3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

$f : \mathbb{R}^n \to \mathbb{R}$ is convex if $\text{dom } f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom } f$, $0 \leq \theta \leq 1$

- f is concave if $-f$ is convex
- f is strictly convex if $\text{dom } f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \text{dom } f$, $x \neq y$, $0 < \theta < 1$
Examples on R

convex:
- affine: \(ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \)
- exponential: \(e^{ax} \), for any \(a \in \mathbb{R} \)
- powers: \(x^\alpha \) on \(\mathbb{R}_{++} \), for \(\alpha \geq 1 \) or \(\alpha \leq 0 \)
- powers of absolute value: \(|x|^p \) on \(\mathbb{R} \), for \(p \geq 1 \)
- negative entropy: \(x \log x \) on \(\mathbb{R}_{++} \)

concave:
- affine: \(ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \)
- powers: \(x^\alpha \) on \(\mathbb{R}_{++} \), for \(0 \leq \alpha \leq 1 \)
- logarithm: \(\log x \) on \(\mathbb{R}_{++} \)

Examples on \(\mathbb{R}^n \) and \(\mathbb{R}^{m \times n} \)

affine functions are convex and concave; all norms are convex

examples on \(\mathbb{R}^n \)
- affine function \(f(x) = a^T x + b \)
- norms: \(\|x\|_p = (\sum_{i=1}^{n} |x_i|^p)^{1/p} \) for \(p \geq 1 \); \(\|x\|_\infty = \max_k |x_k| \)

examples on \(\mathbb{R}^{m \times n} \) (\(m \times n \) matrices)
- affine function

\[
 f(X) = \text{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b
\]

- spectral (maximum singular value) norm

\[
 f(X) = \|X\|_2 = \sigma_{\text{max}}(X) = (\lambda_{\text{max}}(X^T X))^{1/2}
\]
Restriction of a convex function to a line

\(f : \mathbb{R}^n \to \mathbb{R} \) is convex if and only if the function \(g : \mathbb{R} \to \mathbb{R} \),

\[
g(t) = f(x + tv), \quad \text{dom } g = \{t \mid x + tv \in \text{dom } f\}
\]

is convex (in \(t \)) for any \(x \in \text{dom } f, v \in \mathbb{R}^n \)

can check convexity of \(f \) by checking convexity of functions of one variable

example. \(f : \mathbb{S}^n \to \mathbb{R} \) with \(f(X) = \log \det X \), \(\text{dom } X = \mathbb{S}^n_{++} \)

\[
g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})
\]

\[
= \log \det X + \sum_{i=1}^n \log(1 + t\lambda_i)
\]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2}VX^{-1/2} \)

\(g \) is concave in \(t \) (for any choice of \(X \succ 0, V \)); hence \(f \) is concave

Extended-value extension

extended-value extension \(\tilde{f} \) of \(f \) is

\[
\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \notin \text{dom } f
\]

often simplifies notation; for example, the condition

\[
0 \leq \theta \leq 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)
\]

(as an inequality in \(\mathbb{R} \cup \{\infty\} \)), means the same as the two conditions

- \(\text{dom } f \) is convex
- for \(x, y \in \text{dom } f \),

\[
0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]
First-order condition

f is **differentiable** if $\text{dom } f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right)$$

exists at each $x \in \text{dom } f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \text{for all } x, y \in \text{dom } f$$

The first-order approximation of f is a global underestimator.

Second-order conditions

f is **twice differentiable** if $\text{dom } f$ is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n,$$

exists at each $x \in \text{dom } f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

 $$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom } f$$

- if $\nabla^2 f(x) > 0$ for all $x \in \text{dom } f$, then f is strictly convex
Examples

quadratic function: \(f(x) = (1/2)x^T P x + q^T x + r \) (with \(P \in \mathbb{S}^n \))

\[
\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P
\]

convex if \(P \succeq 0 \)

least-squares objective: \(f(x) = \|Ax - b\|_2^2 \)

\[
\nabla f(x) = 2A^T (Ax - b), \quad \nabla^2 f(x) = 2A^T A
\]

convex (for any \(A \))

quadratic-over-linear: \(f(x, y) = x^2/y \)

\[
\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y & -x \\ -y & x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0
\]

convex for \(y > 0 \)

log-sum-exp: \(f(x) = \log \sum_{k=1}^n \exp x_k \) is convex

\[
\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} zz^T \quad (z_k = \exp x_k)
\]

to show \(\nabla^2 f(x) \succeq 0 \), we must verify that \(v^T \nabla^2 f(x) v \geq 0 \) for all \(v \):

\[
\nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2)(\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \geq 0
\]

since \((\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k) \) (from Cauchy-Schwarz inequality)

geometric mean: \(f(x) = (\prod_{k=1}^n x_k)^{1/n} \) on \(\mathbb{R}^n_{++} \) is concave

(similar proof as for log-sum-exp)
Epigraph and sublevel set

\(\alpha \)-sublevel set of \(f : \mathbb{R}^n \rightarrow \mathbb{R} \):

\[
C_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}
\]

sublevel sets of convex functions are convex (converse is false)

epigraph of \(f : \mathbb{R}^n \rightarrow \mathbb{R} \):

\[
epi f = \{ (x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, \ f(x) \leq t \}
\]

\(f \) is convex if and only if \(\text{epi } f \) is a convex set

Jensen’s inequality

basic inequality: if \(f \) is convex, then for \(0 \leq \theta \leq 1 \),

\[
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

extension: if \(f \) is convex, then

\[
f(\mathbb{E} z) \leq \mathbb{E} f(z)
\]

for any random variable \(z \)

basic inequality is special case with discrete distribution

\[
\text{prob}(z = x) = \theta, \quad \text{prob}(z = y) = 1 - \theta
\]
Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$

3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: $f(Ax + b)$ is convex if f is convex

examples

- log barrier for linear inequalities

\[
f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom} \ f = \{x \mid a_i^T x < b_i, i = 1, \ldots, m\}\]

- (any) norm of affine function: $f(x) = \|Ax + b\|$
Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

equis

examples

- piecewise-linear function: $f(x) = \max_{i=1,\ldots,m}(a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

is convex ($x_{[i]}$ is ith largest component of x)

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \cdots + x_{i_r} | 1 \leq i_1 < i_2 < \cdots < i_r \leq n\}$$

Pointwise supremum

if $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

equis

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

- maximum eigenvalue of symmetric matrix: for $X \in \mathbb{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$
Composition with scalar functions

composition of \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) and \(h : \mathbb{R} \rightarrow \mathbb{R} \):

\[
f(x) = h(g(x))
\]

\(f \) is convex if
- \(g \) convex, \(h \) convex, \(\tilde{h} \) nondecreasing
- \(g \) concave, \(h \) convex, \(\tilde{h} \) nonincreasing

- proof (for \(n = 1 \), differentiable \(g, h \))

\[
f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)
\]

- note: monotonicity must hold for extended-value extension \(\tilde{h} \)

examples

- \(\exp g(x) \) is convex if \(g \) is convex
- \(1/g(x) \) is convex if \(g \) is concave and positive

Vector composition

composition of \(g : \mathbb{R}^n \rightarrow \mathbb{R}^k \) and \(h : \mathbb{R}^k \rightarrow \mathbb{R} \):

\[
f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))
\]

\(f \) is convex if
- \(g_i \) convex, \(h \) convex, \(\tilde{h} \) nondecreasing in each argument
- \(g_i \) concave, \(h \) convex, \(\tilde{h} \) nonincreasing in each argument

proof (for \(n = 1 \), differentiable \(g, h \))

\[
f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)
\]

examples

- \(\sum_{i=1}^m \log g_i(x) \) is concave if \(g_i \) are concave and positive
- \(\log \sum_{i=1}^m \exp g_i(x) \) is convex if \(g_i \) are convex
Minimization

if $f(x, y)$ is convex in (x, y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

- $f(x, y) = x^T A x + 2 x^T B y + y^T C y$ with
 $$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0, \quad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x$

g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

- distance to a set: $\text{dist}(x, S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex

Perspective

the perspective of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the function $g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x, t) = tf(x/t), \quad \text{dom } g = \{(x, t) \mid x/t \in \text{dom } f, \; t > 0\}$$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x, t) = x^T x/t$ is convex for $t > 0$

- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x, t) = t \log t - t \log x$ is convex on \mathbb{R}^2_+

- if f is convex, then

$$g(x) = (c^T x + d) f \left((Ax + b)/(c^T x + d) \right)$$

is convex on $\{x \mid c^T x + d > 0, \; (Ax + b)/(c^T x + d) \in \text{dom } f\}$
The conjugate function

the conjugate of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

- f^* is convex (even if f is not)
- will be useful in chapter 5

examples

- negative logarithm $f(x) = -\log x$

 $$f^*(y) = \sup_{x>0} (xy + \log x)$$
 $$= \begin{cases}
 -1 - \log(-y) & y < 0 \\
 \infty & \text{otherwise}
\end{cases}$$

- strictly convex quadratic $f(x) = (1/2)x^T Q x$ with $Q \in S_{++}^n$

 $$f^*(y) = \sup_x (y^T x - (1/2)x^T Q x)$$
 $$= \frac{1}{2} y^T Q^{-1} y$$
Quasiconvex functions

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is quasiconvex if $\text{dom } f$ is convex and the sublevel sets

$$S_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $\text{ceil}(x) = \inf\{ z \in \mathbb{Z} \mid z \geq x \}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{ x \mid c^T x + d > 0 \}$$

is quasilinear

- distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{ x \mid \|x - a\|_2 \leq \|x - b\|_2 \}$$

is quasiconvex
internal rate of return

- cash flow $x = (x_0, \ldots, x_n)$; x_i is payment in period i (to us if $x_i > 0$)
- we assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$
- present value of cash flow x, for interest rate r:

$$PV(x, r) = \sum_{i=0}^{n} (1 + r)^{-i} x_i$$

- internal rate of return is smallest interest rate for which $PV(x, r) = 0$:

$$\text{IRR}(x) = \inf\{ r \geq 0 \mid PV(x, r) = 0 \}$$

IRR is quasiconcave: superlevel set is intersection of halfspaces

$$\text{IRR}(x) \geq R \iff \sum_{i=0}^{n} (1 + r)^{-i} x_i \geq 0 \text{ for } 0 \leq r \leq R$$

Properties

modified Jensen inequality: for quasiconvex f

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta) y) \leq \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \leq f(x) \implies \nabla f(x)^T (y - x) \leq 0$$

sums of quasiconvex functions are not necessarily quasiconvex
Log-concave and log-convex functions

A positive function \(f \) is log-concave if \(\log f \) is concave:

\[
f(\theta x + (1 - \theta)y) \geq f(x)^\theta f(y)^{1-\theta} \quad \text{for} \quad 0 \leq \theta \leq 1
\]

\(f \) is log-convex if \(\log f \) is convex

- powers: \(x^a \) on \(\mathbb{R}^{++} \) is log-convex for \(a \leq 0 \), log-concave for \(a \geq 0 \)
- many common probability densities are log-concave, e.g., normal:

\[
f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1} (x-\bar{x})}
\]

- cumulative Gaussian distribution function \(\Phi \) is log-concave

\[
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du
\]

Properties of log-concave functions

- twice differentiable \(f \) with convex domain is log-concave if and only if

\[
f(x)\nabla^2 f(x) \preceq \nabla f(x)\nabla f(x)^T
\]

for all \(x \in \text{dom} f \)

- product of log-concave functions is log-concave

- sum of log-concave functions is not always log-concave

- integration: if \(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \) is log-concave, then

\[
g(x) = \int f(x, y) \, dy
\]

is log-concave (not easy to show)
consequences of integration property

- convolution \(f \ast g \) of log-concave functions \(f, g \) is log-concave

\[
(f \ast g)(x) = \int f(x - y)g(y)dy
\]

- if \(C \subseteq \mathbb{R}^n \) convex and \(y \) is a random variable with log-concave pdf then

\[
f(x) = \text{prob}(x + y \in C')
\]

is log-concave

proof: write \(f(x) \) as integral of product of log-concave functions

\[
f(x) = \int g(x + y)p(y)dy,
\]
\[
g(u) = \begin{cases} 1 & u \in C, \\ 0 & u \notin C, \end{cases}
\]

\(p \) is pdf of \(y \)

example: yield function

\[
Y(x) = \text{prob}(x + w \in S)
\]

- \(x \in \mathbb{R}^n \): nominal parameter values for product
- \(w \in \mathbb{R}^n \): random variations of parameters in manufactured product
- \(S \): set of acceptable values

if \(S \) is convex and \(w \) has a log-concave pdf, then

- \(Y \) is log-concave
- yield regions \(\{ x \mid Y(x) \geq \alpha \} \) are convex
Convexity with respect to generalized inequalities

$f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is K-convex if $\text{dom} \ f$ is convex and

$$f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \text{dom} \ f$, $0 \leq \theta \leq 1$

example $f : S^m \rightarrow S^m$, $f(X) = X^2$ is S^m_\rightarrow-convex

proof: for fixed $z \in \mathbb{R}^m$, $z^TX^2z = \|Xz\|^2_2$ is convex in X, i.e.,

$$z^T(\theta X + (1 - \theta)Y)^2 z \preceq \theta z^TX^2z + (1 - \theta)z^TY^2z$$

for $X, Y \in S^m$, $0 \leq \theta \leq 1$

therefore $(\theta X + (1 - \theta)Y)^2 \preceq \theta X^2 + (1 - \theta)Y^2$