Intuitionistic logic (Part 2/2)

Summary so far

- Classical proofs of $A \lor B$ or $\exists x.A$ fail to produce witnesses.
- Solution to this problem: get rid of *RAA/LEM*.
- The result is called intuitionistic logic.
- IL has a ND system which looks like the one for classical logic minus RAA.
- IL has a Kripke semantics.

Monotonicity of forcing

Proposition. In any Kripke model of IL, if x and y are worlds such that

 $x \leq y,$

then, for every formula A,

 $x \Vdash A \text{ implies } y \Vdash A.$

Proof. (Sketch.) By induction on A; the case A = p follows from the monotonicity of L;

the case $A = B \rightarrow C$ is interesting, because it relies on the transitivity of \leq ; the other cases are straightforward.

Soundness and completeness

To avoid confusion, we write

- $\Gamma \vdash_I A$ and $\Gamma \models_I A$ for syntactic and semantic entailment in intuitionistic logic.
- $\Gamma \vdash_C A$ and $\Gamma \models_C A$ for syntactic and semantic entailment in classical logic.

Proposition.[Soundness] $\Gamma \vdash_I A$ implies $\Gamma \models_I A$.

Theorem.[Completeness] $\Gamma \models_I A$ implies $\Gamma \vdash_I A$.

Proof of soundness

By induction on the size of the ND proof.

- The only interesting cases are $\rightarrow i$ and $\rightarrow e$.
- The $\rightarrow i$ case relies on the monotonicity of forcing (which in turn relies the transitivity of the accessibility relation).
- The $\rightarrow e$ case uses the reflexivity of the accessibility relation.
- So intuitionistic implication is the reason why the accessibility relation has to be a preorder.

Exercises

Show that the following are provable in intuitionistic logic.

1.
$$A \vdash \neg \neg A$$

- **2.** $\neg \neg \neg A \vdash \neg A$
- **3.** $\neg \neg (A \land B) \vdash (\neg \neg A \land \neg \neg B)$
- **4.** $\neg\neg(A \rightarrow B) \vdash (\neg\neg A \rightarrow \neg\neg B)$
- 5. $\neg \neg \bot \vdash \bot$

6.
$$\neg \neg \forall x.B \vdash \forall x. \neg \neg B$$

(We shall use these later.)

Disjunction and existence property

Proposition.

- 1. Intuitionistic logic has the disjunction property, i.e., $\vdash_I A \lor B$ implies $\vdash_I A$ or $\vdash_I B$.
- 2. Intuitionistic predicate logic has the existence property, i.e., $\vdash_I \exists x.A$ implies that $\vdash_I A[t/x]$ for some t.

The rôles of \lor and \exists

- Because of the disjunction property, an intuitionistic proof of $A \lor B$ requires a choice as to whether we prove A or B.
- Similarly, a proof of $\exists x.A$ requires a witness t such that A[t/x] is true.
- So, intuitively, formulæ of the form $A \lor B$ or $\exists x.A$ carry most of the burden of constructiveness.
- The next theorem that makes this intuition precise.

Negative formulæ

Definition. A formula A is called **negative** if it contains no \lor , no \exists , and if occurrences of atomic formulæ (but not \bot) are negated.

- **Examples:** $\neg\neg\neg p \rightarrow \neg p$, $\neg p \land \bot$.
- Non-examples: $\neg \neg p \rightarrow p$.

IL on negative formulæ

Theorem. If *A* is a negative formula, then $\neg \neg A \vdash_I A$.

Intuitively, proof by contradiction works even in IL, if the formula involved contains neither \lor nor \exists , and all atoms are negated.

Proof. By induction on *A*, using the facts from the last exercise.

Remarkably, there is a translation, taking every formula A to a formula A° , that allows to describe classical provability in terms of intuitionistic provability, i.e.

$\Gamma \vdash_C A$ iff $\Gamma^{\circ} \vdash_I A^{\circ}$

where Γ° means that the translation is applied to every formula in Γ .

Definition. Gödel's translation (also Gentzen) is the map from formulæ to formulæ defined by the following rules:

The point about Gödel's translation is that it removes \lor and \exists , and makes sure that all atomic formulæ occur under a negation:

Proposition. For every formula A, the formula A° is negative.

Theorem.

$\Gamma \vdash_C A \text{ iff } \Gamma^{\circ} \vdash_I A^{\circ}.$

That is, classical logic can be **embedded** into intuitionistic logic.

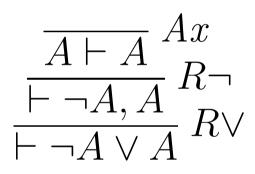
Proof.

First, we prove the \Leftarrow direction. If $\Gamma^{\circ} \vdash_{I} A^{\circ}$, then $\Gamma^{\circ} \vdash_{C} A^{\circ}$, because intuitionistic ND is a subsystem of classical ND. It is easy to see that A and A° have the same classical truth-value, so $\Gamma \vdash_{C} A$.

The \Rightarrow direction is proved by induction on the derivation of $\Gamma \vdash_C A$, making crucial use of the earlier theorem which states that $\neg \neg B \vdash_I B$ for negative formulæ *B*.

Intuitionistic sequent calculus

The classical sequent calculus allows to prove the law of the excluded middle:



Note the use of **multiple conclusions**.

Fact (without proof): the **single-conclusioned** sequent calculus on the next slide is sound and complete for IL. (It is the previously-seen minimal sequent calculus plus EEQ.)

An intuitionistic sequent calculus

$$\frac{\Gamma}{\Gamma, A \vdash A} Ax \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash A} EFQ \\ \frac{\Gamma, A, B \vdash C}{\Gamma, A \land B \vdash C} L \land \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} R \land \\ \frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma, A \lor B \vdash C} L \lor \qquad \frac{\Gamma \vdash A_i}{\Gamma \vdash A_1 \lor A_2} (i = 1, 2) R \lor \\ \frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \to B \vdash C} L \to \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} R \to \\ \frac{\Gamma, A[t/x] \vdash B}{\Gamma, \forall x.A \vdash B} L \forall \qquad \frac{\Gamma \vdash A}{\Gamma \vdash \forall x.A} R \forall \\ \frac{\Gamma, A \vdash B}{\Gamma, \exists x.A \vdash B} L \exists \qquad \frac{\Gamma \vdash A[t/x]}{\Gamma \vdash \exists x.A} R \exists$$

. – p.16/16