Fall 2010 CIS 160

Mathematical Foundations of Computer Science Jean Gallier Homework 6

November 2, 2010; Due November 9, 2010
Beginning of class

Problem 1. (a) Let $X=\left\{X_{i} \mid 1 \leq i \leq n\right\}$ be a finite family of sets. Prove that if $X_{i+1} \subseteq X_{i}$ for all i, with $1 \leq i \leq n-1$, then

$$
\bigcap X=X_{n} .
$$

Prove that if $X_{i} \subseteq X_{i+1}$ for all i, with $1 \leq i \leq n-1$, then

$$
\bigcup X=X_{n} .
$$

(b) Recall that $\mathbb{N}_{+}=\mathbb{N}-\{0\}=\{1,2,3, \ldots, n, \ldots\}$. Give an example of an infinite family of sets, $X=\left\{X_{i} \mid i \in \mathbb{N}_{+}\right\}$, such that

1. $X_{i+1} \subseteq X_{i}$ for all $i \geq 1$;
2. X_{i} is infinite for every $i \geq 1$;
3. $\bigcap X$ has a single element.
(c) Give an example of an infinite family of sets, $X=\left\{X_{i} \mid i \in \mathbb{N}_{+}\right\}$, such that
4. $X_{i+1} \subseteq X_{i}$ for all $i \geq 1$;
5. X_{i} is infinite for every $i \geq 1$;
6. $\bigcap X=\emptyset$.

Problem 2. Given any two sets, A, B, prove that for all $a_{1}, a_{2} \in A$ and all $b_{1}, b_{2} \in B$,

$$
\left\{\left\{a_{1}\right\},\left\{a_{1}, b_{1}\right\}\right\}=\left\{\left\{a_{2}\right\},\left\{a_{2}, b_{2}\right\}\right\}
$$

iff

$$
a_{1}=a_{2} \quad \text { and } \quad b_{1}=b_{2}
$$

Problem 3. Let A and be B be any two sets of sets.
(1) Prove that

$$
(\bigcup A) \cup(\bigcup B)=\bigcup(A \cup B)
$$

(2) Assume that A and B are nonempty. Prove that

$$
(\bigcap A) \cap(\bigcap B)=\bigcap(A \cup B)
$$

(3) Assume that A and B are nonempty. Prove that

$$
\bigcup(A \cap B) \subseteq(\bigcup A) \cap(\bigcup B)
$$

and give a counter-example of the inclusion

$$
(\bigcup A) \cap(\bigcup B) \subseteq \bigcup(A \cap B)
$$

Hint. Reduce the above questions to the provability of certain formulae that you have already proved in a previous assignment (you need not reprove these formulae!).

Problem 4. Let A be any nonempty set. Prove that the definition

$$
X=\{a \in A \mid a \notin X\}
$$

yields a "set", X, such that X is empty iff X is nonempty and therefore does not define a set, after all.

