Fall 2010 CIS 160

Mathematical Foundations of Computer Science Jean Gallier Midterm

October 14, 2010; 75mn

Problem 1. (20 points) Prove the proposition

$$
\neg P \Rightarrow[(\neg P \Rightarrow(P \Rightarrow Q)) \wedge((P \Rightarrow Q) \Rightarrow \neg P)]
$$

intuitionistically.
Problem 2 (20 points). Prove the following fact: if

Γ	Γ, R	
\mathcal{D}_{1}	and	\mathcal{D}_{2}
$P \vee Q$		Q

are deduction trees provable intuitionistically, then there is a deduction tree

$$
\begin{gathered}
\Gamma, P \Rightarrow R \\
\mathcal{D}_{3} \\
Q
\end{gathered}
$$

which is also provable intuitionistically.

Problem 3. (20 points) Give a classical proof of

$$
\neg(P \Rightarrow \neg Q) \Rightarrow(P \wedge Q)
$$

Problem 4. (20 points) An integer, $n \in \mathbb{Z}$, is divisible by 3 iff $n=3 k$, for some $k \in \mathbb{Z}$. Thus (by the division theorem), an integer, $n \in \mathbb{Z}$, is not divisible by 3 iff it is of the form $n=3 k+1,3 k+2$, for some $k \in \mathbb{Z}$ (You don't have to prove this.).

Prove that for any integer, $n \in \mathbb{Z}$, if n^{2} is divisible by 3 , then n is divisible by 3 .
Hint. Prove the contrapositive: If n of the form $n=3 k+1,3 k+2$, then so is n^{2} (for a different k).

