Fall 2010 CIS 160

Mathematical Foundations of Computer Science Jean Gallier Homework 8

November 18, 2010; Due November 30, 2010

Problem 1. Let $f: X \rightarrow Y$ be any function. (a) Prove that for any two subsets, $A, B \subseteq X$, we have

$$
\begin{aligned}
& f(A \cup B)=f(A) \cup f(B) \\
& f(A \cap B) \subseteq f(A) \cap f(B) .
\end{aligned}
$$

Give an example of a function f and of two subsets A, B such that

$$
f(A \cap B) \neq f(A) \cap f(B)
$$

Prove that if $f: X \rightarrow Y$ is injective, then

$$
f(A \cap B)=f(A) \cap f(B)
$$

(b) For any two subsets, $C, D \subseteq Y$, prove that

$$
\begin{aligned}
& f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D) \\
& f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)
\end{aligned}
$$

Problem 2. (a) Prove that the composition of two injective functions is injective. Prove that the composition of two surjective functions is surjective.
(b) Prove that a function, $f: A \rightarrow B$, is injective iff for all functions, $g, h: C \rightarrow A$,

$$
\text { if } f \circ g=f \circ h, \quad \text { then } \quad g=h \text {. }
$$

(c) Prove that a function, $f: A \rightarrow B$, is surjective iff for all functions, $g, h: B \rightarrow C$,

$$
\text { if } g \circ f=h \circ f, \quad \text { then } g=h \text {. }
$$

Problem 3. Prove that the set of natural numbers, \mathbb{N}, is infinite. (Recall, a set, X, is finite iff there is a bijection from X to $[n]=\{1, \ldots, n\}$, where $n \in \mathbb{N}$ is a natural numbers, with $[0]=\emptyset$. Thus, a set, X, is infinite iff there is no bijection from X to any $[n]$, with $n \in \mathbb{N}$.)

Problem 4. Let $R \subseteq A \times A$ be a relation. Prove that if $R \circ R=\operatorname{id}_{A}$, then R is the graph of a bijection whose inverse is equal to itself.

Problem 5. Let $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ be two functions and define $h: A \times B \rightarrow A^{\prime} \times B^{\prime}$ by

$$
h(\langle a, b\rangle)=\langle f(a), g(b)\rangle
$$

for all $a \in A$ and $b \in B$.
(a) Prove that if f and g are injective, then so is h.

Hint. Use the definition of injectivity, not the existence of a left inverse and do not proceed by contradiction.
(b) Prove that if f and g are surjective, then so is h.

Hint. Use the definition of surjectivity, not the existence of a right inverse and do not proceed by contradiction.

Problem 6. Let $[0,1]$ and $(0,1)$ denote the set of real numbers

$$
\begin{aligned}
{[0,1] } & =\{x \in \mathbb{R} \mid 0 \leq x \leq 1\} \\
(0,1) & =\{x \in \mathbb{R} \mid 0<x<1\}
\end{aligned}
$$

(a) Give a bijection $f:[0,1] \rightarrow(0,1)$.

Hint. There are such functions which are the identity almost everywhere but for a countably infinite set of points in $[0,1]$.
(b) Consider the open square, $(0,1) \times(0,1)$ and the closed square $[0,1] \times[0,1]$. Give a bijection $f:[0,1] \times[0,1] \rightarrow(0,1) \times(0,1)$.

