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Chapter 1

Mathematical Reasoning, Proof
Principles and Logic

1.1 Problems, Motivations

Problem 1. Find formulae for the sums

[ 4+243+-+n =7
12 +22 43+ 4n° =7
P+22 43+ 4nd =7

1P +28 43+t =7

Jacob Bernoulli (1654-1705) discovered the formulae listed
below:
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It
Sp(n) = 1" 428 435 ... 4 nf
then
So(n) = 1In
Si(n) = L]
i(n) = 5n S
1 1 1
Sa(n) = gn?’ +§n2 +6n
1 1 1
S3(n) = Zn4 +§n3 +Zn2
1 1 1 1
Sy(n) = 5715 +§n4 +§n3 — 3"
1 1 5 1
Ss(n) = 6n6 +§n5 +En4—ﬁn2
1 1 1 1 1
Se(n) = ?n7 +§n6 +§n5 6713 +on
1 1 7 7 1
S7(TL) = §n8 —|—§TL7 +En6—ﬂn4+ﬁn2
1 1 2 7 2 1
g _ 19 ts 47 o5 43 L
s(n) 9171 + %n + gn 175n + ?n 3??77,
S — — 10,4 =9 28 16 o4 92
o(n) 11071 +21n +45n 0" +5n 21071 r
Sip(n) = ﬁnll —|—§n10+6n9 —n" + 0 —§n3+6—06n

[s there a pattern?

What are the mysterious numbers

I 1 | 1 1
- = 0 —= 0 0 03?
2 6 30

1 — _
42 30 66
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The next two are
691

0 —
2730

Why?

It turns out that the answer has to do with the Bernoull:
polynomials, By(x), with

By(z) = zk: (f) "B

1=0

where the B* are the Bernoulli numbers.

There are various ways of computing the Bernoulli num-
bers, including some recurrence formulae.

Amazingly, the Bernoulli numbers show up in very differ-
ent areas of mathematics, in particular, algebraic topol-

ogy!
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Figure 1.2: A plane (granite slab!)

Problem 2. Prove that a sphere and a plane in 3D have
the same number of points.

More precisely, find a one-to-one and onto mapping of the
sphere onto the plane (a bijection)

Actually, there are also bijections between the sphere and
a (finite) rectangle, with or without its boundary!
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Problem 3. Counting the number of derangements of
n elements.

A permutation of the set {1,2,...,n} is any one-to-one
function, f, of {1,2,...,n} into itself. A permutation is
characterized by its image: {f(1), f(2),..., f(n)}.

For example, {3, 1, 4,2} is a permutation of {1,2,3,4}.

[t is easy to show that there are n!=n-(n—1)---3-2
distinct permutations of n elements.

A derangements is a permutation that leaves no element

fixed, that is, f(i) # 1 for all 7.

{3,1,4,2} is a derangement of {1,2, 3,4} but
{3,2,4,1} is not a derangement since 2 is left fixed.

What is the number of derangements, p,,, of n elements?
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The number p,/n! can be interpreted as a probability.

Say n people go to a restaurant and they all check their
coat. Unfortunately, the cleck loses all the coat tags.
Then, p,/n! is the probability that nobody gets her or
his coat back!

Interestingly, p,,/n! has limit é ~ : as n goes to infinity,

a surprisingly large number.

1
3
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Figure 1.3: An undirected graph modeling a city map

Problem 4. Finding strongly connected components
in a directed graph.

The undirected graph of Figure 1.3 represents a map of
some busy streets in a city.

The city decides to improve the traffic by making these
streets one-way streets.

However, a good choice of orientation should allow one
to travel between any two locations. We say that the
resulting directed graph is strongly connected.



14 CHAPTER 1. MATHEMATICAL REASONING, PROOF PRINCIPLES AND LOGIC

Figure 1.4: A choice of one-way streets

A possibility of orienting the streets is shown in Figure
1.4.

[s the above graph strongly connected?

If not, how do we find its strongly connected compo-
nents?’

How do we use the strongly connected components to find
an orientation that solves our problem?
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Figure 1.5: Stack of overhanging cards

Problem 5. The maximum overhang problem.

How do we stack n cards on the edge of a table, respecting
the law of gravity, and achieving a maximum overhang.

We assume each card is 2 units long.

[s it possible to achieve any desired amount of overhang
or is there a fixed bound?

How many cards are needed to achieve an overhang of d
units?
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Problem 6. Ramsey Numbers

A version of Ramsey’s Theorem says that for every pair,
(1, s), of positive natural numbers, there is a least positive
natural number, R(r,s), such that for every coloring of
the edges of the complete (undirected) graph on R(r, s)
vertices using the colors blue and red, either there is a
complete subgraph with »r vertices whose edges are all
blue or there is a complete subgraph with s vertices whose
edges are all red.

So, R(r,r), is the smallest number of vertices of a com-
plete graph whose edges are colored either blue or red
that must contain a complete subgraph with r vertices
whose edges are all of the same color.
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Figure 1.6: Left: A 2-coloring of K5 with no monochromatic Kj; Right: A 2-coloring of Kjg
with several monochromatic K3’s

The graph shown in Figure 1.6 (left) is a complete graph
on 5 vertices with a coloring of its edges so that there is
no complete subgraph on 3 vertices whose edges are all
of the same color.

Thus, R(3,3) > 5.

There are
215 — 39768

2-colored complete graphs on 6 vertices. One of these
graphs is shown in Figure 1.6 (right).

It can be shown that all of them contain a triangle whose
edges have the same color, so R(3,3) = 6.
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The numbers, R(r, s), are called Ramsey numbers.

It turns out that there are wvery few numbers r, s for
which R(r,s) is known because the number of colorings
of a graph grows very fast! For example, there are

243><21 _ 2903 > 102490 > 10270

2-colored complete graphs with 43 vertices, a huge num-
ber!

In comparison, the universe is only approximately 14 bil-
lions years old, namely 14 x 10° years old.

For example, R(4,4) = 18, R(4,5) = 25, but R(5,5) is
unknown, although it can be shown that
43 < R(5,5) < 49.

Finding the R(r,s), or, at least some sharp bounds for
them, is an open problem.



