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Chapter 1

Mathematical Reasoning, Proof
Principles and Logic

1.1 Motivations, Some Problems

One of the main goals of this course is to learn how to

construct and read mathematical proofs.
Why?

1. Computer scientists write programs and build
systems.

2. It is very important to have rigorous methods to
check that these programs and systems behave as ex-
pected (are correct, have no bugs).
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3. It is also important to have methods to analyze the
complexity of programs (time/space complexity).

More generally, it is crucial to have a firm grasp of the
basic reasoning principles and rules of logic.

This leads to the question:
What is a proof?

There is no short answer to this question!

However, it seems fair to say that a proof is some kind
of deduction (derivation) that proceeds from a set of
hypotheses (premises, axioms)in order to derive a con-
clusion, using some logical rules.
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Figure 1.1: Dog Logic

A basic rule of logic is modus ponens:

If P implies () holds and if P holds, then () holds
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A first important observation is that there are different
degrees of formality of proofs.

1. Proofs can be very informal, using a set of loosely de-
fined logical rules, possibly omitting steps and premises.

2. Proofs can be completely formal, using a very clearly
defined set of rules and premises. Such proofs are usu-
ally processed or produced by programs called proof
checkers and theorem provers.

Thus, a human prover evolves in a spectrum of formality!

It should be said that it is practically 1mpossible to
write formal proofs.

This is because it would be extremely tedious and time-
consuming to write such proofs and these proofs would
be huge and thus, very hard to read.
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In principle, it is possible to write formalized proofs and
sometimes it is desirable to do so if we want to have ab-
solute confidence in a proof.

For example, we would like to be sure that a flight-control
system is not buggy so that a plane does not accidently
crash, that a program running a nuclear reactor will not
malfunction or that nuclear missiles will not be fired as a
result of a buggy “alarm system”.

Thus, it is very important to develop tools to assist us in
constructing formal proots or checking that formal proofs
are correct and such systems do exit (Examples: Isabelle,
COQ, TPS, NUPRL, PVS, Twelf). However, 99.99% of

us will not have the time or energy to write formal proofs.

Even if we never write formal proots, it is important to
understand clearly what are the rules of reasoning that
we use when we construct informal proofs.
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The first part of this course will be devoted to the descrip-
tion of a formal notion of proof, represented as a certain
kind of tree and using logical rules described in a style
known as natural deduction.

Having a firm proof-theoretic basis, we will see how the
basic notions of set theory can be defined by formulating
suitable axioms.

It will then be possible to define the set natural numbers
(N ={0,1,2,...}) and then all sorts of objects used in
computer science: trees, graphs, etc.

Let us now list various mathematical problems that will
be used to illustrate and motivate the kind of material
that we need to develop.
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Figure 1.2: Missing luggage
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Problem 1. Find formulae for the sums
1+24+34+---4+n =7
124+ 22432+ 4n =7
P+25 43+ 40 =7

P 2h 4 3F 4l =7

Jacob Bernoulli (1654-1705) discovered the formulae listed
below:
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It
Sp(n) =18+ 2" 4 3F ... 4t
then
So(n) = 1In
Si(n) = an + 1n
2 2
Sa(n) = %n3 + %nQ + én
S3(n) = in‘l + %ng + in2
Si(n) = %n5 + %fnfl + %n‘g — %n
Ss(n) = én6 + %n‘r’ + %n4 — 1—12712
Se(n) = %n7 + %n6 + %nE’ éng + %
S7(n) = én8 + %777 + 1—72726 — 2—74714 + 1—12n2
Sg(n) = %ng + %ng + §n7 — 1—75n5 + gn?’ — %n
So(n) = 1—107110 + %ng + %nS %nG + %n4 — 2—30712
Sio(n) = 1—117111 +%n10—|—gn9 —n' + 0’ - %n?’—l—%n

[s there a pattern?

11
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What are the mysterious numbers

1 1 1 1 1 5
!l - -0 - = 0 = 0 —-—= 0 = 7
2 6 30 42 30 66
The next two are
691
2730

Why?

It turns out that the answer has to do with the Bernoulls
polynomials, By(x), with

By(z) = i (f) "B,

1=0

where the B® are the Bernoulli numbers.

There are various ways of computing the Bernoulli num-
bers, including some recurrence formulae.

Amazingly, the Bernoulli numbers show up in very differ-
ent areas of mathematics, in particular, algebraic topol-

ogy!
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Figure 1.3: Funny spheres (in 3D)

Figure 1.4: A plane (granite slab!)

Problem 2. Prove that a sphere and a plane in 3D have
the same number of points.

More precisely, find a one-to-one and onto mapping of the
sphere onto the plane (a bijection)

Actually, there are also bijections between the sphere and
a (finite) rectangle, with or without its boundary!
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Problem 3. Counting the number of derangements of
n elements.

A permutation of the set {1,2,...,n} is any one-to-one
function, f, of {1,2,...,n} into itself. A permutation is
characterized by its image: {f(1), f(2),..., f(n)}.

For example, {3, 1, 4,2} is a permutation of {1,2,3,4}.

[t is easy to show that there are n!=n-(n—1)---3-2
distinct permutations of n elements.

A derangements is a permutation that leaves no element

fixed, that is, f(i) # 1 for all 7.

{3,1,4,2} is a derangement of {1,2, 3,4} but
{3,2,4,1} is not a derangement since 2 is left fixed.

What is the number of derangements, p,,, of n elements?
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The number p,/n! can be interpreted as a probability.

Say n people go to a restaurant and they all check their
coat. Unfortunately, the cleck loses all the coat tags.
Then, p,/n! is the probability that nobody gets her or
his coat back!

Interestingly, p,,/n! has limit é ~ % as n goes to infinity,

a surprisingly large number.
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Figure 1.5: An undirected graph modeling a city map

Problem 4. Finding strongly connected components
in a directed graph.

The undirected graph of Figure 1.5 represents a map of
some busy streets in a city.

The city decides to improve the traffic by making these
streets one-way streets.

However, a good choice of orientation should allow one
to travel between any two locations. We say that the
resulting directed graph is strongly connected.
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Figure 1.6: A choice of one-way streets

A possibility of orienting the streets is shown in Figure
1.6.

[s the above graph strongly connected?

If not, how do we find its strongly connected compo-
nents’

How do we use the strongly connected components to find
an orientation that solves our problem?
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card 2 card 1

Figure 1.7: Stack of overhanging cards

Problem 5. The maximum overhang problem.

How do we stack n cards on the edge of a table, respecting
the law of gravity, and achieving a maximum overhang.

We assume each card is 2 units long.

[s it possible to achieve any desired amount of overhang
or is there a fixed bound?

How many cards are needed to achieve an overhang of d
units?
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Problem 6. Ramsey Numbers

A version of Ramsey’s Theorem says that for every pair,
(1, s), of positive natural numbers, there is a least positive
natural number, R(r,s), such that for every coloring of
the edges of the complete (undirected) graph on R(r, s)
vertices using the colors blue and red, either there is a
complete subgraph with r vertices whose edges are all
blue or there is a complete subgraph with s vertices whose
edges are all red.

So, R(r,r), is the smallest number of vertices of a com-
plete graph whose edges are colored either blue or red
that must contain a complete subgraph with r vertices
whose edges are all of the same color.
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Figure 1.8: Left: A 2-coloring of K5 with no monochromatic K3; Right: A 2-coloring of K
with several monochromatic K3's

The graph shown in Figure 1.8 (left) is a complete graph
on 5 vertices with a coloring of its edges so that there is
no complete subgraph on 3 vertices whose edges are all
of the same color.

Thus, R(3,3) > 5.

There are
215 — 39768

2-colored complete graphs on 6 vertices. One of these
graphs is shown in Figure 1.8 (right).

It can be shown that all of them contain a triangle whose
edges have the same color, so R(3,3) = 6.
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The numbers, R(r, s), are called Ramsey numbers.

It turns out that there are wvery few numbers r, s for
which R(r,s) is known because the number of colorings
of a graph grows very fast! For example, there are

243><21 _ 2903 > 102490 > 10270

2-colored complete graphs with 43 vertices, a huge num-
ber!

In comparison, the universe is only approximately 14 bil-
lions years old, namely 14 x 10° years old.

For example, R(4,4) = 18, R(4,5) = 25, but R(5,5) is
unknown, although it can be shown that
43 < R(5,5) < 49.

Finding the R(r,s), or, at least some sharp bounds for
them, is an open problem.



