Fall 2010 CIS 160

Mathematical Foundations of Computer Science Jean Gallier Final Exam (2 hours)

December 22, 2010
This is a closed book exam but you are allowed four pages of "cheat sheets." In solving a Problem, you may use, without proof, results from the notes or previous Homework assignments. However, give a precise reference for any result you are quoting and be very clear as to what exactly you are assuming if you don't prove it.

Please, be concise!
Problem 1. (20 points) Prove that the proposition

$$
((P \Rightarrow \neg P) \wedge(\neg P \Rightarrow P)) \Rightarrow Q
$$

is provable intuitionistically for every proposition, Q.
Problem 2. (20 points) Let X, Y, Z be any three nonempty sets and let $g: Y \rightarrow Z$ be any function. Define the function, $L_{g}: Y^{X} \rightarrow Z^{X},\left(L_{g}\right.$, as a reminder that we compose with g on the left), by

$$
L_{g}(f)=g \circ f
$$

for every function, $f: X \rightarrow Y$.
(a) Prove that if $Y=Z$ and $g=\mathrm{id}_{Y}$, then

$$
L_{\mathrm{id}_{Y}}(f)=f,
$$

for all $f: X \rightarrow Y$.
Let T be another nonempty set and let $h: Z \rightarrow T$ be any function. Prove that

$$
L_{h \circ g}=L_{h} \circ L_{g} .
$$

(b) Use (a) to prove that if g is injective, then $L_{g}: Y^{X} \rightarrow Z^{X}$ is also injective and if g is surjective, then $L_{g}: Y^{X} \rightarrow Z^{X}$ is also surjective.

Problem 3. (10 points) Recall that a set, A, is infinite iff there is no bijection from $\{1, \ldots, n\}$ onto A, for any natural number, $n \in \mathbb{N}$. Prove that the set of cubes of natural numbers is infinite (the set $\left\{n^{3} \mid n \in \mathbb{N}\right\}$).

Problem 4. (10 points) Prove that

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+(n-1) \cdot n=\frac{(n-1) n(n+1)}{3}
$$

for all $n \geq 1$.
Remark: The sum on the left is considered to be 0 when $n=1$.

Problem 5. (15 points) Let R be a relation on a finite set, X, let $R^{0}=\mathrm{id}_{X}$, the identity relation on X and let

$$
R^{n+1}=R^{n} \circ R
$$

for all $n \geq 0$.
(a) The relation, $R \subseteq X \times X$, corresponds to a simple directed graph, $G=(X, R)$, where an edge, (a, b), is in G iff $(a, b) \in R$. For any $k \geq 0$, let

$$
R^{(k)}=\operatorname{id}_{X} \cup R \cup R^{2} \cup \cdots \cup R^{k} .
$$

Observe that $R^{(k)} \subseteq R^{(k+1)}$.
Prove that

$$
(a, b) \in R^{(k)} \quad \text { iff there is a path of length at most } k \text { from } a \text { to } b,
$$

where $k \geq 0$.
(b) Prove that if X has n elements, then

$$
R^{(n-1)}=R^{(n)}
$$

Hint. Since $R^{(n-1)} \subseteq R^{(n)}$, it is enough to prove that $R^{(n)} \subseteq R^{(n-1)}$.
Problem 6. (15 points) Let S be any set of 38 integers, n_{i}, with $1 \leq n_{i} \leq 999$. Prove that there must be two numbers in the set S so that their difference, $n_{i}-n_{j}$, is at most 26 .
Hint. Consider the differences $n_{38}-n_{37}, n_{37}-n_{36}, \ldots, n_{2}-n_{1}$.
Problem 7. (15 points) Consider the sequence, $\left(u_{n}\right)$, defined recursively as follows:

$$
u_{n+2}=P u_{n+1}-Q u_{n},
$$

for all $n \geq 0$, with arbitrary starting elements u_{0} and u_{1} (where P, Q are integers and u_{0}, u_{1} are non-negative integers).

Prove that

$$
u_{n+1} u_{n-1}=u_{n}^{2}+Q^{n-1}\left(-Q u_{0}^{2}+P u_{0} u_{1}-u_{1}^{2}\right)
$$

for all $n \geq 1$.
Problem 8. (15 points) Let G be a finite connected graph with at least two nodes. Prove that G must have a node, v, such that if we delete this node and all the edges incident to it, the resulting graph is still connected.

