Fall 2010 CIS 160

Mathematical Foundations of Computer Science Jean Gallier Practice Midterm

October 8, 2010; 75mn

Problem 1. (15 points) Prove the proposition

$$
\neg P \Rightarrow(P \Rightarrow P \wedge Q)
$$

intuitionistically or classically, whichever is easier for you.
Problem 2 (20 points). Prove the following fact: if

$$
\frac{\Gamma}{P \vee Q}
$$

is a deduction tree that is provable intuitionistically, then the deduction tree

$$
\frac{\Gamma, \neg P}{Q}
$$

is also provable intuitionistically.
Problem 3. (25 points) Give a classical proof of

$$
\neg(\neg P \vee Q) \Rightarrow P
$$

Problem 4. (20 points) An integer, $n \in \mathbb{Z}$, is divisible by 5 iff $n=5 k$, for some $k \in \mathbb{Z}$. Thus (by the division theorem), an integer, $n \in \mathbb{Z}$, is not divisible by 5 iff it is of the form $n=5 k+1,5 k+2,5 k+3,5 k+4$, for some $k \in \mathbb{Z}$ (You don't have to prove this.).

Prove that for any integer, $n \in \mathbb{Z}$, if n^{2} is divisible by 5 , then n is divisible by 5 .
Hint. Prove the contrapositive: If n of the form $n=5 k+1,5 k+2,5 k+3,5 k+4$, then so is n^{2} (for a different k).

