CIS160
Mathematical Foundations of Computer Science
Some Notes

Jean Gallier
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

© Jean Gallier
Please, do not reproduce without permission of the author

December 15, 2009
Contents

1 Mathematical Reasoning, Proof Principles and Logic 7

1.1 Problems, Motivations 7

1.2 Inference Rules, Deductions, The Proof Systems $\mathcal{N}_m^\Rightarrow$ and $\mathcal{NG}_m^\Rightarrow$ 19

1.3 Adding \land, \lor, \bot; The Proof Systems $\mathcal{N}_c^\Rightarrow,\land,\lor,\bot$ and $\mathcal{NG}_c^\Rightarrow,\land,\lor,\bot$ 46

1.4 Clearing Up Differences Between Rules Involving \bot 71

1.5 De Morgan Laws and Other Rules of Classical Logic 80

1.6 Formal Versus Informal Proofs; Some Examples 85

1.7 Truth Values Semantics for Classical Logic 103

1.8 Adding Quantifiers; The Proof Systems $\mathcal{N}_c^\Rightarrow,\land,\lor,\forall,\exists,\bot$, $\mathcal{NG}_c^\Rightarrow,\land,\lor,\forall,\exists,\bot$ 113

1.9 First-Order Theories 148

1.10 Basics Concepts of Set Theory 166
2 Relations, Functions, Partial Functions 193
 2.1 What is a Function? 193
 2.2 Ordered Pairs, Cartesian Products, Relations, etc. 203
 2.3 Induction Principles on \(\mathbb{N} \) 219
 2.4 Composition of Relations and Functions 241
 2.5 Recursion on \(\mathbb{N} \) 245
 2.6 Inverses of Functions and Relations 250
 2.7 Injections, Surjections, Bijections, Permutations 258
 2.8 Direct Image and Inverse Image 268
 2.9 Equinumerosity; Pigeonhole Principle; Schröder–Bernstein 274
 2.10 An Amazing Surjection: Hilbert’s Space Filling Curve 298
 2.11 Strings, Multisets, Indexed Families 302

3 Graphs, Part I: Basic Notions 319
 3.1 Why Graphs? Some Motivations 319
 3.2 Directed Graphs 324
 3.3 Path in Digraphs; Strongly Connected Components 336
 3.4 Undirected Graphs, Chains, Cycles, Connectivity 362
 3.5 Trees and Arborescences 380

3.6 Minimum (or Maximum) Weight Spanning Trees ... 389

4 Some Counting Problems; Multinomial Coefficients 401

4.1 Counting Permutations and Functions ... 401
4.2 Counting Subsets of Size k; Multinomial Coefficients 407
4.3 Some Properties of the Binomial Coefficients ... 423
4.4 The Inclusion-Exclusion Principle ... 446

5 Partial Orders, Equivalence Relations, Lattices .. 459

5.1 Partial Orders .. 459
5.2 Lattices and Tarski’s Fixed Point Theorem .. 478
5.3 Well-Founded Orderings and Complete Induction .. 487
5.4 Unique Prime Factorization in \mathbb{Z} and GCD’s 502
5.5 Equivalence Relations and Partitions ... 521
5.6 Transitive Closure, Reflexive and Transitive Closure 533
5.7 Fibonacci and Lucas Numbers; Mersenne Primes ... 536
5.8 Distributive Lattices, Boolean Algebras, Heyting Algebras 570
Chapter 1

Mathematical Reasoning, Proof
Principles and Logic

1.1 Problems, Motivations

Problem 1. Find formulae for the sums

\[
1 + 2 + 3 + \cdots + n = ?
\]
\[
1^2 + 2^2 + 3^2 + \cdots + n^2 = ?
\]
\[
1^3 + 2^3 + 3^3 + \cdots + n^3 = ?
\]

\[
\vdots
\]
\[
1^k + 2^k + 3^k + \cdots + n^k = ?
\]

Jacob Bernoulli (1654-1705) discovered the formulae listed below:
If
\[S_k(n) = 1^k + 2^k + 3^k + \cdots + n^k \]
then
\[
\begin{align*}
S_0(n) &= 1n \\
S_1(n) &= \frac{1}{2}n^2 + \frac{1}{2}n \\
S_2(n) &= \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n \\
S_3(n) &= \frac{1}{4}n^4 + \frac{1}{3}n^3 + \frac{1}{4}n^2 \\
S_4(n) &= \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{30}n^3 - \frac{1}{30}n \\
S_5(n) &= \frac{1}{6}n^6 + \frac{1}{2}n^5 + \frac{1}{12}n^4 - \frac{1}{12}n^2 \\
S_6(n) &= \frac{1}{7}n^7 + \frac{1}{2}n^6 + \frac{1}{6}n^5 - \frac{1}{30}n^3 + \frac{1}{42}n \\
S_7(n) &= \frac{1}{8}n^8 + \frac{1}{2}n^7 + \frac{1}{12}n^6 - \frac{7}{24}n^4 + \frac{1}{12}n^2 \\
S_8(n) &= \frac{1}{9}n^9 + \frac{1}{2}n^8 + \frac{2}{3}n^7 - \frac{7}{15}n^5 + \frac{2}{9}n^3 - \frac{1}{30}n \\
S_9(n) &= \frac{1}{10}n^{10} + \frac{1}{2}n^9 + \frac{3}{4}n^8 - \frac{7}{10}n^6 + \frac{1}{2}n^4 - \frac{3}{20}n^2 \\
S_{10}(n) &= \frac{1}{11}n^{11} + \frac{1}{2}n^{10} + \frac{5}{6}n^9 - n^7 + n^5 - \frac{1}{2}n^3 + \frac{5}{66}n
\end{align*}
\]
Is there a pattern?

What are the mysterious numbers
\[
\begin{array}{ccccccccccc}
1 & 1 & 1 & 0 & - & 1 & 0 & 1 & 0 & - & 1 & 0 & 5 & ?
\end{array}
\]
The next two are
\[
0 \quad - \quad \frac{691}{2730}
\]
Why?

It turns out that the answer has to do with the *Bernoulli polynomials*, \(B_k(x) \), with

\[
B_k(x) = \sum_{i=0}^{k} \binom{k}{i} x^{k-i} B^i,
\]

where the \(B^i \) are the *Bernoulli numbers*.

There are various ways of computing the Bernoulli numbers, including some recurrence formulae.

Amazingly, the Bernoulli numbers show up in very different areas of mathematics, in particular, algebraic topology!
Problem 2. Prove that a sphere and a plane in 3D have the same number of points.

More precisely, find a one-to-one and onto mapping of the sphere onto the plane (a bijection).

Actually, there are also bijections between the sphere and a (finite) rectangle, with or without its boundary!
Problem 3. Counting the number of *derangements* of n elements.

A *permutation* of the set $\{1, 2, \ldots, n\}$ is any one-to-one function, f, of $\{1, 2, \ldots, n\}$ into itself. A permutation is characterized by its image: $\{f(1), f(2), \ldots, f(n)\}$.

For example, $\{3, 1, 4, 2\}$ is a permutation of $\{1, 2, 3, 4\}$.

It is easy to show that there are $n! = n \cdot (n - 1) \cdots 3 \cdot 2$ distinct permutations of n elements.

A *derangements* is a permutation that leaves no element fixed, that is, $f(i) \neq i$ for all i.

$\{3, 1, 4, 2\}$ is a derangement of $\{1, 2, 3, 4\}$ but $\{3, 2, 4, 1\}$ is *not* a derangement since 2 is left fixed.

What is the *number of derangements*, p_n, of n elements?
The number $p_n/n!$ can be interpreted as a *probability*.

Say n people go to a restaurant and they all check their coat. Unfortunately, the cleck loses all the coat tags. Then, $p_n/n!$ is the probability that nobody gets her or his coat back!

Interestingly, $p_n/n!$ has limit $\frac{1}{e} \approx \frac{1}{3}$ as n goes to infinity, a surprisingly large number.
Problem 4. Finding *strongly connected components* in a directed graph.

The undirected graph of Figure 1.3 represents a map of some busy streets in a city.

The city decides to improve the traffic by making these streets *one-way* streets.

However, a good choice of orientation should allow one to travel between any two locations. We say that the resulting directed graph is *strongly connected*.
A possibility of orienting the streets is shown in Figure 1.4.

Is the above graph strongly connected?

If not, how do we find its *strongly connected components*?

How do we use the strongly connected components to find an orientation that solves our problem?
1.1. PROBLEMS, MOTIVATIONS

Problem 5. The maximum overhang problem.

How do we stack n cards on the edge of a table, respecting the law of gravity, and achieving a maximum overhang.

We assume each card is 2 units long.

Is it possible to achieve any desired amount of overhang or is there a fixed bound?

How many cards are needed to achieve an overhang of d units?
Problem 6. **Ramsey Numbers**

A version of *Ramsey’s Theorem* says that for every pair, \((r, s)\), of positive natural numbers, there is a least positive natural number, \(R(r, s)\), such that for every coloring of the edges of the complete (undirected) graph on \(R(r, s)\) vertices using the colors *blue* and *red*, either there is a complete subgraph with \(r\) vertices whose edges are all *blue* or there is a complete subgraph with \(s\) vertices whose edges are all *red*.

So, \(R(r, r)\), is the smallest number of vertices of a complete graph whose edges are colored either *blue* or *red* that must contain a complete subgraph with \(r\) vertices whose edges are all of the same color.
The graph shown in Figure 1.6 (left) is a complete graph on 5 vertices with a coloring of its edges so that there is no complete subgraph on 3 vertices whose edges are all of the same color.

Thus, $R(3, 3) > 5$.

There are

$$2^{15} = 32768$$

2-colored complete graphs on 6 vertices. One of these graphs is shown in Figure 1.6 (right).

It can be shown that all of them contain a triangle whose edges have the same color, so $R(3, 3) = 6$.
CHAPTER 1. MATHEMATICAL REASONING, PROOF PRINCIPLES AND LOGIC

The numbers, $R(r, s)$, are called *Ramsey numbers*.

It turns out that there are *very few* numbers r, s for which $R(r, s)$ is known because the number of colorings of a graph grows very fast! For example, there are

$$2^{43 \times 21} = 2^{903} > 1024^{90} > 10^{270}$$

2-colored complete graphs with 43 vertices, a huge number!

In comparison, the universe is *only* approximately 14 billions years old, namely 14×10^9 years old.

For example, $R(4, 4) = 18$, $R(4, 5) = 25$, but $R(5, 5)$ is unknown, although it can be shown that $43 \leq R(5, 5) \leq 49$.

Finding the $R(r, s)$, or, at least some sharp bounds for them, is an *open problem*.