Fall 2010 CIS 160

Mathematical Foundations of Computer Science Jean Gallier

Homework 8

November 18, 2010; Due November 30, 2010

Problem 1. Let $f: X \to Y$ be any function. (a) Prove that for any two subsets, $A, B \subseteq X$, we have

$$f(A \cup B) = f(A) \cup f(B)$$

$$f(A \cap B) \subseteq f(A) \cap f(B).$$

Give an example of a function f and of two subsets A, B such that

 $f(A \cap B) \neq f(A) \cap f(B).$

Prove that if $f: X \to Y$ is injective, then

$$f(A \cap B) = f(A) \cap f(B)$$

(b) For any two subsets, $C, D \subseteq Y$, prove that

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D).$$

Problem 2. (a) Prove that the composition of two injective functions is injective. Prove that the composition of two surjective functions is surjective.

(b) Prove that a function, $f: A \to B$, is injective iff for all functions, $g, h: C \to A$,

if
$$f \circ g = f \circ h$$
, then $g = h$.

(c) Prove that a function, $f \colon A \to B$, is surjective iff for all functions, $g, h \colon B \to C$,

if
$$g \circ f = h \circ f$$
, then $g = h$.

Problem 3. Prove that the set of natural numbers, \mathbb{N} , is infinite. (Recall, a set, X, is finite iff there is a bijection from X to $[n] = \{1, \ldots, n\}$, where $n \in \mathbb{N}$ is a natural numbers, with $[0] = \emptyset$. Thus, a set, X, is infinite iff there is no bijection from X to any [n], with $n \in \mathbb{N}$.)

Problem 4. Let $R \subseteq A \times A$ be a relation. Prove that if $R \circ R = id_A$, then R is the graph of a bijection whose inverse is equal to itself.

Problem 5. Let $f: A \to A'$ and $g: B \to B'$ be two functions and define $h: A \times B \to A' \times B'$ by

$$h(\langle a, b \rangle) = \langle f(a), g(b) \rangle,$$

for all $a \in A$ and $b \in B$.

(a) Prove that if f and g are injective, then so is h.

Hint. Use the definition of injectivity, not the existence of a left inverse and do not proceed by contradiction.

(b) Prove that if f and g are surjective, then so is h.

Hint. Use the definition of surjectivity, not the existence of a right inverse and do not proceed by contradiction.

Problem 6. Let [0,1] and (0,1) denote the set of real numbers

$$[0,1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\} (0,1) = \{x \in \mathbb{R} \mid 0 < x < 1\}.$$

(a) Give a bijection $f: [0, 1] \rightarrow (0, 1)$.

Hint. There are such functions which are the identity almost everywhere but for a countably infinite set of points in [0, 1].

(b) Consider the open square, $(0,1) \times (0,1)$ and the closed square $[0,1] \times [0,1]$. Give a bijection $f: [0,1] \times [0,1] \rightarrow (0,1) \times (0,1)$.