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Chapter 1

Mathematical Reasoning, Proof
Principles and Logic

1.1 Problems, Motivations

Problem 1. Find formulae for the sums

1 + 2 + 3 + · · · + n = ?

12 + 22 + 32 + · · · + n2 = ?

13 + 23 + 33 + · · · + n3 = ?

· · · · · · · · · · · ·
1k + 2k + 3k + · · · + nk = ?

Jacob Bernoulli (1654-1705) discovered the formulae listed
below:
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If
Sk(n) = 1k + 2k + 3k + · · · + nk

then
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Is there a pattern?

What are the mysterious numbers
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The next two are

0 − 691

2730
Why?

It turns out that the answer has to do with the Bernoulli
polynomials , Bk(x), with

Bk(x) =
k�

i=0

�
k

i

�
xk−iBi,

where the Bi are the Bernoulli numbers .

There are various ways of computing the Bernoulli num-
bers, including some recurrence formulae.

Amazingly, the Bernoulli numbers show up in very differ-
ent areas of mathematics, in particular, algebraic topol-
ogy!
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Figure 1.1: Funny spheres (in 3D)

Figure 1.2: A plane (granite slab!)

Problem 2. Prove that a sphere and a plane in 3D have
the same number of points .

More precisely, find a one-to-one and onto mapping of the
sphere onto the plane (a bijection)

Actually, there are also bijections between the sphere and
a (finite) rectangle, with or without its boundary!
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Problem 3. Counting the number of derangements of
n elements.

A permutation of the set {1, 2, . . . , n} is any one-to-one
function, f , of {1, 2, . . . , n} into itself. A permutation is
characterized by its image: {f (1), f(2), . . . , f (n)}.

For example, {3, 1, 4, 2} is a permutation of {1, 2, 3, 4}.

It is easy to show that there are n! = n · (n− 1) · · · 3 · 2
distinct permutations of n elements.

A derangements is a permutation that leaves no element
fixed, that is, f (i) �= i for all i.

{3, 1, 4, 2} is a derangement of {1, 2, 3, 4} but
{3, 2, 4, 1} is not a derangement since 2 is left fixed.

What is the number of derangements , pn, of n elements?
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The number pn/n! can be interpreted as a probability .

Say n people go to a restaurant and they all check their
coat. Unfortunately, the cleck loses all the coat tags.
Then, pn/n! is the probability that nobody gets her or
his coat back!

Interestingly, pn/n! has limit 1
e ≈

1
3 as n goes to infinity,

a surprisingly large number.
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5 6 7 8 9

1 2 3 4

Figure 1.3: An undirected graph modeling a city map

Problem 4. Finding strongly connected components
in a directed graph.

The undirected graph of Figure 1.3 represents a map of
some busy streets in a city.

The city decides to improve the traffic by making these
streets one-way streets.

However, a good choice of orientation should allow one
to travel between any two locations. We say that the
resulting directed graph is strongly connected .
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1

16 17 18 19

10 11 12 13 14 15

5 6 7 8 9

1 2 3 4

Figure 1.4: A choice of one-way streets

A possibility of orienting the streets is shown in Figure
1.4.

Is the above graph strongly connected?

If not, how do we find its strongly connected compo-
nents?

How do we use the strongly connected components to find
an orientation that solves our problem?
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d2

d3

dn+1

card 1card 2

card n

Figure 1.5: Stack of overhanging cards

Problem 5. The maximum overhang problem.

How do we stack n cards on the edge of a table, respecting
the law of gravity, and achieving a maximum overhang.

We assume each card is 2 units long.

Is it possible to achieve any desired amount of overhang
or is there a fixed bound?

How many cards are needed to achieve an overhang of d
units?
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Problem 6. Ramsey Numbers

A version of Ramsey’s Theorem says that for every pair,
(r, s), of positive natural numbers, there is a least positive
natural number, R(r, s), such that for every coloring of
the edges of the complete (undirected) graph on R(r, s)
vertices using the colors blue and red , either there is a
complete subgraph with r vertices whose edges are all
blue or there is a complete subgraph with s vertices whose
edges are all red .

So, R(r, r), is the smallest number of vertices of a com-
plete graph whose edges are colored either blue or red
that must contain a complete subgraph with r vertices
whose edges are all of the same color.
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1

Figure 1.6: Left: A 2-coloring of K5 with no monochromatic K3; Right: A 2-coloring of K6

with several monochromatic K3’s

The graph shown in Figure 1.6 (left) is a complete graph
on 5 vertices with a coloring of its edges so that there is
no complete subgraph on 3 vertices whose edges are all
of the same color.

Thus, R(3, 3) > 5.

There are
215 = 32768

2-colored complete graphs on 6 vertices. One of these
graphs is shown in Figure 1.6 (right).

It can be shown that all of them contain a triangle whose
edges have the same color, so R(3, 3) = 6.
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The numbers, R(r, s), are called Ramsey numbers .

It turns out that there are very few numbers r, s for
which R(r, s) is known because the number of colorings
of a graph grows very fast! For example, there are

243×21 = 2903 > 102490 > 10270

2-colored complete graphs with 43 vertices, a huge num-
ber!

In comparison, the universe is only approximately 14 bil-
lions years old, namely 14× 109 years old.

For example, R(4, 4) = 18, R(4, 5) = 25, but R(5, 5) is
unknown, although it can be shown that
43 ≤ R(5, 5) ≤ 49.

Finding the R(r, s), or, at least some sharp bounds for
them, is an open problem.


