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As we mentioned at the begining, atomic propositions
may contain variables. The intention is that such vari-
ables correspond to arbitrary objects. An example is

human(x) ⇒ needs-to-drink(x).

Now, in mathematics, we usually prove universal state-
ments, that is statement that hold for all possible “ob-
jects”, or existential statement, that is, statement assert-
ing the existence of some object satisfying a given prop-
erty.

As we saw earlier, we assert that every human needs to
drink by writing the proposition

∀x(human(x) ⇒ needs-to-drink(x)).

Observe that once the quantifier ∀ (pronounced “for all”
or “for every”) is applied to the variable x, the variable x
becomes a place-holder and replacing x by y or any other
variable does not change anything.
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What matters is the locations to which the outer x points
to in the inner proposition. We say that x is a bound
variable (sometimes a “dummy variable”).

If we want to assert that some human needs to drink we
write

∃x(human(x) ⇒ needs-to-drink(x));

Again, once the quantifier ∃ (pronounced “there exists”)
is applied to the variable x, the variable x becomes a
place-holder.

However, the intended meaning of the second proposition
is very different and weaker than the first. It only asserts
the existence of some object satisfying the statement

human(x) ⇒ needs-to-drink(x).
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Statements may contain variables that are not bound by
quantifiers. For example, in

∀y parent(x, y)

the variable y is bound but the variable x is not.

Here, the intended meaning of parent(x, y) is that x is a
parent of y.

Variables that are not bound are called free. The propo-
sition

∀y∃x parent(x, y),

which contains only bound variables in meant to assert
that every y has some parent x.

Typically, in mathematics, we only prove statements
without free variables. However, statements with free
variables may occur during intermediate stages of a proof.
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The intuitive meaning of the statement ∀xP is that P
holds for all possible objects x and the intuitive meaning
of the statement ∃xP is that P holds for some object x.

Thus, we see that it would be useful to use symbols to
denote various objects.

For example, if we want to assert some facts about the
“parent” predicate, we may want to introduce some con-
stant symbols (for short, constants) such as “Jean”,
“Mia”, etc. and write

parent(Jean, Mia)

to assert that Jean is a parent of Mia.

Often, we also have to use function symbols (or oper-
ators, constructors), for instance, to write statement
about numbers: +, ∗, etc. Using constant symbols, func-
tion symbols and variables, we can form terms , such as

(x ∗ x + 1) ∗ (3 ∗ y + 2).
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In addition to function symbols, we also use predicate
symbols , which are names for atomic properties. We have
already seen several examples of predicate symbols: “hu-
man”, “parent”.

So, in general, when we try to prove properties of cer-
tain classes of objects (people, numbers, strings, graphs,
etc.), we assume that we have a certain alphabet consist-
ing of constant symbols, function symbols and predicate
symbols.

Using these symbols and an infinite supply of variables
(assumed distinct from the variables which we use to label
premises) we can form terms and predicate terms .

We say that we have a (logical) language. Using this
language, we can write compound statements.
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Let us be a little more precise. In a first-order language ,
L, in addition to the logical connectives,⇒,∧,∨,¬,⊥, ∀
and ∃, we have a set, L, of nonlogical symbols consisting
of

(i) A set CS of constant symbols, c1, c2, . . . ,.

(ii) A set FS of function symbols, f1, f2, . . . ,. Each func-
tion symbol, f , has a rank , nf ≥ 1, which is the
number of arguments of f .

(iii) A set PS of predicate symbols, P1, P2, . . . ,. Each
predicate symbol, P , has a rank , nP ≥ 0, which is
the number of arguments of P . Predicate symbols of
rank 0 are propositional letters, as in earlier sections.

(iv) The equality predicate, =, is added to our language
when we want to deal with equations.

(v) First-order variables, t1, t2, . . . , used to form quanti-
fied formulae.
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The difference between function symbols and predicate
symbols is that function symbols are interpreted as func-
tions defined on a structure (for example, addition, +, on
N), whereas predicate symbols are interpreted as proper-
ties of objects, that is, they take the value true or false.

An example is the language of Peano arithmetic,
L = {0, S, +, ∗, =}. Here, the intended structure is N, 0
is of course zero, S is interpreted as the function
S(n) = n+1, the symbol + is addition, ∗ is multiplication
and = is equality.

Using a first-order language, L, we can form terms, pred-
icate terms and formulae. The terms over L are the
following expressions:

(i) Every variable, t, is a term;

(ii) Every constant symbol, c ∈ CS, is a term;

(iii) If f ∈ FS is a function symbol taking n arguments
and τ1, . . . , τn are terms already constructed, then
f (τ1, . . . , τn) is a term.
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The predicate terms over L are the following expres-
sions:

(i) If P ∈ PS is a predicate symbol taking n argu-
ments and τ1, . . . , τn are terms already constructed,
then P (τ1, . . . , τn) is a predicate term. When n = 0,
the predicate symbol, P , is a predicate term called a
propositional letter.

(ii) When we allow the equality predicate, for any two
terms τ1 and τ2, the expression τ1 = τ2 is a predicate
term. It is usually called an equation.

The (first-order) formulae over L are the following ex-
pressions:

(i) Every predicate term, P (τ1, . . . , τn), is an atomic for-
mula. This includes all propositional letters. We also
view ⊥ (and sometimes �) as an atomic formula.

(ii) When we allow the equality predicate, every equation,
τ1 = τ2, is an atomic formula.

(iii) If P and Q are formulae already constructed, then
P ⇒ Q, P ∧Q, P ∨Q, ¬P are compound formulae.
We treat P ≡ Q as an abbreviation for
(P ⇒ Q) ∧ (Q ⇒ P ), as before.
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(iv) If P is a formula already constructed and t is any
variable, then ∀tP and ∃tP are compound formulae.

Unlike the rules for ⇒,∨,∧ and ⊥, which are rather
straightforward, the rules for quantifiers are more sub-
tle due the presence of variables (occurring in terms and
predicates).

We have to be careful to forbid inferences that would yield
“wrong” results and for this we have to be very precise
about the way we use free variables.

More specifically, we have to exercise care when we make
substitutions of terms for variables in propositions.

For example, say we have the predicate “odd”, intended
to express that a number is odd. Now, we can substitute
the term (2y + 1)2 for x in odd(x) and obtain

odd((2y + 1)2).
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More generally, if P (t1, t2, . . . , tn) is a statement contain-
ing the free variables t1, . . . , tn and if τ1, . . . , τn are terms,
we can form the new statement

P [τ1/t1, . . . , τn/tn]

obtained by substituting the term τi for all free occur-
rences of the variable ti, for i = 1, . . . , n.

By the way, we denote terms by the greek letter τ because
we use the letter t for a variable and using t for both
variables and terms would be confusing; sorry!

However, if P (t1, t2, . . . , tn) contains quantifiers, some
bad things can happen, namely, some of the variables
occurring in some term τi may become quantified when
τi is substituted for ti.
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For example, consider

∀x∃y P (x, y, z)

which contains the free variable z and substitute the term
x + y for z: we get

∀x∃y P (x, y, x + y).

We see that the variables x and y occurring in the term
x + y become bound variables after substitution. We say
that there is a “capture of variables”.

This is not what we intended to happen! To fix this
problem, we recall that bound variables are really place
holders, so they can be renamed without changing any-
thing.
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Therefore, we can rename the bound variables x and
y in ∀x∃y P (x, y, z) to u and v, getting the statement
∀u∃v P (u, v, z) and now, the result of the substitution is

∀u∃v P (u, v, x + y).

Finally, here are the inference rules for the quantifiers,
first stated in a natural deduction style and then in se-
quent style.

It is assumed that we use two disjoint sets of variables for
labeling premises (x, y, · · · ) and free variables (t, u, v, · · · ).

As we will see, the ∀-introduction rule and the ∃-elimination
rule involve a crucial restriction on the occurrences of cer-
tain variables. Remember, variables are terms !
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Definition 1.8.1 The inference rules for the quanti-
fiers are

∀-introduction:

If D is a deduction tree for P [u/t] from the premises, Γ,
then

Γ
D

P [u/t]

∀tP

is a deduction tree for ∀tP from the premises, Γ.

Here, u must be a variable that does not occur free in
any of the propositions in Γ or in ∀tP . The notation
P [u/t] stands for the result of substituting u for all free
occurrences of t in P .

Recall that Γ denotes the set of premises of the deduction
tree, D, so if D only has one node, then Γ = {P [u/t]}
and t should not occur in P .
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∀-elimination:

If D is a deduction tree for ∀tP from the premises, Γ,
then

Γ
D
∀tP

P [τ/t]

is a deduction tree for P [τ/t] from the premises, Γ.

Here τ is an arbitrary term and it is assumed that bound
variables in P have been renamed so that none of the
variables in τ are captured after substitution.
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∃-introduction:

If D is a deduction tree for P [τ/t] from the premises, Γ,
then

Γ
D

P [τ/t]

∃tP

is a deduction tree for ∃tP from the premises, Γ.

As in ∀-elimination, τ is an arbitrary term and the same
proviso on bound variables in P applies.
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∃-elimination:

If D1 is a deduction tree for ∃tP from the premises, Γ,
and if D2 is a deduction tree for C from the premises in
∆ ∪ {P [u/t]}, then

Γ
D1

∃tP

∆, P [u/t]x

D2

C
x

C

is a deduction tree of C from the set of premises in Γ∪∆.

Here, u must be a variable that does not occur free in
any of the propositions in ∆, ∃tP , or C, and all premises
P [u/t] labeled x are discharged.

In the ∀-introduction and the ∃-elimination rules, the
variable u is called the eigenvariable of the inference.
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In the above rules, Γ or ∆ may be empty, P, C denote
arbitrary propositions constructed from a first-order lan-
guage, L, D,D1,D2 are deductions, possibly a one-node
tree, and t is any variable.

The system of first-order classical logic, N⇒,∨,∧,⊥,∀,∃
c

is obtained by adding the above rules to the system of
propositional classical logic N⇒,∨,∧,⊥

c .

The system of first-order intuitionistic logic,N⇒,∨,∧,⊥,∀,∃
i

is obtained by adding the above rules to the system of
propositional intuitionistic logic N⇒,∨,∧,⊥

i .

Using sequents, the quantifier rules in first-order logic are
expressed as follows:
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Definition 1.8.2 The inference rules for the quanti-
fiers in Gentzen-sequent style are

Γ → P [u/t]

Γ → ∀tP (∀-intro)
Γ → ∀tP

Γ → P [τ/t]
(∀-elim)

where in (∀-intro), u does not occur free in Γ or ∀tP ;

Γ → P [τ/t]

Γ → ∃tP (∃-intro)

Γ → ∃tP z : P [u/t], Γ → C

Γ → C
(∃-elim)

where in (∃-elim), u does not occur free in Γ, ∃tP , or C.
Again, t is any variable.

The variable u is called the eigenvariable of the infer-
ence. The systems NG⇒,∨,∧,⊥,∀,∃

c and NG⇒,∨,∧,⊥,∀,∃
i are

defined from the systems NG⇒,∨,∧,⊥
c and NG⇒,∨,∧,⊥

i , re-
spectively, by adding the above rules.

The equivalence of the proof systems N⇒,∨,∧,⊥,∀,∃
c and

NG⇒,∨,∧,⊥,∀,∃
c (and the proof systems N⇒,∨,∧,⊥,∀,∃

i and
NG⇒,∨,∧,⊥,∀,∃

i ) is not hard but somewhat laborious to
prove.
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When we say that a proposition, P , is provable from
Γ, we mean that we can construct a proof tree whose
conclusion is P and whose set of premises is Γ, in one of
the systems N⇒,∧,∨,⊥,∀,∃

c or NG⇒,∧,∨,⊥,∀,∃
c .

Therefore, as in propositional logic, when we use the word
“provable” unqualified, we mean provable in classical
logic. Otherwise, we say intuitionistically provable .

A first look at the above rules shows that universal for-
mulae, ∀tP , behave somewhat like infinite conjunctions
and that existential formulae, ∃tP , behave somewhat like
infinite disjunctions.
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The ∀-introduction rule looks a little strange but the idea
behind it is actually very simple:

Since u is totally unconstrained, if P [u/t] is provable
(from Γ), then intuitively P [u/t] holds of any arbitrary
object, and so, the statement ∀tP should also be provable
(from Γ).

Note that the tree

P [u/t]

∀tP

is generally an illegal deduction because the deduction
tree above ∀tP is a one-node tree consisting of the single
premise, P [u/t], and u occurs in P [u/t] unless t does not
occur in P .
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The meaning of the ∀-elimination is that if ∀tP is prov-
able (from Γ), then P holds for all objects and so, in par-
ticular for the object denoted by the term τ , i.e., P [τ/t]
should be provable (from Γ).

The ∃-introduction rule is dual to the ∀-elimination rule.

If P [τ/t] is provable (from Γ), this means that the ob-
ject denoted by τ satisfies P , so ∃tP should be provable
(this latter formula asserts the existence of some object
satisfying P , and τ is such an object).

The ∃-elimination rule is reminiscent of the ∨-elimination
rule and is a little more tricky.
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It goes as follows: Suppose that we proved ∃tP (from Γ).
Moreover, suppose that for every possible case, P [u/t],
we were able to prove C (from Γ).

Then, as we have “exhausted” all possible cases and as
we know from the provability of ∃tP that some case must
hold, we can conclude that C is provable (from Γ) without
using P [u/t] as a premise.

Like the ∨-elimination rule, the ∃-elimination rule is not
very constructive. It allows making a conclusion (C) by
considering alternatives without knowing which one ac-
tually occurs.

Anagolously to disjunction, in (first-order) intuitionistic
logic, if an existential statement ∃tP is provable, then
from any proof of ∃tP , some term, τ , can be extracted
so that P [τ/t] is provable.
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Such a term, τ , is called a witness . The witness prop-
erty is not easy to prove. It follows from the fact that
intuitionistic proofs have a normal form.

However, no such property holds in classical logic (for
instance, see the ab rational with a, b irrational example
revisited below).

Here is an example of a proof in the system N⇒,∨,∧,⊥,∀,∃
c

(actually, in N⇒,∨,∧,⊥,∀,∃
i ) of the formula

∀t(P ∧Q) ⇒ ∀tP ∧ ∀tQ.

∀t(P ∧Q)x

P [u/t] ∧Q[u/t]

P [u/t]

∀tP

∀t(P ∧Q)x

P [u/t] ∧Q[u/t]

Q[u/t]

∀tQ
∀tP ∧ ∀tQ

x

∀t(P ∧Q) ⇒ ∀tP ∧ ∀tQ

In the above proof, u is a new variable, i.e., a variable
that does not occur free in P or Q.



136CHAPTER 1. MATHEMATICAL REASONING, PROOF PRINCIPLES AND LOGIC

We also have used some basic properties of substitutions
such as:

(P ∧Q)[τ/t] = P [τ/t] ∧Q[τ/t]

(P ∨Q)[τ/t] = P [τ/t] ∨Q[τ/t]

(P ⇒ Q)[τ/t] = P [τ/t] ⇒ Q[τ/t]

(¬P )[τ/t] = ¬P [τ/t]

(∀sP )[τ/t] = ∀sP [τ/t]

(∃sP )[τ/t] = ∃sP [τ/t],

for any term, τ , such that no variable in τ is captured dur-
ing the substitution (in particular, in the last two cases,
the variable s does not occur in τ ).

The reader should show that ∀tP ∧∀tQ ⇒ ∀t(P ∧Q) is
also provable in N⇒,∨,∧,⊥,∀,∃

i .

However, in general, one can’t just replace ∀ by ∃ (or ∧
by ∨) and still obtain provable statements. For example,
∃tP ∧ ∃tQ ⇒ ∃t(P ∧Q) is not provable at all!
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Here are some useful equivalences involving quantifiers.
The first two are analogous to the de Morgan laws for ∧
and ∨.

Proposition 1.8.3 The following equivalences are
provable in classical first-order logic:

¬∀tP ≡ ∃t¬P

¬∃tP ≡ ∀t¬P

∀t(P ∧Q) ≡ ∀tP ∧ ∀tQ
∃t(P ∨Q) ≡ ∃tP ∨ ∃tQ.

In fact, the last three and ∃t¬P ⇒ ¬∀tP are provable
intuitionistically. Moreover, the propositions
∃t(P ∧Q) ⇒ ∃tP ∧ ∃tQ and ∀tP ∨ ∀tQ ⇒ ∀t(P ∨Q)
are provable in intuitionistic first-order logic (and thus,
also in classical first-order logic).
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Remark: We can illustrate, again, the fact that classical
logic allows for non-constructive proofs by reexamining
the example at the end of Section 1.3.

There, we proved that if
√

2
√

2
is rational, then a =

√
2

and b =
√

2 are both irrational numbers such that ab is

rational and if
√

2
√

2
is irrational then a =

√
2
√

2
and b =√

2 are both irrational numbers such that ab is rational.

By ∃-introduction, we deduce that if
√

2
√

2
is rational

then there exist some irrational numbers a, b so that ab

is rational and if
√

2
√

2
is irrational then there exist some

irrational numbers a, b so that ab is rational.

In classical logic, as P ∨¬P is provable, by ∨-elimination,
we just proved that there exist some irrational numbers
a and b so that ab is rational.
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However, this argument does not give us explicitly num-
bers a and b with the required properties! It only tells us
that such numbers must exist.

Now, it turns out that
√

2
√

2
is indeed irrational (this fol-

lows from the Gel’fond-Schneider Theorem, a hard theo-
rem in number theory).

Furthermore, there are also simpler explicit solutions such
as a =

√
2 and b = log2 9, as the reader should check!

We conclude this section by giving an example of a “wrong
proof”.

Here is an example in which the ∀-introduction rule is
applied illegally, and thus, yields a statement which is
actually false (not provable).
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In the incorrect “proof” below, P is an atomic predicate
symbol taking two arguments (for example, “parent”) and
0 is a constant denoting zero:

P (t, 0)x
illegal step!

∀tP (t, 0)
x

P (t, 0) ⇒ ∀tP (t, 0)

∀t(P (t, 0) ⇒ ∀tP (t, 0))

P (0, 0) ⇒ ∀tP (t, 0)

The problem is that the variable t occurs free in the
premise P [t/t, 0] = P (t, 0) and therefore, the applica-
tion of the ∀-introduction rule in the first step is illegal.

However, note that this premise is discharged in the sec-
ond step and so, the application of the ∀-introduction rule
in the third step is legal.
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The (false) conclusion of this faulty proof is that
P (0, 0) ⇒ ∀tP (t, 0) is provable. Indeed, there are plenty
of properties such that the fact that the single instance,
P (0, 0), holds does not imply that P (t, 0) holds for all t.

Remark: The above example shows why it is desir-
able to have premises that are universally quantified. A
premise of the form ∀tP can be instantiated to P [u/t],
using ∀-elimination, where u is a brand new variable.

Later on, it may be possible to use ∀-introduction without
running into trouble with free occurrences of u in the
premises. But we still have to be very careful when we
use ∀-introduction or ∃-elimination.

Before concluding this section, let us give a few more ex-
amples of proofs using the rules for the quantifiers. First,
let us prove that

∀tP ≡ ∀uP [u/t],

where u is any variable not free in ∀tP and such that u
is not captured during the substitution.
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This rule allows us to rename bound variables (under very
mild conditions). We have the proofs

(∀tP )α

P [u/t]

∀uP [u/t]
α

∀tP ⇒ ∀uP [u/t]

and

(∀uP [u/t])α

P [u/t]

∀tP
α

∀uP [u/t] ⇒ ∀tP
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Now, we give a proof (intuitionistic) of

∃t(P ⇒ Q) ⇒ (∀tP ⇒ Q),

where t does not occur (free or bound) in Q.

(∃t(P ⇒ Q))z
(P [u/t] ⇒ Q)x

(∀tP )y

P [u/t]

Q
x

Q
y

∀tP ⇒ Q
z

∃t(P ⇒ Q) ⇒ (∀tP ⇒ Q)

In the above proof, u is a new variable that does not occur
in Q, ∀tP , or ∃t(P ⇒ Q). Since t does not occur in Q,
we have

(P ⇒ Q)[u/t] = P [u/t] ⇒ Q.

The converse requires (RAA) and is a bit more compli-
cated.
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To conclude, we give a proof (intuitionistic) of

(∀tP ∨Q) ⇒ ∀t(P ∨Q),

where t does not occur (free or bound) in Q.

(∀tP ∨Q)z

(∀tP )x

P [u/t]

P [u/t] ∨Q

∀t(P ∨Q)

Qy

P [u/t] ∨Q

∀t(P ∨Q)
x,y

∀t(P ∨Q)
z

(∀tP ∨Q) ⇒ ∀t(P ∨Q)

In the above proof, u is a new variable that does not occur
in ∀tP or Q. Since t does not occur in Q, we have

(P ∨Q)[u/t] = P [u/t] ∨Q.

The converse requires (RAA).
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Obviously, every first-order formula that is provable intu-
itionistically is also provable classically and we know that
there are formulae that are provable classically but not
provable intuitionistically.

Therefore, it appears that classical logic is more general
than intuitionistic logic.

However, this not not quite so because there is a way of
interpreting classical logic into intuitionistic logic.

To be more precise, every classical formula, A, can be
translated into a formula, A∗, where A∗ is classically
equivalent to A and A is provable classically iff A∗ is
provable intuitionistically.
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Various translations are known, all based on a “trick”
involving double-negation (This is because ¬¬¬A and
¬A are intuitionistically equivalent).

Translations were given Kolmogorov (1925), Gödel (1933)
and Gentzen (1933). For example, Gödel used the follow-
ing translation:

A∗ = ¬¬A, if A is atomic,

(¬A)∗ = ¬A∗,

(A ∧B)∗ = (A∗ ∧B∗),

(A ⇒ B)∗ = ¬(A∗ ∧ ¬B∗),

(A ∨B)∗ = ¬(¬A∗ ∧ ¬B∗),

(∀xA)∗ = ∀xA∗,

(∃xA)∗ = ¬∀x¬A∗.



1.8. ADDING QUANTIFIERS; THE PROOF SYSTEMS N⇒,∧,∨,∀,∃,⊥
C , NG⇒,∧,∨,∀,∃,⊥

C 147

Actually, if we restrict our attention to propositions (that
is, formulae without quantifiers), a theorem of Glivenko
(1929) states that if a proposition, A, is provable classi-
cally, then ¬¬A is provable intuitionistically.

In view of these results, the proponents of intuitionistic
logic claim that classical logic is really a special case of
intuitionistic logic!

However, the above translations have some undesirable
properties, as noticed by Girard. For more details on all
this, see Gallier [5].
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1.9 First-Order Theories

Nonempty sets of premises, Γ, are crucially needed if we
want to develop theories about various kinds of structures
and objects, such as the natural numbers, groups, rings,
fields, trees, graphs, sets, etc.

Indeed, we need to make definitions about the objects we
want to study and we need to state some axioms asserting
the main properties of these objects.

We do this by putting these definitions and axioms in Γ.

Actually, we have to allow Γ to be infinite but we still
require that our deduction trees are finite; they can only
use finitely many of the formulae in Γ.

We are then interested in all formulae, P , such that
∆ → P is provable, where ∆ is any finite subset of Γ;
the set of all such P ’s is called a theory (or first-order
theory).
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Of course we have the usual problem of consistency: If
we are not careful, our theory may be inconsistent, i.e.,
it may consist of all formulae.

Let us give two examples of theories.

Our first example is the theory of equality .

Given a language, L, with a given supply of constant,
function and predicate symbols, the theory of equality
consists of the following formulae taken as axioms:

∀x(x = x)

∀x1 · · · ∀xn∀y1 · · · ∀yn

[(x1 = y1 ∧ · · · ∧ xn = yn) ⇒ f (x1, . . . , xn) = f (y1, . . . , yn)]

∀x1 · · · ∀xn∀y1 · · · ∀yn

[(x1 = y1 ∧ · · · ∧ xn = yn) ∧ P (x1, . . . , xn) ⇒ P (y1, . . . , yn)],

for all function symbols (of n arguments) and all pred-
icate symbols (of n arguments), including the equality
predicate, =, itself.

It is not immediately clear from the above axioms that =
is symmetric and transitive but this can be shown easily.
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Our second example is the first-order theory of the natural
numbers known as Peano’s arithmetic (for short, PA).

Here, we have the constant 0 (zero), the unary function
symbol S (for successor function; the intended meaning
is S(n) = n + 1) and the binary function symbols + (for
addition) and ∗ (for multiplication).

In addition to the axioms for the theory of equality we
have the following axioms:

∀x¬(S(x) = 0)

∀x∀y(S(x) = S(y) ⇒ x = y)

∀x∀y(x + 0 = x)

∀x∀y(x + S(y) = S(x + y))

∀x∀y(x ∗ 0 = 0)

∀x∀y(x ∗ S(y) = x ∗ y + x)

[A(0) ∧ ∀x(A(x) ⇒ A(S(x)))] ⇒ ∀nA(n),

where A is any first-order formula with one free variable.
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This last axiom is the induction axiom . Observe how
+ and ∗ are defined recursively in terms of 0 and S and
that there are infinitely many induction axioms (count-
ably many).

Many properties that hold for the natural numbers (i.e.,
are true when the symbols 0, S, +, ∗ have their usual in-
terpretation and all variables range over the natural num-
bers) can be proved in this theory (Peano’s arithmetic),
but not all!

This is another very famous result of Gödel known as
Gödel’s incompleteness Theorem (1931).

However, the topic of incompleteness is definitely outside
the scope of this course, so we will not say anymore about
it.
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However, we feel that it should be intructive for the reader
to see how simple properties of the natural numbers can
be derived (in principle!) in Peano’s arithmetic.

First, it will be convenient to introduce abbreviations for
the terms of the form, Sn(0), which represent the natural
numbers.

Thus, we add a countable supply of constants, 0, 1, 2, 3, . . .,
to denote the natural numbers and add the axioms

n = Sn(0),

for all natural numbers, n. We will also write n + 1 for
S(n).

Let us illustrate the use of the quantifiers rules involv-
ing terms (∀-elimination and ∃-introduction) by proving
some simple properties of the natural numbers, namely,
being even or odd.
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We will also prove a property of the natural number
that we used before (in the proof that

√
2 is irrational),

namely, that every natural number is either even or
odd .

For this, we add the predicate symbols, “even” and “odd”,
to our language, and assume the following axioms defining
these predicates:

∀n(even(n) ≡ ∃k(n = 2 ∗ k))

∀n(odd(n) ≡ ∃k(n = 2 ∗ k + 1)).

Consider the term, 2 ∗ (m + 1) ∗ (m + 2) + 1, where m is
any given natural number. We would like to prove that

odd(2 ∗ (m + 1) ∗ (m + 2) + 1)

is provable in Peano arithmetic.
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As an auxiliary lemma, we first prove that

∀x odd(2 ∗ x + 1),

is provable in Peano arithmetic.

Let p be a variable not occurring in any of the axioms of
Peano arithmetic (the variable, p, stands for an arbitrary
natural number).

From the axiom,

∀n(odd(n) ≡ ∃k(n = 2 ∗ k + 1)),

by ∀-elimination where the term, 2 ∗ p + 1, is substituted
for the variable, n, we get

odd(2 ∗ p + 1) ≡ ∃k(2 ∗ p + 1 = 2 ∗ k + 1). (∗)
Now, we can think of the provable equation,

2 ∗ p + 1 = 2 ∗ p + 1,

as
(2 ∗ p + 1 = 2 ∗ k + 1)[p/k].
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So, by ∃-introduction, we can conclude that

∃k(2 ∗ p + 1 = 2 ∗ k + 1),

which, by (∗), implies that

odd(2 ∗ p + 1).

But now, since p is a variable not occurring free in the ax-
ioms of Peano arithmetic, by ∀-introduction, we conclude
that

∀x odd(2 ∗ x + 1).

Finally, if we use ∀-elimination where we substitute the
term, τ = (m + 1) ∗ (m + 2), for x, we get

odd(2 ∗ (m + 1) ∗ (m + 2) + 1),

as claimed.
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Now, we wish to prove the formula:

∀n(even(n) ∨ odd(n)).

We will use the induction principle of Peano’s arithmetic
with

A(n) = even(n) ∨ odd(n),

For the base case, n = 0, since 0 = 2 ∗ 0, (which can
be proved from the Peano’s axioms!), we see that even(0)
holds and so even(0) ∨ odd(0) is proved.

For n = 1, since 1 = 2 ∗ 0 + 1 (which can be proved
from the Peano’s axioms!), we see that odd(1) holds and
so even(1) ∨ odd(1) is proved.
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For the induction step, we may assume that A(n) has
been proved and we need to prove that A(n + 1) holds.

So, assume that even(n) ∨ odd(n) holds. We do a proof
by cases.

(a) If even(n) holds, by definition, this means that n = 2k
for some k and then, n + 1 = 2k + 1, which again, by
definition, means that odd(n + 1) holds and thus,
even(n + 1) ∨ odd(n + 1) holds.

(b) If odd(n) holds, by definition, this means that n =
2k + 1 for some k and then, n + 1 = 2k + 2 = 2(k + 1),
which again, by definition, means that even(n + 1) holds
and thus, even(n + 1) ∨ odd(n + 1) holds.

By ∨-elimination, we conclude that
even(n+1)∨odd(n+1) holds, establishing the induction
step.
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Therefore, using induction, we have proved that

∀n(even(n) ∨ odd(n)).

Actually, we know that even(n) and odd(n) are mutually
exclusive, which means that

∀n¬(even(n) ∧ odd(n))

holds, but how do we prove it?

We can do this using induction. For n = 0, the statement
odd(0) means that 0 = 2k + 1 = S(2k), for some k.

However, the first axiom of Peano’s arithmetic states that
S(x) �= 0 for all x, so we get a contradiction.

For the induction step, assume that ¬(even(n)∧ odd(n))
holds.
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We need to prove that ¬(even(n+1)∧ odd(n+1)) holds
and we can do this by using our constructive proof-by
contradiction rule.

So, assume that even(n + 1) ∧ odd(n + 1) holds. At this
stage, we realize that if we could prove that

∀n(even(n + 1) ⇒ odd(n)) (∗)
and

∀n(odd(n + 1) ⇒ even(n)) (∗∗)
then even(n + 1) ∧ odd(n + 1) would imply
even(n) ∧ odd(n), contradicting the assumption
¬(even(n) ∧ odd(n)).

Therefore, the proof will be complete if we can prove (∗)
and (∗∗).

Let’s consider the implication (∗) leaving the proof of (∗∗)
as an exercise.
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Assume that even(n + 1) holds. Then, n + 1 = 2k, for
some natural number, k. We can’t have k = 0 since
otherwise we would have n + 1 = 0, contradicting one of
the Peano’s axioms. But then, k is of the form k = h+1,
for some natural number, h, so

n + 1 = 2k = 2(h + 1) = 2h + 2 = (2h + 1) + 1.

By the second Peano axiom, we must have

n = 2h + 1,

which proves that n is odd, as desired.

In that last proof, we made implicit use of the fact that
every natural number, n, different from zero is of the
form n = m + 1, for some natural number, m, which is
formalized as

∀n((n �= 0) ⇒ ∃m(n = m + 1)).

This is easily proved by induction.
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Having done all this work, we have finally proved (∗) and
after proving (∗∗), we will have proved that

∀n¬(even(n) ∧ odd(n)).

It is also easy to prove that

∀n(even(n) ∨ odd(n))

and
∀n¬(even(n) ∧ odd(n))

together imply that

∀n(even(n) ≡ ¬odd(n)) and ∀n(odd(n) ≡ ¬even(n)),

are provable in Peano’s arithmetic, facts that we used
several times in Section 1.6.
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These examples of proofs in the theory of Peano’s arith-
metic illustrate the fact that constructing proofs in an
axiomatized theory is a very laborious and tedious pro-
cess.

Many small technical lemmas need to be established from
the axioms, which renders these proofs very lengthy and
often unintuitive.

It is therefore important to build up a database of useful
basic facts if we wish to prove, with a certain amount of
comfort, properties of objects whose properties are de-
fined by an axiomatic theory (such as the natural num-
bers).
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However, when in doubt, we can always go back to the
formal theory and try to prove rigorously the facts that we
are not sure about, even though this is usually a tedious
and painful process.

Human provers navigate in a “spectrum of formality”,
most of the time constructing informal proofs contain-
ing quite a few (harmless!) shortcuts, sometimes making
extra efforts to construct more formalized and rigorous
arguments if the need arises.

Now, what if the theory of Peano’s arithmetic was incon-
sistent! How do know that Peano’s arithmetic does not
imply any contradiction?
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This is an important and hard question that motivated a
lot of the work of Gentzen.

An easy answer is that the standard model , N, of the
natural numbers under addition and multiplication vali-
dates all the axioms of Peano’s’ arithmetic.

Therefore, if both P and ¬P could be proved from the
Peano axioms, then both P and ¬P would be true in N,
which is absurd.

To make all this rigorous, we need to define the notion
of truth in a structure, a notion which is explained in
every logic book.
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It should be noted that the constructivists will object to
the above method for showing the consistency of Peano’s
arithmetic, because it assumes that the infinite set, N,
exists as a completed entity.

Until further notice, we will have faith in the consistency
of Peano’s arithmetic (so far, no inconsistency has been
found).

Another very interesting theory is set theory . There are
a number of axiomatizations of set theory and we will
discuss one of them (ZF) very briefly in Section 1.10.


