Fall 2010 CIS 160

Mathematical Foundations of Computer Science Jean Gallier Homework 7

November 11, 2010; Due November 18, 2010
Beginning of class

Problem 1. Consider the following table:

$$
\begin{aligned}
1 & =1^{3} \\
3+5 & =2^{3} \\
7+9+11 & =3^{3} \\
13+15+17+19 & =4^{3} \\
21+23+25+27+29 & =5^{3}
\end{aligned}
$$

(a) If we number the rows starting from $n=1$, prove that the leftmost number on row n is $1+(n-1) n$. Then, prove that the sum of the numbers on row n (the n consecutive odd numbers beginning with $1+(n-1) n)$) is n^{3}.
(b) Use the triangular array in (a) to give a geometric proof of the identity

$$
\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2} .
$$

Hint. Recall that

$$
1+3+\cdots+2 n-1=n^{2}
$$

Problem 2. Recall that the triangular numbers, Δ_{n}, are given by the formula

$$
\Delta_{n}=\frac{n(n+1)}{2}
$$

with $n \in \mathbb{N}$.
(a) Prove that

$$
\Delta_{n}+\Delta_{n+1}=(n+1)^{2}
$$

and

$$
\Delta_{1}+\Delta_{2}+\Delta_{3}+\cdots+\Delta_{n}=\frac{n(n+1)(n+2)}{6}
$$

(b) The numbers,

$$
T_{n}=\frac{n(n+1)(n+2)}{6}
$$

are called tetrahedral numbers, due to their geometric interpretation as $3 D$ stacks of triangular numbers. Prove that

$$
T_{1}+T_{2}+\cdots+T_{n}=\frac{n(n+1)(n+2)(n+3)}{24} .
$$

(c) Prove that

$$
T_{n}+T_{n+1}=1^{2}+2^{2}+\cdots+(n+1)^{2}
$$

and from this, derive the formula

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Problem 3. Consider the sequences of integers arising from the recurrence

$$
u_{n+2}=u_{n+1}+u_{n}, \quad n \geq 0
$$

where u_{0} and u_{1} are some given initial values. The Fibonacci sequence, $\left(F_{n}\right)$, arises for $u_{0}=0$ and $u_{1}=1$ and the Lucas sequence, $\left(L_{n}\right)$, arises for $u_{0}=2$ and $u_{1}=1$. The Fibonacci sequence begins with

$$
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610
$$

and the Lucas sequence begins with

$$
2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364 .
$$

(a) Prove the identities

$$
\begin{aligned}
L_{n} & =F_{n-1}+F_{n+1} \\
5 F_{n} & =L_{n-1}+L_{n+1}
\end{aligned}
$$

for all $n \geq 1$.
(b) Prove that

$$
F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n},
$$

for all $k \geq 1$ and all $n \geq 0$.
(c) Prove that

$$
\begin{aligned}
F_{2 n} & =F_{n} L_{n} \\
F_{2 n+1} & =F_{n+1}^{2}+F_{n}^{2}
\end{aligned}
$$

for all $n \geq 1$.
(d) Prove that

$$
\begin{aligned}
L_{n} L_{n+2} & =L_{n+1}^{2}+5(-1)^{n} \\
L_{2 n} & =L_{n}^{2}-2(-1)^{n} \\
L_{2 n+1} & =L_{n} L_{n+1}-(-1)^{n}
\end{aligned}
$$

for all $n \geq 0$.
Problem 4. (a) Give an example of a function, $f: A \rightarrow A$, such that $f^{2}=f \circ f=f$ and f is not the identity function.
(b) Prove that if a function, $f: A \rightarrow A$, is not the identity function and $f^{2}=f$, then f is not invertible.
(c) Give an example of an invertible function, $f: A \rightarrow A$, such that $f^{3}=f \circ f \circ f=f$, yet $f \circ f \neq f$.
(d) Give an example of a non-invertible function, $f: A \rightarrow A$, such that $f^{3}=f \circ f \circ f=f$, yet $f \circ f \neq f$.

