Fall 2010 CIS 160

Mathematical Foundations of Computer Science Jean Gallier

Homework 2

September 28, 2010; Due October 5, 2010 Beginning of class

Problem 1. (a) Prove the "de Morgan" laws in classical logic:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$
$$\neg (P \lor Q) \equiv \neg P \land \neg Q.$$

(b) Prove that $\neg (P \lor Q) \equiv \neg P \land \neg Q$ is also provable in intuitionistic logic.

(c) Prove that the proposition $(P \land \neg Q) \Rightarrow \neg (P \Rightarrow Q)$ is provable in intuitionistic logic and $\neg (P \Rightarrow Q) \Rightarrow (P \land \neg Q)$ is provable in classical logic.

Problem 2. (a) Prove that $P \Rightarrow \neg \neg P$ is provable in intuitionistic logic.

(b) Prove that $\neg \neg \neg P$ and $\neg P$ are equivalent in intuitionistic logic.

Problem 3 (a) Prove that the proposition

$$(P \lor \neg P) \Rightarrow (((P \Rightarrow Q) \Rightarrow P) \Rightarrow P)$$

is provable in intuitionistic logic.

(b) Prove that the proposition $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$ is classically provable.

Problem 4 (a) Prove that the proposition

$$\neg\neg(((P \Rightarrow Q) \Rightarrow P) \Rightarrow P)$$

is provable in intuitionistic logic.

(b) Use (a) to prove that the proposition $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$ is classically provable.

Problem 5. Prove that the rule

$$\begin{array}{ccc}
\Gamma & \Delta \\
\mathcal{D}_1 & \mathcal{D}_2 \\
P \Rightarrow Q & \neg Q \\
\hline
& \neg P
\end{array}$$

can be derived from the other rules of intuitionistic logic. This means that you have to describe how a deduction tree \mathcal{D}_1 for $P \Rightarrow Q$ from Γ and a deduction tree \mathcal{D}_2 for $\neg Q$ from Δ can be combined to obtain a deduction of $\neg P$ from $\Gamma \cup \Delta$.