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Introducing Intuitionistic Logic

Comparison between Intuitionistic and Classical Provability

Going further: a Taste of Linear Logic
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Hilbert’s Proof System (propositional case)

Idea: Logical Axioms and One Deduction Rule.

H1 A ⇒ B ⇒ A

H2 (A ⇒ B ⇒ C ) ⇒ (A ⇒ B) ⇒ (A ⇒ C )

H3 A ∧ B ⇒ A

H4 A ∧ B ⇒ B

H5 A ⇒ B ⇒ A ∧ B

H6 A ⇒ A ∨ B

H7 B ⇒ A ∨ B

H8 (A ⇒ C ) ⇒ (B ⇒ C ) ⇒ (A ∨ B) ⇒ C

H9 ¬A ⇒ (A ⇒⊥)

H10 (A ⇒⊥) ⇒ ¬A

H11 ⊥⇒ A

H12 A ∨ ¬A
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Example of a proof in HPF

Let us prove the following theorem:

` A ⇒ A

(A ⇒ (A ⇒ A) ⇒ A) ⇒ (A ⇒ (A ⇒ A)) ⇒ (A ⇒ A) H2

A ⇒ (A ⇒ A) ⇒ A H1

(A ⇒ (A ⇒ A)) ⇒ (A ⇒ A) MP

A ⇒ (A ⇒ A) H1

A ⇒ A MP
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Meta-properties

Deduction theorem
If `Γ,A B then `Γ A ⇒ B.
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Hilbert Proof System allows to study provability but is not
convenient for studying the proofs themselves.
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Natural Deduction 1: Rules

Γ, A ` A Axiom

Γ ` A Γ ` B
Γ ` A ∧ B ∧I

Γ, A ` B
Γ ` A ⇒ B ⇒ I Γ ` A

Γ ` ∀xA ∀I (?)

Γ ` A ∧ B
Γ ` A ∧E1 Γ ` A ∧ B

Γ ` B ∧E2

Γ ` A Γ ` A ⇒ B
Γ ` B ⇒ E

Γ ` ∀xA
Γ ` A[t/x ]

∀E

(?) For this rule, x 6∈ FV (Γ,∆).
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Γ ` A ∧ B ⇒ C Ax Γ ` A Ax
Γ ` B Ax

Γ ` A ∧ B ∧I

A ∧ B ⇒ C , A, B ` C ⇒ E
.... ⇒ I

` (A ∧ B ⇒ C ) ⇒ (A ⇒ (B ⇒ C ))
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Natural Deduction 2: Dynamics of Proofs

One can consider transformations of proofs via the notion of cut:
an introduction rule immediately by an elimination rule on the same
connective.

Π1
Γ ` A

Π2
Γ, A ` B

Γ ` A ⇒ B ⇒ I

Γ ` B ⇒ E −→
Π̃

Γ ` B

This system has very good properties:
confluence, strong normalization, ...
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Natural Deduction 3: Existential and Disjunction

Γ ` A
Γ ` A ∨ B ∨I1 Γ ` B

Γ ` A ∨ B ∨I2

Γ ` A ∨ B Γ, A ` C Γ, B ` C
Γ ` C ∨E

Γ ` A[t/x ]

Γ ` ∃xA ∃I
Γ ` ∃xA Γ, A ` C

Γ ` C
∃E (?)

Γ, A `⊥
Γ ` ¬A ¬I Γ ` ¬A Γ ` A

Γ `⊥ ¬E
Γ,¬A `⊥

Γ ` A ⊥ C

(?) x is not free in Γ, C
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Defects of Natural Deduction

The notion of cut is implicit, there is no explicit rule for the
cut;

ND is satisfying only for a fragment of intuitionistic logic (⇒,
∧, ∀).
Paradoxically, the connectives which are the most interesting
for intuitionistic logic are ∨ and ∃...
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Natural Deduction is close to actual mathematical reasoning
but lacks structure.
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Sequent Calculus: Explicit Cut, Rules dedicated to the
management of the formulas, Deep left-right symmetry of the
system (introduction/elimination rules on the right are replaced by
left/right introduction rules).
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LK Rules (1)

Identity Rules (Axiom and Cut))

A ` A Axiom
Γ1 ` A,∆1 Γ2, A ` ∆2

Γ1, Γ2 ` ∆1,∆2
Cut

Structural Rules (Exchange, Weakening and Contraction)

Γ1, B, A, Γ2 ` ∆

Γ1, A, B, Γ2 ` ∆
LEx

Γ ` ∆1, B, A,∆2

Γ ` ∆1, A, B,∆2
REx

Γ ` ∆
Γ, A ` ∆

LW Γ ` ∆
Γ ` A,∆

RW

Γ, A, A ` ∆

Γ, A ` ∆
LC

Γ ` A, A,∆

Γ ` A,∆
RC
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LK Rules (2)

Logical Rules (¬, ∧, ∨, ⇒, ∀, ∃)

Γ ` A,∆

Γ,¬A ` ∆
L¬

Γ, A ` ∆

Γ ` ¬A,∆
R¬

Γ, A ` ∆

Γ, A ∧ B ` ∆
L ∧ 1

Γ, B ` ∆

Γ, A ∧ B ` ∆
L ∧ 2

Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆
R∧

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨ B ` ∆
L∨

Γ ` A,∆

Γ ` A ∨ B,∆
R ∨ 1

Γ ` B,∆

Γ ` A ∨ B,∆
R ∨ 2
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LK Rules (3)

Γ1 ` A,∆1 Γ2, B ` ∆2

Γ1, Γ2, A ⇒ B ` ∆1,∆2
L ⇒

Γ, A ` B,∆

Γ ` A ⇒ B,∆
R ⇒

Γ, A[t/x ] ` ∆

Γ,∀xA ` ∆
L∀

Γ ` A,∆

Γ ` ∀xA,∆
R∀ (∗)

Γ, A ` ∆

Γ,∃xA ` ∆
L∃ (∗)

Γ ` A[t/x ],∆

Γ ` ∃xA,∆
R∃

(*) For these rules, x 6∈ FV (Γ,∆).
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Formal Theorems

A ∨ B ` B ∨ A Commutativity of disjunction

` A ∨ ¬A Tertium non datur

` ((A ⇒ B) ⇒ A) ⇒ A Peirce’s Law

` (¬¬A) ⇒ A Elimination of Double Negation

` ∃x∀y(P(x) ⇒ P(y)) The Drinker Property

A ∨ B ` ¬(¬A ∧ ¬B) An Instance of de Morgan’s Laws

` (A ⇒ B) ∨ (B ⇒ A)

` ¬¬(A ∨ ¬A) "intuitionistic" Tertium non datur

(p ⇒ q) ` (¬q ⇒ ¬p)

(¬q ⇒ ¬p) ` (p ⇒ q)
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Alternative Rules for ∧ and ∨

Γ, A, B ` ∆

Γ, A ∧ B ` ∆ L∧′
Γ1 ` A,∆1 Γ2 ` B,∆2

Γ1, Γ2 ` A ∧ B,∆1,∆2
R∧′

Γ1, A ` ∆1 Γ2, B ` ∆2

Γ1, Γ2, A ∨ B ` ∆1,∆2
L∨′

Γ ` A, B,∆

Γ ` A ∨ B,∆ R∨′

These new rules are called multiplicative rules while the original
rules of LK are called additive rules.

Both sets of rules are equivalent thanks to the structural rules.
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Gentzen’s Cut Elimination Result

Gentzen’s Hauptsatz

The Cut rule is admissible in LK.

In fact, Gentzen’s result was more than simply a proof of
admissibility of the cut since he gave an explicit procedure to
eliminate the cuts from a proof : starting with a proof with cuts, we
can step by step transform it into a cut-free proof, and this
procedure is algorithmic.
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Subformula Property

Subformula Property

A provable Sequent can be proved using only subformulas of the
formulas appearing in the sequent.
(A cut-free proof only makes use of subformulas of the root
sequent)

It reduces the search space a lot!
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Symmetry of LK (1)

Sequents are now of the form: `′ Γ.

Implication is a defined connective: A ⇒ B ≡ ¬A ∨ B

Negation only appears on atomic formulas, thanks to de Morgan’s
laws:

¬(A ∨ B) ≡ (¬A ∧ ¬B) ¬∀xA ≡ ∃x¬A
¬(A ∧ B) ≡ (¬A ∨ ¬B) ¬∃xA ≡ ∀x¬A

More precisely, when writing ¬A, we will always mean the negation
normal form of this formula for the obviously terminating and
confluent rewriting system:

¬(A ∨ B) → (¬A ∧ ¬B) ¬∀xA → ∃x¬A
¬(A ∧ B) → (¬A ∨ ¬B) ¬∃xA → ∀x¬A
¬¬A → A
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Symmetry of LK (2)

Identity Rules

`′ A,¬A Axiom
`′ A, Γ `′ ¬A,∆

`′ Γ,∆
Cut

Structural Rules

`′ Γ, B, A,∆

`′ Γ, A, B,∆
Ex `′ Γ

`′ A, Γ
W

`′ A, A, Γ

`′ A, Γ
C

Logical Rules

`′ A, Γ `′ B, Γ

`′ A ∧ B, Γ
∧

`′ A, Γ

`′ A ∨ B, Γ
∨1

`′ B, Γ

`′ A ∨ B, Γ
∨2

`′ A, Γ

`′ ∀xA, Γ
∀ (∗)

`′ A[t/x ], Γ

`′ ∃xA, Γ
∃
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Non-Constructivism of LK

Proposition

There exist two irrational numbers a, b such that ab is rational.

Proof

Consider the irrational number
√

2. Either
√

2
√

2
is rational or it is

not.
In the first case we are done taking a = b =

√
2 while in the latter

we set a to be
√

2
√

2
and b to be

√
2 and obtain

ab = (
√

2
√

2
)
√

2 =
√

2
2

= 2.

�

The peculiarity with this proof is that, having completed the proof,

we have no evidence about the irrationality of
√

2
√

2
(it is actually

irrational, but the proof of this fact is much more complicated).
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LK is symmetric but non-constructive.
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Intuitionism

All began with Brouwer who rejected the excluded-middle principle.

Why?
A view of mathematics centered on the mathematician so that the
formula A is understood as "I know that A" or more precisely as "I
have a proof of A". With this in mind, the logical connectives and
the logical rules must be reconsidered.

In particular, the disjunction A ∨ B means "I have a proof of A or I
have a proof of B" ... and the excluded middle is no more a suitable
logical principle since A ∨ ¬A means that we always have a proof of
a formula or of its negation... which is a very strong requirement.

Constructivism: a proof must provide a way to build an object that
represents the property we proved.
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What Disjunction?

We saw two possible rules for disjunction on the right:

Γ ` A, B,∆

Γ ` A ∨ B,∆

and

Γ ` A,∆

Γ ` A ∨ B,∆

Γ ` B,∆

Γ ` A ∨ B,∆

Which one shall we choose for intuitionistic logic?

Introduction to Proof Theory



LJ Sequent Calculus

Identity Rules

A ` A axiom
Γ1 ` A Γ2, A ` Ξ

Γ1, Γ2 ` Ξ
cut

Structural Rules

Γ1, B, A, Γ2 ` Ξ

Γ1, A, B, Γ2 ` Ξ
LEx Γ ` Ξ

Γ, A ` Ξ
LW Γ `

Γ ` A RW
Γ, A, A ` Ξ

Γ, A ` Ξ
LC

Logical Rules

Γ ` A
Γ,¬A ` L¬

Γ, A `
Γ ` ¬A R¬

Γ1 ` A Γ2, B ` Ξ

Γ1, Γ2, A ⇒ B ` Ξ
L ⇒

Γ, A ` B
Γ ` A ⇒ B R ⇒
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LJ Rules (2)

Γ, A ` Ξ

Γ, A ∧ B ` Ξ
L ∧ 1

Γ, B ` Ξ

Γ, A ∧ B ` Ξ
L ∧ 2 Γ ` A Γ ` B

Γ ` A ∧ B R∧

Γ, A ` Ξ Γ, B ` Ξ

Γ, A ∨ B ` Ξ
L∨ Γ ` A

Γ ` A ∨ B R ∨ 1 Γ ` B
Γ ` A ∨ B R ∨ 2

Γ, A[t/x ] ` Ξ

Γ,∀xA ` Ξ
L∀ Γ ` A

Γ ` ∀xA R∀ (∗)

Γ, A ` Ξ

Γ,∃xA ` Ξ
L∃ (∗∗)

Γ ` A[t/x ]

Γ ` ∃xA R∃

(*) For this rule, x 6∈ FV (Γ).
(**) For this rule, x 6∈ FV (Γ,Ξ).
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Disjunction and Existence Properties

Thanks to cut-elimination we have:

Disjunction Property

If `LJ A ∨ B, then `LJ A or `LJ B

Existence Property

If `LJ ∃xA, then there exists a term t such that `LJ A[t/x ]
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LJ is constructive but non-symmetric.
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Correspondence between classical and intuitionistic
provability (1)

LJ is clearly weaker than LK : Γ `LJ A implies Γ `LK A

Can we make more precise the relation between the two notions of
provability?

We will see that LJ can be considered not to be weaker than LK
but finer!
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Correspondence between classical and intuitionistic
provability (2)

Remember that in LJ, contraction is not available on the right of `
but it is freely available on the left.

A ∨ ¬A is not provable in LJ but ¬¬(A ∨ ¬A) is:

A ` A Axiom

` A,¬A R¬

` A, A ∨ ¬A R∨

` A ∨ ¬A, A ∨ ¬A R∨

` A ∨ ¬A RC

A ` A Axiom

A ` A ∨ ¬A R∨
¬(A ∨ ¬A), A ` L¬

¬(A ∨ ¬A) ` ¬A R¬

¬(A ∨ ¬A) ` A ∨ ¬A R∨

¬(A ∨ ¬A),¬(A ∨ ¬A) ` L¬

¬(A ∨ ¬A) ` LC

` ¬¬(A ∨ ¬A)
R¬
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Correspondence between classical and intuitionistic
provability (3)

Gödel Translation
The idea of the intuitionistic proof of ¬¬(A ∨ ¬A) is to send the
formula to the left so that it is possible to use left contraction. The
occurrence of the double negation ¬¬ precisely allows to cross
twice the ` and to use left contraction.

Definition: Gödel Translation
A? = ¬¬A for A atomic;

(A ∧ B)? = A? ∧ B?;

(∀xA)? = ∀xA?;

(¬A)? = ¬A?;

(A ⇒ B)? = A? ⇒ B?;

(A ∨ B)? = ¬¬(A? ∨ B?);

(∃xA)? = ¬¬∃xA?.
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Correspondence between classical and intuitionistic
provability (4)

Theorem
Γ `LK A iff Γ? `LJ A?

Lemma
`LK A ⇔ A?

Definition
A is said to be stable when `LJ ¬¬A ⇒ A.

Lemma
For all formula A, A? is stable.

Lemma
If Γ `LK ∆ then Γ?,¬∆? `LJ .
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Correspondence between classical and intuitionistic
provability (5)

In what sense can we say that LJ is finer (subtler?) than LK?

An intuitionistic logician cannot necessarily prove a formula A when
a classical mathematician can, BUT he can find another formula
(A?) that he is able to prove and that the classical mathematician
cannot distinguish from the previous one.

In particular, in intuitionistic logic, the use of excluded middle (or
contraction on the right) shall be explicitly mentioned in the
formula thanks to the use of double negation
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Is it possible to be even more drastic with structural rules?
Linear Logic
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Motivations

Does Classical Logic allow to model everything?
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Let us remove all the structural rules!

The two alternative presentations of disjunction and of conjunction
are no more equivalent.

We have two different conjunctions and two different disjunctions!

We need to recover the contraction and weakening rules, but in a
controlled way.
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LL Sequent Calculus

Identity Rules:

` A⊥, A
ax ` A, Γ ` A⊥,∆

` Γ,∆
cut

Structural Rule:

` Γ, B, A,∆

` Γ, A, B,∆
Ex
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LL Sequent Calculus

Logical Rules:

` F , G , Γ

` FOG , Γ
O

` F , Γ ` G ,∆

` F ⊗ G , Γ,∆
⊗

` F , Γ ` G , Γ

` FNG , Γ
N

` F , Γ

` F ⊕ G , Γ
⊕1

` G , Γ

` F ⊕ G , Γ
⊕2

` 1 1 ` Γ
` ⊥, Γ

⊥ ` >, Γ
>

` F , Γ

`?F , Γ
?

` F , ?Γ

`!F , ?Γ
!

` Γ
`?F , Γ

?W
`?F , ?F , Γ

`?F , Γ
?C
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Important Characteristics of Linear Logic

Thanks to the additional structure put in the sequents
themselves, we can capture more things at the logical level and
not at the term level like in classical logic;

The control on structural rules allows a careful study of
cut-elimination, which via Curry-Howard corresponds to
execution of a functional program;

Thanks to the richness of the sequents it is possible to
consider the sequents as storing a state of the computation in
a process of proof-search (logic programming paradigm).

Lots of other directions...
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Conclusion

The rules that at first seemed to be the less significant in logic (at
such an extent that they are missing in Natural Deduction) are
eventually crucial in the proof theoretic analysis of logic. Indeed, it
is by controlling these rules that we can choose the focus we want
to put on logic and the level of detail we desire: Controlling the
structural rules, we can zoom and catch more details of the proofs.

From the computer science point of view, the very structured
object that a LL proof is allows for various uses and applications.

Less formally and more informally, an interest of this study of
structure is that we came from a logical study driven by the notion
of truth and that now we can do logic as study of geometrical
properties of proofs, the logical character being assured by some
formal requirement such as cut-elimination, symmetrical
properties...
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