
Chapter 3

Graphs, Part I: Basic Notions

3.1 Why Graphs? Some Motivations

Graphs are mathematical structures that have many ap-
plications to computer science, electrical engineering and
more widely to engineering as a whole, but also to sci-
ences such as biology, linguistics, and sociology, among
others.

For example, relations among objects can usually be en-
coded by graphs.

Whenever a system has a notion of state and a state
transition function, graph methods may be applicable.

319

320 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

16 17 18 19

10 11 12 13 14 15

5 6 7 8 9

1 2 3 4

Figure 3.1: An undirected graph modeling a city map

Certain problems are naturally modeled by undirected
graphs whereas others require directed graphs. Let us
give a concrete example.

Suppose a city decides to create a public-transportation
system.

The undirected graph of Figure 3.1 represents a map of
some busy streets in a city.

The city decides to improve the traffic by making these
streets one-way streets.

3.1. WHY GRAPHS? SOME MOTIVATIONS 321

1

16 17 18 19

10 11 12 13 14 15

5 6 7 8 9

1 2 3 4

Figure 3.2: A choice of one-way streets

The problem requires finding a directed graph, given an
undirected graph.

However, a good choice of orientation should allow one
to travel between any two locations. We say that the
resulting directed graph is strongly connected .

A possibility of orienting the streets is shown in Figure
3.2.

Did the engineers do a good job or are there locations
such that it is impossible to travel from one to the other
while respecting the one-way signs?

322 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Figure 3.3: Claude Berge, 1926-2002 (left) and Frank Harary, 1921-2005 (right)

There is a peculiar aspect of graph theory having to do
with its terminology.

Indeed, unlike most branches of mathematics, it appears
that the terminology of graph theory is not standardized,
yet.

This can be quite confusing to the beginner who has to
struggle with many different and often inconsistent terms
denoting the same concept, one of the worse being the
notion of a path.

Our attitude has been to use terms that we feel are as
simple as possible.

3.1. WHY GRAPHS? SOME MOTIVATIONS 323

Many books begin by discussing undirected graphs and
introduce directed graph only later on.

We disagree with this approach.

Indeed, we feel that the notion of a directed graph is more
fundamental than the notion of an undirected graph.

For one thing, a unique undirected graph is obtained from
a directed graph by forgetting the direction of the arcs,
whereas there are many ways of orienting an undirected
graph.

Also, in general, we believe that most definitions about
directed graphs are cleaner than the corresponding ones
for undirected graphs (for instance, we claim that the
definition of a directed graph is simpler than the definition
of an undirected graph, and similarly for paths).

324 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

3.2 Directed Graphs

Informally, a directed graph consists of a set of nodes
together with a set of oriented arcs (also called edges)
between these nodes.

Every arc has a single source (or initial point) and a single
target (or endpoint), both of which are nodes.

There are various ways of formalizing what a directed
graph is and some decisions must be made. Two issues
must be confronted:

1. Do we allow “loops,” that is, arcs whose source and
target are identical?

2. Do we allow “parallel arcs,” that is distinct arcs hav-
ing the same source and target?

Since every binary relation on a set can be represented as
a directed graph with loops, our definition allows loops.

3.2. DIRECTED GRAPHS 325

Since the directed graphs used in automata theory must
accomodate parallel arcs (usually labeled with different
symbols), our definition also allows parallel arcs.

Before giving a formal definition, let us say that graphs
are usually depicted by drawings (graphs!) where the
nodes are represented by circles containing the node name
and oriented line segments labeled with their arc name
(see Figure 3.4).

Definition 3.2.1 A directed graph (or digraph) is a
quadruple, G = (V, E, s, t), where V is a set of nodes or
vertices , E is a set of arcs or edges and s, t : E → V
are two functions, s being called the source function and
t the target function . Given an edge e ∈ E, we also call
s(e) the origin or source of e, and t(e) the endpoint or
target of e.

If the context makes it clear that we are dealing only with
directed graphs, we usually say simply “graph” instead of
“directed graph”.

326 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

A directed graph, G = (V, E, s, t), is finite iff both V
and E are finite. In this case, |V |, the number of nodes
of G is called the order of G.

Example: Let G1 be the directed graph defined such
that

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9},
V = {v1, v2, v3, v4, v5, v6}, and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5, s(e9) = v6

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6, t(e9) = v4.

The graph G1 is represented by the diagram shown in
Figure 3.4.

3.2. DIRECTED GRAPHS 327

1

v1 v2

v3

v4

v5 v6

e7

e8

e9

e1

e2

e3

e4

e5

e6

Figure 3.4: A directed graph, G1

It should be noted that there are many different ways of
“drawing” a graph.

328 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Obviously, we would like as much as possible to avoid
having too many intersecting arrows but this is not always
possible if we insist in drawing a graph on a sheet of paper
(on the plane).

Definition 3.2.2 Given a directed graph, G, an edge,
e ∈ E, such that s(e) = t(e) is called a loop (or self-
loop). Two edges, e, e� ∈ E are said to be parallel edges
iff s(e) = s(e�) and t(e) = t(e�). A directed graph is
simple iff it has no parallel edges.

3.2. DIRECTED GRAPHS 329

Remarks:

1. The functions s, t need not be injective or surjective.
Thus, we allow “isolated vertices”, that is, vertices
that are not the source or the target of any edge.

2. When G is simple, every edge, e ∈ E, is uniquely
determined by the ordered pair of vertices, (u, v), such
that u = s(e) and v = t(e).

In this case, we may denote the edge e by (uv) (some
books also use the notation uv).

Also, a graph without parallel edges can be defined
as a pair, (V, E), with E ⊆ V × V . In other words,
a simple graph is equivalent to a binary relation on
a set (E ⊆ V × V). This definition is often the one
used to define directed graphs.

3. Given any edge, e ∈ E, the nodes s(e) and t(e) are
often called the boundaries of e and the expression
t(e)− s(e) is called the boundary of e.

330 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

v4

v5 v3

v1 v2

Figure 3.5: A directed graph, G2

4. Given a graph, G = (V, E, s, t), we may also write
V (G) for V and E(G) for E. Sometimes, we even
drop s and t and write simply G = (V, E) instead of
G = (V, E, s, t).

5. Some authors define a simple graph to be a graph
without loops and without parallel edges.

Observe that the graph G1 has the loop e6 and the two
parallel edges e7 and e8.

When we draw pictures of graphs, we often omit the edge
names (sometimes even the node names) as illustrated in
Figure 3.5.

3.2. DIRECTED GRAPHS 331

Definition 3.2.3 Given a directed graph, G, for any
edge e ∈ E, if u = s(e) and v = t(e), we say that

(i) The nodes u and v are adjacent

(ii) The nodes u and v are incident to the arc e

(iii) The arc e is incident to the nodes u and v

(iv) Two edges, e, e� ∈ E are adjacent if they are incident
to some common node (that is, either s(e) = s(e�) or
t(e) = t(e�) or t(e) = s(e�) or s(e) = t(e�)).

For any node, u ∈ V , set

(a) d+
G(u) = |{e ∈ E | s(e) = u}| , the outer half-degree

or outdegree of u

(b) d−G(u) = |{e ∈ E | t(e) = u}| , the inner half-degree
or indegree of u

(c) dG(u) = d+
G(u) + d−G(u) , the degree of u.

A graph is regular iff every node has the same degree.

332 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Note that d+
G (respectively d−G(u)) counts the number of

arcs “coming out from u”, that is, whose source is u (resp.
counts the number of arcs “coming into u”, that is, whose
target is u). For example, in the graph of Figure 3.5,
d+

G2
(v1) = 2, d−G2

(v1) = 1, d+
G2

(v5) = 2, d−G2
(v5) = 4,

d+
G2

(v3) = 2, d−G2
(v3) = 2. Neither G1 nor G2 are regular

graphs.

The first result of graph theory is the following simple but
very useful proposition:

Proposition 3.2.4 For any finite graph,
G = (V, E, s, t), we have

�

u∈V

d+
G(u) =

�

u∈V

d−G(u).

Corollary 3.2.5 For any finite graph, G = (V, E, s, t),
we have �

u∈V

dG(u) = 2|E|,

that is, the sum of the degrees of all the nodes is equal
to twice the number of edges.

3.2. DIRECTED GRAPHS 333

Corollary 3.2.6 For any finite graph, G = (V, E, s, t),
there is an even number of nodes with an odd degree.

The notion of homomorphism and isomorphism of graphs
is fundamental.

Definition 3.2.7 Given two directed graphs,
G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2), a
homomorphism (or morphism), f : G1 → G2, from G1

to G2 is a pair, f = (fv, fe), with fv : V1 → V2 and
fe : E1 → E2 preserving incidence, that is, for every edge,
e ∈ E1, we have

s2(f
e(e)) = fv(s1(e)) and t2(f

e(e)) = fv(t1(e)).

These conditions can also be expressed by saying that the
following two diagrams commute:

E1
fe

��

s1
��

E2
s2

��

V1 fv
�� V2

E1
fe

��

t1
��

E2
t2

��

V1 fv
�� V2.

334 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Given three graphs, G1, G2, G3 and two homomorphisms,
f : G1 → G2 and g : G2 → G3, with f = (fv, fe) and
g = (gv, ge), it is easily checked that (gv ◦ fv, ge ◦ fe) is
a homomorphism from G1 to G3.

The homomorphism (gv ◦ fv, ge ◦ fe) is denoted g ◦ f .

Also, for any graph, G, the map idG = (idV , idE) is a ho-
momorphism called the identity homomorphism. Then,
a homomorphism, f : G1 → G2, is an isomorphism iff
there is a homomorphism, g : G2 → G1, such that

g ◦ f = idG1 and f ◦ g = idG2.

In this case, g is unique and it is called the inverse of f
and denoted f−1. If f = (fv, fe) is an isomorphism, we
see immediately that fv and fe are bijections.

Checking whether two finite graphs are isomorphic is not
as easy as it looks.

3.2. DIRECTED GRAPHS 335

1

v4 v5 v6

v1 v2 v3

G3 :

w4

w5

w6

w1

w2

w3

G4 :

Figure 3.6: Two isomorphic graphs, G3 and G4

In fact, no general efficient algorithm for checking graph
isomorphism is known at this time and determining the
exact complexity of this problem is a major open ques-
tion in computer science.

For example, the graphs G3 and G4 shown in Figure 3.6
are isomorphic.

The bijection fv is given by fv(vi) = wi, for i = 1, . . . , 6
and the reader will easily figure out the bijection on arcs.
As we can see, isomorphic graphs can look quite different.

336 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

3.3 Paths in Digraphs; Strongly Connected Compo-
nents

Many problems about graphs can be formulated as path
existence problems.

Given a directed graph, G, intuitively, a path from a node
u to a node v is a way to travel from u in v by following
edges of the graph that “link up correctly”.

Unfortunately, if we look up the definition of a path in two
different graph theory books, we are almost guaranteed
to find different and usually clashing definitions!

The terminology that we have chosen may not be stan-
dard, but it is used by a number of authors (some very
distinguished, for example, Fields medalists!) and we be-
lieve that it is less taxing on one’s memory (however, this
point is probably the most debatable).

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 337

Definition 3.3.1 Given any digraph, G = (V, E, s, t),
and any two nodes, u, v ∈ V , a path from u to v is a
triple, π = (u, e1 · · · en, v), where n ≥ 1 and e1 · · · en is
a sequence of edges, ei ∈ E (i.e., a nonempty string in
E∗), such that

s(e1) = u; t(en) = v; t(ei) = s(ei+1), 1 ≤ i ≤ n− 1.

We call n the length of the path π and we write |π| = n.
When n = 0, we have the null path, (u, �, u), from u to
u (recall, � denotes the empty string); the null path has
length 0. If u = v, then π is called a closed path, else an
open path.

The path, π = (u, e1 · · · en, v), determines the sequence
of nodes, nodes(π) = �u0, . . . , un�, where u0 = u,
un = v and ui = t(ei), for 1 ≤ i ≤ n. We also set
nodes((u, �, u)) = �u, u�.

A path, π = (u, e1 · · · en, v), is edge-simple, for short,
e-simple iff ei �= ej for all i �= j (i.e., no edge in the path
is used twice).

A path, π, from u to v is simple iff no vertex in nodes(π)
occurs twice, except possibly for u if π is closed.

338 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Equivalently, if nodes(π) = �u0, . . . , un�, then π is simple
iff either

1. ui �= uj for all i, j with i �= j and 0 ≤ i, j ≤ n, or π
is closed i.e, u0 = un, in which case

2. ui �= u0 (= un) for all i with 1 ≤ i ≤ n − 1, and
ui �= uj for all i, j with i �= j and 1 ≤ i, j ≤ n− 1.

The null path, (u, �, u), is considered e-simple and simple.

Remarks:

1. Other authors (such as Harary [?]) use the term walk
for what we call a path. These authors also use the
term trail for what we call an e-simple path and the
term path for what we call a simple path. We decided
to adopt the term “simple path” because it is preva-
lent in the computer science literature. However, note
that Berge [?] and Sakarovitch [?] use the locution el-
ementary path instead of simple path.

2. If a path, π, from u to v is simple, then every every
node in the path occurs once except possibly u if u =
v so, every edge in π occurs exactly once. Therefore,
every simple path is an e-simple path.

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 339

3. If a digraph is not simple, then even if a sequence
of nodes is of the form nodes(π) for some path, that
sequence of nodes does not uniquely determine a path.

For example, in the graph of Figure 3.7, the sequence
�v2, v5, v6� corresponds to the two distinct paths
(v2, e5e7, v6) and (v2, e5e8, v6).

340 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

v1 v2

v3

v4

v5 v6

e7

e8

e9

e1

e2

e3

e4

e5

e6

Figure 3.7: A path in a directed graph, G1

In the graph G1 from Figure 3.7,

(v2, e5e7e9e4e5e8, v6)

is a path from v2 to v6 which is neither e-simple nor sim-
ple.

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 341

1

v1 v2

v3

v4

v5 v6

e7

e8

e9

e1

e2

e3

e4

e5

e6

Figure 3.8: An e-simple path in a directed graph, G1

The path
(v2, e2e3e4e5, v5)

is an e-simple path from v2 to v5 which is not simple and

342 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

v1 v2

v3

v4

v5 v6

e7

e8

e9

e1

e2

e3

e4

e5

e6

Figure 3.9: Simple paths in a directed graph, G1

(v2, e5e7e9, v4), (v2, e5e7e9e4, v2)

are simple paths, the first one open and the second one
closed.

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 343

Recall the notion of subsequence of a sequence defined
just before stating Theorem 2.9.17.

Then, if π = (u, e1 · · · en, v) is any path from u to v in a
digraph, G, a subpath of π is any path π� = (u, e�1 · · · e�m, v)
such that e�1, . . . , e

�
m is a subsequence of e1, . . . , en. The

following simple proposition is actually very important:

Proposition 3.3.2 Let G be any digraph. (a) For
any two nodes, u, v, in G, every non-null path, π,
from u to v contains a simple non-null subpath.

(b) If |V | = n, then every open simple path has length
at most n− 1 and every closed simple path has length
at most n.

Like strings, paths can be concatenated.

344 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Definition 3.3.3 Two paths, π = (u, e1 · · · em, v) and
π� = (u�, e�1 · · · e�n, v�) in a digraph G can be concatenated
iff v = u� in which case their concatenation, ππ�, is the
path

ππ� = (u, e1 · · · eme�1 · · · e�n, v�).
We also let

(u, �, u)π = π = π(v, �, v).

Concatenation of paths is obviously associative and ob-
serve that |ππ�| = |π| + |π�|.

Definition 3.3.4 Let G = (V, E, s, t) be a digraph. We
define the binary relation, �CG, on V as follows: For all
u, v ∈ V ,

u �CGv

iff there is a path from u to v and there is a path from v
to u.

When u �CGv, we say that u and v are strongly con-
nected .

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 345

The relation �CG is what is called an equivalence relation.
The notion of an equivalence relation is discussed exten-
sively in Chapter 5 (Section 5.5) but because it is a very
important concept, we explain briefly what it is right now.

Repeating Definition 5.5.1, a binary relation, R, on a set,
X , is an equivalence relation iff it is reflexive, transitive
and symmetric, that is:

(1) (Reflexivity): aRa, for all a ∈ X ;

(2) (Transitivity): If aRb and bRc, then aRc, for all
a, b, c ∈ X .

(3) (symmetry): If aRb, then bRa, for all a, b ∈ X .

The main property of equivalence relations is that they
partition the set X into nonempty, pairwise disjoint sub-
sets called equivalence classes:

346 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

For any x ∈ X , the set

[x]R = {y ∈ X | xRy}
is the equivalence class of x.

Each equivalence class, [x]R, is also denoted xR and the
subscript R is often omitted when no confusion arises.

For the reader’s convenience, we repeat Proposition 5.5.3:

Let R be an equivalence relation on a set, X. For any
two elements x, y ∈ X, we have

xRy iff [x] = [y].

Moreover, the equivalences classes of R satisfy the fol-
lowing properties:

(1) [x] �= ∅, for all x ∈ X;

(2) If [x] �= [y] then [x] ∩ [y] = ∅;
(3) X =

�
x∈X [x].

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 347

The relation �CG is reflexive because we have the null path
from u to u, symmetric by definition, and transitive be-
cause paths can be concatenated.

The equivalence classes of the relation �CG are called the
strongly connected components of G (SCC’s).

A graph is strongly connected iff it has a single strongly
connected component.

348 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

v1 v2

v3

v4

v5 v6

e7

e8

e9

e1

e2

e3

e4

e5

e6

Figure 3.10: A directed graph, G1, with two SCC’s

For example, we see that the graph, G1, of Figure 3.10
has two strongly connected components

{v1}, {v2, v3, v4, v5, v6},
since there is a closed path

(v4, e4e2e3e4e5e7e9, v4).

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 349

1

v4

v5 v3

v1 v2

Figure 3.11: A strongly connected directed graph, G2

The graph G2 of Figure 3.11 is strongly connected.

Let us give a simple algorithm for computing the strongly
connected components of a graph since this is often the
key to solving many problems.

350 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

The algorithm works as follows: Given some vertex,
u ∈ V , the algorithm computes the two sets, X+(u) and
X−(u), where

X+(u) = {v ∈ V | there exists a path from u to v}
X−(u) = {v ∈ V | there exists a path from v to u}.

Then, it is clear that the connected component, C(u), of
u, is given by
C(u) = X+(u) ∩X−(u).

For simplicity, we assume that X+(u), X−(u) and C(u)
are represented by linear arrays.

In order to make sure that the algorithm makes progress,
we used a simple marking scheme.

We use the variable total to count how many nodes are
in X+(u) (or in X−(u)) and the variable marked to keep
track of how many nodes in X+(u) (or in X−(u)) have
been processed so far.

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 351

Whenever the algorithm considers some unprocessed node,
the first thing it does is to increment marked by 1.

function strcomp(G: graph; u: node): set
begin

X+(u)[1] := u; X−(u)[1] := u; total := 1; marked := 0;
while marked < total do

marked := marked + 1; v := X+(u)[marked];
for each e ∈ E

if (s(e) = v) ∧ (t(e) /∈ X+(u)) then
total := total + 1; X+(u)[total] := t(e) endif

endfor
endwhile;
total := 1; marked := 0;
while marked < total do

marked := marked + 1; v := X−(u)[marked];
for each e ∈ E

if (t(e) = v) ∧ (s(e) /∈ X−(u)) then
total := total + 1; X−(u)[total] := s(e) endif

endfor
endwhile;
C(u) = X+(u) ∩X−(u); strcomp := C(u)

end

352 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

If we want to obtain all the strongly connected compo-
nents (SCC’s) of a finite graph, G, we proceed as follows:

Set V1 = V , pick any node, v1, in V1 and use the above
algorithm to compute the strongly connected component,
C1, of v1.

If V1 = C1, stop. Otherwise, let V2 = V1 − C1.

Again, pick any node, v2 in V2 and determine the strongly
connected component, C2, of v2.

If V2 = C2, stop. Otherwise, let V3 = V2 −C2, pick v3 in
V3, and continue in the same manner as before.

Ultimately, this process will stop and produce all the
strongly connected components C1, . . . , Ck of G.

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 353

It should be noted that the function strcomp and the
simple algorithm that we just described are “naive” algo-
rithms that are not particularly efficient.

Their main advantage is their simplicity. There are more
efficient algorithms, in particular, there is a beautiful al-
gorithm for computing the SCC’s due to Robert Tarjan.

Going back to our city traffic problem from Section 3.1,
if we compute the strongly connected components for the
proposed solution shown in Figure 3.2, we find the three
SCC’s shown in Figure 3.12.

354 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

16 17 18 19

10 11 12 13 14 15

5 6 7 8 9

1 2 3 4

Figure 3.12: The strongly connected components of the graph in Figure 3.2

The three SCC’s are

{6, 7, 8, 12, 13, 14}, {11},
and

{1, 2, 3, 4, 5, 9, 10, 15, 16, 17, 18, 19}.

Therefore, the city engineers did not do a good job! We
will show after proving Proposition 3.3.8 how to “fix” this
faulty solution.

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 355

Closed e-simple paths also play an important role.

Definition 3.3.5 Let G = (V, E, s, t) be a digraph. A
circuit is a closed e-simple path (i.e., no edge occurs
twice) and a simple circuit is a simple closed path. The
null path, (u, �, u), is a simple circuit.

Remark: A closed path is sometimes called a pseudo-
circuit . In a pseudo-circuit, some edge may occur more
than once.

The significance of simple circuits is revealed by the next
proposition.

Proposition 3.3.6 Let G be any digraph. (a) Every
circuit, π, in G is the concatenation of pairwise edge-
disjoint simple circuits.

(b) A circuit is simple iff it is a minimal circuit, that
is, iff it does not contain any proper circuit.

356 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Remarks:

1. If u and v are two nodes that belong to a circuit, π,
in G, (i.e., both u and v are incident to some edge in
π), then u and v are strongly connected.

Indeed, u and v are connected by a portion of the
circuit π, and v and u are connected by the comple-
mentary portion of the circuit.

2. If π is a pseudo-circuit, the above proof shows that it is
still possible to decompose π into simple circuits, but
it may not be possible to write π as the concatenation
of pairwise edge-disjoint simple circuits.

Given a graph, G, we can form a new and simpler graph
from G by connecting the strongly connected components
of G as shown below.

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 357

Definition 3.3.7 Let G = (V, E, s, t) be a digraph.
The reduced graph, �G, is the simple digraph whose set
of nodes, �V = V/ �CG, is the set of strongly connected
components of V and whose set of edges, �E, is defined as
follows:

(�u, �v) ∈ �E iff (∃e ∈ E)(s(e) ∈ �u and t(e) ∈ �v),

where we denote the strongly connected component of u
by �u.

That �G is “simpler” than G is the object of the next
proposition.

Proposition 3.3.8 Let G be any digraph. The re-
duced graph, �G, contains no circuits.

Remark: Digraphs without circuits are called DAG’s .
Such graphs have many nice properties.

358 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

A

B C

Figure 3.13: The reduced graph of the graph in Figure 3.12

In particular, it is easy to see that any finite DAG has
nodes with no incoming edges. Then, it is easy to see
that finite DAG’s are basically collections of trees with
shared nodes.

The reduced graph of the graph shown in Figure 3.12 is
showed in Figure 3.13, where its SCC’s are labeled A, B
and C as shown below:

A = {6, 7, 8, 12, 13, 14}, B = {11},
and

C = {1, 2, 3, 4, 5, 9, 10, 15, 16, 17, 18, 19}.

The locations in the component A are inaccessible.

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 359

Observe that changing the direction of any street be-
tween the strongly connected components A and C yields
a solution, that is, a strongly connected graph. So, the
engineers were not too far off after all!

A solution to our traffic problem obtained by changing
the direction of the street between 13 and 18 is shown in
Figure 3.14.

1

16 17 18 19

10 11 12 13 14 15

5 6 7 8 9

1 2 3 4

Figure 3.14: A good choice of one-way streets

360 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Before discussing undirected graphs, let us collect various
definitions having to do with the notion of subgraph.

Definition 3.3.9 Given any two digraphs, G = (V, E, s, t)
and G� = (V �, E �, s�, t�), we say that G� is a subgraph of
G iff V � ⊆ V , E � ⊆ E, s� is the retriction of s to E � and
t� is the retriction of t to E �.

If G� is a subgraph of G and V � = V , we say that G� is a
spanning subgraph of G.

Given any subset, V �, of V , the induced subgraph, G�V ��,
of G is the graph (V �, EV �, s�, t�) whose set of edges is

EV � = {e ∈ E | s(e) ∈ V �; t(e) ∈ V �}.
(Clearly, s� and t� are the restrictions of s and t to EV �,
respectively.)

3.3. PATH IN DIGRAPHS; STRONGLY CONNECTED COMPONENTS 361

Given any subset, E � ⊆ E, the graph G� = (V, E �, s�, t�),
where s� and t� are the restrictions of s and t to E �, re-
spectively, is called the partial graph of G generated by
E �.

The graph, (V �, E � ∩EV �, s�, t�), is a partial subgraph of
G (here, s� and t� are the restrictions of s and t to E �∩EV �,
respectively).

362 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

3.4 Undirected Graphs, Chains, Cycles, Connectivity

The edges of a graph express relationships among its
nodes.

Sometimes, these relationships are not symmetric, in which
case it is desirable to use directed arcs, as we have in the
previous sections.

However, there is a class of problems where these rela-
tionships are naturally symmetric or where there is no a
priori preferred orientation of the arcs.

For example, if V is the population of individuals that
were students at Penn between 1900 until now and if we
are interested in the relation where two people A and B
are related iff they had the same professor in some course,
then this relation is clearly symmetric.

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 363

As a consequence, if we want to find the set of individ-
uals that are related to a given individual, A, it seems
unnatural and, in fact, counter-productive, to model this
relation using a directed graph.

As another example suppose we want to investigate the
vulnerabilty of an internet network under two kinds of
attacks:

(1) disabling a node; (2) cutting a link.

Again, whether of not a link between two sites is oriented
is irrelevant.

What is important is that the two sites are either con-
nected or disconnected.

These examples suggest that we should consider an “un-
oriented” version of a graph. How should we proceed?

364 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

One way to proceed is to still assume that we have a di-
rected graph but to modify certain notions such as paths
and circuits to account for the fact that such graphs are
really “unoriented.”

In particular, we should redefine paths to allow edges to
be traversed in the “wrong direction”.

Such an approach is possible but slightly awkward and
ultimately it is really better to define undirected graphs.

However, to show that this approach is feasible, let us
give a new definition of a path that corresponds to the
notion of path in an undirected graph.

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 365

Definition 3.4.1 Given any digraph, G = (V, E, s, t),
and any two nodes, u, v ∈ V , a chain (or walk) from u to
v is a sequence π = (u0, e1, u1, e2, u2, . . . , un−1, en, un),
where n ≥ 1; ui ∈ V ; ej ∈ E and

u0 = u; un = v and {s(ei), t(ei)} = {ui−1, ui},
1 ≤ i ≤ n. We call n the length of the chain π and
we write |π| = n. When n = 0, we have the null chain,
(u, �, u), from u to u, a chain of length 0.

If u = v, then π is called a closed chain , else an open
chain. The chain, π, determines the sequence of nodes,
nodes(π) = �u0, . . . , un�, with nodes((u, �, u)) = �u, u�.

A chain, π, is edge-simple, for short, e-simple iff ei �= ej

for all i �= j (i.e., no edge in the chain is used twice).

A chain, π, from u to v is simple iff no vertex in nodes(π)
occurs twice, except possibly for u if π is closed. The null
chain, (u, �, u), is considered e-simple and simple.

366 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

The main difference between Definition 3.4.1 and Defini-
tion 3.3.1 is that Definition 3.4.1 ignores the orientation:
in a chain, an edge may be traversed backwards, from its
endpoint back to its source.

This implies that the reverse of a chain

πR = (un, en, un−1, , . . . , u2, e2, u1, e1, u0)

is a chain from v = un to u = u0. In general, this fails
for paths.

Note, as before, that if G is a simple graph, then a chain
is more simply defined by a sequence of nodes

(u0, u1, . . . , un).

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 367

1

v4

v5

v1 v2

v3

a

g

b c d

e

f

G5 :

v4

v5

v1 v2

v3

a

g

b c d

e

f

G�
5 :

Figure 3.15: The Graphs G5 and G�
5

For example, in the graph G5 shown in Figure 3.15, we
have the chains

(v1, a, v2, d, v4, f, v5, e, v2, d, v4, g, v3),

(v1, a, v2, d, v4, f, v5, e, v2),

(v1, a, v2, d, v4, g, v3)

from v1 to v3.

Note that none of these chains are paths. The graph G�
5

is obtained from the graph G5 by reversing the direction
of the edges, d, f , e, and g, so that the above chains are
actually paths in G�

5.

The second chain is e-simple and the third is simple.

368 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Chains are concatenated the same way as paths and the
notion of subchain is analogous to the notion of subpath.

The undirected version of Proposition 3.3.2 also holds.
The proof is obtained by changing the word “path” to
“chain”.

Proposition 3.4.2 Let G be any digraph. (a) For
any two nodes, u, v, in G, every non-null chain, π,
from u to v contains a simple non-null subchain.

(b) If |V | = n, then every open simple chain has length
at most n−1 and every closed simple chain has length
at most n.

The undirected version of strong connectivity is the fol-
lowing:

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 369

Definition 3.4.3 Let G = (V, E, s, t) be a digraph. We
define the binary relation, �CG, on V as follows: For all
u, v ∈ V ,

u �CGv iff there is a chain from u to v.

When u �CGv, we say that u and v are connected .

Oberve that the relation �CG is an equivalence relation.

The equivalence classes of the relation �CG are called the
connected components of G (CC’s).

A graph is connected iff it has a single connected com-
ponent.

Observe that strong connectivity implies connectively but
the converse is false.

For example, the graph G1 of Figure 3.4 is connected but
it is not strongly connected.

370 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

The function strcomp and the method for computing
the strongly connected components of a graph can easily
be adapted to compute the connected components of a
graph.

The undirected version of a circuit is the following:

Definition 3.4.4 Let G = (V, E, s, t) be a digraph.
A cycle is a closed e-simple chain (i.e., no edge occurs
twice) and a simple cycle is a simple closed chain. The
null chain, (u, �, u), is a simple cycle.

Remark: A closed chain is sometimes called a pseudo-
cycle. The undirected version of Proposition 3.3.6 also
holds.

Again, the proof consists in changing the word “circuit”
to “cycle”.

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 371

Proposition 3.4.5 Let G be any digraph. (a) Every
cycle, π, in G is the concatenation of pairwise edge-
disjoint simple cycles.

(b) A cycle is simple iff it is a minimal cycle, that is,
iff it does not contain any proper cycle.

The reader should now be convinced that it is actually
possible to use the notion of a directed graph to model a
large class of problems where the notion of orientation is
irrelevant.

However, this is somewhat unnatural and often incon-
venient, so it is desirable to introduce the notion of an
undirected graph as a “first-class” object. How should
we do that?

372 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

We could redefine the set of edges of an undirected graph
to be of the form E+∪E−, where E+ = E is the original
set of edges of a digraph and with

E− = {e− | e+ ∈ E+, s(e−) = t(e+), t(e−) = s(e+)},
each edge, e−, being the “anti-edge” (opposite edge) of
e+.

Such an approach is workable but experience shows that
it not very satisfactory.

The solution adopted by most people is to relax the con-
dition that every edge, e ∈ E, is assigned an ordered
pair , �u, v�, of nodes (with u = s(e) and v = t(e)) to
the condition that every edge, e ∈ E, is assigned a set ,
{u, v} of nodes (with u = v allowed).

To this effect, let [V]2 denote the subset of the power set
consisting of all two-element subsets of V (the notation�V

2

�
is sometimes used instead of [V]2) :

[V]2 = {{u, v} ∈ 2V | u �= v}.

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 373

Definition 3.4.6 A graph is a triple, G = (V, E, st),
where V is a set of nodes or vertices , E is a set of arcs
or edges and st : E → V ∪ [V]2 is a function that assigns
a set of endpoints (or endnodes) to every edge.

When we want to stress that we are dealing with an undi-
rected graph as opposed to a digraph, we use the locution
undirected graph.

When we draw an undirected graph we suppress the tip
on the extremity of an arc.

374 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

v4

v5

v1 v2

v3

a

g

b c d

e

f

Figure 3.16: The Undirected Graph G6

For example, the undirected graph, G6, corresponding to
the directed graph G5 is shown in Figure 3.16.

Definition 3.4.7 Given a graph, G, an edge, e ∈ E,
such that st(e) ∈ V is called a loop (or self-loop). Two
edges, e, e� ∈ E are said to be parallel edges iff
st(e) = st(e�). A graph is simple iff it has no loops and
no parallel edges.

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 375

Remarks:

1. The functions st need not be injective or surjective.

2. When G is simple, every edge, e ∈ E, is uniquely
determined by the set of vertices, {u, v}, such that
{u, v} = st(e).

In this case, we may denote the edge e by {u, v} (some
books also use the notation (uv) or even uv).

3. Some authors call a graph with no loops but possibly
parallel edges a multigraph and a graph with loops
and parallel edges a pseudograph. We prefer to use
the term graph for the most general concept.

4. Given an undirected graph, G = (V, E, st), we can
form directed graphs from G by assigning an arbitrary
orientation to the edges of G.

376 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

This means that we assign to every set, st(e) = {u, v},
where u �= v, one of the two pairs (u, v) or (v, u) and
define s and t such that s(e) = u and t(e) = v in the
first case or such that s(e) = v and t(e) = u in the
second case (when u = v, we have s(e) = t(e) = u)).

5. When a graph is simple, the function st is often omit-
ted and we simply write (V, E), with the understand-
ing that E is a set of two-elements subsets of V .

6. The concepts or adjacency and incidence transfer im-
mediately to (undirected) graphs.

It is clear that the Definition of chain, connectivity, and
cycle (Definitions 3.4.1, 3.4.3 and 3.4.4) immediately ap-
ply to (undirected) graphs.

For example, the notion of a chain in an undirected graph
is defined as follows:

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 377

Definition 3.4.8 Given any graph, G = (V, E, st), and
any two nodes, u, v ∈ V , a chain (or walk) from u to
v is a sequence π = (u0, e1, u1, e2, u2, . . . , un−1, en, un),
where n ≥ 1; ui ∈ V ; ei ∈ E and

u0 = u; un = v and st(ei) = {ui−1, ui}, 1 ≤ i ≤ n.

We call n the length of the chain π and we write |π| = n.
When n = 0, we have the null chain , (u, �, u), from u to
u, a chain of length 0.

If u = v, then π is called a closed chain , else an open
chain. The chain, π, determines the sequence of nodes,
nodes(π) = �u0, . . . , un�, with nodes((u, �, u)) = �u, u�.

A chain, π, is edge-simple, for short, e-simple iff ei �= ej

for all i �= j (i.e., no edge in the chain is used twice).

A chain, π, from u to v is simple iff no vertex in nodes(π)
occurs twice, except possibly for u if π is closed. The null
chain, (u, �, u), is considered e-simple and simple.

An e-simple chain is also called a trail (as in the case of
directed graphs).

378 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Definitions 3.4.3 and 3.4.4 are adapted to undirected graphs
in a similar fashion.

However, only the notion of degree (or valency) of a node
applies to undirected graph where it is given by

dG(u) = |{e ∈ E | u ∈ st(e)}|.
We can check immediately that Corollary 3.2.5 and Corol-
lary 3.2.6 apply to undirected graphs.

Remark: When it is clear that we are dealing with undi-
rected graphs, we will sometimes allow ourselves some
abuse of language. For example, we will occasionally use
the term path instead of chain.

The notion of homomorphism and isomorphism also makes
sense for undirected graphs.

In order to adapt Definition 3.2.7, observe that any func-
tion, g : V1 → V2, can be extended in a natural way to a
function from V1 ∪ [V1]2 to V2 ∪ [V2]2, also denoted g, so
that

g({u, v}) = {g(u), g(v)},
for all {u, v} ∈ [V1]2.

3.4. UNDIRECTED GRAPHS, CHAINS, CYCLES, CONNECTIVITY 379

Definition 3.4.9 Given two graphs, G1 = (V1, E1, st1)
and G2 = (V2, E2, st2), a homomorphism (or morphism),
f : G1 → G2, from G1 to G2 is a pair, f = (fv, fe), with
fv : V1 → V2 and fe : E1 → E2, preserving incidence,
that is, for every edge, e ∈ E1, we have

st2(f
e(e)) = fv(st1(e)).

These conditions can also be expressed by saying that the
following diagram commute:

E1
fe

��

st1
��

E2
st2

��

V1 ∪ [V1]2 fv
�� V2 ∪ [V2]2.

As for directed graphs, we can compose homomorphisms
of undirected graphs and the definition of an isomorphism
of undirected graphs is the same as the definition of an
isomorphism of digraphs.

Definition 3.3.9 about various notions of subgraphs is im-
mediately adapted to undirected graphs.

We are now going to investigate the properties of a very
important subclass of graphs, trees.

380 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

3.5 Trees and Arborescences

In this section, until further notice, we will be dealing
with undirected graphs. Given a graph, G, edges having
the property that their deletion increases the number of
connected components of G play an important role and
we would like to characterize such edges.

Definition 3.5.1 Given any graph, G = (V, E, st), any
edge, e ∈ E, whose deletion increases the number of con-
nected components of G (i.e.,
(V, E− {e}, st � (E− {e})) has more connected compo-
nents than G) is called a bridge.

1

v4 v5v1

v2

v3 v6

v7

Figure 3.17: A bridge in the graph G7

The edge (v4v5) is a bridge (see Figure 3.17).

3.5. TREES AND ARBORESCENCES 381

Proposition 3.5.2 Given any graph, G = (V, E, st),
adjunction of a new edge, e, between u and v (this
means that st is extended to ste, with ste(e) = {u, v})
to G has the following effect:

1. Either the number of components of G decreases
by 1, in which case the edge e does not belong to
any cycle of G� = (V, E ∪ {e}, ste), or

2. The number of components of G is unchanged, in
which case the edge e belongs to some cycle of
G� = (V, E ∪ {e}, ste).

Corollary 3.5.3 Given any graph, G = (V, E, st), an
edge, e ∈ E, is a bridge iff it does not belong to any
cycle of G.

382 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

v2 v5v1

v4 v3 v6

v7 v8

v9

Figure 3.18: A Tree, T1

Theorem 3.5.4 Let G be a finite graph and let
m = |V | ≥ 1. The following properties hold:

(i) If G is connected, then |E| ≥ m− 1.

(ii) If G has no cycle, then |E| ≤ m− 1.

In view of Theorem 3.5.4, it makes sense to define the
following kind of graphs:

Definition 3.5.5 A tree is a graph that is connected
and acyclic (i.e., has no cycles). A forest is a graph
whose connected components are trees.

The picture of a tree is shown in Figure 3.18.

3.5. TREES AND ARBORESCENCES 383

Our next theorem gives several equivalent characteriza-
tions of a tree.

Theorem 3.5.6 Let G be a finite graph with
m = |V | ≥ 2 nodes. The following properties charac-
terize trees:

(1) G is connected and acyclic.

(2) G is connected and minimal for this property (if
we delete any edge of G, then the resulting graph
is no longer connected).

(3) G is connected and has m− 1 edges.

(4) G is acyclic and maximal for this property (if we
add any edge to G, then the resulting graph is no
longer acyclic).

(5) G is acyclic and has m− 1 edges.

(6) Any two nodes of G are joined by a unique chain.

384 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

1 2 3

4 5 6 7

8 9 10

11 12

Figure 3.19: A Spanning Tree

Remark: The equivalence of (1) and (6) holds for infi-
nite graphs too.

Corollary 3.5.7 For any tree, G, adding a new edge,
e, to G yields a graph, G�, with a unique cycle.

Corollary 3.5.8 Every finite connected graph possesses
a spanning tree.

An example of a spanning tree (shown in thicker lines) in
a graph is shown in Figure 3.19.

3.5. TREES AND ARBORESCENCES 385

An endpoint or leaf in a graph is a node of degree 1.

Proposition 3.5.9 Every finite tree with m ≥ 2 nodes
has at least two endpoints.

Remark: A forest with m nodes and p connected com-
ponents has m− p edges. Indeed, if each connected com-
ponent has mi nodes, then the total number of edges is

(m1 − 1) + (m2 − 1) + · · · + (mp − 1) = m− p.

We now consider briefly directed versions of a tree.

386 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Definition 3.5.10 Given a digraph, G = (V, E, s, t), a
node, a ∈ V is a root (resp. anti-root) iff for every node
u ∈ V , there is a path from a to u (resp. there is a path
from u to a). A digraph with at least two nodes is an
arborescence with root a iff

1. The node a is a root of G

2. G is a tree (as an undirected graph).

A digraph with at least two nodes is an anti-arborescence
with anti-root a iff

1. The node a is an anti-root of G

2. G is a tree (as an undirected graph).

Note that orienting the edges in a tree does not necessarily
yield an arborescence (or an anti-arborescence).

Also, if we reverse the orientation of the arcs of an ar-
borescence we get an anti-arborescence.

3.5. TREES AND ARBORESCENCES 387

1

v2 v5v1

v4 v3 v6

v7 v8

v9

Figure 3.20: An Arborescence, T2

An arborescence is shown is Figure 3.20.

There is a version of Theorem 3.5.6 giving several equiv-
alent characterizations of an arborescence.

388 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Theorem 3.5.11 Let G be a finite digraph with
m = |V | ≥ 2 nodes. The following properties charac-
terize arborescences with root a:

(1) G is a tree (as undirected graph) with root a.

(2) For every u ∈ V , there is a unique path from a to
u.

(3) G has a as a root and is minimal for this property
(if we delete any edge of G, then a is not a root
any longer).

(4) G is connected (as undirected graph) and moreover

(∗)
�

d−G(a) = 0
d−G(u) = 1, for all u ∈ V, u �= a.

(5) G is acyclic (as undirected graph) and the proper-
ties (∗) are satisfied.

(6) G is acyclic (as undirected graph) and has a as a
root.

(7) G has a as a root and has m− 1 arcs.

3.6. MINIMUM (OR MAXIMUM) WEIGHT SPANNING TREES 389

3.6 Minimum (or Maximum) Weight Spanning Trees

For a certain class of problems, it is necessary to con-
sider undirected graphs (without loops) whose edges are
assigned a “cost” or “weight”.

Definition 3.6.1 A weighted graph is a finite graph
without loops, G = (V, E, st), together with a function,
c : E → R, called a weight function (or cost function).
We will denote a weighted graph by (G, c). Given any
set of edges, E � ⊆ E, we define the weight (or cost) of
E � by

c(E �) =
�

e∈E�
c(e).

Given a weighted graph, (G, c), an important problem is
to find a spanning tree, T such that c(T) is maximum (or
minimum).

This problem is called the maximal weight spanning tree
(resp. minimal weight spanning tree).

390 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Actually, it is easy to see that any algorithm solving any
one of the two problems can be converted to an algorithm
solving the other problem.

For example, if we can solve the maximal weight spanning
tree, we can solve the minimal weight spanning tree by
replacing every weight, c(e), by −c(e), and by looking for
a spanning tree, T , that is a maximal spanning tree, since

min
T⊆G

c(T) = −max
T⊆G

−c(T).

There are several algorithms for finding such spanning
trees, including one due to Kruskal and another one due
to Prim.

The fastest known algorithm at the present is due to
Bernard Chazelle (1999).

3.6. MINIMUM (OR MAXIMUM) WEIGHT SPANNING TREES 391

Since every spannning tree of a given graph, G = (V, E, st),
has the same number of edges (namely, |V |− 1), adding
the same constant to the weight of every edge does not
affect the maximal nature a spanning tree, that is, the set
of maximal weight spanning trees is preserved.

Therefore, we may assume that all the weights are non-
negative.

In order to justify the correctness of Kruskal’s algorithm,
we need two definitions.

Let (G, c) be any connected weighted graph with
G = (V, E, st) and let T be any spanning tree of G.

392 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

1

1 2 3

4 5 6 7

8 9 10

11 12

Figure 3.21: The set Ce associated with an edge e ∈ G− T

For every edge, e ∈ E − T , let Ce be the set of edges
belonging to the unique chain in T joining the endpoints
of e (the vertices in st(e)).

For example, in the graph shown in Figure 3.21, the
set C{8,11} associated with the edge {8, 11} (shown as
a dashed line) corresponds to the following set of edges
(shown as dotted lines) in T :

C{8,11} = {{8, 5}, {5, 9}, {9, 11}}.

3.6. MINIMUM (OR MAXIMUM) WEIGHT SPANNING TREES 393

1

1 2 3

4 5 6 7

8 9 10

11 12

Figure 3.22: The set Ω{5,9} obtained by deleting the edge {5, 9} from the spanning tree.

Also, given any edge, e ∈ T , observe that the result of
deleting e yields a graph denoted T − e consisting of two
disjoint subtrees of T .

We let Ωe be the set of edges, e� ∈ G − T , such that if
st(e�) = {u, v}, then u and v belong to the two distinct
connected components of T − {e}.

For example, in Figure 3.22, deleting the edge {5, 9}
yields the set of edges (shown as dotted lines)

Ω{5,9} = {{1, 2}, {5, 2}, {5, 6}, {8, 9}, {8, 11}}.

394 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Observe that in the first case, deleting any edge from Ce

and adding the edge e ∈ E − T yields a new spanning
tree and in the second case, deleting any edge e ∈ T and
adding any edge in Ωe also yields a new spanning tree.

These observations are crucial ingredients in the proof of
the following theorem:

Theorem 3.6.2 Let (G, c) be any connected weighted
graph and let T be any spanning tree of G.

(1) The tree T is a maximal weight spanning tree
iff any of the following (equivalent) conditions hold:

(i) For every e ∈ E − T ,

c(e) ≤ min
e�∈Ce

c(e�)

(ii) For every e ∈ T ,

c(e) ≥ max
e�∈Ωe

c(e�).

3.6. MINIMUM (OR MAXIMUM) WEIGHT SPANNING TREES 395

Figure 3.23: Joseph Kruskal, 1928-

(2) The tree T is a minimal weight spanning tree iff
any of the following (equivalent) conditions hold:

(i) For every e ∈ E − T ,

c(e) ≥ max
e�∈Ce

c(e�)

(ii) For every e ∈ T ,

c(e) ≤ min
e�∈Ωe

c(e�).

We are now in the position to present a version of Kruskal’s
algorithm and to prove its correctness.

396 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Here is a version of Kruskal’s algorithm for finding a min-
imal weight spanning tree using criterion 2(i).

Let n be the number of edges of the weighted graph,
(G, c), where G = (V, E, st).

function Kruskal((G, c): weighted graph): tree
begin

Sort the edges in non-decreasing order of weights:
c(e1) ≤ c(e2) ≤ · · · ≤ c(en);
T := ∅;
for i := 1 to n do

if (V, T ∪ {ei}) is acyclic then T := T ∪ {ei}
endif

endfor;
Kruskal := T

end

3.6. MINIMUM (OR MAXIMUM) WEIGHT SPANNING TREES 397

We admit that the above description of Kruskal’s algo-
rithm is a bit sketchy as we have not explicitly specified
how we check that adding an edge to a tree preserves
acyclicity.

On the other hand, it is quite easy to prove the correctness
of the above algorithm.

It is not difficult to refine the above “naive” algorithm
to make it totally explicit but this involves a good choice
of data structures. We leave these considerations to an
algorithms course.

Clearly, the graph T returned by the algorithm is acyclic,
but why is it connected? This can be proved too.

398 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

We can easily design a version of Kruskal’s algorithm
based on condition 2(ii).

This time, we sort the edges in non-increasing order of
weights and, starting with G, we attempt to delete each
edge, ej, as long as the remaining graph is still connected.

Prim’s algorithm is based on a rather different observa-
tion.

For any node, v ∈ V , let Uv be the set of edges incident
with v that are not loops,

Uv = {e ∈ E | v ∈ st(e), st(e) ∈ [V]2}.

Choose in Uv some edge of minimum weight which we
will (ambiguously) denote by e(v).

3.6. MINIMUM (OR MAXIMUM) WEIGHT SPANNING TREES 399

Proposition 3.6.3 Let (G, c) be a connected weighted
graph with G = (V, E, st). For every vertex, v ∈ V ,
there is a minimum weight spanning tree, T , so that
e(v) ∈ T .

Prim’s algorithm uses an edge-contraction operation de-
scribed below:

Definition 3.6.4 Let G = (V, E, st) be a graph, and
let e ∈ E be some edge which is not a loop, i.e.,
st(e) = {u, v}, with u �= v. The graph, Ce(G), obtained
by contracting the edge e is the graph obtained by merg-
ing u and v into a single node and deleting e. More pre-
cisely, Ce(G) = ((V −{u, v})∪{w}, E−{e}, ste), where
w is any new node not in V and where

1. ste(e�) = st(e�) iff u /∈ st(e�) and v /∈ st(e�)

2. ste(e�) = {w, z} iff st(e�) = {u, z}, with z /∈ st(e)

3. ste(e�) = {z, w} iff st(e�) = {z, v}, with z /∈ st(e)

4. ste(e�) = w iff st(e�) = {u, v}.

400 CHAPTER 3. GRAPHS, PART I: BASIC NOTIONS

Proposition 3.6.5 Let G = (V, E, st) be a graph.
For any edge, e ∈ E, the graph G is a tree iff Ce(G)
is a tree.

Here is a “naive” version of Prim’s algorithm.

function Prim((G = (V, E, st), c): weighted graph): tree
begin

T := ∅;
while |V | ≥ 2 do

pick any vertex v ∈ V ;
pick any edge (not a loop), e, in Uv of minimum weight;
T := T ∪ {e}; G := Ce(G)

endwhile;
Prim := T

end

The correctness of Prim’s algorithm is an immediate con-
sequence of Proposition 3.6.3 and Proposition 3.6.5, the
details are left to the reader.

