
Chapter 2

Relations, Functions, Partial
Functions

2.1 What is a Function?

Roughly speaking, a function, f , is a rule or mechanism,
which takes input values in some input domain , say X ,
and produces output values in some output domain , say
Y , in such a way that to each input x ∈ X corresponds
a unique output value y ∈ Y , denoted f (x).

We usually write y = f (x), or better, x �→ f (x).

Often, functions are defined by some sort of closed ex-
pression (a formula), but not always.
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For example, the formula

y = 2x

defines a function. Here, we can take both the input and
output domain to be R, the set of real numbers.

Instead, we could have taken N, the set of natural num-
bers; this gives us a different function.

In the above example, 2x makes sense for all input x,
whether the input domain is N or R, so our formula yields
a function defined for all of its input values.

Now, look at the function defined by the formula

y =
x

2
.

If the input and output domains are both R, again this
function is well-defined.
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However, what if we assume that the input and output
domains are both N?

This time, we have a problem when x is odd. For exam-
ple, 3

2 is not an integer, so our function is not defined for
all of its input values.

It is a partial function, a concept that subsumes the
notion of a function but is more general.

Observe that this partial function is defined for the set of
even natural numbers (sometimes denoted 2N) and this
set is called the domain (of definition) of f .

If we enlarge the output domain to be Q, the set of ratio-
nal numbers, then our partial function is defined for all
inputs.
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Another example of a partial function is given by

y =
x + 1

x2 − 3x + 2
,

assuming that both the input and output domains are R.

Observe that for x = 1 and x = 2, the denominator
vanishes, so we get the undefined fractions 2

0 and
3
0.

This partial function “blows up” for x = 1 and x = 2, its
value is “infinity” (= ∞), which is not an element of R.
So, the domain of f is R− {1, 2}.

In summary, partial functions need not be defined for all
of their input values and we need to pay close attention
to both the input and the ouput domain of our partial
functions.
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The following example illustrates another difficulty: Con-
sider the partial function given by

y =
√
x.

If we assume that the input domain is R and that the
output domain is R+ = {x ∈ R | x ≥ 0}, then this
partial function is not defined for negative values of x.

To fix this problem, we can extend the output domain to
be C, the complex numbers. Then we can make sense of√
x when x < 0.

However, a new problem comes up: Every negative num-
ber, x, has two complex square roots,−i

√
−x and +i

√
−x

(where i is “the” square root of −1). Which of the two
should we pick?

In this case, we could systematically pick +i
√
−x but

what if we extend the input domain to be C.
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Then, it is not clear which of the two complex roots should
be picked, as there is no obvious total order on C.

We can treat f as a multi-valued function , that is, a
function that may return several possible outputs for a
given input value.

Experience shows that it is awkward to deal with multi-
valued functions and that it is best to treat them as rela-
tions (or to change the output domain to be a power set,
which is equivalent to view the function as a relation).

Let us give one more example showing that it is not always
easy to make sure that a formula is a proper definition of
a function.
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Consider the function from R to R given by

f (x) = 1 +
∞�

n=1

xn

n!
.

Here, n! is the function factorial , defined by

n! = n · (n− 1) · · · 2 · 1.

How do we make sense of this infinite expression?

Well, that’s where analysis comes in, with the notion of
limit of a series, etc. It turns out that f (x) is the expo-
nential function f (x) = ex.

Actually, ex is even defined when x is a complex number
or even a square matrix (with real or complex entries)!
Don’t panic, we will not use such functions in this course.
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Another issue comes up, that is, the notion of
computability .

In all of our examples, and for most (partial) functions
we will ever need to compute, it is clear that it is possible
to give a mechanical procedure, i.e., a computer program
which computes our functions (even if it hard to write
such a program or if such a program takes a very long
time to compute the output from the input).

Unfortunately, there are functions which, although well-
defined mathematically, are not computable !

For an example, let us go back to first-order logic and the
notion of provable proposition.

Given a finite (or countably infinite) alphabet of function,
predicate, constant symbols, and a countable supply of
variables, it is quite clear that the set F of all proposi-
tions built up from these symbols and variables can be
enumerated systematically.
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We can define the function, Prov, with input domain F
and output domain {0, 1}, so that, for every proposition
P ∈ F ,

Prov(P ) =

�
1 if P is provable (classically)
0 if P is not provable (classically).

Mathematically, for every proposition, P ∈ F , either P
is provable or it is not, so this function makes sense.

However, by Church’s Theorem (see Section ??), we know
that there is no computer program that will terminate
for all input propositions and give an answer in a finite
number of steps!

So, although the function Prov makes sense as an abstract
function, it is not computable.
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Is this a paradox? No, if we are careful when defining a
function not to incorporate in the definition any notion of
computability and instead to take a more abstract and,
in some some sense, naive view of a function as some kind
of input/output process given by pairs
�input value, output value� (without worrying about the
way the output is “computed” from the input).

A rigorous way to proceed is to use the notion of ordered
pair and of graph of a function.

Before we do so, let us point out some facts about “func-
tions” that were revealed by our examples:

1. In order to define a “function”, in addition to defin-
ing its input/output behavior, it is also important to
specify what is its input domain and its output do-
main .

2. Some “functions” may not be defined for all of their
input values; a function can be a partial function .

3. The input/output behavior of a “function” can be
defined by a set of ordered pairs. As we will see next,
this is the graph of the function.
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2.2 Ordered Pairs, Cartesian Products, Relations,
Functions, Partial Functions

Given two sets, A and B, one of the basic constructions
of set theory is the formation of an ordered pair , �a, b�,
where a ∈ A and b ∈ B.

Sometimes, we also write (a, b) for an ordered pair.

The main property of ordered pairs is that if �a1, b1� and
�a2, b2� are ordered pairs, where a1, a2 ∈ A and
b1, b2 ∈ B, then

�a1, b1� = �a2, b2� iff a1 = a2 and b1 = b2.

Observe that this property implies that,

�a, b� �= �b, a�,
unless a = b.
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Thus, the ordered pair, �a, b�, is not a notational variant
for the set {a, b}; implicit to the notion of ordered pair is
the fact that there is an order (even though we have not
yet defined this notion yet!) among the elements of the
pair.

Indeed, in �a, b�, the element a comes first and b comes
second .

Accordingly, given an ordered pair, p = �a, b�, we will
denote a by pr1(p) and b by pr2(p) (first and second
projection or first and second coordinate).

Remark: Readers who like set theory will be happy to
hear that an ordered pair, �a, b�, can be defined as the
set

{{a}, {a, b}}.

This definition is due to Kuratowski, 1921. An earlier
(more complicated) definition given by N. Wiener in 1914
is {{{a}, ∅}, {{b}}}.
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Figure 2.1: Kazimierz Kuratowski, 1896-1980

Now, from set theory, it can be shown that given two
sets, A and B, the set of all ordered pairs, �a, b�, with
a ∈ A and b ∈ B, is a set denoted A×B and called the
Cartesian product of A and B (in that order). The set
A× B is also called the cross-product of A and B.

By convention, we agree that ∅ × B = A× ∅ = ∅.

To simplify the terminology, we often say pair for or-
dered pair , with the understanding that pairs are always
ordered (otherwise, we should say set).

Of course, given three sets, A,B,C, we can form
(A × B) × C and we call its elements (ordered) triples
(or triplets).
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To simplify the notation, we write �a, b, c� instead of
��a, b�, c� and A× B × C instead of (A× B)× C.

More generally, given n sets A1, . . . , An (n ≥ 2), we
define the set of n-tuples , A1 × A2 × · · · × An, as
(· · · ((A1 × A2)× A3)× · · · )× An.

An element ofA1×A2×· · ·×An is denoted by �a1, . . . , an�
(an n-tuple).

We agree that when n = 1, we just have A1 and a 1-tuple
is just an element of A1.

We now have all we need to define relations.
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Definition 2.2.1 Given two sets, A and B, a (binary)
relation between A and B is any triple, �A,R,B�, where
R ⊆ A×B is any set of ordered pairs from A×B. When
�a, b� ∈ R, we also write aRb and we say that a and b
are related by R. The set

dom(R) = {a ∈ A | ∃b ∈ B, �a, b� ∈ R}
is called the domain of R and the set

range(R) = {b ∈ B | ∃a ∈ A, �a, b� ∈ R}
is called the range of R. Note that dom(R) ⊆ A and
range(R) ⊆ B. When A = B, we often say that R is a
(binary) relation over A.

The term correspondence between A and B is also used
instead of the term relation between A and B and the
word relation is reserved for the case where A = B.

It is worth emphasizing that two relations, �A,R,B� and
�A�, R�, B��, are equal iff A = A�, B = B� and R = R�.
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In particular, if R = R� but either A �= A� or B �= B�,
then the relations �A,R,B� and �A�, R�, B�� are consid-
ered to be different .

For simplicity, we usually refer to a relation, �A,R,B�,
as a relation, R ⊆ A× B.

Among all relations between A and B, we mention three
relations that play a special role:

1. R = ∅, the empty relation . Note that
dom(∅) = range(∅) = ∅. This is not a very exciting
relation!

2. When A = B, we have the identity relation ,

idA = {�a, a� | a ∈ A}.
The identity relation relates every element to itself,
and that’s it! Note that dom(idA) = range(idA) = A.

3. The relation A × B itself. This relation relates ev-
ery element of A to every element of B. Note that
dom(A× B) = A and range(A× B) = B.
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Relations can be represented graphically by pictures often
called graphs . (Beware, the term “graph” is very much
overloaded. Later on, we will define what a graph is.)

We depict the elements of both sets A and B as points
(perhaps with different colors) and we indicate that a ∈ A
and b ∈ B are related (i.e., �a, b� ∈ R) by drawing an
oriented edge (an arrow) starting from a (its source) and
ending in b (its target). Here is an example:

1

a1

a2

a3

a4

a5

b1

b2

b3

b4

Figure 2.2: A binary relation, R

In Figure 2.2, A = {a1, a2, a3, a4, a5} and
B = {b1, b2, b3, b4}.

Observe that a5 is not related to any element of B, b3 is
not related to any element of A and some elements of A,
namely, a1, a3, a4, are related to several elements of B.
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Now, given a relation, R ⊆ A× B, some element a ∈ A
may be related to several distinct elements b ∈ B.

If so, R does not correspond to our notion of a function,
because we want our functions to be single-valued.

So, we impose a natural condition on relations to get
relations that correspond to functions.

Definition 2.2.2 We say that a relation, R, between
two sets A and B is functional if for every a ∈ A, there
is at most one b ∈ B so that �a, b� ∈ R. Equivalently,
R is functional if for all a ∈ A and all b1, b2 ∈ B, if
�a, b1� ∈ R and �a, b2� ∈ R, then b1 = b2.
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The picture in Figure 2.3 shows an example of a functional
relation.

1

a1

a2

a3

a4

a5

b1

b2

b3

b4

Figure 2.3: A functional relation G

Using Definition 2.2.2, we can give a rigorous definition
of a function (partial or not).
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Definition 2.2.3 A partial function, f , is a triple,
f = �A,G,B�, where A is a set called the input domain
of f , B is a set called the output domain of f (sometimes
codomain of f ) and G ⊆ A×B is a functional relation
called the graph of f (see Figure 2.4); we let
graph(f ) = G.

We write f : A → B to indicate that A is the input
domain of f and that B is the codomain of f and we let
dom(f ) = dom(G) and range(f ) = range(G).

For every a ∈ dom(f ), the unique element, b ∈ B, so
that �a, b� ∈ graph(f ) is denoted by f (a) (so, b = f (a)).
Often, we say that b = f (a) is the image of a by f .

The range of f is also called the image of f and is denoted
Im (f ). If dom(f ) = A, we say that f is a total function,
for short, a function with domain A.

As in the case of relations, it is worth emphasizing that
two functions (partial or total), f = �A,G,B� and
f � = �A�, G�, B��, are equal iff A = A�, B = B� and
G = G�.
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1

a

f(a) �a, f(a)�

G

A

B

A×B

Figure 2.4: A (partial) function �A,G,B�

In particular, if G = G� but either A �= A� or
B �= B�, then the functions (partial or total) f and f �

are considered to be different .

Remarks:

1. If f = �A,G,B� is a partial function and b = f (a)
for some a ∈ dom(f ), we say that f maps a to b; we
may write f : a �→ b. For any b ∈ B, the set

{a ∈ A | f (a) = b}
is denoted f−1(b) and called the inverse image or
preimage of b by f . (It is also called the fibre of f
above b. We will explain this peculiar language later
on.)
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Note that f−1(b) �= ∅ iff b is in the image (range) of
f . Often, a function, partial or not, is called a map.

2. Note that Definition 2.2.3 allows A = ∅. In this case,
we must haveG = ∅ and, technically, �∅, ∅, B� is total
function! It is the empty function from ∅ to B.

3. When a partial function is a total function, we don’t
call it a “partial total function”, but simply a “func-
tion”.

The usual pratice is that the term “function” refers to
a total function. However, sometimes, we say “total
function” to stress that a function is indeed defined
on all of its input domain.

4. Note that if a partial function f = �A,G,B� is not a
total function, then dom(f ) �= A and for all
a ∈ A− dom(f ), there is no b ∈ B so that
�a, b� ∈ graph(f ).
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This corresponds to the intuitive fact that f does not
produce any output for any value not in its domain of
definition. We can imagine that f “blows up” for this
input (as in the situation where the denominator of a
fraction is 0) or that the program computing f loops
indefinitely for that input.

5. If f = �A,G,B� is a total function and A �= ∅, then
B �= ∅.

6. For any set, A, the identity relation, idA, is actually
a function idA : A → A.

7. Given any two sets, A and B, the rules
�a, b� �→ a = pr1(�a, b�) and �a, b� �→ b = pr2(�a, b�)
make pr1 and pr2 into functions pr1 : A × B → A
and pr2 : A × B → B called the first and second
projections .
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8. A function, f : A → B, is sometimes denoted

A
f−→ B. Some authors use a different kind of arrow

to indicate that f is partial, for example, a dotted or
dashed arrow. We will not go that far!

9. The set of all functions, f : A → B, is denoted by
BA. If A and B are finite, A has m elements and B
has n elements, it is easy to prove that BA has nm

elements.

The reader might wonder why, in the definition of a (total)
function, f : A → B, we do not require B = Im f , since
we require that dom(f ) = A.

The reason has to do with experience and convenience.



2.2. ORDERED PAIRS, CARTESIAN PRODUCTS, RELATIONS, ETC. 243

It turns out that in most cases, we know what the domain
of a function is, but it may be very hard to determine
exactly what its image is.

Thus, it is more convenient to be flexible about the
codomain. As long as we know that f maps into B, we
are satisfied.

For example, consider functions, f : R → R2, from the
real line into the plane. The image of such a function is
a curve in the plane R2.

Actually, to really get “decent” curves we need to im-
pose some reasonable conditions on f , for example, to
be differentiable. Even continuity may yield very strange
curves (see Section 2.10).

But even for a very well behaved function, f , it may be
very hard to figure out what the image of f is.
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Figure 2.5: Lemniscate of Bernoulli

Consider the function, t �→ (x(t), y(t)), given by

x(t) =
t(1 + t2)

1 + t4

y(t) =
t(1− t2)

1 + t4
.

The curve which is the image of this function, shown in
Figure 2.5, is called the “lemniscate of Bernoulli”.

Observe that this curve has a self-intersection at the ori-
gin, which is not so obvious at first glance.
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2.3 Induction Principles on N

Now that we have the notion of function, we can restate
the induction principle (Version 2) stated at the end of
Section 1.10 to make it more flexible.

We define a property of the natural numbers as any
function, P : N → {true, false}.

The idea is that P (n) holds iff P (n) = true, else
P (n) = false. Then, we have the following principle:

Principle of Induction for N (Version 3).

Let P be any property of the natural numbers. In order
to prove that P (n) holds for all n ∈ N, it is enough to
prove that

(1) P (0) holds and

(2) For every n ∈ N, the implication P (n) ⇒ P (n + 1)
holds.
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As a formula, (1) and (2) can be written

[P (0)∧ (∀n ∈ N)(P (n) ⇒ P (n+1))] ⇒ (∀n ∈ N)P (n).

Step (1) is usually called the basis or base step of the
induction and step (2) is called the induction step.

In step (2), P (n) is called the induction hypothesis .

That the above induction principle is valid is given by the

Proposition 2.3.1 The Principle of Induction stated
above is valid.

Induction is a very valuable tool for proving properties of
the natural numbers and we will make extensive use of it.

We will also see other more powerful induction principles.
Let us give some examples illustrating how it is used.
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We begin by finding a formula for the sum

1 + 2 + 3 + · · · + n,

where n ∈ N.

If we compute this sum for small values of n, say
n = 0, 1, 2, 3, 4, 5, 6 we get

0 = 0

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10

1 + 2 + 3 + 4 + 5 = 15

1 + 2 + 3 + 4 + 5 + 6 = 21.

What is the pattern?
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After a moment of reflection, we see that

0 = (0× 1)/2

1 = (1× 2)/2

3 = (2× 3)/2

6 = (3× 4)/2

10 = (4× 5)/2

15 = (5× 6)/2

21 = (6× 7)/2,

so we conjecture

Claim 1 :

1 + 2 + 3 + · · · + n =
n(n + 1)

2
,

where n ∈ N.
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For the basis of the induction, where n = 0, we get
0 = 0, so the base step holds.

For the induction step, for any n ∈ N, assume that

1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Consider 1 + 2 + 3 + · · · + n + (n + 1). Then, using the
induction hypothesis, we have

1 + 2 + 3 + · · · + n + (n + 1) =
n(n + 1)

2
+ n + 1

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2
,

establishing the induction hypothesis and therefore, prov-
ing our formula.
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Next, let us find a formula for the sum of the first n + 1
odd numbers:

1 + 3 + 5 + · · · + 2n + 1,

where n ∈ N.

If we compute this sum for small values of n, say
n = 0, 1, 2, 3, 4, 5, 6 we get

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

1 + 3 + 5 + 7 + 9 + 11 = 36

1 + 3 + 5 + 7 + 9 + 11 + 13 = 49.

This time, it is clear what the pattern is: we get perfect
squares.

Thus, we conjecture
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Claim 2 :

1 + 3 + 5 + · · · + 2n + 1 = (n + 1)2,

where n ∈ N.

For the basis of the induction, where n = 0, we get
1 = 12, so the base step holds.

For the induction step, for any n ∈ N, assume that

1 + 3 + 5 + · · · + 2n + 1 = (n + 1)2.

Consider 1 + 3 + 5 + · · · + 2n + 1 + 2(n + 1) + 1 =
1 + 3 + 5 + · · · + 2n + 1 + 2n + 3.

Then, using the induction hypothesis, we have

1 + 3 + 5 + · · · + 2n + 1 + 2n + 3 = (n + 1)2 + 2n + 3

= n2 + 2n + 1 + 2n + 3

= n2 + 4n + 4 = (n + 2)2.

Therefore, the induction step holds and this completes
the proof by induction.
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The two formulae that we just discussed are subject to a
nice geometric interpetation that suggests a closed form
expression for each sum and this is often the case for sums
of special kinds of numbers.

For the first formula, if we represent n as a sequence of
n “bullets”, then we can form a rectangular array with n
rows and n + 1 columns showing that the desired sum is
half of the number of bullets in the array, which is indeed
n(n+1)

2 , as shown below for n = 5:

• ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦
• • • • ◦ ◦
• • • • • ◦

Thus, we see that the numbers,

∆n =
n(n + 1)

2
,

have a simple geometric interpretation in terms of trian-
gles of bullets.
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For example, ∆4 = 10 is represented by the triangle

•
• •

• • •
• • • •

For this reason, the numbers, ∆n, are often called trian-
gular numbers . A natural question then arises: What is
the sum

∆1 +∆2 +∆3 + · · · +∆n?

The reader should compute these sums for small values of
n and try to guess a formula that should then be proved
correct by induction. It is not too hard to find a nice
formula for these sums.

The reader may also want to find a geometric interpreta-
tion for the above sums (stacks of cannon balls!).



254 CHAPTER 2. RELATIONS, FUNCTIONS, PARTIAL FUNCTIONS

In order to get a geometric interpretation for the sum

1 + 3 + 5 + · · · + 2n + 1,

we represent 2n + 1 using 2n + 1 bullets displayed in a
V -shape; for example, 7 = 2× 3 + 1 is represented by

• •
• •
• •
•

Then, the sum 1 + 3 + 5 + · · · + 2n + 1 corresponds to
the square

•
• •

• • •
• • • •
• • •
• •
•

,

which clearly reveals that

1 + 3 + 5 + · · · + 2n + 1 = (n + 1)2.
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A natural question is then: What is the sum

12 + 22 + 32 + · · · + n2?

Again, the reader should compute these sums for small
values of n, then guess a formula and check its correctness
by induction. It is not too difficult to find such a formula.

For a fascinating discussion of all sorts of numbers and
their geometric interpretations (including the numbers we
just introduced), the reader is urged to read Chapter 2 of
Conway and Guy [4].

Sometimes, it is necessary to prove a property, P (n), for
all natural numbers n ≥ m, where m > 0.

Our induction principle does not seem to apply since the
base case is not n = 0.
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However, we can define the property, Q(n), given by

Q(n) = P (m + n), n ∈ N,

and since Q(n) holds for all n ∈ N iff P (k) holds for
all k ≥ m, we can apply our induction principle to prove
Q(n) for all n ∈ N and thus, P (k), for all k ≥ m (note,
k = m + n).

Of course, this amounts to considering that the base
case is n = m and this is what we always do without
any further justification.

Here is an example. Let us prove that

(3n)2 ≤ 2n, for all n ≥ 10.

The base case is n = 10.

For n = 10, we get

(3× 10)2 = 302 = 900 ≤ 1024 = 210,

which is indeed true.
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Let us now prove the induction step. Assuming that
(3n)2 ≤ 2n holds for all n ≥ 10, we want to prove that
(3(n + 1))2 ≤ 2n+1.

Since

(3(n + 1))2 = (3n + 3)2 = (3n)2 + 18n + 9,

if we can prove that 18n + 9 ≤ (3n)2 when n ≥ 10, using
the induction hypothesis, (3n)2 ≤ 2n, we will have

(3(n + 1))2 = (3n)2 + 18n + 9 ≤
(3n)2 + (3n)2 ≤ 2n + 2n = 2n+1,

establishing the induction step.

However,

(3n)2 − (18n + 9) = (3n− 3)2 − 18

and (3n− 3)2 ≥ 18 as soon as n ≥ 3, so 18n+9 ≤ (3n)2

when n ≥ 10, as required.
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Observe that the formula (3n)2 ≤ 2n fails for n = 9, since
(3×9)2 = 272 = 729 and 29 = 512, but 729 > 512. Thus,
the base has to be n = 10.

There is another induction principle which is often more
flexible that our original induction principle.

This principle, called complete induction (or sometimes
strong induction), is stated below.

Complete Induction Principle for N.

In order to prove that a predicate, P (n), holds for all
n ∈ N it is enough to prove that

(1) P (0) holds (the base case) and

(2) for every m ∈ N, if (∀k ∈ N)(k ≤ m ⇒ P (k)) then
P (m + 1).
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The difference between ordinary induction and complete
induction is that in complete induction, the induction
hypothesis, (∀k ∈ N)(k ≤ m ⇒ P (k)), assumes that
P (k) holds for all k ≤ m and not just for m (as in
ordinary induction), in order to deduce P (m + 1).

This gives us more proving power as we have more knowl-
edge in order to prove P (m + 1).

Complete induction will be discussed more extensively in
Section 5.3 and its validity will be proved as a consequence
of the fact that every nonempty subset of N has a smallest
element but we can also justify its validity as follows:

Define Q(m) by

Q(m) = (∀k ∈ N)(k ≤ m ⇒ P (k)).

Then, it is an easy exercise to show that if we apply our
(ordinary) induction principle to Q(m) (Induction Prin-
ciple, Version 3), then we get the principle of complete
induction.
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Figure 2.6: Leonardo P. Fibonacci, 1170-1250

Here is an example of a proof using complete induction.

Define the sequence of natural numbers, Fn, (Fibonacci
sequence) by

F0 = 1, F1 = 1, Fn+2 = Fn+1 + Fn, n ≥ 0.

We claim that

Fn ≥
3n−2

2n−3
, n ≥ 3.

The base case corresponds to n = 3, where

F3 = 3 ≥ 31

20
= 3,

which is true.



2.3. INDUCTION PRINCIPLES ON N 261

Note that we also need to consider the case n = 4
by itself before we do the induction step because even
though F4 = F3 + F2, the induction hypothesis only ap-
plies to F3 (n ≥ 3 in the inequality above).

We have

F4 = 5 ≥ 32

21
=

9

2
,

which is true since 10 > 9.

Now for the induction step where n ≥ 3, we have

Fn+2 = Fn+1 + Fn

≥ 3n−1

2n−2
+
3n−2

2n−3

≥ 3n−2

2n−3

�
1 +

3

2

�
=

3n−2

2n−3

5

2
≥ 3n−2

2n−3

9

4
=

3n

2n−1
,

since 5
2 > 9

4, which concludes the proof of the induction
step.
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Observe that we used the induction hypothesis for both
Fn+1 and Fn in order to deduce that it holds for Fn+2.
This is where we needed the extra power of complete
induction.

Remark: The Fibonacci sequence, Fn, is really a func-
tion fromN toN defined recursively but we haven’t proved
yet that recursive definitions are legitimate methods for
defining functions!

In fact, certain restrictions are needed on the kind of re-
cursion used to define functions. This topic will be ex-
plored further in Section 2.5. Using results from Section
2.5, it can be shown that the Fibonacci sequence is a
well-defined function (but this does not follow immedi-
ately from Theorem 2.5.1).
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Induction proofs can be subtle and it might be instructive
to see some examples of faulty induction proofs.

Assertion 1: For every natural numbers, n ≥ 1, the
number n2 − n+ 11 is an odd prime (recall that a prime
number is a natural number, p ≥ 2, which is only divisible
by 1 and itself).

Proof . We use induction on n ≥ 1. For the base case ,
n = 1, we have 12 − 1 + 11 = 11, which is an odd prime,
so the induction step holds.

For the induction step, assume that n2−n+11 is prime.
Then, as

(n + 1)2 − (n + 1) + 11 = n2 + n + 11,

we see that

(n + 1)2 − (n + 1) + 11 = n2 − n + 11 + 2n.

By the induction hypothesis, n2−n+11 is an odd prime,
p, and since 2n is even, p+2n is odd and therefore prime,
establishing the induction hypothesis.
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If we compute n2 − n + 11 for n = 1, 2, . . . , 10, we find
that these numbers are indeed all prime, but for n = 11,
we get

121 = 112 − 11 + 11 = 11× 11,

which is not prime!

Where is the mistake?

What is wrong is the induction step: the fact that
n2 − n + 11 is prime does not imply that
(n+1)2−(n+1)+11 = n2+n+11 is prime, as illustrated
by n = 10. Our “proof” of the induction step is nonsense!

The lesson is: The fact that a statement holds for many
values of n ∈ N does not imply that it holds for all n ∈ N
(or all n ≥ k, for some fixed k ∈ N).



2.3. INDUCTION PRINCIPLES ON N 265

Interestingly, the prime numbers, k, so that n2 − n + k
is prime for n = 1, 2, . . . , k − 1, are all known (there are
only six of them!).

It can be shown that these are the prime numbers, k, such
that 1 − 4k is a Heegner number , where the Heegner
numbers are the nine integers:

−1, −2, −3, −7, −11, −19, −43, −67, −163.

The above results are hard to prove and require some deep
theorems of number theory. What can also be shown (and
you should prove it!) is that no nonconstant polynomial
takes prime numbers as values for all natural numbers.

Assertion 2: Every Fibonacci number, Fn, is even.

Proof . For the base case , F2 = 2, which is even, so the
base case holds.
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For the induction step, assume inductively that Fn is
even for all n ≥ 2. Then, as

Fn+2 = Fn+1 + Fn

and as both Fn and Fn+1 are even by the induction hy-
pothesis, we conclude that Fn+2 is even.

However, Assertion 2 is clearly false , since the Fibonacci
sequence begins with

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

This time, the mistake is that we did not check the two
base cases , F0 = 1 and F1 = 1.

Our experience is that if an induction proof is wrong,
then, in many cases, the base step is faulty. So, pay
attention to the base step(s)!

A useful way to produce new relations or functions is to
compose them.
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2.4 Composition of Relations and Functions

We begin with the definition of the composition of rela-
tions.

Definition 2.4.1 Given two relations, R ⊆ A×B and
S ⊆ B×C, the composition of R and S, denoted R◦S,
is the relation between A and C defined by

R ◦ S = {�a, c� ∈ A× C

| ∃b ∈ B, �a, b� ∈ R and �b, c� ∈ S}.

One should check that for any relation R ⊆ A × B, we
have idA ◦R = R and R ◦ idB = R.

If R and S are the graphs of functions, possibly partial,
is R ◦ S the graph of some function? The answer is yes,
as shown in the following
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Proposition 2.4.2 Let R ⊆ A × B and S ⊆ B × C
be two relations.

(a) If R and S are both functional relations, then R◦S
is also a functional relation. Consequently, R ◦ S
is the graph of some partial function.

(b) If dom(R) = A and dom(S) = B, then
dom(R ◦ S) = A.

(c) If R is the graph of a (total) function from A to
B and S is the graph of a (total) function from B
to C, then R ◦ S is the graph of a (total) function
from A to C.

Proposition 2.4.2 shows that it is legitimate to define the
composition of functions, possibly partial. Thus, we make
the following



2.4. COMPOSITION OF RELATIONS AND FUNCTIONS 269

Definition 2.4.3 Given two functions, f : A → B and
g : B → C, possibly partial, the composition of f and
g, denoted g ◦ f , is the function (possibly partial)

g ◦ f = �A, graph(f ) ◦ graph(g), C�.

The reader must have noticed that the composition of two
functions f : A → B and g : B → C is denoted g ◦ f ,
whereas the graph of g◦f is denoted graph(f )◦graph(g).

This “reversal” of the order in which function composition
and relation composition are written is unfortunate and
somewhat confusing.

Once again, we are victim of tradition. The main reason
for writing function composition as g◦f is that tradition-
ally, the result of applying a function, f , to an argument,
x, is written f (x).

Then, (g ◦ f )(x) = g(f (x)), because z = (g ◦ f )(x) iff
there is some y so that y = f (x) and z = g(y), that is,
z = g(f (x)).
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Some people, in particular algebraists, write function com-
position as f ◦ g, but then, they write the result of ap-
plying a function f to an argument x as xf . With this
convention, x(f ◦ g) = (xf )g, which also makes sense.

We prefer to stick to the convention where we write f (x)
for the result of applying a function f to an argument
x and, consequently, we use the notation g ◦ f for the
composition of f with g, even though it is the opposite of
the convention for writing the composition of relations.

Given any three relations, R ⊆ A× B, S ⊆ B × C and
T ⊆ C ×D, the reader should verify that

(R ◦ S) ◦ T = R ◦ (S ◦ T ).

We say that composition is associative .

Similarly, for any three functions (possibly partial),
f : A → B, g : B → C and h : C → D, we have (asso-
ciativity of function composition)

(h ◦ g) ◦ f = h ◦ (g ◦ f ).
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2.5 Recursion on N

The following situation often occurs: We have some set,
A, some fixed element, a ∈ A, some function, g : A → A,
and we wish to define a new function, h : N → A, so that

h(0) = a,

h(n + 1) = g(h(n)) for all n ∈ N.

This way of defining h is called a recursive definition (or
a definition by primitive recursion).

I would be surprised if any computer scientist had any
trouble with this “definition” of h but how can we justify
rigorously that such a function exists and is unique?

Indeed, the existence (and uniqueness) of h requires proof.

The proof, although not really hard, is surprisingly in-
volved and, in fact quite subtle. The reader will find a
complete proof in Enderton [5] (Chapter 4).
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Theorem 2.5.1 (Recursion Theorem on N) Given any
set, A, any fixed element, a ∈ A, and any function,
g : A → A, there is a unique function, h : N → A, so
that

h(0) = a,

h(n + 1) = g(h(n)) for all n ∈ N.

Theorem 2.5.1 is very important. Indeed, experience
shows that it is used almost as much as induction!

As an example, we show how to define addition on N. In-
deed, at the moment, we know what the natural numbers
are but we don’t know what are the arithmetic operations
such as + or ∗! (at least, not in our axiomatic treatment;
of course, nobody needs an axiomatic treatment to know
how to add or multiply).

How do we define m + n, where m,n ∈ N?
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If we try to use Theorem 2.5.1 directly, we seem to have a
problem, because addition is a function of two arguments,
but h and g in the theorem only take one argument.

We can overcome this problem in two ways:

(1) We prove a generalization of Theorem 2.5.1 involv-
ing functions of several arguments, but with recursion
only in a single argument. This can be done quite
easily but we have to be a little careful.

(2) For any fixed m, we define addm(n) as
addm(n) = m + n, that is, we define addition of a
fixed m to any n. Then, we let m + n = addm(n).

Since solution (2) involves much less work, we follow it.
Let S denote the successor function on N, that is, the
function given by

S(n) = n+ = n + 1.
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Then, using Theorem 2.5.1 with a = m and g = S, we
get a function, addm, such that

addm(0) = m,

addm(n + 1) = S(addm(n)) = addm(n) + 1,

for all n ∈ N.

Finally, for all m,n ∈ N, we define m + n by

m + n = addm(n).

Now, we have our addition function on N. But this is
not the end of the story because we don’t know yet that
the above definition yields a function having the usual
properties of addition, such as

m + 0 = m

m + n = n +m

(m + n) + p = m + (n + p).

To prove these properties, of course, we use induction!
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We can also define multiplication. Mimicking what we
did for addition, define multm(n) by recursion as follows;

multm(0) = 0,

multm(n + 1) = multm(n) +m for all n ∈ N.

Then, we set
m · n = multm(n).

Note how the recursive definition of multm uses the ad-
ddition function, +, previously defined.

Again, to prove the usual properties of multiplication as
well as the distributivity of · over +, we use induction.

Using recursion, we can define many more arithmetic
functions. For example, the reader should try defining
exponentiation, mn.
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2.6 Inverses of Functions and Relations

Given a function, f : A → B (possibly partial), with
A �= ∅, suppose there is some function, g : B → A (pos-
sibly partial), called a left inverse of f , such that

g ◦ f = idA.

If such a g exists, we see that f must be total but more
is true.

Indeed, assume that f (a) = f (b). Then, by applying g,
we get

(g ◦ f )(a) = g(f (a)) = g(f (b)) = (g ◦ f )(b).

However, since g ◦ f = idA, we have
(g ◦ f )(a) = idA(a) = a and (g ◦ f )(b) = idA(b) = b, so
we deduce that

a = b.
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Therefore, we showed that if a function, f , with nonempty
domain, has a left inverse, then f is total and has the
property that for all a, b ∈ A, f (a) = f (b) implies that
a = b, or equivalently a �= b implies that f (a) �= f (b).

We say that f is injective . As we will see later, injectivity
is a very desirable property of functions.

Remark: If A = ∅, then f is still considered to be
injective. In this case, g is the empty partial function
(and when B = ∅, both f and g are the empty function
from ∅ to itself).

Now, suppose there is some function, h : B → A (possi-
bly partial), with B �= ∅, called a right inverse of f , but
this time, we have

f ◦ h = idB.

If such an h exists, we see that it must be total but more
is true.
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Indeed, for any b ∈ B, as f ◦ h = idB, we have

f (h(b)) = (f ◦ h)(b) = idB(b) = b.

Therefore, we showed that if a function, f , with nonempty
codomain has a right inverse, h, then h is total and f has
the property that for all b ∈ B, there is some a ∈ A,
namely, a = h(b), so that f (a) = b.

In other words, Im (f ) = B or equivalently, every element
in B is the image by f of some element of A.

We say that f is surjective . Again, surjectivity is a very
desirable property of functions.

Remark: If B = ∅, then f is still considered to be
surjective but h is not total unless A = ∅, in which case
f is the empty function from ∅ to itself.

� If a function has a left inverse (respectively a right in-
verse), then it may have more than one left inverse

(respectively right inverse).
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If a function (possibly partial), f : A → B, with
A,B �= ∅, happens to have both a left inverse,
g : B → A, and a right inverse, h : B → A, then we
know that f and h are total.

We claim that g = h, so that g is total and moreover g
is uniquely determined by f .

Lemma 2.6.1 Let f : A → B be any function and
suppose that f has a left inverse, g : B → A, and a
right inverse, h : B → A. Then, g = h and moreover,
g is unique, which means that if g� : B → A is any
function which is both a left and a right inverse of f ,
then g� = g.

This leads to the following definition.
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Definition 2.6.2 A function, f : A → B, is said to be
invertible iff there is a function, g : B → A, which is
both a left inverse and a right inverse, that is,

g ◦ f = idA and f ◦ g = idB.

In this case, we know that g is unique and it is denoted
f−1.

From the above discussion, if a function is invertible, then
it is both injective and surjective.

This shows that a function generally does not have an
inverse .

In order to have an inverse a function needs to be injective
and surjective, but this fails to be true for many functions.

It turns out that if a function is injective and surjective
then it has an inverse. We will prove this in the next
section.
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The notion of inverse can also be defined for relations,
but it is a somewhat weaker notion.

Definition 2.6.3 Given any relation, R ⊆ A × B, the
converse or inverse of R is the relation, R−1 ⊆ B × A,
defined by

R−1 = {�b, a� ∈ B × A | �a, b� ∈ R}.

In other words, R−1 is obtained by swapping A and B
and reversing the orientation of the arrows.

Figure 2.7 below shows the inverse of the relation of Fig-
ure 2.2:

1

a1

a2

a3

a4

a5

b1

b2

b3

b4

Figure 2.7: The inverse of the relation, R, from Figure 2.2
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Now, if R is the graph of a (partial) function, f , beware
that R−1 is generally not the graph of a function at all,
because R−1 may not be functional.

For example, the inverse of the graph G in Figure 2.3 is
not functional, see below:

1

a1

a2

a3

a4

a5

b1

b2

b3

b4

Figure 2.8: The inverse, G−1, of the graph of Figure 2.3

The above example shows that one has to be careful not
to view a function as a relation in order to take its inverse.

In general, this process does not produce a function. This
only works if the function is invertible.
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Given any two relations, R ⊆ A × B and S ⊆ B × C,
the reader should prove that

(R ◦ S)−1 = S−1 ◦R−1.

(Note the switch in the order of composition on the right
hand side.)

Similarly, if f : A → B and g : B → C are any two
invertible functions, then g ◦ f is invertible and

(g ◦ f )−1 = f−1 ◦ g−1.
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2.7 Injections, Surjections, Bijections, Permutations

We encountered injectivity and surjectivity in Section 2.6.
For the record, let us give

Definition 2.7.1 Given any function, f : A → B, we
say that f is injective (or one-to-one) iff for all a, b ∈ A,
if f (a) = f (b), then a = b, or equivalently, if a �= b, then
f (a) �= f (b).

We say that f is surjective (or onto) iff for every b ∈ B,
there is some a ∈ A so that b = f (a), or equivalently if
Im (f ) = B.

The function f is bijective iff it is both injective and
surjective. When A = B, a bijection f : A → A is called
a permutation of A.
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1

a

b

f(a) = f(b)A

B

Figure 2.9: A non-injective function

Remarks:

1. If A = ∅, then any function, f : ∅ → B is (trivially)
injective.

2. If B = ∅, then f is the empty function from ∅ to itself
and it is (trivially) surjective.

3. A function, f : A → B, is not injective iff there
exist a, b ∈ A with a �= b and yet f (a) = f (b), see
Figure 2.9.
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1

b

f
A

B

Im(f)

Figure 2.10: A non-surjective function

4. A function, f : A → B, is not surjective iff for
some b ∈ B, there is no a ∈ A with b = f (a), see
Figure 2.10.

5. Since Im f = {b ∈ B | (∃a ∈ A)(b = f (a))}, a func-
tion f : A → B is always surjective onto its image.

6. The notation f : A �→ B is often used to indicate that
a function, f : A → B, is an injection.
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7. If A �= ∅, a function, f : A → B, is injective iff for
every b ∈ B, there at most one a ∈ A such that
b = f (a).

8. If A �= ∅, a function, f : A → B, is surjective iff for
every b ∈ B, there at least one a ∈ A such that
b = f (a) iff f−1(b) �= ∅ for all b ∈ B.

9. If A �= ∅, a function, f : A → B, is bijective iff for
every b ∈ B, there is a unique a ∈ A such that
b = f (a).

10. When A is the finite set A = {1, . . . , n}, also denoted
[n], it is not hard to show that there are n! permuta-
tions of [n].
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The function, f1 : Z → Z, given by f1(x) = x + 1 is
injective and surjective.

However, the function, f2 : Z → Z, given by f2(x) = x2

is neither injective nor surjective (why?).

The function, f3 : Z → Z, given by f3(x) = 2x is injective
but not surjective.

The function, f4 : Z → Z, given by

f4(x) =
�
k if x = 2k
k if x = 2k + 1

is surjective but not injective.

Remark: The reader should prove that if A and B are
finite sets, A has m elements and B has n elements
(m ≤ n) then the set of injections from A to B has

n!

(n−m)!

elements.
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The following Theorem relates the notions of injectivity
and surjectivity to the existence of left and right inverses.

Theorem 2.7.2 Let f : A → B be any function and
assume A �= ∅.
(a) The function f is injective iff it has a left inverse,

g (i.e., a function g : B → A so that g ◦ f = idA).

(b) The function f is surjective iff it has a right in-
verse, h (i.e., a function h : B → A so that
f ◦ h = idB).

(c) The function f is invertible iff it is injective and
surjective.

The alert reader may have noticed a “fast turn” in the
proof of the converse in (b). Indeed, we constructed the
function h by choosing, for each b ∈ B, some element in
f−1(b). How do we justify this procedure from the axioms
of set theory?
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Well, we can’t! For this, we need another (historically
somewhat controversial) axiom, the axiom of choice .

This axiom has many equivalent forms. We state the
following form which is intuitively quite plausible:

Axiom of Choice (Graph Version).

For every relation, R ⊆ A×B, there is a partial function,
f : A → B, with graph(f ) ⊆ R and dom(f ) = dom(R).

We see immediately that the axiom of choice justifies the
existence of the function h in part (b) of Theorem 2.7.2.
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Remarks:

1. Let f : A → B and g : B → A be any two functions
and assume that

g ◦ f = idA.

Thus, f is a right inverse of g and g is a left inverse
of f . So, by Theorem 2.7.2 (a) and (b), we deduce
that f is injective and g is surjective. In particular,
this shows that any left inverse of an injection is a
surjection and that any right inverse of a surjection is
an injection.

2. Any right inverse, h, of a surjection, f : A → B, is
called a section of f (which is an abbreviation for
cross-section).

This terminology can be better understood as follows:
Since f is surjective, the preimage,
f−1(b) = {a ∈ A | f (a) = b} of any element b ∈ B
is nonempty.

Moreover, f−1(b1) ∩ f−1(b2) = ∅ whenever b1 �= b2.
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Therefore, the pairwise disjoint and nonempty sub-
sets, f−1(b), where b ∈ B, partition A.

We can think of A as a big “blob” consisting of the
union of the sets f−1(b) (called fibres) and lying over
B.

The function f maps each fibre, f−1(b) onto the ele-
ment, b ∈ B.

Then, any right inverse, h : B → A, of f picks out
some element in each fibre, f−1(b), forming a sort of
horizontal section of A shown as a curve in Figure
2.11.

1

f

f−1(b1)

h

B

A

b1 b2

h(b2)

Figure 2.11: A section, h, of a surjective function, f .
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3. Any left inverse, g, of an injection, f : A → B, is
called a retraction of f .

The terminology reflects the fact that intuitively, as
f is injective (thus, g is surjective), B is bigger than
A and since g ◦ f = idA, the function g “squeezes”
B onto A in such a way that each point b = f (a) in
Im f is mapped back to its ancestor a ∈ A. So, B is
“retracted” onto A by g.

Before discussing direct and inverse images, we define the
notion of restriction and extension of functions.

Definition 2.7.3 Given two functions, f : A → C and
g : B → C, with A ⊆ B, we say that f is the restriction
of g to A if graph(f ) ⊆ graph(g); we write f = g � A.
In this case, we also say that g is an extension of f to
B.
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2.8 Direct Image and Inverse Image

A function, f : X → Y , induces a function from 2X to 2Y

also denoted f and a function from 2Y to 2X , as shown
in the following definition:

Definition 2.8.1 Given any function, f : X → Y , we
define the function f : 2X → 2Y so that, for every subset
A of X ,

f (A) = {y ∈ Y | ∃x ∈ A, y = f (x)}.
The subset, f (A), of Y is called the direct image of
A under f , for short, the image of A under f . We
also define the function f−1 : 2Y → 2X so that, for every
subset B of Y ,

f−1(B) = {x ∈ X | ∃y ∈ B, y = f (x)}.
The subset, f−1(B), of X is called the inverse image of
B under f or the preimage of B under f .



2.8. DIRECT IMAGE AND INVERSE IMAGE 295

Remarks:

1. The overloading of notation where f is used both for
denoting the original function f : X → Y and the
new function f : 2X → 2Y may be slightly confusing.

If we observe that f ({x}) = {f (x)}, for all x ∈ X ,
we see that the new f is a natural extension of the old
f to the subsets of X and so, using the same symbol
f for both functions is quite natural after all.

To avoid any confusion, some authors (including En-
derton) use a different notation for f (A), for example,
f [[A]].

We prefer not to introduce more notation and we hope
that the context will make it clear which f we are
dealing with.
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2. The use of the notation f−1 for the function
f−1 : 2Y → 2X may even be more confusing, because
we know that f−1 is generally not a function from Y
to X .

However, it is a function from 2Y to 2X . Again, some
authors use a different notation for f−1(B), for exam-
ple, f−1[[A]]. We will stick to f−1(B).

3. The set f (A) is sometimes called the push-forward
of A along f and f−1(B) is sometimes called the
pullback of B along f .

4. Observe that f−1(y) = f−1({y}), where f−1(y) is the
preimage defined just after Definition 2.2.3.

5. Although this may seem counter-intuitive, the func-
tion f−1 has a better behavior than f with respect to
union, intersection and complementation.
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Proposition 2.8.2 Given any function, f : X → Y ,
the following properties hold:

(1) For any B ⊆ Y , we have

f (f−1(B)) ⊆ B.

(2) If f : X → Y is surjective, then

f (f−1(B)) = B.

(3) For any A ⊆ X, we have

A ⊆ f−1(f (A)).

(4) If f : X → Y is injective, then

A = f−1(f (A)).

The next proposition deals with the behavior of
f : 2X → 2Y and f−1 : 2Y → 2X with respect to union,
intersection and complementation.
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Proposition 2.8.3 Given any function, f : X → Y ,
the following properties hold:

(1) For all A,B ⊆ X, we have

f (A ∪ B) = f (A) ∪ f (B).

(2)
f (A ∩ B) ⊆ f (A) ∩ f (B).

Equality holds if f : X → Y is injective.

(3)
f (A)− f (B) ⊆ f (A− B).

Equality holds if f : X → Y is injective.
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(4) For all C,D ⊆ Y , we have

f−1(C ∪D) = f−1(C) ∪ f−1(D).

(5)
f−1(C ∩D) = f−1(C) ∩ f−1(D).

(6)
f−1(C −D) = f−1(C)− f−1(D).

As we can see from Proposition 2.8.3, the function
f−1 : 2Y → 2X has a better behavior than f : 2X → 2Y

with respect to union, intersection and complementation.
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2.9 Equinumerosity; The Pigeonhole Principle and the
Schröder–Bernstein Theorem

The notion of size of a set is fairly intuitive for finite sets
but what does it mean for infinite sets?

How do we give a precise meaning to the questions:

(a) Do X and Y have the same size?

(b) Does X have more elements than Y ?

For finite sets, we can rely on the natural numbers. We
count the elements in the two sets and compare the re-
sulting numbers.

If one of the two sets is finite and the other is infinite, it
seems fair to say that the infinite set has more elements
than the finite one.

But what if both sets are infinite?
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Remark: A critical reader should object that we have
not yet defined what a finite set is (or what an infinite set
is).

Indeed, we have not!

This can be done in terms of the natural numbers but,
for the time being, we will rely on intuition.

We should also point out that when it comes to infinite
sets, experience shows that our intuition fails us mis-
erably . So, we should be very careful.

Let us return to the case where we have two infinite sets.

For example, consider N and the set of even natural num-
bers, 2N = {0, 2, 4, 6, . . .}. Clearly, the second set is
properly contained in the first.



302 CHAPTER 2. RELATIONS, FUNCTIONS, PARTIAL FUNCTIONS

Does that make N bigger?

On the other hand, the function n �→ 2n is a bijection
between the two sets, which seems to indicate that they
have the same number of elements.

Similarly, the set of squares of natural numbers, Squares =
{0, 1, 4, 9, 16, 25, . . .} is properly contained inN and many
natural numbers are missing from Squares.

But, the map n �→ n2 is a bijection between N and
Squares, which seems to indicate that they have the same
number of elements.

A more extreme example is provided by N× N and N.
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Intuitively, N× N is two-dimensional and N is
one-dimensional, so N seems much smaller than N× N.

However, it is possible to construct bijections between
N×N and N (try to find one!). In fact, such a function,
J , has the graph partially showed below:

...
3 6 . . .

�
2 3 7 . . .

� �
1 1 4 8 . . .

� � �
0 0 2 5 9
0 1 2 3 . . .

The function J corresponds to a certain way of enumer-
ating pairs of integers.
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Note that the value of m + n is constant along each di-
agonal, and consequently, we have

J(m,n) = 1 + 2 + · · · + (m + n) +m,

= ((m + n)(m + n + 1) + 2m)/2,

= ((m + n)2 + 3m + n)/2.

For example,

J(2, 1) = ((2+1)2+3·2+1)/2 = (9+6+1)/2 = 16/2 = 8.

The function

J(m,n) =
1

2
((m + n)2 + 3m + n)

is a bijection but that’s not so easy to prove!

Perhaps even more surprising, there are bijections be-
tween N and Q. What about between R× R and R?
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Again, the answer is yes, but that’s harder to prove.

These examples suggest that the notion of bijection can
be used to define rigorously when two sets have the same
size.

This leads to the concept of equinumerosity.

Definition 2.9.1 A set A is equinumerous to a set B,
written A ≈ B, iff there is a bijection f : A → B.

We say that A is dominated by B, written A � B, iff
there is an injection from A to B.

Finally, we say that A is strictly dominated by B, writ-
ten A ≺ B, iff A � B and A �≈ B.
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Using the above concepts, we can give a precise definition
of finiteness.

Firstly, recall that for any n ∈ N, we defined [n] as the
set [n] = {1, 2, . . . , n}, with [0] = ∅.

Definition 2.9.2 A set, A, is finite if it is equinumerous
to a set of the form [n], for some n ∈ N. A set, A, is
infinite iff it is not finite. We say that A is countable (or
denumerable) iff A is dominated by N.

Two pretty results due to Cantor (1873) are given in the
next Theorem.

These are among the earliest results of set theory.
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We assume that the reader is familiar with the fact that
every number, x ∈ R, can be expressed in decimal ex-
pansion (possibly infinite).

For example,

π = 3.14159265358979 · · ·

Theorem 2.9.3 (Cantor’s Theorem) (a) The set, N,
is not equinumerous to the set, R, of real numbers.

(b) For every set, A, there is no surjection from A
onto 2A. Consequently, no set, A, is equinumerous to
its power set, 2A.

The proof of (a) uses a famous proof method due to Can-
tor and known as a diagonal argument .
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As there is an obvious injection of N into R, Theorem
2.9.3 shows that N is strictly dominated by R.

Also, as we have the injection a �→ {a} from A into 2A,
we see that every set is strictly dominated by its power
set.

So, we can form sets as big as we want by repeatedly
using the power set operation.

Remark: In fact, R is equinumerous to 2N, but we will
not prove this here.

The following proposition shows an interesting connec-
tion between the notion of power set and certain sets of
functions.

To state this proposition, we need the concept of charac-
teristic function of a subset.
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Given any set, X , for any subset, A, of X , define the
characteristic function of A, denoted χA, as the func-
tion, χA : X → {0, 1}, given by

χA(x) =
�
1 if x ∈ A
0 if x /∈ A.

In other words, χA tests membership in A: For any
x ∈ X , χA(x) = 1 iff x ∈ A.

Observe that we obtain a function, χ : 2X → {0, 1}X ,
from the power set of X to the set of characteristic func-
tions from X to {0, 1}, given by

χ(A) = χA.

We also have the function, S : {0, 1}X → 2X , mapping
any characteristic function to the set that it defines and
given by

S(f ) = {x ∈ X | f (x) = 1},
for every characteristic function, f ∈ {0, 1}X .
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Proposition 2.9.4 For any set, X, the function,
χ : 2X → {0, 1}X, from the power set of X to the set
of characteristic functions on X is a bijection whose
inverse is S : {0, 1}X → 2X.

In view of Proposition 2.9.4, there is a bijection between
the power set 2X and the set of functions in {0, 1}X .

If we write 2 = {0, 1}, then we see that the two sets looks
the same!

This is the reason why the notation 2X is often used for
the power set (but others prefer P(X)).

There are many other interesting results about equinu-
merosity. We only mention four more, all very important.
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Theorem 2.9.5 (Pigeonhole Principle) No set of the
form [n] is equinumerous to a proper subset of itself,
where n ∈ N,

Although the Pigeonhole Principle seems obvious, the
proof is not. In fact, the proof requires induction.

Corollary 2.9.6 (Pigeonhole Principle for finite sets)
No finite set is equinumerous to a proper subset of it-
self.

The pigeonhole principle is often used in the following
way:

If we have m distinct slots and n > m distinct objects
(the pigeons), then when we put all n objects into the m
slots, two objects must end up in the same slot.
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Figure 2.12: Johan Peter Gutav Lejeune Dirichlet, 1805-1859

This fact was apparently first stated explicitly by Dirich-
let in 1834. As such, it is also known as Dirichlet’s box
principle .

Let A be a finite set. Then, by definition, there is a
bijection, f : A → [n], for some n ∈ N.

We claim that such an n is unique.

If A is a finite set, the unique natural number, n ∈ N,
such that A ≈ [n] is called the cardinality of A and we
write |A| = n (or sometimes, card(A) = n).

Remark: The notion of cardinality also makes sense for
infinite sets.
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What happens is that every set is equinumerous to a spe-
cial kind of set (an initial ordinal) called a cardinal num-
ber but this topic is beyond the scope of this course.

Let us simply mention that the cardinal number of N is
denoted ℵ0 (say “aleph” 0).

Corollary 2.9.7 (a) Any set equinumerous to a proper
subset of itself is infinite.

(b) The set N is infinite.

The image of a finite set by a function is also a finite set.
In order to prove this important property we need the
following two propositions:

Proposition 2.9.8 Let n be any positive natural num-
ber, let A be any nonempty set and pick any element,
a0 ∈ A. Then there exists a bijection, f : A → [n+1],
iff there exists a bijection, g : (A− {a0}) → [n].
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Proposition 2.9.9 For any function, f : A → B, if
f is surjective and if A is a finite nonempty set, then
B is also a finite set and there is an injection,
h : B → A, such that f ◦ h = idB. Moreover,
|B| ≤ |A|.

Instead of using Theorem 2.7.2 (b), which relies on the
Axiom of Choice, the proof of Proposition 2.9.9 proceeds
by induction on the cardinality of A.

Corollary 2.9.10 For any function, f : A → B, if A
is a finite set, then the image, f (A), of f is also finite
and |f (A)| ≤ |A|.

Corollary 2.9.11 For any two sets, A and B, if B
is a finite set of cardinality n and is A is a proper
subset of B, then A is also finite and A has cardinality
m < n.

If A is an infinite set, then the image, f (A), is not finite
in general but we still have the following fact:
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Proposition 2.9.12 For any function, f : A → B,
we have f (A) � A, that is, there is an injection from
the image of f to A.

Here are two more important facts that follow from the
Pigeonhole Principle for finite sets and Proposition 2.9.9.

Proposition 2.9.13 Let A be any finite set. For any
function, f : A → A, the following properties hold:

(a) If f is injective, then f is a bijection.

(b) If f is surjective, then f is a bijection.

The proof of Proposition 2.9.13 is left as an exercise (use
Corollary 2.9.6 and Proposition 2.9.9).

Proposition 2.9.13 only holds for finite sets .

Indeed, just after the remarks following Definition 2.7.1
we gave examples of functions defined on an infinite set
for which Proposition 2.9.13 fails.
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A convenient characterization of countable sets is stated
below:

Proposition 2.9.14 A nonempty set, A, is countable
iff there is a surjection, g : N → A, from N onto A.

The following fact about infinite sets is also useful to
know:

Theorem 2.9.15 For every infinite set, A, there is
an injection from N into A.

The proof of Theorem 2.9.15 is actually quite tricky.

It requires a version of the axiom of choice and a subtle
use of the Recursion Theorem (Theorem 2.5.1).

The intuitive content of Theorem 2.9.15 is that N is the
“smallest” infinite set .

An immediate consequence of Theorem 2.9.15 is that ev-
ery infinite subset of N is equinumerous to N.
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Here is a characterization of infinite sets originally pro-
posed by Dedekind in 1888.

Proposition 2.9.16 A set, A, is infinite iff it is equinu-
merous to a proper subset of itself.

Let us give another application of the pigeonhole principle
involving sequences of integers.

Given a finite sequence, S, of integers, a1, . . . , an, a sub-
sequence of S is a sequence, b1, . . . , bm, obtained by
deleting elements from the original sequence and keep-
ing the remaining elements in the same order as they
originally appeared.

More precisely, b1, . . . , bm is a subsequence of a1, . . . , an if
there is an injection, g : {1, . . . ,m} → {1, . . . , n}, such
that bi = ag(i) for all i ∈ {1, . . . ,m} and i ≤ j implies
g(i) ≤ g(j) for all i, j ∈ {1, . . . ,m}.

For example, the sequence

1 9 10 8 3 7 5 2 6 4

contains the subsequence

9 8 6 4.
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An increasing subsequence is a subsequence whose el-
ements are in strictly increasing order and a decreas-
ing subsequence is a subsequence whose elements are in
strictly decreasing order.

For example, 9 8 6 4 is a decreasing subsequence of our
original sequence.

We now prove the following beautiful result due to Erdös
and Szekeres:

Theorem 2.9.17 (Erdös and Szekeres) Let n be any
nonzero natural number. Every sequence of n2 + 1
pairwise distinct natural numbers must contain either
an increasing subsequence or a decreasing subsequence
of length n + 1.

Remark: The proof is not constructive in the sense that
it does not produce the desired subsequence; it merely
asserts that such a sequence exists.
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Our next theorem is the historically famous Schröder-
Bernstein Theorem, sometimes called the “Cantor-Bernstein
Theorem.”

Cantor proved the theorem in 1897 but his proof used a
principle equivalent to the axiom of choice.

Schröder announced the theorem in an 1896 abstract. His
proof, published in 1898, had problems and he published
a correction in 1911.

The first fully satisfactory proof was given by Felix Bern-
stein and was published in 1898 in a book by Emile Borel.
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Figure 2.13: Georg Cantor, 1845-1918 (left), Ernst Schröder, 1841-1902 (middle left), Felix
Bernstein, 1878-1956 (middle right) and Emile Borel, 1871-1956 (right)

A shorter proof was given later by Tarski (1955) as a
consequence of his fixed point theorem. We postpone
giving this proof until the section on lattices (see Section
5.2).

Theorem 2.9.18 (Schröder-Bernstein Theorem) Given
any two sets, A and B, if there is an injection from
A to B and an injection from B to A, then there is
a bijection between A and B. Equivalently, if A � B
and B � A, then A ≈ B.

The Schröder-Bernstein Theorem is quite a remarkable
result and it is a main tool to develop cardinal arithmetic,
a subject beyond the scope of this course.
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Figure 2.14: Max August Zorn, 1906-1993

Our third theorem is perhaps the one that is the more
surprising from an intuitive point of view. If nothing else,
it shows that our intuition about infinity is rather poor.

Theorem 2.9.19 If A is any infinite set, then A×A
is equinumerous to A.

The proof is more involved than any of the proofs given
so far and it makes use of the axiom of choice in the form
known as Zorn’s Lemma (see Theorem 5.1.3).

In particular, Theorem 2.9.19 implies that R × R is in
bijection with R.

But, geometrically, R×R is a plane and R is a line and,
intuitively, it is surprising that a plane and a line would
have “the same number of points.”
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Nevertheless, that’s what mathematics tells us!

Our fourth theorem also plays an important role in the
theory of cardinal numbers.

Theorem 2.9.20 (Cardinal comparability) Given any
two sets, A and B, either there is an injection from
A to B or there is an injection from B to A (that is,
either A � B or B � A).

The proof requires the axiom of choice in a form known
as the Well-Ordering Theorem , which is also equivalent
to Zorn’s lemma. For details, see Enderton [5] (Chapters
6 and 7).
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Theorem 2.9.19 implies that there is a bijection between
the closed line segment

[0, 1] = {x ∈ R | 0 ≤ x ≤ 1}
and the closed unit square

[0, 1]× [0, 1] = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 1}

As an interlude, in the next section, we describe a famous
space-filling function due to Hilbert.

Such a function is obtained as the limit of a sequence of
curves that can be defined recursively.
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2.10 An Amazing Surjection: Hilbert’s Space Filling
Curve

In the years 1890-1891, Giuseppe Peano and David Hilbert
discovered examples of space filling functions (also called
space filling curves).

These are surjective functions from the line segment, [0, 1]
onto the unit square and thus, their image is the whole
unit square!

Such functions defy intuition since they seem to contra-
dict our intuition about the notion of dimension, a line
segment is one-dimensional, yet the unit square is two-
dimensional.

They also seem to contradict our intuitive notion of area.
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Figure 2.15: David Hilbert 1862-1943 and Waclaw Sierpinski, 1882-1969

Nevertheless, such functions do exist, even continuous
ones, although to justify their existence rigouroulsy re-
quires some tools from mathematical analysis.

Similar curves were found by others, among which we
mention Sierpinski, Moore and Gosper.

We will describe Hilbert’s scheme for constructing such a
square-filling curve.

We define a sequence, (hn), of polygonal lines,
hn : [0, 1] → [0, 1]×[0, 1], starting from the simple pattern
h0 (a “square cap” �) shown on the left in Figure 2.16.
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Figure 2.16: A sequence of Hilbert curves h0, h1, h2

The curve hn+1 is obtained by scaling down hn by a factor
of 1

2, and connecting the four copies of this scaled–down
version of hn obtained by rotating by π/2 (left lower part),
rotating by−π/2 and translating right (right lower part),
translating up (left upper part), and translating diago-
nally (right upper part), as illustrated in Figure 2.16.

It can be shown that the sequence (hn) converges (uni-
formly) to a continuous curve h : [0, 1] → [0, 1] × [0, 1]
whose trace is the entire square [0, 1]× [0, 1].
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Figure 2.17: The Hilbert curve h5

The Hilbert curve h is surjective, continuous, and nowhere
differentiable. It also has infinite length!

The curve h5 is shown in Figure 2.17.

You should try writing a computer program to plot these
curves!

By the way, it can be shown that no continuous square-
filling function can be injective.

It is also possible to define cube-filling curves and even
higher-dimensional cube-filling curves! (see some of the
web page links in the home page for CIS260)
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2.11 Strings, Multisets, Indexed Families

Strings play an important role in computer science and
linguistics because they are the basic tokens that lan-
guages are made of.

In fact, formal language theory takes the (somewhat crude)
view that a language is a set of strings (you will study
some formal language theory in CIS262).

A string is a finite sequence of letters, for example “Jean”,
“Val”, “Mia”, “math”, “gaga”, “abab”.

Usually, we have some alphabet in mind and we form
strings using letters from this alphabet.

Strings are not sets, the order of the letters matters:
“abab” and “baba” are different strings.
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What matters is the position of every letter. In the string
“aba”, the leftmost “a” is in position 1, “b” is in position
2 and the rightmost “b” is in position 3.

All this suggests defining strings as certain kinds of func-
tions whose domains are the sets [n] = {1, 2, . . . , n} (with
[0] = ∅) encountered earlier. Here is the very beginning
of the theory of formal languages.

Definition 2.11.1 An alphabet , Σ, is any finite set.

We often write Σ = {a1, . . . , ak}. The ai are called the
symbols of the alphabet.

Examples :

Σ = {a}

Σ = {a, b, c}

Σ = {0, 1}
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A string is a finite sequence of symbols. Technically, it is
convenient to define strings as functions.

Definition 2.11.2 Given an alphabet, Σ, a string over
Σ (or simply a string) of length n is any function

u : [n] → Σ.

The integer n is the length of the string, u, and it is
denoted by |u|. When n = 0, the special string,
u : [0] → Σ, of length 0 is called the empty string, or
null string , and is denoted by �.

Given a string, u : [n] → Σ, of length n ≥ 1, u(i) is the
i-th letter in the string u.
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For simplicity of notation, we denote the string u as

u = u1u2 . . . un,

with each ui ∈ Σ.

For example, if Σ = {a, b} and u : [3] → Σ is defined
such that u(1) = a, u(2) = b, and u(3) = a, we write

u = aba.

Strings of length 1 are functions u : [1] → Σ simply pick-
ing some element u(1) = ai in Σ.

Thus, we will identify every symbol ai ∈ Σ with the
corresponding string of length 1.



332 CHAPTER 2. RELATIONS, FUNCTIONS, PARTIAL FUNCTIONS

The set of all strings over an alphabet Σ, including the
empty string, is denoted as Σ∗.

Observe that when Σ = ∅, then
∅∗ = {�}.

When Σ �= ∅, the set Σ∗ is countably infinite. Later on,
we will see ways of ordering and enumerating strings.

Strings can be juxtaposed, or concatenated.

Definition 2.11.3 Given an alphabet, Σ, given two
strings, u : [m] → Σ and v : [n] → Σ, the concatenation,
u · v, (also written uv) of u and v is the string,
uv : [m + n] → Σ, defined such that

uv(i) =

�
u(i) if 1 ≤ i ≤ m,
v(i−m) if m + 1 ≤ i ≤ m + n.

In particular, u� = �u = u.
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It is immediately verified that

u(vw) = (uv)w.

Thus, concatenation is a binary operation on Σ∗ which is
associative and has � as an identity.

Note that generally, uv �= vu, for example for u = a and
v = b.

Definition 2.11.4 Given an alphabet Σ, given any two
strings u, v ∈ Σ∗ we define the following notions as fol-
lows:

u is a prefix of v iff there is some y ∈ Σ∗ such that

v = uy.

u is a suffix of v iff there is some x ∈ Σ∗ such that

v = xu.
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u is a substring of v iff there are some x, y ∈ Σ∗ such
that

v = xuy.

We say that u is a proper prefix (suffix, substring) of
v iff u is a prefix (suffix, substring) of v and u �= v.

For example, ga is a prefix of gallier, the string lier is a
suffix of gallier and all is a substring of gallier
Finally, languages are defined as follows.

Definition 2.11.5 Given an alphabet Σ, a language
over Σ (or simply a language) is any subset, L, of Σ∗.

The next step would be to introduce various formalisms
to define languages, such as automata or grammars but
you’ll have to take CIS262 to learn about these things!
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We now consider multisets. We already encountered mul-
tisets in Section 1.2 when we defined the axioms of propo-
sitional logic.

As for sets, in a multiset, the order of elements does
not matter , but as in strings, multiple occurrences of
elements matter.

For example,
{a, a, b, c, c, c}

is a multiset with two occurrences of a, one occurrence of
b and three occurrences of c.

This suggests defining a multiset as a function with range
N, to specify the multiplicity of each element.
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Definition 2.11.6 Given any set, S, a multiset, M ,
over S is any function, M : S → N. A finite multi-
set, M , over S is any function, M : S → N, such that
M(a) �= 0 only for finitely many a ∈ S. If
M(a) = k > 0, we say that a appears with mutiplicity
k in M .

For example, if S = {a, b, c}, we may use the notation
{a, a, a, b, c, c} for the multiset where a has multiplicity
3, b has multiplicity 1, and c has multiplicity 2.

The empty multiset is the function having the constant
value 0.

The cardinality |M | of a (finite) multiset is the number

|M | =
�

a∈S
M(a).
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Note that this is well-defined since M(a) = 0 for all but
finitely many a ∈ S. For example

|{a, a, a, b, c, c}| = 6.

We can define the union of multisets as follows: If M1

and M2 are two multisets, then M1 ∪M2 is the multiset
given by

(M1 ∪M2)(a) = M1(a) +M2(a), for all a ∈ S.

A multiset, M1, is a submultiset of a multiset, M2, if
M1(a) ≤ M2(a), for all a ∈ S.

The difference of M1 and M2 is the multiset, M1−M2,
given by

(M1−M2)(a) =

�
M1(a)−M2(a) if M1(a) ≥ M2(a)
0 if M1(a) < M2(a).

Intersection of multisets can also be defined but we will
leave this as an exercise.
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Let us now discuss indexed families.

The Cartesian product construct, A1 × A2 × · · · × An,
allows us to form finite indexed sequences, �a1, . . . , an�,
but there are situations where we need to have infinite
indexed sequences.

Typically, we want to be able to consider families of ele-
ments indexed by some index set of our choice, say I .

We can do this as follows:

Definition 2.11.7 Given any, X , and any other set, I ,
called the index set , the set of I-indexed families (or
sequences) of elements from X is the set of all functions,
A : I → X ; such functions are usually denoted
A = (Ai)i∈I .

When X is a set of sets, each Ai is some set in X and we
call (Ai)i∈I a family of sets (indexed by I).
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Observe that if I = [n] = {1, . . . , n}, then an I-indexed
family is just a string over X .

When I = N, an N-indexed family is called an infinite
sequence or often just a sequence .

In this case, we usually write (xn) for such a sequence
((xn)n∈N, if we want to be more precise).

Also, note that although the notion of indexed family may
seem less general than the notion of arbitrary collection
of sets, this is an illusion.

Indeed, given any collection of sets, X , we may choose
the set index set I to be X itself, in wich case X appears
as the range of the identity function, id : X → X .

The point of indexed families is that the operations of
union and intersection can be generalized in an interesting
way.
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We can also form infinite Cartesian products, which are
very useful in algebra and geometry.

Given any indexed family of sets, (Ai)i∈I , the union of
the family (Ai)i∈I , denoted

�
i∈I Ai, is simply the union

of the range of A, that is,
�

i∈I
Ai =

�
range(A) = {a | (∃i ∈ I), a ∈ Ai}.

Observe that when I = ∅, the union of the family is the
empty set.

When I �= ∅, we say that we have a nonempty family
(even though some of the Ai may be empty).

Similarly, if I �= ∅, then the intersection of the family,
(Ai)i∈I , denoted

�
i∈I Ai, is simply the intersection of the

range of A, that is,
�

i∈I
Ai =

�
range(A) = {a | (∀i ∈ I), a ∈ Ai}.
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Unlike the situation for union, when I = ∅, the intersec-
tion of the family does not exist. It would be the set of
all sets, which does not exist.

It is easy to see that the laws for union, intersection and
complementation generalize to families but we will leave
this to the exercises.

An important construct generalizing the notion of finite
Cartesian product is the product of families.

Definition 2.11.8 Given any family of sets, (Ai)i∈I ,
the product of the family (Ai)i∈I , denoted

�
i∈I Ai, is

the set
�

i∈I
Ai = {a : I →

�

i∈I
Ai | (∀i ∈ I), a(i) ∈ Ai}.

Definition 2.11.8 says that the elements of the product�
i∈I Ai are the functions, a : I →

�
i∈I Ai, such that

a(i) ∈ Ai for every i ∈ I .
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We denote the members of
�

i∈I Ai by (ai)i∈I and we
usually call them I-tuples .

When I = {1, . . . , n} = [n], the members of
�

i∈[n]Ai

are the functions whose graph consists of the sets of pairs

{�1, a1�, �2, a2�, . . . , �n, an�}, ai ∈ Ai, 1 ≤ i ≤ n,

and we see that the function

{�1, a1�, �2, a2�, . . . , �n, an�} �→ �a1, . . . , an�
yields a bijection between

�
i∈[n]Ai and the Cartesian

product A1 × · · · × An.

Thus, if each Ai is nonempty, the product
�

i∈[n]Ai is
nonempty. But what if I is infinite?

If I is infinite, we smell choice functions. That is, an
element of

�
i∈I Ai is obtained by choosing for every i ∈ I

some ai ∈ Ai.
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Indeed, the axiom of choice is needed to ensure that�
i∈I Ai �= ∅ if Ai �= ∅ for all i ∈ I ! For the record,

we state this version (among many!) of the axiom of
choice:

Axiom of Choice (Product Version)

For any family of sets, (Ai)i∈I , if I �= ∅ and Ai �= ∅ for
all i ∈ I , then

�
i∈I Ai �= ∅.

Given the product of a family of sets,
�

i∈I Ai, for each
i ∈ I , we have the function pri :

�
i∈I Ai → Ai, called

the ith projection function , defined by

pri((ai)i∈I) = ai.
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