
Fall 2010 CIS 160

Mathematical Foundations of Computer Science

Jean Gallier

Mini Project

October 18, 2010; Due December 9, 2010
This project must be done individually

This project consists of a blend of theory and computer implementation. You are only
required to give answers to Parts 1 and 2. These constitute 10% of your total grade. Part
3, the programming part is optional and will count only for extra credit (up to 10% of your
total grade).

If you decide do do part 3, the code implementing the various required algorithms may
be written in Java, C++, Python, Mathematica or Matlab. Please submit the source for
every program in addition to every required output. Please pay attention to the readability
of every output (and make sure your code is suitably documented). You may submit the
various requested proofs in a separate document.

Even though natural deduction proof systems for classical propositional logic are complete
(with respect to the truth values semantics), they are not adequate for designing algorithms
searching for proofs (because of the amount of nondeterminism involved).

Gentzen designed a different kind of proof system using sequents (later refined by Kleene,
Smullyan and others) that is far better suited for the design of automated theorem provers.
Using such a proof system (a sequent calculus), it is relatively easy to design a procedure
that terminates for all input propositions, P , and either certifies that P is (classically) valid
or else returns some (or all) falsifying truth assignment(s) for P . In fact, if P is valid, the
tree returned by the algorithm can be viewed as a proof of P in this proof system.

For this mini-project, we describe a Gentzen sequent-calculus , G′, for propositional logic
that lends itself well to the implementation of algorithms searching for proofs or falsifying
truth assignments of propositions.

Such algorithms build trees whose nodes are labeled with pairs of sets called sequents. A
sequent is a pair of sets of propositions denoted by

P1, . . . , Pm → Q1, . . . , Qn,

with m,n ≥ 0. Symbolically, a sequent is usally denoted Γ→ ∆, where Γ and ∆ are two
finite sets of propositions (not necessarily disjoint).

1



For example,
→ P ⇒ (Q⇒ P ), P ∨Q→, P,Q→ P ∧Q

are sequents. The sequent →, where both Γ = ∆ = ∅ corresponds to falsity.

The choice of the symbol,→, to separate the two sets of propositions Γ and ∆ is commonly
used and was introduced by Gentzen but there is nothing special about it. If you don’t like
it, you may replace it by any symbol of your choice as long as that symbol does not clash
with the logical connectives (⇒,∧,∨,¬). For example, you could denote a sequent

P1, . . . , Pm;Q1, . . . , Qn,

using the semicolon as a separator.

Given a truth assignment, v, to the propositional letters in the propositions Pi and Qj,
we say that v satisfies the sequent , P1, . . . , Pm → Q1, . . . , Qn, iff

v((P1 ∧ · · · ∧ Pm)⇒ (Q1 ∨ · · · ∨Qn)) = true,

or equivalently, v falsifies the sequent , P1, . . . , Pm → Q1, . . . , Qn, iff

v(P1 ∧ · · · ∧ Pm ∧ ¬Q1 ∧ · · · ∧ ¬Qn) = true,

iff
v(Pi) = true, 1 ≤ i ≤ m and v(Qj) = false, 1 ≤ j ≤ n.

A sequent is valid iff it is satisfied by all truth assignments iff it cannot be falsified.

Note that a sequent, P1, . . . , Pm → Q1, . . . , Qn, can be falsified iff some truth assignment
satisfies all of P1, . . . , Pm and falsifies all of Q1, . . . , Qn. In particular, if {P1, . . . , Pm} and
{Q1, . . . , Qn} have some common proposition (they have a nonempty intersection), then the
sequent, P1, . . . , Pm → Q1, . . . , Qn, is valid. On the other hand if all the Pi’s and Qj’s are
propositional letters and {P1, . . . , Pm} and {Q1, . . . , Qn} are disjoint (they have no symbol
in common), then the sequent, P1, . . . , Pm → Q1, . . . , Qn, is falsified by the truth assignment,
v, where v(Pi) = true, for i = 1, . . .m and v(Qj) = false, for j = 1, . . . , n.

In the special case where m = 0, the truth assignment v falsifies the sequent→ Q1, . . . , Qn

iff v(Qj) = false for j = 1, . . . , n, and in the special case where n = 0, the truth assignment
v falsifies the sequent P1, . . . , Pm → iff v(Pi) = true for i = 1, . . .m. Thus, an empty left-
hand side of a sequent is interpreted as true and an empty right-hand side of a sequent
is interpreted as false. In particular, the degenerate sequent → is falsified by all truth
assignments.

The main idea behind the design of the proof system G′ is to systematically try to falsify
a sequent . If such an attempt fails, the sequent is valid and a proof tree is found. Otherwise,
all falsifying truth assignments are returned. In some sense

failure to falsify is success (in finding a proof)!

2



The rules of G′ are designed so that the conclusion of a rule is falsified by a truth
assignment, v, iff its single premise of one of its two premises is falsified by v. Thus, these
rules can be viewed as two-way rules that can either be read bottom-up or top-down.

Here are the axioms and the rules of the sequent calculus G′:

Axioms: Γ, P → P,∆

Inference rules:

Γ, P,Q,∆→ Λ

Γ, P ∧Q,∆→ Λ
∧: left

Γ→ ∆, P,Λ Γ→ ∆, Q,Λ

Γ→ ∆, P ∧Q,Λ
∧: right

Γ, P,∆→ Λ Γ, Q,∆→ Λ

Γ, P ∨Q,∆→ Λ
∨: left

Γ→ ∆, P,Q,Λ

Γ→ ∆, P ∨Q,Λ
∨: right

Γ,∆→ P,Λ Q,Γ,∆→ Λ

Γ, P ⇒ Q,∆→ Λ
⇒: left

P,Γ→ Q,∆,Λ

Γ→ ∆, P ⇒ Q,Λ
⇒: right

Γ,∆→ P,Λ

Γ,¬P,∆→ Λ
¬: left

P,Γ→ ∆,Λ

Γ→ ∆,¬P,Λ
¬: right

where Γ,∆,Λ are any finite sets of propositions, possibly the empty set.

A deduction tree is either a one-node tree labeled with a sequent or a tree constructed
according to the rules of system G′. A proof tree (or proof ) is a deduction tree whose leaves
are all axioms. A proof tree for a proposition, P , is a proof tree for the sequent, → P (with
an empty left-hand side).

For example,
P,Q→ P

is a proof tree.

Here is a proof tree for (P ⇒ Q)⇒ (¬Q⇒ ¬P ):

P,¬Q→ P

¬Q→ ¬P, P
→ P, (¬Q⇒ ¬P )

Q→ Q,¬P
¬Q,Q→ ¬P

Q→ (¬Q⇒ ¬P )

(P ⇒ Q)→ (¬Q⇒ ¬P )

→ (P ⇒ Q)⇒ (¬Q⇒ ¬P )

The following is a deduction tree but not a proof tree:

3



P,R→ P

R→ ¬P, P
→ P, (R⇒ ¬P )

R,Q, P →
R,Q→ ¬P

Q→ (R⇒ ¬P )

(P ⇒ Q)→ (R⇒ ¬P )

→ (P ⇒ Q)⇒ (R⇒ ¬P )

since its rightmost leaf, R,Q, P →, is falsified by the truth assignment
v(P ) = v(Q) = v(R) = true, which also falsifies (P ⇒ Q)⇒ (R⇒ ¬P ).

Let us call a sequent, P1, . . . , Pm → Q1, . . . , Qn, finished if either it is axiom (Pi = Qj for
some i and some j) or all the propositions Pi and Qj are atomic
and {P1, . . . , Pm} ∩ {Q1, . . . , Qn} = ∅. We will also say that a deduction tree is finished if
all its leaves are finished sequents.

The beauty of the proof system G′ is that for every sequent, P1, . . . , Pm → Q1, . . . , Qn,
the process of building a deduction tree from this sequent always terminates with a tree where
all leaves are finished, independently of the order in which the rules are applied . Therefore,
we can apply any strategy we want when we build a deduction tree and we are sure that we
will get a deduction tree with all its leaves finished. If all the leaves are axioms, then we
have a proof tree and the sequent is valid, or else all the leaves that are not axioms yield a
falsifying assignment, and all falsifying assignments for the root sequent are found this way.

If we only want to know whether a proposition (or a sequent) is valid, we can stop as
soon as we find a finished sequent that is not an axiom since in this case, the input sequent
is falsifiable.

(1) (Required) Prove that for every sequent, P1, . . . , Pm → Q1, . . . , Qn, any sequence of
applications of the rules of G′ terminates with a deduction tree whose leaves are all finished
sequents (a finished deduction tree).

Hint . Define the number of connectives, c(P ), in a proposition, P , as follows:

(1) If P is a propositional symbol, then

c(P ) = 0.

(2) If P = ¬Q, then
c(¬Q) = c(Q) + 1.

(3) If P = Q ∗R, where ∗ ∈ {⇒,∨,∧}, then

c(Q ∗R) = c(Q) + c(R) + 1.

4



Given a sequent,
Γ→ ∆ = P1, . . . , Pm → Q1, . . . , Qn,

define the number of connectives, c(Γ→ ∆), in Γ→ ∆ by

c(Γ→ ∆) = c(P1) + · · ·+ c(Pm) + c(Q1) + · · ·+ c(Qn).

Prove that the application of every rule decreases the number of connectives in the premise(s)
of the rule.

(2) (Required) Prove that for every sequent, P1, . . . , Pm → Q1, . . . , Qn, for every fin-
ished deduction tree, T , constructed from P1, . . . , Pm → Q1, . . . , Qn using the rules of G′,
every truth assignment, v, satisfies P1, . . . , Pm → Q1, . . . , Qn iff v satisfies every leaf of T .
Equivalently, a truth assignment, v, falsifies P1, . . . , Pm → Q1, . . . , Qn iff v falsifies some leaf
of T .

Deduce from the above that a sequent is valid iff all leaves of every finished deduction tree,
T , are axioms. Furthermore, if a sequent is not valid, then for every finished deduction tree,
T , for that sequent, every falsifying assignment for that sequent is a falsifying assignment of
some leaf of the tree, T .

(3) Programming Project; Extra Credit:

Design an algorithm taking any sequent as input and constructing a finished deduction
tree. If the deduction tree is a proof tree, output this proof tree in some fashion (such a tree
can be quite big so you may have to find ways of “flattening” these trees). If the sequent
is falsifiable, stop when the algorithm encounters the first leaf which is not an axiom and
output the corresponding falsifying truth assignment.

I suggest using a depth-first expansion strategy for constructing a deduction tree. What
this means is that when building a deduction tree, the algorithm will proceed recursively as
follows: Given a non-finished sequent

A1, . . . , Ap → B1, . . . , Bq,

if Ai is the leftmost non-atomic proposition if such proposition occurs on the left or if Bj is
the leftmost non-atomic proposition if all the Ai’s are atomic, then

(1) The sequent is of the form
Γ, Ai,∆→ Λ,

with Ai the leftmost non-atomic proposition. Then either

(a) Ai = Ci∧Di or Ai = ¬Ci, in which case either we recursively construct a (finished)
deduction tree

D1

Γ, Ci, Di,∆→ Λ

5



to get the deduction tree

D1

Γ, Ci, Di,∆→ Λ

Γ, Ci ∧Di,∆→ Λ

or we recursively construct a (finished) deduction tree

D1

Γ,∆→ Ci,Λ

to get the deduction tree

D1

Γ,∆→ Ci,Λ

Γ,¬Ci,∆→ Λ

or

(b) Ai = Ci ∨Di or Ai = Ci ⇒ Di, in which case either we recursively construct two
(finished) deduction trees

D1

Γ, Ci,∆→ Λ and

D2

Γ, Di,∆→ Λ

to get the deduction tree

D1

Γ, Ci,∆→ Λ

D2

Γ, Di,∆→ Λ

Γ, Ci ∨Di,∆→ Λ

or we recursively construct two (finished) deduction trees

D1

Γ,∆→ Ci,Λ and

D2

Di,Γ,∆→ Λ

to get the deduction tree

D1

Γ,∆→ Ci,Λ

D2

Di,Γ,∆→ Λ

Γ, Ci ⇒ Di,∆→ Λ

6



(2) The non-finished sequent is of the form

Γ→ ∆, Bj,Λ,

with Bj the leftmost non-atomic proposition. Then either

(a) Bj = Cj ∨Dj or Bj = Cj ⇒ Dj, or Bj = ¬Cj, in which case either we recursively
construct a (finished) deduction tree

D1

Γ→ ∆, Cj, Dj,Λ

to get the deduction tree

D1

Γ→ ∆, Cj, Dj,Λ

Γ→ ∆, Cj ∨Dj,Λ

or we recursively construct a (finished) deduction tree

D1

Cj,Γ→ Dj,∆,Λ

to get the deduction tree

D1

Cj,Γ→ Dj,∆,Λ

Γ→ ∆, Cj ⇒ Dj,Λ

or we recursively construct a (finished) deduction tree

D1

Cj,Γ→ ∆,Λ

to get the deduction tree

D1

Cj,Γ→ ∆,Λ

Γ→ ∆,¬Cj,Λ

or

7



(b) Bj = Cj ∧ Dj, in which case we recursively construct two (finished) deduction
trees

D1

Γ→ ∆, Cj,Λ and

D2

Γ→ ∆, Dj,Λ

to get the deduction tree

D1

Γ→ ∆, Cj,Λ

D2

Γ→ ∆, Dj,Λ

Γ→ ∆, Cj ∧Dj,Λ

If you prefer, you can apply a breadth-first expansion strategy for constructing a deduction
tree.

Input Format.

In order to make life easier, I suggest that the input propositions be given in postfix
notation because it is easy to build a tree from an expression in postfix, using a stack.

Also, use “&” for ∧, “|” for ∨, “∼” for ¬ and “>” for ⇒ (or any other reasonable choice
of characters).

Each propositional letter Pi is represented by the string “Pi”. For example, P17 will be
represented by P17.

Use spaces as delimiters.

The postfix representation is specified recursively as follows:

1. postfix(Pi) = Pi

2. postfix(P ∨Q) = postfix(P ) postfix(Q) |

3. postfix(P ∧Q) = postfix(P ) postfix(Q) &

4. postfix(P ⇒ Q) = postfix(P ) postfix(Q) >

5. postfix(¬P ) = postfix(P ) ∼

For example, the proposition

(P1 ∨ ¬P2) ∧ (¬P2 ⇒ P3)

has the following postfix representation:

P1 P2 ∼ | P2 ∼ P3 > &

8



Output Format.

Your program should output a Gentzen-deduction tree in legible form and specify whether
this tree is a proof tree or not. The nodes of deduction trees are Gentzen sequents, that is,
expressions of the form

P1, . . . , Pm => Q1, . . . , Qn,

where the Pis and Qis are propositions in postfix notation (or if you work harder, in standard
infix notation), separated by some delimiter such as =>.

9


