspheres (Molecular Probes) whose signal lies within this narrow range and does not bleed-through into the adjacent yellow-green channel had insufficient signal to discriminate FMs from the background tissue auto-fluorescence. For other tissue types, the range and magnitude of auto-fluorescence should be assessed prior to FM color choice. In addition, to minimize the effect of auto-fluorescence across all wavelengths, one should use the minimum exposure necessary to visualize each FM color. In the case of brain tissue, for example, yellow-green and orange FMs were sufficiently bright to illuminate a radius of 3–5 pixels with 8 ms exposure duration. Longer duration exposures increased tissue background noise, decreasing signal-to-noise and accuracy of counts. Red and crimson FMs required longer exposure times (100 ms) in the Cy5HF channel to illuminate 3–5 pixels, but tissue auto-fluorescence was minimal in this channel and did not interfere with signal. It is important to note that tissue auto-fluorescence also increases over time after tissue cutting, as the sample gradually dries. Based on our experience, brain tissue auto-fluorescent signal generally peaks by 4–6 months after tissue cutting, particularly in the FITC channel. Therefore, the upper limit will depend on the particular experimental conditions, and it should be determined for a given model system before using this technique. When the appropriate number of FMs is injected with adequate mixing, closely spaced microspheres are a rare (<1%) event. In our model, we chose 2 × 10^6 FMs/injection under our particular experimental conditions, which dramatically increased the density of FMs in the tissue, resulting in 10–15% of FMs spaced closer than the resolution of our optical system, which we considered an unacceptable high error rate. This error is strictly flow-dependent and will only be reduced under lower flow conditions or by decreasing the number of FMs injected; it cannot be reduced by decreasing the size of the tissue sample.

Another issue with using ≥2 × 10^6 FMs/injection is that during filtration of reference withdrawal microspheres, a smaller percentage of FMs are retrieved on the first 2 filtration passes than with 1 × 10^6 FMs/injection, such that more than 3 filtrations are needed to confirm >95% recovery of FMs from the blood sample. We recommend using a 4th filtration step with a smaller pore filter (8 μm pore size) when injecting ≥2 × 10^6 FMs at a withdrawal rate of 1 ml/min.

Another limitation of this method is that measurement accuracy decreases when two different colors of FMs are injected at the same time. Although we have demonstrated good separation of different colors in tissue, clear separation is difficult in the mandatory reference blood withdrawal samples. The optical properties of the FMs against the backdrop of the filters used to capture the spheres from the reference blood samples broadened the emission bandwidth of the spheres. Therefore, there was an increased bleed-through of fluorescent signal to adjacent optical filters. This technical problem does not occur when imaging FMs in tissue. Consequently, two different FM colors cannot be injected simultaneously, and care must be taken to keep individual reference withdrawal blood samples separated from each other during processing.

Previous studies have determined that there should be at least 400 FMs per region of interest in order to minimize measurement error to <10% when using microspheres (Buckberg et al., 1971). We found that injecting as few as 1 × 10^6 FMs still resulted in >2000 FMs/3 mm coronal tissue section in a single cerebral hemisphere under our particular experimental conditions. These numbers may be ideal for studying conditions which increase blood flow, or when spatial resolution is less important. Care must be taken, however, when significantly reducing the number of FMs injected or when studying very small regions or severely ischemic conditions, as the number of FMs in a tissue section may be reduced below 400, which would increase measurement error. This error is correctable by increasing region size or number of microspheres injected.

It is important to note that with this technique, microspheres must be spatially separated by at least one FM diameter in order to be counted as individual particles. This constraint puts an upper limit on the number of microspheres that can be injected at a single time point. For instance, using >4 × 10^6 FMs/injection under our particular experimental conditions dramatically increased the density of FMs in the tissue, resulting in 10–15% of FMs spaced closer than the resolution of our optical system, which we considered an unacceptably high error rate. This error is strictly flow-dependent and will only be reduced under lower flow conditions or by decreasing the number of FMs injected; it cannot be reduced by decreasing the size of the tissue sample. Therefore, the upper limit will depend on the particular experimental conditions, and it should be determined for a given model system before using this technique. When the appropriate number of FMs is injected with adequate mixing, closely spaced microspheres are a rare (<1%) event. In our model, we chose 2 × 10^6 FMs/injection, because it is close enough to the upper limit to optimize spatial resolution while allowing room for both dynamic increases and decreases in blood flow without increasing either high or low count errors.

Another issue with using ≥2 × 10^6 FMs/injection is that during filtration of reference withdrawal microspheres, a smaller percentage of FMs are retrieved on the first 2 filtration passes than with 1 × 10^6 FMs/injection, such that more than 3 filtrations are needed to confirm >95% recovery of FMs from the blood sample. We recommend using a 4th filtration step with a smaller pore filter (8 μm pore size) when injecting ≥2 × 10^6 FMs at a withdrawal rate of 1 ml/min.

Finally, the thickness of tissue sections plays an important role in both technique efficiency and image quality. While 200 μm thick slices can be imaged with good focus, larger tissue thicknesses greatly increase the number of blurred FMs that appear as larger, dimmer objects and are more difficult to separate from background tissue noise (data not shown). However, one limitation with using a tissue thickness of 200 μm is the difficulty in cutting consistently even sections across large tissue areas. This difficulty increases dramatically with increasing tissue thicknesses >200 μm. We found that a homogeneous agarose gel, a fresh sharp blade, and a steep (30°) blade angle are critical to maintaining uniform thickness
of cuts, particularly in soft tissue such as brain. By decreasing blade advance speed and vibration frequency, we were able to improve uniformity and decrease the risk of tissue-gel separation. Even with these adjustments, the last 10–20% of embedded tissue adhered less well to the gel and tended to come out of the gel during cutting. We found that decreasing the thickness of tissue slices at this point increased tissue recovery from our sections. We stepped down tissue thickness to 150 μm then 100 μm for the last 4–5 slices in each tissue section. While using only 100 μm thick sections significantly reduces problems with uneven slicing, it doubles both the cutting and imaging times and is not recommended.

In conclusion, we have developed a novel fluorescent microsphere signal acquisition and analysis technique that can measure cerebral blood flow in large tissue regions efficiently. This technique significantly reduces the time to acquire and analyze fluorescent images by scanning an entire slide at once and accommodating up to 200 μm thick tissue sections. While our technique is limited by the number of colors and the density of microspheres in the tissue that can be separated optically, these limits are well within the range of most research applications.

4. Experimental procedures

4.1. Normal piglet surgical preparation

Animal procedures were conducted in accordance with the principles of laboratory animal care established by the National Institutes of Health and were approved by the Institutional Animal Care and Use Committee at the University of Pennsylvania. Six anesthetized 3–5-day-old female piglets were used for this study. Each animal was induced with 4% isoflurane and intubated. Catheters were placed in both femoral arteries, one for mean arterial blood pressure (MAP) monitoring and one for reference microsphere blood withdrawals. In addition, one catheter was placed in a femoral vein for normal saline infusion (4 cm³/kg/h maintenance fluids), and one in the left ventricle of the heart via the right carotid artery for fluorescent microsphere injections. Vital physiological parameters including MAP, heart rate, arterial oxygen saturation, end-tidal CO₂, and body temperature were monitored and recorded every 15 min for the duration of each study. Animals were mechanically ventilated with room air and supplemental oxygen as needed to maintain normoxia and normocarbia. Isoflurane was reduced to 4.25–4.75% maintenance levels for the remainder of the study.

4.2. Microsphere injections

Three fluorescent microsphere (FM) injections were performed in each animal, using three different colors of 15 μm-diameter microspheres in random order: yellow-green, orange, and either red or crimson (Table 3, Molecular Probes, Invitrogen, CA, USA), with an interval of at least 1 h between each time point. At each time point, 1–2 × 10⁶ FMs of a single color were vortexed for 30 s, placed in an injection vial, then vortexed again immediately prior to and during injection. FMs were injected by flushing 10 cm³ of heparinized saline over 30 s through the injection vial into the left ventricle via the carotid artery catheter. A reference blood sample from the femoral artery was withdrawn into heparinized syringes at 0.97 ml/min using a calibrated withdrawal pump beginning ~10 s before and continuing until 2 min after start of injection. Deionized water (10 ml) was added to the reference sample for hydrolysis of blood cells.

4.3. Tissue processing

At the end of each study, animals were sacrificed by pentobarbital overdose and perfusion-fixed with normal saline and 10% buffered formalin. Brains were removed and allowed to post-fix in formalin for at least 48 h. Fixed brains were cut into 3 mm-thick coronal sections using our own custom-made piglet brain matrix. The matrix was formed from liquid plastic (Smooth-On, PA, USA) shaped around a normal average-weight 5-day-old piglet brain, with slats cut in the walls perpendicular to the neural axis and spaced 3 mm apart center-to-center to guide the brain knife during cutting. Each section was embedded in 2% agarose gel and cut by vibratome (Leica VT1000S, Leica Microsystems GmbH, Germany) into 100–200 μm thick slices, which were then mounted onto microscope slides using only gel mount (Biomedica, CA, USA) due to the thickness of sections.

Reference blood samples were filtered 3 times using 10 μm-pore polycarbonate membranes (GE Osmonics, MN, USA) and once more using an 8 μm-pore membrane to retrieve reference FMs. Filters were mounted on 75 × 50 mm microscope slides (Corning, NY, USA) using gel mount and large 48 × 65 mm coverglass (Gold Seal, Thermo Fisher Scientific, MA, USA).

4.4. Fluorescent imaging

All slides were imaged on an Alpha Array fluorescent slide reader (Alpha Innotech, CA, USA) at 15 μm/pixel resolution

| Table 3 - Fluorescent microsphere colors used in this study, their excitation and emission wavelengths, and the corresponding fluorescent imager optical filter and exposure settings. |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| **FM color** | **Excitation wavelength** | **Emission wavelength** | **Fluorescent channel** | **Excitation bandwidth** | **Emission bandwidth** | **Exposure time** |
| Yellow-green | 505 nm | 515 nm | FITC | 455–495 nm | 518–568 nm | 8 ms |
| Orange | 540 nm | 560 nm | Cy3HF | 527–552 nm | 570–620 nm | 8 ms |
| Crimson | 625 nm | 645 nm | Cy5HF | 620–650 nm | 665–705 nm | 100 ms |
| Red | 580 nm | 605 nm | Cy3HF/Cy5HF | See above | See above | See above |

using multiple excitation–emission filter pairs to isolate each FM color (Table 3). Each FM wavelength was captured as a separate gray-scale image of the entire tissue section (Fig. 1a). Although the FMs themselves are 15 μm in diameter, the radius of fluorescent illumination of a single FM into the tissue is 2–5 times greater. At 15 μm/pixel resolution, FMs are detected as ~3–5 pixel-radius spots in tissue.

Narrow bandwidth optical filters and very short exposure times were required to minimize both auto-fluorescence of brain tissue and bleed-through of adjacent FM colors into a given channel. In our first two subjects, we used red FMs as one of the three colors. However, we found that this color was visualized in two of the channels — Cy3HF and Cy5HF. To correct the red bleed-through into the Cy3HF channel, the Cy5HF counts were subtracted from the Cy3HF counts to yield the final orange counts for these subjects. We replaced this color with crimson FMs for the last four subjects and had clear separation of all three colors (Fig. 1c).

We determined the maximum tissue thickness through which the FM signal would penetrate for adequate imaging and counting of FMs by imaging tissue slices of different thicknesses with the slides face up and face down in each of the 3 channels. The counts face up and face down could then be compared, with loss of signal detected as unequal counts.

The blood filter slides were also imaged on the Alpha Array fluorescent slide reader at 15 μm/pixel resolution. Since only a single FM color is present in the blood sample from a single time point, a single gray-scale image (Fig. 1e) from only the matching excitation–emission filter pair (Table 3) was needed. The radius of fluorescent illumination from FMs on the filters was slightly smaller than in the tissue, detected as ~2–3 pixel-radius spots. This is due to differences in the optical properties of the filters compared with those of tissue.

4.5. Semi-automated image processing

FMs of each color were counted in tissue section and blood filter images by adapting a publically-available automated particle location program (see weblink in Crocker and Weeks; Crocker and Grier, 1996) written in IDL (ITT VIS, White Plains NY, USA). The program works by finding local maximums of intensity over a user supplied length scale. This value should be an odd integer slightly larger than the average particle size, but less than the average particle separation distance. We used a detection threshold value of 7 pixels for 15 μm/pixel-resolution images. The program then identifies the number of potential particles within this range and plots brightness versus radius of the particles (Fig. 1d). FMs can be easily identified as a band of high-intensity particles with radii between 2 and 5 pixels. The background tissue signal is usually an approximately Gaussian distribution of particles with intensities near zero and a peak around the threshold size. The number of particles identified as FMs were visually inspected (Fig. 1b) and recorded for each image to a text file. Counting errors corrected by hand and were typically <5% of total counts.

To measure tissue area, a threshold intensity value is chosen just below tissue auto-fluorescent intensity in the FITC channel (closest channel to the maximum auto-fluorescent range of brain tissue = blue). To outline the total tissue area, contours are created on a binary image of pixel regions with intensity values above this threshold. High contours (values of 1 in the binary image) include both tissue and FM pixels. Low contours (values of zero in the binary image) are similarly generated for non-tissue regions (e.g. lateral ventricles) that are completely surrounded by tissue. A user-defined minimum size eliminates small non-tissue artifacts (e.g. dust) and prevents exclusion of tissue regions with minor fluctuations in intensity. Adding together the areas within all high contours and subtracting the areas within all low contours yields the total tissue area for a slice. This procedure is repeated to calculate the area of every tissue slice in a given section, and each area is multiplied by the thickness of the corresponding tissue to calculate volume of tissue (V). It is important to note that the intensity threshold will vary depending on elapsed time between tissue mounting and imaging, as older, drier tissue increases in auto-fluorescence intensity.

4.6. Data analysis

Absolute CBF (ml/min/100 g) was calculated in each tissue region for each color as

\[
\text{CBF} = \frac{ts \times rf \times 100}{rs \times V \times \rho}
\]

where ts is the number of tissue microspheres, rs is the number of reference blood withdrawal microspheres, rf is the rate of the reference blood withdrawal (0.97 ml/min), V is the volume of the tissue region in cm\(^3\) (calculated as described above) and \(\rho\) is the density of mixed gray-white matter brain tissue (1.04 g/cm\(^3\)) (Duck, 1990). The regions of interest were right and left cerebrum (each calculated from three representative 3 mm coronal hemisections from frontal, parietotemporal, and occipital regions), as well as midbrain-pons, medulla, and cerebellum (each calculated from 3 mm right and left coronal hemisections).

CBF measurements were reported as median (range) for each FM color in each brain region. A paired t-test was used to evaluate whether CBF differed in the cerebrum between right and left hemispheres. Nonparametric analyses using the Kruskal–Wallis test were used to compare CBF variation among brain regions and among microsphere colors. An additional Kruskal–Wallis test was used to compare orange regional CBF values between the animals that received crimson FMs and those that received red FMs.

Acknowledgments

The authors would like to thank Dr. Brian Murphy and Dr. Joel Greenberg for their valued advice in the development of this technique, as well as Antonio Pedulla, Sarah Casey, Alison
Agres, and Dr. Eric Wong for their technical expertise. This research was funded by the NIH R01 NS039679, the Whitaker Foundation, and the American Heart Association.

REFERENCES

