
Differential Geometry and Lie Groups
A Second Course

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

© Jean Gallier
Please, do not reproduce without permission of the authors

April 17, 2025



2

To my daughter Mia, my wife Anne,

my son Philippe, and my daughter Sylvie.

To my parents Howard and Jane.



Preface

This book is written for a wide audience ranging from upper undergraduate to advanced
graduate students in mathematics, physics, and more broadly engineering students, especially
in computer science. Basically, it covers topics which belong to a second course in differential
geometry. The reader is expected to be familiar with the theory of manifolds and with some
elements of Riemannian geometry, including connections, geodesics, and curvature. Some
familiarity with the material presented in the following books is more than sufficient: Tu
[111] (the first three chapters), Warner [115] (the first chapter and parts of Chapters 2, 3, 4),
Do Carmo [39] (the first four chapters), Gallot, Hulin, Lafontaine [52] (the first two chapters
and parts of Chapter 3), O’Neill [90] (Chapters 1 and 3), and Gallier and Quaintance [49],
which contains all the preliminaries needed to read this book.

The goal of differential geometry is to study the geometry and the topology of manifolds
using techniques involving differentiation in one way or another. The pilars of differential
geometry are:

(1) Riemannian metrics.

(2) Connections.

(3) Geodesics.

(4) Curvature.

There are many good books covering the above topics, and we also provided our own account
(Gallier and Quaintance [49]). One of the goals of differential geometry is also to be able to
generalize “calculus on Rn” to spaces more general than Rn, namely manifolds. We would
like to differentiate functions f : M → R defined on a manifold, optimize functions (find
their minima or maxima), and also to integrate such functions, as well as compute areas and
volumes of subspaces of our manifold.

The generalization of the notion of derivative of a function defined on a manifold is the
notion of tangent map, and the notions of gradient and Hessian are easily generalized to
manifolds equipped with a connection (or a Riemannian metric, which yields the Levi-Civita
connection). However, the problem of defining the integral of a function whose domain is a
manifold remains.
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One of the main discoveries made at the beginning of the twentieth century by Poincaré
and Élie Cartan, is that the “right” approach to integration is to integrate differential forms ,
and not functions. To integrate a function f , we integrate the form fω, where ω is a volume
form on the manifold M . The formalism of differential forms takes care of the process of
the change of variables quite automatically and allows for a very clean statement of Stokes’
theorem.

The theory of differential forms is one of the main tools in geometry and topology. This
theory has a surprisingly large range of applications, and it also provides a relatively easy
access to more advanced theories such as cohomology. For all these reasons, it is really an
indispensable theory, and anyone with more than a passable interest in geometry should be
familiar with it.

In this book, we discuss the following topics.

(1) Differential forms, including vector-valued differential forms and differential forms on
Lie groups.

(2) An introduction to de Rham cohomology.

(3) Distributions and the Frobenius theorem.

(4) Integration on manifolds, starting with orientability, volume forms, and ending with
Stokes’ theorem on regular domains.

(5) Integration on Lie groups.

(6) Spherical harmonics and an introduction to the representations of compact Lie groups.

(7) Operators on Riemannian manifolds: Hodge Laplacian, Laplace–Beltrami Laplacian,
and Bochner Laplacian.

(8) Fibre bundles, vector bundles, principal bundles, and metrics on bundles.

(9) Connections and curvature in vector bundles, culminating with an introduction to
Pontrjagin classes, Chern classes, and the Euler class.

(10) Clifford algebras, Clifford groups, and the groups Pin(n), Spin(n), Pin(p, q) and
Spin(p, q).

Topics (3)-(7) have more of an analytic than a geometric flavor. Topics (8) and (9)
belong to the core of a second course on differential geometry. Clifford algebras and Clifford
groups constitute a more algebraic topic. These can be viewed as a generalization of the
quaternions. The groups Spin(n) are important because they are the universal covers of the
groups SO(n).

Since this book is already quite long, we resolved ourselves, not without regrets, to
omit many proofs. We feel that it is more important to motivate, demystify, and explain
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the reasons for introducing various concepts and to clarify the relationship between these
notions rather than spelling out every proof in full detail. Whenever we omit a proof, we
provide precise pointers to the literature.

We must acknowledge our debt to our main sources of inspiration: Bott and Tu [13],
Bröcker and tom Dieck [19], Cartan [22], Chern [23], Chevalley [25], Dieudonné [32, 33, 34],
do Carmo [39], Gallot, Hulin, Lafontaine [52], Hirzebruch [61], Knapp [70], Madsen and
Tornehave [80], Milnor and Stasheff [83], Morimoto [86], Morita [87], Petersen [92], and
Warner [115].

The chapters or sections marked with the symbol ~ contain material that is typically
more specialized or more advanced, and they can be omitted upon first (or second) reading.

Acknowledgement : We would like to thank Eugenio Calabi, Ching-Li Chai, Ted Chinburg,
Chris Croke, Ron Donagi, Harry Gingold, H.W. Gould, Herman Gluck, David Harbater, Julia
Hartmann, Jerry Kazdan, Alexander Kirillov, Florian Pop, Steve Shatz, Jim Stasheff, George
Sparling, Doran Zeilberger, and Wolfgand Ziller for their encouragement, advice, inspiration
and for what they taught me. We also thank Christine Allen-Blanchette, Arthur Azevedo
de Amorim, Kostas Daniilidis, Carlos Esteves, Spyridon Leonardos, Stephen Phillips, João
Sedoc, Marcelo Siqueira, and Roberto Tron for reporting typos and for helpful comments.
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Chapter 1

Introduction

This book covers topics which belong to a second course in differential geometry. Differential
forms constitute the main tool needed to understand and prove many of the results presented
in this book. Thus one need have a solid understanding of differential forms, which turn out
to be certain kinds of skew-symmetric (also called alternating) tensors. Differential forms
have two main roles:

(1) Describe various systems of partial differential equations on manifolds.

(2) To define various geometric invariants reflecting the global structure of manifolds or
bundles. Such invariants are obtained by integrating certain differential forms.

Differential forms can be combined using a notion of product called the wedge product,
but what really gives power to the formalism of differential forms is the magical operation d
of exterior differentiation. Given a form ω, we obtain another form dω, and remarkably, the
following equation holds

ddω = 0.

As silly as it looks, the above equation lies at the core of the notion of cohomology, a
powerful algebraic tool to understanding the topology of manifolds, and more generally of
topological spaces.

Élie Cartan had many of the intuitions that led to the cohomology of differential forms,
but it was Georges de Rham who defined it rigorously and proved some important theorems
about it. It turns out that the notion of Laplacian can also be defined on differential forms
using a device due to Hodge, and some important theorems can be obtained: the Hodge
decomposition theorem, and Hodge’s theorem about the isomorphism between the de Rham
cohomology groups and the spaces of harmonic forms. Differential forms can also be used to
define the notion of curvature of a connection on a certain type of manifold called a vector
bundle.

Because differential forms are such a fundamental tool we made the (perhaps painful)
decision to provide a fairly detailed exposition of tensors, starting with arbitrary tensors,
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12 CHAPTER 1. INTRODUCTION

and then specializing to symmetric and alternating tensors. In particular, we explain rather
carefully the process of taking the dual of a tensor (of all three flavors). Tensors, symmetric
tensors, tensor algebras, and symmetrc algebras are discussed on Chapter 2. Alternating
tensors, and exterior algebras are discussed in Chapter 3. The Hodge ∗ operator is intro-
duced, we discuss criteria for the decomposablity of an alternating tensor in terms of hook
operators, and we present the Grassmann-Plücker’s equations.

We now give a preview of the topics discussed in this book.

Chapter 4 is devoted to a thorough presentation of differential forms, including vector-
valued differential forms, differential forms on Lie Groups, and Maurer-Cartan forms. We
also introduce de Rham cohomology.

Chapter 6 is a short chapter devoted to distributions and the Frobenius theorem. Distri-
butions are a generalization of vector fields, and the issue is to understand when a distribution
is integrable. The Frobenius theorem gives a necessary and sufficient condition for a distri-
bution to have an integral manifold at every point. One version of the Frobenius theorem is
stated in terms of vector fields, the second version in terms of differential forms.

The theory of integration on manifolds and Lie groups is presented in Chapter 7. We
introduce the notion of orientation of a smooth manifold (of dimension n), volume forms, and
then explain how to integrate a smooth n-form with compact support. We define densities
which allow integrating n-forms even if the manifold is not orientable, but we do not go into
the details of this theory. We define manifolds with boundary, and explain how to integrate
forms on certain kinds of manifolds with boundaries called regular domains. We state and
prove a version of the famous result known as Stokes’ theorem. In the last section we discuss
integrating functions on Riemannian manifolds or Lie groups.

The main theme of Chapter 8 is to generalize Fourier analysis on the circle to higher
dimensional spheres. One of our goals is to understand the structure of the space L2(Sn)
of real-valued square integrable functions on the sphere Sn, and its complex analog L2

C(Sn).
Both are Hilbert spaces if we equip them with suitable inner products. It turns out that each
of L2(Sn) and L2

C(Sn) contains a countable family of very nice finite dimensional subspaces
Hk(S

n) (and HC
k (Sn)), where Hk(S

n) is the space of (real) spherical harmonics on Sn, that
is, the restrictions of the harmonic homogeneous polynomials of degree k (in n + 1 real
variables) to Sn (and similarly for HC

k (Sn)); these polynomials satisfy the Laplace equation

∆P = 0,

where the operator ∆ is the (Euclidean) Laplacian,

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n+1

.

Remarkably, each space Hk(S
n) (resp. HC

k (Sn)) is the eigenspace of the Laplace-Beltrami
operator ∆Sn on Sn, a generalization to Riemannian manifolds of the standard Laplacian
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(in fact, Hk(S
n) is the eigenspace for the eigenvalue −k(n + k − 1)). As a consequence,

the spaces Hk(S
n) (resp. HC

k (Sn)) are pairwise orthogonal. Furthermore (and this is where
analysis comes in), the set of all finite linear combinations of elements in

⋃∞
k=0Hk(S

n) (resp.⋃∞
k=0HC

k (Sn)) is is dense in L2(Sn) (resp. dense in L2
C(Sn)). These two facts imply the

following fundamental result about the structure of the spaces L2(Sn) and L2
C(Sn).

The family of spaces Hk(S
n) (resp. HC

k (Sn)) yields a Hilbert space direct sum decompo-
sition

L2(Sn) =
∞⊕
k=0

Hk(S
n) (resp. L2

C(Sn) =
∞⊕
k=0

HC
k (Sn)),

which means that the summands are closed, pairwise orthogonal, and that every f ∈ L2(Sn)
(resp. f ∈ L2

C(Sn)) is the sum of a converging series

f =
∞∑
k=0

fk

in the L2-norm, where the fk ∈ Hk(S
n) (resp. fk ∈ HC

k (Sn)) are uniquely determined
functions. Furthermore, given any orthonormal basis (Y 1

k , . . . , Y
ak,n+1

k ) of Hk(S
n), we have

fk =

ak,n+1∑
mk=1

ck,mkY
mk
k , with ck,mk = 〈f, Y mk

k 〉Sn .

The coefficients ck,mk are “generalized” Fourier coefficients with respect to the Hilbert
basis {Y mk

k | 1 ≤ mk ≤ ak,n+1, k ≥ 0}; see Theorems 8.18 and 8.19.

When n = 2, the functions Y mk
k correspond to the spherical harmonics , which are defined

in terms of the Legendre functions. Along the way, we prove the famous Funk–Hecke formula.

The purpose of Section 8.9 is to generalize the results about the structure of the space
of functions L2

C(Sn) defined on the sphere Sn, especially the results of Sections 8.5 and 8.6
(such as Theorem 8.19, except part (3)), to homogeneous spaces G/K where G is a compact
Lie group and K is a closed subgroup of G.

The first step is to consider the Hilbert space L2
C(G) where G is a compact Lie group

and to find a Hilbert sum decomposition of this space. The key to this generalization is the
notion of (unitary) linear representation of the group G.

The result that we are alluding to is a famous theorem known as the Peter–Weyl theorem
about unitary representations of compact Lie groups.

The Peter–Weyl theorem can be generalized to any representation V : G→ Aut(E) of G
into a separable Hilbert space E, and we obtain a Hilbert sum decomposition of E in terms
of subspaces Eρ of E.

The next step is to consider the subspace L2
C(G/K) of L2

C(G) consisting of the functions
that are right-invariant under the action of K. These can be viewed as functions on the
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homogeneous space G/K. Again we obtain a Hilbert sum decomposition. It is also interest-
ing to consider the subspace L2

C(K\G/K) of functions in L2
C(G) consisting of the functions

that are both left and right-invariant under the action of K. The functions in L2
C(K\G/K)

can be viewed as functions on the homogeneous space G/K that are invariant under the left
action of K.

Convolution makes the space L2
C(G) into a non-commutative algebra. Remarkably, it is

possible to characterize when L2
C(K\G/K) is commutative (under convolution) in terms of

a simple criterion about the irreducible representations of G. In this situation, (G,K) is a
called a Gelfand pair .

When (G,K) is a Gelfand pair, it is possible to define a well-behaved notion of Fourier
transform on L2

C(K\G/K). Gelfand pairs and the Fourier transform are briefly considered
in Section 8.11.

Chapter 9 deals with various generalizations of the Lapacian to manifolds.

The Laplacian is a very important operator because it shows up in many of the equations
used in physics to describe natural phenomena such as heat diffusion or wave propagation.
Therefore, it is highly desirable to generalize the Laplacian to functions defined on a manifold.
Furthermore, in the late 1930’s, Georges de Rham (inspired by Élie Cartan) realized that it
was fruitful to define a version of the Laplacian operating on differential forms, because of
a fundamental and almost miraculous relationship between harmonics forms (those in the
kernel of the Laplacian) and the de Rham cohomology groups on a (compact, orientable)
smooth manifold. Indeed, as we will see in Section 9.6, for every cohomology group Hk

DR(M),
every cohomology class [ω] ∈ Hk

DR(M) is represented by a unique harmonic k-form ω; this is
the Hodge theorem. The connection between analysis and topology lies deep and has many
important consequences. For example, Poincaré duality follows as an “easy” consequence of
the Hodge theorem.

Technically, the Hodge Laplacian can be defined on differential forms using the Hodge ∗
operator (Section 3.5). On functions, there is an alternate and equivalent definition of the
Laplacian using only the covariant derivative and obtained by generalizing the notions of
gradient and divergence to functions on manifolds.

Another version of the Laplacian on k-forms can be defined in terms of a generalization
of the Levi-Civita connection ∇ : X(M)×X(M)→ X(M) to k-forms viewed as a linear map

∇ : Ak(M)→ HomC∞(M)(X(M),Ak(M)),

and in terms of a certain adjoint ∇∗ of ∇, a linear map

∇∗ : HomC∞(M)(X(M),Ak(M))→ Ak(M).

We obtain the Bochner Laplacian (or connection Laplacian ) ∇∗∇. Then it is natural to
wonder how the Hodge Laplacian ∆ differs from the connection Laplacian ∇∗∇?
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Remarkably, there is a formula known as Weitzenböck’s formula (or Bochner’s formula)
of the form

∆ = ∇∗∇+ C(R∇),

where C(R∇) is a contraction of a version of the curvature tensor on differential forms (a
fairly complicated term). In the case of one-forms,

∆ = ∇∗∇+ Ric,

where Ric is a suitable version of the Ricci curvature operating on one-forms.

Weitzenböck-type formulae are at the root of the so-called “Bochner technique,” which
consists in exploiting curvature information to deduce topological information.

Chapter 10 is an introduction to bundle theory; we discuss fibre bundles, vector bundles,
and principal bundles.

Intuitively, a fibre bundle over B is a family E = (Eb)b∈B of spaces Eb (fibres) indexed
by B and varying smoothly as b moves in B, such that every Eb is diffeomorphic to some
prespecified space F . The space E is called the total space, B the base space, and F the
fibre. A way to define such a family is to specify a surjective map π : E → B. We will assume
that E, B, F are smooth manifolds and that π is a smooth map. The type of bundles that
we just described is too general and to develop a useful theory it is necessary to assume that
locally, a bundle looks likes a product. Technically, this is achieved by assuming that there
is some open cover U = (Uα)α∈I of B and that there is a family (ϕα)α∈I of diffeomorphisms

ϕα : π−1(Uα)→ Uα × F.

Intuitively, above Uα, the open subset π−1(Uα) looks like a product. The maps ϕα are called
local trivializations .

The last important ingredient in the notion of a fibre bundle is the specifiction of the
“twisting” of the bundle; that is, how the fibre Eb = π−1(b) gets twisted as b moves in the
base space B. Technically, such twisting manifests itself on overlaps Uα ∩ Uβ 6= ∅. It turns
out that we can write

ϕα ◦ ϕ−1
β (b, x) = (b, gαβ(b)(x))

for all b ∈ Uα∩Uβ and all x ∈ F . The term gαβ(b) is a diffeomorphism of F . Then we require
that the family of diffeomorphisms gαβ(b) belongs to a Lie group G, which is expressed by
specifying that the maps gαβ, called transitions maps, are maps

gαβ : Uα ∩ Uβ → G.

The purpose of the group G, called the structure group, is to specify the “twisting” of the
bundle.

Fibre bundles are defined in Section 10.1. The family of transition maps gαβ satisfies an
important condition on nonempty overlaps Uα ∩ Uβ ∩ Uγ called the cocycle condition:

gαβ(b)gβγ(b) = gαγ(b)
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(where gαβ(b), gβγ(b), gαγ(b) ∈ G), for all α, β, γ such that Uα ∩ Uβ ∩ Uγ 6= ∅ and all b ∈
Uα ∩ Uβ ∩ Uγ.

In Section 10.2, following Hirzebruch [61] and Chern [23], we define bundle morphisms
and the notion of equivalence of bundles over the same base. We show that two bundles
(over the same base) are equivalent if and only if they are isomorphic.

In Section 10.3 we describe the construction of a fibre bundle with prescribed fibre F and
structure group G from a base manifold, B, an open cover U = (Uα)α∈I of B, and a family of
maps gαβ : Uα ∩Uβ → G satisfying the cocycle condition, called a cocycle. This construction
is the basic tool for constructing new bundles from old ones.

Section 10.4 is devoted to a special kind of fibre bundle called vector bundles . A vector
bundle is a fibre bundle for which the fibre is a finite-dimensional vector space V , and the
structure group is a subgroup of the group of linear isomorphisms (GL(n,R) or GL(n,C),
where n = dimV ). Typical examples of vector bundles are the tangent bundle TM and the
cotangent bundle T ∗M of a manifold M . We define maps of vector bundles and equivalence
of vector bundles.

In Section 10.5 we describe various operations on vector bundles: Whitney sums, ten-
sor products, tensor powers, exterior powers, symmetric powers, dual bundles, and Hom
bundles. We also define the complexification of a real vector bundle.

In Section 10.6 we discuss properties of the sections of a vector bundle ξ. We prove that
the space of sections Γ(ξ) is finitely generated projective C∞(B)-module.

Section 10.7 is devoted to the the covariant derivative of tensor fields and to the duality
between vector fields and differential forms.

In Section 10.8 we explain how to give a vector bundle a Riemannian metric. This is
achieved by supplying a smooth family (〈−,−〉b)b∈B of inner products on each fibre π−1(b)
above b ∈ B. We describe the notion of reduction of the structure group and define orientable
vector bundles.

In Section 10.9 we consider the special case of fibre bundles for which the fibre coincides
with the structure group G, which acts on itself by left translations. Such fibre bundles are
called principal bundles . It turns out that a principal bundle can be defined in terms of a free
right action of Lie group on a smooth manifold. When principal bundles are defined in terms
of free right actions, the notion of bundle morphism is also defined in terms of equivariant
maps.

There are two constructions that allow us to reduce the study of fibre bundles to the
study of principal bundles. Given a fibre bundle ξ with fibre F , we can construct a principal
bundle P (ξ) obtained by replacing the fibre F by the group G. Conversely, given a principal
bundle ξ and an effective action of G on a manifold F , we can construct the fibre bundle
ξ[F ] obtained by replacing G by F . The maps

ξ 7→ ξ[F ] and ξ 7→ P (ξ)
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induce a bijection between equivalence classes of principal G-bundles and fibre bundles (with
structure group G). Furthermore, ξ is a trivial bundle iff P (ξ) is a trivial bundle.

Section 10.10 is devoted to principal bundles that arise from proper and free actions of a
Lie group. When the base space is a homogenous space, which means that it arises from a
transitive action of a Lie group, then the total space is a principal bundle. There are many
illustrations of this situation involving SO(n+ 1) and SU(n+ 1).

In Chapter 11 we discuss connections and curvature in vector bundles. In Section 11.2
we define connections on a vector bundle. This can be done in two equivalent ways. One
of the two definitions is more abstract than the other because it involves a tensor product,
but it is technically more convenient. This definition states that a connection on a vector
bundle ξ, as an R-linear map

∇ : Γ(ξ)→ A1(B)⊗C∞(B) Γ(ξ) (∗)

that satisfies the “Leibniz rule”

∇(fs) = df ⊗ s+ f∇s,

with s ∈ Γ(ξ) and f ∈ C∞(B), where Γ(ξ) and A1(B) are treated as C∞(B)-modules. Here,
A1(B) = Γ(T ∗B) is the space of 1-forms on B. Since there is an isomorphism

A1(B)⊗C∞(B) Γ(ξ) ∼= Γ(T ∗B ⊗ ξ),

a connection can be defined equivalently as an R-linear map

∇ : Γ(ξ)→ Γ(T ∗B ⊗ ξ)

satisfying the Leibniz rule.

In Section 11.3 we show how a connection can be represented in a chart in terms of a
certain matrix called a connection matrix . We prove that every vector bundle possesses a
connection, and we give a formula describing how a connection matrix changes if we switch
from one chart to another.

In Section 11.4 we define the notion of covariant derivative along a curve and parallel
transport.

Section 11.5 is devoted to the very important concept of curvature form R∇ of a connec-
tion ∇ on a vector bundle ξ. We show that the curvature form is a vector-valued two-form
with values in Γ(Hom(ξ, ξ)). We also establish the relationhip between R∇ and the more
familiar definition of the Riemannian curvature in terms of vector fields.

In Section 11.6 we show how the curvature form can be expressed in a chart in terms of
a matrix of two-forms called a curvature matrix . The connection matrix and the curvature
matrix are related by the structure equation. We also give a formula describing how a
curvature matrix changes if we switch from one chart to another. Bianchi’s identity gives
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an expression for the exterior derivative of the curvature matrix in terms of the curvature
matrix itself and the connection matrix.

Section 11.8 deals with connections compatible with a metric and the Levi-Civita con-
nection, which arise in the Riemannian geometry of manifolds. One way of characterizing
the Levi-Civita connection involves defining the notion of connection on the dual bundle.
This is achieved in Section 11.9.

Levi-Civita connections on the tangent bundle of a manifold are investigated in Section
11.10.

The purpose of Section 11.11 is to introduce the reader to Pontrjagin Classes and Chern
Classes , which are fundamental invariants of real (resp. complex) vector bundles. Here we
are dealing with one of the most sophisticated and beautiful parts of differential geometry.

A masterly exposition of the theory of characteristic classes is given in the classic book by
Milnor and Stasheff [83]. Amazingly, the method of Chern and Weil using differential forms
is quite accessible for someone who has reasonably good knowledge of differential forms and
de Rham cohomology, as long as one is willing to gloss over various technical details. We
give an introduction to characteristic classes using the method of Chern and Weil.

If ξ is a real orientable vector bundle of rank 2m, and if ∇ is a metric connection on ξ,
then it is possible to define a closed global form eu(R∇), and its cohomology class e(ξ) is
called the Euler class of ξ. This is shown in Section 11.13. The Euler class e(ξ) turns out to
be a square root of the top Pontrjagin class pm(ξ) of ξ. A complex rank m vector bundle can
be viewed as a real vector bundle of rank 2m, which is always orientable. The Euler class
e(ξ) of this real vector bundle is equal to the top Chern class cm(ξ) of the complex vector
bundle ξ.

The global form eu(R∇) is defined in terms of a certain polynomial Pf(A) associated with
a real skew-symmetric matrix A, which is a kind of square root of the determinant det(A).
The polynomial Pf(A), called the Pfaffian, is defined in Section 11.12.

The culmination of this chapter is a statement of the generalization due to Chern of
a classical theorem of Gauss and Bonnet. This theorem known as the generalized Gauss–
Bonnet formula expresses the Euler characteristic χ(M) of an orientable, compact smooth
manifold M of dimension 2m as

χ(M) =

∫
M

eu(R∇),

where eu(R∇) is the Euler form associated with the curvature form R∇ of a metric connection
∇ on M .

The goal of Chapter 13 is to explain how rotations in Rn are induced by the action of
a certain group Spin(n) on Rn, in a way that generalizes the action of the unit complex
numbers U(1) on R2, and the action of the unit quaternions SU(2) on R3 (i.e., the action is
defined in terms of multiplication in a larger algebra containing both the group Spin(n) and
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Rn). The group Spin(n), called a spinor group, is defined as a certain subgroup of units of
an algebra Cln, the Clifford algebra associated with Rn.

Since the spinor groups are certain well chosen subgroups of units of Clifford algebras, it is
necessary to investigate Clifford algebras to get a firm understanding of spinor groups. This
chapter provides a tutorial on Clifford algebra and the groups Spin and Pin, including a
study of the structure of the Clifford algebra Clp,q associated with a nondegenerate symmetric

bilinear form of signature (p, q) and culminating in the beautiful 8-periodicity theorem of Élie
Cartan and Raoul Bott (with proofs). We also explain when Spin(p, q) is a double-cover of
SO(p, q).

Some preliminaries on algebras and tensor algebras are reviewed in Section 13.2.

In Section 13.3 we define Clifford algebras over the field K = R. The Clifford groups
(over K = R) are defined in Section 13.4. In the second half of this section we restrict our
attention to the real quadratic form Φ(x1, . . . , xn) = −(x2

1 + · · · + x2
n). The corresponding

Clifford algebras are denoted Cln and the corresponding Clifford groups as Γn.

In Section 13.5 we define the groups Pin(n) and Spin(n) associated with the real
quadratic form Φ(x1, . . . , xn) = −(x2

1 + · · ·+x2
n). We prove that the maps ρ : Pin(n)→ O(n)

and ρ : Spin(n) → SO(n) are surjective with kernel {−1,1}. We determine the groups
Spin(n) for n = 2, 3, 4.

Section 13.6 is devoted to the Spin and Pin groups associated with the real nondegenerate
quadratic form

Φ(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p − (x2
p+1 + · · ·+ x2

p+q).

We obtain Clifford algebras Clp,q, Clifford groups Γp,q, and groups Pin(p, q) and Spin(p, q).
We show that the maps ρ : Pin(p, q)→ O(p, q) and ρ : Spin(p, q)→ SO(p, q) are surjective
with kernel {−1,1}.

In Section 13.7 we show that the Lie groups Pin(p, q) and Spin(p, q) are double covers
of O(p, q) and SO(p, q).

In Section 13.8 we prove an amazing result due to Élie Cartan and Raoul Bott, namely
the 8-periodicity of the Clifford algebras Clp,q. This result says that: for all n ≥ 0, we have
the following isomorphisms:

Cl0,n+8
∼= Cl0,n ⊗ Cl0,8

Cln+8,0
∼= Cln,0 ⊗ Cl8,0.

Furthermore,
Cl0,8 = Cl8,0 = R(16),

the real algebra of 16× 16 matrices.

Section 13.9 is devoted to the complex Clifford algebras Cl(n,C). In this case, we have
a 2-periodicity,

Cl(n+ 2,C) ∼= Cl(n,C)⊗C Cl(2,C),
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with Cl(2,C) = C(2), the complex algebra of 2× 2 matrices.

Finally, in the last section, Section 13.10 we outline the theory of Clifford groups and of
the Pin and Spin groups over any field K of characteristic 6= 2.



Chapter 2

Tensor Algebras and Symmetric
Algebras

Tensors are creatures that we would prefer did not exist but keep showing up whenever
multilinearity manifests itself.

One of the goals of differential geometry is to be able to generalize “calculus on Rn” to
spaces more general than Rn, namely manifolds. We would like to differentiate functions
f : M → R defined on a manifold, optimize functions (find their minima or maxima), but
also to integrate such functions, as well as compute areas and volumes of subspaces of our
manifold.

The suitable notion of differentiation is the notion of tangent map, a linear notion. One
of the main discoveries made at the beginning of the twentieth century by Poincaré and Élie
Cartan, is that the “right” approach to integration is to integrate differential forms , and not
functions. To integrate a function f , we integrate the form fω, where ω is a volume form on
the manifold M . The formalism of differential forms takes care of the process of the change
of variables quite automatically, and allows for a very clean statement of Stokes’ formula.

Differential forms can be combined using a notion of product called the wedge product,
but what really gives power to the formalism of differential forms is the magical operation d
of exterior differentiation. Given a form ω, we obtain another form dω, and remarkably, the
following equation holds

ddω = 0.

As silly as it looks, the above equation lies at the core of the notion of cohomology, a
powerful algebraic tool to understanding the topology of manifolds, and more generally of
topological spaces.

Élie Cartan had many of the intuitions that led to the cohomology of differential forms,
but it was Georges de Rham who defined it rigorously and proved some important theorems
about it. It turns out that the notion of Laplacian can also be defined on differential forms
using a device due to Hodge, and some important theorems can be obtained: the Hodge

21
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decomposition theorem, and Hodge’s theorem about the isomorphism between the de Rham
cohomology groups and the spaces of harmonic forms.

To understand all this, one needs to learn about differential forms, which turn out to be
certain kinds of skew-symmetric (also called alternating) tensors.

If one’s only goal is to define differential forms, then it is possible to take some short
cuts and to avoid introducing the general notion of a tensor. However, tensors that are not
necessarily skew-symmetric arise naturally, such as the curvature tensor, and in the theory
of vector bundles, general tensor products are needed.

Consequently, we made the (perhaps painful) decision to provide a fairly detailed ex-
position of tensors, starting with arbitrary tensors, and then specializing to symmetric and
alternating tensors. In particular, we explain rather carefully the process of taking the dual
of a tensor (of all three flavors).

We refrained from following the approach in which the tensor product E1 ⊗ · · · ⊗ En
is defined as the space of multilinear forms on the product E∗1 × E∗2 × · · · × E∗n, where E∗i
is the dual of the space Ei, because it seems somewhat artificial. This approach relies on
duality results that only hold in finite dimension (see Proposition 2.17), and consequently
unecessarily restricts the theory of tensors to finite dimensional spaces. We also feel that it is
important to begin with a coordinate-free approach. Bases can be chosen for computations,
but tensor algebra should not be reduced to raising or lowering indices.

However, we admit that when V is finite-dimensional, there are technical advantages with
using the isomorphism between the space of (r, s)-tensors T r,s(V ) = V ⊗r ⊗ (V ∗)⊗s and the
space of multilinear forms T r,s(V ) = Hom((V ∗)r, V s;K); see Proposition 2.25 and Sections
2.7 and 2.8. Viewing (r, s)-tensors are multilinear forms also simplifies the theory of smooth
tensor fields.

Readers who feel that they are familiar with tensors could skip this chapter and the next.
They can come back to them “by need.”

We begin by defining tensor products of vector spaces over a field and then we investigate
some basic properties of these tensors, in particular the existence of bases and duality. After
this we investigate special kinds of tensors, namely symmetric tensors and skew-symmetric
tensors. Tensor products of modules over a commutative ring with identity will be discussed
very briefly. They show up naturally when we consider the space of sections of a tensor
product of vector bundles.

Given a linear map f : E → F (where E and F are two vector spaces over a field K),
we know that if we have a basis (ui)i∈I for E, then f is completely determined by its values
f(ui) on the basis vectors. For a multilinear map f : En → F , we don’t know if there is such
a nice property but it would certainly be very useful.

In many respects tensor products allow us to define multilinear maps in terms of their
action on a suitable basis. The crucial idea is to linearize, that is, to create a new vector space
E⊗n such that the multilinear map f : En → F is turned into a linear map f⊗ : E⊗n → F
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which is equivalent to f in a strong sense. If in addition, f is symmetric, then we can define
a symmetric tensor power Symn(E), and every symmetric multilinear map f : En → F is
turned into a linear map f� : Symn(E) → F which is equivalent to f in a strong sense.
Similarly, if f is alternating, then we can define a skew-symmetric tensor power

∧n(E), and
every alternating multilinear map is turned into a linear map f∧ :

∧n(E) → F which is
equivalent to f in a strong sense.

Tensor products can be defined in various ways, some more abstract than others. We try
to stay down to earth, without excess.

In Section 2.1, we review some facts about dual spaces and pairings. In particular,
we show that an inner product on a finite-dimensional vector space E induces a canonical
isomorphism between E and its dual space E∗. Pairings will be used to deal with dual spaces
of tensors. We also show that there is a canonical isomorphism between the vector space of
bilinear forms on E and the vector space of linear maps from E to itself.

Tensor products are defined in Section 2.2. Given two vector spaces E1 and E2 over a
field K, the tensor product E1⊗E2 is defined by a universal mapping property: it is a vector
space with an injection i⊗ : E1×E2 → E1⊗E2, such that for every vector space F and every
bilinear map f : E1 × E2 → F , there is a unique linear map f⊗ : E1 ⊗ E2 → F such that

f = f⊗ ◦ i⊗,

as illustrated in the following diagram:

E1 × E2

f &&

i⊗ // E1 ⊗ E2

f⊗
��
F

We prove that the above universal mapping property defines E1 ⊗ E2 up to isomorphism,
and then we prove its existence by constructing a suitable quotient of the free vector space
K(E1⊗E2) generated by E1 ⊗ E2. The generalization to any finite number of vector spaces
E1, . . . , En is immediate.

The universal mapping property of the tensor product yields an isomorphism between the
vector space of linear maps Hom(E1⊗ · · ·⊗En, F ) and the vector space of multilinear maps
Hom(E1, . . . , En;F ). We show that tensor product is functorial, which means that given two
linear maps f : E → F and g : E ′ → F ′, there is a linear map f ⊗ g : E ⊗ F → E ′ ⊗ F ′.

In Section 2.3, we show how to construct a basis for the tensor product E1 ⊗ · · · ⊗ En
from bases for the spaces E1, . . . , En.

In Section 2.4, we prove some basic isomorphisms involving tensor products. One of these
isomorphisms states that Hom(E ⊗ F,G) is isomorphic to Hom(E,Hom(F,G)).

Section 2.5 deals with duality for tensor products. It is a very important section which
needs to be throroughly understood in order to study vector bundles. The main isomorphisms
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state that if E1, . . . , En are finite dimensional, then

(E1 ⊗ · · · ⊗ En)∗ ∼= E∗1 ⊗ · · · ⊗ E∗n ∼= Hom(E1, . . . , En;K).

The second isomorphism arises from the pairing µ defined on generators by

µ(v∗1 ⊗ · · · ⊗ v∗n)(u1, . . . , un) = v∗1(u1) · · · v∗n(un).

We also prove that if either E or F is finite dimensional then there is a canonical isomorphism
between E∗ ⊗ F and Hom(E,F ).

In Section 2.6 we define the tensor algebra T (V ). This is the direct sum of the tensor
powers V ⊗m = V ⊗ · · · ⊗ V︸ ︷︷ ︸

m

,

T (V ) =
⊕
m≥0

V ⊗m.

In addition to being a vector space, T (V ) is equipped with an associative multiplication, ⊗.
The tensor algebra T (V ) satisfies a universal mapping property with respect to (associative)
algebras.

We also define the tensor algebras T r,s(V ) and the tensor algebra T •,•(V ).

In Section 2.7, we take a closer look at the family of spaces T r,s(V ) of (r, s)-tensors, in
particular tensor products and duality. We prove that there is an isomorphism between the
space of (r, s)-tensors T r,s(V ) = V ⊗r ⊗ (V ∗)⊗s and the space of multilinear forms T r,s(V ) =
Hom((V ∗)r, V s;K); see Proposition 2.25.

In Section 2.8, we further investigate (r, s)-tensors as multilinear forms in T r,s(V ) =
Hom((V ∗)r, V s;K). We introduce the Einstein summation convention and explain how it
can be used to simplify formulae involving many summations. We show that T 1,s(V ) is
isomorphic to the space Hom(V s;V ) of multilinear maps from V s to V . We also show how
a linear isomorphism ϕ : V → W of finite-dimensional vector spaces induces a linear isomor-
phism ϕrs : T r,s(V ) → T r,s(W ); see Proposition 2.28. We also explain how the components
of a tensor change under change of basis; see Proposition 2.29.

In Section 2.9, we define contraction operations.

In Section 2.10 to turn to the special case of symmetric tensor powers, which correspond
to symmetric multilinear maps ϕ : En → F . There are multilinear maps that are invariant
under permutation of its arguments.

Given a vector space E over a field K, for any n ≥ 1, the symmetric tensor power
Sn(E) is defined by a universal mapping property: it is a vector space with an injection
i� : En → Sn(E), such that for every vector space F and every symmetric multilinear map
f : En → F , there is a unique linear map f� : Sn(E)→ F such that

f = f� ◦ i�,
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as illustrated in the following diagram:

En

f ##

i� // Sn(E)

f�
��
F

We prove that the above universal mapping property defines Sn(E) up to isomorphism, and
then we prove its existence by constructing the quotient of the tensor power E⊗n by the
subspace C of E⊗n generated by the vectors of the form

u1 ⊗ · · · ⊗ un − uσ(1) ⊗ · · · ⊗ uσ(n),

for all ui ∈ E, and all permutations σ : {1, . . . , n} → {1, . . . , n}. As a corollary, there is
an isomorphism between the vector space of linear maps Hom(Sn(E), F ) and the vector
space of symmetric multilinear maps Symn(E;F ). We also show that given two linear maps
f, g : E → E ′, there is a linear map f � g : S2(E)→ S2(E ′).

A basic isomorphism involving the symmetric power of a direct sum is shown at the end
of this section.

In Section 2.11, we show how to construct a basis of the tensor power Sn(E) from a basis
of E. This involves multisets.

Section 2.12 is devoted to duality in symmetric powers. There is a nondegenerate pairing
Sn(E∗)× Sn(E) −→ K defined on generators as follows:

(v∗1 � · · · � v∗n, u1 � · · · � un) 7→
∑
σ∈Sn

v∗σ(1)(u1) · · · v∗σ(n)(un).

As a consequence, if E is finite dimensional and if K is a field of charactersistic 0, we have
canonical isomorphisms

(Sn(E))∗ ∼= Sn(E∗) ∼= Symn(E;K).

The symmetric tensor power Sn(E) is also naturally embedded in E⊗n.

In Section 2.13 we define symmetric tensor algebras. As in the case of tensors, we can
pack together all the symmetric powers Sn(V ) into an algebra. Given a vector space V , the
space

S(V ) =
⊕
m≥0

Sm(V ),

is called the symmetric tensor algebra of V . The symmetric tensor algebra S(V ) satisfies a
universal mapping property with respect to commutative algebras.

We conclude with Section 2.14 which gives a quick introduction to tensor products of
modules over a commutative ring. Such tensor products arise because vector fields and dif-
ferential forms on a smooth manifold are modules over the ring of smooth functions C∞(M).
Except for the results about bases and duality, most other results still hold for these more
general tensors. We introduce projective modules , which behave better under duality. Pro-
jective modules will show up when dealing with vector bundles.
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2.1 Linear Algebra Preliminaries: Dual Spaces and

Pairings

We assume that we are dealing with vector spaces over a field K. As usual the dual space E∗

of a vector space E is defined by E∗ = Hom(E,K). The dual space E∗ is the vector space
consisting of all linear maps ω : E → K with values in the field K.

A problem that comes up often is to decide when a space E is isomorphic to the dual
F ∗ of some other space F (possibly equal to E). The notion of pairing due to Pontrjagin
provides a very clean criterion.

Definition 2.1. Given two vector spaces E and F over a field K, a map 〈−,−〉 : E×F → K
is a nondegenerate pairing iff it is bilinear and iff 〈u, v〉 = 0 for all v ∈ F implies u = 0, and
〈u, v〉 = 0 for all u ∈ E implies v = 0. A nondegenerate pairing induces two linear maps
ϕ : E → F ∗ and ψ : F → E∗ defined such that for all for all u ∈ E and all v ∈ F , ϕ(u) is the
linear form in F ∗ and ψ(v) is the linear form in E∗ given by

ϕ(u)(y) = 〈u, y〉 for all y ∈ F
ψ(v)(x) = 〈x, v〉 for all x ∈ E.

Schematically, ϕ(u) = 〈u,−〉 and ψ(v) = 〈−, v〉.

Proposition 2.1. For every nondegenerate pairing 〈−,−〉 : E × F → K, the induced maps
ϕ : E → F ∗ and ψ : F → E∗ are linear and injective. Furthermore, if E and F are finite
dimensional, then ϕ : E → F ∗ and ψ : F → E∗ are bijective.

Proof. The maps ϕ : E → F ∗ and ψ : F → E∗ are linear because u, v 7→ 〈u, v〉 is bilinear.
Assume that ϕ(u) = 0. This means that ϕ(u)(y) = 〈u, y〉 = 0 for all y ∈ F , and as our
pairing is nondegenerate, we must have u = 0. Similarly, ψ is injective. If E and F are finite
dimensional, then dim(E) = dim(E∗) and dim(F ) = dim(F ∗). However, the injectivity of ϕ
and ψ implies that that dim(E) ≤ dim(F ∗) and dim(F ) ≤ dim(E∗). Consequently dim(E) ≤
dim(F ) and dim(F ) ≤ dim(E), so dim(E) = dim(F ). Therefore, dim(E) = dim(F ∗) and ϕ
is bijective (and similarly dim(F ) = dim(E∗) and ψ is bijective).

Proposition 2.1 shows that when E and F are finite dimensional, a nondegenerate pairing
induces canonical isomorphisms ϕ : E → F ∗ and ψ : F → E∗; that is, isomorphisms that do
not depend on the choice of bases. An important special case is the case where E = F and
we have an inner product (a symmetric, positive definite bilinear form) on E.

Remark: When we use the term “canonical isomorphism,” we mean that such an isomor-
phism is defined independently of any choice of bases. For example, if E is a finite dimen-
sional vector space and (e1, . . . , en) is any basis of E, we have the dual basis (e∗1, . . . , e

∗
n) of

E∗ (where, e∗i (ej) = δi j), and thus the map ei 7→ e∗i is an isomorphism between E and E∗.
This isomorphism is not canonical.
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On the other hand, there are two important cases where we have canonical isomorphisms
for a vector space E of finite dimension.

(1) The pairing 〈−,−〉 : E∗ × E → K given by

〈ω, u〉 = ω(u), ω ∈ E∗, u ∈ E,

namely evaluation at u. This pairing induces the isomorphism ψ : E → E∗∗ given by

ψ(u)(ω) = 〈ω, u〉 = ω(u), ω ∈ E∗, u ∈ E.

Definition 2.2. The bilinear map eval : E∗ ×E → K, also denoted δ1
1 : E∗ ×E → K,

given by
eval(ω, u) = δ1

1(ω, u) = ω(u), ω ∈ E∗, u ∈ E,

is the evaluation map or Kronecker delta, and for every u ∈ E, the linear form evalu ∈
E∗∗ is given by

evalu(ω) = eval(ω, u) = ω(u), ω ∈ E∗. (eval)

Thus, we see that that the isomorphism ψ : E → E∗∗ is given by

ψ(u) = evalu, u ∈ E.

(2) If 〈−,−〉 is an inner product on a real vector space E, then Proposition 2.1 shows that
the nondegenerate pairing 〈−,−〉 on E×E induces a canonical isomorphism between E
and E∗. This isomorphism is often denoted [ : E → E∗, and we usually write u[ for [(u),
with u ∈ E. Schematically, u[ = 〈u,−〉. The inverse of [ is denoted ] : E∗ → E, and
given any linear form ω ∈ E∗, we usually write ω] for ](ω). Schematically, ω = 〈ω],−〉.

Given any basis, (e1, . . . , en) of E (not necessarily orthonormal), let (gij) be the n×n-
matrix given by gij = 〈ei, ej〉 (the Gram matrix of the inner product). Recall that
the dual basis (e∗1, . . . , e

∗
n) of E∗ consists of the coordinate forms e∗i ∈ E∗, which are

characterized by the following properties:

e∗i (ej) = δij, 1 ≤ i, j ≤ n.

The inverse of the Gram matrix (gij) is often denoted by (gij) (by raising the indices).

The tradition of raising and lowering indices is pervasive in the literature on tensors.
It is indeed useful to have some notational convention to distinguish between vectors and
linear forms (also called one-forms or covectors). The usual convention is that coordinates
of vectors are written using superscripts, as in u =

∑n
i=1 u

iei, and coordinates of one-forms
are written using subscripts, as in ω =

∑n
i=1 ωie

∗
i . Actually, since vectors are indexed with

subscripts, one-forms are indexed with superscripts, so e∗i should be written as ei.
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The motivation is that summation signs can then be omitted, according to the Einstein
summation convention. According to this convention, whenever a summation variable (such
as i) appears both as a subscript and a superscript in an expression, it is assumed that it is
involved in a summation. For example the sum

∑n
i=1 u

iei is abbreviated as

uiei,

and the sum
∑n

i=1 ωie
i is abbreviated as

ωie
i.

In this text we will typically only use the Einstein summation convention for tensors.
The maps [ and ] can be described explicitly in terms of the Gram matrix of the inner

product and its inverse.

Proposition 2.2. For any real vector space E, given a basis (e1, . . . , en) for E and its dual
basis (e∗1, . . . , e

∗
n) for E∗, for any inner product 〈−,−〉 on E, if (gij) is its Gram matrix, with

gij = 〈ei, ej〉, and (gij) is its inverse, then for every vector u =
∑n

j=1 u
jej ∈ E and every

one-form ω =
∑n

i=1 ωie
∗
i ∈ E∗, we have

u[ =
n∑
i=1

ωie
∗
i , with ωi =

n∑
j=1

giju
j,

and

ω] =
n∑
j=1

(ω])jej, with (ω])i =
n∑
j=1

gijωj.

Proof. For every u =
∑n

j=1 u
jej, since u[(v) = 〈u, v〉 for all v ∈ E and the Gram matrix is

symmetric, we have

u[(ei) = 〈u, ei〉 =

〈 n∑
j=1

ujej, ei

〉
=

n∑
j=1

uj〈ej, ei〉 =
n∑
j=1

giju
j,

so we get

u[ =
n∑
i=1

ωie
∗
i , with ωi =

n∑
j=1

giju
j.

If we write ω ∈ E∗ as ω =
∑n

i=1 ωie
∗
i and ω] ∈ E as ω] =

∑n
j=1(ω])jej, since

ωi = ω(ei) = 〈ω], ei〉 =
n∑
j=1

(ω])jgij =
n∑
j=1

gij(ω
])j, 1 ≤ i ≤ n,

we get

(ω])i =
n∑
j=1

gijωj,

where (gij) is the inverse of the matrix (gij).
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The map [ has the effect of lowering (flattening!) indices, and the map ] has the effect
of raising (sharpening!) indices.

Here is an explicit example of Proposition 2.2. Let (e1, e2) be a basis of E such that

〈e1, e1〉 = 1, 〈e1, e2〉 = 2, 〈e2, e2〉 = 5.

Then

g =

(
1 2
2 5

)
, g−1 =

(
5 −2
−2 1

)
.

Set u = u1e1 + u2e2 and observe that

u[(e1) = 〈u1e1 + u2e2, e1〉 = 〈e1, e1〉u1 + 〈e2, e1〉u2 = g11u
1 + g12u

2 = u1 + 2u2

u[(e2) = 〈u1e1 + u2e2, e2〉 = 〈e1, e2〉u1 + 〈e2, e2〉u2 = g21u
1 + g22u

2 = 2u1 + 5u2,

which in turn implies that

u[ = ω1e
∗
1 + ω2e

∗
2 = u[(e1)e∗1 + u[(e2)e∗2 = (u1 + 2u2)e∗1 + (2u1 + 5u2)e∗2.

Given ω = ω1e
∗
1 + ω2e

∗
2, we calculate ω] = (ω])1e1 + (ω])2e2 from the following two linear

equalities:

ω1 = ω(e1) = 〈ω], e1〉 = 〈(ω])1e1 + (ω])2e2, e1〉
= 〈e1, e1〉(ω])1 + 〈e2, e1〉(ω])2 = (ω])1 + 2(ω])2 = g11(ω])1 + g12(ω])2

ω2 = ω(e2) = 〈ω], e2〉 = 〈(ω])1e1 + (ω])2e2, e2〉
= 〈e1, e2〉(ω])1 + 〈e2, e2〉(ω])2 = 2(ω])1 + 5(ω])2 = g21(ω])1 + g22(ω])2.

These equalities are concisely written as(
ω1

ω2

)
=

(
1 2
2 5

)(
(ω])1

(ω])2

)
= g

(
(ω])1

(ω])2

)
.

Then (
(ω])1

(ω])2

)
= g−1

(
ω1

ω2

)
=

(
5 −2
−2 1

)(
ω1

ω2

)
,

which in turn implies

(ω])1 = 5ω1 − 2ω2, (ω])2 = −2ω1 + ω2,

i.e.

ω] = (5ω1 − 2ω2)e1 + (−2ω1 + ω2)e2.
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The inner product 〈−,−〉 on E induces an inner product on E∗ denoted 〈−,−〉E∗ , and
given by

〈ω1, ω2〉E∗ = 〈ω]1, ω
]
2〉, for all ω1, ω2 ∈ E∗.

Then we have

〈u[, v[〉E∗ = 〈(u[)], (v[)]〉 = 〈u, v〉 for all u, v ∈ E.

If (e1, . . . , en) is a basis of E and gij = 〈ei, ej〉, as

(e∗i )
] =

n∑
k=1

gikek,

an easy computation shows that

〈e∗i , e∗j〉E∗ = 〈(e∗i )], (e∗j)]〉 = gji = gij;

that is, in the basis (e∗1, . . . , e
∗
n), the inner product on E∗ is represented by the matrix (gij),

the inverse of the matrix (gij).

The inner product on a finite dimensional real vector space also yields a canonical iso-
morphism between the space Hom(E,E;R) of bilinear forms on E, and the space Hom(E,E)
of linear maps from E to itself. Using this isomorphism, we can define the trace of a bilinear
form in an intrinsic manner. This technique is used in differential geometry, for example, to
define the divergence of a differential one-form.

Proposition 2.3. If 〈−,−〉 is an inner product on a finite dimensional real vector space E,
then for every bilinear form f : E × E → R, there is a unique linear map f \ : E → E such
that

f(u, v) = 〈f \(u), v〉, for all u, v ∈ E.

The map f 7→ f \ is a linear isomorphism between Hom(E,E;K) and Hom(E,E). Fur-
thermore, for any basis (e1, . . . , en) of E, if A = (f(ei, ej)) is the matrix representing f ,
G = (gij = 〈ei, ej〉) the symmetric Gram matrix representing the inner product 〈−,−〉, and
B = (bij) the matrix representing f \, then

B = G−1A>.

Proof. For every g ∈ Hom(E,E), the map given by

f(u, v) = 〈g(u), v〉, u, v ∈ E,

is clearly bilinear. It is also clear that the above defines a linear map from Hom(E,E) to
Hom(E,E;K). This map is injective, because if f(u, v) = 0 for all u, v ∈ E, as 〈−,−〉 is
an inner product, we get g(u) = 0 for all u ∈ E. Furthermore, both spaces Hom(E,E) and
Hom(E,E;K) have the same dimension, so our linear map is an isomorphism.
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Since the jth column of B determines f \(ej) by

f \(ej) =
n∑
k=1

bkjek,

using the fact that the Gram matrix G is symmetric, we have

aji = f(ej, ei) =
〈
f \(ej), ei

〉
=

〈
n∑
k=1

bkjek, ei

〉

=
n∑
k=1

bkj〈ek, ei〉 =
n∑
k=1

bkjgki =
n∑
k=1

gikbkj.

The equations

aji =
n∑
k=1

gikbkj

are equivalent to GB = A>, and so

B = G−1A>,

as claimed.

If (e1, . . . , en) is an orthonormal basis of E, then we check immediately that the trace of
a linear map g (which is independent of the choice of a basis) is given by

tr(g) =
n∑
i=1

〈g(ei), ei〉,

where n = dim(E).

Definition 2.3. We define the trace of the bilinear form f by

tr(f) = tr(f \).

From Proposition 2.3, tr(f) is given by

tr(f) =
n∑
i=1

f(ei, ei),

for any orthonormal basis (e1, . . . , en) of E. We can also check directly that the above
expression is independent of the choice of an orthonormal basis.
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We demonstrate how to calculate tr(f) where f : R2×R2 → R with f((x1, y1), (x2, y2)) =
x1x2+2x2y1+3x1y2−y1y2. Under the standard basis for R2, the bilinear form f is represented
as (

x1 y1

)(1 3
2 −1

)(
x2

y2

)
.

Since in the present case G = I2, this matrix representation shows that

f \ =

(
1 3
2 −1

)>
=

(
1 2
3 −1

)
,

and hence

tr(f) = tr(f \) = tr

(
1 2
3 −1

)
= 0.

We will also need the following proposition to show that various families are linearly
independent.

Proposition 2.4. Let E and F be two nontrivial vector spaces and let (ui)i∈I be any family
of vectors ui ∈ E. The family (ui)i∈I is linearly independent iff for every family (vi)i∈I of
vectors vi ∈ F , there is some linear map f : E → F so that f(ui) = vi for all i ∈ I.

Proof. Left as an exercise.

2.2 Tensor Products

First we define tensor products, and then we prove their existence and uniqueness up to
isomorphism.

Definition 2.4. Let K be a given field, and let E1, . . . , En be n ≥ 2 given vector spaces.
For any vector space F , a map f : E1 × · · · ×En → F is multilinear iff it is linear in each of
its argument; that is,

f(u1, . . . ui1 , v + w, ui+1, . . . , un) = f(u1, . . . ui1 , v, ui+1, . . . , un)

+ f(u1, . . . ui1 , w, ui+1, . . . , un)

f(u1, . . . ui1 , λv, ui+1, . . . , un) = λf(u1, . . . ui1 , v, ui+1, . . . , un),

for all uj ∈ Ej (j 6= i), all v, w ∈ Ei and all λ ∈ K, for i = 1 . . . , n.

The set of multilinear maps as above forms a vector space denoted L(E1, . . . , En;F ) or
Hom(E1, . . . , En;F ). When n = 1, we have the vector space of linear maps L(E,F ) (also
denoted Hom(E,F )). (To be very precise, we write HomK(E1, . . . , En;F ) and HomK(E,F ).)
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Definition 2.5. A tensor product of n ≥ 2 vector spaces E1, . . . , En is a vector space T
together with a multilinear map ϕ : E1 × · · · × En → T , such that for every vector space F
and for every multilinear map f : E1×· · ·×En → F , there is a unique linear map f⊗ : T → F
with

f(u1, . . . , un) = f⊗(ϕ(u1, . . . , un)),

for all u1 ∈ E1, . . . , un ∈ En, or for short

f = f⊗ ◦ ϕ.

Equivalently, there is a unique linear map f⊗ such that the following diagram commutes.

E1 × · · · × En

f &&

ϕ // T

f⊗
��
F

The above property is called the universal mapping property of the tensor product (T, ϕ).

We show that any two tensor products (T1, ϕ1) and (T2, ϕ2) for E1, . . . , En, are isomorphic.

Proposition 2.5. Given any two tensor products (T1, ϕ1) and (T2, ϕ2) for E1, . . . , En, there
is an isomorphism h : T1 → T2 such that

ϕ2 = h ◦ ϕ1.

Proof. Focusing on (T1, ϕ1), we have a multilinear map ϕ2 : E1 × · · · × En → T2, and thus
there is a unique linear map (ϕ2)⊗ : T1 → T2 with

ϕ2 = (ϕ2)⊗ ◦ ϕ1

as illustrated by the following commutative diagram.

E1 × · · · × En

ϕ2
&&

ϕ1 // T1

(ϕ2)⊗
��
T2

Similarly, focusing now on on (T2, ϕ2), we have a multilinear map ϕ1 : E1 × · · · × En → T1,
and thus there is a unique linear map (ϕ1)⊗ : T2 → T1 with

ϕ1 = (ϕ1)⊗ ◦ ϕ2
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as illustrated by the following commutative diagram.

E1 × · · · × En

ϕ1
&&

ϕ2 // T2

(ϕ1)⊗
��
T1

Putting these diagrams together, we obtain the commutative diagrams

T1

(ϕ2)⊗
��

E1 × · · · × En

ϕ1
&&

ϕ1

88

ϕ2 // T2

(ϕ1)⊗
��
T1

and

T2

(ϕ1)⊗
��

E1 × · · · × En

ϕ2
&&

ϕ2

88

ϕ1 // T1

(ϕ2)⊗
��
T2,

which means that

ϕ1 = (ϕ1)⊗ ◦ (ϕ2)⊗ ◦ ϕ1 and ϕ2 = (ϕ2)⊗ ◦ (ϕ1)⊗ ◦ ϕ2.

On the other hand, focusing on (T1, ϕ1), we have a multilinear map ϕ1 : E1× · · ·×En → T1,
but the unique linear map h : T1 → T1 with

ϕ1 = h ◦ ϕ1

is h = id, as illustrated by the following commutative diagram

E1 × · · · × En

ϕ1
&&

ϕ1 // T1

id
��
T1,

and since (ϕ1)⊗ ◦ (ϕ2)⊗ is linear as a composition of linear maps, we must have

(ϕ1)⊗ ◦ (ϕ2)⊗ = id.
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Similarly, we have the commutative diagram

E1 × · · · × En

ϕ2
&&

ϕ2 // T2

id
��
T2,

and we must have
(ϕ2)⊗ ◦ (ϕ1)⊗ = id.

This shows that (ϕ1)⊗ and (ϕ2)⊗ are inverse linear maps, and thus, (ϕ2)⊗ : T1 → T2 is an
isomorphism between T1 and T2.

Now that we have shown that tensor products are unique up to isomorphism, we give a
construction that produces them. Tensor products are obtained from free vector spaces by
a quotient process, so let us begin by describing the construction of the free vector space
generated by a set.

For simplicity assume that our set I is finite, say

I = {♥,♦,♠,♣}.

The construction works for any field K (and in fact for any commutative ring A, in which
case we obtain the free A-module generated by I). Assume that K = R. The free vector
space generated by I is the set of all formal linear combinations of the form

a♥+ b♦+ c♠+ d♣,

with a, b, c, d ∈ R. It is assumed that the order of the terms does not matter. For example,

2♥− 5♦+ 3♠ = −5♦+ 2♥+ 3♠.

Addition and multiplication by a scalar are are defined as follows:

(a1♥+ b1♦+ c1♠+ d1♣) + (a2♥+ b2♦+ c2♠+ d2♣)

= (a1 + a2)♥+ (b1 + b2)♦+ (c1 + c2)♠+ (d1 + d2)♣,

and
α · (a♥+ b♦+ c♠+ d♣) = αa♥+ αb♦+ αc♠+ αd♣,

for all a, b, c, d, α ∈ R. With these operations, it is immediately verified that we obtain a
vector space denoted R(I). The set I can be viewed as embedded in R(I) by the injection ι
given by

ι(♥) = 1♥, ι(♦) = 1♦, ι(♠) = 1♠, ι(♣) = 1♣.

Thus, R(I) can be viewed as the vector space with the special basis I = {♥,♦,♠,♣}. In our
case, R(I) is isomorophic to R4.
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The exact same construction works for any field K, and we obtain a vector space denoted
by K(I) and an injection ι : I → K(I).

The main reason why the free vector space K(I) over a set I is interesting is that it
satisfies a universal mapping property . This means that for every vector space F (over the
field K), any function h : I → F , where F is considered just a set , has a unique linear
extension h : K(I) → F . By extension, we mean that h(i) = h(i) for all i ∈ I, or more
rigorously that h = h ◦ ι.

For example, if I = {♥,♦,♠,♣}, K = R, and F = R3, the function h given by

h(♥) = (1, 1, 1), h(♦) = (1, 1, 0), h(♠) = (1, 0, 0), h(♣) = (0, 0− 1)

has a unique linear extension h : R(I) → R3 to the free vector space R(I), given by

h(a♥+ b♦+ c♠+ d♣) = ah(♥) + bh(♦) + ch(♠) + dh(♣)

= ah(♥) + bh(♦) + ch(♠) + dh(♣)

= a(1, 1, 1) + b(1, 1, 0) + c(1, 0, 0) + d(0, 0,−1)

= (a+ b+ c, a+ b, a− d).

To generalize the construction of a free vector space to infinite sets I, we observe that
the formal linear combination a♥+ b♦+ c♠+ d♣ can be viewed as the function f : I → R
given by

f(♥) = a, f(♦) = b, f(♠) = c, f(♣) = d,

where a, b, c, d ∈ R. More generally, we can replace R by any field K. If I is finite, then
the set of all such functions is a vector space under pointwise addition and pointwise scalar
multiplication. If I is infinite, since addition and scalar multiplication only makes sense for
finite vectors, we require that our functions f : I → K take the value 0 except for possibly
finitely many arguments. We can think of such functions as an infinite sequences (fi)i∈I of
elements fi of K indexed by I, with only finitely many nonzero fi. The formalization of this
construction goes as follows.

Given any set I viewed as an index set, let K(I) be the set of all functions f : I → K
such that f(i) 6= 0 only for finitely many i ∈ I. As usual, denote such a function by (fi)i∈I ;
it is a family of finite support. We make K(I) into a vector space by defining addition and
scalar multiplication by

(fi) + (gi) = (fi + gi)

λ(fi) = (λfi).

The family (ei)i∈I is defined such that (ei)j = 0 if j 6= i and (ei)i = 1. It is a basis of
the vector space K(I), so that every w ∈ K(I) can be uniquely written as a finite linear
combination of the ei. There is also an injection ι : I → K(I) such that ι(i) = ei for every
i ∈ I. Furthermore, it is easy to show that for any vector space F , and for any function
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h : I → F , there is a unique linear map h : K(I) → F such that h = h ◦ ι, as in the following
diagram.

I

h !!

ι // K(I)

h
��
F

Definition 2.6. The vector space (K(I), ι) constructed as above from a set I is called the
free vector space generated by I (or over I). The commutativity of the above diagram is
called the universal mapping property of the free vector space (K(I), ι) over I.

Using the proof technique of Proposition 2.5, it is not hard to prove that any two vector
spaces satisfying the above universal mapping property are isomorphic.

We can now return to the construction of tensor products. For simplicity consider two
vector spaces E1 and E2. Whatever E1 ⊗ E2 and ϕ : E1 × E2 → E1 ⊗ E2 are, since ϕ is
supposed to be bilinear, we must have

ϕ(u1 + u2, v1) = ϕ(u1, v1) + ϕ(u2, v1)

ϕ(u1, v1 + v2) = ϕ(u1, v1) + ϕ(u1, v2)

ϕ(λu1, v1) = λϕ(u1, v1)

ϕ(u1, µv1) = µϕ(u1, v1)

for all u1, u2 ∈ E1, all v1, v2 ∈ E2, and all λ, µ ∈ K. Since E1⊗E2 must satisfy the universal
mapping property of Definition 2.5, we may want to define E1 ⊗E2 as the free vector space
K(E1×E2) generated by I = E1×E2 and let ϕ be the injection of E1×E2 into K(E1×E2). The
problem is that in K(E1×E2), vectors such that

(u1 + u2, v1) and (u1, v1) + (u2, v2)

are different, when they should really be the same, since ϕ is bilinear. Since K(E1×E2) is free,
there are no relations among the generators and this vector space is too big for our purpose.

The remedy is simple: take the quotient of the free vector space K(E1×E2) by the subspace
N generated by the vectors of the form

(u1 + u2, v1)− (u1, v1)− (u2, v1)

(u1, v1 + v2)− (u1, v1)− (u1, v2)

(λu1, v1)− λ(u1, v1)

(u1, µv1)− µ(u1, v1).

Then, if we let E1 ⊗ E2 be the quotient space K(E1×E2)/N and let ϕ be the quotient map,
this forces ϕ to be bilinear. Checking that (K(E1×E2)/N, ϕ) satisfies the universal mapping
property is straightforward. Here is the detailed construction.
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Theorem 2.6. Given n ≥ 2 vector spaces E1, . . . , En, a tensor product (E1 ⊗ · · · ⊗ En, ϕ)
for E1, . . . , En can be constructed. Furthermore, denoting ϕ(u1, . . . , un) as u1⊗ · · · ⊗ un, the
tensor product E1 ⊗ · · · ⊗ En is generated by the vectors u1 ⊗ · · · ⊗ un, where
u1 ∈ E1, . . . , un ∈ En, and for every multilinear map f : E1 × · · · × En → F , the unique
linear map f⊗ : E1 ⊗ · · · ⊗ En → F such that f = f⊗ ◦ ϕ is defined by

f⊗(u1 ⊗ · · · ⊗ un) = f(u1, . . . , un)

on the generators u1 ⊗ · · · ⊗ un of E1 ⊗ · · · ⊗ En.

Proof. First we apply the construction of a free vector space to the cartesian product I =
E1×· · ·×En, obtaining the free vector space M = K(I) on I = E1×· · ·×En. Since every basis
generator ei ∈M is uniquely associated with some n-tuple i = (u1, . . . , un) ∈ E1× · · · ×En,
we denote ei by (u1, . . . , un).

Next let N be the subspace of M generated by the vectors of the following type:

(u1, . . . , ui + vi, . . . , un)− (u1, . . . , ui, . . . , un)− (u1, . . . , vi, . . . , un),

(u1, . . . , λui, . . . , un)− λ(u1, . . . , ui, . . . , un).

We let E1⊗ · · · ⊗En be the quotient M/N of the free vector space M by N , π : M →M/N
be the quotient map, and set

ϕ = π ◦ ι.
By construction, ϕ is multilinear, and since π is surjective and the ι(i) = ei generate M , the
fact that each i is of the form i = (u1, . . . , un) ∈ E1 × · · · × En implies that ϕ(u1, . . . , un)
generate M/N . Thus, if we denote ϕ(u1, . . . , un) as u1 ⊗ · · · ⊗ un, the space E1 ⊗ · · · ⊗ En
is generated by the vectors u1 ⊗ · · · ⊗ un, with ui ∈ Ei.

It remains to show that (E1 ⊗ · · · ⊗ En, ϕ) satisfies the universal mapping property. To
this end, we begin by proving there is a map h such that f = h ◦ ϕ. Since M = K(E1×···×En)

is free on I = E1 × · · · × En, there is a unique linear map f : K(E1×···×En) → F , such that

f = f ◦ ι,

as in the diagram below.

E1 × · · · × En

f
))

ι // K(E1×···×En) = M

f

��
F

Because f is multilinear, note that we must have f(w) = 0 for every w ∈ N ; for example,
on the generator

(u1, . . . , ui + vi, . . . , un)− (u1, . . . , ui, . . . , un)− (u1, . . . , vi, . . . , un)
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we have

f((u1, . . . , ui + vi, . . . , un)− (u1, . . . , ui, . . . , un)− (u1, . . . , vi, . . . , un))

= f(u1, . . . , ui + vi, . . . , un)− f(u1, . . . , ui, . . . , un)− f(u1, . . . , vi, . . . , un)

= f(u1, . . . , ui, . . . , un) + f(u1, . . . , vi, . . . , un)− f(u1, . . . , ui, . . . , un)

− f(u1, . . . , vi, . . . , un)

= 0.

But then, f : M → F factors through M/N , which means that there is a unique linear map
h : M/N → F such that f = h ◦ π making the following diagram commute

M

f ""

π // M/N

h
��
F,

by defining h([z]) = f(z) for every z ∈ M , where [z] denotes the equivalence class in M/N
of z ∈M . Indeed, the fact that f vanishes on N insures that h is well defined on M/N , and
it is clearly linear by definition. Since f = f ◦ ι, from the equation f = h ◦ π, by composing
on the right with ι, we obtain

f = f ◦ ι = h ◦ π ◦ ι = h ◦ ϕ,

as in the following commutative diagram.

K(E1×···×En)

π

((
f

��

E1 × · · · × En

f
((

ι

66

K(E1×···×En)/N

h
uu

F

We now prove the uniqueness of h. For any linear map f⊗ : E1 ⊗ · · · ⊗ En → F such that
f = f⊗ ◦ϕ, since the vectors u1⊗ · · · ⊗ un generate E1⊗ · · · ⊗En and since ϕ(u1, . . . , un) =
u1 ⊗ · · · ⊗ un, the map f⊗ is uniquely defined by

f⊗(u1 ⊗ · · · ⊗ un) = f(u1, . . . , un).

Since f = h ◦ ϕ, the map h is unique, and we let f⊗ = h.

The map ϕ from E1 × · · · × En to E1 ⊗ · · · ⊗ En is often denoted by ι⊗, so that

ι⊗(u1, . . . , un) = u1 ⊗ · · · ⊗ un.



40 CHAPTER 2. TENSOR ALGEBRAS

What is important about Theorem 2.6 is not so much the construction itself but the
fact that it produces a tensor product with the universal mapping property with respect to
multilinear maps. Indeed, Theorem 2.6 yields a canonical isomorphism

L(E1 ⊗ · · · ⊗ En, F ) ∼= L(E1, . . . , En;F )

between the vector space of linear maps L(E1 ⊗ · · · ⊗En, F ), and the vector space of multi-
linear maps L(E1, . . . , En;F ), via the linear map − ◦ ϕ defined by

h 7→ h ◦ ϕ,

where h ∈ L(E1 ⊗ · · · ⊗ En, F ). Indeed, h ◦ ϕ is clearly multilinear, and since by Theorem
2.6, for every multilinear map f ∈ L(E1, . . . , En;F ), there is a unique linear map f⊗ ∈
L(E1 ⊗ · · · ⊗ En, F ) such that f = f⊗ ◦ ϕ, the map − ◦ ϕ is bijective. As a matter of fact,
its inverse is the map

f 7→ f⊗.

We record this fact as the following proposition.

Proposition 2.7. Given a tensor product (E1⊗ · · · ⊗En, ϕ), the linear map h 7→ h ◦ϕ is a
canonical isomorphism

L(E1 ⊗ · · · ⊗ En, F ) ∼= L(E1, . . . , En;F )

between the vector space of linear maps L(E1⊗· · ·⊗En, F ), and the vector space of multilinear
maps L(E1, . . . , En;F ).

Using the “Hom” notation, the above canonical isomorphism is written

Hom(E1 ⊗ · · · ⊗ En, F ) ∼= Hom(E1, . . . , En;F ).

Remarks:

(1) To be very precise, since the tensor product depends on the field K, we should subscript
the symbol ⊗ with K and write

E1 ⊗K · · · ⊗K En.

However, we often omit the subscript K unless confusion may arise.

(2) For F = K, the base field, Proposition 2.7 yields a canonical isomorphism between
the vector space L(E1 ⊗ · · · ⊗ En, K), and the vector space of multilinear forms
L(E1, . . . , En;K). However, L(E1⊗· · ·⊗En, K) is the dual space (E1⊗· · ·⊗En)∗, and
thus the vector space of multilinear forms L(E1, . . . , En;K) is canonically isomorphic
to (E1 ⊗ · · · ⊗ En)∗.
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Since this isomorphism is used often, we record it as the following proposition.

Proposition 2.8. Given a tensor product E1 ⊗ · · · ⊗En,, there is a canonical isomorphism

L(E1, . . . , En;K) ∼= (E1 ⊗ · · · ⊗ En)∗

between the vector space of multilinear maps L(E1, . . . , En;K) and the dual (E1⊗ · · · ⊗En)∗

of the tensor product E1 ⊗ · · · ⊗ En.

The fact that the map ϕ : E1 × · · · × En → E1 ⊗ · · · ⊗ En is multilinear, can also be
expressed as follows:

u1 ⊗ · · · ⊗ (vi + wi)⊗ · · · ⊗ un = (u1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ un) + (u1 ⊗ · · · ⊗ wi ⊗ · · · ⊗ un),

u1 ⊗ · · · ⊗ (λui)⊗ · · · ⊗ un = λ(u1 ⊗ · · · ⊗ ui ⊗ · · · ⊗ un).

Of course, this is just what we wanted!

Definition 2.7. Tensors in E1 ⊗ · · · ⊗ En are called n-tensors , and tensors of the form
u1⊗ · · · ⊗ un, where ui ∈ Ei are called simple (or decomposable) n-tensors . Those n-tensors
that are not simple are often called compound n-tensors .

Not only do tensor products act on spaces, but they also act on linear maps (they are
functors).

Proposition 2.9. Given two linear maps f : E → E ′ and g : F → F ′, there is a unique
linear map

f ⊗ g : E ⊗ F → E ′ ⊗ F ′

such that
(f ⊗ g)(u⊗ v) = f(u)⊗ g(v),

for all u ∈ E and all v ∈ F .

Proof. We can define h : E × F → E ′ ⊗ F ′ by

h(u, v) = f(u)⊗ g(v).

It is immediately verified that h is bilinear, and thus it induces a unique linear map

f ⊗ g : E ⊗ F → E ′ ⊗ F ′

making the following diagram commutes

E × F

h &&

ι⊗ // E ⊗ F
f⊗g
��

E ′ ⊗ F ′,

such that (f ⊗ g)(u⊗ v) = f(u)⊗ g(v), for all u ∈ E and all v ∈ F .
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Definition 2.8. The linear map f ⊗ g : E ⊗ F → E ′ ⊗ F ′ given by Proposition 2.9 is called
the tensor product of f : E → E ′ and g : F → F ′.

Another way to define f ⊗ g proceeds as follows. Given two linear maps f : E → E ′ and
g : F → F ′, the map f × g is the linear map from E × F to E ′ × F ′ given by

(f × g)(u, v) = (f(u), g(v)), for all u ∈ E and all v ∈ F .

Then the map h in the proof of Proposition 2.9 is given by h = ι′⊗ ◦ (f × g), and f ⊗ g is the
unique linear map making the following diagram commute.

E × F
f×g
��

ι⊗ // E ⊗ F
f⊗g
��

E ′ × F ′
ι′⊗

// E ′ ⊗ F ′

Remark: The notation f⊗g is potentially ambiguous, because Hom(E,F ) and Hom(E ′, F ′)
are vector spaces, so we can form the tensor product Hom(E,F )⊗Hom(E ′, F ′) which contains
elements also denoted f ⊗ g. To avoid confusion, the first kind of tensor product of linear
maps defined in Proposition 2.9 (which yields a linear map in Hom(E ⊗ F,E ′ ⊗ F ′)) can be
denoted by T (f, g). If we denote the tensor product E⊗F by T (E,F ), this notation makes
it clearer that T is a bifunctor. If E,E ′ and F, F ′ are finite dimensional, by picking bases it
is not hard to show that the map induced by f ⊗ g 7→ T (f, g) is an isomorphism

Hom(E,F )⊗ Hom(E ′, F ′) ∼= Hom(E ⊗ F,E ′ ⊗ F ′).

Proposition 2.10. Suppose we have linear maps f : E → E ′, g : F → F ′, f ′ : E ′ → E ′′ and
g′ : F ′ → F ′′. Then the following identity holds:

(f ′ ◦ f)⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g). (∗)

Proof. We have the commutative diagram

E × F
f×g
��

ι⊗ // E ⊗ F
f⊗g
��

E ′ × F ′

f ′×g′
��

ι′⊗ // E ′ ⊗ F ′

f ′⊗g′
��

E ′′ × F ′′
ι′′⊗

// E ′′ ⊗ F ′′,

and thus the commutative diagram.

E × F
(f ′×g′)◦(f×g)

��

ι⊗ // E ⊗ F
(f ′⊗g′)◦(f⊗g)
��

E ′′ × F ′′
ι′′⊗

// E ′′ ⊗ F ′′
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We also have the commutative diagram.

E × F
(f ′◦f)×(g′◦g)

��

ι⊗ // E ⊗ F
(f ′◦f)⊗(g′◦g)
��

E ′′ × F ′′
ι′′⊗

// E ′′ ⊗ F ′′.

Since we immediately verify that

(f ′ ◦ f)× (g′ ◦ g) = (f ′ × g′) ◦ (f × g),

by uniqueness of the map between E ⊗ F and E ′′ ⊗ F ′′ in the above diagram, we conclude
that

(f ′ ◦ f)⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g),

as claimed.

The above formula (∗) yields the following useful fact.

Proposition 2.11. If f : E → E ′ and g : F → F ′ are isomorphisms, then f ⊗ g : E ⊗ F →
E ′ ⊗ F ′ is also an isomorphism.

Proof. If f−1 : E ′ → E is the inverse of f : E → E ′ and g−1 : F ′ → F is the inverse of
g : F → F ′ , then f−1 ⊗ g−1 : E ′ ⊗ F ′ → E ⊗ F is the inverse of f ⊗ g : E ⊗ F → E ′ ⊗ F ′,
which is shown as follows:

(f ⊗ g) ◦ (f−1 ⊗ g−1) = (f ◦ f−1)⊗ (g ◦ g−1)

= idE′ ⊗ idF ′

= idE′⊗F ′ ,

and

(f−1 ⊗ g−1) ◦ (f ⊗ g) = (f−1 ◦ f)⊗ (g−1 ◦ g)

= idE ⊗ idF

= idE⊗F .

Therefore, f ⊗ g : E ⊗ F → E ′ ⊗ F ′ is an isomorphism.

The generalization to the tensor product f1 ⊗ · · · ⊗ fn of n ≥ 3 linear maps fi : Ei → Fi
is immediate, and left to the reader.
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2.3 Bases of Tensor Products

We showed that E1⊗· · ·⊗En is generated by the vectors of the form u1⊗· · ·⊗un. However,
these vectors are not linearly independent. This situation can be fixed when considering
bases.

To explain the idea of the proof, consider the case when we have two spaces E and F
both of dimension 3. Given a basis (e1, e2, e3) of E and a basis (f1, f2, f3) of F , we would
like to prove that

e1 ⊗ f1, e1 ⊗ f2, e1 ⊗ f3, e2 ⊗ f1, e2 ⊗ f2, e2 ⊗ f3, e3 ⊗ f1, e3 ⊗ f2, e3 ⊗ f3

are linearly independent. To prove this, it suffices to show that for any vector space G, if
w11, w12, w13, w21, w22, w23, w31, w32, w33 are any vectors in G, then there is a bilinear map
h : E × F → G such that

h(ei, ej) = wij, 1 ≤ i, j ≤ 3.

Because h yields a unique linear map h⊗ : E ⊗ F → G such that

h⊗(ei ⊗ ej) = wij, 1 ≤ i, j ≤ 3,

and by Proposition 2.4, the vectors

e1 ⊗ f1, e1 ⊗ f2, e1 ⊗ f3, e2 ⊗ f1, e2 ⊗ f2, e2 ⊗ f3, e3 ⊗ f1, e3 ⊗ f2, e3 ⊗ f3

are linearly independent. This suggests understanding how a bilinear function f : E×F → G
is expressed in terms of its values f(ei, fj) on the basis vectors (e1, e2, e3) and (f1, f2, f3),
and this can be done easily. Using bilinearity we obtain

f(u1e1 + u2e2 + u3e3, v1f1 + v2f2 + v3f3) = u1v1f(e1, f1) + u1v2f(e1, f2) + u1v3f(e1, f3)

+ u2v1f(e2, f1) + u2v2f(e2, f2) + u2v3f(e2, f3)

+ u3v1f(e3, f1) + u3v2f(e3, f2) + u3v3f(e3, f3).

Therefore, given w11, w12, w13, w21, w22, w23, w31, w32, w33 ∈ G, the function h given by

h(u1e1 + u2e2 + u3e3, v1f1 + v2f2 + v3f3) = u1v1w11 + u1v2w12 + u1v3w13

+ u2v1w21 + u2v2w22 + u2v3w23

+ u3v1w31 + u3v2w33 + u3v3w33

is clearly bilinear, and by construction h(ei, fj) = wij, so it does the job.

The generalization of this argument to any number of vector spaces of any dimension
(even infinite) is straightforward.

Proposition 2.12. Given n ≥ 2 vector spaces E1, . . . , En, if (uki )i∈Ik is a basis for Ek,
1 ≤ k ≤ n, then the family of vectors

(u1
i1
⊗ · · · ⊗ unin)(i1,...,in)∈I1×...×In

is a basis of the tensor product E1 ⊗ · · · ⊗ En.
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Proof. For each k, 1 ≤ k ≤ n, every vk ∈ Ek can be written uniquely as

vk =
∑
j∈Ik

vkj u
k
j ,

for some family of scalars (vkj )j∈Ik . Let F be any nontrivial vector space. We show that for
every family

(wi1,...,in)(i1,...,in)∈I1×...×In ,

of vectors in F , there is some linear map h : E1 ⊗ · · · ⊗ En → F such that

h(u1
i1
⊗ · · · ⊗ unin) = wi1,...,in .

Then by Proposition 2.4, it follows that

(u1
i1
⊗ · · · ⊗ unin)(i1,...,in)∈I1×...×In

is linearly independent. However, since (uki )i∈Ik is a basis for Ek, the u1
i1
⊗ · · · ⊗ unin also

generate E1 ⊗ · · · ⊗ En, and thus, they form a basis of E1 ⊗ · · · ⊗ En.

We define the function f : E1 × · · · × En → F as follows: For any n nonempty finite
subsets J1, . . . , Jn such that Jk ⊆ Ik for k = 1, . . . , n,

f(
∑
j1∈J1

v1
j1
u1
j1
, . . . ,

∑
jn∈Jn

vnjnu
n
jn) =

∑
j1∈J1,...,jn∈Jn

v1
j1
· · · vnjn wj1,...,jn .

It is immediately verified that f is multilinear. By the universal mapping property of the
tensor product, the linear map f⊗ : E1 ⊗ · · · ⊗ En → F such that f = f⊗ ◦ ϕ, is the desired
map h.

In particular, when each Ik is finite and of size mk = dim(Ek), we see that the dimension
of the tensor product E1⊗· · ·⊗En is m1 · · ·mn. As a corollary of Proposition 2.12, if (uki )i∈Ik
is a basis for Ek, 1 ≤ k ≤ n, then every tensor z ∈ E1 ⊗ · · · ⊗En can be written in a unique
way as

z =
∑

(i1,...,in) ∈ I1×...×In

λi1,...,in u
1
i1
⊗ · · · ⊗ unin ,

for some unique family of scalars λi1,...,in ∈ K, all zero except for a finite number.

2.4 Some Useful Isomorphisms for Tensor Products

Proposition 2.13. Given three vector spaces E,F,G, there exists unique canonical isomor-
phisms

(1) E ⊗ F ∼= F ⊗ E
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(2) (E ⊗ F )⊗G ∼= E ⊗ (F ⊗G) ∼= E ⊗ F ⊗G

(3) (E ⊕ F )⊗G ∼= (E ⊗G)⊕ (F ⊗G)

(4) K ⊗ E ∼= E

such that respectively

(a) u⊗ v 7→ v ⊗ u
(b) (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w) 7→ u⊗ v ⊗ w
(c) (u, v)⊗ w 7→ (u⊗ w, v ⊗ w)

(d) λ⊗ u 7→ λu.

Proof. Except for (3), these isomorphisms are proved using the universal mapping property
of tensor products.

(1) The map from E × F to F ⊗ E given by (u, v) 7→ v ⊗ u is clearly bilinear, thus it
induces a unique linear α : E ⊗ F → F ⊗ E making the following diagram commute

E × F

%%

ι⊗ // E ⊗ F
α

��
F ⊗ E,

such that
α(u⊗ v) = v ⊗ u, for all u ∈ E and all v ∈ F .

Similarly, the map from F × E to E ⊗ F given by (v, u) 7→ u⊗ v is clearly bilinear, thus it
induces a unique linear β : F ⊗ E → E ⊗ F making the following diagram commute

F × E

%%

ι⊗ // F ⊗ E
β

��
E ⊗ F,

such that
β(v ⊗ u) = u⊗ v, for all u ∈ E and all v ∈ F .

It is immediately verified that

(β ◦ α)(u⊗ v) = u⊗ v and (α ◦ β)(v ⊗ u) = v ⊗ u

for all u ∈ E and all v ∈ F . Since the tensors of the form u ⊗ v span E ⊗ F and similarly
the tensors of the form v ⊗ u span F ⊗ E, the map β ◦ α is actually the identity on E ⊗ F ,
and similarly α ◦ β is the identity on F ⊗ E, so α and β are isomorphisms.
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(2) Fix some w ∈ G. The map

(u, v) 7→ u⊗ v ⊗ w

from E×F to E⊗F ⊗G is bilinear, and thus there is a linear map fw : E⊗F → E⊗F ⊗G
making the following diagram commute

E × F

''

ι⊗ // E ⊗ F
fw
��

E ⊗ F ⊗G,

with fw(u⊗ v) = u⊗ v ⊗ w.

Next consider the map
(z, w) 7→ fw(z),

from (E ⊗ F ) × G into E ⊗ F ⊗ G. It is easily seen to be bilinear, and thus it induces a
linear map f : (E ⊗ F )⊗G→ E ⊗ F ⊗G making the following diagram commute

(E ⊗ F )×G

((

ι⊗ // (E ⊗ F )⊗G
f

��
E ⊗ F ⊗G,

with f((u⊗ v)⊗ w) = u⊗ v ⊗ w.

Also consider the map
(u, v, w) 7→ (u⊗ v)⊗ w

from E×F ×G to (E⊗F )⊗G. It is trilinear, and thus there is a linear map g : E⊗F ⊗G→
(E ⊗ F )⊗G making the following diagram commute

E × F ×G

((

ι⊗ // E ⊗ F ⊗G
g

��
(E ⊗ F )⊗G,

with g(u⊗ v⊗w) = (u⊗ v)⊗w. Clearly, f ◦ g and g ◦ f are identity maps, and thus f and
g are isomorphisms. The other case is similar.

(3) Given a fixed vector space G, for any two vector spaces M and N and every linear
map f : M → N , let τG(f) = f⊗ idG be the unique linear map making the following diagram
commute.

M ×G
f×idG

��

ιM⊗ // M ⊗G
f⊗idG
��

N ×G ιN⊗
// N ⊗G
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The identity (∗) proved in Proposition 2.10 shows that if g : N → P is another linear map,
then

τG(g) ◦ τG(f) = (g ⊗ idG) ◦ (f ⊗ idG) = (g ◦ f)⊗ (idG ◦ idG) = (g ◦ f)⊗ idG = τG(g ◦ f).

Clearly, τG(0) = 0, and a direct computation on generators also shows that

τG(idM) = (idM ⊗ idG) = idM⊗G,

and that if f ′ : M → N is another linear map, then

τG(f + f ′) = τG(f) + τG(f ′).

In fancy terms, τG is a functor. Now, if E ⊕ F is a direct sum, it is a standard fact of linear
algebra that if πE : E ⊕ F → E and πF : E ⊕ F → F are the projection maps, then

πE ◦ πE = πE πF ◦ πF = πF πE ◦ πF = 0 πF ◦ πE = 0 πE + πF = idE⊕F .

If we apply τG to these identites, we get

τG(πE) ◦ τG(πE) = τG(πE) τG(πF ) ◦ τG(πF ) = τG(πF )

τG(πE) ◦ τG(πF ) = 0 τG(πF ) ◦ τG(πE) = 0 τG(πE) + τG(πF ) = id(E⊕F )⊗G.

Observe that τG(πE) = πE ⊗ idG is a map from (E ⊕F )⊗G onto E ⊗G and that τG(πF ) =
πF ⊗ idG is a map from (E⊕F )⊗G onto F ⊗G, and by linear algebra, the above equations
mean that we have a direct sum

(E ⊗G)⊕ (F ⊗G) ∼= (E ⊕ F )⊗G.

(4) We have the linear map ε : E → K ⊗ E given by

ε(u) = 1⊗ u, for all u ∈ E.

The map (λ, u) 7→ λu from K × E to E is bilinear, so it induces a unique linear map
η : K ⊗ E → E making the following diagram commute

K × E

%%

ι⊗ // K ⊗ E
η

��
E,

such that η(λ⊗ u) = λu, for all λ ∈ K and all u ∈ E. We have

(η ◦ ε)(u) = η(1⊗ u) = 1u = u,

and
(ε ◦ η)(λ⊗ u) = ε(λu) = 1⊗ (λu) = λ(1⊗ u) = λ⊗ u,

which shows that both ε ◦ η and η ◦ ε are the identity, so ε and η are isomorphisms.
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Remark: The isomorphism (3) can be generalized to finite and even arbitrary direct sums⊕
i∈I Ei of vector spaces (where I is an arbitrary nonempty index set). We have an isomor-

phism (⊕
i∈I

Ei

)
⊗G ∼=

⊕
i∈I

(Ei ⊗G).

This isomorphism (with isomorphism (1)) can be used to give another proof of Proposition
2.12 (see Bertin [12], Chapter 4, Section 1) or Lang [72], Chapter XVI, Section 2).

Proposition 2.14. Given any three vector spaces E,F,G, we have the canonical isomor-
phism

Hom(E,F ;G) ∼= Hom(E,Hom(F,G)).

Proof. Any bilinear map f : E × F → G gives the linear map ϕ(f) ∈ Hom(E,Hom(F,G)),
where ϕ(f)(u) is the linear map in Hom(F,G) given by

ϕ(f)(u)(v) = f(u, v).

Conversely, given a linear map g ∈ Hom(E,Hom(F,G)), we get the bilinear map ψ(g) given
by

ψ(g)(u, v) = g(u)(v),

and it is clear that ϕ and ψ and mutual inverses.

Since by Proposition 2.7 there is a canonical isomorphism

Hom(E ⊗ F,G) ∼= Hom(E,F ;G),

together with the isomorphism

Hom(E,F ;G) ∼= Hom(E,Hom(F,G))

given by Proposition 2.14, we obtain the important corollary:

Proposition 2.15. For any three vector spaces E,F,G, we have the canonical isomorphism

Hom(E ⊗ F,G) ∼= Hom(E,Hom(F,G)).

2.5 Duality for Tensor Products

In this section all vector spaces are assumed to have finite dimension, unless specified other-
wise. Let us now see how tensor products behave under duality. For this, we define a pairing
between E∗1⊗· · ·⊗E∗n and E1⊗· · ·⊗En as follows: For any fixed (v∗1, . . . , v

∗
n) ∈ E∗1×· · ·×E∗n,

we have the multilinear map

lv∗1 ,...,v∗n : (u1, . . . , un) 7→ v∗1(u1) · · · v∗n(un)



50 CHAPTER 2. TENSOR ALGEBRAS

from E1 × · · · × En to K. The map lv∗1 ,...,v∗n extends uniquely to a linear map
Lv∗1 ,...,v∗n : E1 ⊗ · · · ⊗ En −→ K making the following diagram commute.

E1 × · · · × En

lv∗1 ,...,v
∗
n ))

ι⊗ // E1 ⊗ · · · ⊗ En
Lv∗1 ,...,v

∗
n

��
K

We also have the multilinear map

(v∗1, . . . , v
∗
n) 7→ Lv∗1 ,...,v∗n

from E∗1 × · · ·×E∗n to Hom(E1⊗ · · ·⊗En, K), which extends to a unique linear map L from
E∗1 ⊗ · · · ⊗ E∗n to Hom(E1 ⊗ · · · ⊗ En, K) making the following diagram commute.

E∗1 × · · · × E∗n

Lv∗1 ,...,v
∗
n **

ι⊗ // E∗1 ⊗ · · · ⊗ E∗n
L
��

Hom(E1 ⊗ · · · ⊗ En;K)

However, in view of the isomorphism

Hom(U ⊗ V,W ) ∼= Hom(U,Hom(V,W ))

given by Proposition 2.15, with U = E∗1 ⊗ · · · ⊗E∗n, V = E1 ⊗ · · · ⊗En and W = K, we can
view L as a linear map

L : (E∗1 ⊗ · · · ⊗ E∗n)⊗ (E1 ⊗ · · · ⊗ En)→ K,

which corresponds to a bilinear map

〈−,−〉 : (E∗1 ⊗ · · · ⊗ E∗n)× (E1 ⊗ · · · ⊗ En) −→ K, (††)

via the isomorphism (U ⊗ V )∗ ∼= Hom(U, V ;K) given by Proposition 2.8. This pairing is
given explicitly on generators by

〈v∗1 ⊗ · · · ⊗ v∗n, u1 . . . , un〉 = v∗1(u1) · · · v∗n(un).

This pairing is nondegenerate, as proved below.

Proof. If (e1
1, . . . , e

1
m1

), . . . , (en1 , . . . , e
n
mn) are bases for E1, . . . , En, then for every basis element

(e1
i1

)∗ ⊗ · · · ⊗ (enin)∗ of E∗1 ⊗ · · · ⊗E∗n, and any basis element e1
j1
⊗ · · · ⊗ enjn of E1 ⊗ · · · ⊗En,

we have
〈(e1

i1
)∗ ⊗ · · · ⊗ (enin)∗, e1

j1
⊗ · · · ⊗ enjn〉 = δi1 j1 · · · δin jn ,

where δi j is Kronecker delta, defined such that δi j = 1 if i = j, and 0 otherwise. Given any
α ∈ E∗1 ⊗ · · · ⊗E∗n, assume that 〈α, β〉 = 0 for all β ∈ E1⊗ · · · ⊗En. The vector α is a finite
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linear combination α =
∑
λi1,...,in(e1

i1
)∗ ⊗ · · · ⊗ (enin)∗, for some unique λi1,...,in ∈ K. If we

choose β = e1
i1
⊗ · · · ⊗ enin , then we get

0 = 〈α, e1
i1
⊗ · · · ⊗ enin〉 =

〈∑
λi1,...,in(e1

i1
)∗ ⊗ · · · ⊗ (enin)∗, e1

i1
⊗ · · · ⊗ enin

〉
=
∑

λi1,...,in〈(e1
i1

)∗ ⊗ · · · ⊗ (enin)∗, e1
i1
⊗ · · · ⊗ enin〉

= λi1,...,in .

Therefore, α = 0,

Conversely, given any β ∈ E1⊗· · ·⊗En, assume that 〈α, β〉 = 0, for all α ∈ E∗1⊗· · ·⊗E∗n.
The vector β is a finite linear combination β =

∑
λi1,...,ine

1
i1
⊗ · · · ⊗ enin , for some unique

λi1,...,in ∈ K. If we choose α = (e1
i1

)∗ ⊗ · · · ⊗ (enin)∗, then we get

0 = 〈(e1
i1

)∗ ⊗ · · · ⊗ (enin)∗, β〉 =
〈

(e1
i1

)∗ ⊗ · · · ⊗ (enin)∗,
∑

λi1,...,ine
1
i1
⊗ · · · ⊗ enin

〉
=
∑

λi1,...,in〈(e1
i1

)∗ ⊗ · · · ⊗ (enin)∗, e1
i1
⊗ · · · ⊗ enin〉

= λi1,...,in .

Therefore, β = 0.

By Proposition 2.1,1 we have a canonical isomorphism

(E1 ⊗ · · · ⊗ En)∗ ∼= E∗1 ⊗ · · · ⊗ E∗n.

Here is our main proposition about duality of tensor products.

Proposition 2.16. We have canonical isomorphisms

(E1 ⊗ · · · ⊗ En)∗ ∼= E∗1 ⊗ · · · ⊗ E∗n,

and

µ : E∗1 ⊗ · · · ⊗ E∗n ∼= Hom(E1, . . . , En;K).

Proof. The second isomorphism follows from the isomorphism (E1⊗· · ·⊗En)∗ ∼= E∗1⊗· · ·⊗E∗n
together with the isomorphism Hom(E1, . . . , En;K) ∼= (E1⊗· · ·⊗En)∗ given by Proposition
2.8.

The isomorphism µ : E∗1 ⊗ · · · ⊗E∗n ∼= Hom(E1, . . . , En;K) can be described explicitly as
the linear extension to E∗1 ⊗ · · · ⊗ E∗n of the map given by

µ(v∗1 ⊗ · · · ⊗ v∗n)(u1 . . . , un) = v∗1(u1) · · · v∗n(un).

1This is where the assumption that our spaces are finite dimensional is used.
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Since our spaces are all finite-dimensional, each space Ei is canonically isomorphic to E∗∗i ,
where the isomorphism u 7→ evalu is defined by Equation (eval) in Section 2.1, namely

evalu(ω) = ω(u), ω ∈ E∗i , u ∈ Ei.

By replacing each Ei by its dual E∗i , we obtain an isomorphism

µ∗ : E∗∗1 ⊗ · · · ⊗ E∗∗n ∼= Hom(E∗1 , . . . , E
∗
n;K),

and using the isomorphisms Ei ∼= E∗∗i we also obtain an isomorphism

E1 ⊗ · · · ⊗ En ∼= Hom(E∗1 , . . . , E
∗
n;K).

The above isomorphism can be defined explicitly. Indeed, using the same symbol µ∗ with a
slight abuse of notation, we define the map

µ∗ : E1 ⊗ · · · ⊗ En → Hom(E∗1 , . . . , E
∗
n;K)

given by

µ∗(u1 ⊗ · · · ⊗ un)(v∗1, . . . , v
∗
n) = µ∗(evalu1 ⊗ · · · ⊗ evalun)(v∗1, . . . , v

∗
n)

= evalu1(v∗1) · · · evalun(v∗n)

= v∗1(u1) · · · v∗n(un),

for all ui ∈ Ei and all v∗i ∈ E∗i , 1 ≤ i ≤ n. Consequently, we have an explicit definition of
the isomorphism

µ∗ : E1 ⊗ · · · ⊗ En → Hom(E∗1 , . . . , E
∗
n;K)

given by
µ∗(u1 ⊗ · · · ⊗ un)(v∗1, . . . , v

∗
n) = v∗1(u1) · · · v∗n(un),

for all ui ∈ Ei and all v∗i ∈ E∗i , 1 ≤ i ≤ n.

Observe the “duality” with the definition of the isomorphism µ : E∗1⊗· · ·⊗E∗n → Hom(E1,
. . . , En;K) given by

µ(v∗1 ⊗ · · · ⊗ v∗n)(u1, . . . , un) = v∗1(u1) · · · v∗n(un).

We record the above results in the following proposition.

Proposition 2.17. We have the canonical isomorphism

µ∗ : E1 ⊗ · · · ⊗ En → Hom(E∗1 , . . . , E
∗
n;K)

given by
µ∗(u1 ⊗ · · · ⊗ un)(v∗1, . . . , v

∗
n) = v∗1(u1) · · · v∗n(un),

and the canonical isomorphism µ : E∗1 ⊗ · · · ⊗ E∗n → Hom(E1, . . . , En;K) given by

µ(v∗1 ⊗ · · · ⊗ v∗n)(u1, . . . , un) = v∗1(u1) · · · v∗n(un),

for all ui ∈ Ei and all v∗i ∈ E∗i , 1 ≤ i ≤ n.
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The above isomorphisms are used by some authors to define tensor products of finite-
dimensional vector spaces, for example, Dieudonné [37], O’Neill [90] and Sakai [99]. They
have the advantage of circumventing the quotient construction of the tensor product.

The above isomorphisms are easily generalized to “mixed” tensor products

E1 ⊗ · · · ⊗ Er ⊗ F ∗1 ⊗ · · · ⊗ F ∗s

and

E∗1 ⊗ · · · ⊗ E∗r ⊗ F1 ⊗ · · · ⊗ Fs
of finite-dimensional vector spaces E1, . . . , Er and F1, . . . , Fs, with r, s ≥ 0. The proof of the
following proposition is left as an exercise.

Proposition 2.18. We have the canonical isomorphism

µ∗ :
r⊗
i=1

Ei ⊗
s⊗
j=1

F ∗j → Hom

( r∏
i=1

E∗1 ×
s∏
j=1

Fj;K

)
given by

µ∗(u1 ⊗ · · · ⊗ ur ⊗ v∗1 ⊗ · · · ⊗ v∗s)(x∗1, . . . , x∗r, y1, . . . , ys) =
r∏
i=1

s∏
j=1

x∗i (ui)v
∗
j (yj),

and the canonical isomorphism

µ :
r⊗
i=1

E∗i ⊗
s⊗
j=1

Fj → Hom

( r∏
i=1

E1 ×
s∏
j=1

F ∗j ;K

)
given by

µ(x∗1 ⊗ · · · ⊗ x∗r ⊗ y1 ⊗ · · · ⊗ ys)(u1, . . . , ur, v
∗
1, . . . , v

∗
s) =

r∏
i=1

s∏
j=1

x∗i (ui)v
∗
j (yj),

for all ui ∈ Ei, x∗i ∈ E∗i (1 ≤ i ≤ r), v∗j ∈ F ∗j , yj ∈ Fj (1 ≤ j ≤ s).

Remark: The canonical isomorphisms of Proposition 2.16 holds under more general con-
ditions. Namely, that K is a commutative ring with identity and that the Ei are finitely-
generated projective K-modules (see Definition 2.28). See Bourbaki, [15] (Chapter III, §11,
Section 5, Proposition 7).

In the special case where i = j = 1, we have a canonical isomorphism between E∗ ⊗ F
and Hom(E × F ∗;K). There is also a canonical isomorphism β between Hom(E × F ∗;K)
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and Hom(E,F ∗∗), namely for any f ∈ Hom(E × F ∗;K), for any u ∈ E, β(f) is the linear
map from E to F ∗∗ given by

[β(f)(u)](v∗) = f(u, v∗), v∗ ∈ F ∗.

Since there is a canonical isomorphism F ∼= F ∗∗, we also obtain canonical isomorphisms

E∗ ⊗ F ∼= Hom(E × F ∗;K) ∼= Hom(E,F ∗∗) ∼= Hom(E,F ).

The method for deriving the isomorphism E∗ ⊗ F ∼= Hom(E,F ) uses the canonical
isomorphism F ∼= F ∗∗, which is slightly indirect and actually unnecessary, as we now explain.

Let E and F be two vector spaces and let α : E∗ × F → Hom(E,F ) be the map defined
such that

α(u∗, f)(x) = u∗(x)f,

for all u∗ ∈ E∗, f ∈ F , and x ∈ E. This map is clearly bilinear, and thus it induces a linear
map α⊗ : E∗ ⊗ F → Hom(E,F ) making the following diagram commute

E∗ × F

α
''

ι⊗ // E∗ ⊗ F
α⊗

��
Hom(E,F ),

such that
α⊗(u∗ ⊗ f)(x) = u∗(x)f.

Proposition 2.19. If E and F are vector spaces (not necessarily finite dimensional), then
the following properties hold:

(1) The linear map α⊗ : E∗ ⊗ F → Hom(E,F ) is injective.

(2) If E is finite dimensional, then α⊗ : E∗⊗F → Hom(E,F ) is a canonical isomorphism.

(3) If F is finite dimensional, then α⊗ : E∗⊗F → Hom(E,F ) is a canonical isomorphism.

Proof. (1) Let (e∗i )i∈I be a basis of E∗ and let (fj)j∈J be a basis of F . Then we know that
(e∗i ⊗ fj)i∈I,j∈J is a basis of E∗⊗F . To prove that α⊗ is injective, let us show that its kernel
is reduced to (0). For any vector

ω =
∑

i∈I′,j∈J ′
λij e

∗
i ⊗ fj

in E∗ ⊗ F , with I ′ and J ′ some finite sets, assume that α⊗(ω) = 0. This means that for
every x ∈ E, we have α⊗(ω)(x) = 0; that is,∑

i∈I′,j∈J ′
α⊗(λij e

∗
i ⊗ fj)(x) =

∑
j∈J ′

(∑
i∈I′

λije
∗
i (x)

)
fj = 0.
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Since (fj)j∈J is a basis of F , for every j ∈ J ′, we must have∑
i∈I′

λije
∗
i (x) = 0, for all x ∈ E.

But then (e∗i )i∈I′ would be linearly dependent, contradicting the fact that (e∗i )i∈I is a basis
of E∗, so we must have

λij = 0, for all i ∈ I ′ and all j ∈ J ′,

which shows that ω = 0. Therefore, α⊗ is injective.

(2) Let (ej)1≤j≤n be a finite basis of E, and as usual, let e∗j ∈ E∗ be the linear form
defined by

e∗j(ek) = δj,k,

where δj,k = 1 iff j = k and 0 otherwise. We know that (e∗j)1≤j≤n is a basis of E∗ (this
is where we use the finite dimension of E). For any linear map f ∈ Hom(E,F ), for every
x = x1e1 + · · ·+ xnen ∈ E, we have

f(x) = f(x1e1 + · · ·+ xnen) = x1f(e1) + · · ·+ xnf(en) = e∗1(x)f(e1) + · · ·+ e∗n(x)f(en).

Consequently, every linear map f ∈ Hom(E,F ) can be expressed as

f(x) = e∗1(x)f1 + · · ·+ e∗n(x)fn,

for some fi ∈ F . Furthermore, if we apply f to ei, we get f(ei) = fi, so the fi are unique.
Observe that

(α⊗(e∗1 ⊗ f1 + · · ·+ e∗n ⊗ fn))(x) =
n∑
i=1

(α⊗(e∗i ⊗ fi))(x) =
n∑
i=1

e∗i (x)fi.

Thus, α⊗ is surjective, so α⊗ is a bijection.

(3) Let (f1, . . . , fm) be a finite basis of F , and let (f ∗1 , . . . , f
∗
m) be its dual basis. Given

any linear map h : E → F , for all u ∈ E, since f ∗i (fj) = δij, we have

h(u) =
m∑
i=1

f ∗i (h(u))fi.

If

h(u) =
m∑
j=1

v∗j (u)fj for all u ∈ E (∗)

for some linear forms (v∗1, . . . , v
∗
m) ∈ (E∗)m, then

f ∗i (h(u)) =
m∑
j=1

v∗j (u)f ∗i (fj) = v∗i (u) for all u ∈ E,
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which shows that v∗i = f ∗i ◦ h for i = 1, . . . ,m. This means that h has a unique expression
in terms of linear forms as in (∗). Define the map α from (E∗)m to Hom(E,F ) by

α(v∗1, . . . , v
∗
m)(u) =

m∑
j=1

v∗j (u)fj for all u ∈ E.

This map is linear. For any h ∈ Hom(E,F ), we showed earlier that the expression of h in
(∗) is unique, thus α is an isomorphism. Similarly, E∗ ⊗ F is isomorphic to (E∗)m. Any
tensor ω ∈ E∗ ⊗ F can be written as a linear combination

p∑
k=1

u∗k ⊗ yk

for some u∗k ∈ E∗ and some yk ∈ F , and since (f1, . . . , fm) is a basis of F , each yk can be
written as a linear combination of (f1, . . . , fm), so ω can be expressed as

ω =
m∑
i=1

v∗i ⊗ fi, (†)

for some linear forms v∗i ∈ E∗ which are linear combinations of the u∗k. If we pick a basis
(w∗i )i∈I for E∗, then we know that the family (w∗i ⊗ fj)i∈I,1≤j≤m is a basis of E∗ ⊗ F , and
this implies that the v∗i in (†) are unique. Define the linear map β from (E∗)m to E∗⊗F by

β(v∗1, . . . , v
∗
m) =

m∑
i=1

v∗i ⊗ fi.

Since every tensor ω ∈ E∗ ⊗ F can be written in a unique way as in (†), this map is an
isomorphism.

Note that in Proposition 2.19, we have an isomorphism if either E or F has finite dimen-
sion. The following proposition allows us to view a multilinear map as a tensor product.

Proposition 2.20. If the spaces E1, . . . En are finite dimensional vector spaces and F is any
vector space, then we have the canonical isomorphism

Hom(E1, . . . , En;F ) ∼= E∗1 ⊗ · · · ⊗ E∗n ⊗ F.

Proof. In view of the canonical isomorphism

Hom(E1, . . . , En;F ) ∼= Hom(E1 ⊗ · · · ⊗ En, F )

given by Proposition 2.7 and the canonical isomorphism (E1 ⊗ · · · ⊗ En)∗ ∼= E∗1 ⊗ · · · ⊗ E∗n
given by Proposition 2.16, if the Ei’s are finite dimensional, then Proposition 2.19 yields the
canonical isomorphism

Hom(E1, . . . , En;F ) ∼= E∗1 ⊗ · · · ⊗ E∗n ⊗ F,

as claimed.
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2.6 Tensor Algebras

Our goal is to define a vector space T (V ) obtained by taking the direct sum of the tensor
products

V ⊗ · · · ⊗ V︸ ︷︷ ︸
m

,

and to define a multiplication operation on T (V ) which makes T (V ) into an algebraic struc-
ture called an algebra. The algebra T (V ) satisfies a universal property stated in Proposition
2.21, which makes it the “free algebra” generated by the vector space V .

Definition 2.9. The tensor product

V ⊗ · · · ⊗ V︸ ︷︷ ︸
m

is also denoted as
m⊗
V or V ⊗m

and is called the m-th tensor power of V (with V ⊗1 = V , and V ⊗0 = K).

We can pack all the tensor powers of V into the “big” vector space

T (V ) =
⊕
m≥0

V ⊗m,

denoted T •(V ) or
⊗

V to avoid confusion with the tangent bundle.

This is an interesting object because we can define a multiplication operation on it which
makes it into an algebra.

When V is of finite dimension n, we can pick some basis (e1 . . . , en) of V , and then every
tensor ω ∈ T (V ) can be expressed as a linear combination of terms of the form ei1⊗· · ·⊗eik ,
where (i1, . . . , ik) is any sequence of elements from the set {1, . . . , n}. We can think of the
tensors ei1⊗· · ·⊗eik as monomials in the noncommuting variables e1, . . . , en. Thus the space
T (V ) corresponds to the algebra of polynomials with coefficients in K in n noncommuting
variables.

Let us review the definition of an algebra over a field. Let K denote any (commutative)
field, although for our purposes, we may assume that K = R (and occasionally, K = C).
Since we will only be dealing with associative algebras with a multiplicative unit, we only
define algebras of this kind.

Definition 2.10. Given a field K, a K-algebra is a K-vector space A together with a bilinear
operation · : A × A → A, called multiplication, which makes A into a ring with unity 1 (or
1A, when we want to be very precise). This means that · is associative and that there is
a multiplicative identity element 1 so that 1 · a = a · 1 = a, for all a ∈ A. Given two
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K-algebras A and B, a K-algebra homomorphism h : A → B is a linear map that is also a
ring homomorphism, with h(1A) = 1B; that is,

h(a1 · a2) = h(a1) · h(a2) for all a1, a2 ∈ A
h(1A) = 1B.

The set of K-algebra homomorphisms between A and B is denoted Homalg(A,B).

For example, the ring Mn(K) of all n× n matrices over a field K is a K-algebra.

There is an obvious notion of ideal of a K-algebra.

Definition 2.11. Let A be a K-algebra. An ideal A ⊆ A is a linear subspace of A that is
also a two-sided ideal with respect to multiplication in A; this means that for all a ∈ A and
all α, β ∈ A, we have αaβ ∈ A.

If the field K is understood, we usually simply say an algebra instead of a K-algebra.

We would like to define a multiplication operation on T (V ) which makes it into a K-
algebra. As

T (V ) =
⊕
i≥0

V ⊗i,

for every i ≥ 0, there is a natural injection ιn : V ⊗n → T (V ), and in particular, an injection
ι0 : K → T (V ). The multiplicative unit 1 of T (V ) is the image ι0(1) in T (V ) of the unit 1
of the field K. Since every v ∈ T (V ) can be expressed as a finite sum

v = ιn1(v1) + · · ·+ ιnk(vk),

where vi ∈ V ⊗ni and the ni are natural numbers with ni 6= nj if i 6= j, to define multiplica-
tion in T (V ), using bilinearity, it is enough to define multiplication operations
· : V ⊗m × V ⊗n −→ V ⊗(m+n), which, using the isomorphisms V ⊗n ∼= ιn(V ⊗n), yield multi-
plication operations · : ιm(V ⊗m) × ιn(V ⊗n) −→ ιm+n(V ⊗(m+n)). First, for ω1 ∈ V ⊗m and
ω2 ∈ V ⊗n, we let

ω1 · ω2 = ω1 ⊗ ω2.

This defines a bilinear map so it defines a multiplication V ⊗m × V ⊗n −→ V ⊗m ⊗ V ⊗n. This
is not quite what we want, but there is a canonical isomorphism

V ⊗m ⊗ V ⊗n ∼= V ⊗(m+n)

which yields the desired multiplication · : V ⊗m × V ⊗n −→ V ⊗(m+n).

The isomorphism V ⊗m ⊗ V ⊗n ∼= V ⊗(m+n) can be established by induction using the
isomorphism (E ⊗ F )⊗G ∼= E ⊗ F ⊗G. First we prove by induction on m ≥ 2 that

V ⊗(m−1) ⊗ V ∼= V ⊗m,
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and then by induction on n ≥ 1 than

V ⊗m ⊗ V ⊗n ∼= V ⊗(m+n).

In summary the multiplication V ⊗m × V ⊗n −→ V ⊗(m+n) is defined so that

(v1 ⊗ · · · ⊗ vm) · (w1 ⊗ · · · ⊗ wn) = v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn.

(This has to be made rigorous by using isomorphisms involving the associativity of tensor
products, for details, see Jacobson [65], Section 3.9, or Bertin [12], Chapter 4, Section 2.)

Definition 2.12. Given a K-vector space V (not necessarily finite dimensional), the vector
space

T (V ) =
⊕
m≥0

V ⊗m

denoted T •(V ) or
⊗

V equipped with the multiplication operations V ⊗m×V ⊗n −→ V ⊗(m+n)

defined above is called the tensor algebra of V .

Remark: It is important to note that multiplication in T (V ) is not commutative. Also, in
all rigor, the unit 1 of T (V ) is not equal to 1, the unit of the field K. However, in view
of the injection ι0 : K → T (V ), for the sake of notational simplicity, we will denote 1 by 1.
More generally, in view of the injections ιn : V ⊗n → T (V ), we identify elements of V ⊗n with
their images in T (V ).

The algebra T (V ) satisfies a universal mapping property which shows that it is unique
up to isomorphism. For simplicity of notation, let i : V → T (V ) be the natural injection of
V into T (V ).

Proposition 2.21. Given any K-algebra A, for any linear map f : V → A, there is a unique
K-algebra homomorphism f : T (V )→ A so that

f = f ◦ i,

as in the diagram below.

V
i //

f ""

T (V )

f
��
A

Proof. Left an an exercise (use Theorem 2.6). A proof can be found in Knapp [70] (Appendix
A, Proposition A.14) or Bertin [12] (Chapter 4, Theorem 2.4).

Proposition 2.21 implies that there is a natural isomorphism

Homalg(T (V ), A) ∼= Hom(V,A),

where the algebra A on the right-hand side is viewed as a vector space. Proposition 2.21
also has the following corollary.
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Proposition 2.22. Given a linear map h : V1 → V2 between two vectors spaces V1, V2 over
a field K, there is a unique K-algebra homomorphism ⊗h : T (V1) → T (V2) making the
following diagram commute.

V1
i1 //

h

��

T (V1)

⊗h
��

V2
i2 // T (V2).

Most algebras of interest arise as well-chosen quotients of the tensor algebra T (V ). This
is true for the exterior algebra

∧
(V ) (also called Grassmann algebra), where we take the

quotient of T (V ) modulo the ideal generated by all elements of the form v ⊗ v, where
v ∈ V ,and for the symmetric algebra Sym(V ), where we take the quotient of T (V ) modulo
the ideal generated by all elements of the form v ⊗ w − w ⊗ v, where v, w ∈ V .

Algebras such as T (V ) are graded in the sense that there is a sequence of subspaces
V ⊗n ⊆ T (V ) such that

T (V ) =
⊕
k≥0

V ⊗n,

and the multiplication ⊗ behaves well w.r.t. the grading, i.e., ⊗ : V ⊗m × V ⊗n → V ⊗(m+n).

Definition 2.13. A K-algebra E is said to be a graded algebra iff there is a sequence of
subspaces En ⊆ E such that

E =
⊕
k≥0

En,

(with E0 = K) and the multiplication · respects the grading; that is, · : Em × En → Em+n.
Elements in En are called homogeneous elements of rank (or degree) n.

If E and F are two K-algebras, we know that their tensor product E ⊗ F exists as a
vector space. We can make E ⊗ F into an algebra as well. Indeed, we have the multilinear
map

E × F × E × F −→ E ⊗ F

given by (a, b, c, d) 7→ (ac) ⊗ (bd), where ac is the product of a and c in E and bd is the
product of b and d in F . By the universal mapping property, we get a linear map,

E ⊗ F ⊗ E ⊗ F −→ E ⊗ F.

Using the isomorphism

E ⊗ F ⊗ E ⊗ F ∼= (E ⊗ F )⊗ (E ⊗ F ),

we get a linear map
(E ⊗ F )⊗ (E ⊗ F ) −→ E ⊗ F,
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and thus a bilinear map,

(E ⊗ F )× (E ⊗ F ) −→ E ⊗ F

which is our multiplication operation in E ⊗ F . This multiplication is determined by

(a⊗ b) · (c⊗ d) = (ac)⊗ (bd).

In summary, we have the following proposition.

Proposition 2.23. Given two K-algebra E and F , the operation on E ⊗ F defined on
generators by

(a⊗ b) · (c⊗ d) = (ac)⊗ (bd)

makes E ⊗ F into a K-algebra.

2.7 (r, s)-Tensors

In differential geometry and in physics it is necessary to consider slightly more general
tensors.

Definition 2.14. Given a vector space V , for any pair of nonnegative integers (r, s), the
tensor space T r,s(V ) of type (r, s) is the tensor product

T r,s(V ) = V ⊗r ⊗ (V ∗)⊗s = V ⊗ · · · ⊗ V︸ ︷︷ ︸
r

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s

,

with T 0,0(V ) = K. We also define the tensor algebra T •,•(V ) as the direct sum (coproduct)

T •,•(V ) =
⊕
r,s≥0

T r,s(V ).

Tensors in T r,s(V ) are called homogeneous of degree (r, s).

Note that tensors in T r,0(V ) are just our “old tensors” in V ⊗r. We make T •,•(V ) into an
algebra by defining tensor product operations as follows.

Definition 2.15. The multiplication operations

⊗ : T r1,s1(V )× T r2,s2(V ) −→ T r1+r2,s1+s2(V )

are defined such that if u = u1 ⊗ · · · ⊗ ur1 ⊗ u∗1 ⊗ · · · ⊗ u∗s1 and
v = v1 ⊗ · · · ⊗ vr2 ⊗ v∗1 ⊗ · · · ⊗ v∗s2 , then

u⊗ v = u1 ⊗ · · · ⊗ ur1 ⊗ v1 ⊗ · · · ⊗ vr2 ⊗ u∗1 ⊗ · · · ⊗ u∗s1 ⊗ v
∗
1 ⊗ · · · ⊗ v∗s2 .
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Denote by Hom(V r, (V ∗)s;W ) the vector space of all multilinear maps from V r × (V ∗)s

to W . Then we have the universal mapping property which asserts that there is a canonical
isomorphism

Hom(T r,s(V ),W ) ∼= Hom(V r, (V ∗)s;W ).

In particular,

(T r,s(V ))∗ ∼= Hom(V r, (V ∗)s;K).

For finite dimensional vector spaces, the duality of Section 2.5 is also easily extended to the
tensor spaces T r,s(V ). We define the pairing

T r,s(V ∗)× T r,s(V ) −→ K

as follows: if

v∗ = v∗1 ⊗ · · · ⊗ v∗r ⊗ ur+1 ⊗ · · · ⊗ ur+s ∈ T r,s(V ∗)

and

u = u1 ⊗ · · · ⊗ ur ⊗ v∗r+1 ⊗ · · · ⊗ v∗r+s ∈ T r,s(V ),

then

(v∗, u) = v∗1(u1) · · · v∗r+s(ur+s).

This is a nondegenerate pairing, and thus we get a canonical isomorphism

(T r,s(V ))∗ ∼= T r,s(V ∗).

Consequently, we get a canonical isomorphism

T r,s(V ∗) ∼= Hom(V r, (V ∗)s;K).

We summarize these results in the following proposition.

Proposition 2.24. Let V be a vector space and let

T r,s(V ) = V ⊗r ⊗ (V ∗)⊗s = V ⊗ · · · ⊗ V︸ ︷︷ ︸
r

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s

.

We have the canonical isomorphisms

(T r,s(V ))∗ ∼= T r,s(V ∗),

and

T r,s(V ∗) ∼= Hom(V r, (V ∗)s;K).

Proposition 2.18 specializes to the case where Ei = Fj = V for i = 1, . . . , r and j =
1, . . . , s, and this yields a characterization of (r, s)-tensors in terms of multilinear maps.
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Proposition 2.25. Let V be a finite-dimensional vector space. We have the canonical
isomorphism

µr,s : T r,s(V )→ Hom((V ∗)r, V s;K)

given by

µr,s(u1 ⊗ · · · ⊗ ur ⊗ v∗1 ⊗ · · · ⊗ v∗s)(x∗1, . . . , x∗r, y1, . . . , ys) =
r∏
i=1

s∏
j=1

x∗i (ui)v
∗
j (yj),

for all ui ∈ V, x∗i ∈ V ∗ (1 ≤ i ≤ r), and all yj ∈ V, v∗j ∈ V ∗ (1 ≤ j ≤ s).

At first glance, this view of tensors as multilinear maps may appear somewhat contorted,
but we will see in Chapter 5 that it is more convenient to define and manipulate tensor fields.
For this reason, such a defintion of tensors as multilinear maps is often used in the literature

2.8 (r, s)-Tensors as Multilinear Maps

As we just observed, Proposition 2.25 allows us to view the space of (r, s)-tensors T r,s(V ) as
the space of multilinear maps

T : (V ∗)r × V s → K,

a point of view that turns out to be technically very fruitful in differential geometry.

Definition 2.16. The space Hom((V ∗)r, V s;K) of multilinear maps T : (V ∗)r × V s → K is
denoted T r,s(V ).

For example, Dieudonné [37], O’Neill [90] and Sakai [99] use this definition. Proposition
2.25 shows that the map µr,s : T r,s(V ) → T r,s(V ) is an isomorphism. For this reason, the
elements of T r,s(V ) are also called tensors. Note that T 0,1(V ) is V ∗, and T 1,0(V ) is V ∗∗ ∼= V ,
using the canonical isomorphic u 7→ evalu.

Remark: The tensor spaces, T r,s(V ) (resp, T r,s(V )) are also denoted T rs (V ) (resp. T rs (V )).
A tensor α ∈ T r,s(V ) is said to be contravariant in the first r arguments and covariant in
the last s arguments. This terminology refers to the way tensors behave under coordinate
changes.

Given a basis (e1, . . . , en) of V , if (e∗1, . . . , e
∗
n) denotes the dual basis, then the tensors

ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e
∗
js

form a basis of T r,s(V ), so every tensor α ∈ T r,s(V ) is given by an expression of the form

α =
∑
i1,...,ir
j1,...,js

ai1...irj1...js
ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e

∗
js .
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Using the isomorphism µr,s, the multilinear maps

µr,s(ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e
∗
js)

form a basis of T r,s(V ), so every tensor T ∈ T r,s(V ) can be uniquely written as

T =
∑
i1,...,ir
j1,...,js

ai1...irj1...js
µr,s(ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e

∗
js).

Since e∗j(ei) = δij, observe that

T (e∗i1 , . . . , e
∗
ir , ej1 , . . . , ejs) = ai1...irj1...js

.

It is customary to drop µr,s and view

ei1 ⊗ · · · ⊗ eir ⊗ e∗j1 ⊗ · · · ⊗ e
∗
js

as the corresponding multilinear map in T r,s(V ). To simplify notation, we often write µ
instead of µr,s.

At first, the practice of dropping µ can be quite confusing, but one finds rather quickly
that using the space T r,s(V ) instead of the space T r,s(V ) is more convenient to deal with
tensor fields.

The tradition in classical tensor notation is to use lower indices on vectors and upper
indices on linear forms, and in accordance to Einstein summation convention (or Einstein
notation), the position of the indices on the coefficients is reversed. Einstein summation
convention (already encountered in Section 2.1) is to assume that a summation is performed
for all values of every index that appears simultaneously once as an upper index and once
as a lower index. According to this convention, the linear form e∗i dual to the basis vector ei
is denoted by ei, and (suppressing the map µr,s), a tensor α ∈ T r,s(V ) is written

α = ai1...irj1...js
ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs .

An older view of tensors is that they are multidimensional arrays of coefficients,(
ai1...irj1...js

)
,

subject to the rules for changes of bases (see Proposition 2.29). From now on until Section
2.10 we will use the Einstein summation convention. It does reduce considerably the number
of summation signs.

Proposition 2.26. The space T 1,1(V ) is isomorphic to the space Hom(V, V ) of linear maps
from V to itself.
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Proof. Indeed, if T ∈ T 1,1(V ), we obtain the linear map f : V → V defined such that for
every u ∈ V ,

θ(f(u)) = T (θ, u), θ ∈ V ∗.

If we pick a basis (e1, . . . , en) in V and if T is expressed as

T = aijei ⊗ ej,

then for any basis vector ej, the linear form T (−, ej) on V ∗ is the (1, 0)-tensor µ(aijei),
namely, evaluation of a linear form in V ∗ at aijei ∈ V . Thus the (1, 1)-tensor T defines the
linear map f : V → V given by

f(ej) = aijei,

and we see that the matrix representing f over the basis (e1, . . . , en) is (aij).

Note the double interpretation of aijei. We can view it as a vector in V (a linear combi-
nation of the vectors ei in V ), or as a (multi)linear map in T 1,0(V ), where this time, ei is
really µ(ei), namely the linear form v 7→ v(ei), with v ∈ V ∗. For any vector u = ujej ∈ V ,
we have

f(u) = f(ujej) = ujf(ej) = ujaijei = aiju
jei ∈ V,

so the ith coordinate f(u)i of f(u) is given by f(u)i = aiju
j, confirming that (aij) is the

matrix representing f .

� Note that in the above computation, the (1, 1)-tensor (aij) denotes a matrix A where the
upper index i is the row index and the lower index j is the column index , because we

implicitly assumed that the coordinates uj of the vector u constitute a column vector and
that f(u) is also represented by a column vector, so that f(u)i = aiju

j is the product

f(u)i =
(
ai1 · · · aij · · · ain

)

u1

...
uj

...
un


of the ith row of the matrix A by the column vector whose jth entry is uj. The equation
f(ej) = aijei can be symbolically written as

f(ej) =
(
e1 · · · ei · · · en

)

a1
j
...
aij
...
anj

 ,
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where the column vector above is the jth column of the matrix A. To recap,f(u)1

...
f(u)n

 = A

u
1

...
un

 ,
(
f(e1) · · · f(en)

)
=
(
e1 · · · en

)
A.

A dual interpretation of the (1, 1)-tensor (aij) consists in viewing the coordinates uj of
the vector u as forming a row vector , in which case f(u) is also represented by a row vector,
so that f(u)i = aiju

j is the product

f(u)i =
(
u1 · · · uj · · · un

)

ai1
...
aij
...
ain

 ,

where the column vector above is the transpose of the ith row of A, which means that the
matrix involved is the transpose A> of the matrix A. In this point of view, the equation
f(ej) = aijei can be symbolically written as

f(ej) =
(
a1
j · · · aij · · · anj

)

e1
...
ei
...
en

 ,

where the row vector above is the transpose of the jth column of the matrix A. Again, the
matrix involved is the transpose A> of A. To recap,

(
f(u)1 · · · f(u)n

)
=
(
u1 · · · un

)
A>,

f(e1)
...

f(en)

 = A>

e1
...
en

 .

Thus, in the dual interpretation, given a (1, 1) tensor (aij), it makes sense to view the
lower index j as the row index and the upper index i as the column index . We usually swap
i and j so that the expression (aji ) denotes a matrix where the lower index i is the row index
and the upper index j is the column index . With this convention, the matrix A> above
becomes the matrix A, since

f(ei) =
(
a1
i · · · aji · · · ani

)

e1
...
ej
...
en

 = ajiej.
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The dual interpretation is used below in Proposition 2.29.

Proposition 2.26 generalizes to (1, s)-tensors as follows.

Proposition 2.27. The space T 1,s(V ) is isomorphic to the space Hom(V s;V ) of multilinear
maps from V s to V .

Proof. Indeed, if T ∈ T 1,s(V ), we obtain the multilinear map f : V s → V defined such that
all u1, . . . , us ∈ V ,

θ(f(u1, . . . , us)) = T (θ, u1, . . . , us), θ ∈ V ∗.
If we pick a basis (e1, . . . , en) in V and if T is expressed as

T = aij1...jsei ⊗ e
j1 ⊗ · · · ⊗ ejs ,

then for any basis vectors ej1 , . . . , ejs , the multilinear form T (−, ej1 , . . . , ejs) on V ∗ is the
(1, 0)-tensor µ(aij1...jsei), namely, evaluation of a linear form in V ∗ at aij1...jsei ∈ V . Thus the
(1, s)-tensor T defines the multilinear map f : V s → V given by

f(ej1 , . . . , ejs) = aij1...jsei.

Conversely, a multilinear map f : V s → V yields the (1, s)-tensor T ∈ T 1,s(V ) given by

T (θ, u1, . . . , us) = θ(f(u1, . . . , us)),

for all θ ∈ V ∗ and all u1, . . . , us ∈ V .

Using the isomorphism µ : T r,s(V ) → T r,s(V ), it is not hard to show that the tensor
product

T r1,s1(V )× T r2,s2(V ) −→ T r1+r2,s1+s2(V )

is defined as follows.

Definition 2.17. For two tensors T1 ∈ T r1,s1(V ) and T2 ∈ T r2,s2(V ), their tensor product
T1 ⊗ T2 is the multilinear map in T r1+r2,s1+s2(V ) defined as follows:

(T1 ⊗ T2)(ω1, . . . , ωr1 , θ1, . . . , θr2 , v1, . . . , vs1 , y1, . . . , ys2)

= T1(ω1, . . . , ωr1 , v1, . . . , vs1)T2(θ1, . . . , θr2 , y1, . . . , ys2),

for all ωi1 ∈ V ∗ (1 ≤ i1 ≤ r1), vj1 ∈ V (1 ≤ j1 ≤ s1), θi2 ∈ V ∗ (1 ≤ i2 ≤ r2), yj2 ∈ V
(1 ≤ j2 ≤ s2).

We check immediately that if T1 ∈ T r1,s1(V ) and T2 ∈ T r2,s2(V ), then

µr1+r2,s1+s2(T1 ⊗ T2) = µr1,s1(T1)⊗ µr2,s2(T2),

where the tensor product on the left is the tensor product on T r1,s1(V ) × T r2,s2(V ) from
Definition 2.15, and the tensor product on the right is the tensor product on T r1,s1(V ) ×
T r2,s2(V ) from Definition 2.17.
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If V and W are two vector spaces, for any linear map ϕ : V → W , recall that the transpose
ϕ> of ϕ is the linear map ϕ> : W ∗ → V ∗ given by

ϕ>(ω) = ω ◦ ϕ, ω ∈ W ∗.

If ϕ : V → W is a linear isomorphism, it induces a linear map ϕrs : T r,s(V ) → T r,s(W )
defined as follows.

Definition 2.18. Let ϕ : V → W be a linear isomorphism of finite-dimensional vector
spaces. The map ϕrs : T r,s(V )→ T r,s(W ) is defined as follows. For every T ∈ T r,s(V ),

(ϕrsT )(θ1, . . . , θr, v1, . . . , vs) = T (ϕ>(θ1), . . . , ϕ>(θr), ϕ−1(v1), . . . , ϕ−1(vs)),

for all θ1, . . . , θr ∈ W ∗ and all v1, . . . , vs ∈ W .

Since ϕ−1 and ϕ> are linear, ϕrsT is multilinear, thus in T r,s(W ).

The following proposition is shown in Abraham and Marsden [1] (Proposition 1.7.4).

Proposition 2.28. Let ϕ : E → F and ψ : F → G be two linear isomorphisms of finite-
dimensional vector spaces. The following properties hold.

(1) (ψ ◦ ϕ)rs = ψrs ◦ ϕrs.

(2) If id : E → E is the identity, then idrs : T r,s(E)→ T r,s(E) is also the identity.

(3) The map ϕrs : T r,s(E)→ T r,s(F ) is a linear isomorphism and (ϕrs)
−1 = (ϕ−1)rs.

The next proposition gives formulae for the components of ϕrsT in terms of the compo-
nents of T with respect to bases of E and F .

Let (e1, . . . , en) be a basis of E, (f1, . . . , fn) be a basis of F , and let (e1, . . . , en) be the dual
basis of E∗ and (f 1, . . . , fn) be the dual basis of F ∗. If A = (aji ) is the matrix representing
ϕ in the dual interpretation given (in Einstein notation) by

ϕ(ei) = ajifj,

namely, ϕ(e1)
...

ϕ(en)

 = A

f1
...
fn

 ,

then it known that the matrix representing ϕ> (also in the dual interpretation) with respect
to the dual bases (f 1, . . . , fn) and (e1, . . . , en) is the transpose A> of the matrix A (see
Gallier and Quaintance [51], Section 10.6). This means that

ϕ>(f i) = aije
j,
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where transposition corresponds to the fact that the indices i and j are raised when passing
from vectors to their dual. If B = (bji ) denotes the inverse of A, then we have

ϕ−1(fi) = bjiej.

We easily obtain the following result.

Proposition 2.29. Let ϕ : E → F be a linear isomorphism, (e1, . . . , en) be a basis of E, and
(f1, . . . , fn) be a basis of F . If A = (aji ) is the matrix representing ϕ in the dual interpretation
as above and B = (bji ) is its inverse, for any T ∈ T r,s(E) with components ti1...irj1...js

with respect
to the basis ei1 ⊗ · · · ⊗ eir ⊗ ej1 · · · ⊗ ejs, the components of ϕrsT with respect to the basis
fi′1 ⊗ · · · ⊗ fi′r ⊗ f

j′1 · · · ⊗ f j′s are given by

(t′)
i′1...i

′
r

j′1...j
′
s

= ti1...irj1...js
a
i′1
i1
· · · ai

′
r
ir
· · · bj1j′1 · · · b

js
j′s
.

Observe that the Einstein summation convention pays off in avoiding many summation
symbols (

∑
).

In the special case where E = F and ϕ is the identity, we obtain a formula expressing
how the components of a tensor change under a change of basis. This makes a connection
with the old-fashion method for defining tensors.

Another operation on general tensors, contraction, is useful in differential geometry.

2.9 Contraction Operators

Definition 2.19. For all r, s ≥ 1, the contraction ci,j : T r,s(V )→ T r−1,s−1(V ), with 1 ≤ i ≤ r
and 1 ≤ j ≤ s, is the linear map defined on generators by

ci,j(u1 ⊗ · · · ⊗ ur ⊗ ω1 ⊗ · · · ⊗ ωs)

= ωj(ui)u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ur ⊗ ω1 ⊗ · · · ⊗ ω̂j ⊗ · · · ⊗ ωs,

ui ∈ V , ωj ∈ V ∗, where the hat over an argument means that it should be omitted.

Note that since T r,s(V ) is the tensor product T r,s(V ) = V ⊗r⊗ (V ∗)⊗s, the map ci,j is the
unique linear extension of the multilinear map from V r × (V ∗)s to V ⊗r ⊗ (V ∗)⊗s given by

ci,j(u1, . . . , ur, ω
1, . . . , ωs) = ωj(ui)u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ur ⊗ ω1 ⊗ · · · ⊗ ω̂j ⊗ · · · ⊗ ωs.

Therefore this definition is intrinsic, that is, does not depend on any choice of basis.

Remark: Note that the notation ci,j is ambiguous, since technically we have an operator
cr,si,j : T r,s(V ) → T r−1,s−1(V ) for every pair r, s ≥ 1, with 1 ≤ i ≤ r and 1 ≤ j ≤ s, and

cs,ri,j 6= cr
′,s′

i,j if (r, s) 6= (r′, s′), 1 ≤ i ≤ min(r, r′) and 1 ≤ j ≤ min(s, s′). However it is
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customary to omit the superscripts r and s and rely on context to infer r and s. The
notation ci,j is also used by Gallot, Hulin, Lafontaine [52], but Sakai [99] uses cij, and O’Neill

[90] uses cji .

Let us figure our what is c1,1 : T 1,1(V )→ R, that is c1,1 : V ⊗ V ∗ → R. If (e1, . . . , en) is a
basis of V and (e1, . . . , en) is the dual basis, by Proposition 2.12, every h ∈ V ⊗ V ∗ can be
expressed as

h = aij ei ⊗ ej.

As

c1,1(ei ⊗ ej) = δi,j,

we get

c1,1(h) = aii.

Remark: By Proposition 2.25, V ⊗ V ∗ is isomorphic to T 1,1(V ), and by Proposition 2.26,
T 1,1(V ) is isomorphic to Hom(V, V ). Thus we can view h ∈ V ⊗ V ∗ as linear map. The
matrix of h over the basis (e1, . . . , en) is also (aij), so tr(h) = aii is its trace. Since c1,1 is
defined independently of any basis, c1,1 provides an intrinsic definition of the trace of a linear
map h ∈ Hom(V, V ).

The notion of contraction transfers to the space T r,s(V ), but at first glance, we don’t
have an intrinsic definition since it appears that we have to resort to bases. There is a way
to circumvent this problem as explained in O’Neill [90] (Chapter 2, Lemma 6).

The first step is to show that the contraction c1,1 from T 1,1(V ) to K is intrinsically
defined.

Proposition 2.30. There is a unique linear map c1,1 : T 1,1(V )→ K such that

c1,1(µ(u⊗ θ)) = θ(u), u ∈ V, θ ∈ V ∗.

Proof. If we pick a basis (e1, . . . , en) of V , we see immediately that for any T ∈ T 1,1(V )
expressed as

T = tij ei ⊗ ej,

(again, writing ei ⊗ ej instead of µ(ei ⊗ ej)), since c1,1(ei ⊗ ej) = ej(ei) = δij, we must have

c1,1(T ) = tii.

Given another basis (f1, . . . , fn), if this basis is expressed in terms of the basis (e1, . . . , en)
as

ei = ajifj,

then by Proposition 2.29), we have

f i = aije
j,
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so if (bji ) is the inverse of (aji ), we obtain

T = tija
k
i b
j
l fk ⊗ f

l,

and thus the contracted tensor over the new bases is given by

c′1,1(T ) = tija
k
i b
j
k.

But (bji ) is the inverse of (aji ), so aki b
j
k = δij, which implies by Proposition 2.29 that

c′1,1(T ) = tii = c1,1(T ).

Therefore, c1,1(T ) is independent of the choice of basis.

In the general case, we have the following result.

Proposition 2.31. There is a unique linear map ci,j : T r,s(V )→ T r−1,s−1(V ), with 1 ≤ i ≤ r
and 1 ≤ j ≤ s, such that (omitting the map µ)

ci,j(u1 ⊗ · · · ⊗ ur ⊗ ω1 ⊗ · · · ⊗ ωs)

= ωj(ui)u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ ur ⊗ ω1 ⊗ · · · ⊗ ω̂j ⊗ · · · ⊗ ωs,

ui ∈ V , ωj ∈ V ∗.

Proof. If we pick a basis (e1 . . . , en) in V , using the Einstein summation convention, (omitting
the map µ), for any α ∈ T r,s(V ), we can write

α = ai1...irj1...js
ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs ,

and since ej(ei) = δij, we must have

ck,l(α) = a
i1...ik−1mik+1...ir
j1...jl−1mjl+1...js

ei1 ⊗ · · · ⊗ êik ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ êjl ⊗ · · · ⊗ ejs ,

where the repeated index m appears as a superscript in position k and as a subscript in
position l, so according to the Einstein summation convention,

a
i1...ik−1mik+1...ir
j1...jl−1mjl+1...,js

denotes the sum
n∑

m=1

a
i1...ik−1mik+1...ir
j1...jl−1mjl+1...js

.

Given another basis (f1, . . . , fn), if this basis is expressed in terms of the basis (e1, . . . , en)
as

ei = ajifj,
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then by Proposition 2.29, we have

α = ti1...irj1...js
a
i′1
i1
· · · ai

′
r
ir
· · · bj1j′1 · · · b

js
j′s
fi′1 ⊗ · · · ⊗ fi′r ⊗ f

j′1 ⊗ · · · ⊗ f j′s .

Consequently, contracting on the pair of indices (i′k, j
′
l), the contracted tensor over the new

bases is given by

c′k,l(α) = ti1...m...irj1...m...js
a
i′1
i1
· · · âmik · · · a

i′r
ir
bj1j′1
· · · b̂jlm · · · bjsj′s

fi′1 ⊗ · · · ⊗ f̂i′k ⊗ · · · ⊗ fi′r ⊗ f
j′1 ⊗ · · · ⊗ f̂ j′l ⊗ · · · ⊗ f j′s .

Since (bji ) is the inverse of (aji ), we have amikb
jl
m = δikjl , which implies that

c′k,l(α) = ti1...m...irj1...m...js
a
i′1
i1
· · · âmik · · · a

i′r
ir
bj1j′1
· · · b̂jlm · · · bjsj′s

fi′1 ⊗ · · · ⊗ f̂i′k ⊗ · · · ⊗ fi′r ⊗ f
j′1 ⊗ · · · ⊗ f̂ j′l ⊗ · · · ⊗ f j′s

= ti1...m...irj1...m...js
ei1 ⊗ · · · ⊗ êik ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ êjl ⊗ · · · ⊗ ejs

= ck,l(α).

Therefore, the definition of ck,l is intrinsic; it does not depend on the choice of basis.

We now turn to symmetric tensors.

2.10 Symmetric Tensor Powers

Our goal is to come up with a notion of tensor product that will allow us to treat symmetric
multilinear maps as linear maps. Note that we have to restrict ourselves to a single vector
space E, rather then n vector spaces E1, . . . , En, so that symmetry makes sense.

Definition 2.20. A multilinear map f : En → F is symmetric iff

f(uσ(1), . . . , uσ(n)) = f(u1, . . . , un),

for all ui ∈ E and all permutations, σ : {1, . . . , n} → {1, . . . , n}. The group of permutations
on {1, . . . , n} (the symmetric group) is denoted Sn. The vector space of all symmetric
multilinear maps f : En → F is denoted by Symn(E;F ) or Homsymlin(En, F ). Note that
Sym1(E;F ) = Hom(E,F ).

We could proceed directly as in Theorem 2.6 and construct symmetric tensor products
from scratch. However, since we already have the notion of a tensor product, there is a more
economical method. First we define symmetric tensor powers.
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Definition 2.21. An n-th symmetric tensor power of a vector space E, where n ≥ 1, is a
vector space S together with a symmetric multilinear map ϕ : En → S such that, for every
vector space F and for every symmetric multilinear map f : En → F , there is a unique linear
map f� : S → F , with

f(u1, . . . , un) = f�(ϕ(u1, . . . , un)),

for all u1, . . . , un ∈ E, or for short

f = f� ◦ ϕ.

Equivalently, there is a unique linear map f� such that the following diagram commutes.

En

f !!

ϕ // S

f�
��
F

The above property is called the universal mapping property of the symmetric tensor power
(S, ϕ).

We next show that any two symmetric n-th tensor powers (S1, ϕ1) and (S2, ϕ2) for E are
isomorphic.

Proposition 2.32. Given any two symmetric n-th tensor powers (S1, ϕ1) and (S2, ϕ2) for
E, there is an isomorphism h : S1 → S2 such that

ϕ2 = h ◦ ϕ1.

Proof. Replace tensor product by n-th symmetric tensor power in the proof of Proposition
2.5.

We now give a construction that produces a symmetric n-th tensor power of a vector
space E.

Theorem 2.33. Given a vector space E, a symmetric n-th tensor power (Sn(E), ϕ) for E can
be constructed (n ≥ 1). Furthermore, denoting ϕ(u1, . . . , un) as u1�· · ·�un, the symmetric
tensor power Sn(E) is generated by the vectors u1 � · · · � un, where u1, . . . , un ∈ E, and for
every symmetric multilinear map f : En → F , the unique linear map f� : Sn(E) → F such
that f = f� ◦ ϕ is defined by

f�(u1 � · · · � un) = f(u1, . . . , un)

on the generators u1 � · · · � un of Sn(E).
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Proof. The tensor power E⊗n is too big, and thus we define an appropriate quotient. Let C
be the subspace of E⊗n generated by the vectors of the form

u1 ⊗ · · · ⊗ un − uσ(1) ⊗ · · · ⊗ uσ(n),

for all ui ∈ E, and all permutations σ : {1, . . . , n} → {1, . . . , n}. We claim that the quotient
space (E⊗n)/C does the job.

Let p : E⊗n → (E⊗n)/C be the quotient map, and let ϕ : En → (E⊗n)/C be the map
given by

ϕ = p ◦ ϕ0,

where ϕ0 : En → E⊗n is the injection given by ϕ0(u1, . . . , un) = u1 ⊗ · · · ⊗ un.

Let us denote ϕ(u1, . . . , un) as u1 � · · · � un. It is clear that ϕ is symmetric. Since the
vectors u1 ⊗ · · · ⊗ un generate E⊗n, and p is surjective, the vectors u1 � · · · � un generate
(E⊗n)/C.

It remains to show that ((E⊗n)/C, ϕ) satisfies the universal mapping property. To this
end we begin by proving that there is a map h such that f = h ◦ ϕ. Given any symmetric
multilinear map f : En → F , by Theorem 2.6 there is a linear map f⊗ : E⊗n → F such that
f = f⊗ ◦ ϕ0, as in the diagram below.

En

f ##

ϕ0 // E⊗n

f⊗
��
F

However, since f is symmetric, we have f⊗(z) = 0 for every z ∈ C. Thus, we get an induced
linear map h : (E⊗n)/C → F making the following diagram commute.

E⊗n

p

%%
f⊗

��

En

f ""

ϕ0

<<

(E⊗n)/C

hyy
F

If we define h([z]) = f⊗(z) for every z ∈ E⊗n, where [z] is the equivalence class in (E⊗n)/C
of z ∈ E⊗n, the above diagram shows that f = h ◦ p ◦ ϕ0 = h ◦ ϕ. We now prove the
uniqueness of h. For any linear map f� : (E⊗n)/C → F such that f = f� ◦ ϕ, since
ϕ(u1, . . . , un) = u1 � · · · � un and the vectors u1 � · · · � un generate (E⊗n)/C, the map f�
is uniquely defined by

f�(u1 � · · · � un) = f(u1, . . . , un).

Since f = h ◦ ϕ, the map h is unique, and we let f� = h. Thus, Sn(E) = (E⊗n)/C and ϕ
constitute a symmetric n-th tensor power of E.
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The map ϕ from En to Sn(E) is often denoted ι�, so that

ι�(u1, . . . , un) = u1 � · · · � un.

Again, the actual construction is not important. What is important is that the symmetric
n-th power has the universal mapping property with respect to symmetric multilinear maps.

Remark: The notation � for the commutative multiplication of symmetric tensor powers
is not standard. Another notation commonly used is ·. We often abbreviate “symmetric
tensor power” as “symmetric power.” The symmetric power Sn(E) is also denoted SymnE
but we prefer to use the notation Sym to denote spaces of symmetric multilinear maps. To
be consistent with the use of �, we could have used the notation

⊙nE. Clearly, S1(E) ∼= E
and it is convenient to set S0(E) = K.

The fact that the map ϕ : En → Sn(E) is symmetric and multilinear can also be expressed
as follows:

u1 � · · · � (vi + wi)� · · · � un = (u1 � · · · � vi � · · · � un) + (u1 � · · · � wi � · · · � un),

u1 � · · · � (λui)� · · · � un = λ(u1 � · · · � ui � · · · � un),

uσ(1) � · · · � uσ(n) = u1 � · · · � un,

for all permutations σ ∈ Sn.

The last identity shows that the “operation” � is commutative. This allows us to view
the symmetric tensor u1 � · · · � un as an object called a multiset.

Given a set A, a multiset with elements from A is a generalization of the concept of a set
that allows multiple instances of elements from A to occur. For example, if A = {a, b, c, d},
the following are multisets:

M1 = {a, a, b}, M2 = {a, a, b, b, c}, M3 = {a, a, b, b, c, d, d, d}.

Here is another way to represent multisets as tables showing the multiplicities of the elements
in the multiset:

M1 =

(
a b c d
2 1 0 0

)
, M2 =

(
a b c d
2 2 1 0

)
, M3 =

(
a b c d
2 2 1 3

)
.

The above are just graphs of functions from the set A = {a, b, c, d} to N. This suggests
the following definition.

Definition 2.22. A finite multiset M over a set A is a function M : A → N such that
M(a) 6= 0 for finitely many a ∈ A. The multiplicity of an element a ∈ A in M is M(a). The
set of all multisets over A is denoted by N(A), and we let dom(M) = {a ∈ A | M(a) 6= 0},
which is a finite set. The set dom(M) is the set of elements in A that actually occur in
M . For any multiset M ∈ N(A), note that

∑
a∈AM(a) makes sense, since

∑
a∈AM(a) =∑

a∈dom(A) M(a), and dom(M) is finite; this sum is the total number of elements in the

multiset A and is called the size of M . Let |M | =
∑

a∈AM(a).



76 CHAPTER 2. TENSOR ALGEBRAS

Going back to our symmetric tensors, we can view the tensors of the form u1 � · · · � un
as multisets of size n over the set E.

Theorem 2.33 implies the following proposition.

Proposition 2.34. There is a canonical isomorphism

Hom(Sn(E), F ) ∼= Symn(E;F ),

between the vector space of linear maps Hom(Sn(E), F ) and the vector space of symmetric
multilinear maps Symn(E;F ) given by the linear map − ◦ ϕ defined by h 7→ h ◦ ϕ, with
h ∈ Hom(Sn(E), F ).

Proof. The map h◦ϕ is clearly symmetric multilinear. By Theorem 2.33, for every symmetric
multilinear map f ∈ Symn(E;F ) there is a unique linear map f� ∈ Hom(Sn(E), F ) such
that f = f� ◦ ϕ, so the map − ◦ ϕ is bijective. Its inverse is the map f 7→ f�.

In particular, when F = K, we get the following important fact.

Proposition 2.35. There is a canonical isomorphism

(Sn(E))∗ ∼= Symn(E;K).

Definition 2.23. Symmetric tensors in Sn(E) are called symmetric n-tensors , and tensors
of the form u1 � · · · � un, where ui ∈ E, are called simple (or decomposable) symmetric n-
tensors . Those symmetric n-tensors that are not simple are often called compound symmetric
n-tensors .

Given a linear maps f : E → E ′, since the map ι′� ◦ (f × f) is bilinear and symmetric,
there is a unique linear map f �f : S2(E)→ S2(E ′) making the following diagram commute.

E2

f×f
��

ι� // S2(E)

f�f
��

(E ′)2

ι′�

// S2(E ′).

Observe that f � f is determined by

(f � f)(u� v) = f(u)� f(v).

Proposition 2.36. Given any two linear maps f : E → E ′ and f ′ : E ′ → E ′′,we have

(f ′ ◦ f)� (f ′ ◦ f) = (f ′ � f ′) ◦ (f � f).

By using the proof techniques of Proposition 2.13 (3), we can show the following property
of symmetric tensor products.
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Proposition 2.37. We have the following isomorphism:

Sn(E ⊕ F ) ∼=
n⊕
k=0

Sk(E)⊗ Sn−k(F ).

The generalization to the symmetric tensor product f � · · · � f of n ≥ 3 copies of the
linear map f : E → E ′ is immediate, and left to the reader.

2.11 Bases of Symmetric Powers

The vectors u1 � · · · � um where u1, . . . , um ∈ E generate Sm(E), but they are not linearly
independent. We will prove a version of Proposition 2.12 for symmetric tensor powers using
multisets.

Recall that a (finite) multiset over a set I is a function M : I → N, such that M(i) 6= 0
for finitely many i ∈ I. The set of all multisets over I is denoted as N(I) and we let
dom(M) = {i ∈ I |M(i) 6= 0}, the finite set of elements in I that actually occur in M . The
size of the multiset M is |M | =

∑
a∈AM(a).

To explain the idea of the proof, consider the case when m = 2 and E has dimension 3.
Given a basis (e1, e2, e3) of E, we would like to prove that

e1 � e1, e1 � e2, e1 � e3, e2 � e2, e2 � e3, e3 � e3

are linearly independent. To prove this, it suffices to show that for any vector space F ,
if w11, w12, w13, w22, w23, w33 are any vectors in F , then there is a symmetric bilinear map
h : E2 → F such that

h(ei, ej) = wij, 1 ≤ i ≤ j ≤ 3.

Because h yields a unique linear map h� : S2(E)→ F such that

h�(ei � ej) = wij, 1 ≤ i ≤ j ≤ 3,

by Proposition 2.4, the vectors

e1 � e1, e1 � e2, e1 � e3, e2 � e2, e2 � e3, e3 � e3

are linearly independent. This suggests understanding how a symmetric bilinear function
f : E2 → F is expressed in terms of its values f(ei, ej) on the basis vectors (e1, e2, e3), and
this can be done easily. Using bilinearity and symmetry, we obtain

f(u1e1 + u2e2 + u3e3, v1e1 + v2e2 + v3e3) = u1v1f(e1, e1) + (u1v2 + u2v1)f(e1, e2)

+ (u1v3 + u3v1)f(e1, e3) + u2v2f(e2, e2)

+ (u2v3 + u3v2)f(e2, e3) + u3v3f(e3, e3).
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Therefore, given w11, w12, w13, w22, w23, w33 ∈ F , the function h given by

h(u1e1 + u2e2 + u3e3, v1e1 + v2e2 + v3e3) = u1v1w11 + (u1v2 + u2v1)w12

+ (u1v3 + u3v1)w13 + u2v2w22

+ (u2v3 + u3v2)w23 + u3v3w33

is clearly bilinear symmetric, and by construction h(ei, ej) = wij, so it does the job.

The generalization of this argument to any m ≥ 2 and to a space E of any dimension
(even infinite) is conceptually clear, but notationally messy. If dim(E) = n and if (e1, . . . , en)
is a basis of E, for any m vectors vj =

∑n
i=1 ui,jei in E, for any symmetric multilinear map

f : Em → F , we have

f(v1, . . . , vm)

=
∑

k1+···+kn=m

( ∑
I1∪···∪In={1,...,m}
Ii∩Ij=∅, i 6=j, |Ij |=kj

(∏
i1∈I1

u1,i1

)
· · ·

(∏
in∈In

un,in

))
f(e1, . . . , e1︸ ︷︷ ︸

k1

, . . . , en, . . . , en︸ ︷︷ ︸
kn

).

Definition 2.24. Given any set J of n ≥ 1 elements, say J = {j1, . . . , jn}, and given any
m ≥ 2, for any sequence (k1 . . . , kn) of natural numbers ki ∈ N such that k1 + · · ·+ kn = m,
the multiset M of size m

M = {j1, . . . , j1︸ ︷︷ ︸
k1

, j2, . . . , j2︸ ︷︷ ︸
k2

, . . . , jn, . . . , jn︸ ︷︷ ︸
kn

}

is denoted by M(m, J, k1, . . . , kn). Note that M(ji) = ki, for i = 1, . . . , n. Given any k ≥ 1,
and any u ∈ E, we denote u� · · · � u︸ ︷︷ ︸

k

as u�k.

We can now prove the following proposition.

Proposition 2.38. Given a vector space E, if (ei)i∈I is a basis for E, then the family of
vectors (

e
�M(i1)
i1

� · · · � e�M(ik)
ik

)
M∈N(I), |M |=m,
{i1,...,ik}=dom(M)

is a basis of the symmetric m-th tensor power Sm(E).

Proof. The proof is very similar to that of Proposition 2.12. First assume that E has finite
dimension n. In this case I = {1, . . . , n}, and any multiset M ∈ N(I) of size |M | = m is of
the form M(m, {1, . . . , n}, k1, . . . , kn), with ki = M(i) and k1 + · · ·+ kn = m.

For any nontrivial vector space F , for any family of vectors

(wM)M∈N(I), |M |=m,
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we show the existence of a symmetric multilinear map h : Sm(E) → F , such that for every
M ∈ N(I) with |M | = m, we have

h(e
�M(i1)
i1

� · · · � e�M(ik)
ik

) = wM ,

where {i1, . . . , ik} = dom(M). We define the map f : Em → F as follows: for any m vectors
v1, . . . , vm ∈ E we can write vk =

∑n
i=1 ui,kei for k = 1, . . . ,m and we set

f(v1, . . . , vm)

=
∑

k1+···+kn=m

( ∑
I1∪···∪In={1,...,m}
Ii∩Ij=∅, i 6=j, |Ij |=kj

(∏
i1∈I1

u1,i1

)
· · ·

(∏
in∈In

un,in

))
wM(m,{1,...,n},k1,...,kn).

It is not difficult to verify that f is symmetric and multilinear. By the universal mapping
property of the symmetric tensor product, the linear map f� : Sm(E)→ F such that
f = f� ◦ ϕ, is the desired map h. Then by Proposition 2.4, it follows that the family(

e
�M(i1)
i1

� · · · � e�M(ik)
ik

)
M∈N(I), |M |=m,
{i1,...,ik}=dom(M)

is linearly independent. Using the commutativity of �, we can also show that these vectors
generate Sm(E), and thus, they form a basis for Sm(E).

If I is infinite dimensional, then for any m vectors v1, . . . , vm ∈ F there is a finite subset
J of I such that vk =

∑
j∈J uj,kej for k = 1, . . . ,m, and if we write n = |J |, then the formula

for f(v1, . . . , vm) is obtained by replacing the set {1, . . . , n} by J . The details are left as an
exercise.

As a consequence, when I is finite, say of size p = dim(E), the dimension of Sm(E) is
the number of finite multisets (j1, . . . , jp), such that j1 + · · · + jp = m, jk ≥ 0. We leave as
an exercise to show that this number is

(
p+m−1
m

)
. Thus, if dim(E) = p, then the dimension

of Sm(E) is
(
p+m−1
m

)
. Compare with the dimension of E⊗m, which is pm. In particular, when

p = 2, the dimension of Sm(E) is m+ 1. This can also be seen directly.

Remark: The number
(
p+m−1
m

)
is also the number of homogeneous monomials

Xj1
1 · · ·Xjp

p

of total degree m in p variables (we have j1 + · · ·+ jp = m). This is not a coincidence! Given
a vector space E and a basis (ei)i∈I for E, Proposition 2.38 shows that every symmetric
tensor z ∈ Sm(E) can be written in a unique way as

z =
∑

M∈N(I)∑
i∈IM(i)=m

{i1,...,ik}=dom(M)

λM e
�M(i1)
i1

� · · · � e�M(ik)
ik

,
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for some unique family of scalars λM ∈ K, all zero except for a finite number.

This looks like a homogeneous polynomial of total degree m, where the monomials of
total degree m are the symmetric tensors

e
�M(i1)
i1

� · · · � e�M(ik)
ik

in the “indeterminates” ei, where i ∈ I (recall that M(i1) + · · · + M(ik) = m) and implies
that polynomials can be defined in terms of symmetric tensors.

2.12 Duality for Symmetric Powers

In this section all vector spaces are assumed to have finite dimension over a field of charac-
teristic zero. We define a nondegenerate pairing Sn(E∗)×Sn(E) −→ K as follows: Consider
the multilinear map

(E∗)n × En −→ K

given by

(v∗1, . . . , v
∗
n, u1, . . . , un) 7→

∑
σ∈Sn

v∗σ(1)(u1) · · · v∗σ(n)(un).

Note that the expression on the right-hand side is “almost” the determinant det(v∗j (ui)),
except that the sign sgn(σ) is missing (where sgn(σ) is the signature of the permutation σ;
that is, the parity of the number of transpositions into which σ can be factored). Such an
expression is called a permanent .

It can be verified that this expression is symmetric w.r.t. the ui’s and also w.r.t. the v∗j .
For any fixed (v∗1, . . . , v

∗
n) ∈ (E∗)n, we get a symmetric multilinear map

lv∗1 ,...,v∗n : (u1, . . . , un) 7→
∑
σ∈Sn

v∗σ(1)(u1) · · · v∗σ(n)(un)

from En to K. The map lv∗1 ,...,v∗n extends uniquely to a linear map Lv∗1 ,...,v∗n : Sn(E) → K
making the following diagram commute:

En

lv∗1 ,...,v
∗
n ##

ι� // Sn(E)

Lv∗1 ,...,v
∗
n

��
K.

We also have the symmetric multilinear map

(v∗1, . . . , v
∗
n) 7→ Lv∗1 ,...,v∗n
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from (E∗)n to Hom(Sn(E), K), which extends to a linear map L from Sn(E∗) to
Hom(Sn(E), K) making the following diagram commute:

(E∗)n

''

ι�∗ // Sn(E∗)

L
��

Hom(Sn(E), K).

However, in view of the isomorphism

Hom(U ⊗ V,W ) ∼= Hom(U,Hom(V,W )),

with U = Sn(E∗), V = Sn(E) and W = K, we can view L as a linear map

L : Sn(E∗)⊗ Sn(E) −→ K,

which by Proposition 2.8 corresponds to a bilinear map

〈−,−〉 : Sn(E∗)× Sn(E) −→ K. (∗)

This pairing is given explicitly on generators by

〈v∗1 � · · · � v∗n, u1 � · · · � un〉 =
∑
σ∈Sn

v∗σ(1)(u1) · · · v∗σ(n)(un).

Now this pairing in nondegenerate. This can be shown using bases.2 If (e1, . . . , em) is a
basis of E, then for every basis element (e∗i1)�n1�· · ·�(e∗ik)

�nk of Sn(E∗), with n1+· · ·+nk =
n, we have

〈(e∗i1)�n1 � · · · � (e∗ik)
�nk , e�n1

i1
� · · · � e�nkik

〉 = n1! · · ·nk!,

and

〈(e∗i1)�n1 � · · · � (e∗ik)
�nk , ej1 � · · · � ejn〉 = 0

if (j1 . . . , jn) 6= (i1, . . . , i1︸ ︷︷ ︸
n1

, . . . , ik, . . . , ik︸ ︷︷ ︸
nk

).

If the field K has characteristic zero, then n1! · · ·nk! 6= 0. We leave the details as an
exercise to the reader. Therefore we get a canonical isomorphism

(Sn(E))∗ ∼= Sn(E∗).

The following proposition summarizes the duality properties of symmetric powers.

2This is where the assumption that we are in finite dimension and that the field has characteristic zero
are used.
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Proposition 2.39. Assume the field K has characteristic zero. We have the canonical
isomorphisms

(Sn(E))∗ ∼= Sn(E∗)

and
Sn(E∗) ∼= Symn(E;K) = Homsymlin(En, K),

which allows us to interpret symmetric tensors over E∗ as symmetric multilinear maps.

Proof. The isomorphism
µ : Sn(E∗) ∼= Symn(E;K)

follows from the isomorphisms (Sn(E))∗ ∼= Sn(E∗) and (Sn(E))∗ ∼= Symn(E;K) given by
Proposition 2.35.

Remarks:

1. The isomorphism µ : Sn(E∗) ∼= Symn(E;K) discussed above can be described explicitly
as the linear extension of the map given by

µ(v∗1 � · · · � v∗n)(u1 � · · · � un) =
∑
σ∈Sn

v∗σ(1)(u1) · · · v∗σ(n)(un).

If (e1, . . . , em) is a basis of E, then for every basis element (e∗i1)�n1 � · · · � (e∗ik)
�nk of

Sn(E∗), with n1 + · · ·+ nk = n, we have

µ((e∗i1)�n1 � · · · � (e∗ik)
�nk)(ei1 , . . . , ei1︸ ︷︷ ︸

n1

. . . , eik , . . . , eik︸ ︷︷ ︸
nk

) = n1! · · ·nk!,

If the field K has positive characteristic, then it is possible that n1! · · ·nk! = 0, and
this is why we required K to be of characteristic 0 in order for Proposition 2.39 to
hold.

2. The canonical isomorphism of Proposition 2.39 holds under more general conditions.
Namely, that K is a commutative algebra with identity over Q, and that the E is
a finitely-generated projective K-module (see Definition 2.28). See Bourbaki, [15]
(Chapter III, §11, Section 5, Proposition 8).

The map from En to Sn(E) given by (u1, . . . , un) 7→ u1 � · · · � un yields a surjection
π : E⊗n → Sn(E). Because we are dealing with vector spaces, this map has some section;
that is, there is some injection β : Sn(E)→ E⊗n with π ◦β = id. Since our field K has char-
acteristic 0, there is a special injection having a natural definition involving a symmetrization
process defined as follows: For every permutation σ, we have the map rσ : En → E⊗n given
by

rσ(u1, . . . , un) = uσ(1) ⊗ · · · ⊗ uσ(n).
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As rσ is clearly multilinear, rσ extends to a linear map (rσ)⊗ : E⊗n → E⊗n making the
following diagram commute

En

rσ ""

ι⊗ // E⊗n

(rσ)⊗
��

E⊗n,

and we get a map Sn × E⊗n −→ E⊗n, namely

σ · z = (rσ)⊗(z).

It is immediately checked that this is a left action of the symmetric group Sn on E⊗n, and
the tensors z ∈ E⊗n such that

σ · z = z, for all σ ∈ Sn

are called symmetrized tensors.

We define the map η : En → E⊗n by

η(u1, . . . , un) =
1

n!

∑
σ∈Sn

σ · (u1 ⊗ · · · ⊗ un) =
1

n!

∑
σ∈Sn

uσ(1) ⊗ · · · ⊗ uσ(n).

As the right hand side is clearly symmetric, we get a linear map η� : Sn(E)→ E⊗n making
the following diagram commute.

En

η
##

ι� // Sn(E)

η�
��

E⊗n

Clearly, η�(Sn(E)) is the set of symmetrized tensors in E⊗n. If we consider the map
S = η� ◦ π : E⊗n −→ E⊗n where π is the surjection π : E⊗n → Sn(E), it is easy to check
that S ◦ S = S. Therefore, S is a projection, and by linear algebra, we know that

E⊗n = S(E⊗n)⊕KerS = η�(Sn(E))⊕KerS.

It turns out that KerS = E⊗n∩I = Ker π, where I is the two-sided ideal of T (E) generated
by all tensors of the form u⊗ v − v ⊗ u ∈ E⊗2 (for example, see Knapp [70], Appendix A).
Therefore, η� is injective,

E⊗n = η�(Sn(E))⊕ (E⊗n ∩ I) = η�(Sn(E))⊕Ker π,

and the symmetric tensor power Sn(E) is naturally embedded into E⊗n.
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2.13 Symmetric Algebras

As in the case of tensors, we can pack together all the symmetric powers Sn(V ) into an
algebra.

Definition 2.25. Given a vector space V , the space

S(V ) =
⊕
m≥0

Sm(V ),

is called the symmetric tensor algebra of V .

We could adapt what we did in Section 2.6 for general tensor powers to symmetric tensors
but since we already have the algebra T (V ), we can proceed faster. If I is the two-sided
ideal generated by all tensors of the form u⊗ v − v ⊗ u ∈ V ⊗2, we set

S•(V ) = T (V )/I.

Observe that since the ideal I is generated by elements in V ⊗2, every tensor in I is a linear
combination of tensors of the form ω1⊗ (u⊗ v− v⊗u)⊗ω2, with ω1 ∈ V ⊗n1 and ω2 ∈ V ⊗n2

for some n1, n2 ∈ N, which implies that

I =
⊕
m≥0

(I ∩ V ⊗m).

Then, S•(V ) automatically inherits a multiplication operation which is commutative, and
since T (V ) is graded, that is

T (V ) =
⊕
m≥0

V ⊗m,

we have
S•(V ) =

⊕
m≥0

V ⊗m/(I ∩ V ⊗m).

However, it is easy to check that

Sm(V ) ∼= V ⊗m/(I ∩ V ⊗m),

so
S•(V ) ∼= S(V ).

When V is of finite dimension n, S(V ) corresponds to the algebra of polynomials with
coefficients in K in n variables (this can be seen from Proposition 2.38). When V is of
infinite dimension and (ui)i∈I is a basis of V , the algebra S(V ) corresponds to the algebra
of polynomials in infinitely many variables in I. What’s nice about the symmetric tensor
algebra S(V ) is that it provides an intrinsic definition of a polynomial algebra in any set of
I variables.

It is also easy to see that S(V ) satisfies the following universal mapping property.
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Proposition 2.40. Given any commutative K-algebra A, for any linear map f : V → A,
there is a unique K-algebra homomorphism f : S(V )→ A so that

f = f ◦ i,

as in the diagram below.

V
i //

f ""

S(V )

f
��
A

Remark: If E is finite dimensional, recall the isomorphism µ : Sn(E∗) −→ Symn(E;K)
defined as the linear extension of the map given by

µ(v∗1 � · · · � v∗n)(u1, . . . , un) =
∑
σ∈Sn

v∗σ(1)(u1) · · · v∗σ(n)(un).

Now we have also a multiplication operation Sm(E∗)×Sn(E∗) −→ Sm+n(E∗). The following
question then arises:

Can we define a multiplication Symm(E;K) × Symn(E;K) −→ Symm+n(E;K) directly
on symmetric multilinear forms, so that the following diagram commutes?

Sm(E∗)× Sn(E∗)

µm×µn
��

� // Sm+n(E∗)

µm+n

��
Symm(E;K)× Symn(E;K) · // Symm+n(E;K)

The answer is yes ! The solution is to define this multiplication such that for f ∈ Symm(E;K)
and g ∈ Symn(E;K),

(f · g)(u1, . . . , um+n) =
∑

σ∈shuffle(m,n)

f(uσ(1), . . . , uσ(m))g(uσ(m+1), . . . , uσ(m+n)), (∗)

where shuffle(m,n) consists of all (m,n)-“shuffles;” that is, permutations σ of {1, . . .m+n}
such that σ(1) < · · · < σ(m) and σ(m+ 1) < · · · < σ(m+ n). Observe that a (m,n)-shuffle
is completely determined by the sequence σ(1) < · · · < σ(m).

For example, suppose m = 2 and n = 1. Given v∗1, v
∗
2, v
∗
3 ∈ E∗, the multiplication

structure on S(E∗) implies that (v∗1 � v∗2) · v∗3 = v∗1 � v∗2 � v∗3 ∈ S3(E∗). Furthermore, for
u1, u2, u3,∈ E,

µ3(v∗1 � v∗2 � v∗3)(u1, u2, u3) =
∑
σ∈S3

v∗σ(1)(u1)v∗σ(2)(u2)v∗σ(3)(u3)

= v∗1(u1)v∗2(u2)v∗3(u3) + v∗1(u1)v∗3(u2)v∗2(u3)

+ v∗2(u1)v∗1(u2)v∗3(u3) + v∗2(u1)v∗3(u2)v∗1(u3)

+ v∗3(u1)v∗1(u2)v∗2(u3) + v∗3(u1)v∗2(u2)v∗1(u3).
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Now the (2, 1)- shuffles of {1, 2, 3} are the following three permutations, namely(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 3 1

)
.

If f ∼= µ2(v∗1 � v∗2) and g ∼= µ1(v∗3), then (∗) implies that

(f · g)(u1, u2, u3) =
∑

σ∈shuffle(2,1)

f(uσ(1), uσ(2))g(uσ(3))

= f(u1, u2)g(u3) + f(u1, u3)g(u2) + f(u2, u3)g(u1)

= µ2(v∗1 � v∗2)(u1, u2)µ1(v∗3)(u3) + µ2(v∗1 � v∗2)(u1, u3)µ1(v∗3)(u2)

+ µ2(v∗1 � v∗2)(u2, u3)µ1(v∗3)(u1)

= (v∗1(u1)v∗2(u2) + v∗2(u1)v∗1(u2))v∗3(u3)

+ (v∗1(u1)v∗2(u3) + v∗2(u1)v∗1(u3))v∗3(u2)

+ (v∗1(u2)v∗2(u3) + v∗2(u2)v∗1(u3))v∗3(u1)

= µ3(v∗1 � v∗2 � v∗3)(u1, u2, u3).

We leave it as an exercise for the reader to verify Equation (∗) for arbitrary nonnegative
integers m and n.

Another useful canonical isomorphism (of K-algebras) is given below.

Proposition 2.41. For any two vector spaces E and F , there is a canonical isomorphism
(of K-algebras)

S(E ⊕ F ) ∼= S(E)⊗ S(F ).

2.14 Tensor Products of Modules over a

Commmutative Ring

This section provides some background on modules which is needed for Section 10.8 about
metrics on vector bundles and for Chapter 11 on connections and curvature on vector bundles.
What happens is that given a manifold M , the space X(M) of vector fields on M and the
space Ap(M) of differential p-forms on M are vector spaces, but vector fields and p-forms
can also be multiplied by smooth functions in C∞(M). This operation is a left action of
C∞(M) which satisfies all the axioms of the scalar multiplication in a vector space, but since
C∞(M) is not a field, the resulting structure is not a vector space. Instead it is a module, a
more general notion.

Definition 2.26. If R is a commutative ring with identity (say 1), a module over R (or
R-module) is an abelian group M with a scalar multiplication · : R×M →M such that all
the axioms of a vector space are satisfied.
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At first glance, a module does not seem any different from a vector space, but the lack
of multiplicative inverses in R has drastic consequences, one being that unlike vector spaces,
modules are generally not free; that is, have no bases. Furthermore, a module may have
torsion elements , that is, elements m ∈ M such that λ · m = 0, even though m 6= 0 and
λ 6= 0. For example, for any nonzero integer n ∈ Z, the Z-module Z/nZ has no basis and
n · m = 0 for all m ∈ Z/nZ. Similarly, Q as a Z-module has no basis. In fact, any two
distinct nonzero elements p1/q1 and p2/q2 are linearly dependent, since

(p2q1)

(
p1

q1

)
− (p1q2)

(
p2

q2

)
= 0.

Nevertheless, it is possible to define tensor products of modules over a ring, just as in
Section 2.2, and the results of that section continue to hold. The results of Section 2.4 also
continue to hold since they are based on the universal mapping property. However, the
results of Section 2.3 on bases generally fail, except for free modules. Similarly, the results
of Section 2.5 on duality generally fail. Tensor algebras can be defined for modules, as in
Section 2.6. Symmetric tensor and alternating tensors can be defined for modules, but again,
results involving bases generally fail.

Tensor products of modules have some unexpected properties. For example, if p and q
are relatively prime integers, then

Z/pZ⊗Z Z/qZ = (0).

This is because, by Bezout’s identity, there are a, b ∈ Z such that

ap+ bq = 1,

so, for all x ∈ Z/pZ and all y ∈ Z/qZ, we have

x⊗ y = ap(x⊗ y) + bq(x⊗ y)

= a(px⊗ y) + b(x⊗ qy)

= a(0⊗ y) + b(x⊗ 0)

= 0.

It is possible to salvage certain properties of tensor products holding for vector spaces by
restricting the class of modules under consideration. For example, projective modules have
a pretty good behavior w.r.t. tensor products.

Definition 2.27. A free R-module F is a module that has a basis (i.e., there is a family
(ei)i∈I of linearly independent vectors in F that span F ).

Projective modules generalize free modules. They have many equivalent characteriza-
tions. Here is one that is best suited for our needs.
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Definition 2.28. An R-module P is projective if it is a summand of a free module; that is,
if there is a free R-module F , and some R-module Q, so that

F = P ⊕Q.

For example, we show in Section 10.8 that the space Γ(ξ) of global sections of a vector
bundle ξ over a base manifold B is a finitely generated C∞(B)-projective module.

Given any R-module M , we let M∗ = HomR(M,R) be its dual . We have the following
proposition.

Proposition 2.42. For any finitely-generated projective R-module P and any R-module Q,
we have the isomorphisms:

P ∗∗ ∼= P

HomR(P,Q) ∼= P ∗ ⊗R Q.

Proof sketch. We only consider the second isomorphism. Since P is projective, we have some
R-modules P1, F with

P ⊕ P1 = F,

where F is some free module. We know that for any R-modules U, V,W , we have

HomR(U ⊕ V,W ) ∼= HomR(U,W )
∏

HomR(V,W ) ∼= HomR(U,W )⊕ HomR(V,W ),

so
P ∗ ⊕ P ∗1 ∼= F ∗, HomR(P,Q)⊕ HomR(P1, Q) ∼= HomR(F,Q).

By tensoring with Q and using the fact that tensor distributes w.r.t. coproducts, we get

(P ∗ ⊗R Q)⊕ (P ∗1 ⊗Q) ∼= (P ∗ ⊕ P ∗1 )⊗R Q ∼= F ∗ ⊗R Q.

Now, the proof of Proposition 2.19 goes through because F is free and finitely generated.
This implies

F ∗ ⊗Q ∼= Hom(F,Q),

so

α⊗ : (P ∗ ⊗R Q)⊕ (P ∗1 ⊗Q) ∼= F ∗ ⊗R Q −→ HomR(F,Q) ∼= HomR(P,Q)⊕ HomR(P1, Q)

is an isomorphism, and as α⊗ maps P ∗ ⊗R Q to HomR(P,Q), it yields an isomorphism
between these two spaces.

The isomorphism α⊗ : P ∗ ⊗R Q ∼= HomR(P,Q) of Proposition 2.42 is still given by

α⊗(u∗ ⊗ f)(x) = u∗(x)f, u∗ ∈ P ∗, f ∈ Q, x ∈ P.
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It is convenient to introduce the evaluation map Evx : P ∗⊗RQ→ Q defined for every x ∈ P
by

Evx(u
∗ ⊗ f) = u∗(x)f, u∗ ∈ P ∗, f ∈ Q.

In Section 11.5 we will need to consider a slightly weaker version of the universal mapping
property of tensor products. The situation is this: We have a commutative R-algebra S,
where R is a field (or even a commutative ring), we have two R-modules U and V , and
moreover, U is a right S-module and V is a left S-module. In Section 11.5, this corresponds
to R = R, S = C∞(B), U = Ai(B) and V = Γ(ξ), where ξ is a vector bundle. Then we can
form the tensor product U ⊗R V , and we let U ⊗S V be the quotient module (U ⊗R V )/W ,
where W is the submodule of U ⊗R V generated by the elements of the form

us⊗R v − u⊗R sv.

As S is commutative, we can make U ⊗S V into an S-module by defining the action of S via

s(u⊗S v) = us⊗S v.

It is verified that this S-module is isomorphic to the tensor product of U and V as S-modules,
and the following universal mapping property holds:

Proposition 2.43. For every R-bilinear map f : U × V → Z, if f satisfies the property

f(us, v) = f(u, sv), for all u ∈ U, v ∈ V, s ∈ S,

then f induces a unique R-linear map f̂ : U ⊗S V → Z such that

f(u, v) = f̂(u⊗S v), for all u ∈ U, v ∈ V.

Note that the linear map f̂ : U ⊗S V → Z is only R-linear ; it is not S-linear in general.

2.15 Problems

Problem 2.1. Prove Proposition 2.4.

Problem 2.2. Given two linear maps f : E → E ′ and g : F → F ′, we defined the unique
linear map

f ⊗ g : E ⊗ F → E ′ ⊗ F ′

by
(f ⊗ g)(u⊗ v) = f(u)⊗ g(v),

for all u ∈ E and all v ∈ F . See Proposition 2.9. Thus f ⊗ g ∈ Hom(E ⊗ F,E ′ ⊗ F ′).
If we denote the tensor product E ⊗ F by T (E,F ), and we assume that E,E ′ and F, F ′

are finite dimensional, pick bases and show that the map induced by f ⊗ g 7→ T (f, g) is an
isomorphism

Hom(E,F )⊗ Hom(E ′, F ′) ∼= Hom(E ⊗ F,E ′ ⊗ F ′).
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Problem 2.3. Adjust the proof of Proposition 2.13 (2) to show that

E ⊗ (F ⊗G) ∼= E ⊗ F ⊗G,

whenever E, F , and G are arbitrary vector spaces.

Problem 2.4. Given a fixed vector space G, for any two vector spaces M and N and every
linear map f : M → N , we defined τG(f) = f ⊗ idG to be the unique linear map making the
following diagram commute.

M ×G
f×idG

��

ιM⊗ // M ⊗G
f⊗idG
��

N ×G ιN⊗
// N ⊗G

See the proof of Proposition 2.13 (3). Show that

(1) τG(0) = 0,

(2) τG(idM) = (idM ⊗ idG) = idM⊗G,

(3) If f ′ : M → N is another linear map, then τG(f + f ′) = τG(f) + τG(f ′).

Problem 2.5. Induct on m ≥ 2 to prove the canonical isomorphism

V ⊗m ⊗ V ⊗n ∼= V ⊗(m+n).

Use this isomorphism to show that · : V ⊗m × V ⊗n −→ V ⊗(m+n) defined as

(v1 ⊗ · · · ⊗ vm) · (w1 ⊗ · · · ⊗ wn) = v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn.

induces a multiplication on T (V ).
Hint . See Jacobson [65], Section 3.9, or Bertin [12], Chapter 4, Section 2.).

Problem 2.6. Prove Proposition 2.21.
Hint . See Knapp [70] (Appendix A, Proposition A.14) or Bertin [12] (Chapter 4, Theorem
2.4).

Problem 2.7. Given linear maps f : E → E ′ and f ′ : E ′ → E ′′, show that

(f ′ ◦ f)� (f ′ ◦ f) = (f ′ � f ′) ◦ (f � f).

Problem 2.8. Complete the proof of Proposition 2.38 for the case of an infinite dimensional
vector space E.

Problem 2.9. Let I be a finite index set of cardinality p. Let m be a nonnegative integer.
Show that the number of multisets over I with cardinality m is

(
p+m−1
m

)
.

Problem 2.10. Prove Proposition 2.37.
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Problem 2.11. Using bases, show that the bilinear map at (∗) in Section 2.12 produces a
nondegenerate pairing.

Problem 2.12. Let I be the two-sided ideal generated by all tensors of the form u⊗v−v⊗u ∈
V ⊗2. Prove that Sm(V ) ∼= V ⊗m/(I ∩ V ⊗m).

Problem 2.13. Verify Equation (∗) of Section 2.13 for arbitrary nonnegative integers m
and n.

Problem 2.14. Let P be a finitely generated projective R-module. Recall that P ∗ =
HomR(P,R). Show that P ∗∗ ∼= P .

Problem 2.15. Let S be a commutative R-algebra, where R is a commutative ring. Suppose
we have R-modules U and V , where U is a right S-module and V is a left S-module. We
form the tensor product U ⊗R V , and we let U ⊗S V be the quotient module (U ⊗R V )/W ,
where W is the submodule of U ⊗R V generated by the elements of the form

us⊗R v − u⊗R sv.

As S is commutative, we can make U ⊗S V into an S-module by defining the action of S via

s(u⊗S v) = us⊗S v.

Verify this S-module is isomorphic to the tensor product of U and V as S-modules.

Problem 2.16. Prove Proposition 2.43.
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Chapter 3

Exterior Tensor Powers and Exterior
Algebras

In this chapter we consider alternating (also called skew-symmetric) multilinear maps and
exterior tensor powers (also called alternating tensor powers), denoted

∧n(E). In many
respects alternating multilinear maps and exterior tensor powers can be treated much like
symmetric tensor powers, except that sgn(σ) needs to be inserted in front of the formulae
valid for symmetric powers.

Roughly speaking, we are now in the world of determinants rather than in the world of
permanents. However, there are also some fundamental differences, one of which being that
the exterior tensor power

∧n(E) is the trivial vector space (0) when E is finite dimensional
and n > dim(E). This chapter provides the firm foundations for understanding differential
forms.

In Section 3.1 we define the exterior powers of a vector space E. This time, instead
of dealing with symmetric multilinear maps, we deal with alternating multilinear maps ,
which are multilinear maps f : En → F such that f(u1, . . . , un) = 0 whenever two adjacent
arguments are identical. This implies that f(u1, . . . , un) = 0 whenever any two arguments
are identical, and that f(. . . , ui, ui+1, . . .) = −f(. . . , ui+1, ui, . . .).

Given a vector space E over a field K, for any n ≥ 1, the exterior tensor power
∧n(E)

is defined by a universal mapping property: it is a vector space with an injection i∧ : En →∧n(E), such that for every vector space F and every alternating multilinear map f : En → F ,
there is a unique linear map f∧ :

∧n(E)→ F such that

f = f∧ ◦ i∧,

as illustrated in the following diagram:

En

f $$

i∧ //
∧n(E)

f∧
��
F

93
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We prove that the above universal mapping property defines
∧n(E) up to isomorphism, and

then we prove its existence by constructing the quotient

n∧
(E) = E⊗n/(Ia ∩ E⊗n)

where Ia is the two-sided ideal of the tensor algebra T (E) generated by all tensors of the
form u⊗ u ∈ E⊗2. As a corollary, there is an isomorphism

Hom(
n∧

(E), F ) ∼= Altn(E;F )

between the vector space of linear maps Hom(
∧n(E), F ) and the vector space of alternating

multilinear maps Altn(E;F ). A new phenomenon that arises with exterior tensor powers is
that if E has dimension n, then

∧k(E) = (0) for all k > n.

Given any two linear maps f, g : E → E ′, there is a linear map f ∧ g :
∧2(E)→

∧2(E ′).

A basic isomorphism involving the exterior power of a direct sum is shown at the end of
this Section.

In Section 3.2 we show how to construct a basis of
∧k(E) from a basis of E (1 ≤ k ≤ n).

If E has dimension n and if (e1, . . . , en) is a basis of E, for any finite sequence I = (i1, . . . , ik)
with 1 ≤ i1 < i2 < · · · < ik ≤ n, if we write

eI = ei1 ∧ · · · ∧ eik ,

then the family of all the eI is a basis of
∧k(E). Thus

∧k(E) has dimension
(
n
k

)
.

Section 3.3 is devoted to duality in exterior powers. There is a nondegenerate pairing

〈−,−〉 :
n∧

(E∗)×
n∧

(E) −→ K

defined in terms of generators by

〈v∗1 ∧ · · · ∧ v∗n, u1 ∧ · · · ∧ un〉 = det(v∗j (ui)).

As a consequence, if E is finite dimensional, we have canonical isomorphisms

(
n∧

(E))∗ ∼=
n∧

(E∗) ∼= Altn(E;K).

The exterior tensor power
∧k(E) is naturally embedded in E⊗n (if K has characteristic 0).

In Section 3.4 we define exterior algebras (or Grassmann algebras). As in the case of
symmetric tensors, we can pack together all the exterior powers

∧n(V ) into an algebra.
Given any vector space V , the vector space∧

(V ) =
⊕
m≥0

m∧
(V )
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is an algebra called the exterior algebra (or Grassmann algebra) of V . The exterior algebra
satisfies a universal mapping condition.

If we define
Alt(E) =

⊕
n≥0

Altn(E;K),

then this is an algebra under a combinatorial definition of the wedge operation, and this
algebra is isomorphic to

∧
(E∗).

In Section 3.5, we introduce the Hodge ∗-operator . Given a vector space V of dimension
n with an inner product 〈−,−〉, for some chosen orientation of V , for each k such that
1 ≤ k ≤ n, there is an isomorphism ∗ from

∧k(V ) to
∧n−k(V ). The Hodge ∗ operator can

be extended to an isomorphism of
∧

(V ). It is the main tool used to define a generalization
of the Laplacian (the Hodge Laplacian) to a smooth manifold.

The next three sections are somewhat more technical. They deal with some contraction
operators called left hooks and right hooks . The motivation comes from the problem of
understanding when a tensor α ∈

∧k(E) is decomposable. An arbitrary tensor α ∈
∧k(E) is

a linear combination of tensors of the form u1 ∧ · · · ∧ uk, called decomposable. The issue is
to find criteria for decomposability. This is not as obvious as it looks. For example, we have

e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3 = (e1 + e2) ∧ (e2 + e3),

where the tensor on the right is clearly decomposable, but the tensor on the left does not
look decomposable at first glance. Criteria for testing decomposability using left hooks are
given in Section 3.7.

Say dim(E) = n. Using our nonsingular pairing

〈−,−〉 :
p∧
E∗ ×

p∧
E −→ K (1 ≤ p ≤ n)

defined on generators by

〈u∗1 ∧ · · · ∧ u∗p, v1 ∧ · · · ∧ up〉 = det(u∗i (vj)),

in Section 3.6 we define various contraction operations (partial evaluation operators)

y :

p∧
E ×

p+q∧
E∗ −→

q∧
E∗, y :

p∧
E∗ ×

p+q∧
E −→

q∧
E left hook

and

x :

p+q∧
E∗ ×

p∧
E −→

q∧
E∗, x :

p+q∧
E ×

p∧
E∗ −→

q∧
E right hook.

These left and right hooks also have combinatorial definitions in terms of the basis vectors
eI and e∗J . The right hooks can be expressed in terms of the left hooks. Left and right hooks
induce isomorphisms γ :

∧pE →
∧n−pE∗ and δ :

∧pE∗ →
∧n−pE.



96 CHAPTER 3. EXTERIOR TENSOR POWERS AND EXTERIOR ALGEBRAS

A criterion for testing decomposabiliity in terms of left hooks is presented in Section 3.7.

In Section 3.8, based on the criterion established in Section 3.7 , we derive a criterion for
testing decomposabilty in terms of equations known as the Grassmann-Plücker’s equations .
We also show that the Grassmannian manifold G(k, n) can be embedded as an algebraic

variety into RP(nk)−1 defined by equations of degree 2.

Section 3.9 discusses vector-valued alternating forms. The purpose of this section is to
present the technical background needed for Sections 4.5 and 4.6 on vector-valued differential
forms, in particular in the case of Lie groups where differential forms taking their values in
a Lie algebra arise naturally.

Given a finite dimensional vector space E and any vector space F , there is an isomorphism

µF :

(
n∧

(E∗)

)
⊗ F −→ Altn(E;F )

defined on generators by

µF ((v∗1 ∧ · · · ∧ v∗n)⊗ f)(u1, . . . , un) = (det(v∗j (ui))f,

with v∗1, . . . , v
∗
n ∈ E∗, u1, . . . , un ∈ E, and f ∈ F . We also discuss a generalization of the

wedge product.

3.1 Exterior Tensor Powers

As in the case of symmetric tensor powers, since we already have the tensor algebra T (V ),
we can proceed rather quickly. But first let us review some basic definitions and facts.

Definition 3.1. Let f : En → F be a multilinear map. We say that f alternating iff for
all ui ∈ E, f(u1, . . . , un) = 0 whenever ui = ui+1, for some i with 1 ≤ i ≤ n − 1; that
is, f(u1, . . . , un) = 0 whenever two adjacent arguments are identical. We say that f is
skew-symmetric (or anti-symmetric) iff

f(uσ(1), . . . , uσ(n)) = sgn(σ)f(u1, . . . , un),

for every permutation σ ∈ Sn, and all ui ∈ E.

For n = 1, we agree that every linear map f : E → F is alternating. The vector space of
all multilinear alternating maps f : En → F is denoted Altn(E;F ). Note that Alt1(E;F ) =
Hom(E,F ). The following basic proposition shows the relationship between alternation and
skew-symmetry.

Proposition 3.1. Let f : En → F be a multilinear map. If f is alternating, then the
following properties hold:
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(1) For all i, with 1 ≤ i ≤ n− 1,

f(. . . , ui, ui+1, . . .) = −f(. . . , ui+1, ui, . . .).

(2) For every permutation σ ∈ Sn,

f(uσ(1), . . . , uσ(n)) = sgn(σ)f(u1, . . . , un).

(3) For all i, j, with 1 ≤ i < j ≤ n,

f(. . . , ui, . . . uj, . . .) = 0 whenever ui = uj.

Moreover, if our field K has characteristic different from 2, then every skew-symmetric
multilinear map is alternating.

Proof. (1) By multilinearity applied twice, we have

f(. . . , ui + ui+1, ui + ui+1, . . .) = f(. . . , ui, ui, . . .) + f(. . . , ui, ui+1, . . .)

+ f(. . . , ui+1, ui, . . .) + f(. . . , ui+1, ui+1, . . .).

Since f is alternating, we get

0 = f(. . . , ui, ui+1, . . .) + f(. . . , ui+1, ui, . . .);

that is, f(. . . , ui, ui+1, . . .) = −f(. . . , ui+1, ui, . . .).

(2) Clearly, the symmetric group, Sn, acts on Altn(E;F ) on the left, via

σ · f(u1, . . . , un) = f(uσ(1), . . . , uσ(n)).

Consequently, as Sn is generated by the transpositions (permutations that swap exactly two
elements), since for a transposition, (2) is simply (1), we deduce (2) by induction on the
number of transpositions in σ.

(3) There is a permutation σ that sends 1 and 2 respectively to i and j. By hypothesis
ui = uj, so we have uσ(1) = ui = uj = uσ(2), and as f is alternating we have

f(uσ(1), . . . , uσ(n)) = 0.

However, by (2),
f(u1, . . . , un) = sgn(σ)f(uσ(1), . . . , uσ(n)) = 0.

Now when f is skew-symmetric, if σ is the transposition swapping ui and ui+1 = ui, as
sgn(σ) = −1, we get

f(. . . , ui, ui, . . .) = −f(. . . , ui, ui, . . .),

so that
2f(. . . , ui, ui, . . .) = 0,

and in every characteristic except 2, we conclude that f(. . . , ui, ui, . . .) = 0, namely f is
alternating.
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Proposition 3.1 shows that in every field of characteristic different from 2, alternating
and skew-symmetric multilinear maps are identical. Using Proposition 3.1 we easily deduce
the following crucial fact.

Proposition 3.2. Let f : En → F be an alternating multilinear map. For any families of
vectors, (u1, . . . , un) and (v1, . . . , vn), with ui, vi ∈ E, if

vj =
n∑
i=1

aijui, 1 ≤ j ≤ n,

then

f(v1, . . . , vn) =

(∑
σ∈Sn

sgn(σ) aσ(1),1 · · · aσ(n),n

)
f(u1, . . . , un) = det(A)f(u1, . . . , un),

where A is the n× n matrix, A = (aij).

Proof. Use Property (ii) of Proposition 3.1.

We are now ready to define and construct exterior tensor powers.

Definition 3.2. An n-th exterior tensor power of a vector space E, where n ≥ 1, is a vector
space A together with an alternating multilinear map ϕ : En → A, such that for every vector
space F and for every alternating multilinear map f : En → F , there is a unique linear map
f∧ : A→ F with

f(u1, . . . , un) = f∧(ϕ(u1, . . . , un)),

for all u1, . . . , un ∈ E, or for short
f = f∧ ◦ ϕ.

Equivalently, there is a unique linear map f∧ such that the following diagram commutes:

En

f !!

ϕ // A

f∧
��
F.

The above property is called the universal mapping property of the exterior tensor power
(A,ϕ).

We now show that any two n-th exterior tensor powers (A1, ϕ1) and (A2, ϕ2) for E are
isomorphic.

Proposition 3.3. Given any two n-th exterior tensor powers (A1, ϕ1) and (A2, ϕ2) for E,
there is an isomorphism h : A1 → A2 such that

ϕ2 = h ◦ ϕ1.
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Proof. Replace tensor product by n-th exterior tensor power in the proof of Proposition
2.5.

We next give a construction that produces an n-th exterior tensor power of a vector space
E.

Theorem 3.4. Given a vector space E, an n-th exterior tensor power (
∧n(E), ϕ) for E can

be constructed (n ≥ 1). Furthermore, denoting ϕ(u1, . . . , un) as u1 ∧ · · · ∧ un, the exterior
tensor power

∧n(E) is generated by the vectors u1 ∧ · · · ∧ un, where u1, . . . , un ∈ E, and for
every alternating multilinear map f : En → F , the unique linear map f∧ :

∧n(E)→ F such
that f = f∧ ◦ ϕ is defined by

f∧(u1 ∧ · · · ∧ un) = f(u1, . . . , un)

on the generators u1 ∧ · · · ∧ un of
∧n(E).

Proof sketch. We can give a quick proof using the tensor algebra T (E). Let Ia be the
two-sided ideal of T (E) generated by all tensors of the form u⊗ u ∈ E⊗2. Then let

n∧
(E) = E⊗n/(Ia ∩ E⊗n)

and let π be the projection π : E⊗n →
∧n(E). If we let u1 ∧ · · · ∧ un = π(u1 ⊗ · · · ⊗ un), it

is easy to check that (
∧n(E),∧) satisfies the conditions of Theorem 3.4.

Remark: We can also define∧
(E) = T (E)/Ia =

⊕
n≥0

n∧
(E),

the exterior algebra of E. This is the skew-symmetric counterpart of S(E), and we will study
it a little later.

For simplicity of notation, we may write
∧nE for

∧n(E). We also abbreviate “exterior
tensor power” as “exterior power.” Clearly,

∧1(E) ∼= E, and it is convenient to set
∧0(E) =

K.

The fact that the map ϕ : En →
∧n(E) is alternating and multilinear can also be ex-

pressed as follows:

u1 ∧ · · · ∧ (ui + vi) ∧ · · · ∧ un = (u1 ∧ · · · ∧ ui ∧ · · · ∧ un)

+ (u1 ∧ · · · ∧ vi ∧ · · · ∧ un),

u1 ∧ · · · ∧ (λui) ∧ · · · ∧ un = λ(u1 ∧ · · · ∧ ui ∧ · · · ∧ un),

uσ(1) ∧ · · · ∧ uσ(n) = sgn(σ)u1 ∧ · · · ∧ un,
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for all σ ∈ Sn.

The map ϕ from En to
∧n(E) is often denoted ι∧, so that

ι∧(u1, . . . , un) = u1 ∧ · · · ∧ un.

Theorem 3.4 implies the following result.

Proposition 3.5. There is a canonical isomorphism

Hom(
n∧

(E), F ) ∼= Altn(E;F )

between the vector space of linear maps Hom(
∧n(E), F ) and the vector space of alternating

multilinear maps Altn(E;F ), given by the linear map − ◦ ϕ defined by 7→ h ◦ ϕ, with h ∈
Hom(

∧n(E), F ). In particular, when F = K, we get a canonical isomorphism(
n∧

(E)

)∗
∼= Altn(E;K).

Definition 3.3. Tensors α ∈
∧n(E) are called alternating n-tensors or alternating tensors of

degree n and we write deg(α) = n. Tensors of the form u1∧· · ·∧un, where ui ∈ E, are called
simple (or decomposable) alternating n-tensors . Those alternating n-tensors that are not
simple are often called compound alternating n-tensors . Simple tensors u1∧· · ·∧un ∈

∧n(E)
are also called n-vectors and tensors in

∧n(E∗) are often called (alternating) n-forms .

Given a linear map f : E → E ′, since the map ι′∧◦(f×f) is bilinear and alternating, there
is a unique linear map f ∧ f :

∧2(E)→
∧2(E ′) making the following diagram commute:

E2

f×f
��

ι∧ //
∧2(E)

f∧f
��

(E ′)2

ι′∧

//
∧2(E ′).

The map f ∧ f :
∧2(E)→

∧2(E ′) is determined by

(f ∧ f)(u ∧ v) = f(u) ∧ f(v).

Proposition 3.6. Given any two linear maps f : E → E ′ and f ′ : E ′ → E ′′, we have

(f ′ ◦ f) ∧ (f ′ ◦ f) = (f ′ ∧ f ′) ◦ (f ∧ f).
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The generalization to the alternating product f ∧ · · · ∧ f of n ≥ 3 copies of the linear
map f : E → E ′ is immediate, and left to the reader.

We can show the following property of the exterior tensor product, using the proof
technique of Proposition 2.13.

Proposition 3.7. We have the following isomorphism:

n∧
(E ⊕ F ) ∼=

n⊕
k=0

k∧
(E)⊗

n−k∧
(F ).

3.2 Bases of Exterior Powers

Definition 3.4. Let E be any vector space. For any basis (ui)i∈Σ for E, we assume that
some total ordering ≤ on the index set Σ has been chosen. Call the pair ((ui)i∈Σ,≤) an
ordered basis . Then for any nonempty finite subset I ⊆ Σ, let

uI = ui1 ∧ · · · ∧ uim ,

where I = {i1, . . . , im}, with i1 < · · · < im.

Since
∧n(E) is generated by the tensors of the form v1 ∧ · · · ∧ vn, with vi ∈ E, in view of

skew-symmetry, it is clear that the tensors uI with |I| = n generate
∧n(E) (where ((ui)i∈Σ,≤)

is an ordered basis). Actually they form a basis. To gain an intuitive understanding of this
statement, let m = 2 and E be a 3-dimensional vector space lexicographically ordered basis
{e1, e2, e3}. We claim that

e1 ∧ e2, e1 ∧ e3, e2 ∧ e3

form a basis for
∧2(E) since they not only generate

∧2(E) but are linearly independent.
The linear independence is argued as follows: given any vector space F , if w12, w13, w23 are
any vectors in F , there is an alternating bilinear map h : E2 → F such that

h(e1, e2) = w12, h(e1, e3) = w13, h(e2, e3) = w23.

Because h yields a unique linear map h∧ :
∧2E → F such that

h∧(ei ∧ ej) = wij, 1 ≤ i < j ≤ 3,

by Proposition 2.4, the vectors

e1 ∧ e2, e1 ∧ e3, e2 ∧ e3
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are linearly independent. This suggests understanding how an alternating bilinear function
f : E2 → F is expressed in terms of its values f(ei, ej) on the basis vectors (e1, e2, e3). Using
bilinearity and alternation, we obtain

f(u1e1 + u2e2 + u3e3, v1e1 + v2e2 + v3e3) = (u1v2 − u2v1)f(e1, e2) + (u1v3 − u3v1)f(e1, e3)

+ (u2v3 − u3v2)f(e2, e3).

Therefore, given w12, w13, w23 ∈ F , the function h given by

h(u1e1 + u2e2 + u3e3, v1e1 + v2e2 + v3e3) = (u1v2 − u2v1)w12 + (u1v3 − u3v1)w13

+ (u2v3 − u3v2)w23

is clearly bilinear and alternating, and by construction h(ei, ej) = wij, with 1 ≤ i < j ≤ 3
does the job.

We now prove the assertion that tensors uI with |I| = n generate
∧n(E) for arbitrary n.

Proposition 3.8. Given any vector space E, if E has finite dimension d = dim(E), then
for all n > d, the exterior power

∧n(E) is trivial; that is
∧n(E) = (0). If n ≤ d or if E

is infinite dimensional, then for every ordered basis ((ui)i∈Σ,≤), the family (uI) is basis of∧n(E), where I ranges over finite nonempty subsets of Σ of size |I| = n.

Proof. First assume that E has finite dimension d = dim(E) and that n > d. We know that∧n(E) is generated by the tensors of the form v1 ∧ · · · ∧ vn, with vi ∈ E. If u1, . . . , ud is a
basis of E, as every vi is a linear combination of the uj, when we expand v1 ∧ · · · ∧ vn using
multilinearity, we get a linear combination of the form

v1 ∧ · · · ∧ vn =
∑

(j1,...,jn)

λ(j1,...,jn) uj1 ∧ · · · ∧ ujn ,

where each (j1, . . . , jn) is some sequence of integers jk ∈ {1, . . . , d}. As n > d, each sequence
(j1, . . . , jn) must contain two identical elements. By alternation, uj1 ∧ · · · ∧ ujn = 0, and so
v1 ∧ · · · ∧ vn = 0. It follows that

∧n(E) = (0).

Now assume that either dim(E) = d and n ≤ d, or that E is infinite dimensional. The
argument below shows that the uI are nonzero and linearly independent. As usual, let
u∗i ∈ E∗ be the linear form given by

u∗i (uj) = δij.

For any nonempty subset I = {i1, . . . , in} ⊆ Σ with i1 < · · · < in, for any n vectors
v1, . . . , vn ∈ E, let

lI(v1, . . . , vn) = det(u∗ij(vk)) =

∣∣∣∣∣∣∣
u∗i1(v1) · · · u∗i1(vn)

...
. . .

...
u∗in(v1) · · · u∗in(vn)

∣∣∣∣∣∣∣ .
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If we let the n-tuple (v1, . . . , vn) vary we obtain a map lI from En to K, and it is easy
to check that this map is alternating multilinear. Thus lI induces a unique linear map
LI :

∧n(E)→ K making the following diagram commute.

En

lI $$

ι∧ //
∧n(E)

LI
��
K

Observe that for any nonempty finite subset J ⊆ Σ with |J | = n, we have

LI(uJ) =

{
1 if I = J
0 if I 6= J .

Note that when dim(E) = d and n ≤ d, or when E is infinite-dimensional, the forms
u∗i1 , . . . , u

∗
in are all distinct, so the above does hold. Since LI(uI) = 1, we conclude that

uI 6= 0. If we have a linear combination∑
I

λIuI = 0,

where the above sum is finite and involves nonempty finite subset I ⊆ Σ with |I| = n, for
every such I, when we apply LI we get λI = 0, proving linear independence.

As a corollary, if E is finite dimensional, say dim(E) = d, and if 1 ≤ n ≤ d, then we have

dim(
n∧

(E)) =

(
d

n

)
,

and if n > d, then dim(
∧n(E)) = 0.

Remark: When n = 0, if we set u∅ = 1, then (u∅) = (1) is a basis of
∧0(V ) = K.

It follows from Proposition 3.8 that the family (uI)I where I ⊆ Σ ranges over finite
subsets of Σ is a basis of

∧
(V ) =

⊕
n≥0

∧n(V ).

As a corollary of Proposition 3.8 we obtain the following useful criterion for linear inde-
pendence.

Proposition 3.9. For any vector space E, the vectors u1, . . . , un ∈ E are linearly indepen-
dent iff u1 ∧ · · · ∧ un 6= 0.

Proof. If u1 ∧ · · · ∧ un 6= 0, then u1, . . . , un must be linearly independent. Otherwise, some
ui would be a linear combination of the other uj’s (with j 6= i), and then, as in the proof of
Proposition 3.8, u1 ∧ · · · ∧ un would be a linear combination of wedges in which two vectors
are identical, and thus zero.
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Conversely, assume that u1, . . . , un are linearly independent. Then we have the linear
forms u∗i ∈ E∗ such that

u∗i (uj) = δi,j 1 ≤ i, j ≤ n.

As in the proof of Proposition 3.8, we have a linear map Lu1,...,un :
∧n(E)→ K given by

Lu1,...,un(v1 ∧ · · · ∧ vn) = det(u∗j(vi)) =

∣∣∣∣∣∣∣
u∗1(v1) · · · u∗1(vn)

...
. . .

...
u∗n(v1) · · · u∗n(vn)

∣∣∣∣∣∣∣ ,
for all v1 ∧ · · · ∧ vn ∈

∧n(E). As Lu1,...,un(u1 ∧ · · · ∧un) = 1, we conclude that u1 ∧ · · · ∧un 6=
0.

Proposition 3.9 shows that geometrically every nonzero wedge u1 ∧ · · · ∧ un corresponds
to some oriented version of an n-dimensional subspace of E.

3.3 Duality for Exterior Powers

In this section all vector spaces are assumed to have finite dimension. We define a nonde-
generate pairing

∧n(E∗)×
∧n(E) −→ K as follows: Consider the multilinear map

(E∗)n × En −→ K

given by

(v∗1, . . . , v
∗
n, u1, . . . , un) 7→

∑
σ∈Sn

sgn(σ) v∗σ(1)(u1) · · · v∗σ(n)(un) = det(v∗j (ui))

=

∣∣∣∣∣∣∣
v∗1(u1) · · · v∗1(un)

...
. . .

...
v∗n(u1) · · · v∗n(un)

∣∣∣∣∣∣∣ .
It is easily checked that this expression is alternating w.r.t. the ui’s and also w.r.t. the v∗j .
For any fixed (v∗1, . . . , v

∗
n) ∈ (E∗)n, we get an alternating multilinear map

lv∗1 ,...,v∗n : (u1, . . . , un) 7→ det(v∗j (ui))

from En to K. The map lv∗1 ,...,v∗n extends uniquely to a linear map Lv∗1 ,...,v∗n :
∧n(E) → K

making the following diagram commute:

En

lv∗1 ,...,v
∗
n $$

ι∧ //
∧n(E)

Lv∗1 ,...,v
∗
n

��
K.
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We also have the alternating multilinear map

(v∗1, . . . , v
∗
n) 7→ Lv∗1 ,...,v∗n

from (E∗)n to Hom(
∧n(E), K), which extends to a linear map L from

∧n(E∗) to
Hom(

∧n(E), K) making the following diagram commute:

(E∗)n

''

ι∧∗ //
∧n(E∗)

L
��

Hom(
∧n(E), K).

However, in view of the isomorphism

Hom(U ⊗ V,W ) ∼= Hom(U,Hom(V,W )),

with U =
∧n(E∗), V =

∧n(E) and W = K, we can view L as a linear map

L :
n∧

(E∗)⊗
n∧

(E) −→ K,

which by Proposition 2.8 corresponds to a bilinear map

〈−,−〉 :
n∧

(E∗)×
n∧

(E) −→ K. (∗)

This pairing is given explicitly in terms of generators by

〈v∗1 ∧ · · · ∧ v∗n, u1 ∧ · · · ∧ un〉 = det(v∗j (ui)).

Now this pairing in nondegenerate. This can be shown using bases. Given any basis
(e1, . . . , em) of E, for every basis element e∗i1∧· · ·∧e

∗
in of

∧n(E∗) (with 1 ≤ i1 < · · · < in ≤ m),
we have

〈e∗i1 ∧ · · · ∧ e
∗
in , ej1 ∧ · · · ∧ ejn〉 =

{
1 if (j1, . . . , jn) = (i1, . . . , in)

0 otherwise.

We leave the details as an exercise to the reader. As a consequence we get the following
canonical isomorphisms.

Proposition 3.10. There is a canonical isomorphism

(
n∧

(E))∗ ∼=
n∧

(E∗).

There is also a canonical isomorphism

µ :
n∧

(E∗) ∼= Altn(E;K)

which allows us to interpret alternating tensors over E∗ as alternating multilinear maps.
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Proof. The second isomorphism follows from the canonical isomorphism (
∧n(E))∗ ∼=

∧n(E∗)
and the canonical isomorphism (

∧n(E))∗ ∼= Altn(E;K) given by Proposition 3.5.

Remarks:

1. The isomorphism µ :
∧n(E∗) ∼= Altn(E;K) discussed above can be described explicitly

as the linear extension of the map given by

µ(v∗1 ∧ · · · ∧ v∗n)(u1, . . . , un) = det(v∗j (ui)).

2. The canonical isomorphism of Proposition 3.10 holds under more general conditions.
Namely, that K is a commutative ring with identity and that E is a finitely-generated
projectiveK-module (see Definition 2.27). See Bourbaki, [15] (Chapter III, §11, Section
5, Proposition 7).

3. Variants of our isomorphism µ are found in the literature. For example, there is a
version µ′, where

µ′ =
1

n!
µ,

with the factor 1
n!

added in front of the determinant. Each version has its its own
merits and inconveniences. Morita [87] uses µ′ because it is more convenient than µ
when dealing with characteristic classes. On the other hand, µ′ may not be defined
for a field with positive characteristic, and when using µ′, some extra factor is needed
in defining the wedge operation of alternating multilinear forms (see Section 3.4) and
for exterior differentiation. The version µ is the one adopted by Warner [115], Knapp
[70], Fulton and Harris [47], and Cartan [21, 22].

If f : E → F is any linear map, by transposition we get a linear map f> : F ∗ → E∗ given
by

f>(v∗) = v∗ ◦ f, v∗ ∈ F ∗.
Consequently, we have

f>(v∗)(u) = v∗(f(u)), for all u ∈ E and all v∗ ∈ F ∗.

For any p ≥ 1, the map
(u1, . . . , up) 7→ f(u1) ∧ · · · ∧ f(up)

from Ep to
∧p F is multilinear alternating, so it induces a unique linear map

∧p f :
∧pE →∧p F making the following diagram commute

Ep

""

ι∧ //
∧pE∧p f
��∧p F,
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and defined on generators by( p∧
f
)

(u1 ∧ · · · ∧ up) = f(u1) ∧ · · · ∧ f(up).

Combining
∧p and duality, we get a linear map

∧p f> :
∧p F ∗ →

∧pE∗ defined on generators
by ( p∧

f>
)

(v∗1 ∧ · · · ∧ v∗p) = f>(v∗1) ∧ · · · ∧ f>(v∗p).

Proposition 3.11. If f : E → F is any linear map between two finite dimensional vector
spaces E and F , then

µ
(( p∧

f>
)

(ω)
)

(u1, . . . , up) = µ(ω)(f(u1), . . . , f(up)), ω ∈
p∧
F ∗, u1, . . . , up ∈ E.

Proof. It is enough to prove the formula on generators. By definition of µ, we have

µ
(( p∧

f>
)

(v∗1 ∧ · · · ∧ v∗p)
)

(u1, . . . , up) = µ(f>(v∗1) ∧ · · · ∧ f>(v∗p))(u1, . . . , up)

= det(f>(v∗j )(ui))

= det(v∗j (f(ui)))

= µ(v∗1 ∧ · · · ∧ v∗p)(f(u1), . . . , f(up)),

as claimed.

Remark: The map
∧p f> is often denoted f ∗, although this is an ambiguous notation since

p is dropped. Proposition 3.11 gives us the behavior of
∧p f> under the identification of∧pE∗ and Altp(E;K) via the isomorphism µ.

As in the case of symmetric powers, the map from En to
∧n(E) given by (u1, . . . , un) 7→

u1 ∧ · · · ∧ un yields a surjection π : E⊗n →
∧n(E). Now this map has some section, so there

is some injection β :
∧n(E)→ E⊗n with π ◦ β = id. As we saw in Proposition 3.10 there is

a canonical isomorphism

(
n∧

(E))∗ ∼=
n∧

(E∗)

for any field K, even of positive characteristic. However, if our field K has characteristic 0,
then there is a special injection having a natural definition involving an antisymmetrization
process.

Recall, from Section 2.12 that we have a left action of the symmetric group Sn on E⊗n.
The tensors z ∈ E⊗n such that

σ · z = sgn(σ) z, for all σ ∈ Sn

are called antisymmetrized tensors. We define the map η : En → E⊗n by

η(u1, . . . , un) =
1

n!

∑
σ∈Sn

sgn(σ)uσ(1) ⊗ · · · ⊗ uσ(n).
1

1It is the division by n! that requires the field to have characteristic zero.
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As the right hand side is an alternating map, we get a unique linear map
∧n η :

∧n(E) →
E⊗n making the following diagram commute.

En

η
##

ι∧ //
∧n(E)∧n η
��

E⊗n.

Clearly,
∧n η(

∧n(E)) is the set of antisymmetrized tensors in E⊗n. If we consider the map
A = (

∧n η) ◦ π : E⊗n −→ E⊗n, it is easy to check that A ◦ A = A. Therefore, A is a
projection, and by linear algebra, we know that

E⊗n = A(E⊗n)⊕KerA =
n∧
η(

n∧
(E))⊕KerA.

It turns out that KerA = E⊗n ∩ Ia = Ker π, where Ia is the two-sided ideal of T (E)
generated by all tensors of the form u ⊗ u ∈ E⊗2 (for example, see Knapp [70], Appendix
A). Therefore,

∧n η is injective,

E⊗n =
n∧
η(

n∧
(E))⊕ (E⊗n ∩ Ia) =

n∧
η(

n∧
(E))⊕Ker π,

and the exterior tensor power
∧n(E) is naturally embedded into E⊗n.

3.4 Exterior Algebras

As in the case of symmetric tensors, we can pack together all the exterior powers
∧n(V ) into

an algebra.

Definition 3.5. Given any vector space V , the vector space∧
(V ) =

⊕
m≥0

m∧
(V )

is called the exterior algebra (or Grassmann algebra) of V .

To make
∧

(V ) into an algebra, we mimic the procedure used for symmetric powers. If
Ia is the two-sided ideal generated by all tensors of the form u⊗ u ∈ V ⊗2, we set

•∧
(V ) = T (V )/Ia.

Then
∧•(V ) automatically inherits a multiplication operation, called wedge product , and

since T (V ) is graded, that is

T (V ) =
⊕
m≥0

V ⊗m,
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we have
•∧

(V ) =
⊕
m≥0

V ⊗m/(Ia ∩ V ⊗m).

However, it is easy to check that

m∧
(V ) ∼= V ⊗m/(Ia ∩ V ⊗m),

so
•∧

(V ) ∼=
∧

(V ).

When V has finite dimension d, we actually have a finite direct sum (coproduct)

∧
(V ) =

d⊕
m=0

m∧
(V ),

and since each
∧m(V ) has dimension

(
d
m

)
, we deduce that

dim(
∧

(V )) = 2d = 2dim(V ).

The multiplication, ∧ :
∧m(V )×

∧n(V )→
∧m+n(V ), is skew-symmetric in the following

precise sense:

Proposition 3.12. For all α ∈
∧m(V ) and all β ∈

∧n(V ), we have

β ∧ α = (−1)mnα ∧ β.

Proof. Since v ∧ u = −u ∧ v for all u, v ∈ V , Proposition 3.12 follows by induction.

Since α ∧ α = 0 for every simple (also called decomposable) tensor α = u1 ∧ · · · ∧ un, it
seems natural to infer that α ∧ α = 0 for every tensor α ∈

∧
(V ). If we consider the case

where dim(V ) ≤ 3, we can indeed prove the above assertion. However, if dim(V ) ≥ 4, the
above fact is generally false! For example, when dim(V ) = 4, if (u1, u2, u3, u4) is a basis for
V , for α = u1 ∧ u2 + u3 ∧ u4, we check that

α ∧ α = 2u1 ∧ u2 ∧ u3 ∧ u4,

which is nonzero. However, if α ∈
∧mE with m odd, since m2 is also odd, we have

α ∧ α = (−1)m
2

α ∧ α = −α ∧ α,

so indeed α ∧ α = 0 (if K is not a field of characteristic 2).
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The above discussion suggests that it might be useful to know when an alternating tensor
is simple (decomposable). We will show in Section 3.6 that for tensors α ∈

∧2(V ), α∧α = 0
iff α is simple.

A general criterion for decomposability can be given in terms of some operations known
as left hook and right hook (also called interior products); see Section 3.6.

It is easy to see that
∧

(V ) satisfies the following universal mapping property.

Proposition 3.13. Given any K-algebra A, for any linear map f : V → A, if (f(v))2 = 0
for all v ∈ V , then there is a unique K-algebra homomorphism f :

∧
(V )→ A so that

f = f ◦ i,

as in the diagram below.

V i //

f ""

∧
(V )

f
��
A

When E is finite dimensional, recall the isomorphism µ :
∧n(E∗) −→ Altn(E;K), defined

as the linear extension of the map given by

µ(v∗1 ∧ · · · ∧ v∗n)(u1, . . . , un) = det(v∗j (ui)).

Now, we have also a multiplication operation
∧m(E∗) ×

∧n(E∗) −→
∧m+n(E∗). The fol-

lowing question then arises:

Can we define a multiplication Altm(E;K) × Altn(E;K) −→ Altm+n(E;K) directly on
alternating multilinear forms, so that the following diagram commutes?∧m(E∗)×

∧n(E∗)

µm×µn
��

∧ //
∧m+n(E∗)

µm+n

��
Altm(E;K)× Altn(E;K) ∧ // Altm+n(E;K)

As in the symmetric case, the answer is yes ! The solution is to define this multiplication
such that, for f ∈ Altm(E;K) and g ∈ Altn(E;K),

(f ∧ g)(u1, . . . , um+n) =
∑

σ∈shuffle(m,n)

sgn(σ) f(uσ(1), . . . , uσ(m))g(uσ(m+1), . . . , uσ(m+n)), (∗∗)

where shuffle(m,n) consists of all (m,n)-“shuffles;” that is, permutations σ of {1, . . .m+n}
such that σ(1) < · · · < σ(m) and σ(m+1) < · · · < σ(m+n). For example, when m = n = 1,
we have

(f ∧ g)(u, v) = f(u)g(v)− g(u)f(v).
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When m = 1 and n ≥ 2, check that

(f ∧ g)(u1, . . . , um+1) =
m+1∑
i=1

(−1)i−1f(ui)g(u1, . . . , ûi, . . . , um+1),

where the hat over the argument ui means that it should be omitted.

Here is another explicit example. Suppose m = 2 and n = 1. Given v∗1, v
∗
2, v
∗
3 ∈ E∗,

the multiplication structure on
∧

(E∗) implies that (v∗1 ∧ v∗2) · v∗3 = v∗1 ∧ v∗2 ∧ v∗3 ∈
∧3(E∗).

Furthermore, for u1, u2, u3,∈ E,

µ3(v∗1 ∧ v∗2 ∧ v∗3)(u1, u2, u3) =
∑
σ∈S3

sgn(σ)v∗σ(1)(u1)v∗σ(2)(u2)v∗σ(3)(u3)

= v∗1(u1)v∗2(u2)v∗3(u3)− v∗1(u1)v∗3(u2)v∗2(u3)

− v∗2(u1)v∗1(u2)v∗3(u3) + v∗2(u1)v∗3(u2)v∗1(u3)

+ v∗3(u1)v∗1(u2)v∗2(u3)− v∗3(u1)v∗2(u2)v∗1(u3).

Now the (2, 1)- shuffles of {1, 2, 3} are the following three permutations, namely(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 3 1

)
.

If f ∼= µ2(v∗1 ∧ v∗2) and g ∼= µ1(v∗3), then (∗∗) implies that

(f · g)(u1, u2, u3) =
∑

σ∈shuffle(2,1)

sgn(σ)f(uσ(1), uσ(2))g(uσ(3))

= f(u1, u2)g(u3)− f(u1, u3)g(u2) + f(u2, u3)g(u1)

= µ2(v∗1 ∧ v∗2)(u1, u2)µ1(v∗3)(u3)− µ2(v∗1 ∧ v∗2)(u1, u3)µ1(v∗3)(u2)

+ µ2(v∗1 ∧ v∗2)(u2, u3)µ1(v∗3)(u1)

= (v∗1(u1)v∗2(u2)− v∗2(u1)v∗1(u2))v∗3(u3)

− (v∗1(u1)v∗2(u3)− v∗2(u1)v∗1(u3))v∗3(u2)

+ (v∗1(u2)v∗2(u3)− v∗2(u2)v∗1(u3))v∗3(u1)

= µ3(v∗1 ∧ v∗2 ∧ v∗3)(u1, u2, u3).

As a result of all this, the direct sum

Alt(E) =
⊕
n≥0

Altn(E;K)

is an algebra under the above multiplication, and this algebra is isomorphic to
∧

(E∗). For
the record we state
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Proposition 3.14. When E is finite dimensional, the maps µ :
∧n(E∗) −→ Altn(E;K)

induced by the linear extensions of the maps given by

µ(v∗1 ∧ · · · ∧ v∗n)(u1, . . . , un) = det(v∗j (ui))

yield a canonical isomorphism of algebras µ :
∧

(E∗) −→ Alt(E), where the multiplication in
Alt(E) is defined by the maps ∧ : Altm(E;K)× Altn(E;K) −→ Altm+n(E;K), with

(f ∧ g)(u1, . . . , um+n) =
∑

σ∈shuffle(m,n)

sgn(σ) f(uσ(1), . . . , uσ(m))g(uσ(m+1), . . . , uσ(m+n)),

where shuffle(m,n) consists of all (m,n)-“shuffles,” that is, permutations σ of {1, . . .m+n}
such that σ(1) < · · · < σ(m) and σ(m+ 1) < · · · < σ(m+ n).

Remark: The algebra
∧

(E) is a graded algebra. Given two graded algebras E and F , we
can make a new tensor product E ⊗̂ F , where E ⊗̂ F is equal to E ⊗ F as a vector space,
but with a skew-commutative multiplication given by

(a⊗ b) ∧ (c⊗ d) = (−1)deg(b)deg(c)(ac)⊗ (bd),

where a ∈ Em, b ∈ F p, c ∈ En, d ∈ F q. Then, it can be shown that∧
(E ⊕ F ) ∼=

∧
(E) ⊗̂

∧
(F ).

3.5 The Hodge ∗-Operator

In order to define a generalization of the Laplacian that applies to differential forms on a
Riemannian manifold, we need to define isomorphisms

k∧
V −→

n−k∧
V,

for any Euclidean vector space V of dimension n and any k, with 0 ≤ k ≤ n. If 〈−,−〉
denotes the inner product on V , we define an inner product on

∧k V , denoted 〈−,−〉∧, by
setting

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉∧ = det(〈ui, vj〉),

for all ui, vi ∈ V , and extending 〈−,−〉∧ by bilinearity.

It is easy to show that if (e1, . . . , en) is an orthonormal basis of V , then the basis of
∧k V

consisting of the eI (where I = {i1, . . . , ik}, with 1 ≤ i1 < · · · < ik ≤ n) is an orthonormal
basis of

∧k V . Since the inner product on V induces an inner product on V ∗ (recall that
〈ω1, ω2〉 = 〈ω]1, ω

]
2〉, for all ω1, ω2 ∈ V ∗), we also get an inner product on

∧k V ∗.
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Definition 3.6. An orientation of a vector space V of dimension n is given by the choice
of some basis (e1, . . . , en). We say that a basis (u1, . . . , un) of V is positively oriented iff
det(u1, . . . , un) > 0 (where det(u1, . . . , un) denotes the determinant of the matrix whose jth
column consists of the coordinates of uj over the basis (e1, . . . , en)), otherwise it is negatively
oriented . An oriented vector space is a vector space V together with an orientation of V .

If V is oriented by the basis (e1, . . . , en), then V ∗ is oriented by the dual basis (e∗1, . . . , e
∗
n).

If σ is any permutation of {1, . . . , n}, then the basis (eσ(1), . . . , eσ(n)) has positive orientation
iff the signature sgn(σ) of the permutation σ is even.

If V is an oriented vector space of dimension n, then we can define a linear isomorphism

∗ :
k∧
V →

n−k∧
V,

called the Hodge ∗-operator . The existence of this operator is guaranteed by the following
proposition.

Proposition 3.15. Let V be any oriented Euclidean vector space whose orientation is given
by some chosen orthonormal basis (e1, . . . , en). For any alternating tensor α ∈

∧k V , there
is a unique alternating tensor ∗α ∈

∧n−k V such that

α ∧ β = 〈∗α, β〉∧ e1 ∧ · · · ∧ en

for all β ∈
∧n−k V . The alternating tensor ∗α is independent of the choice of the positive

orthonormal basis (e1, . . . , en).

Proof. Since
∧n V has dimension 1, the alternating tensor e1 ∧ · · · ∧ en is a basis of

∧n V .
It follows that for any fixed α ∈

∧k V , the linear map λα from
∧n−k V to

∧n V given by

λα(β) = α ∧ β

is of the form
λα(β) = fα(β) e1 ∧ · · · ∧ en

for some linear form fα ∈
(∧n−k V

)∗
. But then, by the duality induced by the inner product

〈−,−〉 on
∧n−k V , there is a unique vector ∗α ∈

∧n−k V such that

fλ(β) = 〈∗α, β〉∧ for all β ∈
∧n−k V ,

which implies that

α ∧ β = λα(β) = fα(β) e1 ∧ · · · ∧ en = 〈∗α, β〉∧ e1 ∧ · · · ∧ en,

as claimed. If (e′1, . . . , e
′
n) is any other positively oriented orthonormal basis, by Proposition

3.2, e′1∧· · ·∧e′n = det(P ) e1∧· · ·∧en = e1∧· · ·∧en, since det(P ) = 1 where P is the change
of basis from (e1, . . . , en) to (e′1, . . . , e

′
n) and both bases are positively oriented.
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Definition 3.7. The operator ∗ from
∧k V to

∧n−k V defined by Proposition 3.15 is called
the Hodge ∗-operator .

Obseve that the Hodge ∗-operator is linear.

The Hodge ∗-operator is defined in terms of the orthonormal basis elements of
∧
V as

follows: For any increasing sequence (i1, . . . , ik) of elements ip ∈ {1, . . . , n}, if (j1, . . . , jn−k)
is the increasing sequence of elements jq ∈ {1, . . . , n} such that

{i1, . . . , ik} ∪ {j1, . . . , jn−k} = {1, . . . , n},

then
∗(ei1 ∧ · · · ∧ eik) = sign(i1, . . . ik, j1, . . . , jn−k) ej1 ∧ · · · ∧ ejn−k .

In particular, for k = 0 and k = n, we have

∗(1) = e1 ∧ · · · ∧ en
∗(e1 ∧ · · · ∧ en) = 1.

For example, if n = 3, we have

∗e1 = e2 ∧ e3

∗e2 = −e1 ∧ e3

∗e3 = e1 ∧ e2

∗(e1 ∧ e2) = e3

∗(e1 ∧ e3) = −e2

∗(e2 ∧ e3) = e1.

The Hodge ∗-operators ∗ :
∧k V →

∧n−k V induce a linear map ∗ :
∧

(V )→
∧

(V ). We
also have Hodge ∗-operators ∗ :

∧k V ∗ →
∧n−k V ∗.

The following proposition shows that the linear map ∗ :
∧

(V )→
∧

(V ) is an isomorphism.

Proposition 3.16. If V is any oriented vector space of dimension n, for every k with
0 ≤ k ≤ n, we have

(i) ∗∗ = (−id)k(n−k).

(ii) 〈x, y〉∧ = ∗(x ∧ ∗y) = ∗(y ∧ ∗x), for all x, y ∈
∧k V .

Proof. (1) Let (ei)
n
i=1 is an orthonormal basis of V . It is enough to check the identity on

basis elements. We have

∗(ei1 ∧ · · · ∧ eik) = sign(i1, . . . ik, j1, . . . , jn−k) ej1 ∧ · · · ∧ ejn−k
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and

∗∗(ei1 ∧ · · · ∧ eik) = sign(i1, . . . ik, j1, . . . , jn−k) ∗(ej1 ∧ · · · ∧ ejn−k)
= sign(i1, . . . ik, j1, . . . , jn−k) sign(j1, . . . , jn−k, i1, . . . ik) ei1 ∧ · · · ∧ eik .

It is easy to see that

sign(i1, . . . ik, j1, . . . , jn−k) sign(j1, . . . , jn−k, i1, . . . ik) = (−1)k(n−k),

which yields
∗∗(ei1 ∧ · · · ∧ eik) = (−1)k(n−k) ei1 ∧ · · · ∧ eik ,

as claimed.

(ii) These identities are easily checked on basis elements; see Jost [66], Chapter 2, Lemma
2.1.1. In particular let

x = ei1 ∧ · · · ∧ eik , y = eij ∧ · · · ∧ eij , x, y ∈
k∧
V,

where (ei)
n
i=1 is an orthonormal basis of V . If x 6= y, 〈x, y〉∧ = 0 since there is some eip of

x not equal to any ejq of y by the orthonormality of the basis, this means the pth row of
(〈eil , ejs〉) consists entirely of zeroes. Also x 6= y implies that y ∧ ∗x = 0 since

∗x = sign(i1, . . . ik, l1, . . . , ln−k)el1 ∧ · · · ∧ eln−k ,

where els is the same as some ep in y. A similar argument shows that if x 6= y, x ∧ ∗y = 0.
So now assume x = y. Then

∗(ei1 ∧ · · · ∧ eik ∧ ∗(ei1 ∧ · · · ∧ eik)) = ∗(e1 ∧ e2 · · · ∧ en)

= 1 = 〈x, x〉∧.

In Section 9.2 we will need to express ∗(1) in terms of any basis (not necessarily orthonor-
mal) of V .

Proposition 3.17. If V is any finite dimensional oriented vector space, for any basis (v!, . . .,
vn) of V , we have

∗(1) =
1√

det(〈vi, vj〉)
v1 ∧ · · · ∧ vn.

Proof. If (e1, . . . , en) is an orthonormal basis of V and (v1, . . . , vn) is any other basis of V ,
then

〈v1 ∧ · · · ∧ vn, v1 ∧ · · · ∧ vn〉∧ = det(〈vi, vj〉),

and since
v1 ∧ · · · ∧ vn = det(A) e1 ∧ · · · ∧ en
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where A is the matrix expressing the vj in terms of the ei, we have

〈v1 ∧ · · · ∧ vn, v1 ∧ · · · ∧ vn〉∧ = det(A)2〈e1 ∧ · · · ∧ en, e1 ∧ · · · ∧ en〉 = det(A)2.

As a consequence, det(A) =
√

det(〈vi, vj〉), and

v1 ∧ · · · ∧ vn =
√

det(〈vi, vj〉) e1 ∧ · · · ∧ en,

from which it follows that

∗(1) =
1√

det(〈vi, vj〉)
v1 ∧ · · · ∧ vn

(see Jost [66], Chapter 2, Lemma 2.1.3).

3.6 Left and Right Hooks ~

The motivation for defining left hooks and right hook comes from the problem of under-
standing when a tensor α ∈

∧k(E) is decomposable. An arbitrary tensor α ∈
∧k(E) is a

linear combination of tensors of the form u1 ∧ · · · ∧ uk, called decomposable. The issue is to
find criteria for decomposability. Criteria for testing decomposability using left hooks are
given in Section 3.7.

In this section all vector spaces are assumed to have finite dimension. Say dim(E) = n.
Using our nonsingular pairing

〈−,−〉 :
p∧
E∗ ×

p∧
E −→ K (1 ≤ p ≤ n)

defined on generators by

〈u∗1 ∧ · · · ∧ u∗p, v1 ∧ · · · ∧ up〉 = det(u∗i (vj)),

we define various contraction operations (partial evaluation operators)

y :

p∧
E ×

p+q∧
E∗ −→

q∧
E∗ (left hook)

and

x :

p+q∧
E∗ ×

p∧
E −→

q∧
E∗ (right hook),

as well as the versions obtained by replacing E by E∗ and E∗∗ by E. We begin with the left
interior product or left hook, y.

Let u ∈
∧pE. For any q such that p+ q ≤ n, multiplication on the right by u is a linear

map

∧R(u) :

q∧
E −→

p+q∧
E
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given by
v 7→ v ∧ u

where v ∈
∧q E. The transpose of ∧R(u) yields a linear map

(∧R(u))> :

(p+q∧
E

)∗
−→

( q∧
E

)∗
,

which, using the isomorphisms
(∧p+q E

)∗ ∼= ∧p+q E∗ and
(∧q E

)∗ ∼= ∧q E∗, can be viewed
as a map

(∧R(u))> :

p+q∧
E∗ −→

q∧
E∗

given by
z∗ 7→ z∗ ◦ ∧R(u),

where z∗ ∈
∧p+q E∗. We denote z∗ ◦ ∧R(u) by u y z∗. In terms of our pairing, the adjoint

u y of ∧R(u) defined by
〈u y z∗, v〉 = 〈z∗,∧R(u)(v)〉;

this in turn leads to the following definition.

Definition 3.8. Let u ∈
∧pE and z∗ ∈

∧p+q E∗. We define u y z∗ ∈
∧q E∗ to be q-vector

uniquely determined by

〈u y z∗, v〉 = 〈z∗, v ∧ u〉, for all v ∈
∧q E.

Remark: Note that to be precise the operator

y :

p∧
E ×

p+q∧
E∗ −→

q∧
E∗

depends of p, q, so we really defined a family of operators y p,q. This family of operators y p,q
induces a map

y :
∧

E ×
∧

E∗ −→
∧

E∗,

with

y p,q :

p∧
E ×

p+q∧
E∗ −→

q∧
E∗

as defined before. The common practice is to omit the subscripts of y .

It is immediately verified that

(u ∧ v) y z∗ = u y (v y z∗),

for all u ∈
∧k E, v ∈

∧p−k E, z∗ ∈
∧p+q E∗ since

〈(u ∧ v) y z∗, w〉 = 〈z∗, w ∧ u ∧ v〉 = 〈v y z∗, w ∧ u〉 = 〈u y (v y z∗), w〉,
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whenever w ∈
∧q E. This means that

y :
∧

E ×
∧

E∗ −→
∧

E∗

is a left action of the (noncommutative) ring
∧
E with multiplication ∧ on

∧
E∗, which

makes
∧
E∗ into a left

∧
E-module.

By interchanging E and E∗ and using the isomorphism( k∧
F

)∗
∼=

k∧
F ∗,

we can also define some maps

y :

p∧
E∗ ×

p+q∧
E −→

q∧
E,

and make the following definition.

Definition 3.9. Let u∗ ∈
∧pE∗, and z ∈

∧p+q E. We define u∗ y z ∈
∧q as the q-vector

uniquely defined by

〈v∗ ∧ u∗, z〉 = 〈v∗, u∗ y z〉, for all v∗ ∈
∧q E∗.

As for the previous version, we have a family of operators y p,q which define an operator

y :
∧

E∗ ×
∧

E −→
∧

E.

We easily verify that

(u∗ ∧ v∗) y z = u∗ y (v∗ y z),

whenever u∗ ∈
∧k E∗, v∗ ∈

∧p−k E∗, and z ∈
∧p+q E; so this version of y is a left action of

the ring
∧
E∗ on

∧
E which makes

∧
E into a left

∧
E∗-module.

In order to proceed any further we need some combinatorial properties of the basis of∧pE constructed from a basis (e1, . . . , en) of E. Recall that for any (nonempty) subset
I ⊆ {1, . . . , n}, we let

eI = ei1 ∧ · · · ∧ eip ,

where I = {i1, . . . , ip} with i1 < · · · < ip. We also let e∅ = 1.

Given any two nonempty subsets H,L ⊆ {1, . . . , n} both listed in increasing order, say
H = {h1 < . . . < hp} and L = {`1 < . . . < `q}, if H and L are disjoint, let H ∪ L be union
of H and L considered as the ordered sequence

(h1, . . . , hp, `1, . . . , `q).
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Then let

ρH,L =

{
0 if H ∩ L 6= ∅,
(−1)ν if H ∩ L = ∅,

where
ν = |{(h, l) | (h, l) ∈ H × L, h > l}|.

Observe that when H∩L = ∅, |H| = p and |L| = q, the number ν is the number of inversions
of the sequence

(h1, · · · , hp, `1, · · · , `q),
where an inversion is a pair (hi, `j) such that hi > `j.

� Unless p+ q = n, the function whose graph is given by(
1 · · · p p+ 1 · · · p+ q
h1 · · · hp `1 · · · `q

)
is not a permutation of {1, . . . , n}. We can view ν as a slight generalization of the notion
of the number of inversions of a permutation.

Proposition 3.18. For any basis (e1, . . . , en) of E the following properties hold:

(1) If H ∩ L = ∅, |H| = p, and |L| = q, then

ρH,LρL,H = (−1)ν(−1)pq−ν = (−1)pq.

(2) For H,L ⊆ {1, . . . ,m} listed in increasing order, we have

eH ∧ eL = ρH,LeH∪L.

Similarly,
e∗H ∧ e∗L = ρH,Le

∗
H∪L.

(3) For the left hook

y :

p∧
E ×

p+q∧
E∗ −→

q∧
E∗,

we have

eH y e
∗
L = 0 if H 6⊆ L

eH y e
∗
L = ρL−H,He

∗
L−H if H ⊆ L.

(4) For the left hook

y :

p∧
E∗ ×

p+q∧
E −→

q∧
E,

we have

e∗H y eL = 0 if H 6⊆ L

e∗H y eL = ρL−H,HeL−H if H ⊆ L.
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Proof. These are proved in Bourbaki [15] (Chapter III, §11, Section 11), but the proofs of
(3) and (4) are very concise. We elaborate on the proofs of (2) and (4), the proof of (3)
being similar.

In (2) if H∩L 6= ∅, then eH∧eL contains some vector twice and so eH∧eL = 0. Otherwise,
eH ∧ eL consists of

eh1 ∧ · · · ∧ ehp ∧ e`1 ∧ · · · ∧ e`q ,

and to order the sequence of indices in increasing order we need to transpose any two indices
(hi, `j) corresponding to an inversion, which yields ρH,LeH∪L.

Let us now consider (4). We have |L| = p + q and |H| = p, and the q-vector e∗H y eL is
characterized by

〈v∗, e∗H y eL〉 = 〈v∗ ∧ e∗H , eL〉

for all v∗ ∈
∧q E∗. There are two cases.

Case 1: H 6⊆ L. If so, no matter what v∗ ∈
∧q E∗ is, since H contains some index h

not in L, the hth row (e∗h(e`1), . . . , e∗h(e`p+q)) of the determinant 〈v∗ ∧ e∗H , eL〉 must be zero,
so 〈v∗ ∧ e∗H , eL〉 = 0 for all v∗ ∈

∧q E∗, and since the pairing is nongenerate, we must have
e∗H y eL = 0.

Case 2: H ⊆ L. In this case, for v∗ = e∗L−H , by (2) we have

〈e∗L−H , e∗H y eL〉 = 〈e∗L−H ∧ e∗H , eL〉 = 〈ρL−H,He∗L, eL〉 = ρL−H,H ,

which yields
〈e∗L−H , e∗H y eL〉 = ρL−H,H .

The q-vector e∗H y eL can be written as a linear combination e∗H y eL =
∑

J λJeJ with |J | = q
so

〈e∗L−H , e∗H y eL〉 =
∑
J

λJ〈e∗L−H , eJ〉.

By definition of the pairing, 〈e∗L−H , eJ〉 = 0 unless J = L−H, which means that

〈e∗L−H , e∗H y eL〉 = λL−H〈e∗L−H , eL−H〉 = λL−H ,

so λL−H = ρL−H,H , as claimed.

Using Proposition 3.18, we have the

Proposition 3.19. For the left hook

y : E ×
q+1∧

E∗ −→
q∧
E∗,

for every u ∈ E, x∗ ∈
∧q+1−sE∗, and y∗ ∈

∧sE∗, we have

u y (x∗ ∧ y∗) = (−1)s(u y x∗) ∧ y∗ + x∗ ∧ (u y y∗).
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Proof. We can prove the above identity assuming that x∗ and y∗ are of the form e∗I and e∗J
using Proposition 3.18 and leave the details as an exercise for the reader.

Thus, y : E×
∧q+1 E∗ −→

∧q E∗ is almost an anti-derivation, except that the sign (−1)s

is applied to the wrong factor.

We have a similar identity for the other version of the left hook

y : E∗ ×
q+1∧

E −→
q∧
E,

namely
u∗ y (x ∧ y) = (−1)s(u∗ y x) ∧ y + x ∧ (u∗ y y)

for every u∗ ∈ E∗, x ∈
∧q+1−sE, and y ∈

∧sE.

An application of this formula when q = 3 and s = 2 yields an interesting equation. In
this case, u∗ ∈ E∗ and x, y ∈

∧2E, so we get

u∗ y (x ∧ y) = (u∗ y x) ∧ y + x ∧ (u∗ y y).

In particular, for x = y, since x ∈
∧2E and u∗ y x ∈ E, Proposition 3.12 implies that

(u∗ y x) ∧ x = x ∧ (u∗ y x), and we obtain

u∗ y (x ∧ x) = 2((u∗ y x) ∧ x). (†)

As a consequence, (u∗ y x) ∧ x = 0 iff u∗ y (x ∧ x) = 0. We will use this identity together
with Proposition 3.25 to prove that a 2-vector x ∈

∧2E is decomposable iff x ∧ x = 0.

It is also possible to define a right interior product or right hook x, using multiplication
on the left rather than multiplication on the right. Then we use the maps

x :

p+q∧
E∗ ×

p∧
E −→

q∧
E∗

to make the following definition.

Definition 3.10. Let u ∈
∧pE and z∗ ∈

∧p+q E∗. We define z∗ x u ∈
∧q E∗ to be the

q-vector uniquely defined as

〈z∗ x u, v〉 = 〈z∗, u ∧ v〉, for all v ∈
∧q E.

This time we can prove that

z∗ x (u ∧ v) = (z∗ x u) x v,

so the family of operators x p,q defines a right action

x :
∧

E∗ ×
∧

E −→
∧

E∗
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of the ring
∧
E on

∧
E∗ which makes

∧
E∗ into a right

∧
E-module.

Similarly, we have maps

x :

p+q∧
E ×

p∧
E∗ −→

q∧
E

which in turn leads to the following dual formation of the right hook.

Definition 3.11. Let u∗ ∈
∧pE∗ and z ∈

∧p+q E. We define z x u∗ ∈
∧q to be the q-vector

uniquely defined by

〈u∗ ∧ v∗, z〉 = 〈v∗, z x u∗〉, for all v∗ ∈
∧q E∗.

We can prove that
z x (u∗ ∧ v∗) = (z x u∗) x v∗,

so the family of operators x p,q defines a right action

x :
∧

E ×
∧

E∗ −→
∧

E

of the ring
∧
E∗ on

∧
E which makes

∧
E into a right

∧
E∗-module.

Since the left hook y :
∧pE ×

∧p+q E∗ −→
∧q E∗ is defined by

〈u y z∗, v〉 = 〈z∗, v ∧ u〉, for all u ∈
∧pE, v ∈

∧q E and z∗ ∈
∧p+q E∗,

the right hook

x :

p+q∧
E∗ ×

p∧
E −→

q∧
E∗

by
〈z∗ x u, v〉 = 〈z∗, u ∧ v〉, for all u ∈

∧pE, v ∈
∧q E, and z∗ ∈

∧p+q E∗,

and v ∧ u = (−1)pqu ∧ v, we conclude that

z∗ x u = (−1)pq u y z∗.

Similarly, since

〈v∗ ∧ u∗, z〉 = 〈v∗, u∗ y z〉, for all u∗ ∈
∧pE∗, v∗ ∈

∧q E∗ and z ∈
∧p+q E

〈u∗ ∧ v∗, z〉 = 〈v∗, z x u∗〉, for all u∗ ∈
∧pE∗, v∗ ∈

∧q E∗, and z ∈
∧p+q E,

and v∗ ∧ u∗ = (−1)pqu∗ ∧ v∗, we have

z x u∗ = (−1)pq u∗ y z.

We summarize the above facts in the following proposition.
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Proposition 3.20. The following identities hold:

z∗ x u = (−1)pq u y z∗ for all u ∈
∧pE and all z∗ ∈

∧p+q E∗

z x u∗ = (−1)pq u∗ y z for all u∗ ∈
∧pE∗ and all z ∈

∧p+q E.

Therefore the left and right hooks are not independent, and in fact each one determines
the other. As a consequence, we can restrict our attention to only one of the hooks, for
example the left hook, but there are a few situations where it is nice to use both, for example
in Proposition 3.23.

A version of Proposition 3.18 holds for right hooks, but beware that the indices in ρL−H,H
are permuted. This permutation has to do with the fact that the left hook and the right
hook are related via a sign factor.

Proposition 3.21. For any basis (e1, . . . , en) of E the following properties hold:

(1) For the right hook

x :

p+q∧
E ×

p∧
E∗ −→

q∧
E

we have

eL x e
∗
H = 0 if H 6⊆ L

eL x e
∗
H = ρH,L−HeL−H if H ⊆ L.

(2) For the right hook

x :

p+q∧
E∗ ×

p∧
E −→

q∧
E∗

we have

e∗L x eH = 0 if H 6⊆ L

e∗L x eH = ρH,L−He
∗
L−H if H ⊆ L.

Remark: Our definition of left hooks as left actions y :
∧pE ×

∧p+q E∗ −→
∧q E∗ and

y :
∧pE∗×

∧p+q E −→
∧q E and right hooks as right actions x :

∧p+q E∗×
∧pE −→

∧q E∗

and x :
∧p+q E×

∧pE∗ −→
∧q E is identical to the definition found in Fulton and Harris [47]

(Appendix B). However, the reader should be aware that this is not a universally accepted
notation. In fact, the left hook u∗ y z defined in Bourbaki [15] is our right hook z x u∗, up
to the sign (−1)p(p−1)/2. This has to do with the fact that Bourbaki uses a different pairing
which also involves an extra sign, namely

〈v∗, u∗ y z〉 = (−1)p(p−1)/2〈u∗ ∧ v∗, z〉.
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One of the side-effects of this choice is that Bourbaki’s version of Formula (4) of Proposition
3.18 (Bourbaki [15], Chapter III, page 168) is

e∗H y eL = 0 if H 6⊆ L

e∗H y eL = (−1)p(p−1)/2ρH,L−HeL−H if H ⊆ L,

where |H| = p and |L| = p + q. This correspond to Formula (1) of Proposition 3.21 up to
the sign factor (−1)p(p−1)/2, which we find horribly confusing. Curiously, an older edition
of Bourbaki (1958) uses the same pairing as Fulton and Harris [47]. The reason (and the
advantage) for this change of sign convention is not clear to us.

We also have the following version of Proposition 3.19 for the right hook.

Proposition 3.22. For the right hook

x :

q+1∧
E∗ × E −→

q∧
E∗,

for every u ∈ E, x∗ ∈
∧r E∗, and y∗ ∈

∧q+1−r E∗, we have

(x∗ ∧ y∗) x u = (x∗ x u) ∧ y∗ + (−1)rx∗ ∧ (y∗ x u).

Proof. A proof involving determinants can be found in Warner [115], Chapter 2.

Thus, x :
∧q+1E∗ × E −→

∧q E∗ is an anti-derivation. A similar formula holds for the
the right hook x :

∧q+1 E × E∗ −→
∧q E, namely

(x ∧ y) x u∗ = (x x u∗) ∧ y + (−1)rx ∧ (y x u∗),

for every u∗ ∈ E, ∈
∧r E, and y ∈

∧q+1−r E. This formula is used by Shafarevitch [105] to
define a hook, but beware that Shafarevitch use the left hook notation u∗ y x rather than
the right hook notation. Shafarevitch uses the terminology convolution, which seems very
unfortunate.

For u ∈ E, the right hook z∗ x u is also denoted i(u)z∗, and called insertion operator or
interior product . This operator plays an important role in differential geometry.

Definition 3.12. Let u ∈ E and z∗ ∈
∧n+1(E∗). If we view z∗ as an alternating multilinear

map in Altn+1(E;K), then we define i(u)z∗ ∈ Altn(E;K) as given by

(i(u)z∗)(v1, . . . , vn) = z∗(u, v1, . . . , vn).

Using the left hook y and the right hook x we can define two linear maps γ :
∧pE →∧n−pE∗ and δ :

∧pE∗ →
∧n−pE as follows:
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Definition 3.13. For any basis (e1, . . . , en) of E, if we let M = {1, . . . , n}, e = e1 ∧ · · · ∧ en,
and e∗ = e∗1 ∧ · · · ∧ e∗n, define γ :

∧pE →
∧n−pE∗ and δ :

∧pE∗ →
∧n−pE as

γ(u) = u y e∗ and δ(v∗) = e x v∗,

for all u ∈
∧pE and all v∗ ∈

∧pE∗.

Proposition 3.23. The linear maps γ :
∧pE →

∧n−pE∗ and δ :
∧pE∗ →

∧n−pE are
isomorphims, and γ−1 = δ. The isomorphisms γ and δ map decomposable vectors to de-
composable vectors. Furthermore, if z ∈

∧pE is decomposable, say z = u1 ∧ · · · ∧ up for
some ui ∈ E, then γ(z) = v∗1 ∧ · · · ∧ v∗n−p for some v∗j ∈ E∗, and v∗j (ui) = 0 for all i, j. A
similar property holds for v∗ ∈

∧pE∗ and δ(v∗). If (e′1, . . . , e
′
n) is any other basis of E and

γ′ :
∧pE →

∧n−pE∗ and δ′ :
∧pE∗ →

∧n−pE are the corresponding isomorphisms, then
γ′ = λγ and δ′ = λ−1δ for some nonzero λ ∈ K.

Proof. Using Propositions 3.18 and 3.21, for any subset J ⊆ {1, . . . , n} = M such that
|J | = p, we have

γ(eJ) = eJ y e
∗ = ρM−J,Je

∗
M−J and δ(e∗M−J) = e x e∗M−J = ρM−J,JeJ .

Thus,
δ ◦ γ(eJ) = ρM−J,JρM−J,JeJ = eJ ,

since ρM−J,J = ±1. A similar result holds for γ ◦ δ. This implies that

δ ◦ γ = id and γ ◦ δ = id.

Thus, γ and δ are inverse isomorphisms.

If z ∈
∧pE is decomposable, then z = u1 ∧ · · · ∧ up where u1, . . . , up are linearly inde-

pendent since z 6= 0, and we can pick a basis of E of the form (u1, . . . , un). Then the above
formulae show that

γ(z) = ±u∗p+1 ∧ · · · ∧ u∗n.

Since (u∗1, . . . , u
∗
n) is the dual basis of (u1, . . . , un), we have u∗i (uj) = δij, If (e′1, . . . , e

′
n) is any

other basis of E, because
∧nE has dimension 1, we have

e′1 ∧ · · · ∧ e′n = λe1 ∧ · · · ∧ en

for some nonzero λ ∈ K, and the rest is trivial.

Applying Proposition 3.23 to the case where p = n − 1, the isomorphism γ :
∧n−1E →∧1E∗ maps indecomposable vectors in

∧n−1E to indecomposable vectors in
∧1E∗ = E∗.

But every vector in E∗ is decomposable, so every vector in
∧n−1E is decomposable.

Corollary 3.24. If E is a finite dimensional vector space, then every vector in
∧n−1E is

decomposable.
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3.7 Testing Decomposability ~

We are now ready to tackle the problem of finding criteria for decomposability. Such criteria
will use the left hook. Once again, in this section all vector spaces are assumed to have finite
dimension. But before stating our criteria, we need a few preliminary results.

Proposition 3.25. Given z ∈
∧pE with z 6= 0, the smallest vector space W ⊆ E such that

z ∈
∧pW is generated by the vectors of the form

u∗ y z, with u∗ ∈
∧p−1E∗.

Proof. First let W be any subspace such that z ∈
∧p(W ) and let (e1, . . . , er, er+1, . . . , en) be a

basis of E such that (e1, . . . , er) is a basis of W . Then, u∗ =
∑

I λIe
∗
I , where I ⊆ {1, . . . , n}

and |I| = p − 1, and z =
∑

J µJeJ , where J ⊆ {1, . . . , r} and |J | = p ≤ r. It follows
immediately from the formula of Proposition 3.18 (4), namely

e∗I y eJ = ρJ−I,JeJ−I ,

that u∗ y z ∈ W , since J − I ⊆ {1, . . . , r}.

Next we prove that if W is the smallest subspace of E such that z ∈
∧p(W ), then W is

generated by the vectors of the form u∗ y z, where u∗ ∈
∧p−1E∗. Suppose not. Then the

vectors u∗ y z with u∗ ∈
∧p−1E∗ span a proper subspace U of W . We prove that for every

subspace W ′ of W with dim(W ′) = dim(W )− 1 = r − 1, it is not possible that u∗ y z ∈ W ′

for all u∗ ∈
∧p−1E∗. But then, as U is a proper subspace of W , it is contained in some

subspace W ′ with dim(W ′) = r − 1, and we have a contradiction.

Let w ∈ W −W ′ and pick a basis of W formed by a basis (e1, . . . , er−1) of W ′ and w.
Any z ∈

∧p(W ) can be written as z = z′ + w ∧ z′′, where z′ ∈
∧pW ′ and z′′ ∈

∧p−1W ′,
and since W is the smallest subspace containing z, we have z′′ 6= 0. Consequently, if we
write z′′ =

∑
I λIeI in terms of the basis (e1, . . . , er−1) of W ′, there is some eI , with I ⊆

{1, . . . , r − 1} and |I| = p− 1, so that the coefficient λI is nonzero. Now, using any basis of
E containing (e1, . . . , er−1, w), by Proposition 3.18 (4), we see that

e∗I y (w ∧ eI) = λw, λ = ±1.

It follows that

e∗I y z = e∗I y (z′ + w ∧ z′′) = e∗I y z
′ + e∗I y (w ∧ z′′) = e∗I y z

′ + λλIw,

with e∗I y z
′ ∈ W ′, which shows that e∗I y z /∈ W ′. Therefore, W is indeed generated by the

vectors of the form u∗ y z, where u∗ ∈
∧p−1E∗.

To help understand Proposition 3.25, let E be the vector space with basis {e1, e2, e3, e4}
and z = e1 ∧ e2 + e2 ∧ e3. Note that z ∈

∧2E. To find the smallest vector space W ⊆ E
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such that z ∈
∧2W , we calculate u∗ y z, where u∗ ∈

∧1E∗. The multilinearity of y implies
it is enough to calculate u∗ y z for u∗ ∈ {e∗1, e∗2, e∗3, e∗4}. Proposition 3.18 (4) implies that

e∗1 y z = e∗1 y (e1 ∧ e2 + e2 ∧ e3) = e∗1 y e1 ∧ e2 = −e2

e∗2 y z = e∗2 y (e1 ∧ e2 + e2 ∧ e3) = e1 − e3

e∗3 y z = e∗3 y (e1 ∧ e2 + e2 ∧ e3) = e∗3 y e2 ∧ e3 = e2

e∗4 y z = e∗4 y (e1 ∧ e2 + e2 ∧ e3) = 0.

Thus W is the two-dimensional vector space generated by the basis {e2, e1 − e3}. This is
not surprising since z = −e2 ∧ (e1 − e3) and is in fact decomposable. As this example
demonstrates, the action of the left hook provides a way of extracting a basis of W from z.

Proposition 3.25 implies the following corollary.

Corollary 3.26. Any nonzero z ∈
∧pE is decomposable iff the smallest subspace W of E

such that z ∈
∧pW has dimension p. Furthermore, if z = u1∧· · ·∧up is decomposable, then

(u1, . . . , up) is a basis of the smallest subspace W of E such that z ∈
∧pW

Proof. If dim(W ) = p, then for any basis (e1, . . . , ep) of W we know that
∧pW has e1∧· · ·∧ep

has a basis, and thus has dimension 1. Since z ∈
∧pW , we have z = λe1 ∧ · · · ∧ ep for some

nonzero λ, so z is decomposable.

Conversely assume that z ∈
∧pW is nonzero and decomposable. Then, z = u1∧· · ·∧up,

and since z 6= 0, by Proposition 3.9 (u1, . . . , up) are linearly independent. Then for any
v∗i = u∗1 ∧ · · ·u∗i−1 ∧ u∗i+1 ∧ · · · ∧ u∗p (where u∗i is omitted), we have

v∗i y z = (u∗1 ∧ · · ·u∗i−1 ∧ u∗i+1 ∧ · · · ∧ u∗p) y (u1 ∧ · · · ∧ up) = ±ui,

so by Proposition 3.25 we have ui ∈ W for i = 1, . . . , p. This shows that dim(W ) ≥ p, but
since z = u1 ∧ · · · ∧ up, we have dim(W ) = p, which means that (u1, . . . , up) is a basis of
W .

Finally we are ready to state and prove the criterion for decomposability with respect to
left hooks.

Proposition 3.27. Any nonzero z ∈
∧pE is decomposable iff

(u∗ y z) ∧ z = 0, for all u∗ ∈
∧p−1E∗.

Proof. First assume that z ∈
∧pE is decomposable. If so, by Corollary 3.26, the smallest

subspace W of E such that z ∈
∧pW has dimension p, so we have z = e1 ∧ · · · ∧ ep where

e1, . . . , ep form a basis of W . By Proposition 3.25, for every u∗ ∈
∧p−1E∗, we have u∗yz ∈ W ,

so each u∗ y z is a linear combination of the ei’s, say

u∗ y z = α1e1 + · · ·+ αpep,
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and

(u∗ y z) ∧ z =

p∑
i=1

αiei ∧ e1 ∧ · · · ∧ ei ∧ · · · ∧ ep = 0.

Now assume that (u∗ y z)∧ z = 0 for all u∗ ∈
∧p−1E∗, and that dim(W ) = m > p, where

W is the smallest subspace of E such that z ∈
∧pW If e1, . . . , em is a basis of W , then we

have z =
∑

I λIeI , where I ⊆ {1, . . . ,m} and |I| = p. Recall that z 6= 0, and so, some λI is
nonzero. By Proposition 3.25, each ei can be written as u∗ y z for some u∗ ∈

∧p−1E∗, and
since (u∗ y z) ∧ z = 0 for all u∗ ∈

∧p−1E∗, we get

ej ∧ z = 0 for j = 1, . . . ,m.

By wedging z =
∑

I λIeI with each ej, as m > p, we deduce λI = 0 for all I, so z = 0, a
contradiction. Therefore, m = p and Corollary 3.26 implies that z is decomposable.

As a corollary of Proposition 3.27 we obtain the following fact that we stated earlier
without proof.

Proposition 3.28. Given any vector space E of dimension n, a vector x ∈
∧2E is decom-

posable iff x ∧ x = 0.

Proof. Recall that as an application of Proposition 3.19 we proved the formula (†), namely

u∗ y (x ∧ x) = 2((u∗ y x) ∧ x)

for all x ∈
∧2E and all u∗ ∈ E∗. As a consequence, (u∗ y x) ∧ x = 0 iff u∗ y (x ∧ x) = 0.

By Proposition 3.27, the 2-vector x is decomposable iff u∗ y (x ∧ x) = 0 for all u∗ ∈ E∗ iff
x ∧ x = 0. Therefore, a 2-vector x is decomposable iff x ∧ x = 0.

As an application of Proposition 3.28, assume that dim(E) = 3 and that (e1, e2, e3) is a
basis of E. Then any 2-vector x ∈

∧2E is of the form

x = αe1 ∧ e2 + βe1 ∧ e3 + γe2 ∧ e3.

We have

x ∧ x = (αe1 ∧ e2 + βe1 ∧ e3 + γe2 ∧ e3) ∧ (αe1 ∧ e2 + βe1 ∧ e3 + γe2 ∧ e3) = 0,

because all the terms involved are of the form c ei1 ∧ ei2 ∧ ei3 ∧ ei4 with i1, i2, i3, i4 ∈ {1, 2, 3},
and so at least two of these indices are identical. Therefore, every 2-vector x = αe1 ∧ e2 +
βe1 ∧ e3 + γe2 ∧ e3 is decomposable, although this not obvious at first glance. For example,

e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3 = (e1 + e2) ∧ (e2 + e3).

We now show that Proposition 3.27 yields an equational criterion for the decomposability
of an alternating tensor z ∈

∧pE.
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3.8 The Grassmann-Plücker’s Equations and

Grassmannian Manifolds ~

Let E be a vector space of dimensions n, let (e1, . . . , en) be a basis of E, and let (e∗1, . . . , e
∗
n)

be its dual basis. Our objective is to determine whether a nonzero vector z ∈
∧pE is

decomposable, in terms of equations.

We follow an argument adapted from Bourbaki [15] (Chapter III, §11, Section 13). By
Proposition 3.27, the vector z is decomposable iff (u∗ y z) ∧ z = 0 for all u∗ ∈

∧p−1E∗. We
can let u∗ range over a basis of

∧p−1E∗, and then the conditions are

(e∗H y z) ∧ z = 0

for all H ⊆ {1, . . . , n}, with |H| = p− 1. Since (e∗H y z) ∧ z ∈
∧p+1E, this is equivalent to

〈e∗J , (e∗H y z) ∧ z〉 = 0

for all H, J ⊆ {1, . . . , n}, with |H| = p− 1 and |J | = p + 1. Then, for all I, I ′ ⊆ {1, . . . , n}
with |I| = |I ′| = p, Formulae (2) and (4) of Proposition 3.18 show that

〈e∗J , (e∗H y eI) ∧ eI′〉 = 0,

unless there is some i ∈ {1, . . . , n} such that

I −H = {i}, J − I ′ = {i}.

In this case, I = H ∪ {i} and I ′ = J − {i}, and using Formulae (2) and (4) of Proposition
3.18, we have

〈e∗J , (e∗H y eH∪{i}) ∧ eJ−{i}〉 = 〈e∗J , ρ{i},Hei ∧ eJ−{i}〉 = 〈e∗J , ρ{i},Hρ{i},J−{i}eJ〉 = ρ{i},Hρ{i},J−{i}.

If we let
εi,J,H = ρ{i},Hρ{i},J−{i},

we have εi,J,H = +1 if the parity of the number of j ∈ J such that j < i is the same as the
parity of the number of h ∈ H such that h < i, and εi,J,H = −1 otherwise.

Finally we obtain the following criterion in terms of quadratic equations (Plücker’s equa-
tions) for the decomposability of an alternating tensor.

Proposition 3.29. (Grassmann-Plücker’s Equations) For z =
∑

I λIeI ∈
∧pE, the condi-

tions for z 6= 0 to be decomposable are∑
i∈J−H

εi,J,HλH∪{i}λJ−{i} = 0,

with εi,J,H = ρ{i},Hρ{i},J−{i}, for all H, J ⊆ {1, . . . , n} such that |H| = p− 1, |J | = p+ 1, and
all i ∈ J −H.
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Using the above criterion, it is a good exercise to reprove that if dim(E) = n, then every
tensor in

∧n−1(E) is decomposable. We already proved this fact as a corollary of Proposition
3.23.

Given any z =
∑

I λIeI ∈
∧pE where dim(E) = n, the family of scalars (λI) (with

I = {i1 < · · · < ip} ⊆ {1, . . . , n} listed in increasing order) is called the Plücker coordinates
of z. The Grassmann-Plücker’s equations give necessary and sufficient conditions for any
nonzero z to be decomposable.

For example, when dim(E) = n = 4 and p = 2, these equations reduce to the single
equation

λ12λ34 − λ13λ24 + λ14λ23 = 0.

However, it should be noted that the equations given by Proposition 3.29 are not independent
in general.

We are now in the position to prove that the Grassmannian G(p, n) can be embedded in

the projective space RP(np)−1.

For any n ≥ 1 and any k with 1 ≤ p ≤ n, recall that the Grassmannian G(p, n) is the
set of all linear p-dimensional subspaces of Rn (also called p-planes). Any p-dimensional
subspace U of Rn is spanned by p linearly independent vectors u1, . . . , up in Rn; write U =
span(u1, . . . , uk). By Proposition 3.9, (u1, . . . , up) are linearly independent iff u1∧· · ·∧up 6= 0.
If (v1, . . . , vp) are any other linearly independent vectors spanning U , then we have

vj =

p∑
i=1

aijui, 1 ≤ j ≤ p,

for some aij ∈ R, and by Proposition 3.2

v1 ∧ · · · ∧ vp = det(A)u1 ∧ · · · ∧ up,

where A = (aij). As a consequence, we can define a map iG : G(p, n) → RP(np)−1 such that
for any k-plane U , for any basis (u1, . . . , up) of U ,

iG(U) = [u1 ∧ · · · ∧ up],

the point of RP(np)−1 given by the one-dimensional subspace of R(np) spanned by u1∧· · ·∧up.

Proposition 3.30. The map iG : G(p, n)→ RP(np)−1 is injective.

Proof. Let U and V be any two p-planes and assume that iG(U) = iG(V ). This means that
there is a basis (u1, . . . , up) of U and a basis (v1, . . . , vp) of V such that

v1 ∧ · · · ∧ vp = c u1 ∧ · · · ∧ up
for some nonzero c ∈ R. The above implies that the smallest subspaces W and W ′ of Rn

such that u1 ∧ · · · ∧ up ∈
∧pW and v1 ∧ · · · ∧ vp ∈

∧pW ′ are identical, so W = W ′. By
Corollary 3.26, this smallest subspace W has both (u1, . . . , up) and (v1, . . . , vp) as bases, so
the vj are linear combinations of the ui (and vice-versa), and U = V .
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Since any nonzero z ∈
∧pRn can be uniquely written as

z =
∑
I

λIeI

in terms of its Plücker coordinates (λI), every point of RP(np)−1 is defined by the Plücker

coordinates (λI) viewed as homogeneous coordinates. The points of RP(np)−1 corresponding
to one-dimensional spaces associated with decomposable alternating p-tensors are the points
whose coordinates satisfy the Grassmann-Plücker’s equations of Proposition 3.29. Therefore,

the map iG embeds the Grassmannian G(p, n) as an algebraic variety in RP(np)−1 defined by
equations of degree 2.

We can replace the field R by C in the above reasoning and we obtain an embedding of

the complex Grassmannian GC(p, n) as an algebraic variety in CP(np)−1 defined by equations
of degree 2.

In particular, if n = 4 and p = 2, the equation

λ12λ34 − λ13λ24 + λ14λ23 = 0

is the homogeneous equation of a quadric in CP5 known as the Klein quadric. The points
on this quadric are in one-to-one correspondence with the lines in CP3.

There is also a simple algebraic criterion to decide whether the smallest subspaces U and
V associated with two nonzero decomposable vectors u1 ∧ · · · ∧ up and v1 ∧ · · · ∧ vq have a
nontrivial intersection.

Proposition 3.31. Let E be any n-dimensional vector space over a field K, and let U
and V be the smallest subspaces of E associated with two nonzero decomposable vectors
u = u1 ∧ · · · ∧ up ∈

∧p U and v = v1 ∧ · · · ∧ vq ∈
∧q V . The following properties hold:

(1) We have U ∩ V = (0) iff u ∧ v 6= 0.

(2) If U ∩ V = (0), then U + V is the least subspace associated with u ∧ v.

Proof. Assume U ∩ V = (0). We know by Corollary 3.26 that (u1, . . . , up) is a basis of U
and (v1, . . . , vq) is a basis of V . Since U ∩V = (0), (u1, . . . , up, v1, . . . , vq) is a basis of U +V ,
and by Proposition 3.9, we have

u ∧ v = u1 ∧ · · · ∧ up ∧ v1 ∧ · · · ∧ vq 6= 0.

This also proves (2).

Conversely, assume that dim(U∩V ) ≥ 1. Pick a basis (w1, . . . , wr) of W = U∩V , and ex-
tend this basis to a basis (w1, . . . , wr, wr+1, . . . , wp) of U and to a basis (w1, . . . , wr, wp+1, . . .,
wp+q−r) of V . By Corollary 3.26, (u1, . . . , up) is also basis of U , so

u1 ∧ · · · ∧ up = aw1 ∧ · · · ∧ wr ∧ wr+1 ∧ · · · ∧ wp
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for some a ∈ K, and (v1, . . . , vq) is also basis of V , so

v1 ∧ · · · ∧ vq = bw1 · · · ∧ wr ∧ wp+1 ∧ · · · ∧ wp+q−r
for some b ∈ K, and thus

u ∧ v = u1 ∧ · · · ∧ up ∧ v1 ∧ · · · ∧ vq = 0

since it contains some repeated wi, with 1 ≤ i ≤ r.

As an application of Proposition 3.31, consider two projective lines D1 and D2 in RP3,
which means that D1 and D2 correspond to two 2-planes in R4, and thus by Proposition

3.30, to two points in RP(4
2)−1 = RP5. These two points correspond to the 2-vectors

z = a1,2e1 ∧ e2 + a1,3e1 ∧ e3 + a1,4e1 ∧ e4 + a2,3e2 ∧ e3 + a2,4e2 ∧ e4 + a3,4e3 ∧ e4

and

z′ = a′1,2e1 ∧ e2 + a′1,3e1 ∧ e3 + a′1,4e1 ∧ e4 + a′2,3e2 ∧ e3 + a′2,4e2 ∧ e4 + a′3,4e3 ∧ e4

whose Plücker coordinates, (where ai,j = λij), satisfy the equation

λ12λ34 − λ13λ24 + λ14λ23 = 0

of the Klein quadric, and D1 and D2 intersect iff z ∧ z′ = 0 iff

a1,2a
′
3,4 − a1,3a

′
3,4 + a1,4a

′
2,3 + a2,3a

′
1,4 − a2,4a

′
1,3 + a3,4a

′
1,2 = 0.

Observe that for D1 fixed, this is a linear condition. This fact is very helpful for solving
problems involving intersections of lines. A famous problem is to find how many lines in RP3

meet four given lines in general position. The answer is at most 2.

3.9 Vector-Valued Alternating Forms

The purpose of this section is to present the technical background needed for Sections 4.5
and 4.6 on vector-valued differential forms, in particular in the case of Lie groups where
differential forms taking their values in a Lie algebra arise naturally.

In this section the vector space E is assumed to have finite dimension. We know that
there is a canonical isomorphism

∧n(E∗) ∼= Altn(E;K) between alternating n-forms and
alternating multilinear maps. As in the case of general tensors, the isomorphisms provided
by Propositions 3.5, 2.19, and 3.10, namely

Altn(E;F ) ∼= Hom

( n∧
(E), F

)
Hom

( n∧
(E), F

)
∼=

( n∧
(E)

)∗
⊗ F( n∧

(E)

)∗
∼=

n∧
(E∗)
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yield a canonical isomorphism

Altn(E;F ) ∼=
( n∧

(E∗)

)
⊗ F

which we record as a corollary.

Corollary 3.32. For any finite dimensional vector space E and any vector space F , we have
a canonical isomorphism

Altn(E;F ) ∼=
( n∧

(E∗)

)
⊗ F.

Note that F may have infinite dimension. This isomorphism allows us to view the tensors
in
∧n(E∗)⊗F as vector-valued alternating forms , a point of view that is useful in differential

geometry. If (f1, . . . , fr) is a basis of F , every tensor ω ∈
∧n(E∗) ⊗ F can be written as

some linear combination

ω =
r∑
i=1

αi ⊗ fi,

with αi ∈
∧n(E∗).We also let

∧
(E;F ) =

⊕
n=0

(
n∧

(E∗)

)
⊗ F =

(∧
(E)
)
⊗ F.

Given three vector spaces, F,G,H, if we have some bilinear map Φ: F × G → H, then
we can define a multiplication operation

∧Φ :
∧

(E;F )×
∧

(E;G)→
∧

(E;H)

as follows: For every pair (m,n), we define the multiplication

∧Φ :

(( m∧
(E∗)

)
⊗ F

)
×

(( n∧
(E∗)

)
⊗G

)
−→

(m+n∧
(E∗)

)
⊗H

by
ω ∧Φ η = (α⊗ f) ∧Φ (β ⊗ g) = (α ∧ β)⊗ Φ(f, g).

As in Section 3.4 (following H. Cartan [22]), we can also define a multiplication

∧Φ : Altm(E;F )× Altn(E;G) −→ Altm+n(E;H)

directly on alternating multilinear maps as follows: For f ∈ Altm(E;F ) and g ∈ Altn(E;G),

(f ∧Φ g)(u1, . . . , um+n) =
∑

σ∈shuffle(m,n)

sgn(σ) Φ
(
f(uσ(1), . . . , uσ(m)), g(uσ(m+1), . . . , uσ(m+n))

)
,
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where shuffle(m,n) consists of all (m,n)-“shuffles;” that is, permutations σ of {1, . . .m+n}
such that σ(1) < · · · < σ(m) and σ(m+ 1) < · · · < σ(m+ n).

A special case of interest is the case where F = G = H is a Lie algebra and Φ(a, b) = [a, b]
is the Lie bracket of F . In this case, using a basis (f1, . . . , fr) of F , if we write ω =

∑
i αi⊗fi

and η =
∑

j βj ⊗ fj, we have

ω ∧Φ η = [ω, η] =
∑
i,j

αi ∧ βj ⊗ [fi, fj].

It is customary to denote ω∧Φ η by [ω, η] (unfortunately, the bracket notation is overloaded).
Consequently,

[η, ω] = (−1)mn+1[ω, η].

In general not much can be said about ∧Φ, unless Φ has some additional properties. In
particular, ∧Φ is generally not associative.

We now use vector-valued alternating forms to generalize both the µ map of Proposition
3.14 and generalize Proposition 2.19 by defining the map

µF :

(
n∧

(E∗)

)
⊗ F −→ Altn(E;F )

on generators by

µF ((v∗1 ∧ · · · ∧ v∗n)⊗ f)(u1, . . . , un) = (det(v∗j (ui))f,

with v∗1, . . . , v
∗
n ∈ E∗, u1, . . . , un ∈ E, and f ∈ F .

Proposition 3.33. The map

µF :

(
n∧

(E∗)

)
⊗ F −→ Altn(E;F )

defined as above is a canonical isomorphism for every n ≥ 0. Furthermore, given any three
vector spaces, F,G,H, and any bilinear map Φ: F ×G→ H, for all ω ∈ (

∧n(E∗))⊗F and
all η ∈ (

∧n(E∗))⊗G,
µH(ω ∧Φ η) = µF (ω) ∧Φ µG(η).

Proof. Since we already know that (
∧n(E∗))⊗F and Altn(E;F ) are isomorphic, it is enough

to show that µF maps some basis of (
∧n(E∗)) ⊗ F to linearly independent elements. Pick

some bases (e1, . . . , ep) in E and (fj)j∈J in F . Then we know that the vectors e∗I ⊗ fj, where
I ⊆ {1, . . . , p} and |I| = n, form a basis of (

∧n(E∗))⊗ F . If we have a linear dependence∑
I,j

λI,jµF (e∗I ⊗ fj) = 0,
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applying the above combination to each (ei1 , . . . , ein) (I = {i1, . . . , in}, i1 < · · · < in), we
get the linear combination ∑

j

λI,jfj = 0,

and by linear independence of the fj’s, we get λI,j = 0 for all I and all j. Therefore, the
µF (e∗I ⊗ fj) are linearly independent, and we are done. The second part of the proposition
is checked using a simple computation.

The following proposition will be useful in dealing with vector-valued differential forms.

Proposition 3.34. If (e1, . . . , ep) is any basis of E, then every element ω ∈ (
∧n(E∗))⊗ F

can be written in a unique way as

ω =
∑
I

e∗I ⊗ fI , fI ∈ F,

where the e∗I are defined as in Section 3.2.

Proof. Since, by Proposition 3.8, the e∗I form a basis of
∧n(E∗), elements of the form e∗I ⊗ f

span (
∧n(E∗)) ⊗ F . Now if we apply µF (ω) to (ei1 , . . . , ein), where I = {i1, . . . , in} ⊆

{1, . . . , p}, we get

µF (ω)(ei1 , . . . , ein) = µF (e∗I ⊗ fI)(ei1 , . . . , ein) = fI .

Therefore, the fI are uniquely determined by f .

Proposition 3.34 can also be formulated in terms of alternating multilinear maps, a fact
that will be useful to deal with differential forms.

Corollary 3.35. Define the product · : Altn(E;R) × F → Altn(E;F ) as follows: For all
ω ∈ Altn(E;R) and all f ∈ F ,

(ω · f)(u1, . . . , un) = ω(u1, . . . , un)f,

for all u1, . . . , un ∈ E. Then for every ω ∈ (
∧n(E∗))⊗ F of the form

ω = u∗1 ∧ · · · ∧ u∗n ⊗ f,

we have
µF (u∗1 ∧ · · · ∧ u∗n ⊗ f) = µF (u∗1 ∧ · · · ∧ u∗n) · f.

Then Proposition 3.34 yields the following result.

Proposition 3.36. If (e1, . . . , ep) is any basis of E, then every element ω ∈ Altn(E;F ) can
be written in a unique way as

ω =
∑
I

e∗I · fI , fI ∈ F,

where the e∗I are defined as in Section 3.2.
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3.10 Problems

Problem 3.1. Complete the induction argument used in the proof of Proposition 3.1 (2).

Problem 3.2. Prove Proposition 3.2.

Problem 3.3. Prove Proposition 3.7.

Problem 3.4. Show that the pairing given by (∗) in Section 3.3 is nondegenerate.

Problem 3.5. Let Ia be the two-sided ideal generated by all tensors of the form u⊗u ∈ V ⊗2.
Prove that

m∧
(V ) ∼= V ⊗m/(Ia ∩ V ⊗m).

Problem 3.6. Complete the induction proof of Proposition 3.12.

Problem 3.7. Prove the following lemma: If V is a vector space with dim(V ) ≤ 3, then
α ∧ α = 0 whenever α ∈

∧
(V ).

Problem 3.8. Prove Proposition 3.13.

Problem 3.9. Given two graded algebras E and F , define E ⊗̂ F to be the vector space
E ⊗ F , but with a skew-commutative multiplication given by

(a⊗ b) ∧ (c⊗ d) = (−1)deg(b)deg(c)(ac)⊗ (bd),

where a ∈ Em, b ∈ F p, c ∈ En, d ∈ F q. Show that∧
(E ⊕ F ) ∼=

∧
(E) ⊗̂

∧
(F ).

Problem 3.10. If 〈−,−〉 denotes the inner product on V , recall that we defined an inner
product on

∧k V , also denoted 〈−,−〉, by setting

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉 = det(〈ui, vj〉),

for all ui, vi ∈ V , and extending 〈−,−〉 by bilinearity.

Show that if (e1, . . . , en) is an orthonormal basis of V , then the basis of
∧k V consisting

of the eI (where I = {i1, . . . , ik}, with 1 ≤ i1 < · · · < ik ≤ n) is also an orthonormal basis of∧k V .

Problem 3.11. Show that
(u∗ ∧ v∗) y z = u∗ y (v∗ y z),

whenever u∗ ∈
∧k E∗, v∗ ∈

∧p−k E∗, and z ∈
∧p+q E.

Problem 3.12. Prove Statement (3) of Proposition 3.18.
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Problem 3.13. Prove Proposition 3.19.

Also prove the identity

u∗ y (x ∧ y) = (−1)s(u∗ y x) ∧ y + x ∧ (u∗ y y),

where u∗ ∈ E∗, x ∈
∧q+1−sE, and y ∈

∧sE.

Problem 3.14. Use the Grassmann-Plücker’s equations prove that if dim(E) = n, then
every tensor in

∧n−1(E) is decomposable.

Problem 3.15. Recall that the map

µF :

(
n∧

(E∗)

)
⊗ F −→ Altn(E;F )

is defined on generators by

µF ((v∗1 ∧ · · · ∧ v∗n)⊗ f)(u1, . . . , un) = (det(v∗j (ui))f,

with v∗1, . . . , v
∗
n ∈ E∗, u1, . . . , un ∈ E, and f ∈ F .

Given any three vector spaces, F,G,H, and any bilinear map Φ: F × G → H, for all
ω ∈ (

∧n(E∗))⊗ F and all η ∈ (
∧n(E∗))⊗G prove that

µH(ω ∧Φ η) = µF (ω) ∧Φ µG(η).
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Chapter 4

Differential Forms

The theory of differential forms is one of the main tools in geometry and topology. This
theory has a surprisingly large range of applications, and it also provides a relatively easy
access to more advanced theories such as cohomology. For all these reasons, it is really an
indispensable theory, and anyone with more than a passable interest in geometry should be
familiar with it.

The theory of differential forms was initiated by Poincaré and further elaborated by Élie
Cartan at the end of the nineteenth century. Differential forms have two main roles:

(1) Describe various systems of partial differential equations on manifolds.

(2) To define various geometric invariants reflecting the global structure of manifolds or
bundles. Such invariants are obtained by integrating certain differential forms.

As we will see shortly, as soon as one tries to define integration on higher-dimensional
objects, such as manifolds, one realizes that it is not functions that are integrated, but instead
differential forms. Furthermore, as by magic, the algebra of differential forms handles changes
of variables automatically and yields a neat form of “Stokes formula.”

We begin with differential forms defined on an open subset U of Rn. A p-form is any
smooth function ω : U →

∧p(Rn)∗ taking as values alternating tensors in the exterior power∧p(Rn)∗. The set of all p-forms on U is a vector space denoted Ap(U). The vector space
A∗(U) =

⊕
p≥0Ap(U) is the set of differential forms on U .

Proposition 3.14 shows that for every finite-dimensional vector space E, there are iso-
morphisms

µ :
n∧

(E∗) −→ Altn(E;R),

and these yield a canonical isomorphism of algebras µ :
∧

(E∗) −→ Alt(E), where

Alt(E) =
⊕
n≥0

Altn(E;R),

139
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and where Altn(E;R) is the vector space of real valued alternating multilinear maps on En.

In view of these isomorphisms, we will identify ω and µ(ω) for any ω ∈
∧n(E∗), and we

will write ω(u1, . . . , un) as an abbreviation for µ(ω)(u1, . . . , un).

Because Alt(Rn) is an algebra under the wedge product, differential forms also have a
wedge product, and thus A∗(U) is an algebra with the wedge product ∧ on forms.

However, the power of differential forms stems from the exterior differential

d : Ap(U)→ Ap+1(U),

which is a skew-symmetric version of the usual differentiation operator. In Section 4.1 we
prove some basic properties of the wedge product and of the exterior differential d. One of

the most crucial properties of d is that the composition Ap(U)
d−→ Ap+1(U)

d−→ Ap+2(U) is
identically zero; that is

d ◦ d = 0,

which is an abbreviation for dp+1 ◦ dp = 0.

We explain that in R3, the notions of gradient, curl, and divergence, arise naturally from
the exterior differential d.

When is there a smooth field (P,Q,R) (in R3) whose curl is given by a prescribed smooth
field (A,B,C)? Equivalently, when is there a 1-form ω = Pdx+Qdy +Rdz such that

dω = η = Ady ∧ dz +Bdz ∧ dx+ Cdx ∧ dy?

Because d ◦ d = 0, it is necessary that dη = 0; that is, (A,B,C) must have zero divergence.
However, this condition is not sufficient in general; it depends on the topology of U .

More generally, we say that a differential p-form ω is closed if dω = 0 and exact if ω = dη
for some (p− 1)-form η. Since d ◦ d = 0, every exact form is closed, but the converse is false
in general. The purpose of de Rham cohomology is to measure the failure of a differential
forms to be exact in terms of certain abelian groups (in fact, algebras).

The diagram (a cochain complex )

A0(U)
d−→ A1(U) −→ · · · −→ Ap−1(U)

d−→ Ap(U)
d−→ Ap+1(U) −→ · · ·

is called the de Rham complex of U .

For every p ≥ 0, let

Zp(U) = {ω ∈ Ap(U) | dω = 0} = Ker d : Ap(U) −→ Ap+1(U)

be the vector space of closed p-forms, also called p-cocycles , and for every p ≥ 1, let

Bp(U) = {ω ∈ Ap(U) | ∃η ∈ Ap−1(U), ω = dη} = Im d : Ap−1(U) −→ Ap(U)
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be the vector space of exact p-forms, also called p-coboundaries . Set B0(U) = (0). Forms in
Ap(U) are also called p-cochains . As Bp(U) ⊆ Zp(U) for every p ≥ 0, we define the pth de
Rham cohomology group of U as the quotient space

Hp
DR(U) = Zp(U)/Bp(U);

The real vector space H•DR(U) =
⊕

p≥0H
p
DR(U) is called the de Rham cohomology algebra of

U .

The de Rham cohomology groups will be generalized to smooth manidolds in Section
4.3. They are important invariants of a manifold (which means that diffeomorphic manifolds
have isomorphic cohomology groups).

In Section 4.2 we consider the behavior of differential forms under smooth maps ϕ : U →
V . Any such map induces a map ϕ∗ : Ap(V )→ Ap(U) on differential p-forms called a pullback
(notice the reversal of U and V ). Note that ϕ need not be a diffeomorphism, which is one
of the technical advantages of forms over vector fields. We state various properties of the
behavior of wedge products and the exterior differential d under pullback. In particular,

dϕ∗(ω) = ϕ∗(dω).

This property shows that a map ϕ : U → V induces a map H•DR(ϕ) : H•DR(V )→ H•DR(U) on
cohomology.

We state a fundamental result known as the Poincaré lemma, which says that the de
Rham cohomology of a star-shaped open subset of Rn vanishes for p ≥ 1, and that H0(U) =
R. Thus every closed p-form on such a domain is exact (p ≥ 1).

In Section 4.3 we generalize differential forms to smooth manifolds. Having defined
differential forms on open subsets of Rn, this is not a difficult task.

Technically, the set Ak(M) of smooth differential k-forms on M is the set of smooth
sections Γ(M,

∧k T ∗M) of the bundle
∧k T ∗M , and the set A∗(M) of all smooth differential

forms on M is the set of smooth sections Γ(M,
∧
T ∗M) of the bundle

∧
T ∗M .

These definitions are quite abstract, so we explain how p-forms are defined locally in
terms of charts. Wedge products, pullbacks, and the exterior differential

d : Ak(M)→ Ak+1(M).

are defined. As in the case of open subsets of Rn, we have

d ◦ d = 0,

and d commutes with pullbacks. As a consequence, we have the de Rham complex

A0(M)
d−→ A1(M) −→ · · · −→ Ak−1(M)

d−→ Ak(M)
d−→ Ak+1(M) −→ · · · ,
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and we can define the cohomology groups Hk
DR(M) and the graded cohomology algebra

H•DR(M).

Another important property of the exterior differential d is that it is a local operator ,
which means that the value of dω at p only depends of the values of ω near p. As a
consequence, we obtain a characterization of the the operator d; see Theorem 4.14.

Smooth differential forms can also be defined in terms of alternating C∞(M)-multilinear
maps on smooth vector fields. This approach also yields a global formula for the exterior
derivative dω(X1, . . . , Xk+1) of a k-form ω applied to k + 1 vector fields X1, . . . , Xk+1. This
formula is not very useful for computing dω at a given point p since it requires vector fields
as input, but it is quite useful in theoretical investigations.

Let ω ∈ Ak(M) be any smooth k-form on M . Then ω induces an alternating multilinear
map

ω : X(M)× · · · × X(M)︸ ︷︷ ︸
k

−→ C∞(M)

as follows: for any k smooth vector fields X1, . . . , Xk ∈ X(M),

ω(X1, . . . , Xk)(p) = ωp(X1(p), . . . , Xk(p)).

This map is obviously alternating and R-linear, but it is also C∞(M)-linear.

Let M be a smooth manifold. It is shown in Proposition 4.15 that for every k ≥ 0, there
is an isomorphism between the space of k-forms Ak(M) and the space AltkC∞(M)(X(M)) of
alternating C∞(M)-multilinear maps on smooth vector fields. That is,

Ak(M) ∼= AltkC∞(M)(X(M)),

viewed as C∞(M)-modules. Then Proposition 4.16 gives an expression for dω(X1, . . . , Xk+1)
(where X1, . . . , Xk+1 are vector fields) in terms of the Xi and some of their Lie brackets.

Section 4.4 is a technical section devoted to Lie derivatives of differential forms. We
prove various properties about the interaction of Lie derivatives with the wedge operator
and the exterior differential d. In particular, we prove Cartan’s formula, which expresses the
Lie derivative of a differential form in terms of d and an operator i(X) : Ak(M)→ Ak−1(M)
called an insertion operator , where X is a vector field. We also generalize Lie derivatives to
tensors.

In Section 4.5 we show how differential forms can be generalized so that they take values
in any vector space F , rather than just R. Vector-valued differential forms are needed in the
theory of Lie groups and to define connections and curvature on vector bundles; see Chapter
11.

For simplicity, assume that U is an open subset of Rn. Then it is natural to define dif-
ferential forms with values in F as smooth maps ω : U → Altp(Rn;F ), where Altp(Rn;F )
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denotes the vector space of alternating multilinear linear maps with values in F . The vec-
tor space of all p-forms on U with values in F is denoted Ap(U ;F ), and the vector space
A∗(U ;F ) =

⊕
p≥0Ap(U ;F ) is the set of differential forms on U with values in F .

There is no difficulty in defining the exterior differential d : Ap(U ;F )→ Ap+1(U ;F ), and
it can be shown that d ◦ d = 0. The pullback of a form in Ap(V ;F ) along a smooth map
ϕ : U → V is defined as before. The major difference is that there is no longer an obvious
notion of wedge product. To define such an operation we need a bilinear form Φ: F×G→ H,
where F,G,H are some vector spaces. Then we can define a wedge product

∧Φ : Ap(U ;F )×Aq(U ;G)→ Ap+q(U ;H).

Such a wedge product is not associative in general, and not much can be said about it unless
Φ has some additional properties. In general, unlike the case where F = R, there is no nice
formula for d(ω∧Φ η), unless F,G,H are finite-dimensional. The case where F = H = G = g
where g is a Lie algebra and Φ(a, b) = [a, b] is of particular interest.

The generalization of vector-valued differential forms to manifolds is no problem, except
that some results involving the wedge product fail for the same reason that they fail in the
case of forms on open subsets of Rn.

In Section 4.6 we discuss left-invariant one-forms on a Lie group G. They form a space
isomorphic to the dual g∗ of the Lie algebra g of G. We prove the Maurer–Cartan equations
in two versions, the second one involving a g-valued one-form ωMC called the Maurer–Cartan
form.

Our main goal is to define differential forms on manifolds, but we begin with differential
forms on open subsets of Rn in order to build up intuition.

4.1 Differential Forms on Subsets of Rn and de Rham

Cohomology

Differential forms are smooth functions on open subsets U of Rn, taking as values alternating
tensors in some exterior power

∧p(Rn)∗.

Definition 4.1. Given any open subset U of Rn, a smooth differential p-form on U , for short
a p-form on U , is any smooth function ω : U →

∧p(Rn)∗. The vector space of all p-forms on
U is denoted Ap(U). The vector space A∗(U) =

⊕
p≥0Ap(U) is the set of differential forms

on U .

Observe that A0(U) = C∞(U,R), the vector space of smooth functions on U , and
A1(U) = C∞(U, (Rn)∗), the set of smooth functions from U to the set of linear forms on Rn.
Also, Ap(U) = (0) for p > n.
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Remark: The space A∗(U) is also denoted A•(U). Other authors use Ωp(U) instead of
Ap(U), but we prefer to reserve Ωp for holomorphic forms.

Recall from Sections 3.3 and 3.4, in particular Proposition 3.14, that for every finite-
dimensional vector space E, the isomorphisms µ :

∧n(E∗) −→ Altn(E;R) induced by the
linear extensions of the maps given by

µ(v∗1 ∧ · · · ∧ v∗n)(u1, . . . , un) =

∣∣∣∣∣∣∣
v∗1(u1) · · · v∗1(un)

...
. . .

...
v∗n(u1) · · · v∗n(un)

∣∣∣∣∣∣∣ = det(v∗j (ui))

yield a canonical isomorphism of algebras µ :
∧

(E∗) −→ Alt(E), where

Alt(E) =
⊕
n≥0

Altn(E;R),

and where Altn(E;R) is the vector space of real valued alternating multilinear maps on
En. Recall that multiplication on alternating multilinear forms is defined such that, for
f ∈ Altm(E;K) and g ∈ Altn(E;K),

(f ∧ g)(u1, . . . , um+n) =
∑

σ∈shuffle(m,n)

sgn(σ) f(uσ(1), . . . , uσ(m))g(uσ(m+1), . . . , uσ(m+n)), (∗∗)

where shuffle(m,n) consists of all (m,n)-“shuffles;” that is, permutations σ of {1, . . .m+n}
such that σ(1) < · · · < σ(m) and σ(m + 1) < · · · < σ(m + n). The isomorphism µ has the
property that

µ(ω ∧ η) = µ(ω) ∧ µ(η), ω, η ∈
∧

(E∗),

where the wedge operation on the left is the wedge on the exterior algebra
∧

(E∗), and the
wedge on the right is the multiplication on Alt(E) defined in (∗∗).

In view of these isomorphisms, we will identify ω and µ(ω) for any ω ∈
∧n(E∗), and we

will write ω(u1, . . . , un) as an abbreviation for µ(ω)(u1, . . . , un).

Because Alt(Rn) is an algebra under the wedge product, differential forms also have a
wedge product. However, the power of differential forms stems from the exterior differential
d, which is a skew-symmetric version of the usual differentiation operator.

Recall from Section 3.2 that if (e1, . . . , en) is any basis of Rn and (e∗1, . . . , e
∗
n) is its dual

basis, then the alternating tensors

e∗I = e∗i1 ∧ · · · ∧ e
∗
ip

form basis of
∧p(Rn)∗, where I = {i1, . . . , ip} ⊆ {1, . . . , n}, with i1 < · · · < ip. Thus, with

respect to the basis (e1, . . . , en), every p-form ω can be uniquely written

ω(x) =
∑
I

fI(x) e∗i1 ∧ · · · ∧ e
∗
ip =

∑
I

fI(x) e∗I x ∈ U,
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where each fI is a smooth function on U . For example, if U = R2 − {0}, then

ω(x, y) =
−y

x2 + y2
e∗1 +

x

x2 + y2
e∗2

is a 1-form on U (with e1 = (1, 0) and e2 = (0, 1)).

We often write ωx instead of ω(x). Now, not only is A∗(U) a vector space, it is also an
algebra.

Definition 4.2. The wedge product on A∗(U) is defined as follows: For all p, q ≥ 0, the
wedge product ∧ : Ap(U)×Aq(U)→ Ap+q(U) is given by

(ω ∧ η)x = ωx ∧ ηx, x ∈ U.

For example, if ω and η are one-forms, then

(ω ∧ η)x(u, v) = ωx(u)ηx(v)− ωx(v)ηx(u).

In particular, if U ⊆ R3 and ωx = a1e
∗
1 + a3e

∗
3 and ηx = b1e

∗
1 + b2e

∗
2, for u = (u1, u2, u3) ∈ R3

and v = (v1, v2, v3) ∈ R3, the preceding line implies

ωx(u)ηx(v)− ωx(v)ηx(u)

=
(
a1e
∗
1(u) + a3e

∗
3(u)

)(
b1e
∗
1(v) + b2e

∗
2(v)

)
−
(
a1e
∗
1(v) + a3e

∗
3(v)

)(
b1e
∗
1(u) + b2e

∗
2(u)

)
= (a1u1 + a3u3)(b1v1 + b2v2)− (a1v1 + a3v3)(b1u1 + b2u2)

= a1b2(u1v2 − v1u2)− a3b1(u1v3 − v1u3)− a3b2(u2v3 − u3v2)

= a1b2

∣∣∣∣e∗1(u) e∗1(v)
e∗2(u) e∗2(v)

∣∣∣∣− a3b1

∣∣∣∣e∗1(u) e∗1(v)
e∗3(u) e∗3(v)

∣∣∣∣− a3b2

∣∣∣∣e∗2(u) e∗2(v)
e∗3(u) e∗3(v)

∣∣∣∣
= (a1b2e

∗
1 ∧ e∗2 − a3b1e

∗
1 ∧ e∗3 − a3b2e

∗
2 ∧ e∗3)(u, v)

= (a1b1e
∗
1 ∧ e∗1 + a1b2e

∗
1 ∧ e∗2 + a3b1e

∗
3 ∧ e∗1 + a3b2e

∗
3 ∧ e∗2)(u, v)

=
(
(a1e

∗
1 + a3e

∗
3) ∧ (b1e

∗
1 + b2e

∗
2)
)
(u, v)

= (ω ∧ η)x(u, v),

since e∗i ∧ e∗i = 0 and e∗i ∧ e∗j = −e∗j ∧ e∗i for all 1 ≤ i < j ≤ 3.

For f ∈ A0(U) = C∞(U,R) and ω ∈ Ap(U), we have f ∧ ω = fω. Thus, the algebra
A∗(U) is also a C∞(U,R)-module,

Proposition 3.12 immediately yields

Proposition 4.1. For all forms ω ∈ Ap(U) and η ∈ Aq(U), we have

η ∧ ω = (−1)pqω ∧ η.
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We now come to the crucial operation of exterior differentiation. First recall that if
f : U → V is a smooth function from U ⊆ Rn to a (finite-dimensional) normed vector space
V , the derivative f ′ : U → Hom(Rn, V ) of f (also denoted Df) is a function with domain
U , with f ′(x) a linear map in Hom(Rn, V ) for every x ∈ U , such that if (e1, . . . , en) is the
canonical basis of Rn, (u1, . . . , um) is a basis of V , and if f(x) = f1(x)u1 + · · · + fm(x)um,
then

f ′(x)(y1e1 + · · ·+ ynen) =
m∑
i=1

(
n∑
j=1

∂fi
∂xj

(x) yj

)
ui.

The m× n matrix (
∂fi
∂xj

(x)

)
is the Jacobian matrix of f at x, and if we write

z1u1 + · · ·+ zmum = f ′(x)(y1e1 + · · ·+ ynen),

then in matrix form, we havez1
...
zm

 =


∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
. . .

...
∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)


y1

...
yn

 .

We also write f ′x(u) for f ′(x)(u). Observe that since a p-form is a smooth map ω : U →∧p(Rn)∗, its derivative is a map

ω′ : U → Hom

(
Rn,

p∧
(Rn)∗

)
such that ω′x is a linear map from Rn to

∧p(Rn)∗ for every x ∈ U . By the isomorphism∧p(Rn)∗ ∼= Altp(Rn;R), we can view ω′x as a linear map ωx : Rn → Altp(Rn;R), or equiva-
lently as a multilinear form ω′x : (Rn)p+1 → R which is alternating in its last p arguments.
The exterior derivative (dω)x is obtained by making ω′x into an alternating map in all of its
p+ 1 arguments.

To make things more concrete, let us pick a basis (e1, . . . , en) of Rn, so that the
(
n
p

)
tensors e∗I form a basis of

∧p(Rn)∗, where I is any subset I = {i1, . . . , ip} ⊆ {1, . . . , n} such
that i1 < · · · < ip. Then every p-form ω can be uniquely written as

ωx =
∑
I

fI(x) e∗I x ∈ U,

where each fI is a smooth function on U , and for any v = (v1, . . . , vn) ∈ Rn,

ω′x(v) =
∑
I

f ′I(x)(v) e∗I =
∑
I

n∑
j=1

∂fI
∂xj

(x) vj e
∗
I =

∑
I

(grad(fI)x · v)e∗I ,
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where · is the standard Euclidean inner product.

Remark: Observe that ω′x is given by the
(
n
p

)
× n Jacobian matrix(

∂fI
∂xj

(x)

)
and that the product of the Ith row of the above matrix by v

(
∂fI
∂x1

(x) · · · ∂fI
∂xn

(x)

)v1
...
vn


gives the coefficient grad(fI)x · v of e∗I .

Definition 4.3. For every p ≥ 0, the exterior differential d : Ap(U)→ Ap+1(U) is given by

(dω)x(u1, . . . , up+1) =

p+1∑
i=1

(−1)i−1ω′x(ui)(u1, . . . , ûi, . . . , up+1),

for all ω ∈ Ap(U), all x ∈ U , and all u1, . . . , up+1 ∈ Rn, where the hat over the argument ui
means that it should be omitted.

In terms of a basis (e1, . . . , en) of Rn, if ωx =
∑

I fI(x) e∗I , then

(dω)x(u1, . . . , up+1) =

p+1∑
i=1

(−1)i−1
∑
I

f ′I(x)(ui) e
∗
I(u1, . . . , ûi, . . . , up+1)

=

p+1∑
i=1

(−1)i−1
∑
I

(grad(fI)x · ui)e∗I(u1, . . . , ûi, . . . , up+1).

One should check that (dω)x is indeed alternating, but this is easy. If necessary to avoid
confusion, we write dp : Ap(U)→ Ap+1(U) instead of d : Ap(U)→ Ap+1(U).

Remark: Definition 4.3 is the definition adopted by Cartan [21, 22]1 and Madsen and
Tornehave [80]. Some authors use a different approach often using Propositions 4.2 and 4.3
as a starting point, but we find the approach using Definition 4.3 more direct. Furthermore,
this approach extends immediately to the case of vector-valued forms.

For any smooth function, f ∈ A0(U) = C∞(U,R), we get

dfx(u) = f ′x(u).

1We warn the reader that a few typos have crept up in the English translation, Cartan [22], of the orginal
version Cartan [21].
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Therefore, for smooth functions, the exterior differential df coincides with the usual derivative
f ′ (we identify

∧1(Rn)∗ and (Rn)∗). For any 1-form ω ∈ A1(U), we have

dωx(u, v) = ω′x(u)(v)− ω′x(v)(u).

It follows that the map
(u, v) 7→ ω′x(u)(v)

is symmetric iff dω = 0.

For a concrete example of exterior differentiation, consider

ω(x,y) =
−y

x2 + y2
e∗1 +

x

x2 + y2
e∗2 = f1(x, y)e∗1 + f2(x, y)e∗2.

Since

grad(f1)>(x,y) =

(
2xy

(x2 + y2)2

y2 − x2

(x2 + y2)2

)
grad(f2)>(x,y) =

(
y2 − x2

(x2 + y2)2

−2xy

(x2 + y2)2

)
,

if we write u1 =

(
u11

u12

)
and u2 =

(
u21

u22

)
, then we have

ω′(x,y)(u1)(u2) = (grad(f1)(x,y) · u1)e∗1(u2) + (grad(f2)(x,y) · u1)e∗2(u2)

=

(
2xy

(x2 + y2)2

y2 − x2

(x2 + y2)2

)(
u11

u12

)
e∗1

(
u21

u22

)

+

(
y2 − x2

(x2 + y2)2

−2xy

(x2 + y2)2

)(
u11

u12

)
e∗2

(
u21

u22

)
=

2xy(u11u21 − u12u22) + (y2 − x2)(u12u21 + u11u22)

(x2 + y2)2
.

A similar computation shows that

ω′(x,y)(u2)(u1) =
2xy(u11u21 − u12u22) + (y2 − x2)(u12u21 + u11u22)

(x2 + y2)2

= ω′(x,y)(u1)(u2),

and so
dω(x,y)(u1, u2) = ω′(x,y)(u1)(u2)− ω′(x,y)(u2)(u1) = 0.

Therefore dω(x,y) = 0 for all (x, y) ∈ U , that is, dω = 0.

The following observation is quite trivial but it will simplify notation: On Rn, we have
the projection function pri : Rn → R with pri(u1, . . . , un) = ui. Note that pri = e∗i , where
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(e1, . . . , en) is the canonical basis of Rn. Let xi : U → R be the restriction of pri to U . Then
note that x′i is the constant map given by

x′i(x) = pri, x ∈ U.

It follows that dxi = x′i is the constant function with value pri = e∗i . Now, since every p-form
ω can be uniquely expressed as

ωx =
∑
I

fI(x) e∗i1 ∧ · · · ∧ e
∗
ip =

∑
I

fI(x)e∗I , x ∈ U,

using Definition 4.2, we see immediately that ω can be uniquely written in the form

ω =
∑
I

fI(x) dxi1 ∧ · · · ∧ dxip , (∗1)

where the fI are smooth functions on U .

Observe that for f ∈ A0(U) = C∞(U,R), we have

dfx =
n∑
i=1

∂f

∂xi
(x) e∗i and df =

n∑
i=1

∂f

∂xi
dxi.

Proposition 4.2. For every p form ω ∈ Ap(U) with ω = fdxi1 ∧ · · · ∧ dxip, we have

dω = df ∧ dxi1 ∧ · · · ∧ dxip .

Proof. Recall that ωx = fe∗i1 ∧ · · · ∧ e
∗
ip = fe∗I , so

ω′x(u) = f ′x(u)e∗I = dfx(u)e∗I ,

and by Definition 4.3, we get

dωx(u1, . . . , up+1) =

p+1∑
i=1

(−1)i−1dfx(ui)e
∗
I(u1, . . . , ûi, . . . , up+1) = (dfx ∧ e∗I)(u1, . . . , up+1),

where the last equation is an instance of the equation stated just before Proposition 3.14.

In practice we use Proposition 4.2 to compute dω. For example, if we take the previous
example of

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy,
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Proposition 4.2 implies that

dω = d

(
−y

x2 + y2

)
∧ dx+ d

(
x

x2 + y2

)
∧ dy

=

(
2xy

(x2 + y2)2
dx+

y2 − x2

(x2 + y2)2
dy

)
∧ dx+

(
y2 − x2

(x2 + y2)2
dx− 2xy

(x2 + y2)2
dy

)
∧ dy

=
y2 − x2

(x2 + y2)2
dy ∧ dx+

y2 − x2

(x2 + y2)2
dx ∧ dy = 0.

We can now prove

Proposition 4.3. For all ω ∈ Ap(U) and all η ∈ Aq(U),

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

Proof. In view of the unique representation (∗), it is enough to prove the proposition when
ω = fe∗I and η = ge∗J . In this case, as ω ∧ η = fg e∗I ∧ e∗J , by Proposition 4.2 we have

d(ω ∧ η) = d(fg) ∧ e∗I ∧ e∗J
= ((df)g + f(dg)) ∧ e∗I ∧ e∗J
= (df)g ∧ e∗I ∧ e∗J + f(dg) ∧ e∗I ∧ e∗J
= df ∧ e∗I ∧ ge∗J + (−1)pfe∗I ∧ dg ∧ e∗J
= dω ∧ η + (−1)pω ∧ dη

since by Proposition 4.2, dω = df ∧ e∗I and dη = gJ ∧ e∗J .

We say that d is an anti-derivation of degree −1.

Finally, here is the crucial and almost magical property of d.

Proposition 4.4. For every p ≥ 0, the composition Ap(U)
d−→ Ap+1(U)

d−→ Ap+2(U) is
identically zero; that is

d ◦ d = 0,

which is an abbreviation for dp+1 ◦ dp = 0.

Proof. It is enough to prove the proposition when ω = fe∗I . We have

dωx = dfx ∧ e∗I =
∂f

∂x1

(x) e∗1 ∧ e∗I + · · ·+ ∂f

∂xn
(x) e∗n ∧ e∗I .

As e∗i ∧ e∗j = −e∗j ∧ e∗i and e∗i ∧ e∗i = 0, we get

(d ◦ d)ω =
n∑

i,j=1

∂2f

∂xi∂xj
(x) e∗i ∧ e∗j ∧ e∗I

=
∑
i<j

(
∂2f

∂xi∂xj
(x)− ∂2f

∂xj∂xi
(x)

)
e∗i ∧ e∗j ∧ e∗I = 0,

since partial derivatives commute (as f is smooth).



4.1. DIFFERENTIAL FORMS ON RN AND DE RHAM COHOMOLOGY 151

It turns out that Propositions 4.3 and 4.4 together with the fact that d coincides with
the derivative on A0(U) characterize the differential d.

Theorem 4.5. There is a unique linear map d : A∗(U) → A∗(U) with d = (dp) and
dp : Ap(U)→ Ap+1(U) for every p ≥ 0, such that

(1) df = f ′, for every f ∈ A0(U) = C∞(U,R).

(2) d ◦ d = 0.

(3) For every ω ∈ Ap(U) and every η ∈ Aq(U),

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

Proof. Existence has already been shown, so we only have to prove uniqueness. Let δ be
another linear map satisfying Conditions (1)–(3). By (1), df = δf = f ′ if f ∈ A0(U). In
particular, this hold when f = xi, with xi : U → R the restriction of pri to U . In this case,
we know that δxi = e∗i , the constant function e∗i = pri. By (2), δe∗i = 0. Using (3), we get
δe∗I = 0 for every nonempty subset I ⊆ {1, . . . , n}. If ω = fe∗I , by (3), we get

δω = δf ∧ e∗I + f ∧ δe∗I = δf ∧ e∗I = df ∧ e∗I = dω.

Finally, since every differential form is a linear combination of special forms fIe
∗
I , we conclude

that δ = d.

Propositions 4.2, 4.3 and 4.4 can be summarized by saying that A∗(U) together with the
product ∧ and the differential d is a differential graded algebra. As A∗(U) =

⊕
p≥0Ap(U)

and dp : Ap(U) → Ap+1(U), we can view d = (dp) as a linear map d : A∗(U) → A∗(U) such
that

d ◦ d = 0.

Let us consider one more example. Assume n = 3 and consider any function f ∈ A0(U).
We have

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

and the vector (
∂f

∂x
,

∂f

∂y
,

∂f

∂z

)
is the gradient of f . Next let

ω = Pdx+Qdy +Rdz
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be a 1-form on some open U ⊆ R3. An easy calculation yields

dω = dP ∧ dx+ dQ ∧ dy + dR ∧ dz

=

(
∂P

∂x
dx+

∂P

∂y
dy +

∂P

∂z
dz

)
∧ dx+

(
∂Q

∂x
dx+

∂Q

∂y
dy +

∂Q

∂z
dz

)
∧ dy

+

(
∂R

∂x
dx+

∂R

∂y
dy +

∂R

∂z
dz

)
∧ dz

=
∂P

∂y
dy ∧ dx+

∂P

∂z
dz ∧ dx+

∂Q

∂x
dx ∧ dy +

∂Q

∂z
dz ∧ dy +

∂R

∂x
dx ∧ dz +

∂R

∂y
dy ∧ dz

=

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

The vector field given by (
∂R

∂y
− ∂Q

∂z
,

∂P

∂z
− ∂R

∂x
,

∂Q

∂x
− ∂P

∂y

)
is the curl of the vector field given by (P,Q,R). Now if

η = Ady ∧ dz +Bdz ∧ dx+ Cdx ∧ dy

is a 2-form on R3, we get

dη = dA ∧ dy ∧ dz + dB ∧ dz ∧ dx+ dC ∧ dx ∧ dy

=

(
∂A

∂x
dx+

∂A

∂y
dy +

∂A

∂z
dz

)
∧ dy ∧ dz

+

(
∂B

∂x
dx+

∂B

∂y
dy +

∂B

∂z
dz

)
∧ dz ∧ dx

+

(
∂C

∂x
dx+

∂C

∂y
dy +

∂C

∂z
dz

)
∧ dx ∧ dy

=
∂A

∂x
dx ∧ dy ∧ dz +

∂B

∂y
dy ∧ dz ∧ dx+

∂C

∂z
dz ∧ dx ∧ dy

=

(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dx ∧ dy ∧ dz.

The real number
∂A

∂x
+
∂B

∂y
+
∂C

∂z

is called the divergence of the vector field (A,B,C).

When is there a smooth field (P,Q,R) whose curl is given by a prescribed smooth field
(A,B,C)? Equivalently, when is there a 1-form ω = Pdx+Qdy +Rdz such that

dω = η = Ady ∧ dz +Bdz ∧ dx+ Cdx ∧ dy?
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By Proposition 4.4 it is necessary that dη = 0; that is, (A,B,C) has zero divergence.
However, this condition is not sufficient in general; it depends on the topology of U . If U is
star-like, Poincaré’s Lemma (to be considered shortly) says that this condition is sufficient.

Definition 4.4. The diagram

A0(U)
d−→ A1(U) −→ · · · −→ Ap−1(U)

d−→ Ap(U)
d−→ Ap+1(U) −→ · · ·

is called the de Rham complex of U . It is a cochain complex .

Definition 4.5. A differential form ω is closed iff dω = 0; exact iff ω = dη for some
differential form η. For every p ≥ 0, let

Zp(U) = {ω ∈ Ap(U) | dω = 0} = Ker d : Ap(U) −→ Ap+1(U)

be the vector space of closed p-forms, also called p-cocycles , and for every p ≥ 1, let

Bp(U) = {ω ∈ Ap(U) | ∃η ∈ Ap−1(U), ω = dη} = Im d : Ap−1(U) −→ Ap(U)

be the vector space of exact p-forms, also called p-coboundaries . Set B0(U) = (0). Forms in
Ap(U) are also called p-cochains . As Bp(U) ⊆ Zp(U) (by Proposition 4.4), for every p ≥ 0,
we define the pth de Rham cohomology group of U as the quotient space

Hp
DR(U) = Zp(U)/Bp(U);

This is an abelian group under addition of cosets. An element of Hp
DR(U) is called a co-

homology class and is denoted [ω], where ω ∈ Zp(U) is a cocycle. The real vector space
H•DR(U) =

⊕
p≥0H

p
DR(U) is called the de Rham cohomology algebra of U . We also we define

the vector spaces Z∗(U) and B∗(U) by

Z∗(U) =
⊕
p≥0

Zp(U) and B∗(U) =
⊕
p≥0

Bp(U).

We often drop the subscript DR and write Hp(U) for Hp
DR(U) (resp. H•(U) for H•DR(U)),

when no confusion arises. Proposition 4.4 shows that every exact form is closed, but the
converse is false in general. Measuring the extent to which closed forms are not exact is the
object of de Rham cohomology .

For example, if we consider the form

ω(x,y) =
−y

x2 + y2
dx+

x

x2 + y2
dy,

on U = R2−{0}, we have dω = 0. Yet, it is not hard to show (using integration, see Madsen
and Tornehave [80], Chapter 1) that there is no smooth function f on U such that df = ω.
Thus, ω is a closed form which is not exact. This is because U is punctured.
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Observe that H0(U) = Z0(U) = {f ∈ C∞(U,R) | df = 0}; that is, H0(U) is the space of
locally constant functions on U , equivalently, the space of functions that are constant on the
connected components of U . Thus, the cardinality of H0(U) gives the number of connected
components of U . For a large class of open sets (for example, open sets that can be covered
by finitely many convex sets), the cohomology groups Hp(U) are finite dimensional.

Now, A∗(U) is a graded algebra with multiplication ∧.

Proposition 4.6. The vector space Z∗(U) is a subalgebra of A∗(U), and B∗(U) is an ideal
in Z∗(U).

Proof. The vector space Z∗(U) is a subalgebra of A∗(U), because

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη,

so dω = 0 and dη = 0 implies d(ω ∧ η) = 0. The vector space B∗(U) is an ideal in Z∗(U),
because if ω = dη and dτ = 0, then

d(η ∧ τ) = dη ∧ τ + (−1)p−1η ∧ dτ = ω ∧ τ,

with η ∈ Ap−1(U).

Therefore, H•DR = Z∗(U)/B∗(U) inherits a graded algebra structure from A∗(U). Ex-
plicitly, the multiplication in H•DR is given by

[ω] [η] = [ω ∧ η].

We now consider the action of smooth maps ϕ : U → U ′ on differential forms in A∗(U ′).
We will see that ϕ induces a map from A∗(U ′) to A∗(U) called a pull-back map. This
corresponds to a change of variables .

4.2 Pull-Back of Differential Forms

Recall Proposition 3.11 which states that if f : E → F is any linear map between two
finite-dimensional vector spaces E and F , then

µ
(( p∧

f>
)

(ω)
)

(u1, . . . , up) = µ(ω)(f(u1), . . . , f(up)), ω ∈
p∧
F ∗, u1, . . . , up ∈ E.

We apply this proposition with E = Rn, F = Rm, and f = ϕ′x (x ∈ U), and get

µ
(( p∧

(ϕ′x)
>
)

(ωϕ(x))
)

(u1, . . . , up) = µ(ωϕ(x))(ϕ
′
x(u1), . . . , ϕ′x(up)), ω ∈ Ap(V ), ui ∈ Rn.

This gives us the behavior of
∧p(ϕ′x)

> under the identification of
∧p(R)∗ and Altn(Rn;R) via

the isomorphism µ. Consequently, denoting
∧p(ϕ′x)

> by ϕ∗, we make the following definition:
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Definition 4.6. Let U ⊆ Rn and V ⊆ Rm be two open subsets. For every smooth map
ϕ : U → V , for every p ≥ 0, we define the map ϕ∗ : Ap(V )→ Ap(U) by

ϕ∗(ω)x(u1, . . . , up) = ωϕ(x)(ϕ
′
x(u1), . . . , ϕ′x(up)),

for all ω ∈ Ap(V ), all x ∈ U , and all u1, . . . , up ∈ Rn. We say that ϕ∗(ω) (for short, ϕ∗ω) is
the pull-back of ω by ϕ.

As ϕ is smooth, ϕ∗ω is a smooth p-form on U . The maps ϕ∗ : Ap(V )→ Ap(U) induce a
map also denoted ϕ∗ : A∗(V )→ A∗(U). Using the chain rule we obtain the following result.

Proposition 4.7. The following identities hold:

id∗ = id,

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Here is an example of Definition 4.6. Let U = [0, 1]× [0, 1] ⊂ R2 and let V = R3. Define
ϕ : Q→ R3 as ϕ(u, v) = (ϕ1(u, v), ϕ2(u, v), ϕ3(u, v)) = (x, y, z) where

x = u+ v, y = u− v, z = uv.

Let w = xdy ∧ dz + ydx ∧ dz be a 2-form in V . Clearly

ϕ′(u,v) =

1 1
1 −1
v u

 .

Set u1 =

(
u11

u12

)
and u2 =

(
u21

u22

)
. Definition 4.6 implies that the pull back of ω into U is

ϕ∗(ω)(u,v)(u1, u2) = ωϕ(u,v)(ϕ
′
(u,v)(u1), ϕ′(u,v)(u2))

= ωϕ(u,v)

1 1
1 −1
v u

(u11

u12

)
,

1 1
1 −1
v u

(u21

u22

)
= ωϕ(u,v)

 u11 + u12

u11 − u12

vu11 + uu12

 ,

 u21 + u22

u21 − u22

vu21 + uu22


= (u+ v)dy ∧ dz

 u11 + u12

u11 − u12

vu11 + uu12

 ,

 u21 + u22

u21 − u22

vu21 + uu22


+ (u− v)dx ∧ dz

 u11 + u12

u11 − u12

vu11 + uu12

 ,

 u21 + u22

u21 − u22

vu21 + uu22


= (u+ v)

∣∣∣∣ u11 − u12 u21 − u22

vu11 + uu12 vu21 + uu22

∣∣∣∣+ (u− v)

∣∣∣∣ u11 + u12 u21 + u22

vu11 + uu12 vu21 + uu22

∣∣∣∣
= (u+ v)(u+ v)(u11u22 − u21u12) + (u− v)(u− v)(u11u22 − u21u12)
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= (u+ v)(u+ v)

∣∣∣∣u11 u21

u12 u22

∣∣∣∣+ (u− v)(u− v)

∣∣∣∣u11 u21

u12 u22

∣∣∣∣
= (u+ v)(u+ v)du ∧ dv(u1, u2) + (u− v)(u− v)du ∧ dv(u1, u2)

= 2(u2 + v2)du ∧ dv(u1, u2).

As the preceding example demonstrates, Definition 4.6 is not convenient for computa-
tions, so it is desirable to derive rules that yield a recursive definition of the pull-back.

The first rule has to do with the constant form ω = e∗i .

Proposition 4.8. We have

ϕ∗e∗i = dϕi, with ϕi = pri ◦ ϕ.

Proof. We have ϕx = (ϕ1)xe1 + · · · + (ϕm)xem for all x ∈ U , ϕ′x(u) = (ϕ1)′x(u)e1 + · · · +
(ϕm)′x(u)em, and

(ϕi)
′
x(u) =

n∑
l=1

∂ϕi
∂xl

(x)ul =
n∑
l=1

∂ϕi
∂xl

(x) e∗l (u),

so

ϕ∗(e∗i )x(u) = e∗i (ϕ
′
x(u))

= e∗i ((ϕ1)′x(u)e1 + · · ·+ (ϕm)′x(u)em)

= (ϕi)
′
x(u)

=
n∑
l=1

∂ϕi
∂xl

(x) e∗l (u) = d(ϕi)x(u),

as claimed.

The next proposition shows that the pull-back behaves well with respect to the wedge
and the exterior derivative and provides the rest of the computational rules necessary for
efficiently computing a pull-back.

Proposition 4.9. Let U ⊆ Rn and V ⊆ Rm be two open sets and let ϕ : U → V be a smooth
map. Then

(i) ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η, for all ω ∈ Ap(V ) and all η ∈ Aq(V ).

(ii) ϕ∗(f) = f ◦ ϕ, for all f ∈ A0(V ).

(iii) dϕ∗(ω) = ϕ∗(dω), for all ω ∈ Ap(V ); that is, the following diagram commutes for all
p ≥ 0:

Ap(V )
ϕ∗ //

d
��

Ap(U)

d
��

Ap+1(V )
ϕ∗ // Ap+1(U).
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Proof. (i) (See Madsen and Tornehave [80], Chapter 3). For any x ∈ U and any vectors
u1, . . . , up+q ∈ Rn (with p, q ≥ 1), we have

ϕ∗(ω ∧ η)x(u1, . . . , up+q) = (ω ∧ η)ϕ(x)(ϕ
′
x(u1), . . . , ϕ′x(up+q))

=
∑

σ∈shuffle(p,q)

sgn(σ)ωϕ(x)(ϕ
′
x(uσ(1)), . . . , ϕ

′
x(uσ(p)))

ηϕ(x)(ϕ
′
x(uσ(p+1)), . . . , ϕ

′
x(uσ(p+q)))

=
∑

σ∈shuffle(p,q)

sgn(σ)ϕ∗(ω)x(uσ(1), . . . , uσ(p))

ϕ∗(η)x(uσ(p+1), . . . , uσ(p+q))

= (ϕ∗(ω)x ∧ ϕ∗(η)x)(u1, . . . , up+q).

If p = 0 or q = 0, the proof is similar but simpler. We leave it as exercise to the reader.

(ii) If f ∈ A0(V ) = C∞(V ), by definition ϕ∗(f)x = f(ϕ(x)), which means that ϕ∗(f) =
f ◦ ϕ.

First we prove (iii) in the case ω ∈ A0(V ). Using (i) and (ii) and the fact that ϕ∗e∗i = dϕi,
since

df =
m∑
k=1

∂f

∂xk
e∗k,

we have

ϕ∗(df) =
m∑
k=1

ϕ∗
(
∂f

∂xk

)
∧ ϕ∗(e∗k)

=
m∑
k=1

(
∂f

∂xk
◦ ϕ
)
∧

(
n∑
l=1

∂ϕk
∂xl

e∗l

)

=
m∑
k=1

n∑
l=1

(
∂f

∂xk
◦ ϕ
)(

∂ϕk
∂xl

)
e∗l

=
n∑
l=1

(
m∑
k=1

(
∂f

∂xk
◦ ϕ
)
∂ϕk
∂xl

)
e∗l

=
n∑
l=1

∂(f ◦ ϕ)

∂xl
e∗l

= d(f ◦ ϕ) = d(ϕ∗(f)).

For the case where ω = fe∗I , we know by Proposition 4.2 that dω = df ∧ e∗I . We claim that

dϕ∗(e∗I) = 0.
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To prove this first we show by induction on p that

dϕ∗(e∗I) = d(ϕ∗(e∗i1 ∧ · · · ∧ e
∗
ip)) = d(ϕ∗(e∗i1) ∧ · · · ∧ ϕ∗(e∗ip))

=

p∑
k=1

(−1)k−1ϕ∗(e∗i1) ∧ · · · ∧ d(ϕ∗(e∗ik)) ∧ · · · ∧ ϕ
∗(e∗ip).

The base case p = 1 is trivial. Assuming that the induction hypothesis holds for any p ≥ 1,
with I = {i1 < i2 < · · · < ip+1}, using Proposition 4.3, we have

dϕ∗(e∗I) = d(ϕ∗(e∗i1) ∧ ϕ∗(e∗i2) ∧ · · · ∧ ϕ∗(e∗ip+1
))

= d(ϕ∗(e∗i1)) ∧ ϕ∗(e∗i2) ∧ · · · ∧ ϕ∗(e∗ip+1
)

+ (−1)1ϕ∗(e∗i1) ∧ d(ϕ∗(e∗i2) ∧ · · · ∧ ϕ∗(e∗ip+1
))

= d(ϕ∗(e∗i1)) ∧ ϕ∗(e∗i2) ∧ · · · ∧ ϕ∗(e∗ip+1
)

− ϕ∗(e∗i1) ∧
(p+1∑
k=2

(−1)k−2ϕ∗(e∗i2) ∧ · · · ∧ d(ϕ∗(e∗ik)) ∧ · · · ∧ ϕ
∗(e∗ip+1

)

)
= d(ϕ∗(e∗i1)) ∧ ϕ∗(e∗i2) ∧ · · · ∧ ϕ∗(e∗ip+1

)

+

p+1∑
k=2

(−1)k−1ϕ∗(e∗i1) ∧ ϕ∗(e∗i2) ∧ · · · ∧ d(ϕ∗(e∗ik)) ∧ · · · ∧ ϕ
∗(e∗ip+1

)

=

p+1∑
k=1

(−1)k−1ϕ∗(e∗i1) ∧ · · · ∧ d(ϕ∗(e∗ik)) ∧ · · · ∧ ϕ
∗(e∗ip+1

),

establishing the induction hypothesis.

As a consequence of the above equation, we have

dϕ∗(e∗I) = d(ϕ∗(e∗i1) ∧ · · · ∧ ϕ∗(e∗ip))

=

p∑
k=1

(−1)k−1ϕ∗(e∗i1) ∧ · · · ∧ d(ϕ∗(e∗ik)) ∧ · · · ∧ ϕ
∗(e∗ip) = 0,

since ϕ∗(e∗ik) = dϕik and d ◦ d = 0. Consequently, Proposition 4.3 implies that

d(ϕ∗(f) ∧ ϕ∗(e∗I)) = d(ϕ∗f) ∧ ϕ∗(e∗I).

Then we have

ϕ∗(dω) = ϕ∗(df) ∧ ϕ∗(e∗I) = d(ϕ∗f) ∧ ϕ∗(e∗I) = d(ϕ∗(f) ∧ ϕ∗(e∗I)) = d(ϕ∗(fe∗I)) = d(ϕ∗ω).

Since every differential form is a linear combination of special forms fe∗I , we are done.
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We use Proposition 4.9 to recompute the pull-back of w = x dy ∧ dz + y dx ∧ dz. Recall
Q = [0, 1]× [0, 1] ⊂ R2 and ϕ : U → R3 was defined via

x = u+ v, y = u− v, z = uv.

Proposition 4.9 implies that

ϕ∗(ω) = (u+ v)ϕ∗(dy) ∧ ϕ∗(dz) + (u− v)ϕ∗(dx) ∧ ϕ∗(dz)

= (u+ v)d(ϕ∗y) ∧ d(ϕ∗z) + (u− v)d(ϕ∗x) ∧ d(ϕ∗z)

= (u+ v)d(u− v) ∧ d(uv) + (u− v)d(u+ v) ∧ d(uv)

= (u+ v)(du− dv) ∧ (vdu+ udv) + (u− v)(du+ dv) ∧ (vdu+ udv)

= 2(u2 + v2)du ∧ dv.

We may generalize the techniques of the preceding calculation by using Proposition 4.9
to compute ϕ∗ω where ϕ : U → V is a smooth map between two open subsets U and V of Rn

and ω = fdy1 ∧ · · · ∧ dyn is a p-form on V . We can write ϕ = (ϕ1, . . . , ϕn) with ϕi : U → R.
By Proposition 4.9, we have

ϕ∗ω = ϕ∗(f)ϕ∗(dy1) ∧ · · · ∧ ϕ∗(dyn)

= ϕ∗(f)d(ϕ∗y1) ∧ · · · ∧ d(ϕ∗yn)

= (f ◦ ϕ)d(ϕ∗y1) ∧ · · · ∧ d(ϕ∗yn).

However, ϕ∗yi = ϕi so we have

ϕ∗ω = (f ◦ ϕ)dϕ1 ∧ · · · ∧ dϕn.

For any x ∈ U , since

d(ϕi)x =
n∑
j=1

∂ϕi
∂xj

(x) dxj

we get

dϕ1 ∧ · · · ∧ dϕn = det

(
∂ϕi
∂xj

(x)

)
dx1 ∧ · · · ∧ dxn = J(ϕ)x dx1 ∧ · · · ∧ dxn

where

J(ϕ)x = det

(
∂ϕi
∂xj

(x)

)
is the Jacobian of ϕ at x ∈ U . It follows that

(ϕ∗ω)x = ϕ∗(fdy1 ∧ · · · ∧ dyn)x = f(ϕ(x))J(ϕ)x dx1 ∧ · · · ∧ dxn.

The fact that d and pull-back commutes is an important fact. It allows us to show that
a map ϕ : U → V induces a map H•(ϕ) : H•(V ) → H•(U) on cohomology, and it is crucial
in generalizing the exterior differential to manifolds.
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To a smooth map ϕ : U → V , we associate the map Hp(ϕ) : Hp(V )→ Hp(U) given by

Hp(ϕ)([ω]) = [ϕ∗(ω)].

This map is well defined, because if we pick any representative ω + dη in the cohomology
class [ω] specified by the closed form ω, then

dϕ∗ω = ϕ∗dω = 0,

so ϕ∗ω is closed, and

ϕ∗(ω + dη) = ϕ∗ω + ϕ∗(dη) = ϕ∗ω + dϕ∗η,

which shows that Hp(ϕ)([ω]) is well defined. It is also clear that

Hp+q(ϕ)([ω][η]) = Hp(ϕ)([ω])Hq(ϕ)([η]),

which means that H•(ϕ) is a homomorphism of graded algebras. We often denote H•(ϕ) by
ϕ∗.

We conclude this section by stating without proof an important result known as the
Poincaré Lemma. Recall that a subset S ⊆ Rn is star-shaped iff there is some point c ∈ S
such that for every point x ∈ S, the closed line segment [c, x] joining c and x is entirely
contained in S.

Theorem 4.10. (Poincaré’s Lemma) If U ⊆ Rn is any star-shaped open set, then we have
Hp(U) = (0) for p > 0 and H0(U) = R. Thus, for every p ≥ 1, every closed form ω ∈ Ap(U)
is exact.

Sketch of proof. Pick c so that U is star-shaped w.r.t. c and let g : U → U be the constant
function with value c. Then we see that

g∗ω =

{
0 if ω ∈ Ap(U), with p ≥ 1,
ω(c) if ω ∈ A0(U),

where ω(c) denotes the constant function with value ω(c). The trick is to find a family of
linear maps hp : Ap(U)→ Ap−1(U), for p ≥ 1, with h0 = 0, such that

d ◦ hp + hp+1 ◦ d = id− g∗, p > 0,

called a chain homotopy . Indeed, if ω ∈ Ap(U) is closed and p ≥ 1, we get dhpω = ω, so ω is
exact, and if p = 0 we get h1dω = 0 = ω − ω(c), so ω is constant. It remains to find the hp,
which is not obvious. A construction of these maps can be found in Madsen and Tornehave
[80] (Chapter 3), Warner [115] (Chapter 4), Cartan [22] (Section 2) Morita [87] (Chapter
3).
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In Section 4.3, we promote differential forms to manifolds. As preparation, note that
every open subset U ⊆ Rn is a manifold, and that for every x ∈ U , the tangent space TxU
to U at x is canonically isomorphic to Rn. It follows that the tangent bundle TU and the
cotangent bundle T ∗U are trivial, namely TU ∼= U×Rn and T ∗U ∼= U×(Rn)∗, so the bundle

k∧
T ∗U ∼= U ×

k∧
(Rn)∗

is also trivial. Consequently, we can view Ak(U) as the set of smooth sections of the vector
bundle

∧k T ∗(U). The generalization to manifolds is then to define the space of differential
p-forms on a manifold M as the space of smooth sections of the bundle

∧k T ∗M .

4.3 Differential Forms on Manifolds

Let M be any smooth manifold of dimension n. We define the vector bundle
∧
T ∗M as the

direct sum bundle ∧
T ∗M =

n⊕
k=0

k∧
T ∗M ;

see Section 10.5 for details.

Recall that a smooth section of the bundle
∧k T ∗M is a smooth function ω : M →∧k T ∗M such that ω(p) ∈

∧k T ∗pM for all p ∈M .

Definition 4.7. Let M be any smooth manifold of dimension n. The set Ak(M) of smooth
differential k-forms on M is the set of smooth sections Γ(M,

∧k T ∗M) of the bundle
∧k T ∗M ,

and the set A∗(M) of all smooth differential forms on M is the set of smooth sections
Γ(M,

∧
T ∗M) of the bundle

∧
T ∗M .

Observe that A0(M) ∼= C∞(M,R), the set of smooth functions on M , since the bundle∧0 T ∗M is isomorphic to M × R, and smooth sections of M × R are just graphs of smooth
functions on M . We also write C∞(M) for C∞(M,R). If ω ∈ A∗(M), we often write ωp for
ω(p).

Definition 4.7 is quite abstract, and it is important to get a more down-to-earth feeling
by taking a local view of differential forms, namely with respect to a chart. So let (U,ϕ) be a
local chart on M , with ϕ : U → Rn, and let xi = pri ◦ϕ, the ith local coordinate (1 ≤ i ≤ n);
see Tu [111] (Chapter 3, §8) or Gallier and Quaintance [49]. Recall that for any p ∈ U , the
vectors (

∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

form a basis of the tangent space TpM . Furthermore, the linear forms (dx1)p, . . . , (dxn)p
form a basis of T ∗pM , (where (dxi)p, the differential of xi at p, is identified with the linear
form such that dfp(v) = v(f), for every smooth function f on U and every v ∈ TpM). The
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basis ((dx1)p, . . . , (dxn)p) of (TpM)∗ is the dual of the basis

((
∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

)
of TpM .

Indeed, since xi = pri ◦ ϕ, we have

(dxi)p

((
∂

∂xj

)
p

)
=

(
∂

∂xj

)
p

xi =
∂(pri ◦ ϕ ◦ ϕ−1)

∂Xj

∣∣∣∣
p

=
∂ pri
∂Xj

∣∣∣∣
p

= δij.

Consequently, locally on U , every k-form ω ∈ Ak(M) can be written uniquely as

ωp =
∑
I

fI(p)dxi1 ∧ · · · ∧ dxik =
∑
I

fI(p)dxI , p ∈ U,

where I = {i1, . . . , ik} ⊆ {1, . . . , n}, with i1 < . . . < ik and dxI = dxi1 ∧ · · · ∧ dxik .
Furthermore, each fI is a smooth function on U .

Remark: We define the set of smooth (r, s)-tensor fields as the set Γ(M,T r,s(M)) of smooth
sections of the tensor bundle T r,s(M) = T⊗rM ⊗ (T ∗M)⊗s. Tensor fields are discussed quite
extensively in Chapter 5.

The operations on the algebra
∧
T ∗M yield operations on differential forms using point-

wise definitions. If ω, η ∈ A∗(M) and λ ∈ R, then for every x ∈M ,

(ω + η)x = ωx + ηx

(λω)x = λωx

(ω ∧ η)x = ωx ∧ ηx.

Actually, it is necessary to check that the resulting forms are smooth, but this is easily done
using charts. When f ∈ A0(M), we write fω instead of f ∧ ω. It follows that A∗(M) is a
graded real algebra and a C∞(M)-module.

Proposition 4.1 generalizes immediately to manifolds.

Proposition 4.11. For all forms ω ∈ Ar(M) and η ∈ As(M), we have

η ∧ ω = (−1)pqω ∧ η.

For any smooth map ϕ : M → N between two manifolds M and N , we have the
differential map dϕ : TM → TN , also a smooth map, and for every p ∈ M , the map
dϕp : TpM → Tϕ(p)N is linear. As in Section 4.1, Proposition 3.11 gives us the formula

µ
(( k∧

(dϕp)
>
)

(ωϕ(p))
)

(u1, . . . , uk) = µ(ωϕ(p))(dϕp(u1), . . . , dϕp(uk)), ω ∈ Ak(N),

for all u1, . . . , uk ∈ TpM . This gives us the behavior of
∧k(dϕp)

> under the identification of∧k T ∗pM and Altk(TpM ;R) via the isomorphism µ. Here is the extension of Definition 4.6
to differential forms on a manifold.
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Definition 4.8. For any smooth map ϕ : M → N between two smooth manifolds M and
N , for every k ≥ 0, we define the map ϕ∗ : Ak(N)→ Ak(M) by

ϕ∗(ω)p(u1, . . . , uk) = ωϕ(p)(dϕp(u1), . . . , dϕp(uk)),

for all ω ∈ Ak(N), all p ∈M , and all u1, . . . , uk ∈ TpM . We say that ϕ∗(ω) (for short, ϕ∗ω)
is the pull-back of ω by ϕ.

The maps ϕ∗ : Ak(N)→ Ak(M) induce a map also denoted ϕ∗ : A∗(N)→ A∗(M). Using
the chain rule, we check immediately that

id∗ = id,

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

We need to check that ϕ∗ω is smooth, and for this it is enough to check it locally on a
chart (U, ψ). For any chart (V, θ) on N such that ϕ(U) ⊆ V , on V we know that ω ∈ Ak(N)
can be written uniquely as

ω =
∑
I

fIdxi1 ∧ · · · ∧ dxik ,

with fI smooth on V , and it is easy to see (using the definition) that locally on U we have

ϕ∗ω =
∑
I

(fI ◦ ϕ)d(xi1 ◦ ϕ) ∧ · · · ∧ d(xik ◦ ϕ), (†)

which is smooth.

In the special case of M = Rn, ϕ : M → N is a parametrization of N , and (†) is what we
use to efficiently calculate the pull-back of ω on the embedded manifold N . For example, let
M = {(θ, ϕ) : 0 < θ < π, 0 < ϕ < 2π} ⊂ R2, N = S2 and ψ : M → N the parametrization
of S2 given by

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ.

See Figure 4.1. Let w = x dy be a form on S2. The pull-back of ω into M is calculated via
(†) as

ψ∗w = sin θ cosϕd(sin θ sinϕ)

= sin θ cosϕ(cos θ sinϕdθ + sin θ cosϕdϕ),

where we applied Proposition 4.2 since M ⊂ R2.

Remark: The fact that the pull-back of differential forms makes sense for arbitrary smooth
maps ϕ : M → N , and not just diffeomorphisms, is a major technical superiority of forms
over vector fields.
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z

x

y

Θ

φ

Figure 4.1: The spherical coordinates of S2.

The next step is to define d on A∗(M). There are several ways to proceed, but since
we already considered the special case where M is an open subset of Rn, we proceed using
charts.

Given a smooth manifold M of dimension n, let (U,ϕ) be any chart on M . For any
ω ∈ Ak(M) and any p ∈ U , define (dω)p as follows: If k = 0, that is ω ∈ C∞(M), let

(dω)p = dωp, the differential of ω at p,

and if k ≥ 1, let
(dω)p = ϕ∗

(
d((ϕ−1)∗ω)ϕ(p)

)
p
,

where d is the exterior differential on Ak(ϕ(U)). More explicitly, (dω)p is given by

(dω)p(u1, . . . , uk+1) = d((ϕ−1)∗ω)ϕ(p)(dϕp(u1), . . . , dϕp(uk+1)), (∗∗)

for every p ∈ U and all u1, . . . , uk+1 ∈ TpM . Observe that the above formula is still valid
when k = 0 if we interpret the symbold d in d((ϕ−1)∗ω)ϕ(p) = d(ω◦ϕ−1)ϕ(p) as the differential.

Since ϕ−1 : ϕ(U)→ U is map whose domain is an open subset W = ϕ(U) of Rn, the form
(ϕ−1)∗ω is a differential form in A∗(W ), so d((ϕ−1)∗ω) is well-defined.

The formula at Line (∗∗) encapsulates the following “natural” three step procedure:

Step 1: Take the form ω on the manifold M and precompose ω with the parameterization ϕ−1

so that (ϕ−1)∗ω is now a form in U , a subset of Rm, where m is the dimension of M .

Step 2: Differentiate (ϕ−1)∗ω via Proposition 4.2.

Step 3: Compose the result of Step 2 with the chart map ϕ and pull the differential form on
U back into M .
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We need to check that the definition at Line (∗∗) does not depend on the chart (U,ϕ).

Proof. For any other chart (V, ψ), with U ∩V 6= ∅, the map θ = ψ ◦ϕ−1 is a diffeomorphism
between the two open subsets ϕ(U ∩ V ) and ψ(U ∩ V ), and ψ = θ ◦ ϕ. Let x = ϕ(p) and
y = ψ(p). We need to check that

d((ϕ−1)∗ω)x(dϕp(u1), . . . , dϕp(uk+1)) = d((ψ−1)∗ω)y(dψp(u1), . . . , dψp(uk+1)),

for every p ∈ U ∩ V and all u1, . . . , uk+1 ∈ TpM . However, y = ψ(p) = θ(ϕ(p)) = θ(x), so

d((ψ−1)∗ω)y(dψp(u1), . . . , dψp(uk+1)) = d((ϕ−1◦θ−1)∗ω)θ(x)(d(θ◦ϕ)p(u1), . . . , d(θ◦ϕ)p(uk+1)).

Since
(ϕ−1 ◦ θ−1)∗ = (θ−1)∗ ◦ (ϕ−1)∗

and, by Proposition 4.9 (iii),

d(((θ−1)∗ ◦ (ϕ−1)∗)ω) = d((θ−1)∗((ϕ−1)∗ω)) = (θ−1)∗(d((ϕ−1)∗ω)),

we get

d((ϕ−1 ◦ θ−1)∗ω)θ(x)(d(θ ◦ ϕ)p(u1), . . . , d(θ ◦ ϕ)p(uk+1))

= (θ−1)∗(d((ϕ−1)∗ω))θ(x)(d(θ ◦ ϕ)p(u1), . . . , d(θ ◦ ϕ)p(uk+1)).

Then by Definition 4.8, we obtain

(θ−1)∗(d((ϕ−1)∗ω))θ(x)(d(θ ◦ ϕ)p(u1), . . . , d(θ ◦ ϕ)p(uk+1))

= d((ϕ−1)∗ω)x((dθ
−1)θ(x)(d(θ ◦ ϕ)p(u1)), . . . , (dθ−1)θ(x)(d(θ ◦ ϕ)p(uk+1))).

As (dθ−1)θ(x)(d(θ ◦ ϕ)p(ui)) = d(θ−1 ◦ (θ ◦ ϕ))p(ui) = dϕp(ui), by the chain rule, we obtain

d((ψ−1)∗ω)θ(x)(dψp(u1), . . . , dψp(uk+1)) = d((ϕ−1)∗ω)x(dϕp(u1), . . . , dϕp(uk+1)),

as desired.

Observe that (dω)p is smooth on U , and as our definition of (dω)p does not depend on
the choice of a chart, the forms (dω) � U agree on overlaps and yield a differential form dω
defined on the whole of M . Thus we can make the following definition:

Definition 4.9. If M is any smooth manifold, there is a linear map d : Ak(M)→ Ak+1(M)
for every k ≥ 0, such that for every ω ∈ Ak(M), for every chart (U,ϕ), for every p ∈ U , if
k = 0, that is ω ∈ C∞(M), then

(dω)p = dωp, the differential of ω at p,

else if k ≥ 1, then
(dω)p = ϕ∗

(
d((ϕ−1)∗ω)ϕ(p)

)
p
,

where d is the exterior differential on Ak(ϕ(U)) from Definition 4.3. We obtain a linear map
d : A∗(M)→ A∗(M) called exterior differentiation.
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To explicitly demonstrate Definition 4.9, we return to our previous example of
ψ : M → S2 and ω = xdy considered as a one form on S2. Note that

ψ(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)

is a parameterization of the S2 and hence

ψ−1(x, y, z) = (cos−1(z), tan−1(y/x))

provides the structure of a chart on S2. We already found that the pull-back of ω into M is

ψ∗ω = sin θ cosϕ cos θ sinϕdθ + sin θ cosϕ sin θ cosϕdϕ.

Proposition 4.2 is now applied ψ∗ω to give us

dψ∗ω = d(sin θ cosϕ cos θ sinϕdθ) + d(sin θ cosϕ sin θ cosϕdϕ)

= d(sin θ cosϕ cos θ sinϕ) ∧ dθ + d(sin θ cosϕ sin θ cosϕ) ∧ dϕ

=
∂

∂ϕ
(sin θ cosϕ cos θ sinϕ)dϕ ∧ dθ +

∂

∂θ
(sin θ cosϕ sin θ cosϕ)dθ ∧ dϕ

= sin θ cos θ(− sin2 ϕ+ cos2 ϕ)dϕ ∧ dθ + 2 sin θ cos θ cos2 ϕdθ ∧ dϕ
= sin θ cos θ(sin2 ϕ+ cos2 ϕ)dθ ∧ dϕ
= sin θ cos θ dθ ∧ dϕ.

It just remains to compose dψ∗ω with ψ−1 to obtain

dω = (ψ−1)∗(dψ∗ω) = z
√

1− z2d(cos−1 z) ∧ d(tan−1 y/x)

= z
√

1− z2

(
− 1√

1− z2
dz

)
∧

(
− y
x2

1 + y2

x2

dx+
1
x

1 + y2

x2

dy

)

= −z dz ∧
(
− y

x2 + y2
dx+

x

x2 + y2
dy

)
=

zy

x2 + y2
dz ∧ dx− zx

x2 + y2
dz ∧ dy.

Since x2 + y2 + z2 = 1, we obtain the constraint

x dx+ y dy + z dz = 0,

which implies that −z dz = x dx+ y dy. Then we find that dω is equivalent to

dω = −z dz ∧
(
− y

x2 + y2
dx+

x

x2 + y2
dy

)
= (x dx+ y dy) ∧

(
− y

x2 + y2
dx+

x

x2 + y2
dy

)
=

x2

x2 + y2
dx ∧ dy +

y2

x2 + y2
dx ∧ dy = dx ∧ dy,
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where we interpret dx∧ dy as the restriction of 2-form in R3 to S2, i.e. dx∧ dy|S2 is defined
as

(dx ∧ dy|S2)p(v) = (dx ∧ dy)p(v), p ∈ S2, v ∈ TpS2.

Propositions 4.3, 4.4 and 4.9 generalize to manifolds.

Proposition 4.12. Let M and N be smooth manifolds and let ϕ : M → N be a smooth map.

(1) For all ω ∈ Ar(M) and all η ∈ As(M),

d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη.

(2) For every k ≥ 0, the composition Ak(M)
d−→ Ak+1(M)

d−→ Ak+2(M) is identically
zero; that is,

d ◦ d = 0.

(3) ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η, for all ω ∈ Ar(N) and all η ∈ As(N).

(4) ϕ∗(f) = f ◦ ϕ, for all f ∈ A0(N).

(5) dϕ∗(ω) = ϕ∗(dω), for all ω ∈ Ak(N); that is, the following diagram commutes for all
k ≥ 0.

Ak(N)
ϕ∗ //

d
��

Ak(M)

d
��

Ak+1(N)
ϕ∗ // Ak+1(M)

Proof. It is enough to prove these properties in a chart (U,ϕ), which is easy. We only check
(2). We have

(d(dω))p = d
(
ϕ∗
(
d((ϕ−1)∗ω)ϕ(p)

))
p

= ϕ∗
[
d
(

(ϕ−1)∗
(
ϕ∗
(
d((ϕ−1)∗ω)ϕ(p)

)))
ϕ(p)

]
p

= ϕ∗
[
d
(
d((ϕ−1)∗ω)ϕ(p)

)
ϕ(p)

]
p

= 0,

as (ϕ−1)∗ ◦ ϕ∗ = (ϕ ◦ ϕ−1)∗ = id∗ = id and d ◦ d = 0 on forms in Ak(ϕ(U)), with ϕ(U) ⊆
Rn.

As a consequence, Definition 4.5 of the de Rham cohomology generalizes to manifolds.
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Definition 4.10. For every manifold M , we have the de Rham complex

A0(M)
d−→ A1(M) −→ · · · −→ Ak−1(M)

d−→ Ak(M)
d−→ Ak+1(M) −→ · · · ,

and we can define the cohomology groups Hk
DR(M) and the graded cohomology algebra

H•DR(M). For every k ≥ 0, let

Zk(M) = {ω ∈ Ak(M) | dω = 0} = Ker d : Ak(M) −→ Ak+1(M)

be the vector space of closed k-forms, and for every k ≥ 1, let

Bk(M) = {ω ∈ Ak(M) | ∃η ∈ Ak−1(M), ω = dη} = Im d : Ak−1(M) −→ Ak(M)

be the vector space of exact k-forms, with B0(M) = (0). Then, for every k ≥ 0, we define
the kth de Rham cohomology group of M as the quotient space

Hk
DR(M) = Zk(M)/Bk(M).

This is an abelian group under addition of cosets. The real vector space H•DR(M) =⊕
k≥0H

k
DR(M) is called the de Rham cohomology algebra of M . We often drop the sub-

script DR when no confusion arises. Every smooth map ϕ : M → N between two manifolds
induces an algebra map ϕ∗ : H•(N)→ H•(M).

Another important property of the exterior differential is that it is a local operator , which
means that the value of dω at p only depends of the values of ω near p. Not all operators
are local. For example, the operator I : C∞([a, b])→ C∞([a, b]) given by

I(f) =

∫ b

a

f(t) dt,

where I(f) is the constant function on [a, b], is not local since for any point p ∈ [a, b], the
calculation of I(f) requires evaluating f over [a, b].

More generally, we have the following definition.

Definition 4.11. A linear map D : A∗(M)→ A∗(M) is a local operator if for all k ≥ 0, for
any nonempty open subset U ⊆M and for any two k-forms ω, η ∈ Ak(M), if ω � U = η � U ,
then (Dω) � U = (Dη) � U . Since D is linear, the above condition is equivalent to saying
that for any k-form ω ∈ Ak(M), if ω � U = 0, then (Dω) � U = 0.

Since Property (1) of Proposition 4.12 comes up a lot, we introduce the following defini-
tion.

Definition 4.12. Given any smooth manifold M , a linear map D : A∗(M) → A∗(M) is
called an antiderivation if for all r, s ≥ 0, for all ω ∈ Ar(M) and all η ∈ As(M),

D(ω ∧ η) = Dω ∧ η + (−1)rω ∧Dη.

The antiderivation is of degree m ∈ Z if D : Ap(M)→ Ap+m(M) for all p such that p+m ≥ 0.
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By Proposition 4.12, exterior differentiation d : A∗(M)→ A∗(M) is an antiderivation of
degree 1.

Proposition 4.13. Let M be a smooth manifold. Any linear antiderivation D : A∗(M) →
A∗(M) is a local operator.

Proof. By linearity, it is enough to show that if ω � U = 0, then (Dω) � U = 0. There is
an apparent problem, which is that although ω is zero on U , it may not be zero outside U ,
so it is not obvious that we can conclude that Dω is zero on U . The crucial ingredient to
circumvent this difficulty is the existence of “bump functions;” see Tu [111] (Chapter 3, §8)
or Morita [87] (Chapter 1, Section 13(b)). By Lemma 1.28 of Morita applied to the constant
function with value 1, for every p ∈ U , there some open subset V ⊆ U containing p and a
smooth function f : M → R such that supp f ⊆ U and f ≡ 1 on V . Consequently, fω is a
smooth differential form which is identically zero, and since D is an antiderivation

D(fω) = Df ∧ ω + fDω,

which, evaluated at p yields

0 = Dfp ∧ ωp + 1Dωp = Dfp ∧ 0 + 1Dωp = Dωp;

that is, Dωp = 0, as claimed.

Remark: If D : A∗(M)→ A∗(M) is a linear map which is a derivation, which means that

D(ω ∧ η) = Dω ∧ η + ω ∧Dη

for all ω ∈ Ar(M) and all η ∈ As(M), then the proof of Proposition 4.13 still works and
shows that D is also a local operator.

By Proposition 4.13, exterior differentiation d : A∗(M) → A∗(M) is a local operator.
As in the case of differential forms on Rn, the operator d is uniquely determined by the
properties of Theorem 4.5.

Theorem 4.14. Let M be a smooth manifold. There is a unique linear operator
d : A∗(M)→ A∗(M), with d = (dk) and dk : Ak(M)→ Ak+1(M) for every k ≥ 0, such that

(1) (df)p = dfp, where dfp is the differential of f at p ∈M for every f ∈ A0(M) = C∞(M).

(2) d ◦ d = 0.

(3) For every ω ∈ Ar(M) and every η ∈ As(M),

d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη.

Furthermore, any linear operator d satisfying (1)–(3) is a local operator.
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Proof. Existence has already been established.

Let D : A∗(M) → A∗(M) be any linear operator satisfying (1)–(3). We need to prove
that D = d where d is defined in Definition 4.9. For any k ≥ 0, pick any ω ∈ Ak(M). For
every p ∈ M , we need to prove that (Dω)p = (dω)p. Let (U,ϕ) be any chart with p ∈ U ,
and let xi = pri ◦ ϕ be the corresponding local coordinate maps. We know that ω ∈ Ak(M)
can be written uniquely as

ωq =
∑
I

fI(q)dxi1 ∧ · · · ∧ dxik q ∈ U.

Using a bump function, there is some open subset V of U with p ∈ V and some functions
f̃I , and x̃i1 , . . . , x̃ik defined on M and agreeing with fI , xi1 , . . . , xik on V . If we define

ω̃ =
∑
I

f̃Idx̃i1 ∧ · · · ∧ dx̃ik

then ω̃ is defined for all p ∈M and

ω � V = ω̃ � V.

By Proposition 4.13, since D is a linear map satisfying (3), it is a local operator so

Dω � V = Dω̃ � V.

Since D satisfies (1), we have Dx̃ij = dx̃ij . Then at p, by linearity, we have

(Dω)p = (Dω̃)p =

(
D

(∑
I

f̃Idx̃i1 ∧ · · · ∧ dx̃ik
))

p

=

(
D

(∑
I

f̃IDx̃i1 ∧ · · · ∧Dx̃ik
))

p

=
∑
I

D

(
f̃IDx̃i1 ∧ · · · ∧Dx̃ik

)
p

.

As in the proof of Proposition 4.9(iii), we can show by induction that

D(Dx̃i1 ∧ · · · ∧Dx̃ik) =
k∑
j=1

(−1)j−1Dx̃i1 ∧ · · · ∧DDx̃ij ∧ · · · ∧Dx̃ik

and since by (2) DDx̃ij = 0, we have

D(Dx̃i1 ∧ · · · ∧Dx̃ik) = 0.
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Then, using the above, by (3) and (1), we get∑
I

D

(
f̃IDx̃i1 ∧ · · · ∧Dx̃ik

)
p

=

(∑
I

Df̃I ∧Dx̃i1 ∧ · · · ∧Dx̃ik
)
p

+

(∑
I

f̃I ∧D(Dx̃i1 ∧ · · · ∧Dx̃ik)
)
p

=

(∑
I

df̃I ∧ dx̃i1 ∧ · · · ∧ dx̃ik
)
p

=

(∑
I

dfI ∧ dxi1 ∧ · · · ∧ dxik
)
p

= (dω)p.

Therefore (Dω)p = (dω)p, which proves that D = d.

Remark: A closer look at the proof of Theorem 4.14 shows that it is enough to assume
DDω = 0 on forms ω ∈ A0(M) = C∞(M).

Smooth differential forms can also be defined in terms of alternating C∞(M)-multilinear
maps on smooth vector fields. This approach also yields a global formula for the exterior
derivative dω(X1, . . . , Xk+1) of a k-form ω applied to k + 1 vector fields X1, . . . , Xk+1. This
formula is not very useful for computing dω at a given point p since it requires vector fields
as input, but it is quite useful in theoretical investigations.

Let ω ∈ Ak(M) be any smooth k-form on M . Then ω induces an alternating multilinear
map

ω : X(M)× · · · × X(M)︸ ︷︷ ︸
k

−→ C∞(M)

as follows: For any k smooth vector fields X1, . . . , Xk ∈ X(M),

ω(X1, . . . , Xk)(p) = ωp(X1(p), . . . , Xk(p)).

This map is obviously alternating and R-linear, but it is also C∞(M)-linear, since for every
f ∈ C∞(M),

ω(X1, . . . , fXi, . . . Xk)(p) = ωp(X1(p), . . . , f(p)Xi(p), . . . , Xk(p))

= f(p)ωp(X1(p), . . . , Xi(p), . . . , Xk(p))

= (fω)p(X1(p), . . . , Xi(p), . . . , Xk(p)).

(Recall, that the set of smooth vector fields X(M) is a real vector space and a C∞(M)-
module.)

Interestingly, every alternating C∞(M)-multilinear map on smooth vector fields deter-
mines a differential form. This is because ω(X1, . . . , Xk)(p) only depends on the values of
X1, . . . , Xk at p.
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Proposition 4.15. Let M be a smooth manifold. For every k ≥ 0, there is an isomorphism
between the space of k-forms Ak(M) and the space AltkC∞(M)(X(M)) of alternating C∞(M)-
multilinear maps on smooth vector fields. That is,

Ak(M) ∼= AltkC∞(M)(X(M)),

viewed as C∞(M)-modules.

Proof. We follow the proof in O’Neill [90] (Chapter 2, Lemma 3 and Proposition 2).¿ Let
Φ: X(M)× · · · × X(M)︸ ︷︷ ︸

k

−→ C∞(M) be an alternating C∞(M)-multilinear map. First we

prove that for any vector fields X1, . . . , Xk and Y1, . . . , Yk, for every p ∈M , if Xi(p) = Yi(p),
then

Φ(X1, . . . , Xk)(p) = Φ(Y1, . . . , Yk)(p).

Observe that

Φ(X1, . . . , Xk)− Φ(Y1, . . . , Yk) = Φ(X1 − Y1, X2, . . . , Xk) + Φ(Y1, X2 − Y2, X3, . . . , Xk)

+ Φ(Y1, Y2, X3 − Y3, . . . , Xk) + · · ·
+ Φ(Y1, . . . , Yk−2, Xk−1 − Yk−1, Xk)

+ Φ(Y1, . . . , Yk−1, Xk − Yk).

As a consequence, it is enough to prove that if Xi(p) = 0 for some i, then

Φ(X1, . . . , Xk)(p) = 0.

Without loss of generality, assume i = 1. In any local chart (U,ϕ) near p, we can write

X1 =
n∑
i=1

fi
∂

∂xi
,

and as Xi(p) = 0, we have fi(p) = 0 for i = 1, . . . , n. Since the expression on the right-hand
side is only defined on U , we extend it using a bump function once again. There is some
open subset V ⊆ U containing p and a smooth function h : M → R such that supph ⊆ U
and h ≡ 1 on V . Then we let hi = hfi, a smooth function on M , Yi = h ∂

∂xi
, a smooth vector

field on M , so that

h2X1 =
n∑
i=1

hiYi,

and since fi(p) = 0 we have hi(p) = 0. Since Φ is C∞(M)-multilinear, we have

h2Φ(X1, X2, . . . , Xk)(q) = Φ(h2X1, X2, . . . , Xk)

= Φ
( n∑
i=1

hiYi, X2, . . . , Xk

)
=

n∑
i=1

hiΦ(Yi, X2, . . . , Xk),
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and since hi(p) = 0 and h(p) = 1, we get Φ(X1, X2, . . . , Xk)(p) = 0, as claimed.

Next we show that Φ induces a smooth differential form. For every p ∈ M , for any
u1, . . . , uk ∈ TpM , we can pick a smooth function f equal to 1 on some open set V containing
p and 0 outside V , so that we get smooth vector fields X1, . . . , Xk with Xk(p) = uk. We set

ωp(u1, . . . , uk) = Φ(X1, . . . , Xk)(p).

As we proved that Φ(X1, . . . , Xk)(p) only depends on X1(p) = u1, . . . , Xk(p) = uk, the
function ωp is well defined, and it is easy to check that it is smooth. Therefore, the map
Φ 7→ ω just defined is indeed an isomorphism.

Remark: The space HomC∞(M)(X(M), C∞(M)) of all C∞(M)-linear maps from X(M) to
C∞(M) is also a C∞(M)-module, called the dual of X(M). Proposition 4.15 shows that as
C∞(M)-modules,

A1(M) ∼= HomC∞(M)(X(M), C∞(M)).

A result analogous to Proposition 4.15 holds for tensor fields. This matter is discussed
in Chapter 5.

Recall that for any function f ∈ C∞(M) and every vector field X ∈ X(M), the Lie
derivative X[f ] (or X(f)) of f w.r.t. X is defined so that

X[f ]p = dfp(X(p));

Also recall the notion of the Lie bracket [X, Y ] of two vector fields; see Warner [115] (Chapter
1), Morita [87] (Chapter 1, Section 1.4), Gallier and Qaintance [49]. The interpretation of
differential forms as C∞(M)-multilinear maps given by Proposition 4.15 yields the following
formula for (dω)(X1, . . . , Xk+1), where the Xi are vector fields:

Proposition 4.16. Let M be a smooth manifold. For every k-form ω ∈ Ak(M), we have

(dω)(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i−1Xi[ω(X1, . . . , X̂i, . . . , Xk+1)]

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1)],

for all vector fields, X1, . . . , Xk+1 ∈ X(M):

Proof sketch. First one checks that the right-hand side of the formula in Proposition 4.16
is alternating and C∞(M)-multilinear. For this, use Proposition 5.3 from Chapter 0 of Do
Carmo [39], or see Gallier and Quaintance [49]. Consequently, by Proposition 4.15, this
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expression defines a (k + 1)-form. Secondly, it is enough to check that both sides of the
equation agree on charts (U,ϕ). We know in a chart that ω can be written uniquely as

ωp =
∑
I

fI(p)dxi1 ∧ · · · ∧ dxik p ∈ U.

Also, as differential forms are C∞(M)-multilinear, it is enough to consider vector fields of
the form Xi = ∂

∂xji
. However, for such vector fields, [Xi, Xj] = 0, and then it is a simple

matter to check that the equation holds. For more details, see Morita [87] (Chapter 2).

In particular, when k = 1, Proposition 4.16 yields the often used formula:

Corollary 4.17. The following formula holds:

dω(X, Y ) = X[ω(Y )]− Y [ω(X)]− ω([X, Y ]).

There are other ways of proving the formula of Proposition 4.16, for instance, using Lie
derivatives.

Before considering the Lie derivative LXω of differential forms, we define interior multi-
plication by a vector field, i(X)(ω). We will see shortly that there is a relationship between
LX , i(X), and d, known as Cartan’s Formula.

Definition 4.13. Let M be a smooth manifold. For every vector field X ∈ X(M), for all
k ≥ 1, there is a linear map i(X) : Ak(M) → Ak−1(M) defined so that, for all ω ∈ Ak(M),
for all p ∈M , for all u1, . . . , uk−1 ∈ TpM ,

(i(X)ω)p(u1, . . . , uk−1) = ωp(Xp, u1, . . . , uk−1).

Obviously, i(X) is C∞(M)-linear in X, namely

i(fX)ω = fi(X)ω, i(X)(fω) = fi(X)ω, f ∈ C∞(M), ω ∈ Ak(M),

and it is easy to check that i(X)ω is indeed a smooth (k − 1)-form. When k = 0, we set
i(X)ω = 0. Observe that i(X)ω is also given by

(i(X)ω)p = i(Xp)ωp, p ∈M,

where i(Xp) is the interior product (or insertion operator) defined in Section 3.6 (with i(Xp)ωp
equal to our right hook, ωp xXp). As a consequence, by Proposition 3.22, the operator i(X)
is an anti-derivation of degree −1; that is, we have

i(X)(ω ∧ η) = (i(X)ω) ∧ η + (−1)rω ∧ (i(X)η),

for all ω ∈ Ar(M) and all η ∈ As(M).

Remark: Other authors, including Marsden [82], use a left hook instead of a right hook,
and denote i(X)ω as X y ω.
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4.4 Lie Derivatives

We just saw in Section 4.3 that for any function f ∈ C∞(M) and every vector field X ∈
X(M), the Lie derivative X[f ] (or X(f)) of f w.r.t. X is defined so that

X[f ]p = dfp(Xp).

recall that for any manifold M , given any two vector fields X, Y ∈ X(M), the Lie derivative
of X with respect to Y is given by

(LX Y )p = lim
t−→0

(
Φ∗tY

)
p
− Yp

t
=

d

dt

(
Φ∗tY

)
p

∣∣∣∣
t=0

,

where Φt is the local one-parameter group associated with X (Φ is the global flow associated
with X; see Warner [115], Chapters 1 and 2, or Gallier and Quaintance [49]), and Φ∗t is the
pull-back of the diffeomorphism Φt given by

(Φ∗tY )p = d(Φ−1
t )Φt(p)(YΦt(p)).

Furthermore, to calculate LXY recall that

LXY = [X, Y ].

Proposition 4.18. The following identity holds:

Xp[f ] = lim
t−→0

(Φ∗tf)(p)− f(p)

t
=

d

dt
(Φ∗tf)(p)

∣∣∣∣
t=0

,

with Φ∗tf = f ◦ Φt (as usual for functions).

Proof. Recall that if Φ is the flow of X, then for every p ∈ M , the map t 7→ Φt(p) is an
integral curve of X through p; that is

Φ̇t(p) = X(Φt(p)), Φ0(p) = p,

in some open set containing p. In particular, Φ̇0(p) = Xp. Then we have

lim
t−→0

(Φ∗tf)(p)− f(p)

t
= lim

t−→0

f(Φt(p))− f(Φ0(p))

t

=
d

dt
(f ◦ Φt(p))

∣∣∣∣
t=0

= dfp(Φ̇0(p)) = dfp(Xp) = Xp[f ].

We would like to define the Lie derivative of differential forms. This can be done alge-
braically or in terms of flows; the two approaches are equivalent, but it seems more natural
to give a definition using flows.
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Definition 4.14. Let M be a smooth manifold. For every vector field X ∈ X(M), for every
k-form ω ∈ Ak(M), the Lie derivative of ω with respect to X, denoted LXω, is given by

(LXω)p = lim
t−→0

(
Φ∗tω

)
p
− ωp

t
=

d

dt

(
Φ∗tω

)
p

∣∣∣∣
t=0

,

where Φ∗tω is the pull-back of ω along Φt (see Definition 4.8).

Obviously, LX : Ak(M) → Ak(M) is a linear map, but it has many other interesting
properties.

The generalization of the Lie derivative to tensor fields is discussed in Chapter 5.

We now state, mostly without proofs, a number of properties of Lie derivatives. Most
of these proofs are fairly straightforward computations, often tedious, and can be found in
most texts, including Warner [115], Morita [87], and Gallot, Hullin and Lafontaine [52].

Proposition 4.19. Let M be a smooth manifold. For every vector field X ∈ X(M), the
following properties hold:

(1) For all ω ∈ Ar(M) and all η ∈ As(M),

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη);

that is, LX is a derivation.

(2) For all ω ∈ Ak(M), for all Y1, . . . , Yk ∈ X(M),

LX(ω(Y1, . . . , Yk)) = (LXω)(Y1, . . . , Yk) +
k∑
i=1

ω(Y1, . . . , Yi−1, LXYi, Yi+1, . . . , Yk).

(3) The Lie derivative commutes with d:

LX ◦ d = d ◦ LX .

Proof. We only prove (2). First we claim that if ϕ : M → M is a diffeomorphism, then for
every ω ∈ Ak(M), for all X1, . . . , Xk ∈ X(M),

(ϕ∗ω)(X1, . . . , Xk) = ϕ∗(ω((ϕ−1)∗X1, . . . , (ϕ
−1)∗Xk)), (∗)

where (ϕ−1)∗Xi is the pull-back of the vector field Xi (also equal to the push-forward ϕ∗Xi

of Xi). Recall that

((ϕ−1)∗Y )p = dϕϕ−1(p)(Yϕ−1(p)),
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for any vector field Y . Then by Definition 4.8, for every p ∈M , we have

(ϕ∗ω(X1, . . . , Xk))(p) = ωϕ(p)(dϕp(X1(p)), . . . , dϕp(Xk(p)))

= ωϕ(p)

(
dϕϕ−1(ϕ(p))(X1(ϕ−1(ϕ(p)))), . . . , dϕϕ−1(ϕ(p))(Xk(ϕ

−1(ϕ(p))))
)

= ωϕ(p)(((ϕ
−1)∗X1)ϕ(p), . . . , ((ϕ

−1)∗Xk)ϕ(p))

= (ω((ϕ−1)∗X1, . . . , (ϕ
−1)∗Xk)) ◦ ϕ)(p)

= ϕ∗(ω((ϕ−1)∗X1, . . . , (ϕ
−1)∗Xk))(p),

since for any function g ∈ C∞(M), we have ϕ∗g = g ◦ ϕ.

We know that

Xp[f ] = lim
t−→0

(Φ∗tf)(p)− f(p)

t

and for any vector field Y ,

[X, Y ]p = (LXY )p = lim
t−→0

(
Φ∗tY

)
p
− Yp

t
.

Since the one-parameter group associated with −X is Φ−t, (this follows from Φ−t ◦Φt = id),
we have

lim
t−→0

(
Φ∗−tY

)
p
− Yp

t
= −[X, Y ]p.

Now, using Φ−1
t = Φ−t and (∗), we have

(LXω)(Y1, . . . , Yk) = lim
t−→0

(Φ∗tω)(Y1, . . . , Yk)− ω(Y1, . . . , Yk)

t

= lim
t−→0

Φ∗t (ω(Φ∗−tY1, . . . ,Φ
∗
−tYk))− ω(Y1, . . . , Yk)

t

= lim
t−→0

Φ∗t (ω(Φ∗−tY1, . . . ,Φ
∗
−tYk))− Φ∗t (ω(Y1, . . . , Yk))

t

+ lim
t−→0

Φ∗t (ω(Y1, . . . , Yk))− ω(Y1, . . . , Yk)

t
.

Call the first term A and the second term B. Then as

Xp[f ] = lim
t−→0

(Φ∗tf)(p)− f(p)

t
,

we have

B = X[ω(Y1, . . . , Yk)] = LX(ω(Y1, . . . , Yk)).
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As to A, we have

A = lim
t−→0

Φ∗t (ω(Φ∗−tY1, . . . ,Φ
∗
−tYk))− Φ∗t (ω(Y1, . . . , Yk))

t

= lim
t−→0

Φ∗t

(
ω(Φ∗−tY1, . . . ,Φ

∗
−tYk)− ω(Y1, . . . , Yk)

t

)
= lim

t−→0
Φ∗t

(
ω(Φ∗−tY1, . . . ,Φ

∗
−tYk)− ω(Y1,Φ

∗
−tY2, . . . ,Φ

∗
−tYk)

t

)
+ lim

t−→0
Φ∗t

(
ω(Y1,Φ

∗
−tY2, . . . ,Φ

∗
−tYk)− ω(Y1, Y2,Φ

∗
−tY3, . . . ,Φ

∗
−tYk)

t

)
+ · · ·+ lim

t−→0
Φ∗t

(
ω(Y1, . . . , Yk−1,Φ

∗
−tYk)− ω(Y1, . . . , Yk)

t

)
= lim

t−→0
Φ∗t

(
ω(Φ∗−tY1 − Y1,Φ

∗
−tY2, . . . ,Φ

∗
−tYk)

t

)
+ lim

t−→0
Φ∗t

(
ω(Y1,Φ

∗
−tY2 − Y2, . . . ,Φ

∗
−tYk)

t

)
+ · · ·+ lim

t−→0
Φ∗t

(
ω(Y1, . . . , Yk−1,Φ

∗
−tYk − Yk)

t

)
= lim

t−→0
Φ∗t

(
ω

(
Φ∗−tY1 − Y1

t
, . . . ,Φ∗−tYk

))
+ lim

t−→0
Φ∗t

(
ω

(
Y1,

Φ∗−tY2 − Y2

t
, . . . ,Φ∗−tYk

))
+ · · ·+ lim

t−→0
Φ∗t

(
ω

(
Y1, . . . , Yk−1,

Φ∗−tYk − Yk
t

))
=

k∑
i=1

ω(Y1, . . . ,−[X, Yi], . . . , Yk),

since limt−→0 Φ∗t = id. When we add up A and B, we get

A+B = LX(ω(Y1, . . . , Yk))−
k∑
i=1

ω(Y1, . . . , [X, Yi], . . . , Yk)

= (LXω)(Y1, . . . , Yk),

which finishes the proof.

Part (2) of Proposition 4.19 shows that the Lie derivative of a differential form can be
defined in terms of the Lie derivatives of functions and vector fields:

(LXω)(Y1, . . . , Yk) = LX(ω(Y1, . . . , Yk))−
k∑
i=1

ω(Y1, . . . , Yi−1, LXYi, Yi+1, . . . , Yk)

= X[ω(Y1, . . . , Yk)]−
k∑
i=1

ω(Y1, . . . , Yi−1, [X, Yi], Yi+1, . . . , Yk).

However, to best calculate LXω, we use Cartan’s formula. Recall the definition of
i(X) : Ak(M)→ Ak−1(M) given in Definition 4.13.
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Proposition 4.20. (Cartan’s Formula) Let M be a smooth manifold. For every vector field
X ∈ X(M), for every ω ∈ Ak(M), we have

LXω = i(X)dω + d(i(X)ω),

that is, LX = i(X) ◦ d+ d ◦ i(X).

Proof. If k = 0, then LXf = X[f ] = df(X) for a function f , and on the other hand,
i(X)f = 0 and i(X)df = df(X), so the equation holds. If k ≥ 1, then by Proposition 4.16,
we have

(i(X)dω)(X1, . . . , Xk) = dω(X,X1, . . . , Xk)

= X[ω(X1, . . . , Xk)] +
k∑
i=1

(−1)iXi[ω(X,X1, . . . , X̂i, . . . , Xk)]

+
k∑
j=1

(−1)jω([X,Xj], X1, . . . , X̂j, . . . , Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj], X,X1, . . . , X̂i, . . . , X̂j, . . . , Xk).

On the other hand, again by Proposition 4.16, we have

d(i(X)ω)(X1, . . . , Xk) =
k∑
i=1

(−1)i−1Xi[ω(X,X1, . . . , X̂i, . . . , Xk)]

+
∑
i<j

(−1)i+jω(X, [Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk).

Adding up these two equations, and using the fact that ω is alternating, we get

(i(X)dω + di(X))ω(X1, . . . , Xk) = X[ω(X1, . . . , Xk)]

+
k∑
i=1

(−1)iω([X,Xi], X1, . . . , X̂i, . . . , Xk)

= X[ω(X1, . . . , Xk)]−
k∑
i=1

ω(X1, . . . , [X,Xi], . . . , Xk) = (LXω)(X1, . . . , Xk),

as claimed.

Here is an example which demonstrates the usefulness of Cartan’s formula. Consider
S1 embedded in R2 via the parameterization ψ : (0, 2π) → R2, where ψ(t) = (cos t, sin t).
Since ψ′(t) = (− sin t, cos t) = (−y, x), the vector field X = −y ∂/∂x + x ∂/∂y is tangent to
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S1. Consider ω = −y dx + x dy as the restriction of the one form in R2 to S1. We want to
calculate LXω on S1 using Cartan’s formula. This means we must first compute

dω = d(−y) ∧ dx+ d(x) ∧ dy = −dy ∧ dx+ dx ∧ dy = 2 dx ∧ dy.

Next we compute i(X)dω as follows: by definition of i(X),

i(X)dx = dx(X) = dx

(
−y ∂

∂x
+ x

∂

∂y

)
= −y,

i(X)dy = dy(X) = dy

(
−y ∂

∂x
+ x

∂

∂y

)
= x.

Then the anti-derivation property of i(X) implies that

i(X)dω = 2i(X)(dx ∧ dy) = 2 (i(X)dx ∧ dy − dx ∧ i(X)dy) = 2(−ydy − xdx). (∗)

To complete Cartan’s formula, we must calculate d(i(X)ω). Since i(X) is C∞(S1) linear in
X, we have

i(X)ω = −y i(X)dx+ x i(X)dy = y2 + x2,

and hence
d(i(X)ω) = d(y2 + x2) = 2y dy + 2x dx. (∗∗)

Cartan’s formula combines Lines (∗) and (∗∗) to give

LXω = i(X)dω + d(i(X)ω) = −2y dy − 2x dx+ 2y dy + 2x dx = 0.

The following proposition states more useful identities, some of which can be proved
using Cartan’s formula.

Proposition 4.21. Let M be a smooth manifold. For all vector fields X, Y ∈ X(M), for all
ω ∈ Ak(M), we have

(1) LXi(Y )− i(Y )LX = i([X, Y ]).

(2) LXLY ω − LYLXω = L[X,Y ]ω.

(3) LXi(X)ω = i(X)LXω.

(4) LfXω = fLXω + df ∧ i(X)ω, for all f ∈ C∞(M).

(5) For any diffeomorphism ϕ : M → N , for all Z ∈ X(N) and all β ∈ Ak(N),

ϕ∗LZβ = Lϕ∗Zϕ
∗β.

There are situations in differential geometry where it is convenient to deal with differential
forms taking values in a vector space. This happens when we consider connections and the
curvature form on vector bundles and principal bundles (see Chapter 11) and when we study
Lie groups, where differential forms valued in a Lie algebra occur naturally.
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4.5 Vector-Valued Differential Forms

This section contains background material for Chapter 11, especially for Section 11.2. Let
us go back for a moment to differential forms defined on some open subset of Rn. In Section
4.1, a differential form is defined as a smooth map ω : U →

∧p(Rn)∗, and since we have a
canonical isomorphism

µ :

p∧
(Rn)∗ ∼= Altp(Rn;R),

such differential forms are real-valued. Now let F be any normed vector space, possibly
infinite dimensional. Then Altp(Rn;F ) is also a normed vector space, and by Proposition
3.33, we have a canonical isomorphism

µF :

(
p∧

(Rn)∗

)
⊗ F −→ Altp(Rn;F )

defined on generators by

µF ((v∗1 ∧ · · · ∧ v∗p)⊗ f)(u1, . . . , up) = (det(v∗j (ui))f,

with v∗1, . . . , v
∗
p ∈ (Rn)∗, u1, . . . , up ∈ Rn, and f ∈ F . Then it is natural to define differential

forms with values in F as smooth maps ω : U → Altp(Rn;F ). Actually, we can even replace
Rn with any normed vector space, even infinite dimensional as in Cartan [22], but we do not
need such generality for our purposes.

Definition 4.15. Let F by any normed vector space. Given any open subset U of Rn, a
smooth differential p-form on U with values in F , for short a p-form on U , is any smooth
function ω : U → Altp(Rn;F ). The vector space of all p-forms on U is denoted Ap(U ;F ).
The vector space A∗(U ;F ) =

⊕
p≥0Ap(U ;F ) is the set of differential forms on U with values

in F .

Observe that A0(U ;F ) = C∞(U, F ), the vector space of smooth functions on U with
values in F , and A1(U ;F ) = C∞(U,Hom(Rn, F )), the set of smooth functions from U to
the set of linear maps from Rn to F . Also, Ap(U ;F ) = (0) for p > n.

Of course we would like to have a “good” notion of exterior differential, and we would like
as many properties of “ordinary” differential forms as possible to remain valid. As will see in
our somewhat sketchy presentation, these goals can be achieved, except for some properties
of the exterior product.

Using the isomorphism

µF :

(
p∧

(Rn)∗

)
⊗ F −→ Altp(Rn;F )

and Proposition 3.34, we obtain a convenient expression for differential forms in A∗(U ;F ).
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Proposition 4.22. If (e1, . . . , en) is any basis of Rn and (e∗1, . . . , e
∗
n) is its dual basis, then

every differential p-form ω ∈ Ap(U ;F ) can be written uniquely as

ω(x) =
∑
I

e∗i1 ∧ · · · ∧ e
∗
ip ⊗ fI(x) =

∑
I

e∗I ⊗ fI(x) x ∈ U, (∗2)

where each fI : U → F is a smooth function on U .

As explained in Section 3.9, to express the above formula directly on alternating multi-
linear maps, define the product · : Altp(Rn;R)× F → Altp(Rn;F ) as follows.

Definition 4.16. For all ω ∈ Altp(Rn;R) and all f ∈ F , define ω · f by

(ω · f)(u1, . . . , up) = ω(u1, . . . , up)f,

for all u1, . . . , up ∈ Rn.

Then it is immediately verified that for every ω ∈ (
∧p(Rn)∗)⊗ F of the form

ω = u∗1 ∧ · · · ∧ u∗p ⊗ f,

we have
µF (u∗1 ∧ · · · ∧ u∗p ⊗ f) = µF (u∗1 ∧ · · · ∧ u∗p) · f.

By Proposition 3.36, the above property can be restated as the fact that for any basis
(e1, . . . , en) of Rn, every differential p-form ω ∈ Ap(U ;F ) can be written uniquely as

ω(x) =
∑
I

e∗i1 ∧ · · · ∧ e
∗
ip · fI(x), x ∈ U,

where each fI : U → F is a smooth function on U .

In order to define a multiplication on differential forms, we use a bilinear form Φ: F×G→
H; see Section 3.9.

Definition 4.17. For every pair (p, q), we define the multiplication

∧Φ :

(( p∧
(Rn)∗

)
⊗ F

)
×

(( q∧
(Rn)∗

)
⊗G

)
−→

(p+q∧
(Rn)∗

)
⊗H

by
(α⊗ f) ∧Φ (β ⊗ g) = (α ∧ β)⊗ Φ(f, g).

We can also define a multiplication ∧Φ directly on alternating multilinear maps as follows:
For f ∈ Altp(Rn;F ) and g ∈ Altq(Rn;G),

(f ∧Φ g)(u1, . . . , up+q) =
∑

σ∈shuffle(p,q)

sgn(σ) Φ(f(uσ(1), . . . , uσ(p)), g(uσ(p+1), . . . , uσ(p+q))),

where shuffle(p, q) consists of all (m,n)-“shuffles;” that is, permutations σ of {1, . . . p + q}
such that σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q).
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Then, we obtain a multiplication

∧Φ : Ap(U ;F )×Aq(U ;G)→ Ap+q(U ;H),

defined so that for any differential forms ω ∈ Ap(U ;F ) and η ∈ Aq(U ;G),

(ω ∧Φ η)x = ωx ∧Φ ηx, x ∈ U.

In general, not much can be said about ∧Φ, unless Φ has some additional properties. In
particular, ∧Φ is generally not associative, and there is no analog of Proposition 4.1. For
simplicity of notation, we write ∧ for ∧Φ.

Using Φ, we can also define a multiplication

· : Ap(U ;F )×A0(U ;G)→ Ap(U ;H).

Definition 4.18. The multiplication · : Ap(U ;F )×A0(U ;G)→ Ap(U ;H) is given by

(ω · f)x(u1, . . . , up) = Φ(ωx(u1, . . . , up), f(x)),

for all x ∈ U , all f ∈ A0(U ;G) = C∞(U,G), and all u1, . . . , up ∈ Rn.

This multiplication will be used in the case where F = R and G = H to obtain a normal
form for differential forms.

Generalizing d is no problem. Observe that since a differential p-form is a smooth map
ω : U → Altp(Rn;F ), its derivative is a map

ω′ : U → Hom(Rn,Altp(Rn;F ))

such that ω′x is a linear map from Rn to Altp(Rn;F ) for every x ∈ U . We can view ω′x as a
multilinear map ω′x : (Rn)p+1 → F which is alternating in its last p arguments. As in Section
4.1, the exterior derivative (dω)x is obtained by making ω′x into an alternating map in all of
its p+ 1 arguments.

Definition 4.19. For every p ≥ 0, the exterior differential d : Ap(U ;F ) → Ap+1(U ;F ) is
given by

(dω)x(u1, . . . , up+1) =

p+1∑
i=1

(−1)i−1ω′x(ui)(u1, . . . , ûi, . . . , up+1),

for all ω ∈ Ap(U ;F ) and all u1, . . . , up+1 ∈ Rn, where the hat over the argument ui means
that it should be omitted.

Note that d depends on the vector space F , so to be very precise we should denote d as
dF . To keep notation simple, it is customary to drop the subscript F .

For any smooth function f ∈ A0(U ;F ) = C∞(U, F ), we get

dfx(u) = f ′x(u).
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Therefore, for smooth functions, the exterior differential df coincides with the usual derivative
f ′.

The important observation following Definition 4.3 also applies here. If xi : U → R is the
restriction of pri to U , then x′i is the constant map given by

x′i(x) = pri, x ∈ U.

It follows that dxi = x′i is the constant function with value pri = e∗i . As a consequence, every
p-form ω can be uniquely written as

ωx =
∑
I

dxi1 ∧ · · · ∧ dxip ⊗ fI(x), (∗3)

where each fI : U → F is a smooth function on U . Using the multiplication · induced by the
scalar multiplication in F (Φ(λ, f) = λf , with λ ∈ R and f ∈ F ), we see that every p-form
ω can be uniquely written as

ω =
∑
I

dxi1 ∧ · · · ∧ dxip · fI . (∗4)

As for real-valued functions, for any f ∈ A0(U ;F ) = C∞(U, F ), we have

dfx(u) =
n∑
i=1

ui
∂f

∂xi
(x) =

n∑
i=1

e∗i (u)
∂f

∂xi
(x),

and so,

df =
n∑
i=1

dxi ·
∂f

∂xi
. (∗5)

In general, Proposition 4.3 fails, unless F is finite-dimensional (see below). However for
any arbitrary F , a weak form of Proposition 4.3 can be salvaged. Again, let Φ: F ×G→ H
be a bilinear form, let · : Ap(U ;F ) × A0(U ;G) → Ap(U ;H) be as defined before Definition
4.19, and let ∧Φ be the wedge product associated with Φ. The following fact is proved in
Cartan [22] (Section 2.4):

Proposition 4.23. For all ω ∈ Ap(U ;F ) and all f ∈ A0(U ;G), we have

d(ω · f) = (dω) · f + ω ∧Φ df.

Fortunately, d ◦ d still vanishes, but this requires a completely different proof, since we
can’t rely on Proposition 4.2 (see Cartan [22], Section 2.5). Similarly, Proposition 4.2 holds,
but a different proof is needed.
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Proposition 4.24. The composition Ap(U ;F )
d−→ Ap+1(U ;F )

d−→ Ap+2(U ;F ) is identi-
cally zero for every p ≥ 0; that is

d ◦ d = 0,

which is an abbreviation for dp+1 ◦ dp = 0.

To generalize Proposition 4.2, we use Proposition 4.23 with the product · and the wedge
product ∧Φ induced by the bilinear form Φ given by scalar multiplication in F ; that, is
Φ(λ, f) = λf , for all λ ∈ R and all f ∈ F .

Proposition 4.25. For every p form ω ∈ Ap(U ;F ) with ω = dxi1 ∧ · · · ∧ dxip · f , we have

dω = dxi1 ∧ · · · ∧ dxip ∧F df,

where ∧ is the usual wedge product on real-valued forms and ∧F is the wedge product asso-
ciated with scalar multiplication in F .

More explicitly, for a p form ω = dxi1∧· · ·∧dxip ·f , for every x ∈ U , for all u1, . . . , up+1 ∈
Rn, we have

(dωx)(u1, . . . , up+1) =

p+1∑
i=1

(−1)i−1(dxi1 ∧ · · · ∧ dxip)x(u1, . . . , ûi, . . . , up+1)dfx(ui).

If we use the fact that

df =
n∑
i=1

dxi ·
∂f

∂xi
,

we see easily that

dω =
n∑
j=1

dxi1 ∧ · · · ∧ dxip ∧ dxj ·
∂f

∂xj
, (∗6)

the direct generalization of the real-valued case, except that the “coefficients” are functions
with values in F .

The pull-back of forms in A∗(V, F ) is defined as before. Luckily, Proposition 4.9 holds
(see Cartan [22], Section 2.8).

Proposition 4.26. Let U ⊆ Rn and V ⊆ Rm be two open sets and let ϕ : U → V be a
smooth map. Then

(i) ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η, for all ω ∈ Ap(V ;F ) and all η ∈ Aq(V ;F ).

(ii) ϕ∗(f) = f ◦ ϕ, for all f ∈ A0(V ;F ).
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(iii) dϕ∗(ω) = ϕ∗(dω), for all ω ∈ Ap(V ;F ); that is, the following diagram commutes for
all p ≥ 0.

Ap(V ;F )
ϕ∗ //

d
��

Ap(U ;F )

d
��

Ap+1(V ;F )
ϕ∗ // Ap+1(U ;F )

Let us now consider the special case where F has finite dimension m. Pick any basis
(f1, . . . , fm) of F . Then as every differential p-form ω ∈ Ap(U ;F ) can be written uniquely
as

ω(x) =
∑
I

e∗i1 ∧ · · · ∧ e
∗
ip · fI(x), x ∈ U,

where each fI : U → F is a smooth function on U , by expressing the fI over the basis
(f1, . . . , fm), we see that ω can be written uniquely as

ω =
m∑
i=1

ωi · fi, (∗7)

where ω1, . . . , ωm are smooth real-valued differential forms in Ap(U ;R), and we view fi as
the constant map with value fi from U to F . Then as

ω′x(u) =
m∑
i=1

(ω′i)x(u)fi,

for all u ∈ Rn, we see that

dω =
m∑
i=1

dωi · fi. (∗8)

Actually, because dω is defined independently of bases, the fi do not need to be linearly
independent; any choice of vectors and forms such that

ω =
k∑
i=1

ωi · fi

will do.

Given a bilinear map Φ: F×G→ H, a simple calculation shows that for all ω ∈ Ap(U ;F )
and all η ∈ Ap(U ;G), we have

ω ∧Φ η =
m∑
i=1

m′∑
j=1

ωi ∧ ηj · Φ(fi, gj),

with ω =
∑m

i=1 ωi ·fi and η =
∑m′

j=1 ηj ·gj, where (f1, . . . , fm) is a basis of F and (g1, . . . , gm′)
is a basis of G. From this and Proposition 4.23, it follows that Proposition 4.3 holds for
finite-dimensional spaces.
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Proposition 4.27. If F,G,H are finite dimensional and Φ: F ×G→ H is a bilinear map,
then or all ω ∈ Ap(U ;F ) and all η ∈ Aq(U ;G),

d(ω ∧Φ η) = dω ∧Φ η + (−1)pω ∧Φ dη.

On the negative side, in general, Proposition 4.1 still fails.

A special case of interest is the case where F = G = H = g is a Lie algebra, and
Φ(a, b) = [a, b] is the Lie bracket of g. In this case, using a basis (f1, . . . , fr) of g, if we write
ω =

∑
i αifi and η =

∑
j βjfj, we have

ω ∧Φ η = [ω, η] =
∑
i,j

αi ∧ βj[fi, fj],

where for simplicity of notation we dropped the subscript Φ on [ω, η] and the multiplication
sign ·.

Let us figure out what [ω, ω] is for a one-form ω ∈ A1(U, g). By definition,

[ω, ω] =
∑
i,j

ωi ∧ ωj[fi, fj],

so

[ω, ω](u, v) =
∑
i,j

(ωi ∧ ωj)(u, v)[fi, fj]

=
∑
i,j

(ωi(u)ωj(v)− ωi(v)ωj(u))[fi, fj]

=
∑
i,j

ωi(u)ωj(v)[fi, fj]−
∑
i,j

ωi(v)ωj(u)[fi, fj]

=
[∑

i

ωi(u)fi,
∑
j

ωj(v)fj

]
−
[∑

i

ωi(v)fi,
∑
j

ωj(u)fj

]
= [ω(u), ω(v)]− [ω(v), ω(u)]

= 2[ω(u), ω(v)].

Therefore,
[ω, ω](u, v) = 2[ω(u), ω(v)].

Note that in general, [ω, ω] 6= 0, because ω is vector valued. Of course, for real-valued forms,
[ω, ω] = 0. Using the Jacobi identity of the Lie algebra, we easily find that

[[ω, ω], ω] = 0.

The generalization of vector-valued differential forms to manifolds is no problem, except
that some results involving the wedge product fail for the same reason that they fail in the
case of forms on open subsets of Rn.
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Definition 4.20. Given a smooth manifold M of dimension n and a vector space F , the set
Ak(M ;F ) of differential k-forms on M with values in F is the set of maps p 7→ ωp with

ωp ∈
(∧k T ∗pM

)
⊗ F ∼= Altk(TpM ;F ), which vary smoothly in p ∈M . This means that the

map
p 7→ ωp(X1(p), . . . , Xk(p))

is smooth for all vector fields X1, . . . , Xk ∈ X(M).

It can be shown (see Proposition 10.12) that

Ak(M ;F ) ∼= Ak(M)⊗C∞(M) C
∞(M ;F ) ∼= AltkC∞(M)(X(M);C∞(M ;F )),

which reduces to Proposition 4.15 when F = R.

The reader may want to carry out the verification that the theory generalizes to manifolds
on her/his own. The following result will be used in the next section.

Proposition 4.28. If ω ∈ A1(M ;F ) is a vector valued one-form, then for any two vector
fields X, Y on M , we have

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

In the next section we consider some properties of differential forms on Lie groups.

4.6 Differential Forms on Lie Groups and

Maurer-Cartan Forms

Given a Lie group G, it is well known that the set of left-invariant vector fields on G is
isomorphic to the Lie algebra g = T1G of G (where 1 denotes the identity element of G); see
Warner [115] (Chapter 4) or Gallier and Quaintance [49]. Recall that a vector field X on G
is left-invariant iff

d(La)b(Xb) = XLab = Xab,

for all a, b ∈ G. In particular, for b = 1, we get

Xa = d(La)1(X1).

which shows that X is completely determined by its value at 1. The map X 7→ X(1) is an
isomorphism between left-invariant vector fields on G and g.

The above suggests looking at left-invariant differential forms on G. We will see that the
set of left-invariant one-forms on G is isomorphic to g∗, the dual of g as a vector space.

Definition 4.21. Given a Lie group G, a differential form ω ∈ Ak(G) is left-invariant iff

L∗aω = ω, for all a ∈ G,

where L∗aω is the pull-back of ω by La (left multiplication by a). The left-invariant one-forms
ω ∈ A1(G) are also called Maurer-Cartan forms .
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Here is a simple example of a left-invariant one-form on S1. Let g = (cos t, sin t) ∈ S1.
Then Lg : S1 → S1 is given by

Lg(u, v) = (cos t u− sin t v, sin t u+ cos t v) = (x, y).

Let ω = −y dx+ x dy. Then

L∗gω = (− sin t u− cos t v)d(cos t u− sin t v) + (cos t u− sin t v)d(sin t u+ cos t v)

= (− sin t u− cos t v)(cos t du− sin t dv) + (cos t u− sin t v)(sin t du+ cos t dv)

= −(sin2 t+ cos2 t)v du+ (sin2 t+ cos2 t)u dv

= −v du+ u dv,

which (by setting u→ x and v → y) shows that L∗gω = ω.

For a one-form ω ∈ A1(G) left-invariance means that

(L∗aω)g(u) = ωLag(d(La)gu) = ωag(d(La)gu) = ωg(u),

for all a, g ∈ G and all u ∈ TgG. For a = g−1, we get

ωg(u) = ω1(d(Lg−1)gu) = ω1(d(L−1
g )gu),

which shows that ωg is completely determined by ω1 (the value of ωg at g = 1).

Proposition 4.29. The map ω 7→ ω1 is an isomorphism between the set of left-invariant
one-forms on G and g∗.

Proof. First, for any linear form α ∈ g∗, the one-form αL given by

αLg (u) = α(d(L−1
g )gu), u ∈ Tg(G)

is left-invariant, because

(L∗hα
L)g(u) = αLhg(d(Lh)g(u))

= α(d(L−1
hg )hg(d(Lh)g(u)))

= α(d(L−1
hg ◦ Lh)g(u))

= α(d(L−1
g )g(u)) = αLg (u).

Secondly, we saw that for every one-form ω ∈ A1(G),

ωg(u) = ω1(d(L−1
g )gu),

so ω1 ∈ g∗ is the unique element such that ω = ωL1 , which shows that the map α 7→ αL is an
isomorphism whose inverse is the map ω 7→ ω1.
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Now, since every left-invariant vector field is of the form X = uL for some unique u ∈ g,
where uL is the vector field given by uL(a) = d(La)1u, and since the left-invariance of ω
implies that

ωag(d(La)gu) = ωg(u),

for g = 1, we get ωa(d(La)1u) = ω1(u); that is

ωa(X) = ω1(u), a ∈ G,

which shows that ω(X) is a constant function on G. It follows that for every vector field Y
(not necessarily left-invariant),

Y [ω(X)] = 0.

Recall that by Corollary 4.17, we have

dω(X, Y ) = X[ω(Y )]− Y [ω(X)]− ω([X, Y ]).

Consequently, for all left-invariant vector fields X, Y on G, for every left-invariant one-form
ω, we have

dω(X, Y ) = −ω([X, Y ]).

If we identify the set of left-invariant vector fields on G with g and the set of left-invariant
one-forms on G with g∗, we have

dω(X, Y ) = −ω([X, Y ]), ω ∈ g∗, X, Y ∈ g.

We summarize these facts in the following proposition.

Proposition 4.30. Let G be any Lie group.

(1) The set of left-invariant one-forms on G is isomorphic to g∗, the dual of the Lie algebra
g of G, via the isomorphism ω 7→ ω1.

(2) For every left-invariant one form ω and every left-invariant vector field X, the value
of the function ω(X) is constant and equal to ω1(X1).

(3) If we identify the set of left-invariant vector fields on G with g and the set of left-
invariant one-forms on G with g∗, then

dω(X, Y ) = −ω([X, Y ]), ω ∈ g∗, X, Y ∈ g.

Pick any basis X1, . . . , Xr of the Lie algebra g, and let ω1, . . . , ωr be the dual basis of g∗.
There are some constants ckij such that

[Xi, Xj] =
r∑

k=1

ckijXk.
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The constants ckij are called the structure constants of the Lie algebra g. Observe that
ckji = −ckij.

As ωi([Xp, Xq]) = cipq and dωi(X, Y ) = −ωi([X, Y ]), we have

dωi(X, Y ) = −cipq.

Proposition 4.31. The following equations known as the Maurer-Cartan equations hold:

dωi = −1

2

∑
j,k

cijkωj ∧ ωk.

Proof. Since∑
j,k

cijkωj ∧ ωk(Xp, Xq) =
∑
j,k

cijk(ωj(Xp)ωk(Xq)− ωj(Xq)ωk(Xp))

=
∑
j,k

cijkωj(Xp)ωk(Xq)−
∑
j,k

cijkωj(Xq)ωk(Xp)

=
∑
j,k

cijkωj(Xp)ωk(Xq) +
∑
j,k

cikjωj(Xq)ωk(Xp)

= cipq + cipq = 2cipq,

we get the equations

dωi = −1

2

∑
j,k

cijkωj ∧ ωk.

These equations can be neatly described if we use differential forms valued in g. Let ωMC

be the one-form given by

(ωMC)g(u) = d(L−1
g )gu, g ∈ G, u ∈ TgG.

What ωMC does is to “bring back” a vector v ∈ TgG to g = T1G. The same computation
that showed that αL is left-invariant if α ∈ g∗ shows that ωMC is left-invariant, and obviously
(ωMC)1 = id.

Definition 4.22. Given any Lie group G, the Maurer-Cartan form on G is the g-valued
differential 1-form ωMC ∈ A1(G, g) given by

(ωMC)g = d(L−1
g )g, g ∈ G.

The same argument that we used to prove Property (2) of Proposition 4.30 shows that for
every left-invariant one-form ω ∈ A1(G, g) and every left-invariant vector field X ∈ X(G),
the value of the function ω(X) is constant and equal to ω1(X1). In particular, this holds for
the Maurer-Cartan form ωMC. As in Section 4.5, the Lie bracket on g induces a multiplication

[−,−] : Ap(G; g)×Aq(G; g)→ Ap+q(G; g)
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given by

[ω, η] =
∑
ij

αi ∧ βj · [fi, fj],

where (f1, . . . , fr) is a basis of g and where ω =
∑

i αi ·fi and η =
∑

j βj ·fj. Using the same
proof, we obtain the equation

[ω, ω](X, Y ) = 2[ω(X), ω(Y )].

Recall that for every g ∈ G, conjugation by g is the map given by a 7→ gag−1; that is,
a 7→ (Lg ◦ Rg−1)a, and the adjoint map Ad(g) : g → g associated with g is the derivative of
Adg = Lg ◦Rg−1 at 1; that is, we have

Ad(g)(u) = d(Adg)1(u), u ∈ g.

Furthermore, it is obvious that Lg and Rh commute.

Proposition 4.32. Given any Lie group G, for all g ∈ G, the Maurer-Cartan form ωMC

has the following properties:

(1) (ωMC)1 = idg.

(2) For all g ∈ G,

R∗gωMC = Ad(g−1) ◦ ωMC.

(3) The 2-form dωMC ∈ A2(G, g) satisfies the Maurer-Cartan equation

dωMC = −1

2
[ωMC, ωMC].

Proof. Property (1) is obvious.

(2) For simplicity of notation, if we write ω = ωMC, then

(R∗gω)h = ωhg ◦ d(Rg)h

= d(L−1
hg )hg ◦ d(Rg)h

= d(L−1
hg ◦Rg)h

= d((Lh ◦ Lg)−1 ◦Rg)h

= d(L−1
g ◦ L−1

h ◦Rg)h

= d(L−1
g ◦Rg ◦ L−1

h )h

= d(Lg−1 ◦Rg)1 ◦ d(L−1
h )h

= Ad(g−1) ◦ ωh,

as claimed.
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(3) We can easily express ωMC in terms of a basis of g. If X1, . . . , Xr is a basis of g and
ω1, . . . , ωr is the dual basis, then by Proposition 4.30 (2) and Part (1) of Proposition 4.32,
we have ωMC(Xi) = (ωMC)1(Xi) = Xi, for i = 1, . . . , r, so ωMC is given by

ωMC = ω1 ·X1 + · · ·+ ωr ·Xr, (∗9)

under the usual identification of left-invariant vector fields (resp. left-invariant one forms)
with elements of g (resp. elements of g∗). Then we have

dωMC = dω1 ·X1 + · · ·+ dωr ·Xr. (∗10)

We will use the Maurer-Cartan equations

dωi = −1

2

∑
j,k

cijkωj ∧ ωk

to obtain the desired equation. Using the fact that the cijk are skew-symmetric in j, k, for
all u, v ∈ g, we have

[ωMC, ωMC](u, v) =
[∑

j

ωj(u) ·Xj,
∑
k

ωj(v) ·Xk

]
=
∑
i,j,k

ωj(u)ωk(v)cijk ·Xi

=
∑
i,j,k

cijk(ωj ∧ ωk)(u, v) ·Xi

= −2
∑
i

dωi(u, v) ·Xi

= −2dωMC(u, v),

namely

dωMC = −1

2
[ωMC, ωMC],

as claimed.

In the case of a matrix group G ⊆ GL(n,R), it is easy to see that the Maurer-Cartan
form is given explicitly by

ωMC(v) = g−1v, v ∈ TgG, g ∈ G.

Since TgG is isomorphic to gg, we have

ωMC(gv) = v, v ∈ g.
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The above expression suggests that, with some abuse of notation, ωMC may be denoted by
g−1dg, where g = (gij) and where dg is an abbreviation for the n × n matrix (dgij). Thus,
ωMC is a kind of logarithmic derivative of the identity. For n = 2, if we write

g =

(
α β
γ δ

)
,

we get

ωMC =
1

αδ − βγ

(
δdα− βdγ δdβ − βdδ
−γdα + αdγ −γdβ + αdδ

)
.

Remarks:

(1) The quantity, dωMC + 1
2
[ωMC, ωMC] is the curvature of the connection ωMC on G. The

Maurer-Cartan equation says that the curvature of the Maurer-Cartan connection is
zero. We also say that ωMC is a flat connection.

(2) As dωMC = −1
2
[ωMC, ωMC], we get

d[ωMC, ωMC] = 0,

which yields

[[ωMC, ωMC], ωMC] = 0.

It is easy to show that the above expresses the Jacobi identity in g.

(3) As in the case of real-valued one-forms, for every left-invariant one-form ω ∈ A1(G, g),
we have

ωg(u) = ω1(d(L−1
g )gu) = ω1((ωMC)gu),

for all g ∈ G and all u ∈ TgG, and where ω1 : g→ g is a linear map. Consequently, there
is a bijection between the set of left-invariant one-forms in A1(G, g) and Hom(g, g).

(4) The Maurer-Cartan form can be used to define the Darboux derivative of a map
f : M → G, where M is a manifold and G is a Lie group. The Darboux derivative of
f is the g-valued one-form ωf ∈ A1(M, g) on M given by

ωf = f ∗ωMC.

Then it can be shown that when M is connected, if f1 and f2 have the same Darboux
derivative ωf1 = ωf2 , then f2 = Lg ◦ f1, for some g ∈ G. Elie Cartan also characterized
which g-valued one-forms on M are Darboux derivatives (dω+ 1

2
[ω, ω] = 0 must hold).

For more on Darboux derivatives, see Sharpe [106] (Chapter 3) and Malliavin [81]
(Chapter III).
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4.7 Problems

Problem 4.1. Recall that d : Ap(U)→ Ap+1(U) is given by

(dω)x(u1, . . . , up+1) =

p+1∑
i=1

(−1)i−1ω′x(ui)(u1, . . . , ûi, . . . , up+1),

for all ω ∈ Ap(U), all x ∈ U , and all u1, . . . , up+1 ∈ Rn. Show that (dω)x is alternating in
its p+ 1 arguments.

Problem 4.2. Given the 1-form

ω(x,y) =
−y

x2 + y2
dx+

x

x2 + y2
dy,

on U = R2−{0}, we have dω = 0. Show that there is no smooth function f on U such that
df = ω.

Hint . See Madsen and Tornehave [80], Chapter 1.

Problem 4.3. Let U ⊆ Rn, V ⊆ Rm, W ⊆ Rp be three open subsets. Let ϕ : U → V ,
ψ : V → W , and id : U → U be smooth maps. Show that

id∗ = id,

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Problem 4.4. Complete the proof of Proposition 4.12.

Problem 4.5. Complete the proof details for Proposition 4.16.

Hint . See Morita [87] (Chapter 2).

Problem 4.6. Let M be a smooth manifold. For every vector field X ∈ X(M), for all k ≥ 1,
let i(X) : Ak(M) → Ak−1(M) the the linear insertion operator defined in Definition 4.13.
Show that

i(fX)ω = fi(X)ω, i(X)(fω) = fi(X)ω, f ∈ C∞(M), ω ∈ Ak(M),

Also prove that
i(X)(ω ∧ η) = (i(X)ω) ∧ η + (−1)rω ∧ (i(X)η),

for all ω ∈ Ar(M) and all η ∈ As(M).

Problem 4.7. Let M be a smooth manifold. For every vector field X ∈ X(M), prove the
following:

(1) For all ω ∈ Ar(M) and all η ∈ As(M),

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη);
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(2) The Lie derivative commutes with d:

LX ◦ d = d ◦ LX .

Hint . See Warner [115], Morita [87], and Gallot, Hullin and Lafontaine [52].

Problem 4.8. Prove Proposition 4.21.

Problem 4.9. Prove Proposition 5.13.
Hint . See Gallot, Hullin and Lafontaine [52] (Chapter 1).

Problem 4.10. Show that the composition Ap(U ;F )
d−→ Ap+1(U ;F )

d−→ Ap+2(U ;F ) is
identically zero for every p ≥ 0; that is

d ◦ d = 0.

Hint . See Cartan [22], Section 2.5.

Problem 4.11.

(i) Prove Proposition 4.23.

Hint . See Cartan [22], Section 2.4.

(ii) Use Proposition 4.23 with the product · and the wedge product ∧Φ induced by the
bilinear form Φ given by scalar multiplication in F to prove Proposition 4.25.

Problem 4.12. Prove Proposition 4.26.

Hint . See Cartan [22], Section 2.8.

Problem 4.13. Let F and G be finite dimensional vector spaces with (f1, . . . , fm) a basis
of F and (g1, . . . , gm′) a basis of G. Show that

ω ∧Φ η =
m∑
i=1

m′∑
j=1

ωi ∧ ηj · Φ(fi, gj),

where ω =
∑m

i=1 ωi · fi and η =
∑m′

j=1 ηj · gj.

Problem 4.14. Use Problem 4.13 to prove Proposition 4.27.

¿



Chapter 5

Tensor Fields

In this chapter we explore tensor fields in more depth. In particular, we discuss tensor
derivations and the generalization of the covariant derivative and the Lie derivative to tensor
fields. These have applications in physics, especially in the general theory of relativity.

5.1 Tensor Fields as Sections of the Tensor Bundle

T r,s(M)

A tensor field T ∈ Γ(M,T r,s(M)) is a smooth section of the tensor bundle T r,s(M) =
T⊗rM ⊗ (T ∗M)⊗s. Technically, since in view of Proposition 2.25 we have the canonical
isomorphism

µ : T r,s(TpM)→ Hom((TpM
∗)r, (TpM)s;R)

for every p ∈M , we prefer using the following definition.

Definition 5.1. A tensor field T ∈ Γ(M,T r,s(M)) is a smooth map assigning a multilinear
map Tp ∈ T r,s(TpM) = Hom((TpM

∗)r, TpM
s;R) to every p ∈ M . Following Abraham and

Marsden [1], we denote the space of tensor fields Γ(M,T r,s(M)) as T r,s(M).

Example 5.1. Observe that a tensor field in T 0,1(M) is a differential one-form, so T 0,1(M) =
A1(M).

A tensor field T in T 1,0(M) is a vector field such that Tp ∈ (TpM)∗∗ for every p, so using
the isomorphism between TpM and (TpM)∗∗, T defines a vector field in X(M). Typically,
we view a vector field X ∈ X(M) as the tensor field TX ∈ T 1,0(M) given by

(TX)p(θ) = θ(Xp), θ ∈ (TpM)∗,

and we identify X(M) and T 1,0(M) using the isomorphism X 7→ TX . To simplify notation,
we write X instead of TX , and by abuse of notation, we write X ∈ T 1,0(M).

We also identify T 0,0(M) with C∞(M).

197
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Tensor products and contractions of tensor fields in T r,s(M) are defined fibrewise.

Definition 5.2. The tensor product

⊗ : T r1,s1(M)× T r2,s2(M) −→ T r1+r2,s1+s2(M)

is defined such that for any tensor fields T1 ∈ T r1,s1(M) and T2 ∈ T r2,s2(M),

(T1 ⊗ T2)p = (T1)p ⊗ (T2)p

for all p ∈ M , where (T1)p ⊗ (T2)p is the tensor product of the tensors (T1)p ∈ T r1,s1(TpM)
and (T2)p ∈ T r2,s2(TpM) as in Definition 2.17.

Definition 5.3. The contraction operator ci,j : T r,s(M)→ T r−1,s−1(M) is given by

(ci,jT )p = ci,j(Tp), p ∈M,

for any tensor field T ∈ T r,s(M), where ci,j(Tp) on the right-hand side is given by Propositions
2.30 and 2.31. For any function f ∈ C∞(M) and any tensor field T ∈ T r,s(M), the tensor
field fT ∈ T r,s(M) is given by

(fT )p = f(p)Tp, p ∈M.

The Kronecker tensor field δ ∈ T 1,1(M) is defined such that for all p ∈M ,

δp(θ, u) = (δp)
1
1(θ, u) = θ(u), θ ∈ (TpM)∗, u ∈ TpM.

Observe that Kronecker’s δ is related to the contraction c1,1 by the equation

(c1,1)p(u⊗ θ) = δp(θ, u) = θ(u), θ ∈ (TpM)∗, u ∈ TpM,

but δ ∈ T 1,1(M) and c1,1 is a map c1,1 : T 1,1(M)→ C∞(M). Recall that u⊗ θ is really the
bilinear map µ(u⊗ θ) ∈ T 1,1(TpM).

The operation (f, T ) 7→ fT from C∞(M) × T r,s(M) to T r,s(M) makes T r,s(M) into a
C∞(M)-module. It is immediately verified that the tensor product is C∞(M)-bilinear and
associative.

Given r vector fields Xi ∈ X(M) ∼= T 1,0(M) and s differential one-forms ωj ∈ A1(M) =
T 0,1(M), by taking their tensor product as in Definition 5.2, we obtain a tensor field

X1 ⊗ · · · ⊗Xr ⊗ ω1 ⊗ · · · ⊗ ωs

in T r,s(M) given explicitly by the formula

((X1 ⊗ · · · ⊗Xr ⊗ ω1 ⊗ · · · ⊗ ωs)p((θ1)p, . . . , (θ
r)p, (Y1)p, . . . , (Ys)p)

=
r∏
i=1

(θi)p((Xi)p)
s∏
j=1

(ωj)p((Yj)p), (†1)
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(Yj)p ∈ TpM (1 ≤ j ≤ s), (θi)p ∈ (TpM)∗ (1 ≤ i ≤ r).

Formula (†1) will allow us to express a tensor field in a local chart. In this chapter it
pays off to adopt Einstein summation convention; see Section 2.8.

Let (U,ϕ) be a local chart on M , with ϕ : U → Rn, and let xi = pri ◦ ϕ, the ith local
coordinate (1 ≤ i ≤ n); see Tu [111] (Chapter 3, §8) or Gallier and Quaintance [49]. Note
carefully that we now denote the local ith coordinate as xi with a superscript , in order to
be able to use the Einstein summation convention. Recall that the vector fields in X(U),

∂

∂x1
, . . . ,

∂

∂xn

form a basis of the C∞(M)-module X(U). Furthermore, the differential one-forms dx1, . . . , dxn

form a basis of the C∞(M)-module A1(U), (where (dxi)p, the differential of xi at p, is iden-
tified with the linear form such that dfp(v) = v(f), for every smooth function f on U and
every v ∈ TpM). The basis dx1, . . . , dxn of A1(U) is the dual of the basis

(
∂
∂x1 , . . . ,

∂
∂xn

)
of

X(U), which means that for all p ∈ U ,

(dxi)p

((
∂

∂xj

)
p

)
= δi,j, 1 ≤ i, j ≤ n.

For all (i1, . . . , ir) and all (j1, . . . , js), with 1 ≤ ik, jl ≤ n, the tensor products

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

are tensor fields in T r,s(U).

Proposition 5.1. The tensor fields

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs (†2)

form a basis of the C∞(M)-module T r,s(U). Consequently, locally on U , every tensor field
T ∈ T r,s(M) can be written uniquely as

Tp = ai1...irj1...js
(p)

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
(p), p ∈ U, (†3)

where ai1,...,irj1,...,js
is a smooth function on U given by

ai1...irj1...js
(p) = Tp

(
(dxi1)p, . . . , (dx

ir)p,

(
∂

∂xj1

)
p

, . . . ,

(
∂

∂xjs

)
p

)
. (†4)
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Proof. For any vectors (Xl)p = Xjl
l (p)

(
∂

∂xjl

)
p

in TpM and any one-forms (θk)p = θkik(p)(dx
ik)p

in (TpM)∗, with 1 ≤ l ≤ s and 1 ≤ k ≤ r, by multilinearity, we have

Tp((θ1)p, . . . , (θr)p, (X1)p, . . . , (Xs)p)

= Tp

(
(dxi1)p, . . . , (dx

ir)p,

(
∂

∂xj1

)
p

, . . . ,

(
∂

∂xjs

)
p

)
θ1
i1

(p) · · · θrir(p)X
j1
1 (p) · · ·Xjs

s (p),

which shows that the tensor fields in (†2) span the C∞(M)-module T r,s(U), with coefficients
given by (†4).

The tensor fields in (†2) are linearly independent, because since

(dxi)p

((
∂

∂xj

)
p

)
= δi,j, 1 ≤ i, j ≤ n,

we have(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
p

(
(dxi

′
1)p, . . . , (dx

i′r)p,

(
∂

∂xj
′
1

)
p

, . . . ,

(
∂

∂xj′s

)
p

)
= δi1,i′1 · · · δir,i′r · · · δj1,j′1 · · · δjs,j′s ,

so if we have a C∞(M)-linear combination of the tensor fields in (†2) with coefficents λi1...irj1...js
∈

C∞(U), evaluating this linear combination at p on

(dxi1)p, . . . , (dx
ir)p,

(
∂

∂xj1

)
p

, . . . ,

(
∂

∂xjs

)
p

yields λi1...irj1...js
(p) = 0.

Proposition 5.1 implies that if we have a family Tα of tensor fields in T r,s(Uα) each locally
defined on the domain Uα of a chart of a manifold M , and if the tensor fields Tα and T β

agree on the overlap Uα ∩ Uβ, then the Tα patch to form a tensor field T ∈ T r,s(M).

5.2 Tensor Fields as C∞(M)-Multilinear Maps

Generalizing what we did just before Proposition 4.15, tensor fields can be viewed as C∞(M)-
multilinear maps.

Definition 5.4. Given a tensor field T ∈ T r,s(M) = Γ(M,T r,s(M)), we define a C∞(M)-
multilinear map

µr,s(T ) : A1(M)× · · · × A1(M)︸ ︷︷ ︸
r

×X(M)× · · · × X(M)︸ ︷︷ ︸
s

−→ C∞(M),
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given by

µr,s(T )(ω1, . . . , ωr, X1, . . . Xr)(p) = Tp((ω
1)p, . . . , (ω

r)p, (X1)p, . . . (Xs)p),

for all differential one-forms ωi ∈ A1(M), all vector fields Xj ∈ X(M), and all p ∈M .

Note that we are commiting an abuse of notation since the notation µr,s was already
used to denote the map on tensors from T r,s(V ) to T r,s(V ). The context should make it
clear whether we are dealing with tensors or tensor fields. We also usually suppress the
superscripts r and s.

Conversely, a C∞(M)-multilinear map

Φ: A1(M)× · · · × A1(M)︸ ︷︷ ︸
r

×X(M)× · · · × X(M)︸ ︷︷ ︸
s

−→ C∞(M)

induces a family of multilinear linear maps Tp ∈ T r,s(TpM) for every p ∈M which constitute
a tensor field. This fact relies on the following two propositions (see O’Neill [90], Chapter 2,
Lemma 3 and Proposition 2).

Proposition 5.2. Given a C∞(M)-multilinear map

Φ: A1(M)× · · · × A1(M)︸ ︷︷ ︸
r

×X(M)× · · · × X(M)︸ ︷︷ ︸
s

−→ C∞(M),

for any p ∈M , for any one forms ωi ∈ A1(M) (1 ≤ i ≤ r) and any vector fields Xj ∈ X(M)
(1 ≤ j ≤ s), if either (ωi)p = 0 for some i or (Xj)p = 0 for some j, then

Φ(ω1, . . . , ωr, X1, . . . Xs)(p) = 0.

Proposition 5.2 is used to prove the next proposition.

Proposition 5.3. Given a C∞(M)-multilinear map

Φ: A1(M)× · · · × A1(M)︸ ︷︷ ︸
r

×X(M)× · · · × X(M)︸ ︷︷ ︸
s

−→ C∞(M),

for any p ∈ M , for any one forms ωi, θi ∈ A1(M) (1 ≤ i ≤ r) and any vector fields
Xj, Yj ∈ X(M) (1 ≤ j ≤ s), if (ωi)p = (θi)p for i = 1, . . . r and (Xj)p = (Yj)p for j = 1, . . . s,
then

Φ(ω1, . . . , ωr, X1, . . . Xs)(p) = Φ(θ1, . . . , θr, Y1, . . . Xs)(p).

A C∞(M)-multilinear map Φ induces a tensor Tp ∈ T r,s(TpM) for every p ∈ M as
follows. For any linear forms αi ∈ (TpM)∗ (1 ≤ i ≤ r) and any tangent vectors uj ∈ TpM
(1 ≤ j ≤ s), we can pick a smooth function f equal to 1 on some open set U containing p
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and 0 outside U (a bump function), so that we get smooth one-forms ωi and vector fields
Xj with (ωi)p = αi for i = 1, . . . , r and (Xj)p = uj for j = 1, . . . , s, and we set

Tp(α
1, . . . , αr, u1, . . . , us) = Φ(ω1, . . . , ωr, X1, . . . , Xs)(p).

By Proposition 5.3, the above definition does not depend on the one-forms ωi and the vector
fields Xj chosen such that (ωi)p = αi and (Xj)p = uj. As a cororally we obtain the following
isomorphism.

Theorem 5.4. Let M be a smooth manifold. There is an isomorphism between the space of
of tensor fields T r,s(M) and the space HomC∞(M)((A1(M))r, (X(M))s);C∞(M)) of C∞(M)-
multilinear maps

Φ: A1(M)× · · · × A1(M)︸ ︷︷ ︸
r

×X(M)× · · · × X(M)︸ ︷︷ ︸
s

−→ C∞(M).

Definition 5.5. The space HomC∞(M)((A1(M))r, (X(M))s);C∞(M)) is denoted as Tr,s(M)
(see Abraham and Marsden [1]).

With a slight abuse of language, we also call the multilinear maps in Tr,s(M) tensor fields.

Multiplication of a tensor field in Tr,s(M) by a smooth function and tensor products of
tensor fields (in Tr,s(M) for some r, s) are defined as follows. Recall that given two functions
f, g : M → R, their product fg is defined pointwise by

(fg)(p) = f(p)g(p), p ∈M.

Definition 5.6. The tensor product

⊗ : Tr1,s1(M)× Tr2,s2(M) −→ Tr1+r2,s1+s2(M)

is defined such that for any two tensors T1 ∈ Tr1,s1(M) and T2 ∈ Tr2,s2(M),

(T1 ⊗ T2)(ω1, . . . , ωr1 , θ1, . . . , θr2 , X1, . . . , Xs1 , Y1, . . . , Ys2)

= T1(ω1, . . . , ωr1 , X1, . . . , Xs1)T2(θ1, . . . , θr2 , Y1, . . . , Ys2),

for all ωi1 ∈ A1(M) (1 ≤ i1 ≤ r1), Xj1 ∈ X(M) (1 ≤ j1 ≤ s1), θi2 ∈ A1(M) (1 ≤ i2 ≤ r2),
Yj2 ∈ X(M) (1 ≤ j2 ≤ s2), where T1(ω1, . . . , ωr1 , X1, . . . , Xs1)T2(θ1, . . . , θr2 , Y1, . . . , Ys2) is
the product of the functions T1(ω1, . . . , ωr1 , X1, . . . , Xs1) and T2(θ1, . . . , θr2 , Y1, . . . , Ys2). In
the special case where r1 = s1 = 0, T1 = f is a function in C∞(M) and f ⊗T2 is also denoted
by fT2. Similarly, in the special case where r2 = s2 = 0, T2 = g is a function in C∞(M) and
T1 ⊗ g is also denoted by T1g.

It is immediately verified that the tensor product is C∞(M)-bilinear and associative.
However, it is not commutative (find a counter-example).
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Remark: We admit that the notation ⊗ for tensor products is heavily overloaded, since it
has at least four different meanings: (1)-(2) for tensors in the space T r,s(V ) and in the space
of multilimear forms in T r,s(V ), where V is a vector space; (3) for tensor fields in T r,s(M);
(4) for C∞(M)-multilinear maps in the space Tr,s(M), where M is a manifold. This is quite
confusing, but hopefully context should make it clear which tensor product is used.

Example 5.2. Proposition 4.15 shows that as C∞(M)-modules,

A1(M) ∼= T0,1(M).

The isomorphism is defined as follows. Given a differential one-form θ ∈ A1(M) and a vector
field X ∈ X(M), we have the C∞(M)-linear map Tθ from X(M) to C∞(M) given by

(Tθ(X))(p) = θp(Xp), p ∈M.

Example 5.3. Given a vector field X ∈ X(M), we obtain a map TX from A1(M) to C∞(M)
given by

(TX(θ))(p) = θp(Xp), p ∈M.

We check immediately that this map is C∞(M)-linear, so TX ∈ T1,0(M). It can be shown
that the map X 7→ TX is a bijection (see O’Neill [90], Chapter 2). Therefore, X(M) is
isomorphic to T1,0(M).

As a corollary of Theorem 5.4 and Proposition 2.27, the following result can be shown.
The proof is left as an exercise.

Proposition 5.5. Let M be a smooth manifold. The space T1,s(M) is isomorphic to the
space of C∞(M)-multilinear maps Hom(X(M)s;X(M)). Given a C∞(M)-multilinear map
f ∈ Hom(X(M)s;X(M)), we obtain the (1, s)-tensor field T ∈ T1,s(M) given by

T (θ,X1, . . . , Xs) = θ(f(X1, . . . , Xs)), θ ∈ A1(M), X1, . . . , Xs ∈ X(M).

Given a connection ∇ on a smooth manifold M , the torsion (T (X, Y )) can be viewed as a
(1, 2)-tensor field and the Riemannian curvature (R(X, Y )Z) can be viewed as a (1, 3)-tensor
field; see Gallier and Quaintance [49] (Section 15.3 and Section 17.1).

As in Section 5.1, given r vector fields Xi ∈ X(M) ∼= T1,0(M) and s differential one-forms
ωj ∈ A1(M) ∼= T0,1(M), by taking their tensor product as in Definition 5.6, we obtain a
tensor field

X1 ⊗ · · · ⊗Xr ⊗ ω1 ⊗ · · · ⊗ ωs

in Tr,s(M) given explicitly by the formula(
(X1 ⊗ · · · ⊗Xr ⊗ ω1 ⊗ · · · ⊗ ωs)(θ1, . . . , θr, Y1, . . . , Ys)

)
(p)

=
r∏
i=1

(θi)p((Xi)p)
s∏
j=1

(ωj)p((Yj)p), (†5)
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Yj ∈ X(M) (1 ≤ j ≤ s), θi ∈ A1(M) (1 ≤ i ≤ r).

This fact leads to a version of Proposition 5.1 for tensor fields in Tr,s(M).

Let (U,ϕ) be a local chart on M , with ϕ : U → Rn, and let xi = pri ◦ ϕ, the ith local
coordinate (1 ≤ i ≤ n). Recall that the vector fields in X(U),

∂

∂x1
, . . . ,

∂

∂xn

form a basis of the C∞(M)-module X(U). Furthermore, the differential one-forms dx1, . . . , dxn

form a basis of the C∞(M)-module A1(U). For all (i1, . . . , ir) and all (j1, . . . , js), with
1 ≤ ik, jl ≤ n, the tensor products

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

are tensor fields in Tr,s(U).

Proposition 5.6. The tensor fields

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs (†6)

form a basis of the C∞(M)-module Tr,s(U). Consequently, locally on U , every tensor field
T ∈ Tr,s(M) can be written uniquely as

T = ai1...irj1...js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs , (†7)

where ai1,...,irj1,...,js
is a smooth function on U given by

ai1...irj1...js
= T

(
dxi1 , . . . , dxir ,

∂

∂xj1
, . . . ,

∂

∂xjs

)
. (†8)

There is also a version of the contraction operators ci,j : Tr,s(M) → Tr−1,s−1(M). The
method for defining these contractions is analogous to the method used in Section 2.9 to
define contractions on the space T r,s(V ). Following O’Neill [90] (Chapter 2), we first define
contraction operators locally in terms of charts (U,ϕ) on the tensors in Tr,s(U). Since these
operators agree on overlaps, they patch to give contraction operators globally defined.

We sketch how to proceed with the contraction c1,1 : T1,1(M) → C∞(M), leaving the
case of the more general contractions ci,j as as exercise. The proof mimicks the proof of
Proposition 2.30.

We need to prove that there is a unique C∞(M)-linear map c1,1 : T1,1(M) → C∞(M)
such that

c1,1(X ⊗ θ) = θ(X), X ∈ X(M), θ ∈ A1(M). (†9)
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It suffices to prove that c1,1 is uniquely defined on T1,1(U), where (U,ϕ) is a chart. As usual,
we have the local coordinates xi = pri ◦ ϕ. By Proposition 5.6, a tensor field T ∈ T1,1(U) is
written uniquely as

T = tij
∂

∂xi
⊗ dxj,

so (†9) implies that

c1,1(T ) = tii.

If (V, ψ) is another chart with local coordinates yi = pri ◦ ψ and U ∩ V 6= ∅, the map

ψ ◦ ϕ−1 has the Jacobian matrix
(
∂yi
∂xj

)
1≤i,j≤n

, and its inverse ϕ ◦ ψ−1 has the Jacobian

matrix
(
∂xi
∂yj

)
1≤i,j≤n

, which is the inverse of the previous matrix. Then on the overlap U ∩V
we have (

∂

∂xi

)
p

=
∂yj
∂xi

(ϕ(p))

(
∂

∂yj

)
p

.

At this point, we have the change of basis matrix (aji ) =
(
∂yj
∂xi

)
1≤i,j≤n

expressing the basis(
∂
∂xi

)
(1 ≤ i ≤ n) in terms of the basis

(
∂
∂yj

)
(1 ≤ j ≤ n), and we also have

(dyi)p =
∂yi
∂xj

(ϕ(p))(dxj)p,

so we can repeat the computation in the proof of Proposition 2.30 and deduce that c1,1(T )
is independent of the change of basis.

We are now ready to tackle the important topic of tensor derivations.

5.3 Tensor Field Derivations and Wilmore’s Theorem

There are two parallel approaches to the topic of tensor field derivations depending on which
version of tensor fields is used; as the space T r,s(M) of sections of the tensor bundle T r,s(M),
or as C∞(M)-multilinear maps in Tr,s(M). The first approach is discussed in Gallot, Hulin,
Lafontaine [52] and Abraham and Marsden [1], and the second in O’Neill [90] and Sakai [99].

We present the first approach, following quite closely Abraham and Marsden [1], because
it is more fundamental since it does not rely on the smoothness of the manifold M . We
also find it a bit more elegant since it does not involve the contractions but instead the
Kronecker tensor field delta (see Definition 5.2). Wilmore’s theorem asserts the existence
of differential operators on tensor fields that satisfy a Leibniz-type property with respect to
tensor products.

Given any (smooth) manifold M and any open subset U of M , the subspace of T r,s(M)
consisting of the restrictions of tensor fields in T r,s(M) to U is denoted T r,s(U).
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Definition 5.7. A differential operator on tensor fields on a (smooth or Ck, k ≥ 1) manifold
M is a family of D of maps Dr

sU : T r,s(U)→ T r,s(U) for every nonempty open subset U of
M and all pairs r, s ≥ 0, such that the following properties hold.

(DO1) If we write Dr
s = Dr

sM , then each Dr
s is a tensor derivation, which means that Dr

s is
R-linear and that

Dr1+r2
s1+s2

(T1 ⊗ T2) = Dr1
s1

(T1)⊗ T2 + T1 ⊗Dr2
s2

(T2),

for all T1 ∈ T r1,s1(M) and all T2 ∈ T r2,s2(M).

(DO2) The family (Dr
sU) is local , or natural with respect to restriction, that is, for all open

subsets U, V of M such that U ⊆ V and all T ∈ T r,s(V ),

((Dr
sV )T )|U = (Dr

sU)(T |U) ∈ T r,s(U),

where |U means restriction to U , or equivalently the following diagram commutes.

T r,s(V )
|U //

DrsV

��

T r,s(U)

DrsU

��
T r,s(V )

|U
// T r,s(U).

(DO3) (D1
1U)δ = 0, where δ1

1 ∈ T 1,1(U) is Kronecker’s delta.

Even though this is an abuse of notation, the indices r and s in Dr
s are often omitted.

The following fundamental theorem shows that given a family of maps EU : C∞(U) →
C∞(U) and FU : X(U)→ X(U) for each open subset U of M , if these maps are local tensor
derivations, then they have a unique extension to a differential operator on the tensor field
algebras T r,s(U).

Theorem 5.7. (Wilmore) Assume that for every open subset U of M , we have a family of
maps EU : C∞(U)→ C∞(U) and FU : X(U)→ X(U), which are R-linear tensor derivations
and natural with respect to restriction. More explicitly, this means that

(1) EU(fg) = (EU(f))g + fEU(g), f, g ∈ C∞(U).

(2) EU(f |U) = (EMf)|U, f ∈ C∞(M).

(3) FU(fX) = (EU(f))X + fFU(X), f ∈ C∞(U), X ∈ X(U).

(4) FU(X|U) = (FMX)|U, X ∈ X(M).

Then there is a unique family of differential operators Dr
sU : T r,s(U)→ T r,s(U) that coincides

with EU on C∞(U) ∼= T 0,0(U) and with FU on X(U) ∼= T 1,0(U). Furthermore, define the
product rule as follows.
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(DO4) For all T ∈ T r,s(M), ω1, . . . , ωr ∈ A1(M) and X1, . . . , Xs ∈ X(M),

D0
0(T (ω1, . . . , ωr, X1, . . . , Xs)) = (Dr

sT )(ω1, . . . , ωr, X1, . . . , Xs)

+
r∑
i=1

T (ω1, . . . , D0
1ω

i, . . . , ωr, X1, . . . , Xs)

+
s∑
j=1

T (ω1, . . . ωr, X1, . . . , D
1
0Xj, . . . , Xs).

In the above equations we are using implicitly Definition 5.4 involving µr,s to view tensor
fields in T r,s(M) as tensor fields in Tr,s(M). Under the hypothesis of (DO1) and (DO2),
(DO3) is equivalent to (DO4). If M is smooth, (DO4) determines the operators Dr

sU . In
the special case r = 0, s = 1, T is a differential one-form θ ∈ A1(M) = T 0,1(M), and we
have

(D0
1θ)(X) = D0

0(θ(X))− θ(D1
0X) = E(θ(X))− θ(FX), X ∈ X(M). (Dθ)

Proof. Suppose a family of operators Dr
sU satisfying the conditions of the theorem exists.

Consider any chart (U,ϕ). By (DO2) and (2), (4) above we may restrict our attention to
tensor fields in T r,s(U). By Proposition 5.1, every tensor field T ∈ T r,s(U) can be written
uniquely as

Tp = ai1...irj1...js
(p)

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
(p), p ∈ U, (†10)

where ai1,...,irj1,...,js
is a smooth function on U . Using R-linearity and (DO1), we obtain

(Dr
sU)T = (D0

0U) ai1...irj1...js

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
+

r∑
k=1

ai1...irj1...js

(
∂

∂xi1
⊗ · · · ⊗ (D1

0U)
∂

∂xik
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
+

s∑
l=1

ai1...irj1...js

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ (D0

1U)dxjl ⊗ · · · ⊗ dxjs
)
,

and since D0
0U agrees with EU on C∞(M) and D1

0U agrees with FU on X(U), we have

(D0
0U) ai1...irj1...js

= EUa
i1...ir
j1...js

and (D1
0U)

∂

∂xik
= FU

∂

∂xik
,

so (Dr
sU)T is uniquely determined if the expressions (D0

1(U)dxjl are uniquely determined.
This is where (DO3) comes in.

The trick is that locally on U , the Kronecker’s tensor field δ is given by the expression
(using Einstein’s sum convention)

δp =

(
∂

∂xj

)
p

⊗ (dxj)p, p ∈ U, (δo)
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as we check by applying both sides to
(

(dxl)p,
(

∂
∂xk

)
p

)
, since

(dxj)p

((
∂

∂xk

)
p

)
= δj,k, (dxl)p

((
∂

∂xj

)
p

)
= δl,j,

so

δp

(
(dxl)p,

(
∂

∂xk

)
p

)
= (dxl)p

(
∂

∂xk

)
p

= δl,k

and (
∂

∂xj

)
p

⊗ (dxj)p

(
(dxl)p,

(
∂

∂xk

)
p

)
= (dxj)p

((
∂

∂xk

)
p

)
(dxl)p

((
∂

∂xj

)
p

)

=
n∑
j=1

δj,kδl,j = δl,k.

Note that if we denote δj,k as δjk and δl,j as δlj, then according to the Einstein summation
convention

n∑
j=1

δj,kδl,j = δjkδ
l
j.

Now if we apply D1
1U to both sides of (δp), since by (DO3) we have (D1

1U)δ = 0, by (DO1),
we obtain

(D1
1U)

(
∂

∂xj
⊗ dxj

)
= (D1

0U)
∂

∂xj
⊗ dxj +

∂

∂xj
⊗ (D0

1U)dxj = 0.

Appying the above to
(

(dxk)p,
(
∂
∂xi

)
p

)
, we obtain

(dxk)p

((
(D1

0U)
∂

∂xj

)
p

)
(dxj)p

((
∂

∂xi

)
p

)
+ (dxk)p

((
∂

∂xj

)
p

)
((D0

1U)dxj)p

((
∂

∂xi

)
p

)

= (dxk)p

((
FU

∂

∂xi

)
p

)
+ ((D0

1U)dxk)p

((
∂

∂xi

)
p

)
= 0.

Therefore, we obtain

((D0
1U)dxk)p

((
∂

∂xi

)
p

)
= −(dxk)p

((
FU

∂

∂xi

)
p

)
, p ∈ U,

in other words,

((D0
1U)dxk)

(
∂

∂xi

)
= −dxk

(
FU

∂

∂xi

)
, on U, (†11)
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which shows that (D0
1U)dxk is uniquely defined on U .

In summary, we proved that if the family of operators Dr
sU exists, then it is unique. We

now use the equations

(Dr
sU)T = EU a

i1...ir
j1...js

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
+

r∑
k=1

ai1...irj1...js

(
∂

∂xi1
⊗ · · · ⊗ FU

∂

∂xik
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
+

s∑
l=1

ai1...irj1...js

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ (D0

1U)dxjl ⊗ · · · ⊗ dxjs
)
,

together with (†11) to define the operators Dr
sU . Then we check that the resulting family is

well defined (DO1), (DO2), (DO3) are satisfied, which is a tedious task.

To prove (DO4), we use (†10) applied to one-forms θk ∈ A1(U) and vector fieldsXl ∈ X(U)
witten locally as

θk = θki dx
i and Xl = Xj

l

∂

∂xj

for some functions θki , X
j
l ∈ C∞(U). We obtain

T (θ1, . . . , θr, X1, . . . , Xs) = ai1...irj1...js
θ1
i1
· · · θrirX

j1
1 · · ·Xjs

s .

By (DO1) for functions,

(D0
0U)(T (θ1, . . . , θr, X1, . . . , Xs) = (EU a

i1...ir
j1...js

)θ1
i1
· · · θrirX

j1
1 · · ·Xjs

s

+
r∑

k=1

ai1...irj1...js
θ1
i1
· · ·EUθkik · · · θ

r
irX

j1
1 · · ·Xjs

s +
s∑
l=1

ai1...irj1...js
θ1
i1
· · · θrirX

j1
1 · · ·EUX

jl
l · · ·X

js
s .

(†12)

From

(Dr
sU)T = EU a

i1...ir
j1...js

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
+

r∑
k=1

ai1...irj1...js

(
∂

∂xi1
⊗ · · · ⊗ FU

∂

∂xik
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

)
+

s∑
l=1

ai1...irj1...js

(
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ (D0

1U)dxjl ⊗ · · · ⊗ dxjs
)

and

θk = θki dx
i, Xl = Xj

l

∂

∂xj
,
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we obtain (
(Dr

sU)T
)
((θ1, . . . , θr, X1, . . . , Xs) = EU a

i1...ir
j1...js

θ1
i1
· · · θrirX

j1
1 · · ·Xjs

s

+
r∑

k=1

ai1...irj1...js
θ1
i1
· · · θk

(
FU

∂

∂xik

)
· · · θrirX

j1
1 · · ·Xjs

s

+
s∑
l=1

ai1...irj1...js
θ1
i1
· · · θrirX

j1
1 · · · ((D0

1U)dxjl)(Xl) · · ·Xjs.
s (†13)

From (†3), we also have

T (θ1, . . . , (D0
1U)θk, . . . θr, X1, . . . , Xs)

= ai1...irj1...js
θ1
i1
· · ·
(
(D0

1U)θk
)( ∂

∂xik

)
· · · θrirX

j1
1 · · ·Xjs

s , (†14)

and

T
(
θ1, . . . , θr, X1, . . . , (D

1
0U)(Xl), . . . , Xs

)
= ai1...irj1...js

θi1 · · · θrirX
j1
1 · · · dxjl

(
((D1

0U)(Xl)
)
· · ·Xjs

s . (†15)

By adding up (†13), (†14) and (†15) for k = 1, . . . , r and l = 1, . . . , s, we obtain

(
(Dr

sU)T
)
((θ1, . . . , θr, X1, . . . , Xs) +

r∑
k=1

T (θ1, . . . , (D0
1U)θk, . . . θr, X1, . . . , Xs)

+
s∑
l=1

T

(
θ1, . . . , θr, X1, . . . , FU

∂

∂xjl
, . . . , Xs

)
= EU a

i1...ir
j1...js

θ1
i1
· · · θrirX

j1
1 · · ·Xjs

s

+
r∑

k=1

ai1...irj1...js
θ1
i1
· · ·
(
θk
(
FU

∂

∂xik

)
+
(
(D0

1U)θk
)( ∂

∂xik

))
· · · θrirX

j1
1 · · ·Xjs

s

+
s∑
l=1

ai1...irj1...js
θ1
i1
· · · θrirX

j1
1 · · ·

(
((D0

1U)dxjl)(Xl) + dxjl
(
((D1

0U)(Xl)
))
· · ·Xjs

s .

To conclude that the above expression on the right-hand side is equal to the right-hand side
of (†12), we need to prove the equations

θk
(
FU

∂

∂xik

)
+
(
(D0

1U)θk
)( ∂

∂xik

)
= EUθ

k
ik

(†16)

((D0
1U)dxjl)(Xl) + dxjl

(
((D1

0U)(Xl)
)

= EUX
jl
l . (†17)

Rrenaming ik as i, we have

θk
(
FU

∂

∂xi

)
= (θkj dx

j)

(
FU

∂

∂xi

)
. (†18)
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By (DO1), we also have

(D0
1U)(θk) = (D0

1U)(θkj dx
j) = (EUθ

k
j )dx

j + θkj (D
0
1U)dxj.

Applying the above to ∂
∂xi

and using (†11), we obtain

EUθ
k
i + θkj ((D

0
1U)dxj)

(
∂

∂xi

)
= EUθ

k
i − θkj dxj

(
FU

∂

∂xi

)
, (†19)

and so

θk
(
FU

∂

∂xi

)
+
(
(D0

1U)θk
)( ∂

∂xi

)
= θkj dx

j

(
FU

∂

∂xi

)
+ EUθ

k
i − θkj dxj

(
FU

∂

∂xi

)
= EUθ

k
i ,

proving (†16).

Renaming jl as j, by (DO3), we have

(D1
0U)(Xl) = (D1

0U)

(
X i
l

∂

∂xi

)
= (EUX

i
l )
∂

∂xi
+X i

lFU
∂

∂xi
.

Applying dxj to the above (remembering that dxj is C∞(M)-linear) and using (†11), we
obtain

dxj
(
(D1

0U)(Xl)
)

= EUX
j
l +X i

ldx
j

(
FU

∂

∂xi

)
= EUX

j
l −X

i
l ((D

0
1U)dxj)

(
∂

∂xi

)
. (†20)

As a consequence, we have

((D0
1U)dxj)(Xl) + dxj

(
((D1

0U)(Xl)
)

= X i
l ((D

0
1U)dxj)

(
∂

∂xi

)
+ EUX

j
l −X

i
l ((D

0
1U)dxj)

(
∂

∂xi

)
= EUX

j
l ,

proving (†17). Finally, this proves that (DO4) holds locally, and since this equation holds on
overlaps, it also holds globally.

To prove that (DO4) implies (DO3), observe that by (DO4) and the definition of δ, we
have

E(θ(X)) = E(δ(θ,X)) = D1
1(δ)(θ,X) + δ(D0

1θ,X) + δ(θ, FX)

= D1
1(δ)(θ,X) + (D0

1θ)(X) + θ(FX),

and by (Dθ),

E(θ(X)) = (D0
1θ)(X) + θ(FX),

so we get D1
1(δ)(θ,X) = 0 for all θ,X, which means that D1

1δ = 0.
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For any chart (U,ϕ), since we have

((D0
1U)dxj)

(
∂

∂xi

)
= −dxj

(
FU

∂

∂xi

)
, on U, (†11)

if we have the local expression

(D1
0U)

∂

∂xi
= FU

∂

∂xi
= Γji

∂

∂xj
, (†21)

then

((D0
1U)dxj)

(
∂

∂xi

)
= −dxj

(
FU

∂

∂xi

)
= −dxj

(
Γki

∂

∂xk

)
= −Γji ,

so we obtain the local expression

(D0
1U)dxj = −Γjidx

i. (†22)

Observe the sort of duality between (†21) and (†22)

5.4 Using Contractions Instead of Kronecker’s delta

There is another approach to tensor field derivations using the contraction ci,j : T r,s(M) →
T r−1,s−1(M) instead of Kronecker’s δ. The reason is that the contraction operators commute
with D, and this fact implies (DO4).

Proposition 5.8. If D is a differential operator (a family of maps Dr
sU as in Definition

5.7), then the contractions operators ci,j : T r,s(M) → T r−1,s−1(M) commute with D, which
means that

ci,j(D
r
sT ) = Dr−1

s−1(ci,jT ), T ∈ T r,s(M). (DO5)

Proof. We begin with the case r = s = 1. It suffices to prove (DO5) for T = X ⊗ θ, with
X ∈ X(M) and θ ∈ A1(M). In this case,

c1,1(X ⊗ θ) = δ(θ,X) = θ(X),

and by (Dθ) and (DO1),

D0
0(c1,1(X ⊗ θ)) = D0

0(θ(X)) = (D0
1θ)(X) + θ(D1

0X)

= c1,1(X ⊗D0
1θ) + c1,1(D1

0X ⊗ θ)
= c1,1(X ⊗D0

1θ +D1
0X ⊗ θ)

= c1,1(D1
1(X ⊗ θ)),

proving (DO5). Recall that the proof of (Dθ) uses (DO3), namely, D1
1δ = 0.
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Let us now consider the general case. It suffices to prove (DO5) for

T = X1 ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θs,

with Xi ∈ X(M) and θj ∈ A1(M). Recall that

ci,j(X1⊗ · · · ⊗Xr ⊗ θ1⊗ · · · ⊗ θs) = θj(Xi)X1⊗ · · · ⊗ X̂i⊗ · · · ⊗Xr ⊗ θ1⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs.

Using (DO1) and (Dθ), we obtain

Dr−1
s−1(ci,j(X1 ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θs))

= Dr−1
s−1(θj(Xi)X1 ⊗ · · · ⊗ X̂i ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs)

= D0
0(θj(Xi))X1 ⊗ · · · ⊗ X̂i ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs

+
r∑

k=1,k 6=i

θj(Xi)X1 ⊗ · · · ⊗D1
0Xk ⊗ · · · ⊗ X̂i ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs

+
s∑

l=1,l 6=j

θj(Xi)X1 ⊗ · · · ⊗ X̂i ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗D0
1θl ⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs

= θj(D
1
0Xi)X1 ⊗ · · · ⊗ X̂i ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs

+ (D0
1θj)(Xi)X1 ⊗ · · · ⊗ X̂i ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs

+
r∑

k=1,k 6=i

θj(Xi)X1 ⊗ · · · ⊗D1
0Xk ⊗ · · · ⊗ X̂i ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs

+
s∑

l=1,l 6=j

θj(Xi)X1 ⊗ · · · ⊗ X̂i ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗D0
1θl ⊗ · · · ⊗ θ̂j ⊗ · · · ⊗ θs

= ci,j(X1 ⊗ · · · ⊗D1
0Xi ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θs)

+ ci,j(X1 ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗D0
1θj ⊗ · · · ⊗ θs)

+
r∑

k=1,k 6=i

ci,j(X1 ⊗ · · · ⊗D1
0Xk ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θs)

+
s∑

l=1,l 6=j

ci,j(X1 ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗D0
1θl ⊗ · · · ⊗ θs)

= ci,j(D
r
s(X1 ⊗ · · · ⊗Xr ⊗ θ1 ⊗ · · · ⊗ θs)),

proving (DO5).

Proposition 5.8 proves that assuming (DO1) and (DO2), (DO3) implies (DO5). The
converse holds.
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Proposition 5.9. If D is a differential operator (a family of maps Dr
sU as in Definition

5.7) satisfying Conditions (DO1), (DO2) and (DO5), then (DO3) holds (and thus (DO4)
holds).

Proof. The proof that (DO4) implies (DO3) only uses the fact that (DO4) holds for T ∈
T 0,1(M) and T ∈ T 1,1(M), so we prove that (DO5) implies that (DO4) holds in these two
cases. Since

c1,1(X ⊗ θ) = θ(X), X ∈ X(M), θ ∈ A1(M),

by (DO5) and (DO1),

D0
0(θ(X)) = D0

0(c1,1(X ⊗ θ)) = c1,1(D0
0(X ⊗ θ))

= c1,1(D1
0X ⊗ θ +X ⊗D0

1θ) = c1,1(D1
0X ⊗ θ) + c1,1(X ⊗D0

1θ)

= (D0
1θ)(X) + θ(D1

0X),

which is (DO4).

If T ∈ T 1,1(M), we use the following trick from O’Neill [90] (Chapter 2, Proposition 13):

T (θ,X) = c1,1

(
c1,1(θ ⊗ T ⊗X)

)
, X ∈ X(M), θ ∈ A1(M). (†23)

Observe that the inner c1,1 is an operator on T 2,2(M) but the outer c1,1 is an operator on
T 1,1(M).

To prove the above equation, we may express T,X, θ locally in a chart (U,ϕ). If

T = aij
∂

∂xi
⊗ dxj, θ = θkdx

k, X = X l ∂

∂xl
,

then we have

θ ⊗ T ⊗X = aijθkX
l ∂

∂xi
⊗ ∂

∂xl
⊗ dxk ⊗ dxj,

and so

c1,1(θ ⊗ T ⊗X) = aijθiX
l ∂

∂xl
⊗ dxj

and
c1,1

(
c1,1(θ ⊗ T ⊗X)

)
= aijθiX

j = T (θ,X).

Now by (†23), (DO5) twice and (DO1), we have

D0
0(T (θ,X)) = D0

0

(
c1,1(c1,1(θ ⊗ T ⊗X))

)
= c1,1

(
c1,1(D2

2(θ ⊗ T ⊗X))
)

= c1,1

(
c1,1(D0

1θ ⊗ T ⊗X + θ ⊗D1
1T ⊗X + θ ⊗ T ⊗D1

0X)
)

= c1,1

(
c1,1(D0

1θ ⊗ T ⊗X)
)

+ c1,1

(
c1,1(θ ⊗D1

1T ⊗X)
)

+ c1,1

(
c1,1(θ ⊗ T ⊗D1

0X)
)

= T (D0
1θ,X) + (D1

1T )(θ,X) + T (θ,D1
0X),

which is (DO4). Finally, as in the proof of Theorem 5.7, we can prove that the two above
instances of (DO4) imply (DO3).
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In view of Theorem 5.7 and Propositions 5.8 and 5.9, assuming (DO1) and (DO2), Con-
ditions (DO3), (DO4) and (DO5) are equivalent. We also obtain a version of Theorem 5.7
with Conditions (DO1), (DO2) and (DO5).

Remark: In general, if T ∈ T r,s(M), we can check that in (U,ϕ),

T (θ1, . . . , θr, X1, . . . , Xs) = c1,1

(
· · · (c1,1(θ1 ⊗ · · · ⊗ θr ⊗ T ⊗X1 ⊗ · · · ⊗Xs) · · · )

)
. (†24)

In the sequence of c1,1, the inner c1,1 is an operator on T r,s(M), ..., and the outer c1,1 is an
operator on T 1,1(M). Also, the above equation and (DO5) can be used to derive (DO4).

There is also a version of Wilmore’s theorem for tensor fields viewed as C∞(M)-multilinear
maps in Tr,s(M). This approach is discussed in O’Neill [90] (Chapter 2, Tensor Derivations),
and we now summarize it. We begin with the following definition from O’Neill [90] (Chapter
2, Definition 11).

Definition 5.8. A tensor derivation on a smooth manifold M is a family D of R-linear
maps Dr

s : Tr,s(M)→ Tr,s(M), such that the following conditions hold:

(1) for all T1 ∈ Tr1,s1(M) and all T2 ∈ Tr2,s2(M),

Dr1+r2
s1+s2

(T1 ⊗ T2) = Dr1
s1

(T1)⊗ T2 + T1 ⊗Dr2
s2

(T2).

(2) For all T ∈ Tr,s(M), D commutes with the contractions, that is

Dr−1
s−1(ci,j(T )) = ci,j(D

r
s(T )), (r, s ≥ 1).

In the special case r = s = 0, D0
0 is a derivation on C∞(M), and it can be shown that

there is a vector field V ∈ X(M) such that

D0
0f = V [f ], f ∈ C∞(M).

See O’Neill [90] (Chapter 1).

The following result that uses the fact that tensor fields in Tr,s(M) are C∞(M)-multilinear
shows how (DO2) can be recovered.

Proposition 5.10. If D is a tensor derivation on M , for any open subset U of M , there is
a unique tensor derivation D|U on U such that

(Dr
s|U)(T |U) = (Dr

sT )|U, T ∈ Tr,s(M).

The proof of Proposition 5.10 is given in O’Neill [90] (Chapter 2, Proposition 12).

The next step is to prove that a tensor derivation satisfies Property (DO4). The proof
uses the trick (†23) and its generalization (†24); see O’Neill [90] (Chapter 2, Proposition 13).
Finally, a version of Wilmore’s theorem is obtained.
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Theorem 5.11. Given a vector field V and an R-linear map F : X(M)→ X(M) such that

F (fX) = V [f ]X + fF (X) X ∈ X(M), f ∈ C∞(M),

there exists a unique tensor derivation D on M such that D0
0 agrees with V , which means

that D0
0f = V [f ], f ∈ C∞(M), and D1

0 agrees with F .

The above theorem is proven in O’Neill [90] (Chapter 2, Theorem 15). The tensor
derivation D satisfies (DO4), where E : C∞(M) → C∞(M) is given by E(f) = V [f ]. We
have

(D0
1θ)(X) = V [θ(X)]− θ(F (X)), X ∈ X(M), θ ∈ A1(M),

and more generally, D is given by (DO4).

A nice application of Theorem 5.7 is the extension of the covariant derivative defined by
a connection to tensor fields.

5.5 Extension of the Covariant Derivative to Tensor

Fields

Let M be a smooth manifold. Recall that a connection on M is a R-bilinear map

∇ : X(M)× X(M)→ X(M),

where we write ∇XY for ∇(X, Y ), such that the following two conditions hold:

∇fXY = f∇XY

∇X(fY ) = X[f ]Y + f∇XY,

for all X, Y ∈ X(M) and all f ∈ C∞(M), where X[f ](p) = dfp(Xp). The vector field ∇XY
is called the covariant derivative of Y with respect to X.

Given a fixed vector field X ∈ X(M), if we set

EU(f) = (X|U)[f ], f ∈ C∞(U)

FU(Y ) = ∇X|UY, Y ∈ X(U),

we check immediately that the hypotheses of Theorem 5.7 are satisfied, and thus the covariant
derivative ∇X has a unique extension to tensor field as a differential operator. In particular,
this extension ∇X satisfies Condition (DO4), in particular,

(∇Xθ)(Y ) = X[θ(Y )]− θ(∇XY ), Y ∈ X(M), θ ∈ A1(M).
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More generally, if T ∈ T r,s(M), we have

(∇XT )(ω1, . . . , ωr, X1, . . . , Xs) = X[(T (ω1, . . . , ωr, X1, . . . , Xs)]

−
r∑
i=1

T (ω1, . . . ,∇Xω
i, . . . , ωr, X1, . . . , Xs)

−
s∑
j=1

T (ω1, . . . ωr, X1, . . . ,∇XXj, . . . , Xs).

We leave it as an exercise to prove that in a chart (U,ϕ), if

∇ ∂

∂xi

(
∂

∂xj

)
= Γkij

∂

∂xk

in terms of the Christoffel symbols Γkij and

T = ai1...irj1...js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs ,

then (
∇ ∂

∂xi
T
)i1...ir
j1...js

=
∂

∂xi
(ai1...irj1...js

) +
r∑

α=1

Γiαi ka
i1...k...ir
j1...js

−
s∑

β=1

Γli jβa
i1...ir
j1...l...js

. (†25)

In the special case where T = dxj, we have a0
j = 1 and a0

k = 0 if k 6= j, we get(
∇ ∂

∂xi
dxj
)0

k
= −Γjik,

and so
∇ ∂

∂xi
dxj = −Γjikdx

k. (†26)

Another application of Theorem 5.7 is the extension of the Lie derivative to tensor fields.

5.6 Lie Derivative of Tensor Fields

In order to define the Lie derivative of a tensor field we need to generalize the notion of
pullback to tensor fields. For this definition it is more convenient to use the original definition
of tensor fields as smooth sections, namely as elements of T r,s(M).

Definition 5.9. Given a diffeomorphism ϕ : M → N , the pullback (ϕrs)
∗T ∈ T r,s(M) of a

tensor field T ∈ T r,s(N) is defined such that for every p ∈M ,

((ϕrs)
∗T )p(θ

1, . . . , θr, u1, . . . , us) = Tp(θ
1 ◦ dϕ−1

ϕ(p), . . . , θ
r ◦ dϕ−1

ϕ(p), dϕp(u1), . . . , dϕp(us)),

for all θi ∈ (TpM)∗ (1 ≤ i ≤ r) and all uj ∈ TpM (1 ≤ j ≤ s).
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The following proposition is left as an exercise.

Proposition 5.12. The following properties hold.

(1) If ϕ : M → N is a diffeomorphism, then the map (ϕrs)
∗ is a linear isomorphism from

T r,s(N) to T r,s(M).

(2) For any two diffeomorphisms ϕ : M1 →M2 and ψ : M2 →M3, we have

((ψ ◦ ϕ)rs)
∗ = (ϕrs)

∗ ◦ (ψrs)
∗.

Observe that if r = 0, the pullback (ϕ0
s)
∗T is well-defined for any smooth map ϕ, even

if ϕ is not a diffeomorphism. This corresponds to the fact that the pullback of a differential
form is defined for any smooth map ϕ.

To define the Lie derivative of a tensor field we follow Abraham and Marsden [1]) (Section
2.2, Theorem 2.2.20). Given any vector field X on a smooth manifold M , recall that by
Proposition 10.12 of Gallier and Quaintance [49] (see also Theorem 2.1.8 of Abraham and
Marsden [1]) that for every p ∈M , there is a local flow ϕ : Ia × U →M (with Ia = (−a, a),
a > 0) for X at p such that if Φt : U →M is the map given by Φt(q) = ϕ(t, q), then Ut ⊆ U ,
Ut = Φt(U) is open for all t ∈ Ia, and each Φt : U → Ut is a diffeomorphism onto Ut.

Definition 5.10. Given any vector field X on a smooth manifold M , for any p ∈ M , if
Φt : U → Ut is the diffeomorphism defined above, then for any tensor field T ∈ T r,s(M),
the pullback ((Φt)

r
s)
∗(T |Ut) of the restriction T |Ut ∈ T r,s(Ut) of T to Ut is a tensor field in

T r,s(U), and we define the Lie derivative (LXT )p of T at p as

(LXT )p = lim
t−→0

(
((Φt)

r
s)
∗T
)
p
− Tp

t
=

d

dt

(
((Φt)

r
s)
∗T
)
p

∣∣∣∣
t=0

. (†27)

So, as long we can define the “right” notion of pull-back, the formula giving the Lie
derivative of a function, a vector field, a differential form, and more generally a tensor field,
is basically the same.

The Lie derivative of tensors is used in most areas of mechanics, for example in elasticity
(the rate of strain tensor) and in fluid dynamics.

Finally here is a proposition about the Lie derivative of tensor fields.

Proposition 5.13. Let M be a smooth manifold. For every vector field X ∈ X(M), the
Lie derivative LX : T •,•(M) → T •,•(M) is the unique linear local operator satisfying the
following properties:

(1) LXf = X[f ] = df(X), for all f ∈ C∞(M).

(2) LXY = [X, Y ], for all Y ∈ X(M).
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(3) LX(α ⊗ β) = (LXα) ⊗ β + α ⊗ (LXβ), for all tensor fields α ∈ T r1,s1(M) and β ∈
T r2,s2(M); that is, LX is a derivation.

(4) For all tensor fields α ∈ T r,s(M), with r, s > 0, for every contraction operator ci,j,

LX(ci,j(α)) = ci,j(LXα).

The proof of Proposition 5.13 is an immediate application of Theorem 5.7 with (DO5)
instead of (DO3), by taking EU and FU to be LX|U . See also Theorem 2.1.8 of Abraham and
Marsden [1]). A proof can also be found in Gallot, Hullin and Lafontaine [52] (Chapter 1).
The following proposition is an immediate consequence of (DO4).

Proposition 5.14. For all T ∈ T r,s(M), ω1, . . . , ωr ∈ A1(M) and X,X1, . . . , Xs ∈ X(M),

X(T (ω1, . . . , ωr, X1, . . . , Xs)) = (LXT )(ω1, . . . , ωr, X1, . . . , Xs)

+
r∑
i=1

T (ω1, . . . , LXω
i, . . . , ωr, X1, . . . , Xs)

+
s∑
j=1

T (ω1, . . . ωr, X1, . . . , [X,Xj], . . . , Xs). (†28)

In particular, if T = ω ∈ T 0,1(M),

(LXω)(X1) = X(ω(X1))− ω([X,X1]).

A formula for the coordinates of LXT in a chart (U,ϕ) is found in Abraham and Marsden
[1]; Chapter 2, Problem 2.2D. The dilligent reader should prove that

(LXT )i1...irj1...js
= Xk

∂ai1...irj1...js

∂xk
−

r∑
α=1

a
i1...iα−1kiα+1...ir
j1...js

∂X iα

∂xk
+

s∑
β=1

ai1...irj1...jβ−1kjβ+1...js

∂Xk

∂xjβ
, (†29)

where

X = Xk ∂

∂xk
,

and

T = ai1...irj1...js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs .

Observe that compared to (†25) in the case of the covariant derivative, the signs are flipped.



220 CHAPTER 5. TENSOR FIELDS



Chapter 6

Distributions and the Frobenius
Theorem

Given any smooth manifold M (of dimension n), for any smooth vector field X on M , it
is known that for every point p ∈ M , there is a unique maximal integral curve through p;
see Warner [115] (Chapter 1, Theorem 1.48) or Gallier and Quaintance [49]. Furthermore,
any two distinct integral curves do not intersect each other, and the union of all the integral
curves is M itself. A nonvanishing vector field X can be viewed as the smooth assignment of
a one-dimensional vector space to every point of M , namely p 7→ RXp ⊆ TpM , where RXp

denotes the line spanned by Xp. Thus, it is natural to consider the more general situation
where we fix some integer r, with 1 ≤ r ≤ n, and we have an assignment p 7→ D(p) ⊆ TpM ,
where D(p) is some r-dimensional subspace of TpM such that D(p) “varies smoothly” with
p ∈M . Is there a notion of integral manifold for such assignments? Do they always exist?

It is indeed possible to generalize the notion of integral curve and to define integral
manifolds, but unlike the situation for vector fields (r = 1), not every assignment D as
above possess an integral manifold. However, there is a necessary and sufficient condition
for the existence of integral manifolds given by the Frobenius theorem.

This theorem has several equivalent formulations. First we will present a formulation in
terms of vector fields. Then we show that there are advantages in reformulating the notion
of involutivity in terms of differential ideals, and we state a differential form version of the
Frobenius theorem. The above versions of the Frobenius theorem are “local.” We will briefly
discuss the notion of foliation and state a global version of the Frobenius theorem.

Since Frobenius’ theorem is a standard result of differential geometry, we will omit most
proofs, and instead refer the reader to the literature. A complete treatment of Frobenius’
theorem can be found in Warner [115], Morita [87], and Lee [78].

221
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6.1 Tangential Distributions, Involutive Distributions

Our first task is to define precisely what we mean by a smooth assignment p 7→ D(p) ⊆ TpM ,
where D(p) is an r-dimensional subspace. Recall the definition of an immersed submanifold
given in Warner [115], Chapter 1, Definition 1.2, namely a pair (M,ψ) where ψ : M → N is
a smooth injective immersion (which means that dψp is injective for all p ∈M).

Definition 6.1. Let M be a smooth manifold of dimension n. For any integer r, with
1 ≤ r ≤ n, an r-dimensional tangential distribution (for short, a distribution) is a map
D : M → TM , such that

(a) D(p) ⊆ TpM is an r-dimensional subspace for all p ∈M .

(b) For every p ∈M , there is some open subset U with p ∈ U , and r smooth vector fields
X1, . . . , Xr defined on U , such that (X1(q), . . . , Xr(q)) is a basis of D(q) for all q ∈ U .
We say that D is locally spanned by X1, . . . , Xr.

An immersed submanifold N of M is an integral manifold of D iff D(p) = TpN for all p ∈ N .
We say that D is completely integrable iff there exists an integral manifold of D through
every point of M .

We also write Dp for D(p).

Remarks:

(1) An r-dimensional distribution D is just a smooth subbundle of TM .

(2) An integral manifold is only an immersed submanifold, not necessarily an embedded
submanifold.

(3) Some authors (such as Lee) reserve the locution “completely integrable” to a seemingly
strongly condition (see Lee [78], Chapter 19, page 500). This condition is in fact
equivalent to “our” definition (which seems the most commonly adopted).

(4) Morita [87] uses a stronger notion of integral manifold. Namely, an integral manifold is
actually an embedded manifold. Most of the results including Frobenius theorem still
hold, but maximal integral manifolds are immersed but not embedded manifolds, and
this is why most authors prefer to use the weaker definition (immersed manifolds).

Here is an example of a distribution which does not have any integral manifolds. This is
the two-dimensional distribution in R3 spanned by the vector fields

X =
∂

∂x
+ y

∂

∂z
, Y =

∂

∂y
.

To show why this distribution is not integrable, we will need an involutivity condition.
Here is the definition.
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Definition 6.2. Let M be a smooth manifold of dimension n and let D be an r-dimensional
distribution on M . For any smooth vector field X, we say that X belongs to D (or lies in
D) iff Xp ∈ Dp for all p ∈ M . We say that D is involutive iff for any two smooth vector
fields X, Y on M , if X and Y belong to D, then [X, Y ] also belongs to D.

Proposition 6.1. Let M be a smooth manifold of dimension n. If an r-dimensional distri-
bution D is completely integrable, then D is involutive.

Proof. A proof can be found in in Warner [115] (Chapter 1), and Lee [78] (Proposition
19.3). Another proof is given in Morita [87] (Section 2.3), but beware that Morita defines
an integral manifold to be an embedded manifold.

In the example before Definition 6.1, we have

[X, Y ] = − ∂

∂z
,

so this distribution is not involutive. Therefore, by Proposition 6.1, this distribution is not
completely integrable.

6.2 Frobenius Theorem

Frobenius’ theorem asserts that the converse of Proposition 6.1 holds. Although we do not
intend to prove it in full, we would like to explain the main idea of the proof of Frobenius’
theorem. It turns out that the involutivity condition of two vector fields is equivalent to the
commutativity of their corresponding flows, and this is the crucial fact used in the proof.

Definition 6.3. Given a manifold, M , we say that two vector fields X and Y are mutually
commutative iff [X, Y ] = 0.

For example, on R2, the vector fields ∂
∂x

and ∂
∂y

are commutative since ∂2f
∂x∂y

= ∂2f
∂y∂x

. On

the other hand, the vector fields ∂
∂x

and x ∂
∂y

are not since[
∂

∂x
, x

∂

∂y

]
f =

∂

∂x

(
x
∂f

∂y

)
− x ∂

∂y

(
∂f

∂x

)
=
∂f

∂y
+ x

∂2f

∂x∂y
− x ∂2f

∂y∂x

=
∂f

∂y
,

which in turn implies
[
∂
∂x
, x ∂

∂y

]
= ∂

∂y
.
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Recall that we denote by ΦX the (global) flow of the vector field X. For every p ∈ M ,
the map t 7→ ΦX(t, p) = γp(t) is the maximal integral curve through p. We also write Φt(p)
for ΦX(t, p) (dropping X). Recall that the map p 7→ Φt(p) is a diffeomorphism on its domain
(an open subset of M). For the next proposition, given two vector fields X and Y , we write
Φ for the flow associated with X and Ψ for the flow associated with Y .

Proposition 6.2. Given a manifold M , for any two smooth vector fields X and Y , the
following conditions are equivalent:

(1) X and Y are mutually commutative (i.e. [X, Y ] = 0).

(2) Y is invariant under Φt; that is, (Φt)∗Y = Y , whenever the left hand side is defined.

(3) X is invariant under Ψs; that is, (Ψs)∗X = X, whenever the left hand side is defined.

(4) The maps Φt and Ψt are mutually commutative. This means that

Φt ◦Ψs = Ψs ◦ Φt,

for all s, t such that both sides are defined.

(5) LXY = [X, Y ] = 0.

(6) LYX = [Y,X] = 0.

(In (5) LXY is the Lie derivative and similarly in (6).)

Proof. A proof can be found in Lee [78] (Chapter 18, Proposition 18.5) and in Morita [87]
(Chapter 2, Proposition 2.18). For example, to prove the implication (2) =⇒ (4), we observe
that if ϕ is a diffeomorphism on some open subset U of M , then the integral curves of ϕ∗Y
through a point p ∈M are of the form ϕ◦γ, where γ is the integral curve of Y through ϕ−1(p).
Consequently, the local one-parameter group generated by ϕ∗Y is {ϕ◦Ψs ◦ϕ−1}. If we apply
this to ϕ = Φt, as (Φt)∗Y = Y , we get Φt ◦Ψs ◦Φ−1

t = Ψs, and hence Φt ◦Ψs = Ψs ◦Φt.

In order to state our first version of the Frobenius theorem we make the following defini-
tion.

Definition 6.4. Let M be a smooth manifold of dimension n. Given any smooth r-
dimensional distribution D on M , a chart (U,ϕ) is flat for D iff

ϕ(U) ∼= U ′ × U ′′ ⊆ Rr × Rn−r,

where U ′ and U ′′ are connected open subsets such that for every p ∈ U , the distribution D
is spanned by the vector fields

∂

∂x1

, . . . ,
∂

∂xr
.
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U

φ

1

1
1

1
x

x

1

2

φ (U)

φ

Figure 6.1: A flat chart for the solid ball B3. Each slice in ϕ(U) is parallel to the xy-plane
and turns into a cap shape inside of B3.

If (U,ϕ) is flat for D, then each slice of (U,ϕ)

Sc = {q ∈ U | xr+1 = cr+1, . . . , xn = cn},

is an integral manifold of D, where xi = pri ◦ ϕ is the ith-coordinate function on U and
c = (cr+1, . . . , cn) ∈ Rn−r is a fixed vector, as illustrated in Figure 6.1.

Theorem 6.3. (Frobenius) Let M be a smooth manifold of dimension n. A smooth r-
dimensional distribution D on M is completely integrable iff it is involutive. Furthermore,
for every p ∈ U , there is flat chart (U,ϕ) for D with p ∈ U so that every slice of (U,ϕ) is
an integral manifold of D.

Proof. A proof of Theorem 6.3 can be found in Warner [115] (Chapter 1, Theorem 1.60),
Lee [78] (Chapter 19, Theorem 19.10), and Morita [87] (Chapter 2, Theorem 2.17). Since we
already have Proposition 6.1, it is only necessary to prove that if a distribution is involutive,
then it is completely integrable. Here is a sketch of the proof, following Morita.
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Pick any p ∈ M . As D is a smooth distribution, we can find some chart (U,ϕ) with
p ∈ U , and some vector fields Y1, . . . , Yr so that Y1(q), . . . , Yr(q) are linearly independent
and span Dq for all q ∈ U . Locally, we can write

Yi =
n∑
j=1

aij
∂

∂xj
, i = 1, . . . , r. (†)

Since Y1, . . . , Yr are linearly independent, the r×n matrix (aij) has rank r, so by renumbering
the coordinates if necessary, we may assume that the first r columns are linearly independent
in which case the r × r matrix

A(q) = (aij(q)), 1 ≤ i, j ≤ r. q ∈ U

is invertible. Then the inverse matrix B(q) = A−1(q) defines r × r functions bij(q), and let

Xi =
r∑
j=1

bijYj, j = 1, . . . , r. (††)

Now in matrix form Line (†) becomesY1
...
Yr

 =
(
A R

)
∂
∂x1
...
∂
∂xn

 ,

for some r × (n− r) matrix R, and Line (††) becomesX1
...
Xr

 = B

Y1
...
Yr

 ,

so we get X1
...
Xr

 =
(
I BR

)
∂
∂x1
...
∂
∂xn

 ,

that is,

Xi =
∂

∂xi
+

n∑
j=r+1

cij
∂

∂xj
, i = 1, . . . , r, (∗)

where the cij are functions defined on U . Obviously, X1, . . . , Xr are linearly independent
and they span Dq for all q ∈ U . Since D is involutive, there are some functions fk defined
on U so that

[Xi, Xj] =
r∑

k=1

fkXk.
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On the other hand, by (∗), each [Xi, Xj] is a linear combination of ∂
∂xr+1

, . . . , ∂
∂xn

. Using (∗),
we obtain

[Xi, Xj] =
r∑

k=1

fkXk =
r∑

k=1

fk
∂

∂xk
+

r∑
k=1

n∑
j=r+1

fkckj
∂

∂xj
,

and since this is supposed to be a linear combination of ∂
∂xr+1

, . . . , ∂
∂xn

, we must have fk = 0
for k = 1, . . . , r, which shows that

[Xi, Xj] = 0, 1 ≤ i, j ≤ r;

that is, the vector fields X1, . . . , Xr are mutually commutative.

Let Φi
t be the local one-parameter group associated with Xi. By Proposition 6.2 (4), the

Φi
t commute; that is,

Φi
t ◦ Φj

s = Φj
s ◦ Φi

t 1 ≤ i, j ≤ r,

whenever both sides are defined. We can pick a sufficiently small open subset V in Rr

containing the origin and define the map Φ: V → U by

Φ(t1, . . . , tr) = Φ1
t1
◦ · · · ◦ Φr

tr(p).

Clearly, Φ is smooth, and using the fact that each Xi is invariant under each Φj
s for j 6= i,

and

dΦi
p

(
∂

∂ti

)
= Xi(p),

we get

dΦp

(
∂

∂ti

)
= Xi(p).

As X1, . . . , Xr are linearly independent, we deduce that dΦp : T0Rr → TpM is an injection,
and thus we may assume by shrinking V if necessary that our map Φ: V → M is an
embedding. But then, N = Φ(V ) is a an immersed submanifold of M , and it only remains
to prove that N is an integral manifold of D through p.

Obviously, TpN = Dp, so we just have to prove that TqN = Dq for all q ∈ N . Now for
every q ∈ N , we can write

q = Φ(t1, . . . , tr) = Φ1
t1
◦ · · · ◦ Φr

tr(p),

for some (t1, . . . , tr) ∈ V . Since the Φi
t commute for any i, with 1 ≤ i ≤ r, we can write

q = Φi
ti
◦ Φ1

t1
◦ · · · ◦ Φi−1

ti−1
◦ Φi+1

ti+1
◦ · · · ◦ Φr

tr(p).

If we fix all the tj but ti and vary ti by a small amount, we obtain a curve in N through q,
and this is an orbit of Φi

t. Therefore, this curve is an integral curve of Xi through q whose
velocity vector at q is equal to Xi(q), and so Xi(q) ∈ TqN . Since the above reasoning holds
for all i, we get TqN = Dq, as claimed. Therefore, N is an integral manifold of D through
p.
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To best understand how the proof of Theorem 6.3 constructs the integral manifold N ,
we provide the following example found in Chapter 19 of Lee [78]. Let D ⊂ TR3 be the
distribution

Y1 := V = x
∂

∂x
+

∂

∂y
+ x(y + 1)

∂

∂z

Y2 := W =
∂

∂x
+ y

∂

∂z
.

Given f ∈ C∞(R3), observe that

[V,W ](f) = V (W (f))−W (V (f))

=

(
x
∂

∂x
+

∂

∂y
+ x(y + 1)

∂

∂z

)(
∂f

∂x
+ y

∂f

∂z

)
−
(
∂

∂x
+ y

∂

∂z

)(
x
∂f

∂x
+
∂f

∂y
+ x(y + 1)

∂f

∂z

)
=
∂f

∂z
− ∂f

∂x
− (y + 1)

∂f

∂z

= −∂f
∂x
− y∂f

∂z
= −W (f).

Thus D is involutive and Theorem 6.3 is applicable. Our goal is to find a flat chart
around the origin.

In order to construct this chart, we note that ∂
∂z

is not in the span of V and W since if
∂
∂z

= aV + bW , then

∂

∂z
= (ax+ b)

∂

∂x
+ a

∂

∂y
+ (a(x+ 1) + by)

∂

∂z
,

which in turn implies a = 0 = b, a contradiction. This means we may rewrite a basis for D
in terms of Line (∗) and find that

X1 := X = W =
∂

∂x
+ y

∂

∂z

X2 := Y = V − xW =
∂

∂y
+ x

∂

∂z
.

Alternatively we may obtain X1, X2 from the matrix form of Line (†),

(
Y1

Y2

)
=

(
x 1 x(y + 1)
1 0 y

)
∂
∂x

∂
∂y

∂
∂z

 ,
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(with A =

(
x 1
1 0

)
), and the matrix form of Line (††), namely

(
X1

X2

)
=

(
0 1
1 −x

)(
Y1

Y2

)
.

The flow of X is

αu(x, y, z) := Φ1
u(x, y, z) = (x+ u, y, z + uy),

while the flow of Y is

βv(x, y, z) := Φ2
v(x, y, z) = (x, y + v, z + vx).

For a fixed point on the z-axis near the origin, say (0, 0, w), we define Φ: R3 → R3 as a
composition of the flows, namely

Φ(u, v)(0, 0, w) = αu ◦ βv(0, 0, w) = αu(0, v, w) = (u, v, w + uv).

In other words Φ(u, v)(0, 0, w) provides the parameterization of R3 given by

x = u, y = v, z = w + uv,

and thus the flat chart is given by

Φ−1(x, y, z) = (u, v, z − xy).

By the paragraph immediately preceding Theorem 6.3, we conclude that the N , the
integral manifolds of D, are given by the level sets of w(x, y, z) = z − xy.

In preparation for a global version of Frobenius theorem in terms of foliations, we state
the following proposition proved in Lee [78] (Chapter 19, Proposition 19.12):

Proposition 6.4. Let M be a smooth manifold of dimension n and let D be an involutive r-
dimensional distribution on M . For every flat chart (U,ϕ) for D, for every integral manifold
N of D, the set N ∩ U is a countable disjoint union of open parallel r-dimensional slices of
U , each of which is open in N and embedded in M .

We now describe an alternative method for describing involutivity in terms of differential
forms.

6.3 Differential Ideals and Frobenius Theorem

First, we give a smoothness criterion for distributions in terms of one-forms.
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Proposition 6.5. Let M be a smooth manifold of dimension n and let D be an assignment
p 7→ Dp ⊆ TpM of some r-dimensional subspace of TpM , for all p ∈M . Then D is a smooth
distribution iff for every p ∈ U , there is some open subset U with p ∈ U , and some linearly
independent one-forms ω1, . . . , ωn−r defined on U , so that

Dq = {u ∈ TqM | (ω1)q(u) = · · · = (ωn−r)q(u) = 0}, for all q ∈ U.

Proof. Proposition 6.5 is proved in Lee [78] (Chapter 19, Lemma 19.5). The idea is to either
extend a set of linearly independent differential one-forms to a coframe and then consider
the dual frame, or to extend some linearly independent vector fields to a frame and then
take the dual basis.

Proposition 6.5 suggests the following definitions.

Definition 6.5. Let M be a smooth manifold of dimension n and let D be an r-dimensional
distribution on M .

1. Some linearly independent one-forms ω1, . . . , ωn−r defined on some open subset U ⊆M
are called local defining one-forms for D if

Dq = {u ∈ TqM | (ω1)q(u) = · · · = (ωn−r)q(u) = 0}, for all q ∈ U.

2. We say that a k-form ω ∈ Ak(M) annihilates D iff

ωq(X1(q), . . . , Xk(q)) = 0,

for all q ∈M and for all vector fields X1, . . . , Xk belonging to D. We write

Ik(D) = {ω ∈ Ak(M) | ωq(X1(q), . . . , Xk(q)) = 0},

for all q ∈M and for all vector fields X1, . . . , Xk belonging to D, and we let

I(D) =
n⊕
k=1

Ik(D).

Thus, I(D) is the collection of differential forms that “vanish on D.” In the classical
terminology, a system of local defining one-forms as above is called a system of Pfaffian
equations .

It turns out that I(D) is not only a vector space, but also an ideal of A•(M).

Recall that a subspace I of A•(M) is an ideal iff for every ω ∈ I, we have θ ∧ ω ∈ I for
every θ ∈ A•(M).

Proposition 6.6. Let M be a smooth n-dimensional manifold and D be an r-dimensional
distribution. If I(D) is the space of forms annihilating D, then the following hold:
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(a) I(D) is an ideal in A•(M).

(b) I(D) is locally generated by n − r linearly independent one-forms, which means for
every p ∈ U , there is some open subset U ⊆ M with p ∈ U and a set of linearly
independent one-forms ω1, . . . , ωn−r defined on U , so that

(i) If ω ∈ Ik(D), then ω � U belongs to the ideal in A•(U) generated by ω1, . . . , ωn−r;
that is,

ω =
n−r∑
i=1

θi ∧ ωi, on U,

for some (k − 1)-forms θi ∈ Ak−1(U).

(ii) If ω ∈ Ak(M) and if there is an open cover by subsets U (as above) such that for
every U in the cover, ω � U belongs to the ideal generated by ω1, . . . , ωn−r, then
ω ∈ I(D).

(c) If I ⊆ A•(M) is an ideal locally generated by n − r linearly independent one-forms,
then there exists a unique smooth r-dimensional distribution D for which I = I(D).

Proof. Proposition 6.6 is proved in Warner (Chapter 2, Proposition 2.28); see also Morita
[87] (Chapter 2, Lemma 2.19), and Lee [78] (Chapter 19, pages 498-500).

In order to characterize involutive distributions, we need the notion of a differential ideal.

Definition 6.6. Let M be a smooth manifold of dimension n. An ideal I ⊆ A•(M) is a
differential ideal iff it is closed under exterior differentiation; that is,

dω ∈ I whenever ω ∈ I,

which we also express by dI ⊆ I.

Here is the differential ideal criterion for involutivity.

Proposition 6.7. Let M be a smooth manifold of dimension n. A smooth r-dimensional
distribution D is involutive iff the ideal I(D) is a differential ideal.

Proof. Proposition 6.7 is proved in Warner [115] (Chapter 2, Proposition 2.30), Morita [87]
(Chapter 2, Proposition 2.20), and Lee [78] (Chapter 19, Proposition 19.19).

Assume D is involutive. Let ω ∈ Ak(M) be any k form on M and let X0, . . . , Xk be
k + 1 smooth vector fields lying in D. Then by Proposition 4.16 and the fact that D is
involutive, we deduce that dω(X0, . . . , Xk) = 0. Hence, dω ∈ I(D), which means that I(D)
is a differential ideal.

For the converse, assume I(D) is a differential ideal. We know that for any one-form ω,

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]),
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for any vector fields X, Y . Now, if ω1, . . . , ωn−r are linearly independent one-forms that
define D locally on U , using a bump function, we can extend ω1, . . . , ωn−r to M , and then
using the above equation, for any vector fields X, Y belonging to D, we get

ωi([X, Y ]) = X(ωi(Y ))− Y (ωi(X))− dωi(X, Y ),

and since ωi(X) = ωi(Y ) = dωi(X, Y ) = 0,( because I(D) is a differential ideal and ωi ∈
I(D)), we get ωi([X, Y ]) = 0 for i = 1, . . . , n− r, which means that [X, Y ] belongs to D.

Using Proposition 6.6, we can give a more concrete criterion.

Proposition 6.8. A distibution D is involutive iff for every local defining one-forms ω1, . . .,
ωn−r for D (on some open subset U), there are some one-forms ωij ∈ A1(U) so that

dωi =
n−r∑
j=1

ωij ∧ ωj (i = 1, . . . , n− r).

The above conditions are often called the integrability conditions .

Definition 6.7. Let M be a smooth manifold of dimension n. Given any ideal I ⊆ A•(M),
an immersed manifold N = (M,ψ) of M , (where ψ : N → M), is an integral manifold of I
iff

ψ∗ω = 0, for all ω ∈ I.

A connected integral manifold of the ideal I is maximal iff its image is not a proper subset
of the image of any other connected integral manifold of I.

Finally, here is the differential form version of the Frobenius theorem.

Theorem 6.9. (Frobenius Theorem, Differential Ideal Version) Let M be a smooth manifold
of dimension n. If I ⊆ A•(M) is a differential ideal locally generated by n − r linearly
independent one-forms, then for every p ∈ M , there exists a unique maximal, connected,
integral manifold of I through p, and this integral manifold has dimension r.

Proof. Theorem 6.9 is proved in Warner [115]. This theorem follows immediately from
Theorem 1.64 in Warner [115].

Another version of the Frobenius theorem goes as follows; see Morita [87] (Chapter 2,
Theorem 2.21).

Theorem 6.10. (Frobenius Theorem, Integrability Conditions Version) Let M be a smooth
manifold of dimension n. An r-dimensional distribution D on M is completely integrable iff
for every local defining one-forms ω1, . . . , ωn−r for D (on some open subset, U), there are
some one-forms ωij ∈ A1(U) so that we have the integrability conditions

dωi =
n−r∑
j=1

ωij ∧ ωj (i = 1, . . . , n− r).
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There are applications of Frobenius theorem (in its various forms) to systems of partial
differential equations, but we will not deal with this subject. The reader is advised to consult
Lee [78], Chapter 19, and the references there.

6.4 A Glimpse at Foliations and a Global Version of

Frobenius Theorem

All the maximal integral manifolds of an r-dimensional involutive distribution on a manifold
M yield a decomposition of M with some nice properties, those of a foliation.

Definition 6.8. Let M be a smooth manifold of dimension n. A family F = {Fα}α of
subsets of M is a k-dimensional foliation iff it is a family of pairwise disjoint, connected,
immersed k-dimensional submanifolds of M called the leaves of the foliation, whose union
is M , and such that for every p ∈ M , there is a chart (U,ϕ) with p ∈ U called a flat chart
for the foliation, and the following property holds:

ϕ(U) ∼= U ′ × U ′′ ⊆ Rr × Rn−r,

where U ′ and U ′′ are some connected open subsets, and for every leaf Fα of the foliation, if
Fα ∩ U 6= ∅, then Fα ∩ U is a countable union of k-dimensional slices given by

xr+1 = cr+1, . . . , xn = cn,

for some constants cr+1, . . . , cn ∈ R.

The structure of a foliation can be very complicated. For instance, the leaves can be
dense in M . For example, there are spirals on a torus that form the leaves of a foliation
(see Lee [78], Example 19.9). Foliations are in one-to-one correspondence with involutive
distributions.

Proposition 6.11. Let M be a smooth manifold of dimension n. For any foliation F on
M , the family of tangent spaces to the leaves of F forms an involutive distribution on M .

The converse to the above proposition may be viewed as a global version of Frobenius
theorem.

Theorem 6.12. Let M be a smooth manifold of dimension n. For every r-dimensional
smooth, involutive distribution D on M , the family of all maximal, connected, integral man-
ifolds of D forms a foliation of M .

Proof. The proof of Theorem 6.12 can be found in Lee [78] (Theorem 19.21).
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6.5 Problems

Problem 6.1. Prove Proposition 6.1.
Hint . See Warner [115], Chapter 1, and Lee [78], Proposition 19.3.

Problem 6.2. Prove Proposition 6.2.
Hint . See Lee [78], Chapter 18, Proposition 18.5, and Morita [87], Chapter 2, Proposition
2.18.

Problem 6.3. Prove Proposition 6.4.
Hint . See [78], Chapter 19, Proposition 19.12.

Problem 6.4. Prove Proposition 6.5.
Hint . See Lee [78], Chapter 19, Lemma 19.5.

Problem 6.5. Prove Proposition 6.6.
Hint . See Warner, Chapter 2, Proposition 2.28; see also Morita [87], Chapter 2, Lemma
2.19, and Lee [78], Chapter 19, pages 498-500.



Chapter 7

Integration on Manifolds

The purpose of this chapter is to generalize the theory of integration known for functions
defined on open subsets of Rn to manifolds. As a first step, we explain how differential
forms defined on an open subset of Rn are integrated. Then, if M is a smooth manifold
of dimension n, and if ω is an n-form on M (with compact support), the integral

∫
M
ω is

defined by patching together the integrals defined on small-enough open subsets covering M
using a partition of unity. If (U,ϕ) is a chart such that the support of ω is contained in U ,
then the pullback (ϕ−1)∗ω of ω is an n-form on Rn, so we know how to compute its integral∫
ϕ(U)

(ϕ−1)∗ω. To ensure that these integrals have a consistent value on overlapping charts,

we need for M to be orientable. Actually, there is a more general notion of integration on a
manifold that uses densities instead differential forms, but we do not need such generality.

In Section 7.1 we define the notion of orientation of a manifold. First we define an
orientation of a vector space. Then we define an oriented smooth manifold as a manifold
that has an atlas consisting of charts such that the transition maps all have positive Jacobian
determinants. Technically, a more convenient criterion for orientability is the existence of a
differential n-form (where n is the dimension of the manifold) which is nowhere-vanishing.
Such an n-form is called a volume form. We prove that a smooth manifold (Hausdorff and
second-countable) is orientable if and only if it possesses a volume form. We also define
orientable diffeomorphisms.

In Section 7.2 we consider the special case of Riemannian manifolds. An orientable
Riemannian manifold has a special volume form expressible in a chart in terms of the square
root of the determinant of the matrix expressing the metric. Lie groups are always orientable
and posssess a left-invariant volume form.

In Section 7.3 we explain how to integrate differential forms with compact support defined
on an open subset U of Rn. Since a differential n-form on U can be expressed as

ωx = f(x)dx1 ∧ · · · ∧ dxn,

where f : U → R is a smooth function with compact support contained in U , we can define∫
U
ω as

∫
U
f(x)dx1 · · · dxn, the standard Riemann integral of f . We also give a formula for

the change of variable induced by a diffeomorphism ϕ : U → V .

235
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In Section 7.4, we promote the definition of the integral of a differential form defined on
an open subset of Rn to smooth oriented manifolds. For any n-form ω with compact support
on a smooth n-dimensional oriented manifold M , the integral

∫
M
ω is computed by patching

together the integrals defined on small-enough open subsets covering M using a partition of
unity. The orientability of M is needed to ensure that the above integrals have a consistent
value on overlapping charts

In preparation for discussing Stokes’ theorem, we need to define manifolds with bound-
aries , which is the object of Section 7.6. The idea is to allow a class of manifolds that
can be covered with open subsets homeomorhic to open subset of the half space Hn =
{(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

In Section 7.7 we define a class of manifolds with boundaries called regular domains, and
we prove Stokes’ theorem, which roughly speaking is stated as∫

∂N

ω =

∫
N

dω,

where N is an oriented domain with smooth boundary ∂N . We also present the classical
versions of Stokes’ theorem in R3 as well as the divergence theoerem. We also mention
the class of manifolds with corners , which is more general than the class of manifolds with
boundaries, for which a version of Stokes’ theorem holds.

In Section 7.8 we define the integral of a smooth function f with compact support defined
on an orientable Riemannian manifold M . For this we use the canonical volume form VolM
induced by the Riemannian metric, and let

∫
M
f =

∫
M
fVolM .

Since a Lie group G is orientable, we can pick a left invariant volume form ω and define
the integral of a function f with compact support as

∫
G
f =

∫
G
fω. Such an integral is left-

invariant. Roughly speaking this means that the integral does not change if the variable t in
f(t) is replaced by st. In general it is not right-invariant (the integral is right invariant if the
integral does not change when the variable t in f(t) is replaced by ts). The failure of right-
invariance of the integral is measured by the modular function of the group. Technically,∫
G
fω = ∆(g)

∫
G
f(tg)ω. Lie groups for which ∆ ≡ 1 are particularly nice, and are called

unimodular . Compact Lie groups are unimodular, and so are semisimple Lie groups.

7.1 Orientation of Manifolds

Although the notion of orientation of a manifold is quite intuitive it is technically rather
subtle. We restrict our discussion to smooth manifolds (the notion of orientation can also
be defined for topological manifolds, but more work is involved).

Intuitively, a manifold M is orientable if it is possible to give a consistent orientation to
its tangent space TpM at every point p ∈M . So, if we go around a closed curve starting at
p ∈ M , when we come back to p, the orientation of TpM should be the same as when we
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started. For example, if we travel on a Möbius strip (a manifold with boundary) dragging a
coin with us, we will come back to our point of departure with the coin flipped. Try it; see
Figure 7.3 for an illustration.

To be rigorous, we have to say what it means to orient TpM (a vector space) and what
consistency of orientation means. We begin by quickly reviewing the notion of orientation
of a vector space. Let E be a vector space of dimension n. If u1, . . . , un and v1, . . . , vn are
two bases of E, a basic and crucial fact of linear algebra says that there is a unique linear
map g mapping each ui to the corresponding vi (i.e., g(ui) = vi, i = 1, . . . , n). Then look at
the determinant det(g) of this map. We know that det(g) = det(P ), where P is the matrix
whose j-th column consists of the coordinates of vj over the basis u1, . . . , un. Either det(g)
is negative, or it is positive. This leads to the following definition.

Definition 7.1. Let E be a vector space of dimension n with bases u1, . . . , un and v1, . . . , vn.
Let g be the unique linear map such that g(ui) = vi, i = 1, . . . , n. We say u1, . . . , un and
v1, . . . , vn have the same orientation iff det(g) is positive.

Definition 7.1 defines an equivalence relation on bases where two bases are equivalent iff
they have the same orientation.

Definition 7.2. Let E be a vector space of dimension n. An orientation of E is the choice
of one of the two equivalence classes, which amounts to picking some basis as an orientation
frame.

For E = R, an orientation is given by e1 or −e1. Such an orientation is visualized as
either right or left translation from the origin. For E = R2, an orientation is given by (e1, e2)
or (e2, e1), i.e. either counterclockwise or clockwise rotation about the origin. For E = R3,
the orientation is represented by (e1, e2, e3) or (e2, e1, e3), namely the right-handed or left
handed orientation of the i, j, k axis system. See Figure 7.1.

Definition 7.2 is perfectly fine, but it turns out that it is more convenient, in the long
term, to use a definition of orientation in terms of differential forms and the exterior algebra∧nE∗. This approach is especially useful when defining the notion of integration on a
manifold. We observe that two bases u1, . . . , un and v1, . . . , vn have the same orientation iff

ω(u1, . . . , un) and ω(v1, . . . , vn) have the same sign for all ω ∈
∧nE∗ − {0}

(where 0 denotes the zero n-form). As
∧nE∗ is one-dimensional, picking an orientation of

E is equivalent to picking a generator (a one-element basis) ω of
∧nE∗, and to say that

u1, . . . , un has positive orientation iff ω(u1, . . . , un) > 0.

Definition 7.3. Let E be a vector space of dimension n. Given an orientation (say, given by
ω ∈

∧nE∗) of E, a linear map f : E → E is orientation preserving iff ω(f(u1), . . . , f(un)) > 0
whenever ω(u1, . . . , un) > 0 (or equivalently, iff det(f) > 0).
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Figure 7.1: The two orientations of R, R2, and R3.

To define the orientation of an n-dimensional manifold M we use charts. Given any
p ∈ M , for any chart (U,ϕ) at p, the tangent map dϕ−1

ϕ(p) : Rn → TpM makes sense. If

(e1, . . . , en) is the standard basis of Rn, as it gives an orientation to Rn, we can orient TpM
by giving it the orientation induced by the basis dϕ−1

ϕ(p)(e1), . . . , dϕ−1
ϕ(p)(en). The consistency

of orientations of the TpM ’s is given by the overlapping of charts. See Figure 7.2.

We require that the Jacobian determinants of all ϕj ◦ ϕ−1
i have the same sign whenever

(Ui, ϕi) and (Uj, ϕj) are any two overlapping charts. Thus, we are led to the definition below.
All definitions and results stated in the rest of this section apply to manifolds with or without
boundary.

Definition 7.4. Given a smooth manifold M of dimension n, an orientation atlas of M is
any atlas so that the transition maps ϕji = ϕj ◦ϕ−1

i (from ϕi(Ui∩Uj) to ϕj(Ui∩Uj)) all have
a positive Jacobian determinant for every point in ϕi(Ui ∩ Uj). A manifold is orientable iff
its has some orientation atlas.

We should mention that not every manifold is orientable. The open Mobius strip, i.e.
the Mobius strip with circle boundary removed, is not orientable, as demonstrated in Figure
7.3.

Definition 7.4 can be hard to check in practice and there is an equivalent criterion is
terms of n-forms which is often more convenient. The idea is that a manifold of dimension
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Figure 7.2: The sphere S2 with consistent orientation on two overlapping charts.

n is orientable iff there is a map p 7→ ωp, assigning to every point p ∈ M a nonzero n-form
ωp ∈

∧n T ∗pM , so that this map is smooth.

Definition 7.5. If M is an n-dimensional manifold, recall that a smooth section ω ∈
Γ(M,

∧n T ∗M) is called a (smooth) n-form. An n-form ω is a nowhere-vanishing n-form
on M or volume form on M iff ωp is a nonzero form for every p ∈ M . This is equivalent to
saying that ωp(u1, . . . , un) 6= 0, for all p ∈M and all bases u1, . . . , un, of TpM .

The determinant function (u1, . . . , un) 7→ det(u1, . . . , un) where the ui are expressed over
the canonical basis (e1, . . . , en) of Rn, is a volume form on Rn. We will denote this volume
form by ωRn = dx1 ∧ · · · ∧ dxn. Observe the justification for the term volume form: the
quantity det(u1, . . . , un) is indeed the (signed) volume of the parallelepiped

{λ1u1 + · · ·+ λnun | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}.

A volume form on the sphere Sn ⊆ Rn+1 is obtained as follows:

ωSn(u1, . . . un) = det(p, u1, . . . un),
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1

1’

Figure 7.3: The Mobius strip does not have a consistent orientation. The frame starting at
1 is reversed when traveling around the loop to 1′.

where p ∈ Sn and u1, . . . un ∈ TpSn. As the ui are orthogonal to p, this is indeed a volume
form.

Observe that if f is a smooth function on M and ω is any n-form, then fω is also an
n-form.

More interesting is the following proposition.

Proposition 7.1. (a) If h : M → N is a local diffeomorphism of manifolds, where dimM =
dimN = n, and ω ∈ An(N) is a volume form on N , then h∗ω is a volume form on M . (b)
Assume M has a volume form ω. For every n-form η ∈ An(M), there is a unique smooth
function f ∈ C∞(M) so that η = fω. If η is a volume form, then f(p) 6= 0 for all p ∈M .

Proof. (a) By definition,

h∗ωp(u1, . . . , un) = ωh(p)(dhp(u1), . . . , dhp(un)),

for all p ∈M and all u1, . . . , un ∈ TpM . As h is a local diffeomorphism, dph is a bijection for
every p. Thus, if u1, . . . , un is a basis, then so is dhp(u1), . . . , dhp(un), and as ω is nonzero
at every point for every basis, h∗ωp(u1, . . . , un) 6= 0.

(b) Pick any p ∈M and let (U,ϕ) be any chart at p. As ϕ is a diffeomorphism, by (a), we
see that ϕ−1∗ω is a volume form on ϕ(U). But then, it is easy to see that ϕ−1∗η = gϕ−1∗ω,
for some unique smooth function g on ϕ(U), and so η = fUω, for some unique smooth
function fU on U . For any two overlapping charts (Ui, ϕi) and (Uj, ϕj), for every p ∈ Ui∩Uj,
for every basis u1, . . . , un of TpM , we have

ηp(u1, . . . , un) = fi(p)ωp(u1, . . . , un) = fj(p)ωp(u1, . . . , un),
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and as ωp(u1, . . . , un) 6= 0, we deduce that fi and fj agree on Ui ∩ Uj. But then the fi’s
patch on the overlaps of the cover {Ui} of M , and so there is a smooth function f defined on
the whole of M and such that f � Ui = fi. As the fi’s are unique, so is f . If η is a volume
form, then ηp does not vanish for all p ∈M , and since ωp is also a volume form, ωp does not
vanish for all p ∈M , so f(p) 6= 0 for all p ∈M .

Remark: If h1 and h2 are smooth maps of manifolds, it is easy to prove that

(h2 ◦ h1)∗ = h∗1 ◦ h∗2,

and that for any smooth map h : M → N ,

h∗(fω) = (f ◦ h)h∗ω,

where f is any smooth function on N and ω is any n-form on N .

The connection between Definition 7.4 and volume forms is given by the following im-
portant theorem whose proof contains a wonderful use of partitions of unity.

Theorem 7.2. A smooth manifold (Hausdorff and second-countable) is orientable iff it pos-
sesses a volume form.

Proof. First assume that a volume form ω exists on M , and say n = dimM . For any atlas
{(Ui, ϕi)}i of M , by Proposition 7.1, each n-form ϕ−1

i

∗
ω is a volume form on ϕi(Ui) ⊆ Rn,

and
ϕ−1
i

∗
ω = fiωRn ,

for some smooth function fi never zero on ϕi(Ui), where ωRn is the volume form on Rn. By
composing ϕi with an orientation-reversing linear map if necessary, we may assume that for
this new atlas, fi > 0 on ϕi(Ui). We claim that the family (Ui, ϕi)i is an orientation atlas.
This is because, on any (nonempty) overlap Ui ∩ Uj, as ω = ϕ∗j(fjωRn) and

(ϕj ◦ ϕ−1
i )∗ = (ϕ−1

i )∗ ◦ ϕ∗j , we have

(ϕj ◦ ϕ−1
i )∗(fjωRn) = (ϕ−1

i )∗ ◦ ϕ∗j(fjωRn) = (ϕ−1
i )∗ω = fiωRn ,

and by the definition of pull-backs, we see that for every x ∈ ϕi(Ui ∩ Uj), if we let
y = ϕj ◦ ϕ−1

i (x), then

fi(x)(ωRn)x(e1, . . . , en) = (ϕj ◦ ϕ−1
i )∗x(fjωRn)(e1, . . . , en)

= fj(y)(ωRn)y(d(ϕj ◦ ϕ−1
i )x(e1), . . . , d(ϕj ◦ ϕ−1

i )x(en))

= fj(y)J((ϕj ◦ ϕ−1
i )x)(ωRn)y(e1, . . . , en),

where e1, . . . , en is the standard basis of Rn and J((ϕj ◦ ϕ−1
i )x) is the Jacobian determinant

of ϕj ◦ ϕ−1
i at x. As both fj(y) > 0 and fi(x) > 0, we have J((ϕj ◦ ϕ−1

i )x) > 0, as desired.
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Conversely, assume that J((ϕj ◦ϕ−1
i )x) > 0, for all x ∈ ϕi(Ui∩Uj), whenever Ui∩Uj 6= ∅.

We need to make a volume form on M . For each Ui, let

ωi = ϕ∗iωRn ,

where ωRn is the volume form on Rn. As ϕi is a diffeomorphism, by Proposition 7.1, we see
that ωi is a volume form on Ui. Then if we apply Theorem 1.11 from Chapter 1 of Warner
[115], we can find a partition of unity {fi} subordinate to the cover {Ui}, with the same
index set. Let,

ω =
∑
i

fiωi.

We claim that ω is a volume form on M .

It is clear that ω is an n-form on M . Now since every p ∈ M belongs to some Ui, check
that on ϕi(Ui), we have

ϕ−1
i

∗
ω =

∑
j∈finite set

ϕ−1
i

∗
(fjωj)

=
∑

j∈finite set

ϕ−1
i

∗
(fjϕ

∗
jωRn)

=
∑

j∈finite set

(fj ◦ ϕ−1
i )(ϕ−1

i

∗ ◦ ϕ∗j)ωRn

=
∑

j∈finite set

(fj ◦ ϕ−1
i )(ϕj ◦ ϕ−1

i )∗ωRn

=

( ∑
j∈finite set

(fj ◦ ϕ−1
i )J(ϕj ◦ ϕ−1

i )

)
ωRn ,

and this sum is strictly positive because the Jacobian determinants are positive, and as∑
j fj = 1 and fj ≥ 0, some term must be strictly positive. Therefore, ϕ−1

i

∗
ω is a volume

form on ϕi(Ui), so ϕ∗iϕ
−1
i

∗
ω = ω is a volume form on Ui. As this holds for all Ui, we conclude

that ω is a volume form on M .

Since we showed there is a volume form on the sphere Sn, by Theorem 7.2, the sphere Sn

is orientable. It can be shown that the projective spaces RPn are non-orientable iff n is even,
and thus orientable iff n is odd. In particular, RP2 is not orientable. Also, even though M
may not be orientable, its tangent bundle T (M) is always orientable! (Prove it). It is also
easy to show that if f : Rn+1 → R is a smooth submersion, then M = f−1(0) is a smooth
orientable manifold. Another nice fact is that every Lie group is orientable.

By Proposition 7.1 (b), given any two volume forms ω1 and ω2 on a manifold M , there
is a function f : M → R never 0 on M , such that ω2 = fω1. This fact suggests the following
definition.
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Definition 7.6. Given an orientable manifold M , two volume forms ω1 and ω2 on M are
equivalent iff ω2 = fω1 for some smooth function f : M → R, such that f(p) > 0 for all
p ∈ M . An orientation of M is the choice of some equivalence class of volume forms on
M , and an oriented manifold is a manifold together with a choice of orientation. If M is
a manifold oriented by the volume form ω, for every p ∈ M , a basis (b1, . . . , bn) of TpM is
posively oriented iff ωp(b1, . . . , bn) > 0, else it is negatively oriented (where n = dim(M)).

If M is an orientable manifold, for any two volume forms ω1 and ω2 on M , as ω2 = fω1

for some function f on M which is never zero, f has a constant sign on every connected
component of M . Consequently, a connected orientable manifold has two orientations.

We will also need the notion of orientation-preserving diffeomorphism.

Definition 7.7. Let h : M → N be a diffeomorphism of oriented manifolds M and N ,
of dimension n, and say the orientation on M is given by the volume form ω1 while the
orientation on N is given by the volume form ω2. We say that h is orientation preserving iff
h∗ω2 determines the same orientation of M as ω1.

Using Definition 7.7, we can define the notion of a positive atlas.

Definition 7.8. If M is a manifold oriented by the volume form ω, an atlas for M is positive
iff for every chart (U,ϕ), the diffeomorphism ϕ : U → ϕ(U) is orientation preserving, where
U has the orientation induced by M and ϕ(U) ⊆ Rn has the orientation induced by the
standard orientation on Rn (with dim(M) = n).

The proof of Theorem 7.2 shows

Proposition 7.3. If a manifold M has an orientation atlas, then there is a uniquely deter-
mined orientation on M such that this atlas is positive.

7.2 Volume Forms on Riemannian Manifolds and Lie

Groups

Recall that a smooth manifold M is a Riemannian manifold iff the vector bundle TM has a
Euclidean metric. This means that there is a family (〈−,−〉p)p∈M of inner products on the
tangent spaces TpM , such that 〈−,−〉p depends smoothly on p, which can be expressed by
saying that that the maps

x 7→ 〈dϕ−1
x (ei), dϕ

−1
x (ej)〉ϕ−1(x), x ∈ ϕ(U), 1 ≤ i, j ≤ n

are smooth, for every chart (U,ϕ) of M , where (e1, . . . , en) is the canonical basis of Rn. We
let

gij(x) = 〈dϕ−1
x (ei), dϕ

−1
x (ej)〉ϕ−1(x),
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and we say that the n × n matrix (gij(x)) is the local expression of the Riemannian metric
on M at x in the coordinate patch (U,ϕ).

If a Riemannian manifold M is orientable, then there is a volume form on M with some
special properties.

Proposition 7.4. Let M be a Riemannian manifold with dim(M) = n. If M is orientable,
then there is a uniquely determined volume form VolM on M with the following property:
For every p ∈ M , for every positively oriented orthonormal basis (b1, . . . , bn) of TpM , we
have

(VolM)p(b1, . . . , bn) = 1.

Furthermore, if the above equation holds then in every orientation preserving local chart
(U,ϕ), we have

((ϕ−1)∗VolM)q =
√

det(gij(q)) dx1 ∧ · · · ∧ dxn, q ∈ ϕ(U).

Proof. Say the orientation of M is given by ω ∈ An(M). For any two positively oriented
orthonormal bases (b1, . . . , bn) and (b′1, . . . , b

′
n) in TpM , by expressing the second basis over

the first, there is an orthogonal matrix C = (cij) so that

b′i =
n∑
j=1

cijbj.

We have

ωp(b
′
1, . . . , b

′
n) = det(C)ωp(b1, . . . , bn),

and as these bases are positively oriented, we conclude that det(C) = 1 (as C is orthogonal,
det(C) = ±1). As a consequence, we have a well-defined function ρ : M → R with ρ(p) > 0
for all p ∈M , such that

ρ(p) = ωp(b1, . . . , bn)

for every positively oriented orthonormal basis (b1, . . . , bn) of TpM . If we can show that ρ is
smooth, then (VolM)p = 1

ρ(p)
ωp is the required volume form.

Let (U,ϕ) be a positively oriented chart and consider the vector fields Xj on ϕ(U) given
by

Xj(q) = dϕ−1
q (ej), q ∈ ϕ(U), 1 ≤ j ≤ n.

Then (X1(q), . . . , Xn(q)) is a positively oriented basis of Tϕ−1(q). If we apply Gram-Schmidt
orthogonalization, we get an upper triangular matrix A(q) = (aij(q)) of smooth functions on
ϕ(U) with aii(q) > 0, such that

bi(q) =
n∑
j=1

aij(q)Xj(q), 1 ≤ i ≤ n,
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and (b1(q), . . . , bn(q)) is a positively oriented orthonormal basis of Tϕ−1(q). We have

ρ(ϕ−1(q)) = ωϕ−1(q)(b1(q), . . . , bn(q))

= det(A(q))ωϕ−1(q)(X1(q), . . . , Xn(q))

= det(A(q))(ϕ−1)∗ωq(e1, . . . , en),

which shows that ρ is smooth.

If we repeat the end of the proof with ω = VolM , then ρ ≡ 1 on M , and the above
formula yields

((ϕ−1)∗VolM)q = (det(A(q)))−1dx1 ∧ · · · ∧ dxn.

If we compute 〈bi(q), bk(q)〉ϕ−1(q), we get

δik = 〈bi(q), bk(q)〉ϕ−1(q) =
n∑
j=1

n∑
l=1

aij(q)gjl(q)akl(q),

and so I = A(q)G(q)A(q)>, where G(q) = (gjl(q)). Thus, (det(A(q)))2 det(G(q)) = 1, and
since det(A(q)) =

∏
i aii(q) > 0, we conclude that

(det(A(q)))−1 =
√

det(gij(q)),

which proves the second formula.

We saw in Section 7.1 that a volume form ωSn on the sphere Sn ⊆ Rn+1 is given by

(ωSn)p(u1, . . . un) = det(p, u1, . . . un),

where p ∈ Sn and u1, . . . un ∈ TpSn. To be more precise, we consider the n-form
ω̃Rn ∈ An(Rn+1) given by the above formula. As

(ω̃Rn)p(e1, . . . , êi, . . . , en+1) = det(p, e1, . . . , êi, . . . , en+1) = (−1)i−1pi,

where p = (p1, . . . , pn+1), we have

(ω̃Rn)p =
n+1∑
i=1

(−1)i−1pi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1. (∗)

Let i : Sn → Rn+1 be the inclusion map. For every p ∈ Sn and every basis (u1, . . . , un)
of TpS

n, the (n + 1)-tuple (p, u1, . . . , un) is a basis of Rn+1, and so (ω̃Rn)p 6= 0. Hence,
ω̃Rn � Sn = i∗ω̃Rn is a volume form on Sn. If we give Sn the Riemannian structure induced
by Rn+1, then the discussion above shows that

VolSn = ω̃Rn � S
n.
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To obtain another representation for VolSn , let r : Rn+1−{0} → Sn be the map given by

r(x) =
x

‖x‖
,

and set
ω = r∗VolSn ,

a closed n-form on Rn+1 − {0}. Clearly,

ω � Sn = VolSn .

Furthermore

ωx(u1, . . . , un) = (ω̃Rn)r(x)(drx(u1), . . . , drx(un))

= ‖x‖−1 det(x, drx(u1), . . . , drx(un)).

We leave it as an exercise to prove that ω is given by

ωx =
1

‖x‖n
n+1∑
i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1.

The procedure used to construct VolSn can be generalized to any n-dimensional orientable
manifold embedded in Rm. Let U be an open subset of Rn and ψ : U → M ⊆ Rm be an
orientation-preserving parametrization. Assume that x1, x2, . . . , xm are the coordinates of
Rm (the ambient coordinates of M) and that u1, u2, . . . , un are the coordinates of U (the
local coordinates of M). Let x = ψ(u) be a point in M . Edwards [43] (Theorem 5.6) shows
that

VolM =
∑

(i1,i2,...,in)
1≤i1<i2<···<in≤m

ni1,i2,...,indxi1 ∧ dxi2 ∧ · · · ∧ dxin , (∗∗)

where

ni1,i2,··· ,in(x) =
1

D

∂(ψi1 , ψi2 , . . . , ψin)

∂(u1, u2, . . . , un)
, D = [det

(
J>(ψ)(u)J(ψ)(u)

)
]

1
2

and
∂(ψi1 ,ψi2 ,...,ψin )

∂(u1,u2,...,un)
is the determinant of the n×n matrix obtained by selecting rows i1 through

in of dψu.

If M is a smooth orientable manifold of dimension m − 1, Edwards’s formula for VolM
reduces to

VolM =
m∑
i=1

(−1)i−1ni dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxm, (∗∗∗)

where ni = ni(x) is the ith component of the unit normal vector N(x) on M given by

ni(x) =
(−1)i−1

D

∂(ψ1, . . . , ψ̂i, . . . , ψm)

∂(u1, u2, . . . , um−1)
.
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In particular, if M = Sn embedded in Rn+1, for p ∈ Sn, N(p) = (p1, p2, . . . , pn+1) and (∗∗∗)
becomes (∗).

For a particular example of (∗∗), let M = S2 and ψ : U → S2 where

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ.

and U = {(θ, ϕ) : 0 < θ < π, 0 < ϕ < 2π} ⊂ R2. See Figure 4.1. Clearly

J(ψ)(θ, ϕ) =

cos θ cosϕ − sin θ sinϕ
cos θ sinϕ sin θ cosϕ
− sin θ 0

 ,

which in turn implies

D = [det
(
J>(ψ)(θ, ϕ)J(ψ)(θ, ϕ)

)
]

1
2 =

[
det

(
1 0
0 sin2 θ

)] 1
2

= sin θ.

Then

VolS2 = n1,2 dx ∧ dy + n1,3 dx ∧ dz + n2,3 dy ∧ dz,

where

n1,2 =
1

sin θ

∂(x, y)

∂(θ, ϕ)
=

1

sin θ
det

(
cos θ cosϕ − sin θ sinϕ
cos θ sinϕ sin θ cosϕ

)
=

cos θ sin θ

sin θ

= cos θ = z

n1,3 =
1

sin θ

∂(x, z)

∂(θ, ϕ)
=

1

sin θ
det

(
cos θ cosϕ − sin θ sinϕ
− sin θ 0

)
=
− sin2 θ sinϕ

sin θ

= − sin θ sinϕ = −y

n2,3 =
1

sin θ

∂(y, z)

∂(θ, ϕ)
=

1

sin θ
det

(
cos θ sinϕ sin θ cosϕ
− sin θ 0

)
=

sin2 θ cosϕ

sin θ

= sin θ cosϕ = x.

Thus

VolS2 = n1,2 dx ∧ dy + n1,3 dx ∧ dz + n2,3 dy ∧ dz = z dx ∧ dy − y dx ∧ dz + x dy ∧ dz,

which agrees with (∗) when n = 2.

We mention that the orientation of Sn provides a way of orienting projective spaces of
odd dimension. We know that there is a map π : Sn → RPn such that π−1([p]) consists of
two antipodal points for every [p] ∈ RPn. It can be shown that there is a volume form on
RPn iff n is odd, in which case

π∗(VolRPn) = VolSn .
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Thus, RPn is orientable iff n is odd.

We end this section with an important result regarding orientability of Lie groups. Let G
be a Lie group of dimension n. For any basis (ω1, . . . , ωn) of the dual g∗ of the Lie algebra g
of G, we have the left-invariant one-forms defined by the ωi, also denoted ωi, and obviously
(ω1, . . . , ωn) is a frame for T ∗G. Therefore, ω = ω1∧ · · · ∧ωn is an n-form on G that is never
zero; that is, a volume form. Since pull-back commutes with ∧, the n-form ω is left-invariant.
We summarize this as

Proposition 7.5. Every Lie group G possesses a left-invariant volume form. Therefore,
every Lie group is orientable.

7.3 Integration in Rn

As we said in Section 4.1, one of the raison d’être for differential forms is that they are
the objects that can be integrated on manifolds. We will be integrating differential forms
that are at least continuous (in most cases, smooth) and with compact support. In the case
of forms ω on Rn, this means that the closure of the set {x ∈ Rn | ωx 6= 0} is compact.
Similarly, for a form ω ∈ A∗(M) where M is a manifold, the support suppM(ω) of ω is the
closure of the set {p ∈M | ωp 6= 0}. We let A∗c(M) denote the set of differential forms with
compact support on M . If M is a smooth manifold of dimension n, our ultimate goal is to
define a linear operator ∫

M

: Anc (M) −→ R

which generalizes in a natural way the usual integral on Rn.

In this section we assume that M = Rn or M = U for some open subset U of Rn. Now
every n-form (with compact support) on Rn is given by

ωx = f(x) dx1 ∧ · · · ∧ dxn,

where f is a smooth function with compact support. Thus, we set∫
Rn
ω =

∫
Rn
f(x)dx1 · · · dxn,

where the expression on the right-hand side is the usual Riemann integral of f on Rn. For the
reader who would like to review the definition of the Riemann integral, we suggest Sections
23.1 to 23.3 of [111] and Sections 4.1 to 4.3 of [43]. Actually we will need to integrate
smooth forms ω ∈ Anc (U) with compact support defined on some open subset U ⊆ Rn (with
supp(ω) ⊆ U). However, this is no problem since we still have

ωx = f(x) dx1 ∧ · · · ∧ dxn,

where f : U → R is a smooth function with compact support contained in U , and f can be
smoothly extended to Rn by setting it to 0 on Rn− supp(f). We write

∫
U
ω for this integral

and make the following definition.
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Definition 7.9. Let U be an open subset of Rn and let Anc (U) denote the set of smooth
n-forms with compact support contained in U . In other words ω ∈ Anc (U) if and only
if ωx = f(x) dx1 ∧ · · · ∧ dxn for some smooth function f : U → R and the closure of
{x ∈ Rn | ωx 6= 0} is a compact set of Rn contained in U . For ω ∈ Anc (U), the expression∫
U
ω is defined as ∫

U

ω =

∫
U

f(x)dx1 · · · dxn, (*)

where the right side of (*) is interpreted as the Riemann integral.

In Definition 7.9, the n-form must be represented as dx1 ∧ · · · ∧ dxn. This is not a
problem since Proposition 4.1 says that we may switch order within the wedge product by
adjusting the functional coefficient with the appropriate negative signs. For example, if
ωx = f(x) dx1 ∧ dx3 ∧ dx2, Definition 7.9 implies that∫

U

ω =

∫
U

f(x) dx1 ∧ dx3 ∧ dx2 = −
∫
U

f(x) dx1 dx2 dx3.

For this reason,
∫
U
ω is often called a “signed” integral.

It is crucial for the generalization of the integral to manifolds to see what the change of
variable formula looks like in terms of differential forms.

Proposition 7.6. Let ϕ : U → V be a diffeomorphism between two open subsets of Rn. If the
Jacobian determinant J(ϕ)(x) has a constant sign δ = ±1 on U , then for every ω ∈ Anc (V ),
we have ∫

U

ϕ∗ω = δ

∫
V

ω.

Proof. We know that ω can be written as

ωx = f(x) dx1 ∧ · · · ∧ dxn, x ∈ V,

where f : V → R has compact support. From the example after Proposition 4.9 we have

(ϕ∗ω)y = f(ϕ(y))J(ϕ)y dy1 ∧ · · · ∧ dyn
= δf(ϕ(y))|J(ϕ)y| dy1 ∧ · · · ∧ dyn.

On the other hand, the change of variable formula (using ϕ) is∫
ϕ(U)

f(x) dx1 · · · dxn =

∫
U

f(ϕ(y)) |J(ϕ)y| dy1 · · · dyn,

so the formula follows.

We will promote the integral on open subsets of Rn to manifolds using partitions of unity.
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7.4 Integration on Manifolds

Definition 7.10. Let M be an oriented manifold of dimension n. We say ω is a smooth
n-form on M with compact support if the closure of {p ∈ M | ωp 6= 0} is compact in M .
We denote {p ∈ M | ωp 6= 0} by supp(ω). The set of smooth n-forms on M with compact
support is denoted Anc (M) while A∗c(M) is the set of all smooth differential forms on M with
compact support.

Intuitively, for any n-form ω ∈ Anc (M) on a smooth n-dimensional oriented manifold M ,
the integral

∫
M
ω is computed by patching together the integrals defined on small-enough

open subsets covering M using a partition of unity. If (U,ϕ) is a chart such that supp(ω) ⊆ U ,
then the form (ϕ−1)∗ω is an n-form on Rn, and the integral

∫
ϕ(U)

(ϕ−1)∗ω makes sense. The

orientability of M is needed to ensure that the above integrals have a consistent value on
overlapping charts.

Proposition 7.7. Let M be a smooth oriented manifold of dimension n. There exists a
unique linear operator ∫

M

: Anc (M) −→ R

with the following property: For any ω ∈ Anc (M), if supp(ω) ⊆ U , where (U,ϕ) is a positively
oriented chart, then ∫

M

ω =

∫
ϕ(U)

(ϕ−1)∗ω. (†)

Proof. First, assume that supp(ω) ⊆ U , where (U,ϕ) is a positively oriented chart. Then we
wish to set ∫

M

ω =

∫
ϕ(U)

(ϕ−1)∗ω.

However, we need to prove that the above expression does not depend on the choice of the
chart. Let (V, ψ) be another chart such that supp(ω) ⊆ V , so that supp(ω) ⊆ U ∩ V . The
map θ = ψ ◦ ϕ−1 is a diffeomorphism from W = ϕ(U ∩ V ) to W ′ = ψ(U ∩ V ), and by
hypothesis, its Jacobian determinant is positive on W . Since

suppϕ(U)((ϕ
−1)∗ω) ⊆ W, suppψ(V )((ψ

−1)∗ω) ⊆ W ′,

and θ∗ ◦ (ψ−1)∗ω = (ϕ−1)∗ ◦ ψ∗ ◦ (ψ−1)∗ω = (ϕ−1)∗ω, Proposition 7.6 yields∫
W ′

(ψ−1)∗ω =

∫
W

θ∗((ψ−1)∗ω) =

∫
W

(ϕ−1)∗ω,

as claimed.

In the general case, using a partition of unity, for every open cover of M by positively
oriented charts (Ui, ϕi), we have a partition of unity (ρi)i∈I subordinate to this cover. Recall
that

supp(ρi) ⊆ Ui, i ∈ I.
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Thus, ρiω is an n-form whose support is a subset of Ui. Furthermore, as
∑

i ρi = 1,

ω =
∑
i

ρiω.

Define

I(ω) =
∑
i

∫
Ui

ρiω,

where each term in the sum is defined by∫
Ui

ρiω =

∫
ϕi(Ui)

(ϕ−1
i )∗ρiω,

where (Ui, ϕi) is the chart associated with i ∈ I.

It remains to show that I(ω) does not depend on the choice of open cover and on the
choice of partition of unity. Let (Vj, ψj) be another open cover by positively oriented charts,
and let (θj)j∈J be a partition of unity subordinate to the open cover (Vj). Note that∫

Ui

ρiθjω =

∫
Vj

ρiθjω,

since supp(ρiθjω) ⊆ Ui ∩ Vj, and as
∑

i ρi = 1 and
∑

j θj = 1, we have∑
i

∫
Ui

ρiω =
∑
i,j

∫
Ui

ρiθjω =
∑
i,j

∫
Vj

ρiθjω =
∑
j

∫
Vj

θjω,

proving that I(ω) is indeed independent of the open cover and of the partition of unity. The
uniqueness assertion is easily proved using a partition of unity.

Since the integral at (†) is well-defined we are able to make the following definition.

Definition 7.11. Let M be a smooth oriented manifold of dimension n. For ω ∈ Anc (M), if
(U,ϕ) is a positively oriented chart, and supp(ω) ⊆ U , we define

∫
M
ω by∫

M

ω =

∫
ϕ(U)

(ϕ−1)∗ω.

Given an embedded manifold M in Rn, Definition 7.11 shows that integration of a form
over a manifold reduces, after a change of variables, to an appropriate Riemann integral
over the parameter space. We will demonstrate the meaning of this sentence by explicitly
calculating

∫
S2

VolS2 . In Section 7.2 we described a parametrization of S2 by ψ : U → S2

where

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,
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and U = {(θ, ϕ) : 0 < θ < π, 0 < ϕ < 2π} ⊂ R2. See Figure 4.1. We then showed that

VolS2 = z dx ∧ dy − y dx ∧ dz + x dy ∧ dz.

To calculate
∫
S2

VolS2 , we first use (†) of Section 4.3 to calculate

ψ∗(z dx ∧ dy) = cos θ(d(sin θ cosϕ) ∧ d(sin θ sinϕ))

= cos θ ((cos θ cosϕdθ − sin θ sinϕdϕ) ∧ (cos θ sinϕdθ + sin θ cosϕdϕ))

= cos θ(cos2 ϕ cos θ sin θ + sin2 ϕ sin θ cos θ)dθ ∧ dϕ
= cos2 θ sin θ dθ ∧ dϕ

ψ∗(−y dx ∧ dz) = − sin θ sinϕ (d(sin θ cosϕ) ∧ d(cos θ))

= − sin θ sinϕ ((cos θ cosϕdθ − sin θ sinϕdϕ) ∧ − sin θ dθ)

= sin3 θ sin2 ϕdθ ∧ dϕ
ψ∗(x dy ∧ dz) = sin θ cosϕ (d(sin θ sinϕ) ∧ d(cos θ))

= sin θ cosϕ ((cos θ sinϕdθ + sin θ cosϕdϕ) ∧ − sin θ dθ)

= sin3 θ cos2 ϕdθ ∧ dϕ.

Then

ϕ∗(VolS2) = (cos2 θ sin θ + sin3 θ sin2 ϕ+ sin3 θ cos2 ϕ)dθ ∧ dϕ
= (cos2 θ sin θ + sin3 θ)dθ ∧ dϕ = sin θ(cos2 θ + sin2 θ)dθ ∧ dϕ
= sin θdθ ∧ dϕ,

and Line (†) implies that∫
S2

(VolS2) =

∫ 2π

0

∫ π

0

ϕ∗(VolS2) =

∫ 2π

0

∫ π

0

sin θ dθ dϕ = 2π [− cos θ]π0 = 4π.

Observe that 4π is indeed the surface area of S2, a result we should have expected since we
were integrating the volume form.

The integral of Definition 7.11 has the following properties:

Proposition 7.8. Let M be an oriented manifold of dimension n. The following properties
hold:

(1) If M is connected, then for every n-form ω ∈ Anc (M), the sign of
∫
M
ω changes when

the orientation of M is reversed.

(2) For every n-form ω ∈ Anc (M), if supp(ω) ⊆ W for some open subset W of M , then∫
M

ω =

∫
W

ω,

where W is given the orientation induced by M .
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(3) If ϕ : M → N is an orientation-preserving diffeomorphism, then for every ω ∈ Anc (N),
we have ∫

N

ω =

∫
M

ϕ∗ω.

Proof. Use a partition of unity to reduce to the case where supp(ω) is contained in the
domain of a chart, and then use Proposition 7.6 and (†) from Proposition 7.7.

It is also possible to define integration on non-orientable manifolds using densities. The
next section will not be used anywhere else in this book and can be omitted.

7.5 Densities ~

Definition 7.12. Given a vector space V of dimension n ≥ 1, a density on V is a function
µ : V n → R such that for every linear map f : V → V , we have

µ(f(v1), . . . , f(vn)) = | det(f)|µ(v1, . . . , vn)

for all v1, . . . , vn ∈ V .

If (v1, . . . , vn) are linearly dependent, then for any basis (e1, . . . , en) of V there is a
unique linear map f such that f(ei) = vi for i = 1, . . . , n, and since (v1, . . . , vn) are linearly
dependent, f is singular so det(f) = 0, which implies that

µ(v1, . . . , vn) = | det(f)|µ(e1, . . . , en) = 0

for any linearly dependent vectors v1, . . . , vn ∈ V .

In view of this fact, a density is sometimes defined as a function µ :
∧n V → R such that

for every automorphism f ∈ GL(V ),

µ(f(v1) ∧ · · · ∧ f(vn)) = | det(f)|µ(v1 ∧ · · · ∧ vn) (††)

for all v1 ∧ · · · ∧ vn ∈ V (with µ(0) = 0). For any nonzero v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧wn ∈
∧n V ,

because
w1 ∧ · · · ∧ wn = det(P )v1 ∧ · · · ∧ vn

where P is the matrix whose jth column consists of the coefficients of wj over the basis
(v1, . . . , vn), it is not hard to show that Condition (††) is equivalent to

µ(cw) = |c|µ(w), w ∈
n∧
V, c ∈ R.

Densities are not multilinear, but it is not hard to show that for any fixed n, they form a
vector space of dimension 1 which is spanned by the absolute value |ω| of any nonzero n-form
ω ∈

∧n V ∗. Let den(V ) be the set of all densities on V . We have the following proposition
from Lee [78] (Chapter 14, Proposition 14.26).
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Proposition 7.9. Let V be any vector space of dimension n ≥ 1. The following properties
hold:

(a) The set den(V ) is a vector space.

(b) For any two densities µ1, µ2 ∈ den(V ) and for any basis (e1, . . . , en) of V , if
µ1(e1, . . . , en) = µ2(e1, . . . , en), then µ1 = µ2.

(c) For any n-form ω ∈
∧n V ∗, the function |ω| given by

|ω|(v1, . . . , vn) = |ω(v1, . . . , vn)|

is a density.

(d) The vector space den(V ) is a one-dimensional space spanned by |ω| for any nonzero
ω ∈

∧n V ∗.

Proof. (a) That den(V ) is a vector space is immediate from the definition.

(b) Pick any n vectors (v1, . . . , vn) ∈ V n. Since (e1, . . . , en) is a basis of V , there is a
unique linear map f : V → V such that f(ei) = vi for i = 1, . . . , n, and since by hypothesis
µ1(e1, . . . , en) = µ2(e1, . . . , en), we have

µ1(v1, . . . , vn) = µ1(f(e1), . . . , f(en))

= | det(f)|µ1(e1, . . . , en)

= | det(f)|µ2(e1, . . . , en)

= µ2(f(e1), . . . , f(en))

= µ2(v1, . . . , vn),

which proves that µ1 = µ2.

(c) If ω ∈
∧n V ∗, then

|ω|(f(v1), . . . , f(vn)) = |ω(f(v1), . . . , f(vn))|
= | det(f)ω(v1, . . . , vn)|
= | det(f)| |ω|(v1, . . . , vn),

which shows that |ω| is a density.

(d) Let (e1, . . . , en) be any basis of V , and let ω ∈
∧n V ∗ be any nonzero n-form. For

any density µ, we need to show that µ = c|ω| for some c ∈ R. Let

a = |ω|(e1, . . . , en) = |ω(e1, . . . , en)|
b = µ(e1, . . . , en).
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Since ω 6= 0 and (e1, . . . , en) is a basis, ω(e1, . . . , en) 6= 0 so a 6= 0, and by Condition (c)
(b/a)|ω| is a density. Since

(b/a)|ω|(e1, . . . , en) = b = µ(e1, . . . , en),

by Condition (b) µ = (b/a)|ω|, as desired.

If we denote the vector space of densities on V by den(V ), then given a manifold M , we
can form the density bundle den(M) whose underlying set is the disjoint union of the vector
spaces den(TpM) for all p ∈ M . This set can be made into a smooth bundle, and a density
on M is a smooth section of the density bundle. The main property of densities is that
every smooth manifold admits a global smooth (positive) density, without any orientability
assumptions. Then it is possible to carry out the theory of integration on manifolds using
densities instead of volume forms, as we did in this section. This development can be found
in Lee [78] (Chapter 14), but we have no need for this extra generality.

It turns out that orientations can be defined as certain functions satisfying a variant of
the condition used in Definition 7.12, and this definition clarifies the relationship between
volume forms and densities. The sign function is defined such that for any λ ∈ R,

sign(λ) =


+1 if λ > 0

−1 if λ < 0

0 if λ = 0.

Definition 7.13. Given a vector space V of dimension n ≥ 1, an orientation on V is a
function o : V n → R such that for every linear map f : V → V , we have

o(f(v1), . . . , f(vn)) = sign(det(f))o(v1, . . . , vn)

for all v1, . . . , vn ∈ V .

If (v1, . . . , vn) are linearly dependent, then for any basis (e1, . . . , en) of V there is a
unique linear map f such that f(ei) = vi for i = 1, . . . , n, and since (v1, . . . , vn) are linearly
dependent, f is singular so det(f) = 0, which implies that

o(v1, . . . , vn) = sign(det(f))o(e1, . . . , en) = 0

for any linearly dependent vectors v1, . . . , vn ∈ V .

For any two bases (u1, . . . , un) and (v1, . . . , vn), there is a unique linear map f such that
f(ui) = vi for i = 1, . . . , n, and o(u1, . . . , un) = o(v1, . . . , vn) iff det(f) > 0, which is indeed
the condition for (u1, . . . , un) and (v1, . . . , vn) to have the same orientation. There are exactly
two orientations o such that |o(u1, . . . , un)| = 1.

Let Or(V ) be the set of all orientations on V . We have the following proposition.
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Proposition 7.10. Let V be any vector space of dimension n ≥ 1. The following properties
hold:

(a) The set Or(V ) is a vector space.

(b) For any two orientations o1, o2 ∈ Or(V ) and for any basis (e1, . . . , en) of V , if
o1(e1, . . . , en) = o2(e1, . . . , en), then o1 = o2.

(c) For any nonzero n-form ω ∈
∧n V ∗, the function o(ω) given by o(ω)(v1, . . . , vn) = 0 if

(v1, . . . , vn) are linearly dependent and

o(ω)(v1, . . . , vn) =
ω(v1, . . . , vn)

|ω(v1, . . . , vn)|
,

if (v1, . . . , vn) are linearly independent, is an orientation.

(d) The vector space Or(V ) is a one-dimensional space, and it is spanned by o(ω) for any
nonzero ω ∈

∧n V ∗.

Proof. (a) That Or(V ) is a vector space is immediate from the definition.

(b) Pick any n vectors (v1, . . . , vn) ∈ V n. Since (e1, . . . , en) is a basis of V , there is a
unique linear map f : V → V such that f(ei) = vi for i = 1, . . . , n, and since by hypothesis
o1(e1, . . . , en) = o2(e1, . . . , en), we have

o1(v1, . . . , vn) = o1(f(e1), . . . , f(en))

= sign(det(f))o1(e1, . . . , en)

= sign(det(f))o2(e1, . . . , en)

= o2(f(e1), . . . , f(en))

= o2(v1, . . . , vn),

which proves that o1 = o2.

(c) Let ω ∈
∧n V ∗ be any nonzero form. If (v1, . . . , vn) are linearly independent, then we

know that

ω(f(v1), . . . , f(vn)) = det(f)ω(v1, . . . , vn)

|ω|(f(v1), . . . , f(vn)) = | det(f)| |ω|(v1, . . . , vn).

We know that det(f) = 0 iff f is singular, but then (f(v1), . . . , f(vn)) are linearly dependent
so

o(ω)(f(v1), . . . , f(vn)) = 0 = sign(det(f))o(ω)(v1, . . . , vn).
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If det(f) 6= 0, then

o(ω)(f(v1), . . . , f(vn)) =
ω(f(v1), . . . , f(vn))

|ω(f(v1), . . . , f(vn))|

=
det(f)

| det(f)|
ω(f(v1), . . . , f(vn))

|ω(f(v1), . . . , f(vn))|
= sign(det(f))o(ω)(v1, . . . , vn),

which shows that o(ω) is an orientation.

(d) Let (e1, . . . , en) be any basis of V , and let ω ∈
∧n V ∗ be any nonzero n-form. For

any orientation o, we need to show that o = co(ω) for some c ∈ R. Let

a = o(ω)(e1, . . . , en) =
ω(e1, . . . , ven)

|ω(e1, . . . , en)|
b = o(e1, . . . , en).

Since ω 6= 0 and (e1, . . . , en) is a basis, ω(e1, . . . , en) 6= 0 so a 6= 0, and by Condition (c)
(b/a)o(ω) is an orientation. Since

(b/a)o(ω)(e1, . . . , en) = b = o(e1, . . . , en),

by Condition (b) o = (b/a)o(ω), as desired.

Part (c) of Proposition 7.10 implies that for every nonzero n-form ω ∈
∧n V ∗, there exists

some density |ω| and some orientation o(ω) such that

o(ω)|ω| = ω.

This shows that orientations are just normalized volume forms that take exactly two values
c and −c on linearly independent vectors (with c > 0), whereas densities are absolute values
of volume forms. We have the following results showing the relationship between the spaces∧n V ∗,Or(V ), and den(V ).

Proposition 7.11. Let V be any vector space of dimension n ≥ 1. For any nonzero n-form
ω ∈

∧n V ∗, the bilinear map Φ: Or(V )× den(V )→
∧n V ∗ given by

Φ(αo(ω), β|ω|) = αβω, α, β ∈ R

induces an isomorphism Or(V )⊗ den(V ) ∼=
∧n V ∗.

Proof. The spaces
∧n V ∗,Or(V ), and den(V ) are all one-dimensional, and if ω 6= 0, then ω

is a basis of
∧n V ∗ and Propositions 7.9 and 7.10 show that o(ω) is a basis of Or(V ) and |ω|

is a basis of den(V ), so the map Φ defines a bilinear map from Or(V ) × den(V ) to
∧n V ∗.
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Therefore, by the universal mapping property, we obtain a linear map
Φ⊗ : Or(V )⊗ den(V )→

∧n V ∗. Since ω 6= 0, we have

o(ω)|ω| = ω,

which shows that Φ is surjective, and thus Φ⊗ is surjective. Since all the spaces involved are
one-dimensional, Or(V )⊗ den(V ) is also one-dimensional, so Φ⊗ is bijective.

Given a manifold M , we can form the orientation bundle Or(M) whose underlying set
is the disjoint union of the vector spaces Or(TpM) for all p ∈ M . This set can be made
into a smooth bundle, and an orientation of M is a smooth global section of the orientation
bundle. Then it can be shown that there is a bundle isomorphism

Or(M)⊗ den(M) ∼=
n∧
T ∗M.

and since den(M) always has global sections, we see that there is a global volume form iff
Or(M) has a global section iff M is orientable.

The theory or integration developed so far deals with domains that are not general
enough. Indeed, for many applications, we need to integrate over domains with boundaries.

7.6 Manifolds With Boundary

Up to now we have defined manifolds locally diffeomorphic to an open subset of Rm. This
excludes many natural spaces such as a closed disk, whose boundary is a circle, a closed ball
B(1), whose boundary is the sphere Sm−1, a compact cylinder S1 × [0, 1], whose boundary
consist of two circles, a Möbius strip, etc. These spaces fail to be manifolds because they
have a boundary; that is, neighborhoods of points on their boundaries are not diffeomorphic
to open sets in Rm. Perhaps the simplest example is the (closed) upper half space

Hm = {(x1, . . . , xm) ∈ Rm | xm ≥ 0}.

Under the natural embedding Rm−1 ∼= Rm−1 × {0} ↪→ Rm, the subset ∂Hm of Hm defined
by

∂Hm = {x ∈ Hm | xm = 0}

is isomorphic to Rm−1, and is called the boundary of Hm. When m = 0 we have H0 = ∅ and
∂H0 = ∅. We also define the interior of Hm as

Int(Hm) = Hm − ∂Hm.

Now if U and V are open subsets of Hm, where Hm ⊆ Rm has the subset topology, and
if f : U → V is a continuous function, we need to explain what we mean by f being smooth.
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Definition 7.14. Let U and V be open subsets of Hm. We say that f : U → V as above is
smooth if it has an extension f̃ : Ũ → Ṽ , where Ũ and Ṽ are open subsets of Rm with U ⊆ Ũ
and V ⊆ Ṽ , and with f̃ a smooth function. We say that f is a (smooth) diffeomorphism iff
f−1 exists and if both f and f−1 are smooth, as just defined.

To define a manifold with boundary , we replace everywhere R by H in the defintion of a
chart and in the definition of an atlas (see Tu [111], Chapter 6, §22, or Gallier and Quaintance
[49]). So, for instance, given a topological space M , a chart is now pair (U,ϕ), where U is
an open subset of M and ϕ : U → Ω is a homeomorphism onto an open subset Ω = ϕ(U) of
Hnϕ (for some nϕ ≥ 1), etc. Thus, we obtain

Definition 7.15. Given some integer n ≥ 1 and given some k such that k is either an integer
k ≥ 1 or k =∞, a Ck-manifold of dimension n with boundary consists of a topological space
M together with an equivalence class A of Ck n-atlases on M (where the charts are now
defined in terms of open subsets of Hn). Any atlas A in the equivalence class A is called a
differentiable structure of class Ck (and dimension n) on M . We say that M is modeled on
Hn. When k =∞, we say that M is a smooth manifold with boundary .

It remains to define what is the boundary of a manifold with boundary.

Definition 7.16. Let M be a manifold with boundary as defined by Definition 7.15. The
boundary ∂M of M is the set of all points p ∈ M , such that there is some chart (Uα, ϕα),
with p ∈ Uα and ϕα(p) ∈ ∂Hn. We also let Int(M) = M − ∂M and call it the interior of M .

p

q

0

0

H

H

2

2

φ

φ (p)

Ψ

Ψ

(q)

Figure 7.4: A two dimensional manifold with red boundary.
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� Do not confuse the boundary ∂M and the interior Int(M) of a manifold with bound-
ary embedded in RN with the topological notions of boundary and interior of M as a

topological space. In general, they are different. For example, if M is the subset [0, 1)∪ {2}
of the real line, then its manifold boundary is ∂M = {0}, and its topological boundary is
Bd(M) = {0, 1, 2}.

Note that manifolds are also manifolds with boundary: their boundary is just empty. We
shall still reserve the word “manifold” for these, but for emphasis, we will sometimes call
them “boundaryless.”

The definition of tangent spaces, tangent maps, etc., are easily extended to manifolds
with boundary. The reader should note that if M is a manifold with boundary of dimension
n, the tangent space TpM is defined for all p ∈ M and has dimension n, even for boundary
points p ∈ ∂M . The only notion that requires more care is that of a submanifold. For more
on this, see Hirsch [60], Chapter 1, Section 4. One should also beware that the product of two
manifolds with boundary is generally not a manifold with boundary (consider the product
[0, 1]× [0, 1] of two line segments). There is a generalization of the notion of a manifold with
boundary called manifold with corners , and such manifolds are closed under products (see
Hirsch [60], Chapter 1, Section 4, Exercise 12).

If M is a manifold with boundary, we see that Int(M) is a manifold without boundary.
What about ∂M? Interestingly, the boundary ∂M of a manifold with boundary M of
dimension n is a manifold of dimension n− 1. For this we need the following proposition.

Proposition 7.12. If M is a manifold with boundary of dimension n, for any p ∈ ∂M on
the boundary on M , for any chart (U,ϕ) with p ∈M , we have ϕ(p) ∈ ∂Hn.

Proof. Since p ∈ ∂M , by definition, there is some chart (V, ψ) with p ∈ V and ψ(p) ∈ ∂Hn.
Let (U,ϕ) be any other chart, with p ∈ M , and assume that q = ϕ(p) ∈ Int(Hn). The
transition map ψ ◦ϕ−1 : ϕ(U ∩V )→ ψ(U ∩V ) is a diffeomorphism, and q = ϕ(p) ∈ Int(Hn).
By the inverse function theorem, there is some open W ⊆ ϕ(U ∩ V ) ∩ Int(Hn) ⊆ Rn, with
q ∈ W , so that ψ ◦ ϕ−1 maps W homeomorphically onto some subset Ω open in Int(Hn),
with ψ(p) ∈ Ω, contradicting the hypothesis, ψ(p) ∈ ∂Hn.

Using Proposition 7.12, we immediately derive the fact that ∂M is a manifold of dimen-
sion n− 1. We obtain charts on ∂M by considering the charts (U ∩ ∂M,L ◦ϕ), where (U,ϕ)
is a chart on M such that U ∩ ∂M = ϕ−1(∂Hn) 6= ∅ and L : ∂Hn → Rn−1 is the natural
isomorphism (see see Hirsch [60], Chapter 1, Section 4).

7.7 Integration on Regular Domains and

Stokes’ Theorem

Given a manifold M , we define a class of subsets with boundaries that can be integrated on,
and for which Stokes’ theorem holds. In Warner [115] (Chapter 4), such subsets are called
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regular domains , and in Madsen and Tornehave [80] (Chapter 10), they are called domains
with smooth boundary .

Definition 7.17. Let M be a smooth manifold of dimension n. A subset N ⊆M is called a
domain with smooth boundary (or codimension zero submanifold with boundary) iff for every
p ∈M , there is a chart (U,ϕ) with p ∈ U such that

ϕ(U ∩N) = ϕ(U) ∩Hn, (∗)

where Hn is the closed upper-half space

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

Note that (∗) is automatically satisfied when p is an interior or an exterior point of N ,
since we can pick a chart such that ϕ(U) is contained in an open half space of Rn defined
by either xn > 0 or xn < 0. If p is a boundary point of N , then ϕ(p) has its last coordinate
equal to 0; see Figure 7.5.

p
U

φ

φ(p)

φ ( U ) HX
2

Figure 7.5: The subset N , the peach region of the torus M , is a domain with smooth
boundary.

If M is orientable, then any orientation of M induces an orientation of ∂N , the boundary
of N . This follows from the following proposition:
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Proposition 7.13. Let ϕ : Hn → Hn be a diffeomorphism with everywhere positive Jaco-
bian determinant. Then ϕ induces a diffeomorphism Φ: ∂Hn → ∂Hn, which viewed as a
diffeomorphism of Rn−1, also has everywhere positive Jacobian determinant.

Proof. By the inverse function theorem, every interior point of Hn is the image of an interior
point, so ϕ maps the boundary to itself. If ϕ = (ϕ1, . . . , ϕn), then

Φ = (ϕ1(x1, . . . , xn−1, 0), . . . , ϕn−1(x1, . . . , xn−1, 0)),

since ϕn(x1, . . . , xn−1, 0) = 0. It follows that ∂ϕn
∂xi

(x1, . . . , xn−1, 0) = 0 for i = 1, . . . , n − 1,
and as ϕ maps Hn to itself,

∂ϕn
∂xn

(x1, . . . , xn−1, 0) > 0.

Now the Jacobian matrix of ϕ at q = ϕ(p) ∈ ∂Hn is of the form

J(ϕ)(q) =


∗

dΦq
...
∗

0 · · · 0 ∂ϕn
∂xn

(q)


and since ∂ϕn

∂xn
(q) > 0 and by hypothesis det(J(ϕ)q) > 0, we have det(J(Φ)q) > 0, as

claimed.

In order to make Stokes’ formula sign free, if Rn has the orientation given by dx1∧· · ·∧dxn,
then ∂Hn is given the orientation given by (−1)ndx1∧· · ·∧dxn−1 if n ≥ 2, and −1 for n = 1.
In particular ∂H2 is oriented by e1 while ∂H3 is oriented by −e1 ∧ e2 = e2 ∧ e1. See Figure
7.6.

Definition 7.18. Given any domain with smooth boundary N ⊆M , a tangent vector
w ∈ TpM at a boundary point p ∈ ∂N is outward directed iff there is a chart (U,ϕ) with
p ∈ U , ϕ(U ∩N) = ϕ(U) ∩Hn, and dϕp(w) has a negative nth coordinate prn(dϕp(w)); see
Figure 7.7.

Let (V, ψ) be another chart with p ∈ V . The transition map

θ = ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

induces a map

ϕ(U ∩ V ) ∩Hn −→ ψ(U ∩ V ) ∩Hn

which restricts to a diffeomorphism

Θ: ϕ(U ∩ V ) ∩ ∂Hn → ψ(U ∩ V ) ∩ ∂Hn.
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e2

e2

-

e1

e1

e3-

e2- ^ e1 = e1 ^ e2

e3- ^ e2 ^ e1 = e1 ^ e2 ^ e3

Figure 7.6: The boundary orientations of ∂H2 and ∂H3.

The proof of Proposition 7.13 shows that the Jacobian matrix of dθq at q = ϕ(p) ∈ ∂Hn is
of the form

J(θ)(q) =


∗

J(Θ)q
...
∗

0 · · · 0 ∂θn
∂xn

(q)


with θ = (θ1, . . . , θn), and that ∂θn

∂xn
(q) > 0. As dψp = d(ψ ◦ ϕ−1)q ◦ dϕp, we see that for

any w ∈ TpM with prn(dϕp(w)) < 0, since prn(dψp(w)) = ∂θn
∂xn

(q) prn(dϕp(w)), we also have

prn(dψp(w)) < 0 (recall that θ = ψ ◦ ϕ−1). Therefore, the negativity condition of Definition
7.18 does not depend on the chart at p. The following proposition is then easy to show.

Proposition 7.14. Let N ⊆ M be a domain with smooth boundary, where M is a smooth
manifold of dimension n.

(1) The boundary ∂N of N is a smooth manifold of dimension n− 1.

(2) Assume M is oriented. If n ≥ 2, there is an induced orientation on ∂N determined as
follows: For every p ∈ ∂N , if v1 ∈ TpM is an outward directed tangent vector, then a
basis (v2, . . . , vn) for Tp∂N is positively oriented iff the basis (v1, v2, . . . , vn) for TpM
is positively oriented. When n = 1, every p ∈ ∂N has the orientation +1 iff for every
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p
U

U

φ

φ ( U ) HX
2

w

φ (w)pd

Figure 7.7: An example of an outward directed tangent vector to N . Notice this red tangent
vector points away from N .

outward directed tangent vector v1 ∈ TpM , the vector v1 is a positively oriented basis
of TpM .

Part (2) of Proposition 7.14 is summarized as “outward pointing vector first.” When M is
an n-dimensional embedded manifold in Rm with an orientation preserving parametrization
ψ : U → Rm, for any point p = ψ(q) ∈ ∂N , let v1 be a tangent vector pointing away from N .
This means dψq(−en) = v1. To complete the basis of TpM in a manner consistent with the
positive orientation of U given by dx1 ∧ · · · ∧ dxn, we choose an ordered basis (v2, · · · , vn) of
Tp∂N such that dψq((−1)ne1) = v2 and dψq(ei) = vi+1 whenever 2 ≤ i ≤ n− 1. Intuitively,
ψ maps the positive orientation of U to a positive orientation of TpM with the condition
that the first vector in the orientation frame of TpM points away from N . See Figure 7.8.

Another way to describe the induced orientation of ∂N is through the insertion operator;
see Definition 4.13. Let ω be a volume form on M , let p ∈ ∂N , and let v1 ∈ TpM be an
outward directed tangent vector. The volume form on ∂N is given by iv1ω where

iv1ω(v2, · · · , vn) = ω(v1, v2, · · · , vn).

If M is oriented, then for every n-form ω ∈ Anc (M), the integral
∫
N
ω is well-defined.

More precisely, Proposition 7.7 can be generalized to domains with a smooth boundary. This
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Ψ

Ψ

1

2

3 4

Figure 7.8: The orientation of Tp∂N consistent with the positive orientation of R2.

can be shown in various ways. The most natural way to proceed is to prove an extension of
Proposition 7.6 using a slight generalization of the change of variable formula.

Proposition 7.15. Let ϕ : U → V be a diffeomorphism between two open subsets of Rn, and
assume that ϕ maps U ∩ Hn to V ∩ Hn. Then for every smooth function f : V → R with
compact support, ∫

V ∩Hn
f(x)dx1 · · · dxn =

∫
U∩Hn

f(ϕ(y)) |J(ϕ)y| dy1 · · · dyn.

One alternative way to define
∫
N
ω involves covering N with special kinds of open subsets

arising from regular simplices (see Warner [115], Chapter 4).

Remark: Another alternative way to proceed is to apply techniques of measure theory. In
Madsen and Tornehave [80] it is argued that integration theory goes through for continuous
n-forms with compact support. If σ is a volume form on M , then for every continuous
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function with compact support f , the map

f 7→ Iσ(f) =

∫
M

fσ

is a linear positive operator1 (which means that I(f) ≥ 0 for f ≥ 0). By Riesz’ representation
theorem (see Rudin [98], Chapter 2), Iσ determines a positive Borel measure µσ which satisfies∫

M

fdµσ =

∫
M

fσ

for all continuous functions f with compact support. Since any C1 n-form ω can be written
uniquely as ω = fσ for some C1 function f , we can set∫

N

ω =

∫
M

1Nfσ,

where 1N is the function with value 1 on N and 0 outside N .

We now have all the ingredient to state and prove Stokes’s formula. Our proof is based
on the proof found in Section 23.5 of Tu [111]. Alternative proofs can be found in many
places (for example, Warner [115] (Chapter 4), Bott and Tu [13] (Chapter 1), and Madsen
and Tornehave [80] (Chapter 10).

Theorem 7.16. (Stokes’ Theorem) Let N ⊆ M be a domain with smooth boundary, where
M is a smooth oriented manifold of dimension n, give ∂N the orientation induced by M ,
and let i : ∂N → M be the inclusion map. For every differential form with compact support
ω ∈ An−1

c (M) with N ∩ supp(ω) compact, we have∫
∂N

i∗ω =

∫
N

dω.

In particular, if N = M is a smooth oriented manifold with boundary, then∫
∂M

i∗ω =

∫
M

dω, (∗∗∗)

and if M is a smooth oriented manifold without boundary, then∫
M

dω = 0.

Of course, i∗ω is the restriction of ω to ∂N , and for simplicity of notation i∗ω is usually
written ω, and Stokes’ formula is written∫

∂N

ω =

∫
N

dω.

1In fact, a Radon measure.
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Proof based on Tu [111]. We select a covering {(Ui, ϕi)}i∈I of M and we restrict to those
charts (Ui, ϕi) such that ϕi(Ui∩N) = ϕi(Ui)∩Hn is diffeomorphic to either Rn or Hn via an
orientation preserving diffeomorphism. Note that each Ui has a nonempty intersection with
N . Let (ρi)i∈I be a partition of unity subordinate to this cover. An adaptation of the proof
of Proposition 7.7 shows that ρiω is an (n− 1)-form on M with compact support in Ui.

Assume that Stokes’ theorem is true for Rn and Hn. Then Stokes’ theorem will hold for
all Ui which are diffeomorphic to either Rn or Hn. Observe that the paragraph preceding
Proposition 7.14 implies that ∂N ∩ Ui = ∂Ui. Since

∑
i ρi = 1, we have∫

∂N

ω =

∫
∂N

∑
i

ρiω

=
∑
i

∫
∂N

ρiω, since
∑
i

ρiω is finite

=
∑
i

∫
∂Ui

ρiω, since supp(ρiω) ⊆ Ui

=
∑
i

∫
Ui

d(ρiω), by assumption that Stokes’ is true for Ui

=
∑
i

∫
N

d(ρω), since supp(d(ρiω)) ⊆ Ui ∩N

=

∫
N

d

(∑
i

ρiω

)
=

∫
N

dω.

Thus it remains to prove Stokes’ theorem for Rn and Hn. Since ω is now assumed to be an
(n− 1)-form on Rn or Hn with compact support,

ω =
n∑
i=1

fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where each fi is a smooth function with compact support in Rn or Hn. By using the R-
linearity of the exterior derivative and the integral operator, we may assume that ω has only
one term, namely

ω = f dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

and

dω =
n∑
j=1

∂f

∂xj
dxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

= (−1)i−1 ∂f

∂xi
dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn.
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where f is smooth function on Rn such that supp(f) is contained in the interior of the n-cube
[−a, a]n for some fixed a > 0.

To verify Stokes’ theorem for Rn, we evaluate
∫
Rn dω as an iterated integral via Fubini’s

theorem. (See Edwards [43], Theorem 4.1.) In particular, we find that∫
Rn
dω =

∫
Rn

(−1)i−1 ∂f

∂xi
dx1 · · · dxi · · · dxn

= (−1)i−1

∫
Rn−1

(∫ ∞
−∞

∂f

∂xi
dxi

)
dx1 · · · d̂xi · · · dxn

= (−1)i−1

∫
Rn−1

(∫ a

−a

∂f

∂xi
dxi

)
dx1 · · · d̂xi · · · dxn

= (−1)i−1

∫
Rn−1

0 dx1 · · · d̂xi · · · dxn since supp(f) ⊂ [−a, a]n

= 0 =

∫
∅
ω =

∫
∂Rn

ω.

The verification of Stokes’ theorem for Hn involves the analysis of two cases. For the first
case assume i 6= n. Since ∂Hn is given by xn = 0, then dxn ≡ 0 on ∂Hn. An application of
Fubini’s theorem shows that∫

Hn
dω =

∫
Hn

(−1)i−1 ∂f

∂xi
dx1 · · · dxi · · · dxn

= (−1)i−1

∫
Hn−1

(∫ ∞
−∞

∂f

∂xi
dxi

)
dx1 · · · d̂xi · · · dxn

= (−1)i−1

∫
Hn−1

(∫ a

−a

∂f

∂xi
dxi

)
dx1 · · · d̂xi · · · dxn

= (−1)i−1

∫
Hn−1

0 dx1 · · · d̂xi · · · dxn since supp(f) ⊂ [−a, a]n

= 0 =

∫
∂Hn

f dx1 · · · d̂xi · · · dxn, since dxn ≡ 0 on ∂Hn.

It remains to analyze the case i = n. Fubini’s theorem implies∫
Hn
dω =

∫
Hn

(−1)n−1 ∂f

∂xn
dx1 · · · dxn

= (−1)n−1

∫
Rn−1

(∫ ∞
0

∂f

∂xn
dxn

)
dx1, · · · dxn−1

= (−1)n−1

∫
Rn−1

(∫ a

0

∂f

∂xn
dxn

)
dx1 · · · dxn−1

= (−1)n
∫
Rn−1

f(x1, · · · , xn−1, 0) dx1 · · · dxn−1, since supp(f) ⊂ [−a, a]n

=

∫
∂Hn

ω,



7.7. INTEGRATION ON REGULAR DOMAINS AND STOKES’ THEOREM 269

where the last equality follows from the fact that (−1)nRn−1 is the induced boundary orien-
tation of ∂Hn.

Stokes’ theorem, as presented in Theorem 7.16, unifies the integral theorems of vector
calculus since the classical integral theorems of vector calculus are particular examples of
(∗∗∗) when M is an n-dimensional manifold embedded in R3. If n = 3, ω ∈ A2

c(M), and
(∗∗∗) becomes the Divergence theorem. Given a smooth function F : R3 → R3, recall that
the divergence of F is the smooth real-valued function divF : R3 → R where

divF =
∂F1

∂x1

+
∂F2

∂x2

+
∂F3

∂x3

,

and (x1, x2, x3) are the standard coordinates of R3 (often represented as (x, y, z)). The
Divergence theorem is as follows:

Proposition 7.17. (Divergence Theorem) Let F : R3 → R3 be a smooth vector field defined
on a neighborhood of M , a compact oriented smooth 3-dimensional manifold with boundary.
Then ∫

M

divF VolM =

∫
∂M

F ·N Vol∂M , (1)

where N(x) = (n1(x), n2(x), n3(x)) is the unit outer normal vector field on ∂M ,

Vol∂M = n1 dx2 ∧ dx3 − n2 dx1 ∧ dx3 + n3 dx1 ∧ dx2

and ∂M is positively oriented as the boundary of M ⊆ R3.

In calculus books (1) is often written as∫ ∫ ∫
divF dx dy dz =

∫
F ·N dS, (2)

where dS is the surface area differential. In particular if ∂M is parametrized by ϕ(x, y) =
(x, y, f(x, y)), ∫

F ·N dS =

∫ ∫
F ·
(
−∂f
∂x
,−∂f

∂y
, 1

)
dx dy. (3)

The verification of (3) is an application of Equation (∗∗) from Section 7.2. In particular

J(ϕ)(x, y) =

 1 0
0 1
∂f
∂x

∂f
∂y

 ,

which in turn implies

D = det
[
J(ϕ)>(x, y)J(ϕ)(x, y)

] 1
2 =

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

.
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Hence

n1,2 =

det

(
1 0
0 1

)
D

=
1√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2

n1,3 =

det

(
1 0
∂f
∂x

∂f
∂y

)
D

=

∂f
∂y√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2

n2,3 =

det

(
0 1
∂f
∂x

∂f
∂y

)
D

=
−∂f
∂x√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2

and

dS = n1,2 dx ∧ dy + n1,3 dx ∧ dz + n2,3 dy ∧ dz

=
dx ∧ dy√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2
+

∂f
∂y
dx ∧ dz√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2
+

−∂f
∂x
dy ∧ dz√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2
.

Since z = f(x, y),

ϕ∗(dS) =
dx ∧ dy√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2
+

∂f
∂y
dx ∧ (∂f

∂x
dx+ ∂f

∂y
dy)√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2
+
−∂f
∂x
dy ∧ (∂f

∂x
dx+ ∂f

∂y
dy)√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2

=

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dx ∧ dy.

Furthermore,

N =

∂ϕ
∂x
× ∂ϕ

∂y∥∥∥∂ϕ∂x × ∂ϕ
∂y

∥∥∥ =
1√

1 +
(
∂f
∂x

)2
+
(
∂f
∂y

)2

(
−∂f
∂x
,−∂f

∂y
, 1

)
.

Substituting the expressions for N and ϕ∗(dS) into
∫
F ·N dS give the right side of (3).

If n = 2, ω ∈ A1
c(M), and (∗∗∗) becomes the classical Stokes’ theorem. Given a smooth

function F : R3 → R3, recall that the curl of F is the smooth function curlF : R3 → R3

curlF =

(
∂F3

∂x2

− ∂F2

∂x3

,
∂F1

∂x3

− ∂F3

∂x1

,
∂F2

∂x1

− ∂F1

∂x2

)
.

The classical Stokes’ theorem is as follows:
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Proposition 7.18. Let M be an oriented compact 2-dimensional manifold with boundary
locally parametrized in R3 by the orientation-preserving local diffeomorphism ψ : U → R3

such that ψ(u, v) = (x1, x2, x3) ∈M . Define

N =
∂ψ
∂u
× ∂ψ

∂v∥∥∂ψ
∂u
× ∂ψ

∂v

∥∥
to be the smooth outward unit normal vector field on M . Let n be the outward directed
tangent vector field on ∂M . Let T = N × n. Given F : R3 → R3, a smooth vector field
defined on a open subset of R3 containing M ,∫

M

curlF ·N VolM =

∫
∂M

F · T Vol∂M , (4)

where VolM is defined as in Vol∂M of Proposition 7.17 and Vol∂M = ds, the line integral
form.

If M is parametrized by ϕ(x, y) = (x, y, f(x, y)), we have shown that the left side of (4)
may be written as∫

M

curlF ·N VolM =

∫
curlF ·N dS =

∫ ∫
curlF ·

(
−∂f
∂x
,−∂f

∂y
, 1

)
dx dy.

Many calculus books represent the right side of (4) as∫
∂M

F · T ds =

∫
F · dr, (5)

where dr = (dx, dy, dz). Once again the verification of (5) is an application of Equation
(∗∗) from Section 7.2. Let ψ(x) = (x, y(x), z(x)) be a parameterization of ∂M . Then
J(ψ)(x) = (1, yx, zx)

>, where yx = dy
dx

and zx = dz
dx

. Then

D = det
[
J(ψ)>(x)J(ψ)(x)

] 1
2 =

√
1 + y2

x + z2
x,

ds =
dx+ yx dy + zx dz√

1 + y2
x + z2

x

,

and

ψ∗ds =
√

1 + y2
x + z2

x dx.

Furthermore

T =
J(ψ)(x)√
1 + y2

x + z2
x

=
(1, yx, zx)

>√
1 + y2

x + z2
x

.
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Substituting the expressions for T and ψ∗ds into the left side of (5) gives∫
∂M

F · T ds =

∫
F ·
(

1,
dy

dx
,
dz

dx

)
dx =

∫
F · (dx, dy, dz) =

∫
F · dr.

Thus the classical form of Stokes’ theorem often appears as∫ ∫
curlF ·

(
−∂f
∂x
,−∂f

∂y
, 1

)
dx dy =

∫
F ·
(

1,
dy

dx
,
dz

dx

)
dx =

∫
F · dr,

where M is parametrized via ϕ(x, y) = (x, y, f(x, y)).

The orientation frame (n, T,N) given in Proposition 7.18 provides the standard orien-
tation of R3 given by (e1, e2, e3) and is visualized as follows. Pick a preferred side of the
surface. This choice is represented by N . At each boundary point, draw the outward point-
ing tangent vector n which is locally perpendicular (in the tangent plane) to the boundary
curve. To determine T , pretend you are a bug on the side of the surface selected by N . You
must walk along the boundary curve in the direction that keeps the boundary of the surface
your right. Then T = N × n and (n, T,N) is oriented via the right-hand rule in the same
manner as (e1, e2, e3); see Figure 7.9.

N

N

n

T

M

Figure 7.9: The orientation frame (n, T,N) for the bell shaped surface M . Notice the bug
must walk along the boundary in a counter clockwise direction.

For those readers who wish to learn more about the connections between the classical
integration theorems of vector calculus and Stokes’ theorem, we refer them to Edwards [43]
(Chapter 5, Section 7).

The version of Stokes’ theorem that we have presented applies to domains with smooth
boundaries, but there are many situations where it is necessary to deal with domains with
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singularities, for example corners (as a cube, a tetrahedron, etc.). Manifolds with corners
form a nice class of manifolds that allow such a generalization of Stokes’ theorem.

To model corners, we adapt the idea that we used when we defined charts of manifolds
with boundaries but instead of using the closed half space Hm, we use the closed convex cone

Rm
+ = {(x1, . . . , xm) ∈ Rm | x1 ≥ 0, . . . , xm ≥ 0}.

The boundary ∂Rm
+ of Rm

+ is the space

∂Rm
+ = {(x1, . . . , xm) ∈ Rm | x1 ≥ 0, . . . , xm ≥ 0, xi = 0 for some i},

which can also be written as
∂Rm

+ = H1 ∪ · · · ∪Hm,

with
Hi = {(x1, . . . , xm) ∈ Rm

+ | xi = 0}.
The set of corner points of Rm

+ is the subset

{(x1, . . . , xm) ∈ Rm
+ | ∃i∃j(i 6= j), xi = 0 and xj = 0}.

Equivalently, the set of corner points is the union of all intersections Hi1 ∩ · · · ∩Hik for all
finite subsets {i1, . . . , ik} of {1, . . . ,m} with k ≥ 2. See Figure 7.10.

R

R

R

1

2

3

+

+
+

H

H

1

2

H1

H1

H3

H 2

Figure 7.10: The closed convex cones R1
+, R2

+, and R3
+. Corner points are in red.

Definition 7.19. Given a topological space M , a chart with corners is a pair (U,ϕ) where
U is some open subset of M and ϕ is a homeomorphism of U onto some open subset of
Rm

+ (with the subspace topology of Rm). Compatible charts, atlases, equivalent atlases are
defined as usual, and a smooth manifold with corners is a topological space together with an
equivalence class of atlases of charts with corners.

A point p ∈M is a corner point if there is a chart (U,ϕ) with p ∈ U such that ϕ(p) is a
corner point of Rm

+ .
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p1

p2

p
3

φ

φ

φ1

2

3

φ1 ( p1 )

φ ( p )2 2

φ ( p )33

M

Figure 7.11: The three types of charts on M , a manifold with corners. Note that p2 is a
corner point of M .

It is not hard to show that the definition of corner point does not depend on the chart
(U,ϕ) with p ∈ U . See Figure 7.11.

Now, in general, the boundary of a smooth manifold with corners is not a smooth manifold
with corners. For example, ∂Rm

+ is not a smooth manifold with corners, but it is the union
of smooth manifolds with corners, since ∂Rm

+ = H1 ∪ · · · ∪ Hm, and each Hi is a smooth
manifold with corners. We can use this fact to define

∫
∂M

ω where ω is an (n−1)-form whose
support in contained in the domain of a chart with corners (U,ϕ) by setting

∫
∂M

ω =
m∑
i=1

∫
Hi

(ϕ−1)∗ω,

where each Hi is given a suitable orientation. Then it is not hard to prove a version of
Stokes’ theorem for manifolds with corners. For a detailed exposition, see Lee [78], Chapter
14. An even more general class of manifolds with singularities (in RN) for which Stokes’
theorem is valid is discussed in Lang [75] (Chapter XVII. §3).
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7.8 Integration on Riemannian Manifolds and

Lie Groups

We saw in Section 7.2 that every orientable Riemannian manifold has a uniquely defined
volume form VolM (see Proposition 7.4).

Definition 7.20. Given any smooth real-valued function f with compact support on M , we
define the integral of f over M by ∫

M

f =

∫
M

f VolM .

Actually it is possible to define the integral
∫
M
f using densities even if M is not ori-

entable, but we do not need this extra generality. If M is compact, then
∫
M

1M =
∫
M

VolM
is the volume of M (where 1M is the constant function with value 1).

If M and N are Riemannian manifolds, then we have the following version of Proposition
7.8 (3).

Proposition 7.19. If M and N are oriented Riemannian manifolds and if ϕ : M → N is
an orientation preserving diffeomorphism, then for every function f ∈ C∞(N) with compact
support, we have ∫

N

f VolN =

∫
M

f ◦ ϕ | det(dϕ)|VolM ,

where f ◦ϕ | det(dϕ)| denotes the function p 7→ f(ϕ(p))| det(dϕp)|, with dϕp : TpM → Tϕ(p)N .
In particular, if ϕ is an orientation preserving isometry (see Definition 6 in Chapter 3 of
O’Neill [90], or Gallier and Quaintance [49]), then∫

N

f VolN =

∫
M

f ◦ ϕVolM .

We often denote
∫
M
f VolM by

∫
M
f(t)dt.

If f : M → C is a smooth complex valued-function then we can write f = u+ iv for two
real-valued functions u : M → R and v : M → R with u(p) = <(f(p)) and v(p) = =(f(p))
for all p ∈M . Then, if f has compact support so do u and v, and we define

∫
M
f VolM by∫

M

f VolM =

∫
M

uVolM + i

∫
M

vVolM .

Remark: A volume form on an orientable Riemannian manifold (M, g) yields a linear form
vg : C0(M)→ R with domain the vector space C0(M) of continuous real-valued functions on
M with compact support, given by

vg(f) =

∫
M

f VolM .
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This linear form turns out to a Radon measure (see Sakai [99] (Chapter II, Section 5). This
Radon measure can be used to define an analog of the Lebesgue integral on the Riemannian
manifold M , and to define measurable sets and measurable functions on the manifold M
(see Sakai [99] (Chapter II, Section 5). Given a diffeomorphism Φ: M → N between two
Riemannnian manifolds (M, g) and (N, h), the Radon measure vh on N can be pulled back
to a Radon measure Φ∗vh on M given by

(Φ∗vh)(f) = vh(f ◦ Φ−1).

If g̃ denotes the canonical Riemannian metric on TpM given by gp, then we can estab-
lish a relationship between exp∗p vg and vg̃ that involves the Ricci curvature at p, where
expp : TpM →M is the exponential map at p. Actually, in general expp is only defined in an
open ball Br(0) in TpM centered at the origin, and it is a diffeomorphism on this open ball.
The following result can be shown; see Sakai [99] (Chapter 5, Section Lemma 5.4). We use
polar coordinates in TpM , which means that every nonzero x ∈ TpM is expressed at x = tu
with t = ‖x‖ and u = x/ ‖x‖.

Proposition 7.20. Given a Riemannian manifold (M, g), for every p ∈ M , in normal
coordinates, near p, we have

exp∗p vg = θ vg̃,

where θ is the function given by θ(t, u) = tn−1
√

det(gij(expp tu)). Furthermore, we have

θ(t, u) = tn−1 − 1

6
Ricp(u, u) tn+1 + o(tn+2).

Recall from Proposition 7.4 that if (M, g) is an oriented Riemannian manifold, then the
volume form VolM satisfies the following property: in every orientation preserving local chart
(U,ϕ), we have

((ϕ−1)∗VolM)q =
√

det(gij(q)) dx1 ∧ · · · ∧ dxn, q ∈ ϕ(U).

In particular, if ϕ = exp−1
p is a chart specified by the inverse of the exponential map on some

small enough open subset containing p, then near p we obtain

(exp∗p VolM)tu =

(
1− 1

6
Ricp(u, u) t2 + o(t3)

)
dx1 ∧ · · · ∧ dxn.

Thus we can think of the Ricci curvature as a measure of the deviation of the volume form
on M (at tu) from the Euclidean volume form.

If G is a Lie group, we know from Section 7.2 that G is always orientable and that G
possesses left-invariant volume forms. Since dim(

∧n g∗) = 1 if dim(G) = n, and since every
left-invariant volume form is determined by its value at the identity, the space of left-invariant
volume forms on G has dimension 1. If we pick some left-invariant volume form ω defining
the orientation of G, then every other left-invariant volume form is proportional to ω.
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Definition 7.21. Let G be a Lie group and ω be a left invariant volume form. Given any
smooth real-valued function f with compact support on G, we define the integral of f over
G (w.r.t. ω) by ∫

G

f =

∫
G

fω.

This integral depends on ω, but since ω is defined up to some positive constant, so is the
integral. When G is compact, we usually pick ω so that∫

G

ω = 1.

If f : G→ C is a smooth complex valued-function then we can write f = u + iv for two
real-valued functions u : G→ R and v : G→ R as before and we define∫

G

f ω =

∫
G

uω + i

∫
G

v ω.

For every g ∈ G, as ω is left-invariant, L∗gω = ω, so L∗g is an orientation-preserving
diffeomorphism, and by Proposition 7.8 (3),∫

G

fω =

∫
G

L∗g(fω),

so using Proposition 4.12, we get∫
G

f =

∫
G

fω =

∫
G

L∗g(fω) =

∫
G

L∗gf L
∗
gω =

∫
G

L∗gf ω =

∫
G

(f ◦ Lg)ω =

∫
G

f ◦ Lg.

Thus we proved the following proposition.

Proposition 7.21. Given any left-invariant volume form ω on a Lie group G, for any
smooth function f with compact support, we have∫

G

f =

∫
G

f ◦ Lg,

a property called left-invariance.

It is then natural to ask when our integral is right-invariant; that is, when∫
G

f =

∫
G

f ◦Rg.

Observe that R∗gω is left-invariant, since

L∗hR
∗
gω = R∗gL

∗
hω = R∗gω.
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It follows that R∗gω is some constant multiple of ω, and so there is a function ∆: G → R
such that

R∗gω = ∆(g)ω.

One can check that ∆ is smooth, and we let

∆(g) = |∆(g)|.

Since

∆(gh)ω = R∗ghω = (Rh ◦Rg)
∗ ω = R∗g ◦R∗hω = ∆(g)∆(h)ω,

we deduce that

∆(gh) = ∆(g)∆(h),

so ∆ is a homomorphism of G into R+.

Definition 7.22. The function ∆ defined above is called the modular function of G.

Proposition 7.22. Given any left-invariant volume form ω on a Lie group G, for any
smooth function f with compact support, we have∫

G

fω = ∆(g)

∫
G

(f ◦Rg)ω.

Proof. By Proposition 7.8 (3), for a fixed g ∈ G, as R∗g is an orientation-preserving diffeo-
morphism, ∫

G

fω =

∫
G

R∗g(fω) =

∫
G

R∗gf R
∗
gω =

∫
G

(f ◦Rg)∆(g)ω,

or equivalently, ∫
G

fω = ∆(g)

∫
G

(f ◦Rg)ω,

which is the desired formula.

Consequently, our integral is right-invariant iff ∆ ≡ 1 on G. Thus, our integral is not
always right-invariant. When it is, i.e. when ∆ ≡ 1 on G, we say that G is unimodular .

Proposition 7.23. Any compact Lie group G is unimodular.

Proof. In this case,

1 =

∫
G

ω =

∫
G

1Gω =

∫
G

∆(g)ω = ∆(g)

∫
G

ω = ∆(g),

for all g ∈ G.
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Therefore, for a compact Lie group G, our integral is both left and right invariant. We
say that our integral is bi-invariant .

As a matter of notation, the integral
∫
G
f =

∫
G
fω is often written

∫
G
f(g)dg. Then

left-invariance can be expressed as∫
G

f(g)dg =

∫
G

f(hg)dg,

and right-invariance as ∫
G

f(g)dg =

∫
G

f(gh)dg,

for all h ∈ G.

If ω is left-invariant, then it can be shown (see Dieudonné [36], Chapter XIV, Section 3)
that ∫

G

f(g−1)∆(g−1)dg =

∫
G

f(g)dg.

Consequently, if G is unimodular, then∫
G

f(g−1)dg =

∫
G

f(g)dg.

Proposition 7.24. If ωl is any left-invariant volume form on G and if ωr is any right-
invariant volume form on G, then

ωr(g) = c∆(g−1)ωl(g),

for some constant c 6= 0.

Proof. Indeed, define the form ω by ω(g) = ∆(g−1)ωl(g). By Proposition 4.12 we have

(R∗hω)g = ∆((gh)−1)(R∗hωl)g

= ∆(h−1)∆(g−1)∆(h)(ωl)g

= ∆(g−1)(ωl)g,

which shows that ω is right-invariant, and thus ωr(g) = c∆(g−1)ωl(g), as claimed (since
∆(g−1) = ±∆(g−1)).

Actually, the following property holds.

Proposition 7.25. For any Lie group G, for any g ∈ G, we have

∆(g) = | det(Ad(g−1))|.
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Proof. For this recall that Ad(g) = d(Lg ◦ Rg−1)1. For any left-invariant n-form ω ∈
∧n g∗,

we claim that

(R∗gω)h = det(Ad(g−1))ωh,

which shows that ∆(g) = | det(Ad(g−1))|. Indeed, for all v1, . . . , vn ∈ ThG, we have

(R∗gω)h(v1, . . . , vn)

= ωhg(d(Rg)h(v1), . . . , d(Rg)h(vn))

= ωhg(d(Lg ◦ Lg−1 ◦Rg ◦ Lh ◦ Lh−1)h(v1), . . . , d(Lg ◦ Lg−1 ◦Rg ◦ Lh ◦ Lh−1)h(vn))

= ωhg(d(Lh ◦ Lg ◦ Lg−1 ◦Rg ◦ Lh−1)h(v1), . . . , d(Lh ◦ Lg ◦ Lg−1 ◦Rg ◦ Lh−1)h(vn))

= ωhg(d(Lhg ◦ Lg−1 ◦Rg ◦ Lh−1)h(v1), . . . , d(Lhg ◦ Lg−1 ◦Rg ◦ Lh−1)h(vn))

= ωhg
(
d(Lhg)1(Ad(g−1)(d(Lh−1)h(v1))), . . . , d(Lhg)1(Ad(g−1)(d(Lh−1)h(vn)))

)
= (L∗hgω)1

(
Ad(g−1)(d(Lh−1)h(v1)), . . . ,Ad(g−1)(d(Lh−1)h(vn))

)
= ω1

(
Ad(g−1)(d(Lh−1)h(v1)), . . . ,Ad(g−1)(d(Lh−1)h(vn))

)
= det(Ad(g−1))ω1

(
d(Lh−1)h(v1), . . . , d(Lh−1)h(vn)

)
= det(Ad(g−1)) (L∗h−1ω)h(v1, . . . , vn)

= det(Ad(g−1))ωh(v1, . . . , vn),

where we used the left-invariance of ω twice.

In general, if G is not unimodular then ωl 6= ωr. A simple example provided by Vinroot
[114] is the group G of direct affine transformations of the real line, which can be viewed as
the group of matrices of the form

g =

(
x y
0 1

)
, x, y,∈ R, x > 0.

Let A =

(
a b
0 1

)
∈ G and define T : G→ G as

T (g) = Ag =

(
a b
0 1

)(
x y
0 1

)
=

(
ax ay + b
0 1

)
.

Since G is homeomorphic to R+×R, T (g) is also represented by T (x, y) = (ax, ay+b). Then
the Jacobian matrix of T is given by

J(T )(x, y) =

(
a 0
0 a

)
,

which implies that det(J(T )(x, y)) = a2. Let F : G → R+ be a smooth function on G with
compact support. Furthermore assume that Θ(x, y) = F (x, y)x−2 is also smooth on G with
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compact support. Since Θ ◦T (x, y) = Θ(ax, ay+ b) = F (ax, ay+ b)(ax)−2, Proposition 7.19
implies that∫

G

F (x, y)x−2dx dy =

∫
G

Θ(x, y) ◦ T | det(J(T )(x, y))|dx dy

=

∫
G

F (ax, ay + b)(ax)−2a2 dx dy =

∫
G

F ◦ Tx−2dx dy.

In summary we have shown for g =

(
x y
0 1

)
, we have∫

G

F (Ag)x−2 dx dy =

∫
G

F (g)x−2dx dy

which implies that the left-invariant volume form on G is

ωl =
dx dy

x2
.

To define a right-invariant volume form on G, define S : G→ G as

S(g) = gA =

(
x y
0 1

)(
a b
0 1

)
=

(
ax bx+ y
0 1

)
,

which is represented by S(x, y) = (ax, bx+ y). Then the Jacobian matrix of S is

J(S)(x, y) =

(
a 0
b 1

)
,

and det(J(S)(x, y)) = a. Using F (x, y) as above and Θ(x, y) = F (x, y)x−1, we find that∫
G

F (x, y)x−1dx dy =

∫
G

Θ(x, y) ◦ S | det(J(S)(x, y))|dx dy

=

∫
G

F (ax, bx+ y)(ax)−1a dx dy =

∫
G

F ◦ Sx−1dx dy,

which implies that

ωr =
dx dy

x
.

Note that ∆(g) = |x−1|.
Observe that ∆(A) = |a−1|, F ◦RA = F (ax, bx+ y), and that

1

|a|

∫
G

F ◦RAwl =
1

|a|

∫
G

F (ax, bx+ y)
dx dy

x2

=
1

|a|

∫
G

F (u, v)
du
a

(dv − b
a
du)(

u
a

)2 , u = ax, v = bx+ y

=

∫
G

F (u, v)
dudv

u2
=

∫
G

F (u, v)wl,
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which is a special case of Proposition 7.22.

Remark: By the Riesz’ representation theorem, ω defines a positive measure µω which
satisfies ∫

G

fdµω =

∫
G

fω.

Using what we have shown, this measure is left-invariant. Such measures are called left Haar
measures , and similarly we have right Haar measures .

It can be shown that every two left Haar measures on a Lie group are proportional (see
Knapp, [70], Chapter VIII). Given a left Haar measure µ, the function ∆ such that

µ(Rgh) = ∆(g)µ(h)

for all g, h ∈ G is the modular function of G. However, beware that some authors, including
Knapp, use ∆(g−1) instead of ∆(g). As above, we have

∆(g) = | det(Ad(g−1))|.

Beware that authors who use ∆(g−1) instead of ∆(g) give a formula where Ad(g) appears
instead of Ad(g−1). Again, G is unimodular iff ∆ ≡ 1.

It can be shown that compact, semisimple, reductive, and nilpotent Lie groups are uni-
modular (for instance, see Knapp, [70], Chapter VIII). On such groups, left Haar measures
are also right Haar measures (and vice versa). In this case, we can speak of Haar measures
on G. For more details on Haar measures on locally compact groups and Lie groups, we
refer the reader to Folland [44] (Chapter 2), Helgason [59] (Chapter 1), and Dieudonné [36]
(Chapter XIV).

7.9 Problems

Problem 7.1. Prove the following: if f : Rn+1 → R is a smooth submersion, then M =
f−1(0) is a smooth orientable manifold.

Problem 7.2. Let r : Rn+1 − {0} → Sn be the map given by

r(x) =
x

‖x‖
,

and set
ω = r∗VolSn .

a closed n-form on Rn+1 − {0}. Clearly,

ω � Sn = VolSn .

Show that ω is given by

ωx =
1

‖x‖n
n+1∑
i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1.
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Problem 7.3. Recall that π : Sn → RPn is the map such that π−1([p]) consists of two
antipodal points for every [p] ∈ RPn. Show there is a volume form on RPn iff n is odd, given
by

π∗(VolRPn) = VolSn .

Problem 7.4. Complete the proof of Proposition 7.7 by using a partition of unity argument
to show the uniqueness of the linear operator∫

M

: Anc (M) −→ R

which satisfies the following property: For any ω ∈ Anc (M), if supp(ω) ⊆ U , where (U,ϕ) is
a positively oriented chart, then ∫

M

ω =

∫
ϕ(U)

(ϕ−1)∗ω.

Problem 7.5. Complete the proof sketch details of Proposition 7.8.

Problem 7.6. Recall that a density may be defined as a function µ :
∧n V → R such that

for every automorphism f ∈ GL(V ),

µ(f(v1) ∧ · · · ∧ f(vn)) = | det(f)|µ(v1 ∧ · · · ∧ vn) (††)

for all v1 ∧ · · · ∧ vn ∈ V (with µ(0) = 0). Show that Condition (††) is equivalent to

µ(cw) = |c|µ(w), w ∈
n∧
V, c ∈ R.

Problem 7.7. Prove Proposition 7.14.

Problem 7.8. Prove Proposition 7.15.

Problem 7.9. Prove Proposition 7.19.

Problem 7.10. Prove Proposition 7.20.
Hint . See Sakai [99], Chapter 5, Section Lemma 5.4.

Problem 7.11. Let G be a Lie group with a left invariant volume form ω. Show that∫
G

f(g−1)∆(g−1)dg =

∫
G

f(g)dg.

Hint . See Dieudonné [36], Chapter XIV, Section 3.
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Chapter 8

Spherical Harmonics and Linear
Representations of Lie Groups

This chapter and the next focus on topics that are somewhat different from the more geomet-
ric and algebraic topics discussed in previous chapters. Indeed, the focus of this chapter is
on the types of functions that can be defined on a manifold, the sphere Sn in particular, and
this involves some analysis. A main theme of this chapter is to generalize Fourier analysis on
the circle to higher dimensional spheres. One of our goals is to understand the structure of
the space L2(Sn) of real-valued square integrable functions on the sphere Sn, and its complex
analog L2

C(Sn). Both are Hilbert spaces if we equip them with the inner product

〈f, g〉Sn =

∫
Sn
f(t)g(t) dt =

∫
Sn
fgVolSn ,

and in the complex case with the Hermitian inner product

〈f, g〉Sn =

∫
Sn
f(t)g(t) dt =

∫
Sn
fgVolSn .

This means that if we define the L2-norm associated with the above inner product as ‖f‖ =√
〈f, f〉, then L2(Sn) and L2

C(Sn) are complete normed vector spaces (see Section 8.1 for a
review of Hilbert spaces). It turns out that each of L2(Sn) and L2

C(Sn) contains a countable
family of very nice finite dimensional subspaces Hk(S

n) (and HC
k (Sn)), where Hk(S

n) is
the space of (real) spherical harmonics on Sn, that is, the restrictions of the harmonic
homogeneous polynomials of degree k (in n + 1 real variables) to Sn (and similarly for
HC
k (Sn)); these polynomials satisfy the Laplace equation

∆P = 0,

where the operator ∆ is the (Euclidean) Laplacian,

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n+1

.

285



286 CHAPTER 8. SPHERICAL HARMONICS AND LINEAR REPRESENTATIONS

Remarkably, each space Hk(S
n) (resp. HC

k (Sn)) is the eigenspace of the Laplace-Beltrami
operator ∆Sn on Sn, a generalization to Riemannian manifolds of the standard Laplacian
(in fact, Hk(S

n) is the eigenspace for the eigenvalue −k(n + k − 1)). As a consequence,
the spaces Hk(S

n) (resp. HC
k (Sn)) are pairwise orthogonal. Furthermore (and this is where

analysis comes in), the set of all finite linear combinations of elements in
⋃∞
k=0Hk(S

n) (resp.⋃∞
k=0HC

k (Sn)) is is dense in L2(Sn) (resp. dense in L2
C(Sn)). These two facts imply the

following fundamental result about the structure of the spaces L2(Sn) and L2
C(Sn).

The family of spaces Hk(S
n) (resp. HC

k (Sn)) yields a Hilbert space direct sum decompo-
sition

L2(Sn) =
∞⊕
k=0

Hk(S
n) (resp. L2

C(Sn) =
∞⊕
k=0

HC
k (Sn)),

which means that the summands are closed, pairwise orthogonal, and that every f ∈ L2(Sn)
(resp. f ∈ L2

C(Sn)) is the sum of a converging series

f =
∞∑
k=0

fk

in the L2-norm, where the fk ∈ Hk(S
n) (resp. fk ∈ HC

k (Sn)) are uniquely determined
functions. Furthermore, given any orthonormal basis (Y 1

k , . . . , Y
ak,n+1

k ) of Hk(S
n), we have

fk =

ak,n+1∑
mk=1

ck,mkY
mk
k , with ck,mk = 〈f, Y mk

k 〉Sn .

The coefficients ck,mk are “generalized” Fourier coefficients with respect to the Hilbert
basis {Y mk

k | 1 ≤ mk ≤ ak,n+1, k ≥ 0}; see Theorems 8.18 and 8.19.

In Section 8.2 we begin by reviewing the simple case n = 1, where S1 is a circle, which
corresponds to standard Fourier analysis. In this case, there is a simple expression in polar
coordinates for the Laplacian ∆S1 on the circle, and we are led to the equation

∆S1g = −k2g.

We find that H0(S1) = R, and Hk(S
1) is the two-dimensional space spanned by cos kθ and

sin kθ for k ≥ 1. We also determine explicitly the harmonic polynomials in two variables.

In Section 8.3 we consider the sphere S2. This time we need to find the Laplacian ∆S2

on the sphere. This is an old story, and we use the formula in terms of spherical coordinates.
Then we need to solve the equation

∆S2g = −k(k − 1)g.

This is a classical problem that was solved in the early 1780s by the separation of variables
method. After some labor, we are led to the general Legendre equation. The solutions
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are the associated Legendre functions Pm
k (t), which are defined in terms of the Legendre

polynomials. The upshot is that the functions

cosmϕPm
k (cos θ), sinmϕPm

k (cos θ)

are eigenfunctions of the Laplacian ∆S2 on the sphere for the eigenvalue −k(k + 1). For k
fixed, as 0 ≤ m ≤ k, we get 2k + 1 linearly independent functions, so Hk(S

2) has dimension
2k + 1. These functions are the spherical harmonics , but they are usually expressed in a
different notation (yml (θ, ϕ) with −l ≤ m ≤ l). Expressed in Cartesian coordinates, these
are the homogeneous harmonic polynomials.

In order to generalize the above cases to n ≥ 3, we need to define the Laplace-Beltrami
operator on a manifold, which is done in Section 8.4. We also find a formula relating the
Laplacian on Rn+1 to the Laplacian ∆Sn on Sn. The Hilbert sum decomposition of L2(Sn)
is accomplished in Section 8.5.

In Section 8.6 we describe the zonal spherical functions Zτ
k on Sn and show that they

essentially come from certain polynomials generalizing the Legendre polynomials known as
the Gegenbauer polynomials . For any fixed point τ on Sn and any constant c ∈ C, the zonal
spherical function Zτ

k is the unique homogeneous harmonic polynomial of degree k such that
Zτ
k (τ) = c, and Zτ

k is invariant under any rotation fixing τ .

An interesting property of the zonal spherical functions is a formula for obtaining the
kth spherical harmonic component of a function f ∈ L2

C(Sn); see Proposition 8.27. Another
important property of the zonal spherical functions Zτ

k is that they generate HC
k (Sn). A

closer look at the Gegenbauer polynomials is taken in Section 8.7.

In Section 8.8 we prove the Funk-Hecke formula. This formula basically allows one to
perform a sort of convolution of a “kernel function” with a spherical function in a convenient
way. The Funk-Hecke formula was used in a ground-breaking paper by Basri and Jacobs [10]
to compute the reflectance function r from the lighting function ` as a pseudo-convolution
K ? ` (over S2) with the Lambertian kernel K.

The final Sections 8.9 and 8.11 are devoted to more advanced material which is presented
without proofs.

The purpose of Section 8.9 is to generalize the results about the structure of the space
of functions L2

C(Sn) defined on the sphere Sn, especially the results of Sections 8.5 and 8.6
(such as Theorem 8.19, except part (3)), to homogeneous spaces G/K where G is a compact
Lie group and K is a closed subgroup of G.

The first step is to consider the Hilbert space L2
C(G) where G is a compact Lie group

and to find a Hilbert sum decomposition of this space. The key to this generalization is the
notion of (unitary) linear representation of the group G.

The result that we are alluding to is a famous theorem known as the Peter–Weyl theorem
about unitary representations of compact Lie groups (Herman Klauss Hugo Weyl, 1885-
1955).
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The Peter–Weyl theorem can be generalized to any representation V : G→ Aut(E) of G
into a separable Hilbert space E, and we obtain a Hilbert sum decomposition of E in terms
of subspaces Eρ of E.

The next step is to consider the subspace L2
C(G/K) of L2

C(G) consisting of the functions
that are right-invariant under the action of K. These can be viewed as functions on the
homogeneous space G/K. Again we obtain a Hilbert sum decomposition. It is also interest-
ing to consider the subspace L2

C(K\G/K) of functions in L2
C(G) consisting of the functions

that are both left and right-invariant under the action of K. The functions in L2
C(K\G/K)

can be viewed as functions on the homogeneous space G/K that are invariant under the left
action of K.

Convolution makes the space L2
C(G) into a non-commutative algebra. Remarkably, it is

possible to characterize when L2
C(K\G/K) is commutative (under convolution) in terms of

a simple criterion about the irreducible representations of G. In this situation, (G,K) is a
called a Gelfand pair .

When (G,K) is a Gelfand pair, it is possible to define a well-behaved notion of Fourier
transform on L2

C(K\G/K). Gelfand pairs and the Fourier transform are briefly considered
in Section 8.11.

8.1 Hilbert Spaces and Hilbert Sums

The material in this chapter assumes that the reader has some familiarity with the concepts
of a Hilbert space and a Hilbert basis. We present this section to review these important
concepts. Many of the proofs are omitted and are found in traditional sources such as
Bourbaki [16], Dixmier [38], Lang [73, 74], and Rudin [98]. The special case of separable
Hilbert spaces is treated very nicely in Deitmar [30].

We begin our review by recalling the definition of a Hermitian space. To do this we need
to define the notion of a Hermitian form.

Definition 8.1. Given two vector spaces E and F over C, a function f : E → F is semilinear
if

f(u+ v) = f(u) + f(v)

f(λu) = λu,

for all u, v ∈ E and λ ∈ C.

Definition 8.2. Given a complex vector space E, a function ϕ : E×E → C is a sesquilinear
form if it is linear in its first argument and semilinear in its second argument, which means
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that

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v)

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2)

ϕ(λu, v) = λϕ(u, v)

ϕ(u, λv) = λϕ(u, v),

for all u, v, u1, u2, v1, v2 ∈ E and λ ∈ C. A function ϕ : E ×E → C is a Hermitian form if it
is sesquilinear and if

ϕ(u, v) = ϕ(v, u),

for all u, v ∈ E.

Definition 8.3. Given a complex vector space E, a Hermitian form ϕ : E×E → C is positive
definite if ϕ(u, u) > 0 for all u 6= 0. A pair 〈E,ϕ〉 where E is a complex vector space and ϕ
is a Hermitian form on E is called a Hermitian (or unitary) space if ϕ is positive definite.

The standard example of a Hermitian form on Cn is the map ϕ defined such that

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This map is also positive definite and makes Cn into a Hermitian space.

Given a Hermitian space 〈E,ϕ〉, we can readily show that the function ‖ ‖ : E → R
defined such that 〈u, u〉 = ‖u‖ = ϕ(u, u), is a norm on E. Thus, E is a normed vector space.
If E is also complete, then it is a very interesting space.

Recall that completeness has to do with the convergence of Cauchy sequences. A normed
vector space 〈E, ‖ ‖〉 is automatically a metric space under the metric d defined such that
d(u, v) = ‖v − u‖. This leads us to the following definition.

Definition 8.4. Given a metric space E with metric d, a sequence (an)n≥1 of elements
an ∈ E is a Cauchy sequence iff for every ε > 0, there is some N ≥ 1 such that

d(am, an) < ε for all m,n ≥ N.

We say that E is complete iff every Cauchy sequence converges to a limit (which is unique,
since a metric space is Hausdorff).

Every finite dimensional vector space over R or C is complete. One can show by induction
that given any basis (e1, . . . , en) of E, the linear map h : Cn → E defined such that

h((z1, . . . , zn)) = z1e1 + · · ·+ znen
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is a homeomorphism (using the sup-norm on Cn). One can also use the fact that any two
norms on a finite dimensional vector space over R or C are equivalent (see Lang [74], Dixmier
[38], or Schwartz [102]).

However, if E has infinite dimension, it may not be complete. When a Hermitian space is
complete, a number of the properties that hold for finite dimensional Hermitian spaces also
hold for infinite dimensional spaces. For example, any closed subspace has an orthogonal
complement, and in particular, a finite dimensional subspace has an orthogonal complement.
Hermitian spaces that are also complete play an important role in analysis. Since they were
first studied by Hilbert, they are called Hilbert spaces.

Definition 8.5. A (complex) Hermitian space 〈E,ϕ〉 which is a complete normed vector
space under the norm ‖ ‖ induced by ϕ is called a Hilbert space. A real Euclidean space
〈E,ϕ〉 which is complete under the norm ‖ ‖ induced by ϕ is called a real Hilbert space.

All the results in this section hold for complex Hilbert spaces as well as for real Hilbert
spaces. We state all results for the complex case only, since they also apply to the real case,
and since the proofs in the complex case need a little more care.

Example 8.1. The space l2 of all countably infinite sequences x = (xi)i∈N of complex
numbers such that

∑∞
i=0 |xi|2 < ∞ is a Hilbert space. It will be shown later that the map

ϕ : l2 × l2 → C defined such that

ϕ ((xi)i∈N, (yi)i∈N) =
∞∑
i=0

xiyi

is well defined, and that l2 is a Hilbert space under ϕ. In fact, we will prove a more general
result (Proposition 8.3).

Example 8.2. The set C∞[a, b] of smooth functions f : [a, b]→ C is a Hermitian space under
the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx,

but it is not a Hilbert space because it is not complete (see Section 7.8 for the definition of the
integral of a complex-valued function). It is possible to construct its completion L2([a, b]),
which turns out to be the space of Lebesgue square-integrable functions on [a, b].

One of the most important facts about finite-dimensional Hermitian (and Euclidean)
spaces is that they have orthonormal bases. This implies that, up to isomorphism, every
finite-dimensional Hermitian space is isomorphic to Cn (for some n ∈ N) and that the inner
product is given by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi.



8.1. HILBERT SPACES AND HILBERT SUMS 291

Furthermore, every subspace W has an orthogonal complement W⊥, and the inner product
induces a natural duality between E and E∗, where E∗ is the space of linear forms on E.

When E is a Hilbert space, E may be infinite dimensional, often of uncountable dimen-
sion. Thus, we can’t expect that E always have an orthonormal basis. However, if we modify
the notion of basis so that a “Hilbert basis” is an orthogonal family that is also dense in E,
i.e., every v ∈ E is the limit of a sequence of finite combinations of vectors from the Hilbert
basis, then we can recover most of the “nice” properties of finite-dimensional Hermitian
spaces. For instance, if (uk)k∈K is a Hilbert basis, for every v ∈ E, we can define the Fourier
coefficients ck = 〈v, uk〉/‖uk‖, and then, v is the “sum” of its Fourier series

∑
k∈K ckuk.

However, the cardinality of the index set K can be very large, and it is necessary to define
what it means for a family of vectors indexed by K to be summable. It turns out that every
Hilbert space is isomorphic to a space of the form l2(K), where l2(K) is a generalization of
the space of Example 8.1 (see Theorem 8.7, usually called the Riesz-Fischer theorem).

Definition 8.6. Given a Hilbert space E, a family (uk)k∈K of nonnull vectors is an orthogonal
family iff the uk are pairwise orthogonal, i.e., 〈ui, uj〉 = 0 for all i 6= j (i, j ∈ K), and an
orthonormal family iff 〈ui, uj〉 = δi, j, for all i, j ∈ K. A total orthogonal family (or system)
or Hilbert basis is an orthogonal family that is dense in E. This means that for every v ∈ E,
for every ε > 0, there is some finite subset I ⊆ K and some family (λi)i∈I of complex
numbers, such that ∥∥∥v −∑

i∈I

λiui

∥∥∥ < ε.

Given an orthogonal family (uk)k∈K , for every v ∈ E, for every k ∈ K, the scalar ck =
〈v, uk〉 /‖uk‖2 is called the k-th Fourier coefficient of v over (uk)k∈K .

Remark: The terminology Hilbert basis is misleading, because a Hilbert basis (uk)k∈K is
not necessarily a basis in the algebraic sense. Indeed, in general, (uk)k∈K does not span E.
Intuitively, it takes linear combinations of the uk’s with infinitely many nonnull coefficients
to span E. Technically, this is achieved in terms of limits. In order to avoid the confusion
between bases in the algebraic sense and Hilbert bases, some authors refer to algebraic bases
as Hamel bases and to total orthogonal families (or Hilbert bases) as Schauder bases .

Definition 8.7. Given an orthogonal family (uk)k∈K of a Hilbert space E, for any finite
subset I of K, and for any family (λi)i∈I of complex numbers, we call sums of the form∑

i∈I λiui partial sums of Fourier series , and if these partial sums converge to a limit denoted
as
∑

k∈K ckuk, we call
∑

k∈K ckuk a Fourier series .

However, we have to make sense of such sums! Indeed, when K is unordered or uncount-
able, the notion of limit or sum has not been defined. This can be done as follows (for more
details, see Dixmier [38]).
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Definition 8.8. Given a normed vector space E (say, a Hilbert space), for any nonempty
index set K, we say that a family (uk)k∈K of vectors in E is summable with sum v ∈ E iff
for every ε > 0, there is some finite subset I of K, such that,∥∥∥v −∑

j∈J

uj

∥∥∥ < ε

for every finite subset J with I ⊆ J ⊆ K. We say that the family (uk)k∈K is summable
iff there is some v ∈ E such that (uk)k∈K is summable with sum v. A family (uk)k∈K is a
Cauchy family iff for every ε > 0, there is a finite subset I of K, such that,∥∥∥∑

j∈J

uj

∥∥∥ < ε

for every finite subset J of K with I ∩ J = ∅.

If (uk)k∈K is summable with sum v, we usually denote v as
∑

k∈K uk.

Remark: The notion of summability implies that the sum of a family (uk)k∈K is independent
of any order on K. In this sense, it is a kind of “commutative summability”. More precisely,
it is easy to show that for every bijection ϕ : K → K (intuitively, a reordering of K), the
family (uk)k∈K is summable iff the family (ul)l∈ϕ(K) is summable, and if so, they have the
same sum.

To state some important properties of Fourier coefficients the following technical propo-
sition, whose proof is found in Bourbaki [16], will be needed.

Proposition 8.1. Let E be a complete normed vector space (say, a Hilbert space).

(1) For any nonempty index set K, a family (uk)k∈K is summable iff it is a Cauchy family.

(2) Given a family (rk)k∈K of nonnegative reals rk ≥ 0, if there is some real number B > 0
such that

∑
i∈I ri < B for every finite subset I of K, then (rk)k∈K is summable and∑

k∈K rk = r, where r is least upper bound of the set of finite sums
∑

i∈I ri (I ⊆ K).

The following proposition gives some of the main properties of Fourier coefficients. Among
other things, at most countably many of the Fourier coefficient may be nonnull, and the
partial sums of a Fourier series converge. Given an orthogonal family (uk)k∈K , we let Uk =
Cuk.

Proposition 8.2. Let E be a Hilbert space, (uk)k∈K an orthogonal family in E, and V the
closure of the subspace generated by (uk)k∈K. The following properties hold:

(1) For every v ∈ E, for every finite subset I ⊆ K, we have∑
i∈I

|ci|2 ≤ ‖v‖2,

where the ck = 〈v, uk〉 /‖uk‖2 are the Fourier coefficients of v.
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(2) For every vector v ∈ E, if (ck)k∈K are the Fourier coefficients of v, the following
conditions are equivalent:

(2a) v ∈ V
(2b) The family (ckuk)k∈K is summable and v =

∑
k∈K ckuk.

(2c) The family (|ck|2)k∈K is summable and ‖v‖2 =
∑

k∈K |ck|2;

(3) The family (|ck|2)k∈K is summable, and we have the Bessel inequality:∑
k∈K

|ck|2 ≤ ‖v‖2.

As a consequence, at most countably many of the ck may be nonzero. The family
(ckuk)k∈K forms a Cauchy family, and thus, the Fourier series

∑
k∈K ckuk converges

in E to some vector u =
∑

k∈K ckuk.

See Figure 8.1.

Proof. (1) Let

uI =
∑
i∈I

ciui

for any finite subset I of K. We claim that v−uI is orthogonal to ui for every i ∈ I. Indeed,

〈v − uI , ui〉 =

〈
v −

∑
j∈I

cjuj, ui

〉
= 〈v, ui〉 −

∑
j∈I

cj 〈uj, ui〉

= 〈v, ui〉 − ci‖ui‖2

= 〈v, ui〉 − 〈v, ui〉 = 0,

since 〈uj, ui〉 = 0 for all i 6= j and ci = 〈v, ui〉 /‖ui‖2. As a consequence, we have

‖v‖2 =
∥∥∥v −∑

i∈I

ciui +
∑
i∈I

ciui

∥∥∥2

=
∥∥∥v −∑

i∈I

ciui

∥∥∥2

+
∥∥∥∑
i∈I

ciui

∥∥∥2

=
∥∥∥v −∑

i∈I

ciui

∥∥∥2

+
∑
i∈I

|ci|2,

since the ui are pairwise orthogonal; that is,

‖v‖2 =
∥∥∥v −∑

i∈I

ciui

∥∥∥2

+
∑
i∈I

|ci|2,
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E

V = span(u  )k

v

 form c  = k

v, uk

uk
2u =  c k uk

k       K
Σ
e

E

V = span(u  )k

v
 form c  = k

v, uk

uk
2 c k uk

k       K
Σ
e

=

(i.)

(ii.)

Figure 8.1: A schematic illustration of Proposition 8.2. Figure (i.) illustrates Condition
(2b), while Figure (ii.) illustrates Condition (3). Note E is the purple oval and V is the
magenta oval. In both cases, take a vector of E, form the Fourier coefficients ck, then form
the Fourier series

∑
k∈K ckuk. Condition (2b) ensures v equals its Fourier series since v ∈ V .

However, if v /∈ V , the Fourier series does not equal v. Eventually, we will discover that
V = E, which implies that that Fourier series converges to its vector v.

which in turn implies ∑
i∈I

|ci|2 ≤ ‖v‖2,

as claimed.

(2) We prove the chain of implications (a)⇒ (b) ⇒ (c) ⇒ (a).

(a)⇒ (b) If v ∈ V , since V is the closure of the subspace spanned by (uk)k∈K , for every
ε > 0, there is some finite subset I of K and some family (λi)i∈I of complex numbers, such
that ∥∥∥v −∑

i∈I

λiui

∥∥∥ < ε.
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Now for every finite subset J of K such that I ⊆ J , we have∥∥∥v −∑
i∈I

λiui

∥∥∥2

=
∥∥∥v −∑

j∈J

cjuj +
∑
j∈J

cjuj −
∑
i∈I

λiui

∥∥∥2

=
∥∥∥v −∑

j∈J

cjuj

∥∥∥2

+
∥∥∥∑
j∈J

cjuj −
∑
i∈I

λiui

∥∥∥2

,

since I ⊆ J and the uj (with j ∈ J) are orthogonal to v−
∑

j∈J cjuj by the argument in (1),
which shows that ∥∥∥v −∑

j∈J

cjuj

∥∥∥ ≤ ∥∥∥v −∑
i∈I

λiui

∥∥∥ < ε,

and thus, that the family (ckuk)k∈K is summable with sum v, so that

v =
∑
k∈K

ckuk.

(b) ⇒ (c) If v =
∑

k∈K ckuk, then for every ε > 0, there some finite subset I of K, such
that ∥∥∥v −∑

j∈J

cjuj

∥∥∥ < √ε,
for every finite subset J of K such that I ⊆ J , and since we proved in (1) that

‖v‖2 =
∥∥∥v −∑

j∈J

cjuj

∥∥∥2

+
∑
j∈J

|cj|2,

we get

‖v‖2 −
∑
j∈J

|cj|2 < ε,

which proves that (|ck|2)k∈K is summable with sum ‖v‖2.

(c)⇒ (a) Finally, if (|ck|2)k∈K is summable with sum ‖v‖2, for every ε > 0, there is some
finite subset I of K such that

‖v‖2 −
∑
j∈J

|cj|2 < ε2

for every finite subset J of K such that I ⊆ J , and again, using the fact that

‖v‖2 =
∥∥∥v −∑

j∈J

cjuj

∥∥∥2

+
∑
j∈J

|cj|2,

we get ∥∥∥v −∑
j∈J

cjuj

∥∥∥ < ε,
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which proves that (ckuk)k∈K is summable with sum
∑

k∈K ckuk = v, and v ∈ V .

(3) Since Part (1) implies
∑

i∈I |ci|2 ≤ ‖v‖2 for every finite subset I of K, by Proposition
8.1 (2), the family (|ck|2)k∈K is summable. The Bessel inequality∑

k∈K

|ck|2 ≤ ‖v‖2

is an obvious consequence of the inequality
∑

i∈I |ci|2 ≤ ‖v‖2 (for every finite I ⊆ K). Now,
for every natural number n ≥ 1, if Kn is the subset of K consisting of all ck such that
|ck| ≥ 1/n, (i.e. n|ck| ≥ 1 whenever ck ∈ Kn), the number of elements in each Kn is finite
since ∑

k∈Kn

|nck|2 ≤ n2
∑
k∈K

|ck|2 ≤ n2‖v‖2

converges. Hence, at most a countable number of the ck may be nonzero.

Since (|ck|2)k∈K is summable with sum c, Proposition 8.1 (1) shows that for every ε > 0,
there is some finite subset I of K such that∑

j∈J

|cj|2 < ε2

for every finite subset J of K such that I ∩ J = ∅. Since∥∥∥∑
j∈J

cjuj

∥∥∥2

=
∑
j∈J

|cj|2,

we get ∥∥∥∑
j∈J

cjuj

∥∥∥ < ε.

This proves that (ckuk)k∈K is a Cauchy family, which, by Proposition 8.1 (1), implies that
(ckuk)k∈K is summable, since E is complete. Thus, the Fourier series

∑
k∈K ckuk is summable,

with its sum denoted u ∈ V .

Proposition 8.2 suggests looking at the space of sequences (zk)k∈K (where zk ∈ C) such
that (|zk|2)k∈K is summable. Indeed, such spaces are Hilbert spaces, and it turns out that
every Hilbert space is isomorphic to one of those. Such spaces are the infinite-dimensional
version of the spaces Cn under the usual Euclidean norm.

Definition 8.9. Given any nonempty index set K, the space l2(K) is the set of all sequences
(zk)k∈K , where zk ∈ C, such that (|zk|2)k∈K is summable, i.e.,

∑
k∈K |zk|2 <∞.

Remarks:

(1) When K is a finite set of cardinality n, l2(K) is isomorphic to Cn.
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(2) When K = N, the space l2(N) corresponds to the space l2 of Example 8.1. In that
example we claimed that l2 was a Hermitian space, and in fact, a Hilbert space. We
now state this fact for any index set K. For a proof of Proposition 8.3 we refer the
reader to Schwartz [102]).

Proposition 8.3. Given any nonempty index set K, the space l2(K) is a Hilbert space under
the Hermitian product

〈(xk)k∈K , (yk)k∈K〉 =
∑
k∈K

xkyk.

The subspace consisting of sequences (zk)k∈K such that zk = 0, except perhaps for finitely
many k, is a dense subspace of l2(K).

We just need two more propositions before being able to prove that every Hilbert space
is isomorphic to some l2(K).

Proposition 8.4. Let E be a Hilbert space, and (uk)k∈K an orthogonal family in E. The
following properties hold:

(1) For every family (λk)k∈K ∈ l2(K), the family (λkuk)k∈K is summable. Furthermore,
v =

∑
k∈K λkuk is the only vector such that ck = λk for all k ∈ K, where the ck are the

Fourier coefficients of v.

(2) For any two families (λk)k∈K ∈ l2(K) and (µk)k∈K ∈ l2(K), if v =
∑

k∈K λkuk and
w =

∑
k∈K µkuk, we have the following equation, also called Parseval identity:

〈v, w〉 =
∑
k∈K

λkµk.

Proof. (1) The fact that (λk)k∈K ∈ l2(K) means that (|λk|2)k∈K is summable. The proof
given in Proposition 8.2 (3) applies to the family (|λk|2)k∈K (instead of (|ck|2)k∈K), and yields
the fact that (λkuk)k∈K is summable. Letting v =

∑
k∈K λkuk, recall that ck = 〈v, uk〉 /‖uk‖2.

Pick some k ∈ K. Since 〈−,−〉 is continuous, for every ε > 0, there is some η > 0 such that

| 〈v, uk〉 − 〈w, uk〉 | = | 〈v − w, uk〉 | < ε‖uk‖2

whenever

‖v − w‖ < η.

However, since for every η > 0, there is some finite subset I of K such that∥∥∥v −∑
j∈J

λjuj

∥∥∥ < η
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for every finite subset J of K such that I ⊆ J , we can pick J = I ∪ {k}, and letting
w =

∑
j∈J λjuj, we get ∣∣∣∣∣〈v, uk〉 −

〈∑
j∈J

λjuj, uk

〉∣∣∣∣∣ < ε‖uk‖2.

However,

〈v, uk〉 = ck‖uk‖2 and

〈∑
j∈J

λjuj, uk

〉
= λk‖uk‖2,

and thus, the above proves that |ck − λk| < ε for every ε > 0, and thus, that ck = λk.

(2) Since 〈−,−〉 is continuous, for every ε > 0, there are some η1 > 0 and η2 > 0, such
that

| 〈x, y〉 | < ε

whenever ‖x‖ < η1 and ‖y‖ < η2. Since v =
∑

k∈K λkuk and w =
∑

k∈K µkuk, there is some
finite subset I1 of K such that ∥∥∥v −∑

i∈I

λiui

∥∥∥ < η1

for every finite subset I of K such that I1 ⊆ I, and there is some finite subset I2 of K such
that ∥∥∥w −∑

i∈I

µiui

∥∥∥ < η2

for every finite subset I of K such that I2 ⊆ I. Letting I = I1 ∪ I2, we get∣∣∣∣∣
〈
v −

∑
i∈I

λiui, w −
∑
i∈I

µiui

〉∣∣∣∣∣ < ε.

Furthermore,

〈v, w〉 =

〈
v −

∑
i∈I

λiui +
∑
i∈I

λiui, w −
∑
i∈I

µiui +
∑
i∈I

µiui

〉

=

〈
v −

∑
i∈I

λiui, w −
∑
i∈I

µiui

〉
+
∑
i∈I

λiµi,

since the ui are orthogonal to v−
∑

i∈I λiui and w−
∑

i∈I µiui for all i ∈ I. This proves that
for every ε > 0, there is some finite subset I of K such that∣∣∣∣∣〈v, w〉 −∑

i∈I

λiµi

∣∣∣∣∣ < ε.
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We already know from Proposition 8.3 that (λkµk)k∈K is summable, and since ε > 0 is
arbitrary, we get

〈v, w〉 =
∑
k∈K

λkµk.

The next proposition states properties characterizing Hilbert bases (total orthogonal
families).

Proposition 8.5. Let E be a Hilbert space, and let (uk)k∈K be an orthogonal family in E.
The following properties are equivalent:

(1) The family (uk)k∈K is a total orthogonal family.

(2) For every vector v ∈ E, if (ck)k∈K are the Fourier coefficients of v, then the family
(ckuk)k∈K is summable and v =

∑
k∈K ckuk.

(3) For every vector v ∈ E, we have the Parseval identity:

‖v‖2 =
∑
k∈K

|ck|2.

(4) For every vector u ∈ E, if 〈u, uk〉 = 0 for all k ∈ K, then u = 0.

See Figure 8.2.

E V = span(u  )k

v
 form c  = k

v, uk

uk
2 c k uk

k       K
Σ
e

=

=

Figure 8.2: A schematic illustration of Proposition 8.5. Since (uk)k∈K is a Hilbert basis,
V = E. Then given a vector of E, if we form the Fourier coefficients ck, then form the
Fourier series

∑
k∈K ckuk, we are ensured that v is equal to its Fourier series.
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Proof. The equivalence of (1), (2), and (3), is an immediate consequence of Proposition 8.2
and Proposition 8.4. It remains to show that (1) and (4) are equivalent.

(1) ⇒ (4) If (uk)k∈K is a total orthogonal family and 〈u, uk〉 = 0 for all k ∈ K, since
u =

∑
k∈K ckuk where ck = 〈u, uk〉/‖uk‖2, we have ck = 0 for all k ∈ K, and u = 0.

(4) ⇒ (1) Conversely, assume that the closure V , where V is the subspace generated
by (uk)k∈K , is different from E. Then we have E = V ⊕ V ⊥, where V ⊥ is the orthogonal
complement of V , and V ⊥ is nontrivial since V 6= E. As a consequence, there is some nonnull
vector u ∈ V ⊥. But then, u is orthogonal to every vector in V , and in particular,

〈u, uk〉 = 0

for all k ∈ K, which, by assumption, implies that u = 0, contradicting the fact that u 6=
0.

At last, we can prove that every Hilbert space is isomorphic to some Hilbert space l2(K)
for some suitable K.

First, we need the fact that every Hilbert space has some Hilbert basis. This proof uses
Zorn’s Lemma (see Rudin [98]).

Proposition 8.6. Let E be a Hilbert space. Given any orthogonal family (uk)k∈K in E,
there is a total orthogonal family (ul)l∈L containing (uk)k∈K.

All Hilbert bases for a Hilbert space E have index sets K of the same cardinality. For a
proof, see Bourbaki [16].

Definition 8.10. A Hilbert space E is separable if its Hilbert bases are countable.

Theorem 8.7. (Riesz-Fischer) For every Hilbert space E, there is some nonempty set K
such that E is isomorphic to the Hilbert space l2(K). More specifically, for any Hilbert basis
(uk)k∈K of E, the maps f : l2(K)→ E and g : E → l2(K) defined such that

f ((λk)k∈K) =
∑
k∈K

λkuk and g(u) =
(
〈u, uk〉/‖uk‖2

)
k∈K = (ck)k∈K ,

are bijective linear isometries such that g ◦ f = id and f ◦ g = id.

Proof. By Proposition 8.4 (1), the map f is well defined, and it it clearly linear. By Propo-
sition 8.2 (3), the map g is well defined, and it is also clearly linear. By Proposition 8.2 (2b),
we have

f(g(u)) = u =
∑
k∈K

ckuk,

and by Proposition 8.4 (1), we have

g(f ((λk)k∈K)) = (λk)k∈K ,

and thus g ◦ f = id and f ◦ g = id. By Proposition 8.4 (2), the linear map g is an isometry.
Therefore, f is a linear bijection and an isometry between l2(K) and E, with inverse g.
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Remark: The surjectivity of the map g : E → l2(K) is known as the Riesz-Fischer theorem.

Having done all this hard work, we sketch how these results apply to Fourier series.
Again, we refer the readers to Rudin [98] or Lang [73, 74] for a comprehensive exposition.

Let C(T ) denote the set of all periodic continuous functions f : [−π, π]→ C with period
2π. There is a Hilbert space L2(T ) containing C(T ) and such that C(T ) is dense in L2(T ),
whose inner product is given by

〈f, g〉 =

∫ π

−π
f(x)g(x)dx.

The Hilbert space L2(T ) is the space of Lebesgue square-integrable periodic functions (of
period 2π).

It turns out that the family (eikx)k∈Z is a total orthogonal family in L2(T ), because it is
already dense in C(T ) (for instance, see Rudin [98]). Then the Riesz-Fischer theorem says
that for every family (ck)k∈Z of complex numbers such that∑

k∈Z

|ck|2 <∞,

there is a unique function f ∈ L2(T ) such that f is equal to its Fourier series

f(x) =
∑
k∈Z

cke
ikx,

where the Fourier coefficients ck of f are given by the formula

ck =
1

2π

∫ π

−π
f(t)e−iktdt.

The Parseval theorem says that

+∞∑
k=−∞

ckdk =
1

2π

∫ π

−π
f(t)g(t)dt

for all f, g ∈ L2(T ), where ck and dk are the Fourier coefficients of f and g.

Thus, there is an isomorphism between the two Hilbert spaces L2(T ) and l2(Z), which is
the deep reason why the Fourier coefficients “work”. Theorem 8.7 implies that the Fourier
series

∑
k∈Z cke

ikx of a function f ∈ L2(T ) converges to f in the L2-sense, i.e., in the mean-
square sense. This does not necessarily imply that the Fourier series converges to f pointwise!
This is a subtle issue, and for more on this subject, the reader is referred to Lang [73, 74] or
Schwartz [103, 104].

An alternative Hilbert basis for L2(T ) is given by {cos kx, sin kx}∞k=0. This particular
Hilbert basis will play an important role representing the spherical harmonics on S1 as seen
the next section.



302 CHAPTER 8. SPHERICAL HARMONICS AND LINEAR REPRESENTATIONS

8.2 Spherical Harmonics on the Circle

For the remainder of this chapter we discuss spherical harmonics and take a glimpse at the
linear representation of Lie groups. Spherical harmonics on the sphere S2 have interesting
applications in computer graphics and computer vision so this material is not only important
for theoretical reasons but also for practical reasons.

Joseph Fourier (1768-1830) invented Fourier series in order to solve the heat equation
[45]. Using Fourier series, every square-integrable periodic function f (of period 2π) can be
expressed uniquely as the sum of a power series of the form

f(θ) = a0 +
∞∑
k=1

(ak cos kθ + bk cos kθ),

where the Fourier coefficients ak, bk of f are given by the formulae

a0 =
1

2π

∫ π

−π
f(θ) dθ, ak =

1

π

∫ π

−π
f(θ) cos kθ dθ, bk =

1

π

∫ π

−π
f(θ) sin kθ dθ,

for k ≥ 1. The reader will find the above formulae in Fourier’s famous book [45] in Chapter
III, Section 233, page 256, essentially using the notation that we use today.

This remarkable discovery has many theoretical and practical applications in physics,
signal processing, engineering, etc. We can describe Fourier series in a more conceptual
manner if we introduce the following inner product on square-integrable functions:

〈f, g〉 =

∫ π

−π
f(θ)g(θ) dθ,

which we will also denote by

〈f, g〉 =

∫
S1

f(θ)g(θ) dθ,

where S1 denotes the unit circle. After all, periodic functions of (period 2π) can be viewed as
functions on the circle. With this inner product, the space L2(S1) is a complete normed vector
space, that is, a Hilbert space. Furthermore, if we define the subspaces Hk(S

1) of L2(S1) so
that H0(S1) (= R) is the set of constant functions and Hk(S

1) is the two-dimensional space
spanned by the functions cos kθ and sin kθ, then it turns out that we have a Hilbert sum
decomposition

L2(S1) =
∞⊕
k=0

Hk(S
1)

into pairwise orthogonal subspaces, where
⋃∞
k=0Hk(S

1) is dense in L2(S1). The functions
cos kθ and sin kθ are also orthogonal in Hk(S

1).

Now it turns out that the spaces Hk(S
1) arise naturally when we look for homogeneous

solutions of the Laplace equation ∆f = 0 in R2 (Pierre-Simon Laplace, 1749-1827). Roughly
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speaking, a homogeneous function in R2 is a function that can be expressed in polar coordi-
nates (r, θ) as

f(r, θ) = rkg(θ).

Recall that the Laplacian on R2 expressed in Cartesian coordinates (x, y) is given by

∆f =
∂2f

∂x2
+
∂2f

∂y2
,

where f : R2 → R is a function which is at least of class C2. In polar coordinates (r, θ),
where (x, y) = (r cos θ, r sin θ) and r > 0, since

∂f

∂r
= cos θ

∂f

∂x
+ sin θ

∂f

∂y
,

∂2f

∂r2
= cos2 θ

∂2f

∂x2
+ sin2 θ

∂2f

∂y2
+ 2 sin θ cos θ

∂2f

∂x∂y
,

and

∂2f

∂θ2
= −r

(
cos θ

∂f

∂x
+ sin θ

∂f

∂y

)
+ r2

(
sin2 θ

∂2f

∂x2
− 2 sin θ cos θ

∂2f

∂x∂y
+ cos2 θ

∂2f

∂y2

)
= −r∂f

∂r
+ r2

(
sin2 θ

∂2f

∂x2
− 2 sin θ cos θ

∂2f

∂x∂y
+ cos2 θ

∂2f

∂y2

)
,

we find that

∂2f

∂r2
+

1

r2

∂2f

∂θ2
=
∂2f

∂x2
+
∂2f

∂y2
− 1

r

∂f

∂r
,

which implies that the Laplacian (in polar coordinates) is given by

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
.

If we restrict f to the unit circle S1, then the Laplacian on S1 is given by

∆s1f =
∂2f

∂θ2
.

It turns out that the space Hk(S
1) is the eigenspace of ∆S1 for the eigenvalue −k2.

To show this, we consider another question, namely what are the harmonic functions on
R2; that is, the functions f that are solutions of the Laplace equation

∆f = 0.
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Our ancestors had the idea that the above equation can be solved by separation of vari-
ables . This means that we write f(r, θ) = F (r)g(θ) , where F (r) and g(θ) are independent
functions. To make things easier, let us assume that F (r) = rk for some integer k ≥ 0, which
means that we assume that f is a homogeneous function of degree k. Recall that a function
f : R2 → R is homogeneous of degree k iff

f(tx, ty) = tkf(x, y) for all t > 0.

Now, using the Laplacian in polar coordinates, we get

∆f =
1

r

∂

∂r

(
r
∂(rkg(θ))

∂r

)
+

1

r2

∂2(rkg(θ))

∂θ2

=
1

r

∂

∂r

(
krkg

)
+ rk−2∂

2g

∂θ2

= rk−2k2g + rk−2∂
2g

∂θ2

= rk−2(k2g + ∆S1g).

Thus, we deduce that

∆f = 0 iff ∆S1g = −k2g;

that is, g is an eigenfunction of ∆S1 for the eigenvalue −k2. But the above equation is
equivalent to the second-order differential equation

d2g

dθ2
+ k2g = 0,

whose general solution is given by

g(θ) = an cos kθ + bn sin kθ.

In summary, we showed the following facts.

Proposition 8.8. The integers 0,−1,−4,−9, . . . ,−k2, . . . are eigenvalues of ∆S1, and the
functions cos kθ and sin kθ are eigenfunctions for the eigenvalue −k2, with k ≥ 0.

It looks like the dimension of the eigenspace corresponding to the eigenvalue −k2 is 1
when k = 0, and 2 when k ≥ 1.

It can indeed be shown that ∆S1 has no other eigenvalues and that the dimensions claimed
for the eigenspaces are correct. Observe that if we go back to our homogeneous harmonic
functions f(r, θ) = rkg(θ), we see that this space is spanned by the functions

uk = rk cos kθ, vk = rk sin kθ.
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Now, (x + iy)k = rk(cos kθ + i sin kθ), and since <(x + iy)k = uk and =(x + iy)k = vk
are homogeneous polynomials, we see that uk and vk are homogeneous polynomials called
harmonic polynomials . For example, here is a list of a basis for the harmonic polynomials
(in two variables) of degree k = 0, 1, 2, 3, 4, listed as ũk = cos kθ, ṽk = sin kθ:

k = 0 1

k = 1 x, y

k = 2 x2 − y2, 2xy

k = 3 x3 − 3xy2, 3x2y − y3

k = 4 x4 − 6x2y2 + y4, x3y − xy3.

To derive these formulas, we simply expand (x+ iy)k via the binomial theorem and take ũk
as the real part, and ṽk as the imaginary part.

Therefore, the eigenfunctions of the Laplacian on S1 are the restrictions of the harmonic
polynomials on R2 to S1, and we have a Hilbert sum decomposition L2(S1) =

⊕∞
k=0Hk(S

1).
It turns out that this phenomenon generalizes to the sphere Sn ⊆ Rn+1 for all n ≥ 1.

Let us take a look at next case n = 2.

8.3 Spherical Harmonics on the 2-Sphere

The material of section is very classical and can be found in many places, for example An-
drews, Askey and Roy [2] (Chapter 9), Sansone [100] (Chapter III), Hochstadt [62] (Chapter
6), and Lebedev [77] (Chapter ). We recommend the exposition in Lebedev [77] because we
find it particularly clear and uncluttered. We have also borrowed heavily from some lecture
notes by Hermann Gluck for a course he offered in 1997-1998.

Our goal is to find the homogeneous solutions of the Laplace equation ∆f = 0 in R3,
and to show that they correspond to spaces Hk(S

2) of eigenfunctions of the Laplacian ∆S2

on the 2-sphere
S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

Then the spaces Hk(S
2) will give us a Hilbert sum decomposition of the Hilbert space L2(S2)

of square-integrable functions on S2. This is the generalization of Fourier series to the 2-
sphere and the functions in the spaces Hk(S

2) are called spherical harmonics .

The Laplacian in R3 is of course given by

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

If we use spherical coordinates

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ,
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in R3, where 0 ≤ θ < π, 0 ≤ ϕ < 2π and r > 0 (recall that ϕ is the so-called azimuthal angle
in the xy-plane originating at the x-axis and θ is the so-called polar angle from the z-axis,
angle defined in the plane obtained by rotating the xz-plane around the z-axis by the angle
ϕ), then since

∂f

∂r
= sin θ cosϕ

∂f

∂x
+ sin θ sinϕ

∂f

∂y
+ cos θ

∂f

∂z
,

∂2f

∂r2
= sin2 θ cos2 ϕ

∂2f

∂x2
+ sin2 θ sin2 ϕ

∂2f

∂y2
+ cos2 θ

∂2f

∂z2
+ 2 sin2 θ sinϕ cosϕ

∂2f

∂x∂y

+ 2 sin θ cos θ cosϕ
∂2f

∂x∂z
+ 2 cos θ sin θ sinϕ

∂2f

∂y∂z
,

∂f

∂θ
= r cos θ cosϕ

∂f

∂x
+ r cos θ sinϕ

∂f

∂y
− r sin θ

∂f

∂z
,

∂2f

∂θ2
= −r∂f

∂r
+ r2 cos2 θ cos2 ϕ

∂2f

∂x2
+ r2 cos2 θ sin2 ϕ

∂2f

∂y2
+ r2 sin2 θ

∂2f

∂z2

+ 2r2 cos2 θ cosϕ sinϕ
∂2f

∂x∂y
− 2r2 cos θ sin θ cosϕ

∂2f

∂x∂z

− 2r2 cos θ sin θ sinϕ
∂2f

∂y∂z
,

∂f

∂ϕ
= −r sin θ sinϕ

∂f

∂x
+ r sin θ cosϕ

∂f

∂y
,

and

∂2f

∂ϕ2
= −r sin θ cosϕ

∂f

∂x
− r sin θ sinϕ

∂f

∂y
+ r2 sin2 θ sin2 ϕ

∂2f

∂x2

+ r2 sin2 θ cos2 ϕ
∂2f

∂y2
− 2r2 sin2 θ cosϕ sinϕ

∂2f

∂x∂y
,

we discover that

∂2f

∂r2
+

1

r2

∂2f

∂θ2
+

1

r2 sin2 θ

∂2f

∂ϕ2
+

2

r

∂f

∂r
+

cos θ

r2 sin θ

∂f

∂θ
=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
,

which implies that the Laplacian in spherical coordinates is given by

∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2
∆S2f,
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where

∆S2f =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2
,

is the Laplacian on the sphere S2. Let us look for homogeneous harmonic functions
f(r, θ, ϕ) = rkg(θ, ϕ) on R3; that is, solutions of the Laplace equation

∆f = 0.

We get

∆f =
1

r2

∂

∂r

(
r2∂(rkg)

∂r

)
+

1

r2
∆S2(rkg)

=
1

r2

∂

∂r

(
krk+1g

)
+ rk−2∆S2g

= rk−2k(k + 1)g + rk−2∆S2g

= rk−2(k(k + 1)g + ∆S2g).

Therefore,
∆f = 0 iff ∆S2g = −k(k + 1)g;

that is, g is an eigenfunction of ∆S2 for the eigenvalue −k(k + 1).

We can look for solutions of the above equation using the separation of variables method.
If we let g(θ, ϕ) = Θ(θ)Φ(ϕ), then we get the equation

Φ

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

Θ

sin2 θ

∂2Φ

∂ϕ2
= −k(k + 1)ΘΦ;

that is, dividing by ΘΦ and multiplying by sin2 θ,

sin θ

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ k(k + 1) sin2 θ = − 1

Φ

∂2Φ

∂ϕ2
.

Since Θ and Φ are independent functions, the above is possible only if both sides are equal
to a constant, say µ. This leads to two equations

∂2Φ

∂ϕ2
+ µΦ = 0

sin θ

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ k(k + 1) sin2 θ − µ = 0.

However, we want Φ to be periodic in ϕ since we are considering functions on the sphere,
so µ be must of the form µ = m2 for some non-negative integer m. Then we know that the
space of solutions of the equation

∂2Φ

∂ϕ2
+m2Φ = 0
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is two-dimensional and is spanned by the two functions

Φ(ϕ) = cosmϕ, Φ(ϕ) = sinmϕ.

We still have to solve the equation

sin θ
∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ (k(k + 1) sin2 θ −m2)Θ = 0,

which is equivalent to

sin2 θΘ′′ + sin θ cos θΘ′ + (k(k + 1) sin2 θ −m2)Θ = 0.

a variant of Legendre’s equation. For this, we use the change of variable t = cos θ, and we
consider the function u given by u(cos θ) = Θ(θ) (recall that 0 ≤ θ < π), so we get the
second-order differential equation

(1− t2)u′′ − 2tu′ +

(
k(k + 1)− m2

1− t2

)
u = 0

sometimes called the general Legendre equation (Adrien-Marie Legendre, 1752-1833). The
trick to solve this equation is to make the substitution

u(t) = (1− t2)
m
2 v(t);

see Lebedev [77], Chapter 7, Section 7.12. Then we get

(1− t2)v′′ − 2(m+ 1)tv′ + (k(k + 1)−m(m+ 1))v = 0.

When m = 0, we get the Legendre equation:

(1− t2)v′′ − 2tv′ + k(k + 1)v = 0;

see Lebedev [77], Chapter 7, Section 7.3.

This equation has two fundamental solution Pk(t) and Qk(t) called the Legendre functions
of the first and second kinds . The Pk(t) are actually polynomials and the Qk(t) are given
by power series that diverge for t = 1, so we only keep the Legendre polynomials Pk(t). The
Legendre polynomials can be defined in various ways. One definition is in terms of Rodrigues’
formula:

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n;

see Lebedev [77], Chapter 4, Section 4.2. In this version of the Legendre polynomials they
are normalized so that Pn(1) = 1. There is also the following recurrence relation:

P0 = 1

P1 = t

(n+ 1)Pn+1 = (2n+ 1)tPn − nPn−1 n ≥ 1;
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see Lebedev [77], Chapter 4, Section 4.3. For example, the first six Legendre polynomials
are

1

t

1

2
(3t2 − 1)

1

2
(5t3 − 3t)

1

8
(35t4 − 30t2 + 3)

1

8
(63t5 − 70t3 + 15t).

Let us now return to our differential equation

(1− t2)v′′ − 2(m+ 1)tv′ + (k(k + 1)−m(m+ 1))v = 0. (∗)

Observe that if we differentiate with respect to t, we get the equation

(1− t2)v′′′ − 2(m+ 2)tv′′ + (k(k + 1)− (m+ 1)(m+ 2))v′ = 0.

This shows that if v is a solution of our Equation (∗) for given k and m, then v′ is a solution
of the same equation for k and m+ 1. Thus, if Pk(t) solves (∗) for given k and m = 0, then
P ′k(t) solves (∗) for the same k and m = 1, P ′′k (t) solves (∗) for the same k and m = 2, and
in general dm/dtm(Pk(t)) solves (∗) for k and m. Therefore, our original equation

(1− t2)u′′ − 2tu′ +

(
k(k + 1)− m2

1− t2

)
u = 0 (†)

has the solution

u(t) = (1− t2)
m
2
dm

dtm
(Pk(t)) := P k

m(t).

The function u(t) is traditionally denoted Pm
k (t) and called an associated Legendre function;

see Lebedev [77], Chapter 7, Section 7.12. The index k is often called the band index .
Obviously, Pm

k (t) ≡ 0 if m > k and P 0
k (t) = Pk(t), the Legendre polynomial of degree k.

An associated Legendre function is not a polynomial in general, and because of the factor
(1− t2)

m
2 , it is only defined on the closed interval [−1, 1].

� Certain authors add the factor (−1)m in front of the expression for the associated Leg-
endre function Pm

k (t), as in Lebedev [77], Chapter 7, Section 7.12, see also Footnote 29
on Page 193. This seems to be common practice in the quantum mechanics literature where
it is called the Condon Shortley phase factor .
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The associated Legendre functions satisfy various recurrence relations that allows us to
compute them. For example, for fixed m ≥ 0, we have (see Lebedev [77], Chapter 7, Section
7.12) the recurrence

(k −m+ 1)Pm
k+1(t) = (2k + 1)tPm

k (t)− (k +m)Pm
k−1(t), k ≥ 1,

and for fixed k ≥ 2, we have

Pm+2
k (t) =

2(m+ 1)t

(t2 − 1)
1
2

Pm+1
k (t) + (k −m)(k +m+ 1)Pm

k (t), 0 ≤ m ≤ k − 2,

which can also be used to compute Pm
k starting from

P 0
k (t) = Pk(t)

P 1
k (t) =

kt

(t2 − 1)
1
2

Pk(t)−
k

(t2 − 1)
1
2

Pk−1(t).

Observe that the recurrence relation for m fixed yields the following equation for k = m
(as Pm

m−1 = 0):

Pm
m+1(t) = (2m+ 1)tPm

m (t).

It it also easy to see that

Pm
m (t) =

(2m)!

2mm!
(1− t2)

m
2 .

Observe that
(2m)!

2mm!
= (2m− 1)(2m− 3) · · · 5 · 3 · 1,

an expression that is sometimes denoted (2m− 1)!! and called the double factorial .

� Beware that some papers in computer graphics adopt the definition of associated Legen-
dre functions with the scale factor (−1)m added, so this factor is present in these papers,

for example Green [55].

The equation above allows us to “lift” Pm
m to the higher band m + 1. The computer

graphics community (see Green [55]) uses the following three rules to compute Pm
k (t) where

0 ≤ m ≤ k:

(1) Compute

Pm
m (t) =

(2m)!

2mm!
(1− t2)

m
2 .

If m = k, stop. Otherwise do Step 2 once.

(2) Compute Pm
m+1(t) = (2m+ 1)tPm

m (t). If k = m+ 1, stop. Otherwise, iterate Step 3.
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(3) Starting from i = m+ 1, compute

(i−m+ 1)Pm
i+1(t) = (2i+ 1)tPm

i (t)− (i+m)Pm
i−1(t)

until i+ 1 = k.

If we recall that Equation (†) was obtained from the equation

sin2 θΘ′′ + sin θ cos θΘ′ + (k(k + 1) sin2 θ −m2)Θ = 0

using the substitution u(cos θ) = Θ(θ), we see that

Θ(θ) = Pm
k (cos θ)

is a solution of the above equation. Putting everything together, as f(r, θ, ϕ) = rkΘ(θ)Φ(ϕ),
we proved the following facts.

Proposition 8.9. The homogeneous functions

f(r, θ, ϕ) = rk cosmϕPm
k (cos θ), f(r, θ, ϕ) = rk sinmϕPm

k (cos θ)

are solutions of the Laplacian ∆ in R3, and the functions

cosmϕPm
k (cos θ), sinmϕPm

k (cos θ)

are eigenfunctions of the Laplacian ∆S2 on the sphere for the eigenvalue −k(k + 1).

For k fixed, as 0 ≤ m ≤ k, we get 2k + 1 linearly independent functions.

The notation for the above functions varies quite a bit, essentially because of the choice
of normalization factors used in various fields (such as physics, seismology, geodesy, spectral
analysis, magnetics, quantum mechanics etc.). We will adopt the notation yml , where l is a
nonnegative integer but m is allowed to be negative, with −l ≤ m ≤ l. Thus, we set

yml (θ, ϕ) =

N0
l Pl(cos θ) if m = 0√
2Nm

l cosmϕPm
l (cos θ) if m > 0√

2Nm
l sin(−mϕ)P−ml (cos θ) if m < 0

for l = 0, 1, 2, . . ., and where the Nm
l are scaling factors. In physics and computer graphics,

Nm
l is chosen to be

Nm
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
.

Definition 8.11. The functions yml are called the real spherical harmonics of degree l and
order m. The index l is called the band index .
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The functions, yml , have some very nice properties, but to explain these we need to recall
the Hilbert space structure of the space L2(S2) of square-integrable functions on the sphere.
Recall that we have an inner product on L2(S2) given by

〈f, g〉 =

∫
S2

fgVolS2 =

∫ 2π

0

∫ π

0

f(θ, ϕ)g(θ, ϕ) sin θdθdϕ,

where f, g ∈ L2(S2) and where VolS2 is the volume form on S2 (induced by the metric on
R3). With this inner product, L2(S2) is a complete normed vector space using the norm
‖f‖ =

√
〈f, f〉 associated with this inner product; that is, L2(S2) is a Hilbert space. Now,

it can be shown that the Laplacian ∆S2 on the sphere is a self-adjoint linear operator with
respect to this inner product. As the functions ym1

l1
and ym2

l2
with l1 6= l2 are eigenfunctions

corresponding to distinct eigenvalues (−l1(l1 + 1) and −l2(l2 + 1)), they are orthogonal; that
is,

〈ym1
l1
, ym2
l2
〉 = 0, if l1 6= l2.

It is also not hard to show that for a fixed l,

〈ym1
l , ym2

l 〉 = δm1,m2 ;

that is, the functions yml with −l ≤ m ≤ l form an orthonormal system, and we denote by
Hl(S

2) the (2l + 1)-dimensional space spanned by these functions.

It turns out that the functions yml form a basis of the eigenspace El of ∆S2 associated
with the eigenvalue −l(l + 1), so that El = Hl(S

2), and that ∆S2 has no other eigenvalues.
More is true. It turns out that L2(S2) is the orthogonal Hilbert sum of the eigenspaces
Hl(S

2). This means that the Hl(S
2) are

(1) mutually orthogonal

(2) closed, and

(3) The space L2(S2) is the Hilbert sum
⊕∞

l=0Hl(S
2), which means that for every function

f ∈ L2(S2), there is a unique sequence of spherical harmonics fj ∈ Hl(S
2) so that

f =
∞∑
l=0

fl;

that is, the sequence
∑l

j=0 fj converges to f (in the norm on L2(S2)). Observe that
each fl is a unique linear combination fl =

∑
ml
aml l y

ml
l .

Therefore, (3) gives us a Fourier decomposition on the sphere generalizing the famil-
iar Fourier decomposition on the circle. Furthermore, the Fourier coefficients amll can be
computed using the fact that the yml form an orthonormal Hilbert basis:

aml l = 〈f, ymll 〉.
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We also have the corresponding homogeneous harmonic functions Hm
l (r, θ, ϕ) on R3 given

by
Hm
l (r, θ, ϕ) = rlyml (θ, ϕ).

If one starts computing explicitly the Hm
l for small values of l and m, one finds that it

is always possible to express these functions in terms of the Cartesian coordinates x, y, z
as homogeneous polynomials ! This remarkable fact holds in general: The eigenfunctions of
the Laplacian ∆S2 , and thus the spherical harmonics, are the restrictions of homogeneous
harmonic polynomials in R3. Here is a list of bases of the homogeneous harmonic polynomials
of degree k in three variables up to k = 4 (thanks to Herman Gluck).

k = 0 1

k = 1 x, y, z

k = 2 x2 − y2, x2 − z2, xy, xz, yz

k = 3 x3 − 3xy2, 3x2y − y3, x3 − 3xz2, 3x2z − z3,

y3 − 3yz2, 3y2z − z3, xyz

k = 4 x4 − 6x2y2 + y4, x4 − 6x2z2 + z4, y4 − 6y2z2 + z4,

x3y − xy3, x3z − xz3, y3z − yz3,

3x2yz − yz3, 3xy2z − xz3, 3xyz2 − x3y.

Subsequent sections will be devoted to a proof of the important facts stated earlier.

8.4 The Laplace-Beltrami Operator

In order to define rigorously the Laplacian on the sphere Sn ⊆ Rn+1 and establish its relation-
ship with the Laplacian on Rn+1, we need the definition of the Laplacian on a Riemannian
manifold (M, g), the Laplace-Beltrami operator (Eugenio Beltrami, 1835-1900). A more gen-
eral definition of the the Laplace-Beltrami operator as an operator on differential forms is
given in Section 9.3. In this chapter we only need the definition of the Laplacian on functions.

Recall that a Riemannian metric g on a manifold M is a smooth family of inner products
g = (gp), where gp is an inner product on the tangent space TpM for every p ∈ M . The
inner product gp on TpM establishes a canonical duality between TpM and T ∗pM , namely,
we have the isomorphism [ : TpM → T ∗pM defined such that for every u ∈ TpM , the linear

form u[ ∈ T ∗pM is given by

u[(v) = gp(u, v), v ∈ TpM.

The inverse isomorphism ] : T ∗pM → TpM is defined such that for every ω ∈ T ∗pM , the vector
ω] is the unique vector in TpM so that

gp(ω
], v) = ω(v), v ∈ TpM.



314 CHAPTER 8. SPHERICAL HARMONICS AND LINEAR REPRESENTATIONS

The isomorphisms [ and ] induce isomorphisms between vector fields X ∈ X(M) and one-
forms ω ∈ A1(M). In particular, for every smooth function f ∈ C∞(M), the vector field
corresponding to the one-form df is the gradient grad f of f . The gradient of f is uniquely
determined by the condition

gp((grad f)p, v) = dfp(v), v ∈ TpM, p ∈M.

Definition 8.12. Let (M, g) be a Riemannian manifold. If ∇X is the covariant derivative
associated with the Levi-Civita connection induced by the metric g, then the divergence of
a vector field X ∈ X(M) is the function divX : M → R defined so that

(divX)(p) = tr(Y (p) 7→ (∇YX)p);

namely, for every p, (divX)(p) is the trace of the linear map Y (p) 7→ (∇YX)p. Then the
Laplace-Beltrami operator , for short, Laplacian, is the linear operator
∆: C∞(M)→ C∞(M) given by

∆f = div grad f.

Remark: The definition just given differs from the definition given in Section 9.3 by a
negative sign. We adopted this sign convention to conform with most of the literature on
spherical harmonics (where the negative sign is omitted). A consequence of this choice is
that the eigenvalues of the Laplacian are negative.

For more details on the Laplace-Beltrami operator, we refer the reader to Chapter 9 or
to Gallot, Hulin and Lafontaine [52] (Chapter 4) or O’Neill [90] (Chapter 3), Postnikov [94]
(Chapter 13), Helgason [59] (Chapter 2) or Warner [115] (Chapters 4 and 6).

All this being rather abstract, it is useful to know how grad f , divX, and ∆f are expressed
in a chart. If (U,ϕ) is a chart of M , with p ∈M , and if as usual((

∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

)

denotes the basis of TpM induced by ϕ, the local expression of the metric g at p is given by
the n× n matrix (gij)p, with

(gij)p = gp

((
∂

∂xi

)
p

,

(
∂

∂xj

)
p

)
.

The matrix (gij)p is symmetric, positive definite, and its inverse is denoted (gij)p. We also
let |g|p = det(gij)p. For simplicity of notation we often omit the subscript p. Then it can be
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shown that for every function f ∈ C∞(M), in local coordinates given by the chart (U,ϕ),
we have

grad f =
∑
ij

gij
∂f

∂xj

∂

∂xi
,

where as usual
∂f

∂xj
(p) =

(
∂

∂xj

)
p

f =
∂(f ◦ ϕ−1)

∂uj
(ϕ(p)),

and (u1, . . . , un) are the coordinate functions in Rn. There are formulae for divX and ∆f
involving the Christoffel symbols. Let

X =
n∑
i=1

Xi
∂

∂xi
,

be a vector field expressed over a chart (U,ϕ). Recall that the Christoffel symbol Γkij is
defined as

Γkij =
1

2

n∑
l=1

gkl (∂igjl + ∂jgil − ∂lgij) , (∗)

where ∂kgij = ∂
∂xk

(gij). Then

divX =
n∑
i=1

[
∂Xi

∂xi
+

n∑
j=1

ΓiijXj

]
,

and

∆f =
∑
i,j

gij

[
∂2f

∂xi∂xj
−

n∑
k=1

Γkij
∂f

∂xk

]
,

whenever f ∈ C∞(M); see Pages 86 and 87 of O’Neill [90].

We take a moment to use O’Neill formula to re-derive the expression for the Laplacian
on R2 in terms of polar coordinates (r, θ), where x = r cos θ and y = r sin θ. Note that

∂

∂x1

=
∂

∂r
= (cos θ, sin θ)

∂

∂x2

=
∂

∂θ
= (−r sin θ, r cos θ),

which in turn gives

gij =

(
1 0
0 r2

)
gij =

(
1 0
0 r−2

)
.

Some computations show that the only nonzero Christoffel symbols are

Γ2
12 = Γ2

21 =
1

r
Γ1

22 = −r;
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see Gallier and Quaintance [49]. Hence

∆f =
2∑

i,j=1

gij

[
∂2f

∂xi∂xj
−

2∑
k=1

Γkij
∂f

∂xk

]

= g11

[
∂2f

∂x2
1

−
2∑

k=1

Γk11

∂f

∂xk

]
+ g22

[
∂2f

∂x2
2

−
2∑

k=1

Γk22

∂f

∂xk

]

=
∂2f

∂r2
+

1

r2

[
∂2f

∂θ2
− Γ1

22

∂f

∂r

]
=
∂2f

∂r2
+

1

r2

[
∂2f

∂θ2
+ r

∂f

∂r

]
=

1

r2

∂2f

∂θ2
+
∂2f

∂r2
+

1

r

∂f

∂r

=
1

r2

∂2f

∂θ2
+

1

r

∂

∂r

(
r
∂f

∂r

)
.

O’Neill’s formula may also be used to re-derive the expression for the Laplacian on R3 in
terms of spherical coordinates (r, θ, ϕ) where

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ.

We have

∂

∂x1

=
∂

∂r
= sin θ cosϕ

∂

∂x
+ sin θ sinϕ

∂

∂y
+ cos θ

∂

∂z
= r̂

∂

∂x2

=
∂

∂θ
= r

(
cos θ cosϕ

∂

∂x
+ cos θ sinϕ

∂

∂y
− sin θ

∂

∂z

)
= rθ̂

∂

∂x3

=
∂

∂ϕ
= r

(
− sin θ sinϕ

∂

∂x
+ sin θ cosϕ

∂

∂y

)
= rϕ̂.

Observe that r̂, θ̂ and ϕ̂ are pairwise orthogonal. Therefore, the matrix (gij) is given by

(gij) =

1 0 0
0 r2 0
0 0 r2 sin2 θ


and |g| = r4 sin2 θ. The inverse of (gij) is

(gij) =

1 0 0
0 r−2 0
0 0 r−2 sin−2 θ

 .
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By using Line (∗), it is not hard to show that Γkij = 0 except for

Γ1
22 = −1

2
g11∂1g22 = −1

2

∂

∂r
r2 = −r

Γ1
33 = −1

2
g11∂1g33 = −1

2

∂

∂r
r2 sin2 θ = −r sin2 θ

Γ2
12 = Γ2

21 =
1

2
g22∂1g22 =

1

2r2

∂

∂r
r2 =

1

r

Γ2
33 = −1

2
g22∂2g33 = − 1

2r2

∂

∂θ
r2 sin2 θ = − sin θ cos θ

Γ3
13 = Γ3

31 =
1

2
g33∂1g33 =

1

2r2 sin2 θ

∂

∂r
r2 sin2 θ =

1

r

Γ3
23 = Γ2

32 =
1

2
g33∂2g33 =

1

2r2 sin2 θ

∂

∂θ
r2 sin2 θ = cot θ.

Then

∆f =
3∑

i,j=1

gij

[
∂2f

∂xi∂xj
−

3∑
k=1

Γkij
∂f

∂xk

]

= g11

[
∂2f

∂x2
1

−
3∑

k=1

Γk11

∂f

∂xk

]
+ g22

[
∂2f

∂x2
2

−
3∑

k=1

Γk22

∂f

∂xk

]
+ g33

[
∂2f

∂x2
3

−
3∑

k=1

Γk33

∂f

∂xk

]

=
∂2f

∂r2
+

1

r2

[
∂2f

∂θ2
− Γ1

22

∂f

∂r

]
+

1

r2 sin2 θ

[
∂2f

∂ϕ2
−
[
Γ1

33

∂f

∂r
+ Γ2

33

∂f

∂θ

]]
=
∂2f

∂r2
+

1

r2

[
∂2f

∂θ2
+ r

∂f

∂r

]
+

1

r2 sin2 θ

[
∂2f

∂ϕ2
+ r sin2 θ

∂f

∂r
+ sin θ cos θ

∂f

∂θ

]
=
∂2f

∂r2
+

2

r

∂f

∂r
+

1

r2

[
∂2f

∂θ2
+

cos θ

sin θ

∂f

∂θ

]
+

1

r2 sin2 θ

∂2f

∂ϕ2

=
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
.

O’Neill’s formulae for the divergence and the Laplacian can be tedious to calculate since
they involve knowing the Christoffel symbols. Fortunately there are other formulas for the
the divergence and the Laplacian which only involve (gij) and (gij) and hence will be more
convenient for our purposes: For every vector field X ∈ X(M) expressed in local coordinates
as

X =
n∑
i=1

Xi
∂

∂xi
,

we have

divX =
1√
|g|

n∑
i=1

∂

∂xi

(√
|g|Xi

)
, (†)
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and for every function f ∈ C∞(M), the Laplacian ∆f is given by

∆f =
1√
|g|

∑
i,j

∂

∂xi

(√
|g| gij ∂f

∂xj

)
. (∗∗)

A detailed proof of Equation (†) is given in Helgason [59] (Chapter II, Lemma 2.5). This
formula is also stated in Postnikov [94] (Chapter 13, Section 6) and O’Neill [90] (Chapter 7,
Exercise 5).

One should check that for M = Rn with its standard coordinates, the Laplacian is given
by the familiar formula

∆f =
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

.

By using Equation (∗∗), we quickly rediscover the Laplacian in spherical coordinates,
namely

∆f =
1

r2 sin θ

3∑
i=1

3∑
j=1

∂

∂xi

(
r2 sin θgij

∂f

∂xj

)
=

1

r2 sin θ

[
∂

∂r

(
r2 sin θ

∂f

∂r

)
+

∂

∂θ

(
r2 sin θr−2∂f

∂θ

)
+

∂

∂ϕ

(
r2 sin θr−2 sin−2 θ

∂f

∂ϕ

)]
=

1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
.

Since (θ, ϕ) are coordinates on the sphere S2 via

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ,

we see that in these coordinates, the metric (g̃ij) on S2 is given by the matrix

(g̃ij) =

(
1 0
0 sin2 θ

)
,

that |g̃| = sin2 θ, and that the inverse of (g̃ij) is

(g̃ij) =

(
1 0
0 sin−2 θ

)
.

It follows immediately that

∆S2f =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2
,
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so we have verified that

∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2
∆S2f.

Let us now generalize the above formula to the Laplacian ∆ on Rn+1, and the Laplacian
∆Sn on Sn, where

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1}.

Following Morimoto [86] (Chapter 2, Section 2), let us use “polar coordinates.” The map
from R+ × Sn to Rn+1 − {0} given by

(r, σ) 7→ rσ

is clearly a diffeomorphism. Thus, for any system of coordinates (u1, . . . , un) on Sn, the
tuple (u1, . . . , un, r) is a system of coordinates on Rn+1 − {0} called polar coordinates . Let
us establish the relationship between the Laplacian ∆, on Rn+1 − {0} in polar coordinates
and the Laplacian ∆Sn on Sn in local coordinates (u1, . . . , un).

Proposition 8.10. If ∆ is the Laplacian on Rn+1 − {0} in polar coordinates (u1, . . . , un, r)
and ∆Sn is the Laplacian on the sphere Sn in local coordinates (u1, . . . , un), then

∆f =
1

rn
∂

∂r

(
rn
∂f

∂r

)
+

1

r2
∆Snf.

Proof. Let us compute the (n+ 1)× (n+ 1) matrix G = (gij) expressing the metric on Rn+1

in polar coordinates and the n × n matrix G̃ = (g̃ij) expressing the metric on Sn. Recall
that if σ ∈ Sn, then σ · σ = 1, and so

∂σ

∂ui
· σ = 0,

as
∂σ

∂ui
· σ =

1

2

∂(σ · σ)

∂ui
= 0.

If x = rσ with σ ∈ Sn, we have

∂x

∂ui
= r

∂σ

∂ui
, 1 ≤ i ≤ n,

and
∂x

∂r
= σ.
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It follows that

gij =
∂x

∂ui
· ∂x
∂uj

= r2 ∂σ

∂ui
· ∂σ
∂uj

= r2g̃ij

gin+1 =
∂x

∂ui
· ∂x
∂r

= r
∂σ

∂ui
· σ = 0

gn+1n+1 =
∂x

∂r
· ∂x
∂r

= σ · σ = 1.

Consequently, we get

G =

(
r2G̃ 0

0 1

)
,

|g| = r2n|g̃|, and

G−1 =

(
r−2G̃−1 0

0 1

)
.

Using the above equations and

∆f =
1√
|g|

∑
i,j

∂

∂xi

(√
|g| gij ∂f

∂xj

)
,

we get

∆f =
1

rn
√
|g̃|

n∑
i,j=1

∂

∂xi

(
rn
√
|g̃| 1

r2
g̃ij

∂f

∂xj

)
+

1

rn
√
|g̃|

∂

∂r

(
rn
√
|g̃| ∂f

∂r

)

=
1

r2
√
|g̃|

n∑
i,j=1

∂

∂xi

(√
|g̃| g̃ij ∂f

∂xj

)
+

1

rn
∂

∂r

(
rn
∂f

∂r

)
=

1

r2
∆Snf +

1

rn
∂

∂r

(
rn
∂f

∂r

)
,

as claimed.

It is also possible to express ∆Sn in terms of ∆Sn−1 . If en+1 = (0, . . . , 0, 1) ∈ Rn+1, then
we can view Sn−1 as the intersection of Sn with the hyperplane xn+1 = 0; that is, as the set

Sn−1 = {σ ∈ Sn | σ · en+1 = 0}.

If (u1, . . . , un−1) are local coordinates on Sn−1, then (u1, . . . , un−1, θ) are local coordinates
on Sn, by setting

σ = sin θ σ̃ + cos θ en+1,

with σ̃ ∈ Sn−1 and 0 ≤ θ < π.
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Proposition 8.11. We have

∆Snf =
1

sinn−1 θ

∂

∂θ

(
sinn−1 θ

∂f

∂θ

)
+

1

sin2 θ
∆Sn−1f.

Proof. Note that σ̃ · σ̃ = 1, which in turn implies

∂σ̃

∂ui
· σ̃ = 0.

Furthermore, σ̃ · en+1 = 0, and hence

∂σ̃

∂ui
· en+1 = 0.

By using these local coordinate systems, we find the relationship between ∆Sn and ∆Sn−1 as
follows: First observe that

∂σ

∂ui
= sin θ

∂σ̃

∂ui
+ 0 en+1

∂σ

∂θ
= cos θ σ̃ − sin θ en+1.

If G̃ = (g̃ij) represents the metric on Sn and Ĝ = (ĝij) is the restriction of this metric to
Sn−1 as defined above then for 1 ≤ i, j ≤ n− 1, we have

g̃ij =
∂σ

∂ui
· ∂σ
∂uj

= sin2 θ
∂σ̃

∂ui
· ∂σ̃
∂uj

= sin2 θ ĝij

g̃in =
∂σ

∂ui
· ∂σ
∂θ

=

(
sin θ

∂σ̃

∂ui
+ 0 en+1

)
· (cos θ σ̃ − sin θ en+1) = 0

g̃nn =
∂σ

∂θ
· ∂σ
∂θ

= (cos θ σ̃ − sin θ en+1) · (cos θ σ̃ − sin θ en+1) = cos2 θ + sin2 θ = 1.

These calculations imply that

G̃ =

(
sin2 θ Ĝ 0

0 1

)
,

|g̃| = sin2n−2 θ|ĝ|, and that

G̃−1 =

(
sin−2 θ Ĝ−1 0

0 1

)
.

Hence

∆Snf =
1

sinn−1 θ
√
|ĝ|

n−1∑
i,j=1

∂

∂ui

(
sinn−1 θ

√
|ĝ| 1

sin2 θ
ĝij

∂f

∂uj

)
+

1

sinn−1 θ
√
|ĝ|

∂

∂θ

(
sinn−1 θ

√
|ĝ|∂f
∂θ

)
=

1

sinn−1 θ

∂

∂θ

(
sinn−1 θ

∂f

∂θ

)
+

1

sin2 θ
√
|ĝ|

n−1∑
i,j=1

∂

∂ui

(√
|ĝ|ĝij ∂f

∂uj

)
=

1

sinn−1 θ

∂

∂θ

(
sinn−1 θ

∂f

∂θ

)
+

1

sin2 θ
∆Sn−1f,
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as claimed.

A fundamental property of the divergence is known as Green’s formula. There are actually
two Greens’ formulae, but we will only need the version for an orientable manifold without
boundary given in Proposition 9.15. Recall that Green’s formula states that if M is a
compact, orientable, Riemannian manifold without boundary, then, for every smooth vector
field X ∈ X(M), we have ∫

M

(divX) VolM = 0,

where VolM is the volume form on M induced by the metric.

Definition 8.13. If M is a compact, orientable Riemannian manifold, then for any two
smooth functions f, h ∈ C∞(M), we define 〈f, h〉M by

〈f, h〉M =

∫
M

fhVolM .

Then, it is not hard to show that 〈−,−〉M is an inner product on C∞(M).

An important property of the Laplacian on a compact, orientable Riemannian manifold
is that it is a self-adjoint operator. This fact is proved in the more general case of an inner
product on differential forms in Proposition 9.8, but it is instructive to give another proof
in the special case of functions using Green’s formula.

First we need the following two properties: For any two functions f, h ∈ C∞(M), and
any vector field X ∈ X(M), we have:

div(fX) = fdivX +X(f) = fdivX + g(grad f,X)

grad f (h) = g(grad f, gradh) = gradh (f).

Using the above identities, we obtain the following important result.

Proposition 8.12. Let M be a compact, orientable, Riemannian manifold without boundary.
The Laplacian on M is self-adjoint; that is, for any two functions f, h ∈ C∞(M), we have

〈∆f, h〉M = 〈f,∆h〉M ,

or equivalently ∫
M

f∆hVolM =

∫
M

h∆f VolM .

Proof. By the two identities before Proposition 8.12,

f∆h = fdiv gradh = div(fgradh)− g(grad f, gradh)

and
h∆f = hdiv grad f = div(hgrad f)− g(gradh, grad f),



8.5. HARMONIC POLYNOMIALS, SPHERICAL HARMONICS AND L2(Sn) 323

so we get

f∆h− h∆f = div(fgradh− hgrad f).

By Green’s formula,∫
M

(f∆h− h∆f)VolM =

∫
M

div(fgradh− hgrad f)VolM = 0,

which proves that ∆ is self-adjoint.

The importance of Proposition 8.12 lies in the fact that as 〈−,−〉M is an inner product
on C∞(M), the eigenspaces of ∆ for distinct eigenvalues are pairwise orthogonal. We will
make heavy use of this property in the next section on harmonic polynomials.

8.5 Harmonic Polynomials, Spherical Harmonics and

L2(Sn)

Harmonic homogeneous polynomials and their restrictions to Sn, where

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1},

turn out to play a crucial role in understanding the structure of the eigenspaces of the Lapla-
cian on Sn (with n ≥ 1). The results in this section appear in one form or another in Stein and
Weiss [108] (Chapter 4), Morimoto [86] (Chapter 2), Helgason [59] (Introduction, Section 3),
Dieudonné [32] (Chapter 7), Axler, Bourdon and Ramey [8] (Chapter 5), and Vilenkin [113]
(Chapter IX). Some of these sources assume a fair amount of mathematical background,
and consequently uninitiated readers will probably find the exposition rather condensed,
especially Helgason. We tried hard to make our presentation more “user-friendly.”

Recall that a homogeneous polynomial P of degree k in n variables x1, . . . , xn is an
expression of the form

P =
∑

α1+···+αn=k
(α1,...,αn)∈Nk

a(α1,...,αn) x
α1
1 · · · xαnn ,

where the coefficients a(α1,...,αn) are either real or complex numbers. We view such a ho-
mogeneous polynomial as a function P : Rn → C, or as a function P : Rn → R when the
coefficients are all real. The Laplacian ∆P of P is defined by

∆P =
∑

α1+···+αn=k
(α1,...,αn)∈Nk

a(α1,...,αn)

(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
(xα1

1 · · · xαnn ).
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Definition 8.14. Let Pk(n + 1) (resp. PC
k (n + 1)) denote the space of homogeneous poly-

nomials of degree k in n+ 1 variables with real coefficients (resp. complex coefficients), and
let Pk(Sn) (resp. PC

k (Sn)) denote the restrictions of homogeneous polynomials in
Pk(n+ 1) to Sn (resp. the restrictions of homogeneous polynomials in PC

k (n+ 1) to Sn). Let
Hk(n+ 1) (resp. HC

k (n+ 1)) denote the space of (real) harmonic polynomials (resp. complex
harmonic polynomials), with

Hk(n+ 1) = {P ∈ Pk(n+ 1) | ∆P = 0}

and
HC
k (n+ 1) = {P ∈ PC

k (n+ 1) | ∆P = 0}.
Harmonic polynomials are sometimes called solid harmonics . Finally, let Hk(S

n) (resp.
HC
k (Sn)) denote the space of (real) spherical harmonics (resp. complex spherical harmonics)

be the set of restrictions of harmonic polynomials in Hk(n + 1) to Sn (resp. restrictions of
harmonic polynomials in HC

k (n+ 1) to Sn).

Definition 8.15. A function f : Rn → R (resp. f : Rn → C) is homogeneous of degree k iff

f(tx) = tkf(x), for all x ∈ Rn and t > 0.

The restriction map ρ : Hk(n + 1) → Hk(S
n) is a surjective linear map. In fact, it is a

bijection. Indeed, if P ∈ Hk(n+ 1), observe that

P (x) = ‖x‖k P
(

x

‖x‖

)
, with

x

‖x‖
∈ Sn,

for all x 6= 0. Consequently, if P � Sn = Q � Sn, that is P (σ) = Q(σ) for all σ ∈ Sn, then

P (x) = ‖x‖k P
(

x

‖x‖

)
= ‖x‖kQ

(
x

‖x‖

)
= Q(x)

for all x 6= 0, which implies P = Q (as P and Q are polynomials). Therefore, we have a
linear isomorphism between Hk(n+ 1) and Hk(S

n) (and between HC
k (n+ 1) and HC

k (Sn)).

It will be convenient to introduce some notation to deal with homogeneous polynomials.
Given n ≥ 1 variables x1, . . . , xn, and any n-tuple of nonnegative integers α = (α1, . . . , αn),
let |α| = α1 + · · ·+αn, let xα = xα1

1 · · · xαnn , and let α! = α1! · · ·αn!. Then every homogeneous
polynomial P of degree k in the variables x1, . . . , xn can be written uniquely as

P =
∑
|α|=k

cαx
α,

with cα ∈ R or cα ∈ C. It is well known that Pk(n) is a (real) vector space of dimension

dk =

(
n+ k − 1

k

)
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and PC
k (n) is a complex vector space of the same dimension dk. For example, P2(3) is a

vector space of dimension 6 with basis {x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3}.

We can define an Hermitian inner product on PC
k (n) whose restriction to Pk(n) is an

inner product by viewing a homogeneous polynomial as a differential operator as follows.

Definition 8.16. For every P =
∑
|α|=k cαx

α ∈ PC
k (n), let

∂(P ) =
∑
|α|=k

cα
∂k

∂xα1
1 · · · ∂xαnn

.

Then for any two polynomials P,Q ∈ PC
k (n), let

〈P,Q〉 = ∂(P )Q.

Observe that 〈xα, xβ〉 = 0 unless α = β, in which case we have 〈xα, xα〉 = α!. For
example, in P2(3), if xα = x2

1 and xβ = x1x2, then

〈x2
1, x1x2〉 =

∂2

dx2
1

x1x2 = 0,

while

〈x2
1, x

2
1〉 =

∂2

dx2
1

x2
1 = 2!.

Then a simple computation shows that〈∑
|α|=k

aαx
α,
∑
|α|=k

bαx
α

〉
=
∑
|α|=k

α! aαbα.

Therefore, 〈P,Q〉 is indeed an inner product. Also observe that

∂(x2
1 + · · ·+ x2

n) =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

= ∆.

Another useful property of our inner product is this: For P ∈ PC
k (n), Q ∈ PC

j (n), and
R ∈ PC

k−j(n),
〈P,QR〉 = 〈∂(Q)P,R〉.

Indeed.

〈P,QR〉 = 〈QR,P 〉
= ∂(QR)P

= ∂(Q)(∂(R)P )

= ∂(R)(∂(Q)P )

= 〈R, ∂(Q)P 〉
= 〈∂(Q)P,R〉.
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In particular,

〈(x2
1 + · · ·+ x2

n)P,Q〉 = 〈P, ∂(x2
1 + · · ·+ x2

n)Q〉 = 〈P,∆Q〉.

Let us write ‖x‖2 for x2
1 + · · ·+ x2

n. Using our inner product, we can prove the following
important theorem.

Theorem 8.13. The map ∆: Pk(n) → Pk−2(n) is surjective for all n, k ≥ 2 (and simi-
larly for ∆: PC

k (n) → PC
k−2(n)). Furthermore, we have the following orthogonal direct sum

decompositions:

Pk(n) = Hk(n)⊕ ‖x‖2Hk−2(n)⊕ · · · ⊕ ‖x‖2jHk−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]H[k/2](n)

and

PC
k (n) = HC

k (n)⊕ ‖x‖2HC
k−2(n)⊕ · · · ⊕ ‖x‖2jHC

k−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]HC
[k/2](n),

with the understanding that only the first term occurs on the right-hand side when k < 2.

Proof. If the map ∆: PC
k (n) → PC

k−2(n) is not surjective, then some nonzero polynomial

Q ∈ PC
k−2(n) is orthogonal to the image of ∆, i.e. = 〈Q,∆P 〉. Since P = ‖x‖2Q ∈ PC

k (n),
and 0 = 〈Q,∆P 〉, a fact established earlier shows that

0 = 〈Q,∆P 〉 = 〈‖x‖2Q,P 〉 = 〈P, P 〉,

which implies that P = ‖x‖2Q = 0, and thus Q = 0, a contradiction. The same proof is
valid in the real case.

We claim that we have an orthogonal direct sum decomposition

PC
k (n) = HC

k (n)⊕ ‖x‖2PC
k−2(n),

and similarly in the real case, with the understanding that the second term is missing if
k < 2.

If k = 0, 1, then PC
k (n) = HC

k (n), so this case is trivial. Assume k ≥ 2. Since Ker ∆ =
HC
k (n) and ∆ is surjective, dim(PC

k (n)) = dim(HC
k (n)) + dim(PC

k−2(n)), so it is sufficient to

prove that HC
k (n) is orthogonal to ‖x‖2PC

k−2(n). Now, if H ∈ HC
k (n) and P = ‖x‖2Q ∈

‖x‖2PC
k−2(n), we have

〈‖x‖2Q,H〉 = 〈Q,∆H〉 = 0,

so HC
k (n) and ‖x‖2PC

k−2(n) are indeed orthogonal. Using induction, we immediately get the
orthogonal direct sum decomposition

PC
k (n) = HC

k (n)⊕ ‖x‖2HC
k−2(n)⊕ · · · ⊕ ‖x‖2jHC

k−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]HC
[k/2](n)

and the corresponding real version.
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Remark: Theorem 8.13 also holds for n = 1.

Theorem 8.13 has some important corollaries. Since every polynomial in n+ 1 variables
is the sum of homogeneous polynomials, we get

Corollary 8.14. The restriction to Sn of every polynomial (resp. complex polynomial) in
n + 1 ≥ 2 variables is a sum of restrictions to Sn of harmonic polynomials (resp. complex
harmonic polynomials).

We can also derive a formula for the dimension of Hk(n) (and HC
k (n)).

Corollary 8.15. The dimension ak,n of the space of harmonic polynomials Hk(n) is given
by the formula

ak,n =

(
n+ k − 1

k

)
−
(
n+ k − 3

k − 2

)
if n, k ≥ 2, with a0,n = 1 and a1,n = n, and similarly for HC

k (n). As Hk(n+ 1) is isomorphic
to Hk(S

n) (and HC
k (n+ 1) is isomorphic to HC

k (Sn)) we have

dim(HC
k (Sn)) = dim(Hk(S

n)) = ak,n+1 =

(
n+ k

k

)
−
(
n+ k − 2

k − 2

)
.

Proof. The cases k = 0 and k = 1 are trivial, since in this case Hk(n) = Pk(n). For k ≥ 2,
the result follows from the direct sum decomposition

Pk(n) = Hk(n)⊕ ‖x‖2Pk−2(n)

proved earlier. The proof is identical in the complex case.

Observe that when n = 2, we get ak,2 = 2 for k ≥ 1, and when n = 3, we get ak,3 = 2k+1
for all k ≥ 0, which we already knew from Section 8.3. The formula even applies for n = 1
and yields ak,1 = 0 for k ≥ 2.

Remark: It is easy to show that

ak,n+1 =

(
n+ k − 1

n− 1

)
+

(
n+ k − 2

n− 1

)
for k ≥ 2; see Morimoto [86] (Chapter 2, Theorem 2.4) or Dieudonné [32] (Chapter 7,
Formula 99), where a different proof technique is used.

Definition 8.17. Let L2(Sn) be the space of (real) square-integrable functions on the sphere
Sn. We have an inner product on L2(Sn) given by

〈f, g〉Sn =

∫
Sn
fgVolSn ,
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where f, g ∈ L2(Sn) and where VolSn is the volume form on Sn (induced by the metric on
Rn+1). With this inner product, L2(Sn) is a complete normed vector space using the norm
‖f‖ = ‖f‖2 =

√
〈f, f〉 associated with this inner product; that is, L2(Sn) is a Hilbert space.

In the case of complex-valued functions, we use the Hermitian inner product

〈f, g〉Sn =

∫
Sn
f gVolSn ,

and we get the complex Hilbert space L2
C(Sn) (see Section 7.8 for the definition of the integral

of a complex-valued function).

We also denote by C(Sn) the space of continuous (real) functions on Sn with the L∞

norm; that is,
‖f‖∞ = sup{|f(x)|}x∈Sn ,

and by CC(Sn) the space of continuous complex-valued functions on Sn also with the L∞

norm. Recall that C(Sn) is dense in L2(Sn) (and CC(Sn) is dense in L2
C(Sn)); see Rudin

[98] (Chapter 3). The following proposition shows why the spherical harmonics play an
important role.

Proposition 8.16. The set of all finite linear combinations of elements in
⋃∞
k=0Hk(S

n)
(resp.

⋃∞
k=0HC

k (Sn)) is

(i) dense in C(Sn) (resp. in CC(Sn)) with respect to the L∞-norm;

(ii) dense in L2(Sn) (resp. dense in L2
C(Sn)).

Proof. (i) As Sn is compact, by the Stone-Weierstrass approximation theorem (Lang [73],
Chapter III, Corollary 1.3), if g is continuous on Sn, then it can be approximated uniformly
by polynomials Pj restricted to Sn. By Corollary 8.14, the restriction of each Pj to Sn is a
linear combination of elements in

⋃∞
k=0Hk(S

n).

(ii) We use the fact that C(Sn) is dense in L2(Sn). Given f ∈ L2(Sn), for every ε > 0,
we can choose a continuous function g so that ‖f − g‖2 < ε/2. By (i), we can find a linear

combination h of elements in
⋃∞
k=0Hk(S

n) so that ‖g − h‖∞ < ε/(2
√

vol(Sn)), where vol(Sn)
is the volume of Sn (really, area). Thus we get

‖f − h‖2 ≤ ‖f − g‖2 + ‖g − h‖2 < ε/2 +
√

vol(Sn) ‖g − h‖∞ < ε/2 + ε/2 = ε,

which proves (ii). The proof in the complex case is identical.

We need one more proposition before showing that the spaces Hk(S
n) constitute an

orthogonal Hilbert space decomposition of L2(Sn).

Proposition 8.17. For every harmonic polynomial P ∈ Hk(n+ 1) (resp. P ∈ HC
k (n+ 1)),

the restriction H ∈ Hk(S
n) (resp. H ∈ HC

k (Sn)) of P to Sn is an eigenfunction of ∆Sn for
the eigenvalue −k(n+ k − 1).
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Proof. We have
P (rσ) = rkH(σ), r > 0, σ ∈ Sn,

and by Proposition 8.10, for any f ∈ C∞(Rn+1), we have

∆f =
1

rn
∂

∂r

(
rn
∂f

∂r

)
+

1

r2
∆Snf.

Consequently,

∆P = ∆(rkH) =
1

rn
∂

∂r

(
rn
∂(rkH)

∂r

)
+

1

r2
∆Sn(rkH)

=
1

rn
∂

∂r

(
krn+k−1H

)
+ rk−2∆SnH

=
1

rn
k(n+ k − 1)rn+k−2H + rk−2∆SnH

= rk−2(k(n+ k − 1)H + ∆SnH).

Thus,
∆P = 0 iff ∆SnH = −k(n+ k − 1)H,

as claimed.

From Proposition 8.17, we deduce that the space Hk(S
n) is a subspace of the eigenspace

Ek of ∆Sn associated with the eigenvalue −k(n + k − 1) (and similarly for HC
k (Sn)). Re-

markably, Ek = Hk(S
n), but it will take more work to prove this.

What we can deduce immediately is that Hk(S
n) and Hl(S

n) are pairwise orthogonal
whenever k 6= l. This is because, by Proposition 8.12, the Laplacian is self-adjoint, and thus
any two eigenspaces Ek and El are pairwise orthogonal whenever k 6= l, and as Hk(S

n) ⊆
Ek and Hl(S

n) ⊆ El, our claim is indeed true. Furthermore, by Proposition 8.15, each
Hk(S

n) is finite-dimensional, and thus closed. Finally, we know from Proposition 8.16 that⋃∞
k=0Hk(S

n) is dense in L2(Sn). But then we can apply a standard result from Hilbert space
theory (for example, see Lang [73], Chapter V, Proposition 1.9) to deduce the following
important result.

Theorem 8.18. The family of spaces Hk(S
n) (resp. HC

k (Sn)) yields a Hilbert space direct
sum decomposition

L2(Sn) =
∞⊕
k=0

Hk(S
n) (resp. L2

C(Sn) =
∞⊕
k=0

HC
k (Sn)),

which means that the summands are closed, pairwise orthogonal, and that every f ∈ L2(Sn)
(resp. f ∈ L2

C(Sn)) is the sum of a converging series

f =
∞∑
k=0

fk
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in the L2-norm, where the fk ∈ Hk(S
n) (resp. fk ∈ HC

k (Sn)) are uniquely determined
functions. Furthermore, given any orthonormal basis (Y 1

k , . . . , Y
ak,n+1

k ) of Hk(S
n), we have

fk =

ak,n+1∑
mk=1

ck,mkY
mk
k , with ck,mk = 〈f, Y mk

k 〉Sn .

The coefficients ck,mk are “generalized” Fourier coefficients with respect to the Hilbert
basis {Y mk

k | 1 ≤ mk ≤ ak,n+1, k ≥ 0}. We can finally prove the main theorem of this section.

Theorem 8.19.

(1) The eigenspaces (resp. complex eigenspaces) of the Laplacian ∆Sn on Sn are the spaces
of spherical harmonics

Ek = Hk(S
n) (resp. Ek = HC

k (Sn)),

and Ek corresponds to the eigenvalue −k(n+ k − 1).

(2) We have the Hilbert space direct sum decompositions

L2(Sn) =
∞⊕
k=0

Ek (resp. L2
C(Sn) =

∞⊕
k=0

Ek).

(3) The complex polynomials of the form (c1x1 + · · ·+ cn+1xn+1)k, with c2
1 + · · ·+ c2

n+1 = 0,
span the space HC

k (n+ 1) ∼= HC
k (Sn), for k ≥ 1.

Proof. We follow essentially the proof in Helgason [59] (Introduction, Theorem 3.1). In (1)
and (2) we only deal with the real case, the proof in the complex case being identical.

(1) We already know that the integers −k(n + k − 1) are eigenvalues of ∆Sn and that
Hk(S

n) ⊆ Ek. We will prove that ∆Sn has no other eigenvalues and no other eigenvectors
using the Hilbert basis {Y mk

k | 1 ≤ mk ≤ ak,n+1, k ≥ 0} given by Theorem 8.18. Let λ be
any eigenvalue of ∆Sn and let f ∈ L2(Sn) be any eigenfunction associated with λ so that

∆f = ∆Snf = λ f.

We have a unique series expansion

f =
∞∑
k=0

ak,n+1∑
mk=1

ck,mkY
mk
k ,

with ck,mk = 〈f, Y mk
k 〉Sn . Now, as ∆Sn is self-adjoint and ∆SnY

mk
k = −k(n+ k− 1)Y mk

k , the
Fourier coefficients dk,mk of ∆f are given by

dk,mk = 〈∆Snf, Y
mk
k 〉Sn = 〈f,∆SnY

mk
k 〉Sn = −k(n+ k − 1)〈f, Y mk

k 〉Sn = −k(n+ k − 1)ck,mk .
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On the other hand, as ∆f = λ f , the Fourier coefficients of ∆f are given by

dk,mk = λck,mk .

By uniqueness of the Fourier expansion, we must have

λck,mk = −k(n+ k − 1)ck,mk for all k ≥ 0.

Since f 6= 0, there some k such that ck,mk 6= 0, and we must have

λ = −k(n+ k − 1)

for any such k. However, the function k 7→ −k(n+k−1) reaches its maximum for k = −n−1
2

,
and as n ≥ 1, it is strictly decreasing for k ≥ 0, which implies that k is unique and that

cj,mj = 0 for all j 6= k.

Therefore f ∈ Hk(S
n), and the eigenvalues of ∆Sn are exactly the integers −k(n + k − 1),

so Ek = Hk(S
n) as claimed.

Since we just proved that Ek = Hk(S
n), (2) follows immediately from the Hilbert decom-

position given by Theorem 8.18.

(3) If H = (c1x1 + · · ·+ cn+1xn+1)k, with c2
1 + · · ·+ c2

n+1 = 0, then for k ≤ 1 it is obvious
that ∆H = 0, and for k ≥ 2 we have

∆H = k(k − 1)(c2
1 + · · ·+ c2

n+1)(c1x1 + · · ·+ cn+1xn+1)k−2 = 0,

so H ∈ HC
k (n+ 1). A simple computation shows that for every Q ∈ PC

k (n+ 1), if
c = (c1, . . . , cn+1), then we have

∂(Q)(c1x1 + · · ·+ cn+1xn+1)m = m(m− 1) · · · (m− k + 1)Q(c)(c1x1 + · · ·+ cn+1xn+1)m−k,

for all m ≥ k ≥ 1.

Assume that HC
k (n+ 1) is not spanned by the complex polynomials of the form (c1x1 +

· · ·+ cn+1xn+1)k, with c2
1 + · · ·+ c2

n+1 = 0, for k ≥ 1. Then some Q ∈ HC
k (n+1) is orthogonal

to all polynomials of the form H = (c1x1 + · · ·+ cn+1xn+1)k, with c2
1 + · · ·+ c2

n+1 = 0. Recall
that

〈P, ∂(Q)H〉 = 〈QP,H〉

and apply this equation to P = Q(c), H and Q. Since

∂(Q)H = ∂(Q)(c1x1 + · · ·+ cn+1xn+1)k = k!Q(c),

and as Q is orthogonal to H, we get

k!〈Q(c), Q(c)〉 = 〈Q(c), k!Q(c)〉 = 〈Q(c), ∂(Q)H〉 = 〈QQ(c), H〉 = Q(c)〈Q,H〉 = 0,
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which implies Q(c) = 0. Consequently, Q(x1, . . . , xn+1) vanishes on the complex algebraic
variety

{(x1, . . . , xn+1) ∈ Cn+1 | x2
1 + · · ·+ x2

n+1 = 0}.

By the Hilbert Nullstellensatz , some power Qm belongs to the ideal (x2
1+· · ·+x2

n+1) generated
by x2

1 + · · · + x2
n+1. Now, if n ≥ 2, it is well-known that the polynomial x2

1 + · · · + x2
n+1

is irreducible so the ideal (x2
1 + · · · + x2

n+1) is a prime ideal, and thus Q is divisible by
x2

1+· · ·+x2
n+1. However, we know from the proof of Theorem 8.13 that we have an orthogonal

direct sum
PC
k (n+ 1) = HC

k (n+ 1)⊕ ‖x‖2PC
k−2(n+ 1).

Since Q ∈ HC
k (n+ 1) and Q is divisible by x2

1 + · · ·+ x2
n+1 , we must have Q = 0. Therefore,

if n ≥ 2, we proved (3). However, when n = 1, we know from Section 8.2 that the complex
harmonic homogeneous polynomials in two variables P (x, y) are spanned by the real and
imaginary parts Uk, Vk of the polynomial (x + iy)k = Uk + iVk. Since (x − iy)k = Uk − iVk
we see that

Uk =
1

2

(
(x+ iy)k + (x− iy)k

)
, Vk =

1

2i

(
(x+ iy)k − (x− iy)k

)
,

and as 1 + i2 = 1 + (−i)2 = 0, the space HC
k (R2) is spanned by (x+ iy)k and (x− iy)k (for

k ≥ 1), so (3) holds for n = 1 as well.

As an illustration of Part (3) of Theorem 8.19, the polynomials (x1 + i cos θx2 + i sin θx3)k

are harmonic. Of course, the real and imaginary part of a complex harmonic polynomial
(c1x1 + · · ·+ cn+1xn+1)k are real harmonic polynomials.

8.6 Zonal Spherical Functions and Gegenbauer

Polynomials

In this section we describe the zonal spherical functions Zτ
k on Sn and show that they

essentially come from certain polynomials generalizing the Legendre polynomials known as
the Gegenbauer polynomials . An interesting property of the zonal spherical functions is a
formula for obtaining the kth spherical harmonic component of a function f ∈ L2

C(Sn); see
Proposition 8.27. Another important property of the zonal spherical functions Zτ

k is that
they generate HC

k (Sn).

Most proofs will be omitted. We refer the reader to Stein and Weiss [108] (Chapter 4)
and Morimoto [86] (Chapter 2) for a complete exposition with proofs.

In order to define zonal spherical functions we will need the following proposition.

Proposition 8.20. If P is any (complex) polynomial in n variables such that

P (R(x)) = P (x) for all rotations R ∈ SO(n), and all x ∈ Rn,
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then P is of the form

P (x) =
m∑
j=0

cj(x
2
1 + · · ·+ x2

n)j,

for some c0, . . . , cm ∈ C.

Proof. Write P as the sum of its homogeneous pieces P =
∑k

l=0Ql, where Ql is homogeneous
of degree l. For every ε > 0 and every rotation R, we have

k∑
l=0

εlQl(x) = P (εx) = P (R(εx)) = P (εR(x)) =
k∑
l=0

εlQl(R(x)),

which implies that
Ql(R(x)) = Ql(x), l = 0, . . . , k.

If we let Fl(x) = ‖x‖−lQl(x), then Fl is a homogeneous function of degree 0 since

Fl(tx) = ‖tx‖−lQl(tx) = t−l ‖x‖ tlQl(x) = Fl(x).

Furthermore, Fl is invariant under all rotations since

Fl(R(x)) = ‖R(x)‖−lQl(R(x)) = ‖x‖−lQl(x) = Fl(x).

This is only possible if Fl is a constant function, thus Fl(x) = al for all x ∈ Rn. But then,
Ql(x) = al ‖x‖l. Since Ql is a polynomial, l must be even whenever al 6= 0. It follows that

P (x) =
m∑
j=0

cj ‖x‖2j

with cj = a2j for j = 0, . . . ,m, and where m is the largest integer ≤ k/2.

Proposition 8.20 implies that if a polynomial function on the sphere Sn, in particular a
spherical harmonic, is invariant under all rotations, then it is a constant.

If we relax this condition to invariance under all rotations leaving some given point τ ∈ Sn
invariant, then we obtain zonal harmonics.

The following theorem from Morimoto [86] (Chapter 2, Theorem 2.24) gives the relation-
ship between zonal harmonics and the Gegenbauer polynomials:

Theorem 8.21. Fix any τ ∈ Sn. For every constant c ∈ C, there is a unique homogeneous
harmonic polynomial Zτ

k ∈ HC
k (n+ 1) satisfying the following conditions:

(1) Zτ
k (τ) = c;

(2) For every rotation R ∈ SO(n+1), if Rτ = τ , then Zτ
k (R(x)) = Zτ

k (x) for all x ∈ Rn+1.
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Furthermore, we have

Zτ
k (x) = c ‖x‖k Pk,n

(
x

‖x‖
· τ
)
,

for some polynomial Pk,n(t) of degree k.

Remark: The proof given in Morimoto [86] is essentially the same as the proof of Theorem
2.12 in Stein and Weiss [108] (Chapter 4), but Morimoto makes an implicit use of Proposition
8.20 above. Also, Morimoto states Theorem 8.21 only for c = 1, but the proof goes through
for any c ∈ C, including c = 0, and we will need this extra generality in the proof of the
Funk-Hecke formula.

Proof. Let en+1 = (0, . . . , 0, 1) ∈ Rn+1, and for any τ ∈ Sn, let Rτ be some rotation such
that Rτ (en+1) = τ . Assume Z ∈ HC

k (n + 1) satisfies Conditions (1) and (2), and let Z ′ be
given by Z ′(x) = Z(Rτ (x)). As Rτ (en+1) = τ , we have Z ′(en+1) = Z(τ) = c. Furthermore,
for any rotation S such that S(en+1) = en+1, observe that

Rτ ◦ S ◦R−1
τ (τ) = Rτ ◦ S(en+1) = Rτ (en+1) = τ,

and so, as Z satisfies property (2) for the rotation Rτ ◦ S ◦R−1
τ , we get

Z ′(S(x)) = Z(Rτ ◦ S(x)) = Z(Rτ ◦ S ◦R−1
τ ◦Rτ (x)) = Z(Rτ (x)) = Z ′(x),

which proves that Z ′ is a harmonic polynomial satisfying Properties (1) and (2) with respect
to en+1. Therefore, we may assume that τ = en+1.

Write

Z(x) =
k∑
j=0

xk−jn+1Pj(x1, . . . , xn),

where Pj(x1, . . . , xn) is a homogeneous polynomial of degree j. Since Z is invariant under

every rotation R fixing en+1, and since the monomials xk−jn+1 are clearly invariant under such
a rotation, we deduce that every Pj(x1, . . . , xn) is invariant under all rotations of Rn (clearly,
there is a one-to-one correspondence between the rotations of Rn+1 fixing en+1 and the
rotations of Rn). By Proposition 8.20, we conclude that

Pj(x1, . . . , xn) = cj(x
2
1 + · · ·+ x2

n)
j
2 ,

which implies that Pj = 0 if j is odd. Thus we can write

Z(x) =

[k/2]∑
i=0

cix
k−2i
n+1 (x2

1 + · · ·+ x2
n)i, (†)
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where [k/2] is the greatest integer m such that 2m ≤ k. If k < 2, then Z(x) = c0, so c0 = c
and Z is uniquely determined. If k ≥ 2, we know that Z is a harmonic polynomial so we
assert that ∆Z = 0. For i ≤ j ≤ n,

∂

∂xj
(x2

1 + · · ·+ x2
j + · · ·x2

n)i = 2ixj(x
2
1 + · · ·+ x2

n)i−1,

and

∂2

∂x2
j

(x2
1 + · · ·+ x2

j + · · ·+ x2
n)i = 2i(x2

1 + · · ·x2
n)i−1 + 4x2

j i(i− 1)(x2
1 + · · ·+ x2

n)i−2

= 2i(x2
1 + · · ·x2

n)i−2[x2
1 + · · ·+ x2

n + 2(i− 1)x2
j ].

Since ∆(x2
1 + · · ·+ x2

n)i =
∑n

j=1
∂2

∂x2
j
(x2

1 + · · ·+ x2
j + · · ·+ x2

n)i, we find that

∆(x2
1 + · · ·+ x2

n)i = 2i(x2
1 + · · ·+ x2

n)i−2

n∑
j=1

[x2
1 + · · ·+ x2

n + 2(i− 1)x2
j ]

= 2i(x2
1 + · · ·+ x2

n)i−2

[
n(x2

1 + · · ·+ x2
n) + 2(i− 1)

n∑
j=1

x2
j

]
= 2i(x2

1 + · · ·+ x2
n)i−2[n(x2

1 + · · ·+ x2
n) + 2(i− 1)(x2

1 + · · ·+ x2
n)]

= 2i(n+ 2i− 2)(x2
1 + · · ·+ x2

n)i−1.

Thus

∆xk−2i
n+1 (x2

1 + · · ·+ x2
n)i = (k − 2i)(k − 2i− 1)xk−2i−2

n+1 (x2
1 + · · ·+ x2

n)i

+ xk−2i
n+1 ∆(x2

1 + · · ·+ x2
n)i

= (k − 2i)(k − 2i− 1)xk−2i−2
n+1 (x2

1 + · · ·+ x2
n)i

+ 2i(n+ 2i− 2)xk−2i
n+1 (x2

1 + · · ·+ x2
n)i−1,

and so we get

∆Z =

[k/2]−1∑
i=0

((k − 2i)(k − 2i− 1)ci + 2(i+ 1)(n+ 2i)ci+1)xk−2i−2
n+1 (x2

1 + · · ·+ x2
n)i.

Then ∆Z = 0 yields the relations

2(i+ 1)(n+ 2i)ci+1 = −(k − 2i)(k − 2i− 1)ci, i = 0, . . . , [k/2]− 1, (††)

which shows that Z is uniquely determined up to the constant c0. Since we are requiring
Z(en+1) = c, we get c0 = c, and Z is uniquely determined. Now on Sn we have
x2

1 + · · ·+ x2
n+1 = 1, so if we let t = xn+1, for c0 = 1, we get a polynomial in one variable

Pk,n(t) =

[k/2]∑
i=0

cit
k−2i(1− t2)i. (∗)
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Thus we proved that when Z(en+1) = c, we have

Z(x) = c ‖x‖k Pk,n
(
xn+1

‖x‖

)
= c ‖x‖k Pk,n

(
x

‖x‖
· en+1

)
.

When Z(τ) = c, we write Z = Z ′ ◦ R−1
τ with Z ′ = Z ◦ Rτ and where Rτ is a rotation such

that Rτ (en+1) = τ . Then, as Z ′(en+1) = c, using the formula above for Z ′, we have

Z(x) = Z ′(R−1
τ (x)) = c

∥∥R−1
τ (x)

∥∥k Pk,n( R−1
τ (x)

‖R−1
τ (x)‖

· en+1

)
= c ‖x‖k Pk,n

(
x

‖x‖
·Rτ (en+1)

)
= c ‖x‖k Pk,n

(
x

‖x‖
· τ
)
,

since Rτ is an isometry.

To best understand the proof of Theorem 8.21, we let n = 2, k = 3, and construct
Z(x) ∈ HC

3 (3) such that Z satisfies Conditions (1) and (2) with τ = e3. Line (†) implies that

Z(x) = c0x
3
3 + c1x3(x2

1 + x2
2).

The conditions of Line (††) show that c1 = −3/2c0. Hence

Z(x) = cx3
3 −

3

2
cx3(x2

1 + x2
2),

where we let c = c0. We want to rewrite Z(x) via P3,2(t), where P3,2(t) is given by Line (∗)
as

P3,2(t) = t3 − 3

2
t(1− t2).

Then a simple verification shows that

Z(x) = c ‖x‖3 P3,2

(
x3

‖x‖

)
.

Definition 8.18. The function, Zτ
k , is called a zonal function and its restriction to Sn is

a zonal spherical function. The polynomial Pk,n(t) is called the Gegenbauer polynomial of
degree k and dimension n+ 1 or ultraspherical polynomial . By definition, Pk,n(1) = 1.

The proof of Theorem 8.21 shows that for k even, say k = 2m, the polynomial P2m,n is
of the form

P2m,n(t) =
m∑
j=0

cm−jt
2j(1− t2)m−j,
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and for k odd, say k = 2m+ 1, the polynomial P2m+1,n is of the form

P2m+1,n(t) =
m∑
j=0

cm−jt
2j+1(1− t2)m−j.

Consequently, Pk,n(−t) = (−1)kPk,n(t), for all k ≥ 0. The proof also shows that the “natural

basis” for these polynomials consists of the polynomials, ti(1−t2)
k−i

2 , with k−i even. Indeed,
with this basis, there are simple recurrence equations for computing the coefficients of Pk,n(t).

Remark: Morimoto [86] calls the polynomials Pk,n(t) “Legendre polynomials.” For n = 2,
they are indeed the Legendre polynomials. Stein and Weiss denotes our (and Morimoto’s)

Pk,n(t) by P
n−1

2
k (t) (up to a constant factor), and Dieudonné [32] (Chapter 7) by Gk,n+1(t).

When n = 2, using the notation of Section 8.3, the zonal spherical functions on S2 are
the spherical harmonics y0

l for which m = 0; that is (up to a constant factor),

y0
l (θ, ϕ) =

√
(2l + 1)

4π
Pl(cos θ),

where Pl is the Legendre polynomial of degree l. For example, for l = 2, Pl(t) = 1
2
(3t2− 1).

Zonal spherical functions have many important properties. One such property is associ-
ated with the reproducing kernel of HC

k (Sn).

Definition 8.19. Let HC
k (Sn) be the space of spherical harmonics. Let ak,n+1 be the dimen-

sion of HC
k (Sn) where

ak,n+1 =

(
n+ k

k

)
−
(
n+ k − 2

k − 2

)
,

if n ≥ 1 and k ≥ 2, with a0,n+1 = 1 and a1,n+1 = n + 1. Let (Y 1
k , . . . , Y

ak,n+1

k ) be any
orthonormal basis of HC

k (Sn), and define Fk(σ, τ) by

Fk(σ, τ) =

ak,n+1∑
i=1

Y i
k (σ)Y i

k (τ), σ, τ ∈ Sn.

The function Fk(σ, τ) is the reproducing kernel of HC
k (Sn).

The following proposition is easy to prove (see Morimoto [86], Chapter 2, Lemma 1.19
and Lemma 2.20).

Proposition 8.22. The function Fk is independent of the choice of orthonormal basis. Fur-
thermore, for every orthogonal transformation R ∈ O(n+ 1), we have

Fk(Rσ,Rτ) = Fk(σ, τ), σ, τ ∈ Sn.
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Clearly, Fk is a symmetric function. Since we can pick an orthonormal basis of real
orthogonal functions for HC

k (Sn) (pick a basis of Hk(S
n)), Proposition 8.22 shows that Fk is

a real-valued function.

The function Fk satisfies the following property which justifies its name as the reproducing
kernel for HC

k (Sn):

Remark: In the proofs below, integration is performed with respect to the repeated variable.

Proposition 8.23. For every spherical harmonic H ∈ HC
j (Sn), we have∫

Sn
H(τ)Fk(σ, τ) VolSn = δj kH(σ), σ, τ ∈ Sn,

for all j, k ≥ 0.

Proof. When j 6= k, since HC
k (Sn) and HC

j (Sn) are orthogonal and since

Fk(σ, τ) =
∑ak,n+1

i=1 Y i
k (σ)Y i

k (τ), it is clear that the integral in Proposition 8.23 vanishes.
When j = k, we have∫

Sn
H(τ)Fk(σ, τ) VolSn =

∫
Sn
H(τ)

ak,n+1∑
i=1

Y i
k (σ)Y i

k (τ) VolSn

=

ak,n+1∑
i=1

Y i
k (σ)

∫
Sn
H(τ)Y i

k (τ) VolSn

=

ak,n+1∑
i=1

Y i
k (σ) 〈H, Y i

k 〉

= H(σ),

since (Y 1
k , . . . , Y

ak,n+1

k ) is an orthonormal basis.

Remark: In Stein and Weiss [108] (Chapter 4), the function Fk(σ, τ) is denoted by Z
(k)
σ (τ)

and it is called the zonal harmonic of degree k with pole σ.

Before we investigate the relationship between Fk(σ, τ) and Zτ
k (σ), we need two technical

propositions. Both are proven in Morimoto [86]. The first, Morimoto [86] (Chapter 2, Lemma
2.21), is needed to prove the second, Morimoto [86] (Chapter 2, Lemma 2.23).

Proposition 8.24. For all σ, τ, σ′, τ ′ ∈ Sn, with n ≥ 1, the following two conditions are
equivalent:

(i) There is some orthogonal transformation R ∈ O(n + 1) such that R(σ) = σ′ and
R(τ) = τ ′.
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(ii) σ · τ = σ′ · τ ′.

Propositions 8.22 and 8.24 immediately yield

Proposition 8.25. For all σ, τ, σ′, τ ′ ∈ Sn, if σ · τ = σ′ · τ ′, then Fk(σ, τ) = Fk(σ
′, τ ′).

Consequently, there is some function ϕ : R→ R such that Fk(σ, τ) = ϕ(σ · τ).

We claim that the ϕ(σ · τ) of Proposition 8.25 is a zonal spherical function Zτ
k (σ).

To see why this is true, define Z(rkσ) := rkFk(σ, τ) for a fixed τ . By the definition
of Fk(σ, τ), it is clear that Z is a homogeneous harmonic polynomial. The value Fk(τ, τ)
does not depend of τ , because by transitivity of the action of SO(n + 1) on Sn, for any
other σ ∈ Sn, there is some rotation R so that Rτ = σ, and by Proposition 8.22, we have
Fk(σ, σ) = Fk(Rτ,Rτ) = Fk(τ, τ).

To compute Fk(τ, τ), since

Fk(τ, τ) =

ak,n+1∑
i=1

∥∥Y i
k (τ)

∥∥2
,

and since (Y 1
k , . . . , Y

ak,n+1

k ) is an orthonormal basis of HC
k (Sn), observe that

ak,n+1 =

ak,n+1∑
i=1

〈Y i
k , Y

i
k 〉

=

ak,n+1∑
i=1

∫
Sn

∥∥Y i
k (τ)

∥∥2
VolSn

=

∫
Sn

(
ak,n+1∑
i=1

∥∥Y i
k (τ)

∥∥2

)
VolSn

=

∫
Sn
Fk(τ, τ) VolSn = Fk(τ, τ) vol(Sn).

Therefore,

Fk(τ, τ) =
ak,n+1

vol(Sn)
.

� Beware that Morimoto [86] uses the normalized measure on Sn, so the factor involving
vol(Sn) does not appear.

Remark: The volume of the n-sphere is given by

vol(S2d) =
2d+1πd

1 · 3 · · · (2d− 1)
if d ≥ 1 and vol(S2d+1) =

2πd+1

d!
if d ≥ 0.
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These formulae will be proved in Section 8.8 just after the proof of Theorem 8.36.

Now, if Rτ = τ , Proposition 8.22 shows that

Z(R(rkσ)) = Z(rkR(σ)) = rkFk(Rσ, τ) = rkFk(Rσ,Rτ) = rkFk(σ, τ) = Z(rkσ).

Therefore, the function Z satisfies Conditions (1) and (2) of Theorem 8.21 with c =
ak,n+1

vol(Sn)
,

and by uniqueness, we conclude that Z is the zonal function Zτ
k whose restriction to Sn is

the zonal spherical function

Fk(σ, τ) =
ak,n+1

vol(Sn)
Pk,n(σ · τ).

Consequently, we have obtained the so-called addition formula:

Proposition 8.26. (Addition Formula) If (Y 1
k , . . . , Y

ak,n+1

k ) is any orthonormal basis of
HC
k (Sn), then

Pk,n(σ · τ) =
vol(Sn)

ak,n+1

ak,n+1∑
i=1

Y i
k (σ)Y i

k (τ).

Again, beware that Morimoto [86] does not have the factor vol(Sn).

For n = 1, we can write σ = (cos θ, sin θ) and τ = (cosϕ, sinϕ), and it is easy to see that
the addition formula reduces to

Pk,1(cos(θ − ϕ)) = cos kθ cos kϕ+ sin kθ sin kϕ = cos k(θ − ϕ),

the standard addition formula for trigonometric functions.

Proposition 8.26 implies that Pk,n(t) has real coefficients. Furthermore Proposition 8.23
is reformulated as

ak,n+1

vol(Sn)

∫
Sn
Pk,n(σ · τ)H(τ) VolSn = δj kH(σ), (rk)

showing that the Gengenbauer polynomials are reproducing kernels. A neat application of
this formula is a formula for obtaining the kth spherical harmonic component of a function
f ∈ L2

C(Sn).

Proposition 8.27. For every function f ∈ L2
C(Sn), if f =

∑∞
k=0 fk is the unique decompo-

sition of f over the Hilbert sum
⊕∞

k=0HC
k (Sk), then fk is given by

fk(σ) =
ak,n+1

vol(Sn)

∫
Sn
f(τ)Pk,n(σ · τ) VolSn ,

for all σ ∈ Sn.
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Proof. If we recall that HC
k (Sk) and HC

j (Sk) are orthogonal for all j 6= k, using the Formula
(rk), we have

ak,n+1

vol(Sn)

∫
Sn
f(τ)Pk,n(σ · τ) VolSn =

ak,n+1

vol(Sn)

∫
Sn

∞∑
j=0

fj(τ)Pk,n(σ · τ) VolSn

=
ak,n+1

vol(Sn)

∞∑
j=0

∫
Sn
fj(τ)Pk,n(σ · τ) VolSn

=
ak,n+1

vol(Sn)

∫
Sn
fk(τ)Pk,n(σ · τ) VolSn

= fk(σ),

as claimed.

Another important property of the zonal spherical functions Zτ
k is that they generate

HC
k (Sn). In order to prove this fact, we use the following proposition.

Proposition 8.28. If H1, . . . , Hm ∈ HC
k (Sn) are linearly independent, then there are m

points σ1, . . . , σm on Sn so that the m×m matrix (Hj(σi)) is invertible.

Proof. We proceed by induction on m. The case m = 1 is trivial. For the induction step, we
may assume that we found m points σ1, . . . , σm on Sn so that the m×m matrix (Hj(σi)) is
invertible. Consider the function

σ 7→

∣∣∣∣∣∣∣∣∣
H1(σ) . . . Hm(σ) Hm+1(σ)
H1(σ1) . . . Hm(σ1) Hm+1(σ1)

...
. . .

...
...

H1(σm) . . . Hm(σm) Hm+1(σm)

∣∣∣∣∣∣∣∣∣ .
Since H1, . . . , Hm+1 are linearly independent, the above function does not vanish for all σ,
since otherwise, by expanding this determinant with respect to the first row, we would get
a linear dependence among the Hj’s where the coefficient of Hm+1 is nonzero. Therefore, we
can find σm+1 so that the (m+ 1)× (m+ 1) matrix (Hj(σi)) is invertible.

Definition 8.20. We say that ak,n+1 points, σ1, . . . , σak,n+1
on Sn form a fundamental system

iff the ak,n+1 × ak,n+1 matrix (Pn,k(σi · σj)) is invertible.

Theorem 8.29. The following properties hold:

(i) There is a fundamental system σ1, . . . , σak,n+1
for every k ≥ 1.

(ii) Every spherical harmonic H ∈ HC
k (Sn) can be written as

H(σ) =

ak,n+1∑
j=1

cj Pk,n(σj · σ),

for some unique cj ∈ C.
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Proof. (i) By the addition formula,

Pk,n(σi · σj) =
vol(Sn)

ak,n+1

ak,n+1∑
l=1

Y l
k(σi)Y l

k(σj)

for any orthonormal basis (Y 1
k , . . . , Y

ak,n+1

k ). It follows that the matrix (Pk,n(σi · σj)) can be
written as

(Pk,n(σi · σj)) =
vol(Sn)

ak,n+1

Y Y ∗,

where Y = (Y l
k(σi)), and by Proposition 8.28, we can find σ1, . . . , σak,n+1

∈ Sn so that Y and
thus also Y ∗ are invertible, and so (Pn,k(σi · σj)) is invertible.

(ii) Again, by the addition formula,

Pk,n(σ · σj) =
vol(Sn)

ak,n+1

ak,n+1∑
i=1

Y i
k (σ)Y i

k (σj).

However, as (Y 1
k , . . . , Y

ak,n+1

k ) is an orthonormal basis, Part (i) proved that the matrix Y ∗ is
invertible, so the Y i

k (σ) can be expressed uniquely in terms of the Pk,n(σ ·σj), as claimed.

Statement (ii) of Theorem 8.29 shows that the set of Pk,n(σ ·τ) = vol(Sn)
ak,n+1

Fk(σ, τ) do indeed

generate HC
k (Sn).

We end this section with a neat geometric characterization of the zonal spherical functions
is given in Stein and Weiss [108]. For this, we need to define the notion of a parallel on Sn.
A parallel of Sn orthogonal to a point τ ∈ Sn is the intersection of Sn with any (affine)
hyperplane orthogonal to the line through the center of Sn and τ . See Figure 8.3 Clearly,
any rotation R leaving τ fixed leaves every parallel orthogonal to τ globally invariant, and
for any two points σ1 and σ2, on such a parallel, there is a rotation leaving τ fixed that
maps σ1 to σ2. Consequently, the zonal function Zτ

k defined by τ is constant on the parallels
orthogonal to τ . In fact, this property characterizes zonal harmonics, up to a constant.

The theorem below is proved in Stein and Weiss [108] (Chapter 4, Theorem 2.12). The
proof uses Proposition 8.20 and it is very similar to the proof of Theorem 8.21. To save
space, it is omitted.

Theorem 8.30. Fix any point τ ∈ Sn. A spherical harmonic Y ∈ HC
k (Sn) is constant on

parallels orthogonal to τ iff Y = cZτ
k for some constant c ∈ C.

In the next section we show how the Gegenbauer polynomials can actually be computed.
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τ

Figure 8.3: The purple planes are parallels of S2 orthogonal to the red point τ . Any rotation
around the red axis maps each parallel to itself.

8.7 More on the Gegenbauer Polynomials

The Gegenbauer polynomials are characterized by a formula generalizing the Rodrigues
formula defining the Legendre polynomials (see Section 8.3). The expression(

k +
n− 2

2

)(
k − 1 +

n− 2

2

)
· · ·
(

1 +
n− 2

2

)
can be expressed in terms of the Γ function as

Γ
(
k + n

2

)
Γ
(
n
2

) .

Recall that the Γ function is a generalization of factorial that satisfies the equation

Γ(z + 1) = zΓ(z).

For z = x+ iy with x > 0, Γ(z) is given by

Γ(z) =

∫ ∞
0

tz−1e−t dt,

where the integral converges absolutely. If n is an integer n ≥ 0, then Γ(n+ 1) = n!.

It is proved in Morimoto [86] (Chapter 2, Theorem 2.35) that

Proposition 8.31. The Gegenbauer polynomial Pk,n is given by Rodrigues’ formula:

Pk,n(t) =
(−1)k

2k
Γ
(
n
2

)
Γ
(
k + n

2

) 1

(1− t2)
n−2

2

dk

dtk
(1− t2)k+n−2

2 ,

with n ≥ 2.
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The Gegenbauer polynomials satisfy the following orthogonality properties with respect
to the kernel (1− t2)

n−2
2 (see Morimoto [86] (Chapter 2, Theorem 2.34):

Proposition 8.32. The Gegenbauer polynomial Pk,n have the following properties:∫ −1

−1

(Pk,n(t))2(1− t2)
n−2

2 dt =
vol(Sn)

ak,n+1vol(Sn−1)∫ −1

−1

Pk,n(t)Pl,n(t)(1− t2)
n−2

2 dt = 0, k 6= l.

The Gegenbauer polynomials satisfy a second-order differential equation generalizing the
Legendre equation from Section 8.3.

Proposition 8.33. The Gegenbauer polynomial Pk,n are solutions of the differential equation

(1− t2)P ′′k,n(t)− ntP ′k,n(t) + k(k + n− 1)Pk,n(t) = 0.

Proof. If we let τ = en+1, then the function H given by H(σ) = Pk,n(σ · τ) = Pk,n(cos θ)
belongs to HC

k (Sn), so
∆SnH = −k(k + n− 1)H.

Recall from Section 8.4 that

∆Snf =
1

sinn−1 θ

∂

∂θ

(
sinn−1 θ

∂f

∂θ

)
+

1

sin2 θ
∆Sn−1f,

in the local coordinates where

σ = sin θ σ̃ + cos θ en+1,

with σ̃ ∈ Sn−1 and 0 ≤ θ < π. If we make the change of variable t = cos θ, then it is easy to
see that the above formula becomes

∆Snf = (1− t2)
∂2f

∂t2
− nt∂f

∂t
+

1

1− t2
∆Sn−1f

(see Morimoto [86], Chapter 2, Theorem 2.9.) But H being zonal, it only depends on θ, that
is on t, so ∆Sn−1H = 0, and thus

−k(k + n− 1)Pk,n(t) = ∆SnPk,n(t) = (1− t2)
∂2Pk,n
∂t2

− nt∂Pk,n
∂t

,

which yields our equation.

Note that for n = 2, the differential equation of Proposition 8.33 is the Legendre equation
from Section 8.3.

The Gegenbauer polynomials also appear as coefficients in some simple generating func-
tions. The following proposition is proved in Morimoto [86] (Chapter 2, Theorem 2.53 and
Theorem 2.55):
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Proposition 8.34. For all r and t such that −1 < r < 1 and −1 ≤ t ≤ 1, for all n ≥ 1, we
have the following generating formula:

∞∑
k=0

ak,n+1 r
kPk,n(t) =

1− r2

(1− 2rt+ r2)
n+1

2

.

Furthermore, for all r and t such that 0 ≤ r < 1 and −1 ≤ t ≤ 1, if n = 1, then

∞∑
k=1

rk

k
Pk,1(t) = −1

2
log(1− 2rt+ r2),

and if n ≥ 2, then

∞∑
k=0

n− 1

2k + n− 1
ak,n+1 r

kPk,n(t) =
1

(1− 2rt+ r2)
n−1

2

.

In Stein and Weiss [108] (Chapter 4, Section 2), the polynomials P λ
k (t), where λ > 0, are

defined using the following generating formula:

∞∑
k=0

rkP λ
k (t) =

1

(1− 2rt+ r2)λ
.

Each polynomial P λ
k (t) has degree k and is called an ultraspherical polynomial of degree k

associated with λ. In view of Proposition 8.34, we see that

P
n−1

2
k (t) =

n− 1

2k + n− 1
ak,n+1 Pk,n(t),

as we mentionned ealier. There is also an integral formula for the Gegenbauer polynomials
known as Laplace representation; see Morimoto [86] (Chapter 2, Theorem 2.52).

8.8 The Funk–Hecke Formula

The Funk–Hecke formula (also known as Hecke–Funk formula) basically allows one to per-
form a sort of convolution of a “kernel function” with a spherical function in a convenient
way. Given a measurable function K on [−1, 1] such that the integral∫ 1

−1

|K(t)|(1− t2)
n−2

2 dt <∞,

(which means the integral makes sense), given a function f ∈ L2
C(Sn), we can view the

expression

K ? f(σ) =

∫
Sn
K(σ · τ)f(τ) VolSn
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as a sort of convolution of K and f .

Actually, the use of the term convolution is really unfortunate because in a “true” convo-
lution f ∗g, either the argument of f or the argument of g should be multiplied by the inverse
of the variable of integration, which means that the integration should really be taking place
over the group SO(n + 1). We will come back to this point later. For the time being, let
us call the expression K ? f defined above a pseudo-convolution. Now, if f is expressed in
terms of spherical harmonics as

f =
∞∑
k=0

ak,n+1∑
mk=1

ck,mkY
mk
k ,

then the Funk–Hecke formula states that

K ? Y mk
k (σ) = αkY

mk
k (σ),

for some fixed constant αk, and so

K ? f =
∞∑
k=0

ak,n+1∑
mk=1

αkck,mkY
mk
k .

Thus, if the constants αk are known, then it is “cheap” to compute the pseudo-convolution
K ? f .

This method was used in a ground-breaking paper by Basri and Jacobs [10] to compute
the reflectance function r from the lighting function ` as a pseudo-convolution K ? ` (over
S2) with the Lambertian kernel K given by

K(σ · τ) = max(σ · τ, 0).

Below, we give a proof of the Funk–Hecke formula due to Morimoto [86] (Chapter 2,
Theorem 2.39); see also Andrews, Askey and Roy [2] (Chapter 9). This formula was first
published by Funk in 1916 and then by Hecke in 1918. But before we get to the Funk–Hecke
formula, we need the following auxiliary proposition.

Proposition 8.35. Let σ ∈ Sn be given by the local coordinates on Sn where

σ =
√

1− t2 σ̃ + t en+1,

with σ̃ ∈ Sn−1 and −1 ≤ t ≤ 1. The volume form on Sn is given by

VolSn = (1− t2)
n−2

2 VolSn−1 dt.
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Proof. We need to compute the determinant of the n × n matrix g = (gij) expressing the
Riemannian metric on Sn in this local coordinate system. Say the local coordinates on Sn−1

are t1, . . . , tn−1. Given σ =
√

1− t2 σ̃ + t en+1, we compute

∂σ

∂ti
=
√

1− t2 ∂σ̃
∂ti

∂σ

∂t
= − t√

1− t2
σ̃ + en+1,

and then using the fact that σ̃ and en+1 are orthogonal unit vectors,

gij =
∂σ

∂ti
· ∂σ
∂tj

= (1− t2)
∂σ̃

∂ti
· ∂σ̃
∂ti

1 ≤ i, j ≤ n− 1

gin = gni =
∂σ

∂ti
· ∂σ
∂t

= 0 1 ≤ i ≤ n− 1

gnn =
∂σ

∂t
· ∂σ
∂t

=
t2

1− t2
+ 1 =

1

1− t2
.

If we let g̃ be the (n− 1)× (n− 1) matrix given by

g̃ij =
∂σ̃

∂ti
· ∂σ̃
∂tj

,

then g is the matrix

g =

(
(1− t2)g̃ 0

0 1
1−t2

)
,

and since g̃ is an (n− 1)× (n− 1) matrix,√
det(g) = (1− t2)

n−2
2

√
det(g̃),

as Proposition 7.4 implies VolSn−1 =
√

det(g̃)dt1 ∧ · · · ∧ dtn−1, it follows that

VolSn = (1− t2)
n−2

2 VolSn−1 dt,

as claimed.

Theorem 8.36. (Funk–Hecke Formula) Given any measurable function K on [−1, 1] such
that the integral ∫ 1

−1

|K(t)|(1− t2)
n−2

2 dt

makes sense, for every function H ∈ HC
k (Sn), we have∫

Sn
K(σ · ξ)H(ξ) VolSn =

(
vol(Sn−1)

∫ 1

−1

K(t)Pk,n(t)(1− t2)
n−2

2 dt

)
H(σ).

Observe that when n = 2, the term (1 − t2)
n−2

2 is missing and we are simply requiring that∫ 1

−1
|K(t)| dt makes sense.
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Proof. We first prove the formula in the case where H(ξ) = Pk,n(ξ · τ) for some fixed τ ∈ Sn,
and then use the fact that the Pk,n’s are reproducing kernels (Formula (rk)).

For any fixed τ ∈ Sn and every σ ∈ Sn, define F by

F (σ, τ) =

∫
Sn
K(σ · ξ)H(ξ) VolSn =

∫
Sn
K(σ · ξ)Pk,n(ξ · τ) VolSn .

Since the volume form on the sphere is invariant under orientation-preserving isometries, for
every R ∈ SO(n+ 1), we have

F (Rσ,Rτ) = F (σ, τ),

which means that F (σ, τ) is a function of σ · τ . On the other hand, for σ fixed, it is not
hard to see that as a function in τ , the function F (σ,−) is a spherical harmonic. This is
because the function given by H(ξ) = Pk,n(ξ · τ) may be viewed as a function of τ , namely
H(τ) = Pk,n(ξ · τ). Furthermore H ∈ HC

k (Sn), and H satisfies the equation

∆SnH(τ) = −k(k + n− 1)H(τ),

with respect to the τ coordinates. This implies

∆SnF (σ,−) = −k(k + n− 1)F (σ,−),

since

−k(k + n− 1)F (σ, τ) = −k(k + n− 1)

∫
Sn
K(σ · ξ)Pk,n(ξ · τ) VolSn

=

∫
Sn
K(σ · ξ)(−k(k + n− 1)H(τ) VolSn

=

∫
Sn
K(σ · ξ)∆SnH(τ) VolSn

= ∆Sn

∫
Sn
K(σ · ξ)H(ξ) VolSn

= ∆Sn

∫
Sn
K(σ · ξ)F (σ, τ).

Thus F (σ,−) ∈ HC
k (Sn). Now for every rotation R that fixes σ,

F (σ, τ) = F (Rσ,Rτ) = F (σ,Rτ),

which means that F (σ,−) satisfies Condition (2) of Theorem 8.21. By Theorem 8.21, we get

F (σ, τ) = F (σ, σ)Pk,n(σ · τ),

since
F (σ, σ) = cPk,n(σ · σ) = cPk,n(1) = c.
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We now want to explicitly compute F (σ, σ) = c. In order to do so, we apply Proposition
8.35 and find that for σ = en+1,

F (σ, σ) =

∫
Sn
K(σ · ξ)Pk,n(ξ · σ) VolSn

=

∫
Sn
K(en+1 · ξ)Pk,n(ξ · en+1) VolSn

= vol(Sn−1)

∫ 1

−1

K(t)Pk,n(t)(1− t2)
n−2

2 dt,

and thus,

F (σ, τ) =

(
vol(Sn−1)

∫ 1

−1

K(t)Pk,n(t)(1− t2)
n−2

2 dt

)
Pk,n(σ · τ),

which is the Funk–Hecke formula when H(σ) = Pk,n(σ · τ).

Let us now consider any function H ∈ HC
k (Sn). Recall that by the reproducing kernel

property (rk), we have

ak,n+1

vol(Sn)

∫
Sn
Pk,n(ξ · τ)H(τ) VolSn = H(ξ).

Then we can compute
∫
Sn
K(σ · ξ)H(ξ) VolSn using Fubini’s Theorem and the Funk–Hecke

formula in the special case where H(σ) = Pk,n(σ · τ), as follows:∫
Sn
K(σ · ξ)H(ξ) VolSn

=

∫
Sn
K(σ · ξ)

(
ak,n+1

vol(Sn)

∫
Sn
Pk,n(ξ · τ)H(τ) VolSn

)
VolSn

=
ak,n+1

vol(Sn)

∫
Sn
H(τ)

(∫
Sn
K(σ · ξ)Pk,n(ξ · τ) VolSn

)
VolSn

=
ak,n+1

vol(Sn)

∫
Sn
H(τ)

((
vol(Sn−1)

∫ 1

−1

K(t)Pk,n(t)(1− t2)
n−2

2 dt

)
Pk,n(σ · τ)

)
VolSn

=

(
vol(Sn−1)

∫ 1

−1

K(t)Pk,n(t)(1− t2)
n−2

2 dt

)(
ak,n+1

vol(Sn)

∫
Sn
Pk,n(σ · τ)H(τ) VolSn

)
=

(
vol(Sn−1)

∫ 1

−1

K(t)Pk,n(t)(1− t2)
n−2

2 dt

)
H(σ),

which proves the Funk–Hecke formula in general.

Remark: The formula

VolSn = (1− t2)
n−2

2 VolSn−1 dt.
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can be recursively integrated to a obtain closed form for vol(Sn). We follow Morimoto [86]

and let t =
√
u. Then dt = 1

2
u−

1
2 and the integral of the previous line becomes

vol(Sn) = vol(Sn−1)

∫ 1

−1

(1− t2)
n−2

2 dt

= 2vol(Sn−1)

∫ 1

0

(1− t2)
n−2

2 dt

= vol(Sn−1)

∫ 1

0

(1− u)
n−2

2 u−
1
2 du

= vol(Sn−1)B

(
n

2
,
1

2

)
,

where the last equality made use of the beta function formula

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, Rex > 0, Re y > 0.

Since

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

(see Theorem 1.1.4 of Andrews, Askey and Roy [2]), our calculations imply that

vol(Sn) =
Γ(1

2
)Γ(n

2
)

Γ(n+1
2

)
vol(Sn−1) =

√
πΓ(n

2
)

Γ(n+1
2

)
vol(Sn−1),

where the last equality used Γ
(

1
2

)
=
√
π. We now recursively apply this formula n− 1 times

to obtain

vol(Sn) =
(
√
π)nΓ(1

2
)

Γ(n+1
2

)
vol(S0) =

2π
n+1

2

Γ(n+1
2

)
,

since vol(S0) = 0.
It is now a matter of evaluating Γ

(
n+1

2

)
. If n is odd, say n = 2d+ 1,

vol(S2d+1) =
2π

2d+2
2

Γ(d+ 1)
=

2πd+1

d!
.

If n is even, say n = 2d, by using the formula Γ(x+ 1) = xΓ(x), we find that

Γ

(
2d+ 1

2

)
= Γ

(
2d− 1

2
+ 1

)
=

(
2d− 1

2

)
· · ·
(

3

2

)(
1

2

)
Γ

(
1

2

)
=

(2d− 1) · · · 3 · 1
√
π

2d
.
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Then

vol(S2d) =
2π

2d+1
2

Γ(2d+1
2

)
=

2d+1πd

(2d− 1) · · · 3 · 1
.

The Funk–Hecke formula can be used to derive an “addition theorem” for the ultraspher-
ical polynomials (Gegenbauer polynomials). We omit this topic and we refer the interested
reader to Andrews, Askey and Roy [2] (Chapter 9, Section 9.8).

Remark: Oddly, in their computation of K ? `, Basri and Jacobs [10] first expand K in
terms of spherical harmonics as

K =
∞∑
n=0

knY
0
n ,

and then use the Funk–Hecke formula to compute K ? Y m
n . They get (see page 222)

K ? Y m
n = αnY

m
n , with αn =

√
4π

2n+ 1
kn,

for some constant kn given on page 230 of their paper (see below). However, there is no need
to expand K, as the Funk–Hecke formula yields directly

K ? Y m
n (σ) =

∫
S2

K(σ · ξ)Y m
n (ξ) VolSn =

(
vol(S1)

∫ 1

−1

K(t)Pn(t) dt

)
Y m
n (σ),

where Pn(t) is the standard Legendre polynomial of degree n, since we are in the case of S2.
By the definition of K (K(t) = max(t, 0)) and since vol(S1) = 2π, we get

K ? Y m
n =

(
2π

∫ 1

0

tPn(t) dt

)
Y m
n ,

which is equivalent to Basri and Jacobs’ formula (14), since their αn on page 222 is given by

αn =

√
4π

2n+ 1
kn,

but from page 230,

kn =
√

(2n+ 1)π

∫ 1

0

tPn(t) dt.

What remains to be done is to compute
∫ 1

0
tPn(t) dt, which is done by using the Rodrigues

Formula and integrating by parts (see Appendix A of Basri and Jacobs [10]).

In the next section we show how spherical harmonics fit into the broader framework of
linear representations of (Lie) groups.
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8.9 Linear Representations of Compact Lie Groups; A

Glimpse ~

The purpose of this section and the next is to generalize the results about the structure of
the space of functions L2

C(Sn) defined on the sphere Sn, especially the results of Sections 8.5
and 8.6 (such as Theorem 8.19, except Part (3)), to homogeneous spaces G/K where G is a
compact Lie group and K is a closed subgroup of G.

The first step is to consider the Hilbert space L2
C(G) where G is a compact Lie group

and to find a Hilbert sum decomposition of this space. The key to this generalization is the
notion of (unitary) linear representation of the group G. The space L2

C(Sn) is replaced by
L2
C(G), and each subspace HC

k (Sn) involved in the Hilbert sum

L2
C(Sn) =

∞⊕
k=0

HC
k (Sn)

is replaced by a subspace aρ of L2
C(G) isomorphic to a finite-dimensional algebra of nρ × nρ

matrices. More precisely, there is a basis of aρ consisting of n2
ρ functions m

(ρ)
ij (from G to C)

and if for every g ∈ G we form the matrix

Mρ(g) =
1

nρ

m
(ρ)
11 (g) . . . m

(ρ)
1nρ(g)

...
. . .

...

m
(ρ)
nρ1(g) . . . m

(ρ)
nρnρ(g)

 , (∗)

then the matrix Mρ(g) is unitary and Mρ(g1g2) = Mρ(g1)Mρ(g2) for all g1, g2 ∈ G. This
means that the map g 7→ Mρ(g) is a unitary representation of G in the vector space Cnρ .
Furthermore, this representation is irreducible. Thus, the set of indices ρ is the set of
equivalence classes of irreducible unitary representations of G.

The result that we are sketching is a famous theorem known as the Peter–Weyl Theorem
about unitary representations of compact Lie groups (Herman, Klauss, Hugo Weyl, 1885-
1955).

The Peter–Weyl Theorem can be generalized to any representation V : G → Aut(E)
of G into a separable Hilbert space E (see Definition 8.10), and we obtain a Hilbert sum
decomposition of E in terms of subspaces Eρ of E. The corresponding subrepresentations are
not irreducible but each nontrivial Eρ splits into a Hilbert sum whose subspaces correspond
to irreducible representations.

The next step is to consider the subspace L2
C(G/K) of L2

C(G) consisting of the functions
that are right-invariant under the action of K. These can be viewed as functions on the
homogeneous space G/K. Again, we obtain a Hilbert sum decomposition

L2
C(G/K) =

⊕
ρ

Lρ = L2
C(G/K) ∩ aρ.
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It is also interesting to consider the subspace L2
C(K\G/K) of functions in L2

C(G) consisting
of the functions that are both left and right-invariant under the action of K. The functions in
L2
C(K\G/K) can be viewed as functions on the homogeneous space G/K that are invariant

under the left action of K.

Convolution makes the space L2
C(G) into a non-commutative algebra. Remarkably, it is

possible to characterize when L2
C(K\G/K) is commutative (under convolution) in terms of

a simple criterion about the irreducible representations of G. In this situation, (G,K) is a
called a Gelfand pair .

When (G,K) is a Gelfand pair, it is possible to define a well-behaved notion of Fourier
transform on L2

C(K\G/K). Gelfand pairs and the Fourier transform are briefly considered
in Section 8.11.

First we review the notion of a linear representation of a group. A good and easy-going
introduction to representations of Lie groups can be found in Hall [57]. We begin with
finite-dimensional representations.

Definition 8.21. Given a Lie group G and a vector space V of dimension n, a linear
representation of G of dimension (or degree) n is a group homomorphism U : G → GL(V )
such that the map g 7→ U(g)(u) is continuous for every u ∈ V , where GL(V ) denotes the
group of invertible linear maps from V to itself. The space V , called the representation
space, may be a real or a complex vector space. If V has a Hermitian (resp Euclidean) inner
product 〈−,−〉, we say that U : G→ GL(V ) is a unitary representation iff

〈U(g)(u), U(g)(v)〉 = 〈u, v〉, for all g ∈ G and all u, v ∈ V.

Thus, a linear representation of G is a map U : G→ GL(V ) satisfying the properties:

U(gh) = U(g)U(h)

U(g−1) = U(g)−1

U(1) = I.

For simplicity of language, we usually abbreviate linear representation as representation.
The representation space V is also called a G-module, since the representation U : G →
GL(V ) is equivalent to the left action · : G×V → V , with g ·v = U(g)(v). The representation
such that U(g) = I for all g ∈ G is called the trivial representation.

As an example, we describe a class of representations of SL(2,C), the group of complex
matrices with determinant +1, (

a b
c d

)
, ad− bc = 1.
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Recall that PC
k (2) denotes the vector space of complex homogeneous polynomials of degree

k in two variables (z1, z2). For every matrix A ∈ SL(2,C), with

A =

(
a b
c d

)
,

for every homogeneous polynomial Q ∈ PC
k (2), we define Uk(A)(Q(z1, z2)) by

Uk(A)(Q(z1, z2)) = Q(dz1 − bz2,−cz1 + az2).

If we think of the homogeneous polynomial Q(z1, z2) as a function Q
(
z1
z2

)
of the vector

(
z1
z2

)
,

then

Uk(A)

(
Q

(
z1

z2

))
= QA−1

(
z1

z2

)
= Q

(
d −b
−c a

)(
z1

z2

)
.

The expression above makes it clear that

Uk(AB) = Uk(A)Uk(B)

for any two matrices A,B ∈ SL(2,C), so Uk is indeed a representation of SL(2,C) into
PC
k (2).

One might wonder why we considered SL(2,C) rather than SL(2,R). This is because it
can be shown that SL(2,R) has no nontrivial unitary (finite-dimensional) representations!
For more on representations of SL(2,R), see Dieudonné [32] (Chapter 14).

Given any basis (e1, . . . , en) of V , each U(g) is represented by an n× n matrix
U(g) = (Uij(g)). We may think of the scalar functions g 7→ Uij(g) as special functions on
G. As explained in Dieudonné [32] (see also Vilenkin [113]), essentially all special functions
(Legendre polynomials, ultraspherical polynomials, Bessel functions etc.) arise in this way
by choosing some suitable G and V .

There is a natural and useful notion of equivalence of representations:

Definition 8.22. Given any two representations U1 : G → GL(V1) and U2 : G → GL(V2),
a G-map (or morphism of representations) ϕ : U1 → U2 is a linear map ϕ : V1 → V2 so that
the following diagram commutes for every g ∈ G:

V1
U1(g) //

ϕ

��

V1

ϕ

��
V2

U2(g) // V2,

i.e.
ϕ(U1(g)(v)) = U2(g)(ϕ(v)), v ∈ V1.

The space of all G-maps between two representations as above is denoted HomG(U1, U2).
Two representations U1 : G → GL(V1) and U2 : G → GL(V2) are equivalent iff ϕ : V1 → V2
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is an invertible linear map (which implies that dimV1 = dimV2). In terms of matrices, the
representations U1 : G → GL(V1) and U2 : G → GL(V2) are equivalent iff there is some
invertible n× n matrix, P , so that

U2(g) = PU1(g)P−1, g ∈ G.

If W ⊆ V is a subspace of V , then in some cases, a representation U : G→ GL(V ) yields
a representation U : G → GL(W ). This is interesting because under certain conditions on
G (e.g., G compact) every representation may be decomposed into a “sum” of so-called
irreducible representations (defined below), and thus the study of all representations of G
boils down to the study of irreducible representations of G; for instance, see Knapp [70]
(Chapter 4, Corollary 4.7), or Bröcker and tom Dieck [19] (Chapter 2, Proposition 1.9).

Definition 8.23. Let U : G→ GL(V ) be a representation of G. If W ⊆ V is a subspace of
V , then we say that W is invariant (or stable) under U iff U(g)(w) ∈ W , for all g ∈ G and all
w ∈ W . If W is invariant under U , then we have a homomorphism, U : G→ GL(W ), called
a subrepresentation of G. A representation U : G→ GL(V ) with V 6= (0) is irreducible iff it
only has the two subrepresentations U : G→ GL(W ) corresponding to W = (0) or W = V .

It can be shown that the representations Uk of SL(2,C) defined earlier are irreducible,
and that every representation of SL(2,C) is equivalent to one of the Uk’s (see Bröcker and
tom Dieck [19], Chapter 2, Section 5). The representations Uk are also representations of
SU(2). Again, they are irreducible representations of SU(2), and they constitute all of them
(up to equivalence). The reader should consult Hall [57] for more examples of representations
of Lie groups.

An easy but crucial lemma about irreducible representations is “Schur’s Lemma.”

Lemma 8.37. (Schur’s Lemma) Let U1 : G → GL(V ) and U2 : G → GL(W ) be any two
real or complex representations of a group G. If U1 and U2 are irreducible, then the following
properties hold:

(i) Every G-map ϕ : U1 → U2 is either the zero map or an isomorphism.

(ii) If U1 is a complex representation, then every G-map ϕ : U1 → U1 is of the form ϕ = λid,
for some λ ∈ C.

Proof. (i) Observe that the kernel Ker ϕ ⊆ V of ϕ is invariant under U1. Indeed, for every
v ∈ Ker ϕ and every g ∈ G, we have

ϕ(U1(g)(v)) = U2(g)(ϕ(v)) = U2(g)(0) = 0,

so U1(g)(v) ∈ Ker ϕ. Thus, U1 : G→ GL(Ker ϕ) is a subrepresentation of U1, and as U1 is
irreducible, either Ker ϕ = (0) or Ker ϕ = V . In the second case, ϕ = 0. If Ker ϕ = (0),
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then ϕ is injective. However, ϕ(V ) ⊆ W is invariant under U2, since for every v ∈ V and
every g ∈ G,

U2(g)(ϕ(v)) = ϕ(U1(g)(v)) ∈ ϕ(V ),

and as ϕ(V ) 6= (0) (as V 6= (0) since U1 is irreducible) and U2 is irreducible, we must have
ϕ(V ) = W ; that is, ϕ is an isomorphism.

(ii) Since V is a complex vector space, the linear map ϕ has some eigenvalue λ ∈ C. Let
Eλ ⊆ V be the eigenspace associated with λ. The subspace Eλ is invariant under U1, since
for every u ∈ Eλ and every g ∈ G, we have

ϕ(U1(g)(u)) = U1(g)(ϕ(u)) = U1(g)(λu) = λU1(g)(u),

so U1 : G→ GL(Eλ) is a subrepresentation of U1, and as U1 is irreducible and Eλ 6= (0), we
must have Eλ = V .

An interesting corollary of Schur’s Lemma is the following fact:

Proposition 8.38. Every complex irreducible representation U : G→ GL(V ) of a commu-
tative group G is one-dimensional.

Proof. Since G is abelian, we claim that for every g ∈ G, the map τg : V → V given by
τg(v) = U(g)(v) for all v ∈ V is a G-map. This amounts to checking that the following
diagram commutes

V
U(g1) //

τg

��

V

τg

��
V

U(g1) // V

for all g, g1 ∈ G. This is equivalent to checking that

τg(U(g1)(v)) = U(g)(U(g1)(v)) = U(gg1)(v) = U(g1)(τg(v)) = U(g1)(U(g)(v)) = U(g1g)(v)

for all v ∈ V , that is, U(gg1)(v) = U(g1g)(v), which holds since G is commutative (so
gg1 = g1g).

By Schur’s Lemma (Lemma 8.37 (ii)), τg = λgid for some λg ∈ C. It follows that any
subspace of V is invariant. If the representation is irreducible, we must have dim(V ) = 1
since otherwise V would contain a one-dimentional invariant subspace, contradicting the
assumption that U is irreducible.

Let us now restrict our attention to compact Lie groups. If G is a compact Lie group,
then it is known that it has a left and right-invariant volume form ωG, so we can define the
integral of a (real or complex) continuous function f defined on G by∫

G

f =

∫
G

f ωG,
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also denoted
∫
G
f dµG or simply

∫
G
f(t) dt, with ωG normalized so that

∫
G
ωG = 1. (See

Section 7.8, or Knapp [70], Chapter 8, or Warner [115], Chapters 4 and 6.) Because G
is compact, the Haar measure µG induced by ωG is both left and right-invariant (G is a
unimodular group), and our integral has the following invariance properties:∫

G

f(t) dt =

∫
G

f(st) dt =

∫
G

f(tu) dt =

∫
G

f(t−1) dt,

for all s, u ∈ G (see Section 7.8).

Since G is a compact Lie group, we can use an “averaging trick” to show that every
(finite-dimensional) representation is equivalent to a unitary representation; see Bröcker and
tom Dieck [19] (Chapter 2, Theorem 1.7) or Knapp [70] (Chapter 4, Proposition 4.6).

If we define the Hermitian inner product

〈f, g〉 =

∫
G

f g ωG,

then, with this inner product the space of square-integrable functions L2
C(G) is a Hilbert

space (in fact, a separable Hilbert space).

Definition 8.24. The convolution f ∗ g of two functions f, g ∈ L2
C(G) is given by

(f ∗ g)(x) =

∫
G

f(xt−1)g(t)dt =

∫
G

f(t)g(t−1x)dt.

In general, f ∗ g 6= g ∗ f , unless G is commutative. With the convolution product, L2
C(G)

becomes an associative algebra (non-commutative in general).

This leads us to consider unitary representations of G into the infinite-dimensional vector
space L2

C(G), and more generally into a Hilbert space E.

Given a Hilbert space E, the definition of a unitary representation U : G→ Aut(E) is the
same as in Definition 8.21, except that GL(E) is replaced by the group of automorphisms
(unitary operators) Aut(E) of the Hilbert space E, and

〈U(g)(u), U(g)(v)〉 = 〈u, v〉

with respect to the inner product on E. Also, in the definition of an irreducible representation
U : G→ Aut(E), we require that the only closed subrepresentations U : G→ Aut(W ) of the
representation U : G→ Aut(E) correspond to W = (0) or W = E. Here, a subrepresentation
U : G→ Aut(W ) is closed if W is closed in E.

The Peter–Weyl Theorem gives a decomposition of L2
C(G) as a Hilbert sum of spaces

that correspond to all the irreducible unitary representations of G. We present a version
of the Peter–Weyl Theorem found in Dieudonné [32] (Chapters 3-8) and Dieudonné [33]
(Chapter XXI, Sections 1-4), which contains complete proofs. Other versions can be found
in Bröcker and tom Dieck [19] (Chapter 3), Knapp [70] (Chapter 4) or Duistermaat and Kolk
[40] (Chapter 4). A good preparation for these fairly advanced books is Deitmar [30].
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Theorem 8.39. (Peter–Weyl (1927)) Given a compact Lie group G, there is a decomposition
of the associative algebra (under convolution ∗) L2

C(G) as a Hilbert sum

L2
C(G) =

⊕
ρ∈R(G)

aρ

of countably many two-sided ideals aρ, where each aρ is isomorphic to a finite-dimensional
algebra of nρ × nρ complex matrices, where the set of indices R(G) corresponds to the set of
equivalence classes of irreducible representations of G. More precisely, for each ρ ∈ R(G),

there is a basis of aρ consisting of n2
ρ pairwise orthogonal continuous functions m

(ρ)
ij : G→ C,

that is
〈m(ρ)

ij ,m
(ρ′)
hk 〉 = 0

unless ρ = ρ′, i = h and j = k, and satisfying the properties

m
(ρ)
ij ∗m

(ρ)
hk = δjhm

(ρ)
ik m

(ρ)
ij (e) = δijnρ

〈m(ρ)
ij ,m

(ρ)
ij 〉 = nρ m

(ρ)
ji (g) = m

(ρ)
ij (g−1),

and if for any g ∈ G we form the nρ × nρ matrix Mρ(g) given by

Mρ(g) =
1

nρ

m
(ρ)
11 (g) . . . m

(ρ)
1nρ(g)

...
. . .

...

m
(ρ)
nρ1(g) . . . m

(ρ)
nρnρ(g)

 ,

then the matrix Mρ(g) is unitary, Mρ(g1g2) = Mρ(g1)Mρ(g2), and the map g 7→ Mρ(g)
is an irreducible unitary representation of G in the vector space Cnρ (Mρ is a group
homomorphism Mρ : G→ GL(Cnρ)). Furthermore, every irreducible unitary representation
of G is equivalent to some Mρ. The function uρ given by

uρ(g) =

nρ∑
j=1

m
(ρ)
jj (g) = nρtr(Mρ(g))

is the unit of the algebra aρ, and the orthogonal projection of L2
C(G) onto aρ is the map

f 7→ uρ ∗ f = f ∗ uρ;

that is, convolution with uρ.

The Peter–Weyl theorem implies that all irreducible unitary representations of a compact
Lie group are finite-dimensional. The constant functions on G form a one-dimensional ideal
aρ0 called the trivial ideal, corresponding to the trivial representation ρ0 (such that Mρ0(g) =

1 for all g ∈ G). The fact that the m
(ρ)
ij form an orthogonal system implies that∫

G

m
(ρ)
ij (g) dg = 0 for all ρ 6= ρ0.
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Theorem 8.39 implies that the countable family of functions(
1
√
nρ
m

(ρ)
ij

)
ρ∈R(G), 1≤i,j≤nρ

is a Hilbert basis of L2
C(G).

Remark: We will often refer to the decomposition of the Hilbert space L2
C(G) in terms of

the ideals aρ as the master decomposition of L2
C(G).

A complete proof of Theorem 8.39 is given in Dieudonné [33], Chapter XXI, Section 2,
but see also Sections 3 and 4.

Remark: The Peter–Weyl theorem actually holds for any compact topological metrizable
group, not just for a compact Lie group.

Definition 8.25. The function χρ = 1
nρ
uρ = tr(Mρ) is the character of G associated with

the representation Mρ.

The functions χρ satisfy the following properties:

χρ(e) = nρ

χρ(sts
−1) = χρ(t) for all s, t ∈ G

χρ(s
−1) = χρ(s) for all s ∈ G

χρ ∗ χρ′ = 0 if ρ 6= ρ′

χρ ∗ χρ =
1

nρ
χρ.

Furthermore, the characters form an orthonormal Hilbert basis of the Hilbert subspace of
L2
C(G) consisting of the central functions , namely those functions f ∈ L2

C(G) such that for
every s ∈ G,

f(sts−1) = f(t) almost everywhere.

So, we have ∫
G

χρ(t)χρ′(t) dt = 0 if ρ 6= ρ′,

∫
G

|χρ(t)|2dt = 1,

and ∫
g

χρ(g) dg = 0 for all ρ 6= ρ0.

If G (compact) is commutative, then by Proposition 8.38 all representations Mρ are one-
dimensional. Then each character s 7→ χρ(s) is a continuous homomorphism of G into U(1),
the group of unit complex numbers. For the torus group S1 = T = R/Z, the characters are
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the homomorphisms θ 7→ ek2πiθ, with k ∈ N. This is the special case of Fourier analysis on
the circle.

An important corollary of the Peter–Weyl theorem is that every compact Lie group is
isomorphic to a matrix group.

Theorem 8.40. For every compact Lie group G, there is some integer N ≥ 1 and an
isomorphism of G onto a closed subgroup of U(N).

The proof of Theorem 8.40 can be found in Dieudonné [33], Chapter XXI, Theorem
21.13.1) or Knapp [70] (Chapter 4, Corollary 4.22).

There is more to the Peter–Weyl theorem: It gives a description of all unitary represen-
tations of G into a separable Hilbert space.

8.10 Consequences of The Peter–Weyl Theorem

Recall that a Hilbert space is separable if it has a countable total orthogonal family, also
called a Hilbert basis; see Definition 8.10.

If f : G→ E is function from a compact Lie group G to a Hilbert space E and if for all
z ∈ E the function s 7→ 〈f(s), z〉 is integrable and the function s 7→ ‖f(s)‖ is integrable,
then it can be shown that the map

z 7→
∫
G

〈f(s), z〉ds for all z ∈ E

is a bounded linear functional on L2
C(G) (using the dominated convergence theorem). By

the Riesz representation theorem for Hilbert spaces, there is a unique y ∈ E such that

〈y, z〉 =

∫
G

〈f(s), z〉ds for all z ∈ E;

see Dieudonné [36] (Chapter XIII, Proposition 13.10.4).

Definition 8.26. If f : G → E is function from a compact Lie group G to a Hilbert space
E, under the conditions on f stated above, the unique vector y ∈ E such that

〈y, z〉 =

∫
G

〈f(s), z〉ds for all z ∈ E

is denoted by ∫
G

f(s) ds

and is called the weak integral (for short, integral) of f .
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Theorem 8.41. Given a compact Lie group G, if V : G → Aut(E) is a unitary represen-
tation of G in a separable Hilbert space E, using the notation of Theorem 8.39, for every
ρ ∈ R(G), for every x ∈ E the map

x 7→ Vuρ(x) =

∫
G

uρ(s)(V (s)(x)) ds

is an orthogonal projection of E onto a closed subspace Eρ, where the expression on the
right-hand side is the weak integral of the function s 7→ uρ(s)(V (s)(x)). Furthermore, E is
the Hilbert sum

E =
⊕

ρ∈R(G)

Eρ

of those Eρ such that Eρ 6= (0). Each such Eρ is invariant under V , but the subrepresentation
of V in Eρ is not necessarily irreducible. However, each Eρ is a (finite or countable) Hilbert
sum of closed subspaces invariant under V , and the subrepresentations of V corresponding
to these subspaces of Eρ are all equivalent to Mρ, where Mρ is defined as in Theorem 8.39,

and Mρ is the representation of G given by Mρ(g) = Mρ(g) for all g ∈ G. These repre-
sentations are all irreducible. As a consequence, every irreducible unitary representation of
G is equivalent to some representation of the form Mρ. For any closed subspace F of E,
if F is invariant under V , then F is the Hilbert sum of the orthogonal spaces F ∩ Eρ for
those ρ ∈ R(G) for which F ∩Eρ is not reduced to 0, and each nontrivial subspace F ∩Eρ is
itself the Hilbert sum of closed subspaces invariant under V , and such that the corresponding
subrepresentations are all irreducible and equivalent to Mρ.

If Eρ 6= (0), we say that the irreducible representation Mρ is contained in the represen-
tation V .

Definition 8.27. If Eρ is finite-dimensional, then dim(Eρ) = dρnρ for some positive integer
dρ. The integer dρ is called the multiplicity of Mρ in V .

An interesting special case of Theorem 8.41 is the case of the so-called regular represen-
tation of G in L2

C(G) itself, that is, E = L2
C(G).

Definition 8.28. The (left) regular representation R (or λ) of G in L2
C(G) is defined by

(Rs(f))(t) = λs(f)(t) = f(s−1t), f ∈ L2
C(G), s, t ∈ G.

We have

(Rs1(Rs2(f)))(t) = (Rs2(f))(s−1
1 t) = f(s−1

2 s−1
1 t) = f((s1s2)−1t) = (Rs1s2(f))(t),

which shows that

(Rs1 ◦Rs2)(f) = Rs1s2(f),
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namely, R is a representation of G in L2
C(G). Observe that if we had defined Rs(f) as f(st)

instead of f(s−1t), then would get (Rs1 ◦Rs2)(f) = Rs2s1(f), so this version of Rs(f) would
not be a representation since the above composition is Rs2s1(f) rather than Rs1s2(f). This
is the reason for using s−1 instead of s in the definition of Rs(f) = f(s−1t).

Theorem 8.41 implies that we also get a Hilbert sum L2
C(G) =

⊕
ρ∈R(G) Eρ, and it turns

out that Eρ = aρ, where aρ is the ideal occurring in the master decomposition of L2
C(G), so

again we get the Hilbert sum

L2
C(G) =

⊕
ρ∈R(G)

aρ

of the master decomposition. This time, the aρ generally do not correspond to irreducible

subrepresentations of R. However, aρ splits into dρ = nρ minimal left ideals b
(ρ)
j , where b

(ρ)
j

is spanned by the jth columm of Mρ, that is,

aρ =

nρ⊕
j=1

b
(ρ)
j and b

(ρ)
j =

nρ⊕
k=1

Cm(ρ)
kj ,

and all the subrepresentations R : G→ GL(b
(ρ)
j ) of G in b

(ρ)
j are equivalent to Mρ, and thus

are irreducible (see Dieudonné [32], Chapter 3).

Finally, assume that besides the compact Lie group G, we also have a closed subgroup K
of G. Then we know that M = G/K is a manifold called a homogeneous space, and G acts on
M on the left. For example, if G = SO(n+1) and K = SO(n), then Sn = SO(n+1)/SO(n)
(see Warner [115], Chapter 3, or Gallier and Quaintance [49]).

Definition 8.29. The subspace of L2
C(G) consisting of the functions f ∈ L2

C(G) that are
right-invariant under the action of K, that is, such that

f(su) = f(s) for all s ∈ G and all u ∈ K,

forms a closed subspace of L2
C(G) denoted by L2

C(G/K).

Since a function as above is constant on every left coset sK (s ∈ G), such a function can
be viewed as a function on the homogeneous space G/K. For example, if G = SO(n + 1)
and K = SO(n), then L2

C(G/K) = L2
C(Sn).

It turns out that L2
C(G/K) is invariant under the regular representation R of G in L2

C(G),
so we get a subrepresentation (of the regular representation) of G in L2

C(G/K).

The corollary of the Peter–Weyl theorem (Theorem 8.41) gives us a Hilbert sum decom-
position of L2

C(G/K) of the form

L2
C(G/K) =

⊕
ρ

Lρ = L2
C(G/K) ∩ aρ,
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for the same ρ’s as before. However, these subrepresentations of R in Lρ are not necessarily
irreducible. What happens is that there is some dρ with 0 ≤ dρ ≤ nρ, so that if dρ ≥ 1, then
Lρ is the direct sum of the subspace spanned by the first dρ columns of Mρ. The number dρ
can be characterized as follows.

If we consider the restriction of the representation Mρ : G → GL(Cnρ) to K, then this
representation is generally not irreducible, so Cnρ splits into subspaces Fσ1 , . . . , Fσr such that
the restriction of the subrepresentation Mρ to Fσi is an irreducible representation of K. Then
dρ is the multiplicity of the trivial representation σ0 of K if it occurs. for this reason, dρ
is also denoted (ρ : σ0) (see Dieudonné [32], Chapter 6 and Dieudonné [34], Chapter XXII,
Sections 4-5).

Definition 8.30. The subspace of L2
C(G) consisting of the functions f ∈ L2

C(G) that are
left-invariant under the action of K, that is, such that

f(ts) = f(s) for all s ∈ G and all t ∈ K,
is a closed subspace of L2

C(G) denoted L2
C(K\G).

We get a Hilbert sum decomposition of L2
C(K\G) of the form

L2
C(K\G) =

⊕
ρ

L′ρ =
⊕
ρ

L2
C(K\G) ∩ aρ,

and for the same dρ as before, L′ρ is the direct sum of the subspace spanned by the first dρ
rows of Mρ.

Finally, we consider the folowing algebra.

Definition 8.31. The space L2
C(K\G/K) is defined by

L2
C(K\G/K) = L2

C(G/K) ∩ L2
C(K\G)

= {f ∈ L2
C(G) | f(tsu) = f(s)} for all s ∈ G and all t, u ∈ K.

Functions in L2
C(K\G/K) can be viewed as functions on the homogeneous space G/K

that are invariant under the left action of K. These functions are constant on the double
cosets KsK (s ∈ G).

In the case where G = SO(3) and K = SO(2), these are the functions on S2 that are
invariant under the action of SO(2) (more precisely, a subgroup of SO(3) leaving invariant
some chosen element of S2). The functions in L2

C(K\G/K) are reminiscent of zonal spherical
functions, and indeed these functions are often called spherical functions , as in Helgason [59]
(Chapter 4).

From our previous discussion, we see that we have a Hilbert sum decomposition

L2
C(K\G/K) =

⊕
ρ

Lρ ∩ L′ρ

and each Lρ ∩ L′ρ for which dρ ≥ 1 is a matrix algebra of dimension d2
ρ having as a basis the

functions m
(ρ)
ij for 1 ≤ i, j ≤ dρ. As a consequence, the algebra L2

C(K\G/K) is commutative
iff dρ ≤ 1 for all ρ.
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8.11 Gelfand Pairs, Spherical Functions, and Fourier

Transform ~

In this section we investigate briefly what happens when the algebra L2
C(K\G/K) is com-

mutative. In this case, the space L2
C(K\G/K) is a Hilbert sum of one-dimensional subspaces

spanned by the functions ωρ = (1/nρ)m
(ρ)
11 , which are called zonal spherical harmonics .

It is also the case that L2
C(G/K) is a Hilbert sum of nρ-dimensional subspaces Lρ, where

Lρ is spanned by the left translates of ωρ. Finally, it is possible to define a well-behaved
notion of Fourier transform on L2

C(K\G/K), in the sense that the Fourier transform on
L2
C(K\G/K) satisfies the fundamental relation

F(f ∗ g) = F(f)F(g).

Observe that in order for this equation to hold, convolution has to be commutative. This
is why the Fourier transform is defined on L2

C(K\G/K), where convolution is commutative,
rather than the whole of L2

C(G/K).

Definition 8.32. Given a compact Lie group G and a closed subgroup K, if the algebra
L2
C(K\G/K) is commutative (for the convolution product), we say that (G,K) is a Gelfand

pair ; see Dieudonné [32], Chapter 8 and Dieudonné [34], Chapter XXII, Sections 6-7.

In this case, the Lρ in the Hilbert sum decomposition of L2
C(G/K) are nontrivial of

dimension nρ iff (ρ : σ0) = dρ = 1, and the subrepresentation U (of the regular representation
R) of G into Lρ is irreducible and equivalent to Mρ. The space Lρ is generated by the

functions m
(ρ)
11 , . . . ,m

(ρ)
nρ1, but the function

ωρ(s) =
1

nρ
m

(ρ)
11 (s)

plays a special role.

Definition 8.33. Given a compact Lie group G and a closed subgroup K, if (G,K) is a

Gelfand pair, then function ωρ = 1
nρ
m

(ρ)
11 is called a zonal spherical function, for short a

spherical function. The set of zonal spherical functions on G/K is denoted S(G/K).

Because G is compact, S(G/K) it is a countable set in bijection with the set of equivalence
classes of representations ρ ∈ R(G) such that (ρ : σ0) = 1.

Spherical functions defined in Definition 8.33 are generalizations of the zonal functions on
Sn of Definition 8.18. They have some interesting properties, some of which are listed below.
In particular, they are a key ingredient in generalizing the notion of Fourier transform on
the homogeneous space G/K.
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First, ωρ is a continuous function, even a smooth function since G is a Lie group. The
function ωρ is such that ωρ(e) = 1 (where e is the identity element of the group, G), and

ωρ(ust) = ωρ(s) for all s ∈ G and all u, t ∈ K.

In addition, ωρ is of positive type. A function f : G→ C is of positive type iff

n∑
j,k=1

f(s−1
j sk)zjzk ≥ 0,

for every finite set {s1, . . . , sn} of elements of G and every finite tuple (z1, . . . , zn) ∈ Cn.

When L2
C(K\G/K) is commutative, it is the Hilbert sum of all the 1-dimensional sub-

spaces Cωρ for all ρ ∈ R(G) such that dρ = 1. The orthogonal projection of L2
C(K\G/K)

onto Cωρ is given by

g 7→ g ∗ ωρ g ∈ L2
C(K\G/K).

Since Cωρ is an ideal in the algebra L2
C(K\G/K), there is some homomorphism

ξρ : L2
C(K\G/K)→ C such that

g ∗ ωρ = ξρ(g)ωρ g ∈ L2
C(K\G/K).

To be more precise, ξρ has the property

ξρ(g1 ∗ g2) = ξρ(g1)ξρ(g2) for all g1, g2 ∈ L2
C(K\G/K).

In other words, ξρ is a character of the algebra L2
C(K\G/K) (see below for the definition of

characters).

Because the subrepresentation R of G into Lρ is irreducible (if (G/K) is a Gelfand pair,
all nontrivial Lρ are one-dimensional), the function ωρ generates Lρ under left translation.
This means the following: If we recall that for any function f on G,

λs(f)(t) = f(s−1t), s, t ∈ G,

then Lρ is generated by the functions λs(ωρ), as s varies in G.

It can be shown that a (non-identically-zero) function ω in the set CC(K\G/K) of contin-
uous complex-valued functions in L2

C(K\G/K) belongs to S(G/K) iff the functional equation∫
K

ω(xsy) ds = ω(x)ω(y) (∗)

holds for all s ∈ K and all x, y ∈ G.

The space S(G/K) is also in bijection with the characters of the algebra L2
C(K\G/K).
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Definition 8.34. If (G,K) is a Gelfand pair a character of the commutative algebra of
L2
C(K\G/K) is a non-identically-zero linear map ξ : L2

C(K\G/K)→ C such that ξ(f ∗ g) =
ξ(f)ξ(g) for all f, g ∈ L2

C(K\G/K). Let X0 denote the set of characters of L2
C(K\G/K).

Then it can be shown that for every character ξ ∈ X0, there is a unique spherical function
ω ∈ S(G/K) such that

ξ(f) =

∫
G

f(s)ω(s) ds.

It follows that there is a bijection between S(G/K) and X0. All this is explained in Dieudonné
[32] (Chapters 8 and 9) and Dieudonné [34] (Chapter XXII, Sections 6-9).

It is remarkable that fairly general criteria (due to Gelfand) for a pair (G,K) to be a
Gelfand pair exist. This is certainly the case if G is commutative and K = (e); this situation
corresponds to commutative harmonic anaysis. If G is a semisimple compact connected Lie
group and if σ : G → G is an involutive automorphism of G (that is, σ2 = id), if K is the
subgroup of fixed points of σ

K = {s ∈ G | σ(s) = s},

then it can be shown that (G,K) is a Gelfand pair. Involutive automorphims as above were
determined explicitly by E. Cartan.

It turns out that G = SO(n+ 1) and K = SO(n) form a Gelfand pair corresponding to
the above situation (see Dieudonné [32], Chapters 7-8 and Dieudonné [35], Chapter XXIII,
Section 38). In this particular case, ρ = k is any nonnegative integer and Lρ = Ek, the
eigenspace of the Laplacian on Sn corresponding to the eigenvalue −k(n+k−1); all this was
shown in Section 8.5. Therefore, the regular representation of SO(n+1) into Ek = HC

k (Sn) is
irreducible. This can be proved more directly; for example, see Helgason [59] (Introduction,
Theorem 3.1) or Bröcker and tom Dieck [19] (Chapter 2, Proposition 5.10).

The zonal spherical harmonics ωk can be expressed in terms of the ultraspherical poly-
nomials (also called Gegenbauer polynomials) P

(n−1)/2
k (up to a constant factor); this was

discussed in Sections 8.6 and 8.7. The reader should also consult Stein and Weiss [108]

(Chapter 4), Morimoto [86] (Chapter 2) and Dieudonné [32] (Chapter 7). For n = 2, P
1
2
k is

just the ordinary Legendre polynomial (up to a constant factor).

Returning to arbitrary Gelfand pairs (G compact), the Fourier transform is defined as
follows. For any function f ∈ L2

C(K\G/K), the Fourier transform F(f) is a function defined
on the space S(G/K).

Definition 8.35. If (G,K) is a Gelfand pair (with G a compact group), the Fourier trans-
form F(f) of a function f ∈ L2

C(K\G/K) is the function F(f) : S(G/K)→ C given by

F(f)(ω) =

∫
G

f(s)ω(s−1) ds ω ∈ S(G/K).
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More explicitly, because ωρ = 1
nρ
m

(ρ)
11 and m

(ρ)
11 (s−1) = m

(ρ)
11 (s), the Fourier transform F(f)

is the countable family

ρ 7→ 1

nρ

〈
f,m

(ρ)
11

〉
=

∫
G

f(s)ωρ(s
−1) ds

for all ρ ∈ R(G) such that (ρ : σ0) = 1.

This Fourier transform is often called the spherical Fourier transform or spherical trans-
form, as in Helgason [59] (Chapter 4). It appears that it was first introduced by Harish-
Chandra around 1957.

The Fourier transform on L2
C(K\G/K) satisfies the fundamental relation

F(f ∗ g) = F(g ∗ f) = F(f)F(g).

Observe that in order for this equation to hold, convolution has to be commutative. This
is why the Fourier transform is defined on L2

C(K\G/K) rather than the whole of L2
C(G/K).

For a Gelfand pair, convolution on L2
C(K\G/K) is commutative.

The notion of Gelfand pair and of the Fourier transform can be generalized to locally-
compact unimodular groups that are not necessary compact, but we will not discuss this
here. Let us just say that when G is a commutative locally-compact group and K = (e),
then Equation (∗) implies that

ω(xy) = ω(x)ω(y),

which means that the functions ω are characters of G, so S(G/K) is the Pontrjagin dual

group Ĝ of G, which is the group of characters of G (continuous homomorphisms of G into
the group U(1)). In this case, the Fourier transform F(f) is defined for every function
f ∈ L1

C(G) as a function on the characters of G. This is the case of commutative harmonic
analysis, as discussed in Folland [44] and Deitmar [30]. For more on Gelfand pairs, curious
readers may consult Dieudonné [32] (Chapters 8 and 9) and Dieudonné [34] (Chapter XXII,
Sections 6-9). Another approach to spherical functions (not using Gelfand pairs) is discussed
in Helgason [59] (Chapter 4). Helgason [58] contains a short section on Gelfand pairs (chapter
III, Section 12).

The material in this section belongs to the overlapping areas of representation theory and
noncommutative harmonic analysis . These are deep and vast areas. Besides the references
cited earlier, for noncommutative harmonic analysis, the reader may consult Knapp [69],
Folland [44], Taylor [109], or Varadarajan [112], but they may find the pace rather rapid.
Another great survey on both topics is Kirillov [67], although it is not geared for the beginner.
In a different direction, namely Fourier analysis on finite groups, Audrey Terras’s book [110]
contains some fascinating material.
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8.12 Problems

Problem 8.1. Let E be a complex vector space of dimension n.

(i) Show that that given any basis (e1, . . . , en) of E, the linear map h : Cn → E defined
such that

h((z1, . . . , zn)) = z1e1 + · · ·+ znen

is a homeomorphism (using the sup-norm on Cn).

(ii) Use Part (i.) and the fact that any two norms on a finite dimensional vector space
over R or C are equivalent to prove that E is complete.

Problem 8.2. Let E be a normed vector space. Let K be a nonempty index set. Show
that for every bijection ϕ : K → K (intuitively, a reordering of K), the family (uk)k∈K is
summable iff the family (ul)l∈ϕ(K) is summable, and if so, they have the same sum.

Problem 8.3. Prove Proposition 8.1.

Problem 8.4. Let Θ be a function of the independent variable θ. Take second order differ-
ential equation

sin2 θΘ′′ + sin θ cos θΘ′ + (k(k + 1) sin2 θ −m2)Θ = 0,

and use the change of variable t = cos θ to obtain

(1− t2)u′′ − 2tu′ +

(
k(k + 1)− m2

1− t2

)
u = 0.

Then make the substitution
u(t) = (1− t2)

m
2 v(t);

to obtain
(1− t2)v′′ − 2(m+ 1)tv′ + (k(k + 1)−m(m+ 1))v = 0.

Hint . See Lebedev [77], Chapter 7, Section 7.12.

Problem 8.5. Recall that the Legendre polynomial Pn(t) is defined as

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n.

(i) Show that Pk(t) is a solution to the second order differential equation

(1− t2)v′′ − 2tv′ + k(k + 1)v = 0.

(ii) Show that the Legendre polynomials satisfy the following recurrence relation:

P0 = 1

P1 = t

(n+ 1)Pn+1 = (2n+ 1)tPn − nPn−1 n ≥ 1;



8.12. PROBLEMS 369

Hint . See Lebedev [77], Chapter 4, Section 4.3.

Problem 8.6. Recall that the associated Legendre function P k
m(t) is defined by

P k
m(t) = (1− t2)

m
2
dm

dtm
(Pk(t)),

where Pk(t) is the Legendre polynomial of order k.

(i) For fixed m ≥ 0, prove the recurrence relation

(k −m+ 1)Pm
k+1(t) = (2k + 1)tPm

k (t)− (k +m)Pm
k−1(t), k ≥ 1.

(ii) Fore fixed k ≥ 2, prove the recurrence relation

Pm+2
k (t) =

2(m+ 1)t

(t2 − 1)
1
2

Pm+1
k (t) + (k −m)(k +m+ 1)Pm

k (t), 0 ≤ m ≤ k − 2.

Hint . See Lebedev [77], Chapter 7, Section 7.12.

Problem 8.7. Let M be a n-dimensional Riemannian manifold with chart (U,ϕ). If for
p ∈M ((

∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

)
denotes the basis of TpM induced by ϕ, the local expression of the metric g at p is given by
the n× n matrix (gij)p, with

(gij)p = gp

((
∂

∂xi

)
p

,

(
∂

∂xj

)
p

)
.

Its inverse is denoted (gij)p. We also let |g|p = det(gij)p. Show that for every function
f ∈ C∞(M), in local coordinates given by the chart (U,ϕ), we have

grad f =
∑
ij

gij
∂f

∂xj

∂

∂xi
,

where as usual
∂f

∂xj
(p) =

(
∂

∂xj

)
p

f =
∂(f ◦ ϕ−1)

∂uj
(ϕ(p)),

and (u1, . . . , un) are the coordinate functions in Rn.
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Problem 8.8. Let M be a Riemannian manifold of dimension n with chart (U,ϕ). Let

X =
n∑
i=1

Xi
∂

∂xi
,

be a vector field expressed over this chart. Recall that the Christoffel symbol Γkij is defined
as

Γkij =
1

2

n∑
l=1

gkl (∂igjl + ∂jgil − ∂lgij) , (∗)

where ∂kgij = ∂
∂xk

(gij). Show that

divX =
n∑
i=1

[
∂Xi

∂xi
+

n∑
j=1

ΓiijXj

]
,

and that

∆f =
∑
i,j

gij

[
∂2f

∂xi∂xj
−

n∑
k=1

Γkij
∂f

∂xk

]
,

whenever f ∈ C∞(M).

Hint . See Pages 86 and 87 of O’Neill [90].

Problem 8.9. Let M be a Riemannian manifold of dimension n with chart (U,ϕ). For
every vector field X ∈ X(M) expressed in local coordinates as

X =
n∑
i=1

Xi
∂

∂xi
,

show that

divX =
1√
|g|

n∑
i=1

∂

∂xi

(√
|g|Xi

)
,

and for every function f ∈ C∞(M), show that

∆f =
1√
|g|

∑
i,j

∂

∂xi

(√
|g| gij ∂f

∂xj

)
.

Hint . See Helgason [59] ,Chapter II, Lemma 2.5, Postnikov [94], Chapter 13, Section 6, and
O’Neill [90] ,Chapter 7, Exercise 5.

Problem 8.10. Let M be a Riemannian manifold with metric g. For any two functions
f, h ∈ C∞(M), and any vector field X ∈ X(M), show that

div(fX) = fdivX +X(f) = fdivX + g(grad f,X)

grad f (h) = g(grad f, gradh) = gradh (f).
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Problem 8.11. Recall that ak,n denotes the dimension of Hk(n). Show that

ak,n+1 =

(
n+ k − 1

n− 1

)
+

(
n+ k − 2

n− 1

)
for k ≥ 2.

Hint . See Morimoto [86], Chapter 2, Theorem 2.4, or Dieudonné [32], Chapter 7, Formula
99.

Problem 8.12. Let C(Sn) the space of continuous (real) functions on Sn. Show that C(Sn)
is dense in L2(Sn), where L2(Sn) is the space of (real) square-integrable functions on the
sphere Sn. with norm given by

〈f, f〉Sn =

∫
Sn
f 2 VolSn .

Problem 8.13. Prove Theorem 8.18.

Hint . See Lang [73], Chapter V, Proposition 1.9.

Problem 8.14. Prove Proposition 8.22.

Hint . See Morimoto [86], Chapter 2, Lemma 1.19 and Lemma 2.20.

Problem 8.15. Prove Propositions 8.23 and 8.25.

Hint . See Morimoto [86] Chapter 2, Lemma 2.21 and Morimoto [86] Chapter 2, Lemma 2.23.

Problem 8.16. Prove Theorem 8.30.

Hint . See Stein and Weiss [108],Chapter 4, Theorem 2.12.

Problem 8.17. Show that the Gegenbauer polynomial Pk,n is given by Rodrigues’ formula:

Pk,n(t) =
(−1)k

2k
Γ
(
n
2

)
Γ
(
k + n

2

) 1

(1− t2)
n−2

2

dk

dtk
(1− t2)k+n−2

2 ,

with n ≥ 2.

Hint . See Morimoto [86], Chapter 2, Theorem 2.35.

Problem 8.18. Prove Proposition 8.32.

Hint . See Morimoto [86], Chapter 2, Theorem 2.34.

Problem 8.19. Prove Proposition 8.34.

Hint . See Morimoto [86], Chapter 2, Theorem 2.53 and Theorem 2.55.
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Chapter 9

Operators on Riemannian Manifolds;
Hodge Laplacian, Laplace-Beltrami
Laplacian, The Bochner Laplacian,
and Weitzenböck Formulae

The Laplacian is a very important operator because it shows up in many of the equations
used in physics to describe natural phenomena such as heat diffusion or wave propagation.
Therefore, it is highly desirable to generalize the Laplacian to functions defined on a manifold.
Furthermore, in the late 1930’s, Georges de Rham (inspired by Élie Cartan) realized that it
was fruitful to define a version of the Laplacian operating on differential forms, because of
a fundamental and almost miraculous relationship between harmonics forms (those in the
kernel of the Laplacian) and the de Rham cohomology groups on a (compact, orientable)
smooth manifold. Indeed, as we will see in Section 9.6, for every cohomology group Hk

DR(M),
every cohomology class [ω] ∈ Hk

DR(M) is represented by a unique harmonic k-form ω. The
connection between analysis and topology lies deep and has many important consequences.
For example, Poincaré duality follows as an “easy” consequence of the Hodge theorem.

Technically, the Hodge Laplacian can be defined on differential forms using the Hodge ∗
operator (Section 3.5). On functions, there is an alternate and equivalent definition of the
Laplacian using only the covariant derivative and obtained by generalizing the notions of
gradient and divergence to functions on manifolds.

Another version of the Laplacian on k-forms can be defined in terms of a generalization
of the Levi-Civita connection ∇ : X(M)×X(M)→ X(M) to k-forms viewed as a linear map

∇ : Ak(M)→ HomC∞(M)(X(M),Ak(M)),

and in terms of a certain adjoint ∇∗ of ∇, a linear map

∇∗ : HomC∞(M)(X(M),Ak(M))→ Ak(M).

373
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For this, we will define an inner product (−,−) on k-forms and an inner product ((−,−))
on HomC∞(M)(X(M),Ak(M)) and define ∇∗ so that

(∇∗A, ω) = ((A,∇ω))

for all A ∈ HomC∞(M)(X(M),Ak(M)) and all ω ∈ Ak(M).

We obtain the Bochner Laplacian (or connection Laplacian ) ∇∗∇. Then it is natural to
wonder how the Hodge Laplacian ∆ differs from the connection Laplacian ∇∗∇?

Remarkably, there is a formula known as Weitzenböck’s formula (or Bochner’s formula)
of the form

∆ = ∇∗∇+ C(R∇),

where C(R∇) is a contraction of a version of the curvature tensor on differential forms (a
fairly complicated term). In the case of one-forms,

∆ = ∇∗∇+ Ric,

where Ric is a suitable version of the Ricci curvature operating on one-forms.

Weitzenböck-type formulae are at the root of the so-called “Bochner technique,” which
consists in exploiting curvature information to deduce topological information. For example,
if the Ricci curvature on a compact orientable Riemannian manifold is strictly positive, then
H1

DR(M) = (0), a theorem due to Bochner.

9.1 The Gradient and Hessian Operators on Rieman-

nian Manifolds

In preparation for defining the (Hodge) Laplacian, we define the gradient of a function on a
Riemannian manifold, as well as the Hessian, which plays an important role in optimization
theory. Unlike the situation where M is a vector space (M is flat), the Riemannian metric
on M is critically involved in the definition of the gradient and of the Hessian.

If (M, 〈−,−〉) is a Riemannian manifold of dimension n, then for every p ∈M , the inner
product 〈−,−〉p on TpM yields a canonical isomorphism [ : TpM → T ∗pM , as explained in

Sections 2.2 and 10.7. Namely, for any u ∈ TpM , u[ = [(u) is the linear form in T ∗pM defined
by

u[(v) = 〈u, v〉p, v ∈ TpM.

Recall that the inverse of the map [ is the map ] : T ∗pM → TpM . As a consequence, for every
smooth function f ∈ C∞(M), we get smooth vector field grad f = (df)] defined so that

(grad f)p = (dfp)
].
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Definition 9.1. For every smooth function f over a Riemannian manifold (M, 〈−,−〉), the
vector field grad f defined by

〈(grad f)p, u〉p = dfp(u), for all u ∈ TpM, and all p ∈M,

is the gradient of the function f .

Definition 9.2. Let (M, 〈−,−〉) be a Riemannian manifold. For any vector field X ∈ X(M),
The one-form X[ ∈ A1(M) is given by

(X[)p = (Xp)
[.

The one-form X[ is uniquely defined by the equation

(X[)p(v) = 〈Xp, v〉p, for all p ∈M and all v ∈ TpM.

In view of this equation, the one-form X[ is an insertion operator in the sense discussed in
Section 3.6 just after Proposition 3.22, so it is also denoted by iXg, where g = 〈−,−〉 is the
Riemannian metric on M .

In the special case X = grad f , we have

(grad f)[p(v) = 〈(grad f)p, v〉 = dfp(v),

and since dd = 0, we deduce that
d(grad f)[ = 0.

Therefore, for an arbitrary vector field X, the 2-form dX[ measures the extent to which X
is a gradient field.

If (U,ϕ) is a chart of M , with p ∈M , and if((
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

)
denotes the basis of TpM induced by ϕ, the local expression of the metric g at p is given by
the n× n matrix (gij)p, with

(gij)p = gp

((
∂

∂xi

)
p

,

(
∂

∂xj

)
p

)
.

The inverse is denoted by (gij)p. We often omit the subscript p and observe that for every
function f ∈ C∞(M),

grad f =
∑
ij

gij
∂f

∂xj

∂

∂xi
.
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It is instructive to look at the following special case of the preceding formula. Let
f ∈ C∞(M), where M is a two-dimensional manifold. For each p ∈ M , let { ∂

∂x1
, ∂
∂x2
} be

basis for the tangent space Tp(M). Let v = a ∂
∂x1

+ b ∂
∂x2
∈ Tp(M). Then

grad f =

(
g11 ∂f

∂x1

+ g12 ∂f

∂x2

)
∂

∂x1

+

(
g21 ∂f

∂x1

+ g22 ∂f

∂x2

)
∂

∂x2

.

Since g12 = g21, g12 = g21, and(
g11 g12

g21 g22

)(
g11 g12

g21 g22

)
=

(
g11 g12

g21 g22

)(
g11 g12

g21 g22

)
=

(
1 0
0 1

)
,

we discover that

〈grad f, v〉 =

〈(
g11 ∂f

∂x1

+ g12 ∂f

∂x2

)
∂

∂x1

+

(
g21 ∂f

∂x1

+ g22 ∂f

∂x2

)
∂

∂x2

, a
∂

∂x1

+ b
∂

∂x2

〉
= a

(
g11 ∂f

∂x1

+ g12 ∂f

∂x2

)
g11 + b

(
g11 ∂f

∂x1

+ g12 ∂f

∂x2

)
g12

+ a

(
g21 ∂f

∂x1

+ g22 ∂f

∂x2

)
g12 + b

(
g21 ∂f

∂x1

+ g22 ∂f

∂x2

)
g22

=
[
a(g11g11 + g21g21) + b(g11g12 + g21g22)

] ∂f
∂x1

+
[
a(g12g11 + g22g21) + b(g12g21 + g22g22)

] ∂f
∂x2

= a
∂f

∂x1

+ b
∂f

∂x2

=
(
∂f
∂x1
, ∂f
∂x2

)(a
b

)
= dfp(v).

We now define the Hessian of a function. For this we assume that ∇ is the Levi-Civita
connection.

Definition 9.3. The Hessian Hess(f) (or ∇2(f)) of a function f ∈ C∞(M) is the (0, 2)-
tensor defined by

Hess(f)(X, Y ) = X(Y (f))− (∇XY )(f) = X(df(Y ))− df(∇XY ),

for all vector fields X, Y ∈ X(M).

Remark: The Hessian of f is defined in various ways throughout the literature. For our
purposes, Definition 9.3 is sufficient, but for completeness sake, we point out two alternative
formulations of Hess(f)(X, Y ).
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The first reformulation utilizes the covariant derivative of a one-form. Let X ∈ X(M)
and θ ∈ A1(M). The covariant derivative ∇Xθ of any one-form may be defined as

(∇Xθ)(Y ) := X(θ(Y ))− θ(∇XY ).

Thus the Hessian of f may be written as

Hess(f)(X, Y ) = (∇Xdf)(Y ).

The Hessian of f also appears in the literature as

Hess(f)(X, Y ) = (∇df)(X, Y ) = (∇Xdf)(Y ),

which means that the (0, 2)-tensor Hess(f) is given by

Hess(f) = ∇df.

Since by definition ∇Xf = df(X), we can also write Hess(f) = ∇∇f , but we find this
expression confusing.

Proposition 9.1. The Hessian is given by the equation

Hess(f)(X, Y ) = 〈∇X(grad f), Y 〉, X, Y ∈ X(M).

Proof. We have

X(Y (f)) = X(df(Y ))

= X(〈grad f, Y 〉)
= 〈∇X(grad f), Y 〉+ 〈grad f,∇XY 〉
= 〈∇X(grad f), Y 〉+ (∇XY )(f)

which yields

〈∇X(grad f), Y 〉 = X(Y (f))− (∇XY )(f) = Hess(f)(X, Y ),

as claimed.

The Hessian can also be defined in terms of Lie derivatives; this is the approach followed
by Petersen [92] (Chapter 2, Section 1.3). This approach utilizes the observation that the
Levi-Civita connection can be defined in terms of the Lie derivative of the Riemannian metric
g on M by the equation

2g(∇XY, Z) = (LY g)(X,Z) + (d(iY g))(X,Z), X, Y, Z ∈ X(M).

Proposition 9.2. The Hessian of f is given by

Hess(f) =
1

2
Lgrad f g.
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Proof. To prove the above equation, we use the fact that d(igrad fg) = d(grad f)[ = 0 and
Proposition 9.1. We have

2Hess(f)(X, Y ) = 2g(∇X(grad f), Y ), by Proposition 9.1

= (Lgrad f g)(X, Y ) + d(igrad fg)(X, Y )

= (Lgrad f g)(X, Y ),

as claimed.

Since ∇ is torsion-free, we get

Hess(f)(X, Y ) = X(Y (f))− (∇XY )(f) = Y (X(f))− (∇YX)(f) = Hess(f)(Y,X),

which means that the Hessian is a symmetric (0, 2)-tensor.

Since the Hessian is a symmetric bilinear form, it is determined by the quadratic form
X 7→ Hess(f)(X,X), and it can be recovered by polarization from this quadratic form.
There is also a way to compute Hess(f)(X,X) using geodesics. When geodesics are easily
computable, this is usually the simplest way to compute the Hessian.

Proposition 9.3. Given any p ∈ M and any tangent vector X ∈ TpM , if γ is a geodesic
such that γ(0) = p and γ′(0) = X, then at p, we have

Hess(f)p(X,X) =
d2

dt2
f(γ(t))

∣∣∣∣
t=0

.

Proof. To prove the above formula, following Jost [66], we have

X(X(f))(p) = γ′〈(grad f)p, γ
′〉

= γ′
(
d

dt
f(γ(t))

∣∣∣∣
t=0

)
=

d2

dt2
f(γ(t))

∣∣∣∣
t=0

.

Furthermore, since γ is a geodesic, ∇γ′γ
′ = 0, so we get

Hess(f)p(X,X) = X(X(f))(p)− (∇XX)(f)(p) = X(X(f))(p),

which proves our claim.

Proposition 9.4. In local coordinates with respect to a chart, if we write

df =
n∑
i=1

∂f

∂xi
dxi,
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then

Hess f =
n∑

i,j=1

(
∂2f

∂xi∂xj
−

n∑
k=1

∂f

∂xk
Γkij

)
dxi ⊗ dxj,

where the Γkij are the Christoffel symbols of the connection in the chart, namely

Γkij =
1

2

n∑
l=1

gkl (∂igjl + ∂jgil − ∂lgij) , (∗)

with ∂kgij = ∂
∂xk

(gij).

The formula of Proposition 9.4 is shown in O’Neill [90]. If (gij) is the standard Euclidean
metric, the Christoffel symbols vanish and O’Neill’s formula becomes

Hess f =
n∑

i,j=1

∂2f

∂xi∂xj
dxi ⊗ dxj.

For another example of the preceding formula, take f ∈ C∞(R2) and let us compute Hess f

in terms of polar coordinates (r, θ), where x = r cos θ, and y = r sin θ. Note that

∂

∂x1

=
∂

∂r
= (cos θ, sin θ)

∂

∂x2

=
∂

∂θ
= (−r sin θ, r cos θ),

which in turn gives

gij =

(
1 0
0 r2

)
gij =

(
1 0
0 r−2

)
.

A computation shows that that the only nonzero Christoffel symbols were

Γ2
12 = Γ2

21 =
1

r
Γ1

22 = −r.

Hence

Hess f =
2∑

i,j=1

(
∂2f

∂xi∂xj
−

2∑
k=1

∂f

∂xk
Γkij

)
dxi ⊗ dxj

=
∂2f

∂r2
dr ⊗ dr +

(
∂2f

∂r∂θ
− ∂f

∂θ
Γ2

12

)
dr ⊗ dθ

+

(
∂2f

∂θ∂r
− ∂f

∂θ
Γ2

21

)
dθ ⊗ dr +

(
∂2f

∂2θ
− ∂f

∂r
Γ1

22

)
dθ ⊗ dθ

=
∂2f

∂r2
dr ⊗ dr +

(
∂2f

∂r∂θ
− 1

r

∂f

∂θ

)
dr ⊗ dθ

+

(
∂2f

∂r∂θ
− 1

r

∂f

∂θ

)
dθ ⊗ dr +

(
∂2f

∂2θ
+ r

∂f

∂r

)
dθ ⊗ dθ.
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If we write X = x1
∂
∂r

+ x2
∂
∂θ

and Y = y1
∂
∂r

+ y2
∂
∂θ

, then

Hess f(X, Y ) =
(
x1 x2

)( ∂2f
∂r2

∂2f
∂r∂θ
− 1

r
∂f
∂θ

∂2f
∂r∂θ
− 1

r
∂f
∂θ

∂2f
∂2θ

+ r ∂f
∂r

)(
y1

y2

)
.

Definition 9.4. A function f ∈ C∞(M) is convex (resp. strictly convex ) iff its Hessian
Hess(f) is positive semi-definite (resp. positive definite).

The computation of the gradient of a function defined either on the Stiefel manifold or on
the Grassmannian manifold is instructive. Let us first consider the Stiefel manifold S(k, n).
Recall that S(k, n) is the set of all orthonormal k-frames, where an orthonormal k-frame is
a k-tuples of orthonormal vectors (u1, . . . , uk) with ui ∈ Rn. Then SO(n) acts transitively
on S(k, n) via the action · : SO(n)× S(k, n)→ S(k, n)

R · (u1, . . . , uk) = (Ru1, . . . , Ruk).

and that the stabilizer of this action is

H =

{(
I 0
0 R

) ∣∣∣∣ R ∈ SO(n− k)

}
.

It follows (see Warner [115], Chapter 3, and Gallier and Quaintance [49]) that S(k, n) ∼=
G/H, with G = SO(n) and H ∼= SO(n− k). Observe that the points of G/H ∼= S(k, n) are
the cosets QH, with Q ∈ SO(n). If we write Q = [Y Y⊥], where Y consists of the first k
columns of Q and Y⊥ consists of the last n− k columns of Q, it is clear that [Q] is uniquely
determined by Y . We also found that g/h ∼= m where

m =

{(
T −A>
A 0

) ∣∣∣∣ T ∈ so(k), A ∈ Mn−k,k(R)

}
.

The inner product on m is given by

〈X, Y 〉 = −1

2
tr(XY ) =

1

2
tr(X>Y ), X, Y ∈ m.

The vector space m is the tangent space ToS(k, n) to S(k, n) at o = [H], the coset of the
point corresponding to H. For any other point [Q] ∈ G/H ∼= S(k, n), the tangent space
T[Q]S(k, n) is given by

T[Q]S(k, n) =

{
Q

(
S −A>
A 0

) ∣∣∣∣ S ∈ so(k), A ∈ Mn−k,k(R)

}
.

For every n× k matrix Y ∈ S(k, n), this observation implies that tangent vectors to S(k, n)
at Y are of the form

X = Y S + Y⊥A,
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where S is any k× k skew-symmetric matrix, A is any (n− k)× k matrix, and [Y Y⊥] is an
orthogonal matrix. Given any differentiable function F : S(k, n) → R, if we let FY be the
n× k matrix of partial derivatives

FY =

(
∂F

∂Yij

)
,

we then have
dFY (X) = tr(F>Y X).

The gradient grad(F )Y of F at Y is the uniquely defined tangent vector to S(k, n) at Y such
that

〈grad(F )Y , X〉 = dFY (X) = tr(F>Y X), for all X ∈ TY S(k, n).

For short, if write Z = grad(F )Y , then it can be shown that Z must satisfy the equation

tr(F>Y X) = tr
(
Z>
(
I − 1

2
Y Y >

)
X
)
,

and since Z is of the form Z = Y S + Y⊥A, and since

Y >Y = Ik×k, Y >⊥ Y = 0, Y >⊥ Y⊥ = I(n−k)×(n−k),

we get

tr(F>Y X) = tr
(

(S>Y > + A>Y >⊥ )
(
I − 1

2
Y Y >

)
X
)

= tr
((1

2
S>Y > + A>Y >⊥

)
X
)

for all X ∈ TY S(k, n). The above equation implies that we must find Z = Y S + Y⊥A such
that

F>Y =
1

2
S>Y > + A>Y >⊥ ,

which is equivalent to

FY =
1

2
Y S + Y⊥A.

From the above equation, we deduce that

Y >⊥ FY = A

Y >FY =
1

2
S.

Since S is skew-symmetric, we get

F>Y Y = −1

2
S,

so
S = Y >FY − F>Y Y,
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and thus,

Z = Y S + Y⊥A

= Y (Y >FY − F>Y Y ) + Y⊥Y
>
⊥ FY

= (Y Y > + Y⊥Y
>
⊥ )FY − Y F>Y Y

= FY − Y F>Y Y.

Therefore, we proved that the gradient of F at Y is given by

grad(F )Y = FY − Y F>Y Y.

Let us now turn to the Grassmannian G(k, n). Recall that G(k, n) is the set of all linear
k-dimensional subspaces of Rn, where the k-dimensional subspace U of R is spanned by k
linearly independent vectors u1, . . . , uk in Rn; write U = span(u1, . . . , uk). It can be shown
that the action · : SO(n)×G(k, n)→ G(k, n)

R · U = span(Ru1, . . . , Ruk).

is well-defined, transitive, and has the property that stabilizer of U is the set of matrices in
SO(n) with the form

R =

(
S 0
0 T

)
,

where S ∈ O(k), T ∈ O(n− k) and det(S) det(T ) = 1. We denote this group by
S(O(k)×O(n− k)). Since SO(n) is a connected, compact semisimple Lie group whenever
n ≥ 3, This implies that

G(k, n) ∼= SO(n)/S(O(k)×O(n− k))

is a naturally reductive homogeneous manifold whenever n ≥ 3. It can be shown that
g/h ∼= m where

m =

{(
0 −A>
A 0

) ∣∣∣∣ A ∈ Mn−k,k(R)

}
;

see Gallier and Quaintance [49]. For any point [Q] ∈ G(k, n) with Q ∈ SO(n), if we write
Q = [Y Y⊥], where Y denotes the first k columns of Q and Y⊥ denotes the last n−k columns
of Q, the tangent vectors X ∈ T[Q]G(k, n) are of the form

X = [Y Y⊥]

(
0 −A>
A 0

)
= [Y⊥A − Y A>], A ∈Mn−k,k(R).

This implies that the tangent vectors to G(k, n) at Y are of the form

X = Y⊥A,
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where A is any (n−k)×k matrix. We would like to compute the gradient at Y of a function
F : G(k, n)→ R. Again, if write Z = grad(F )Y , then Z must satisfy the equation

tr(F>Y X) = 〈Z,X〉 = tr(Z>X), for all X ∈ T[Y ]G(k, n).

Since Z is of the form Z = Y⊥A, we get

tr(F>Y X) = tr(A>Y >⊥ X), for all X ∈ T[Y ]G(k, n),

which implies that
F>Y = A>Y >⊥ ;

that is,
FY = Y⊥A.

The above yields
A = Y >⊥ FY ,

so we have
Z = Y⊥Y

>
⊥ FY = (I − Y Y >)FY .

Therefore, the gradient of F at Y is given by

grad(F )Y = FY − Y Y >FY .

Since the geodesics in the Stiefel manifold and in the Grassmannian can be determined
explicitly (see Gallier and Quaintance [49]), we can find the Hessian of a function using the
formula

Hess(f)p(X,X) =
d2

dt2
f(γ(t))

∣∣∣∣
t=0

.

Let us do this for a function F defined on the Grassmannian, the computation on the Stiefel
manifold being more complicated; see Edelman, Arias and Smith [42] for details.

For any two tangent vectors X1, X2 ∈ TYG(k, n) to G(k, n) at Y , define FY Y (X1, X2) by

FY Y (X1, X2) =
∑
ij,kl

(FY Y )ij,kl(X1)ij(X2)kl,

with

(FY Y )ij,kl =
∂2F

∂Yij∂Ykl
.

By using Proposition 9.3, Edelman, Arias and Smith [42] find that a somewhat lengthy
computation yields

Hess(F )Y (X1, X2) = FY Y (X1, X2)− tr(X>1 X2Y
>FY ),

where

FY =

(
∂F

∂Yij

)
,

as above, when we found a formula for the gradient of F at Y .
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9.2 The Hodge ∗ Operator on Riemannian Manifolds

Let M be an n-dimensional Riemann manifold. By Section 2.1 the inner product 〈−,−〉p on
TpM induces an inner product on T ∗pM defined as follows.

Definition 9.5. For any Riemannian manifold M , the inner product 〈−,−〉p on TpM induces
an inner product on T ∗pM given by

〈w1, w2〉 := 〈w]1, w
]
2〉, w1, w2 ∈ T ∗pM.

This inner product on T ∗pM defines an inner product on
∧k T ∗pM , with

〈u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk〉∧ = det(〈ui, vj〉),

for all ui, vi ∈ T ∗pM , and extending 〈−,−〉 by bilinearity.

Therefore, for any two k-forms ω, η ∈ Ak(M), we get the smooth function 〈ω, η〉 given
by

〈ω, η〉(p) = 〈ωp, ηp〉p.

Furthermore, if M is oriented, then we can apply the results of Section 3.5 so the vector
bundle T ∗M is oriented (by giving T ∗pM the orientation induced by the orientation of TpM ,
for every p ∈M), and for every p ∈M , we get a Hodge ∗-operator

∗ :
k∧
T ∗pM →

n−k∧
T ∗pM.

Then given any k-form ω ∈ Ak(M), we can define ∗ω by

(∗ω)p = ∗(ωp), p ∈M.

We have to check that ∗ω is indeed a smooth form in An−k(M), but this is not hard to do
in local coordinates (for help, see Morita [87], Chapter 4, Section 1). Therefore, if M is a
Riemannian oriented manifold of dimension n, we have Hodge ∗-operators

∗ : Ak(M)→ An−k(M).

Observe that ∗1 is just the volume form VolM induced by the metric. Indeed, we know
from Section 2.2 that in local coordinates x1, . . . , xn near p, the metric on T ∗pM is given by
the inverse (gij) of the metric (gij) on TpM , and by the results of Section 3.5 (Proposition
3.17),

∗(1) =
1√

det(gij)
dx1 ∧ · · · ∧ dxn

=
√

det(gij) dx1 ∧ · · · ∧ dxn = VolM .

Proposition 3.16 yields the following:
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Proposition 9.5. If M is a Riemannian oriented manifold of dimension n, then we have
the following properties:

(i) ∗(fω + gη) = f ∗ ω + g ∗ η, for all ω, η ∈ Ak(M) and all f, g ∈ C∞(M).

(ii) ∗∗ = (−id)k(n−k).

(iii) ω ∧ ∗η = η ∧ ∗ω = 〈ω, η〉VolM , for all ω, η ∈ Ak(M).

(iv) ∗(ω ∧ ∗η) = ∗(η ∧ ∗ω) = 〈ω, η〉, for all ω, η ∈ Ak(M).

(v) 〈∗ω, ∗η〉 = 〈ω, η〉, for all ω, η ∈ Ak(M).

Recall that exterior differentiation d is a map d : Ak(M) → Ak+1(M). Using the Hodge
∗-operator, we can define an operator δ : Ak(M)→ Ak−1(M) that will turn out to be adjoint
to d with respect to an inner product on A•(M).

Definition 9.6. Let M be an oriented Riemannian manifold of dimension n. For any k,
with 1 ≤ k ≤ n, let

δ = (−1)n(k+1)+1 ∗ d ∗ .
Clearly, δ : Ak(M)→ Ak−1(M), and δ = 0 on A0(M) = C∞(M).

Here is an example of Definition 9.6. Let M = R3 and ω = x dx ∧ dy. Since {dx, dy, dz}
is an orthonormal basis of T ∗pR3, we apply Proposition 9.5 (i) and the calculations of Section
3.5 to discover that

∗x dx ∧ dy = x ∗ dx ∧ dy = x dz.

Then

d(x dz) = d(x) ∧ dz = dx ∧ dz,

and

∗ dx ∧ dz = −dy.

Since n = 3 and k = 2, these calculations imply that

δ x dx ∧ dy = (−1)3(3)+1(−dy) = −dy.

By using the definition of δ, the fact that d ◦ d = 0, and Proposition 9.5 (ii), it is a easy
to prove the following proposition.

Proposition 9.6. Let M be an oriented Riemannian manifold of dimension n. Let d the
exterior derivative as defined in Definition 4.9. Let δ be as defined in Definition 9.6. Then

∗δ = (−1)kd∗, δ∗ = (−1)k+1 ∗ d, δ ◦ δ = 0.
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9.3 The Hodge Laplacian and the Hodge Divergence

Operators on Riemannian Manifolds

Using d and δ, we can generalize the Laplacian to an operator on differential forms.

Definition 9.7. Let M be an oriented Riemannian manifold of dimension n. The Hodge
Laplacian or Laplace-Beltrami operator , for short Laplacian, is the operator ∆: Ak(M) →
Ak(M) defined by

∆ = dδ + δd.

A form, ω ∈ Ak(M) such that ∆ω = 0, is a harmonic form. In particular, a function
f ∈ A0(M) = C∞(M) such that ∆f = 0 is called a harmonic function.

To demonstrate the Hodge Laplacian, we let M = R3 and calculate ∆ω, where

ω = f12 dx ∧ dy + f13 dx ∧ dz + f23 dy ∧ dz.

We first determine dδω. Since n = 3 and k = 2, δ = ∗ d ∗. Since dx, dy, dz is an orthonormal
basis, we use the calculations of Section 3.5 and Proposition 9.5 (i) to determine δω. Note
that

∗ω = f12 ∗ dx ∧ dy + f13 ∗ dx ∧ dz + f23 ∗ dy ∧ dz = f12 dz − f13 dy + f23 dx.

Then

d(f12 dz − f13 dy + f23 dx) =

(
−∂f13

∂x
− ∂f23

∂y

)
dx ∧ dy +

(
∂f12

∂x
− ∂f23

∂z

)
dx ∧ dz

+

(
∂f12

∂y
+
∂f13

∂z

)
dy ∧ dz,

and

δω = ∗d(f12 dz − f13 dy + f23 dx)

=

(
−∂f13

∂x
− ∂f23

∂y

)
dz −

(
∂f12

∂x
− ∂f23

∂z

)
dy +

(
∂f12

∂y
+
∂f13

∂z

)
dx.

Thus

dδω =

(
−∂

2f13

∂x2
− ∂2f23

∂x∂y
− ∂2f12

∂y∂z
− ∂2f13

∂z2

)
dx ∧ dz

+

(
−∂

2f13

∂x∂y
− ∂2f23

∂y2
+
∂2f12

∂x∂z
− ∂2f23

∂z2

)
dy ∧ dz

+

(
−∂

2f12

∂x2
+
∂2f23

∂x∂z
− ∂2f12

∂y2
− ∂2f13

∂y∂z

)
dx ∧ dy.



9.3. THE HODGE LAPLACIAN AND THE HODGE DIVERGENCE OPERATORS 387

It remains to compute δdω. Observe that

dω =

(
∂f12

∂z
− ∂f13

∂y
+
∂f23

∂x

)
dx ∧ dy ∧ dz.

Since dω is a three form, δ = (−1) ∗ d ∗. Once again we go through a three step process to
calculate δ. First

∗ dω =
∂f12

∂z
− ∂f13

∂y
+
∂f23

∂x
.

Next

d ∗ dω =

(
∂2f12

∂x∂z
− ∂2f13

∂x∂y
+
∂2f23

∂x2

)
dx+

(
∂2f12

∂y∂z
− ∂2f13

∂y2
+
∂2f23

∂x∂y

)
dy

+

(
∂2f12

∂z2
− ∂2f13

∂y∂z
+
∂2f23

∂x∂z

)
dz.

Lastly

δdω = (−1) ∗ d ∗ dω = −
(
∂2f12

∂x∂z
− ∂2f13

∂x∂y
+
∂2f23

∂x2

)
dy ∧ dz

+

(
∂2f12

∂y∂z
− ∂2f13

∂y2
+
∂2f23

∂x∂y

)
dx ∧ dz −

(
∂2f12

∂z2
− ∂2f13

∂y∂z
+
∂2f23

∂x∂z

)
dx ∧ dy.

Finally we discover that

∆ω = dδω + δdω

=

(
−∂

2f13

∂x2
− ∂2f23

∂x∂y
− ∂2f12

∂y∂z
− ∂2f13

∂z2

)
dx ∧ dz

+

(
−∂

2f13

∂x∂y
− ∂2f23

∂y2
+
∂2f12

∂x∂z
− ∂2f23

∂z2

)
dy ∧ dz

+

(
−∂

2f12

∂x2
+
∂2f23

∂x∂z
− ∂2f12

∂y2
− ∂2f13

∂y∂z

)
dx ∧ dy

−
(
∂2f12

∂x∂z
− ∂2f13

∂x∂y
+
∂2f23

∂x2

)
dy ∧ dz

+

(
∂2f12

∂y∂z
− ∂2f13

∂y2
+
∂2f23

∂x∂y

)
dx ∧ dz

−
(
∂2f12

∂z2
− ∂2f13

∂y∂z
+
∂2f23

∂x∂z

)
dx ∧ dy

=

(
−∂

2f12

∂x2
− ∂2f12

∂y2
− ∂2f12

∂z2

)
dx ∧ dy

+

(
−∂

2f13

∂x2
− ∂2f13

∂y2
− ∂2f13

∂z2

)
dx ∧ dz

+

(
−∂

2f23

∂x2
− ∂2f23

∂y2
− ∂2f23

∂z2

)
dy ∧ dz.
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Notice that the coefficients of the two-form ∆ω are given by the negative of the harmonic
operator on functions as defined in Section 8.5. In fact, if M = Rn with the Euclidean metric
and f is a smooth function, a laborious computation yields

∆f = −
n∑
i=1

∂2f

∂x2
i

;

that is, the usual Laplacian with a negative sign in front. (The computation can be found
in Morita [87], Example 4.12, or Jost [66], Chapter 2, Section 2.1).

By using Proposition 9.6, it is easy to see that ∆ commutes with ∗; that is,

∆∗ = ∗∆,

We have

∆∗ = (dδ + δd)∗ = dδ ∗+δd∗
= (−1)k+1d ∗ d+ (−1)kδ ∗ δ
= (−1)k+1(−1)k+1 ∗ δd+ (−1)kδ ∗ δ, since ∗ acts on a k + 1 form

= ∗δd+ (−1)k(−1)kdδ∗, since ∗ acts on a k − 1 form

= ∗(δd+ dδ) = ∗∆.

Definition 9.8. Let M be an oriented Riemannian manifold of dimension n. Given any
vector field X ∈ X(M), its Hodge divergence divX is defined by

divX = δX[.

Now for a function f ∈ C∞(M), we have δf = 0, so ∆f = δdf . However,

div(grad f) = δ(grad f)[ = δ((df)])[ = δdf,

so
∆f = div grad f,

as in the case of Rn.

Remark: Since the definition of δ involves two occurrences of the Hodge ∗-operator, δ also
makes sense on non-orientable manifolds by using a local definition. Therefore, the Laplacian
∆ and the divergence also makes sense on non-orientable manifolds.

In the rest of this section we assume that M is orientable.

The relationship between δ and d can be made clearer by introducing an inner product on
forms with compact support. Recall that Akc (M) denotes the space of k-forms with compact
support (an infinite dimensional vector space). Let k ≥ 1.
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Definition 9.9. For any two k-forms with compact support ω, η ∈ Akc (M), set

(ω, η) =

∫
M

〈ω, η〉VolM =

∫
M

〈ω, η〉 ∗ (1).

If k = 0, then ω, η ∈ C∞(M) and we define

(ω, η) =

∫
M

ω ηVolM .

Using Proposition 9.5 (iii), we have

(ω, η) =

∫
M

〈ω, η〉VolM =

∫
M

ω ∧ ∗η =

∫
M

η ∧ ∗ω,

so it is easy to check that (−,−) is indeed an inner product on k-forms with compact support.
We can extend this inner product to forms with compact support in A•c(M) =

⊕n
k=0Akc (M)

by making Ahc (M) and Akc (M) orthogonal if h 6= k.

Proposition 9.7. If M is an n-dimensional orientable Riemannian manifold, then δ is
(formally) adjoint to d; that is,

(dω, η) = (ω, δη),

for all ω ∈ Ak−1
c (M) and η ∈ Akc (M) with compact support.

Proof. By linearity and orthogonality of the Akc (M), the proof reduces to the case where
ω ∈ Ak−1

c (M) and η ∈ Akc (M) (both with compact support). By definition of δ and the fact
that

∗∗ = (−id)(k−1)(n−k+1)

for ∗ : Ak−1(M)→ An−k+1(M), we have

∗δ = (−1)kd∗,

and since

d(ω ∧ ∗η) = dω ∧ ∗η + (−1)k−1ω ∧ d ∗ η
= dω ∧ ∗η − ω ∧ ∗δη

we get ∫
M

d(ω ∧ ∗η) =

∫
M

dω ∧ ∗η −
∫
M

ω ∧ ∗δη

= (dω, η)− (ω, δη).

However, by Stokes’ theorem (Theorem 7.16),∫
M

d(ω ∧ ∗η) = 0,

so (dω, η)− (ω, δη) = 0; that is, (dω, η) = (ω, δη), as claimed.
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Corollary 9.8. If M is an n-dimensional orientable Riemannian manifold, then the Lapla-
cian ∆ is self-adjoint; that is,

(∆ω, η) = (ω,∆η),

for all k-forms ω, η with compact support.

Proof. Uisng Proposition 9.7 several times we have

(∆ω, η) = (dδω + δdω, η)

= (dδω, η) + (δdω, η)

= (δω, δη) + (dω, dη)

= (ω, dδη) + (ω, δdη)

= (ω, dδη + δdη) = (ω,∆η).

We also obtain the following useful fact:

Proposition 9.9. If M is an n-dimensional orientable Riemannian manifold, then for every
k-form ω with compact support, ∆ω = 0 iff dω = 0 and δω = 0.

Proof. Since ∆ = dδ+ δd, it is obvious that if dω = 0 and δω = 0, then ∆ω = 0. Conversely,

(∆ω, ω) = ((dδ + δd)ω, ω) = (dδω, ω) + (δdω, ω) = (δω, δω) + (dω, dω).

Thus, if ∆ω = 0, then (δω, δω) = (dω, dω) = 0, which implies dω = 0 and δω = 0.

As a consequence of Proposition 9.9, if M is a connected, orientable, compact Riemannian
manifold, then every harmonic function on M is a constant. Indeed, if M is compact then
f is a 0-form of compact support, and if ∆f = 0 then df = 0. Since f is connected, f is a
constant function.

9.4 The Hodge and Laplace–Beltrami Laplacians of

Functions

For practical reasons we need a formula for the Hodge Laplacian of a function f ∈ C∞(M),
in local coordinates. If (U,ϕ) is a chart near p, as usual, let

∂f

∂xj
(p) =

∂(f ◦ ϕ−1)

∂uj
(ϕ(p)),

where (u1, . . . , un) are the coordinate functions in Rn. Write |g| = det(gij), where (gij) is
the symmetric, positive definite matrix giving the metric in the chart (U,ϕ).
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Proposition 9.10. If M is an n-dimensional orientable Riemannian manifold, then for
every local chart (U,ϕ), for every function f ∈ C∞(M), we have

∆f = − 1√
|g|

∑
i,j

∂

∂xi

(√
|g| gij ∂f

∂xj

)
.

Proof. We follow Jost [66], Chapter 2, Section 1. Pick any function h ∈ C∞(M) with
compact support. We have∫

M

(∆f)h ∗ (1) = (∆f, h)

= (δdf, h)

= (df, dh)

=

∫
M

〈df, dh〉 ∗ (1)

=

∫
M

∑
ij

gij
∂f

∂xi

∂h

∂xj

√
|g| dx1 · · · dxn

= −
∫
M

∑
ij

1√
|g|

∂

∂xj

(√
|g| gij ∂f

∂xi

)
h
√
|g| dx1 · · · dxn

= −
∫
M

∑
ij

1√
|g|

∂

∂xj

(√
|g| gij ∂f

∂xi

)
h ∗ (1).

where we have used integration by parts in the second to last line. Since the above equation
holds for all h, we get our result.

It turns out that in a Riemannian manifold, the divergence of a vector field and the
Laplacian of a function can be given by a definition that uses the covariant derivative instead
of the Hodge ∗-operator. We did this in Section 8.4. A comparison of Proposition 9.10 with
Line (∗∗) of Section 8.4, shows that the definition of the Hodge Laplacian of a function
differs by a sign factor with the definition of the Laplacian provided by Definition 8.12. We
reconcile the difference between these two definitions by defining the notion of connection
divergence and connection Laplacian via the negation of the quantity described in Definition
8.12.

Definition 9.10. Let M be a Riemannian manifold. If ∇ is the Levi-Civita connection
induced by the Riemannian metric, then the connection divergence (for short divergence) of
a vector field X ∈ X(M) is the function divC X : M → R defined so that

(divC X)(p) = tr(Y (p) 7→ (−∇YX)p);

namely, for every p, (divC X)(p) is the trace of the linear map Y (p) 7→ (−∇YX)p.
The connection Laplacian of f ∈ C∞M is defined as

∆Cf = divC grad f.
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The connection divergence and the connection Laplacian make sense even if M is non-
orientable. This is also true for the Hodge divergence and the Hodge Laplacian. Because of
the sign change provided by Definition 9.10, the Hodge Laplacian ∆f agrees with the con-
nection Laplacian ∆Cf . Thus, we will not distinguish between the two notions of Laplacian
on a function.

Since the connection Laplacian and the Hodge Laplacian (for functions) agree, we should
expect that the two variants of the divergence operator also agree. This is indeed the case
but a proof is not so easily found in the literature. We are aware of two proofs: one is
found in Petersen [92] (Chapter 7, Proposition 32) for compact orientable manifolds, and
the other in Rosenberg [96] for orientable manifolds, closer to the proof of Proposition 9.10.
We present the second proof because it applies to a more general situation and yields an
explicit formula.

Proposition 9.11. If M is an n-dimensional orientable Riemannian manifold, then for
every local chart (U,ϕ), for every vector field X ∈ X(M), we have

divX = −
n∑
i=1

1√
|g|

∂

∂xi

(√
|g|Xi

)
.

Proof. (Following Rosenberg [96].) Let (U,ϕ) be a chart for M . Within this chart, any
X ∈ X(M) is expressed as X =

∑n
i=1Xi

∂
∂xi

. Take f ∈ C∞(M) with compact support and
compute

(X, gradf) =

∫
M

〈X, gradf〉 ∗ (1)

=

∫
M

df(X) ∗ (1)

=

∫
M

n∑
i=1

Xi
∂f

∂xi

√
|g| dx1 · · · dxn

= −
∫
M

n∑
i=1

1√
|g|

∂

∂xi

(√
|g|Xi

)
f
√
|g| dx1 · · · dxn,

where the last equality follows from integration by parts. We claim (X, gradf) = (divX, f)
since

(divX, f) = (δX[, f)

= (X[, df), by Proposition 9.7

= ((X[)], (df)]), definition of inner product on one forms

= (X, (df)])

= (X, grad f), by the remark preceding Definition 9.1.
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Thus we have shown

(divX, f) = −
∫
M

n∑
i=1

1√
|g|

∂

∂xi

(√
|g|Xi

)
f ∗ (1) =

〈
−

n∑
i=1

1√
|g|

∂

∂xi

(√
|g|Xi

)
, f

〉

for all f ∈ C∞(M) with compact support, and this concludes the proof.

By comparing the expression for divX provided by Proposition 9.11 with the expression
of divCX given by Line (†) of Section 8.4, we have the following proposition.

Proposition 9.12. If M is an orientable Riemannian manifold, then for every vector field
X ∈ X(M), the connection divergence is given by

divC X = δX[ = divX.

Consequently, for the Laplacian, we have

∆f = δdf = div grad f.

Proposition 9.12 shows there is no need to distinguish between the Hodge divergence
and the connection divergence. Thus we will use the notation divX to simply denote the
divergence of a vector field over T (M).

Our next result shows relationship between divX and the Lie derivative of the volume
form.

9.5 Divergence and Lie Derivative of the Volume

Form

Proposition 9.13. Let M be an n-dimensional Riemannian manifold. For any vector field
X ∈ X(M), we have

LX VolM = −(divX)VolM ,

where divX is the connection divergence of X.

Proof. (Following O’Neill [90] (Chapter 7, Lemma 21).) LetX1, X2, . . . Xn be an orthonormal
frame on M such that VolM(X1, . . . , Xn) = 1. Then LX(VolM(X1, . . . , Xn)) = LX(1) =
X(1) = 0, and Proposition 4.19 (2) implies

(LXVolM)(X1, . . . , Xn) = −
n∑
i=1

VolM(X1, . . . , LXXi, . . . Xn).
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Fix i and set LXXi = [X,Xi] =
∑n

j=1 fijXj. Since VolM is multilinear and skew-symmetric,
we find that

VolM(X1, . . . , LXXi, . . . Xn) = VolM(X1, . . . ,

n∑
j=1

fijXj, . . . Xn)

=
n∑
j=1

VolM(X1, . . . , fijXj, . . . Xn)

= fiiVolM(X1, . . . Xi, . . . Xn) = fii.

By varying i we discover that

(LXVolM)(X1, . . . , Xn) = −
n∑
i=1

VolM(X1, . . . , LXXi, . . . Xn) = −
n∑
i=1

fii.

On the other hand, since (divX)(p) = tr(Y (p) 7→ (−∇YX)p), X1, . . . , Xn is an orthonormal
frame, and ∇ is the Levi-Civita connection (which is torsion free), the equation before
Definition 2.3 implies that

−divX =
n∑
i=1

〈∇XiX,Xi〉

= −
n∑
i=1

〈[X,Xi], Xi〉+
n∑
i=1

〈∇XXi, Xi〉, since ∇XiX −∇XXi = [Xi, X]

= −
n∑
i=1

〈[X,Xi], Xi〉, since 0 = ∇X〈Xi, Xi〉 = 2〈∇XXi, Xi〉

= −
n∑
i=1

〈
n∑
j=1

fijXj, Xi〉 = −
n∑
i=1

fii〈Xi, Xi〉 = −
n∑
i=1

fii.

Thus we have shown

−divX = (LXVolM)(X1, . . . , Xn),

which is equivalent to the statement found in the proposition.

Proposition 9.13 is interesting in its own right since it is used in the proof of Green’s
theorem. But before stating and proving Green’s theorem, we reformulate Proposition 9.13
through the application of Cartan’s formula.

Proposition 9.14. The following formula holds:

(divX)VolM = −d(i(X)VolM).
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Proof. By Cartan’s formula (Proposition 4.20), LX = i(X) ◦ d + d ◦ i(X); as dVolM = 0
(since VolM is a top form), Proposition 9.13 implies

(divX)VolM = −d(i(X)VolM).

The above formulae also holds for a local volume form (i.e. for a volume form on a local
chart).

Proposition 9.15. (Green’s Formula) If M is an orientable and compact Riemannian man-
ifold without boundary, then for every vector field X ∈ X(M), we have∫

M

(divX) VolM = 0.

Proof. Proofs of Proposition 9.15 can be found in Gallot, Hulin and Lafontaine [52] (Chapter
4, Proposition 4.9) and Helgason [59] (Chapter 2, Section 2.4). Since Proposition 9.13 implies
that

(divX)VolM = −d(i(X)VolM),

we have ∫
M

(divX) VolM = −
∫
M

d(i(X)VolM) = −
∫
∂M

i(X)VolM = 0

where the last equality follows by Stokes’ theorem, since ∂M = 0.

We end this section by discussing an alternative definition for the operator δ : A1(M)→
A0(M) in terms of the covariant derivative (see Gallot, Hulin and Lafontaine [52], Chapter
4). For any one-form ω ∈ A1(M), and any X, Y ∈ X(M), define

(∇Xω)(Y ) := X(ω(Y ))− ω(∇XY ).

It turns out that
δω = −tr∇ω,

where the trace should be interpreted as the trace of the R-bilinear map X, Y 7→ (∇Xω)(Y ),
as in Chapter 2 (see Proposition 2.3). This means that in any chart (U,ϕ),

δω = −
n∑
i=1

(∇Eiω)(Ei),

for any orthonormal frame field (E1, . . . , En) over U . By applying this trace definition of δω,
it can be shown that

δ(fdf) = f∆f − 〈grad f, grad f〉.

Proposition 9.16. For any orientable, compact manifold M , we have

(∆f, f) =

∫
M

f∆f VolM =

∫
M

〈grad f, grad f〉VolM .
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Proof. Proposition 9.12 implies that

δ(fdf) = δ((f df)])[ = div(f df)],

and since Green’s formula implies that∫
M

δ(f df) VolM =

∫
M

div(f df)] VolM = 0,

we conclude that

(∆f, f) =

∫
M

f∆f VolM =

∫
M

〈grad f, grad f〉VolM ,

for any orientable, compact manifold M .

There is a generalization of the formula expressing δω over an orthonormal frame E1, . . .,
En for a one-form ω that applies to any differential form. In fact, there are formulae express-
ing both d and δ over an orthornormal frame and its coframe, and these are often handy in
proofs. The formula for δω will be used in the proof of Theorem 9.26.

Recall that for every vector field X ∈ X(M), the interior product i(X) : Ak+1(M) →
Ak(M) is defined by

(i(X)ω)(Y1, . . . , Yk) = ω(X, Y1, . . . , Yk),

for all Y1, . . . , Yk ∈ X(M).

Proposition 9.17. Let M be a compact, orientable Riemannian manifold. For every p ∈M ,
for every local chart (U,ϕ) with p ∈M , if (E1, . . . , En) is an orthonormal frame over U and
(θ1, . . . , θn) is its dual coframe, then for every k-form ω ∈ Ak(M), we have:

dω =
n∑
i=1

θi ∧∇Eiω

δω = −
n∑
i=1

i(Ei)∇Eiω.

A proof of Proposition 9.17 can be found in Petersen [92] (Chapter 7, Proposition 37) or
Jost [66] (Chapter 3, Lemma 3.3.4). When ω is a one-form, δωp is just a number, and indeed

δω = −
n∑
i=1

i(Ei)∇Eiω = −
n∑
i=1

(∇Eiω)(Ei),

as stated earlier.
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9.6 Harmonic Forms, the Hodge Theorem, Poincaré

Duality

Let us now assume that M is orientable and compact.

Definition 9.11. Let M be an orientable and compact Riemannian manifold of dimension
n. For every k, with 0 ≤ k ≤ n, let

Hk(M) = {ω ∈ Ak(M) | ∆ω = 0},

the space of harmonic k-forms .

The following proposition is left as an easy exercise:

Proposition 9.18. Let M be an orientable and compact Riemannian manifold of dimension
n. The Laplacian commutes with the Hodge ∗-operator, and we have a linear map

∗ : Hk(M)→ Hn−k(M).

One of the deepest and most important theorems about manifolds is the Hodge decom-
position theorem, which we now state.

Theorem 9.19. (Hodge Decomposition Theorem) Let M be an orientable and compact Rie-
mannian manifold of dimension n. For every k, with 0 ≤ k ≤ n, the space Hk(M) is finite
dimensional, and we have the following orthogonal direct sum decomposition of the space of
k-forms:

Ak(M) = Hk(M)⊕ d(Ak−1(M))⊕ δ(Ak+1(M)).

The proof of Theorem 9.19 involves a lot of analysis and it is long and complicated. A
complete proof can be found in Warner [115] (Chapter 6). Other treatments of Hodge theory
can be found in Morita [87] (Chapter 4) and Jost [66] (Chapter 2).

The Hodge decomposition theorem has a number of important corollaries, one of which
is Hodge theorem:

Theorem 9.20. (Hodge Theorem) Let M be an orientable and compact Riemannian mani-
fold of dimension n. For every k, with 0 ≤ k ≤ n, there is an isomorphism between Hk(M)
and the de Rham cohomology vector space Hk

DR(M):

Hk
DR(M) ∼= Hk(M).

Proof. Since by Proposition 9.9, every harmonic form ω ∈ Hk(M) is closed, we get a linear
map from Hk(M) to Hk

DR(M) by assigning its cohomology class [ω] to ω. This map is
injective. Indeed, if [ω] = 0 for some ω ∈ Hk(M), then ω = dη for some η ∈ Ak−1(M) so

(ω, ω) = (dη, ω) = (η, δω).
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But, as ω ∈ Hk(M) we have δω = 0 by Proposition 9.9, so (ω, ω) = 0; that is, ω = 0.

Our map is also surjective. This is the hard part of Hodge theorem. By the Hodge
decomposition theorem, for every closed form ω ∈ Ak(M), we can write

ω = ωH + dη + δθ,

with ωH ∈ Hk(M), η ∈ Ak−1(M), and θ ∈ Ak+1(M). Since ω is closed and ωH ∈ Hk(M), we
have dω = 0 and dωH = 0, thus

dδθ = 0

and so
0 = (dδθ, θ) = (δθ, δθ);

that is, δθ = 0. Therefore, ω = ωH+dη, which implies [ω] = [ωH ] with ωH ∈ Hk(M), proving
the surjectivity of our map.

The Hodge theorem also implies the Poincaré duality theorem. If M is a compact,
orientable, n-dimensional smooth manifold, for each k, with 0 ≤ k ≤ n, we define a bilinear
map

((−,−)) : Hk
DR(M)×Hn−k

DR (M) −→ R

by setting

(([ω], [η])) =

∫
M

ω ∧ η.

We need to check that this definition does not depend on the choice of closed forms in the
cohomology classes [ω] and [η]. However, if ω+dα is another representative in [ω] and η+dβ
is another representative in [η], as dω = dη = 0, we have

d(α ∧ η + (−1)kω ∧ β + α ∧ dβ) = dα ∧ η + ω ∧ dβ + dα ∧ dβ,

so by Stokes’ theorem,∫
M

(ω + dα) ∧ (η + dβ) =

∫
M

ω ∧ η +

∫
M

d(α ∧ η + (−1)kω ∧ β + α ∧ dβ)

=

∫
M

ω ∧ η.

Theorem 9.21. (Poincaré Duality) If M is a compact, orientable, smooth manifold of
dimension n, then the bilinear map

((−,−)) : Hk
DR(M)×Hn−k

DR (M) −→ R

defined above is a nondegenerate pairing, and hence yields an isomorphism

Hk
DR(M) ∼= (Hn−k

DR (M))∗.
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Proof. Pick any Riemannian metric on M . It is enough to show that for every nonzero
cohomology class [ω] ∈ Hk

DR(M), there is some [η] ∈ Hn−k
DR (M) such that

(([ω], [η])) =

∫
M

ω ∧ η 6= 0.

By the Hodge theorem, we may assume that ω is a nonzero harmonic form. By Proposition
9.18, η = ∗ω is also harmonic and η ∈ Hn−k(M). Then, we get

(ω, ω) =

∫
M

ω ∧ ∗ω = (([ω], [η])),

and indeed, (([ω], [η])) 6= 0, since ω 6= 0.

9.7 The Bochner Laplacian, Weitzenböck Formula

and the Bochner Technique

Let M be a compact orientable Riemannian manifold.1 The goal of this section is to de-
fine another notion of Laplacian on k-forms in terms of a generalization of the Levi-Civita
connection ∇ : X(M)× X(M)→ X(M) to k-forms viewed as a linear map

∇ : Ak(M)→ HomC∞(M)(X(M),Ak(M)),

and in terms of a certain adjoint ∇∗ of ∇, a linear map

∇∗ : HomC∞(M)(X(M),Ak(M))→ Ak(M).

Since we already have an inner product (−,−) on k-forms as explained in Section 9.3, we
will define an inner product ((−,−)) on HomC∞(M)(X(M),Ak(M)) and define ∇∗ so that

(∇∗A, ω) = ((A,∇ω))

for all A ∈ HomC∞(M)(X(M),Ak(M)) and all ω ∈ Ak(M).

Our exposition is heavily inspired by Petersen [92] (Chapter 7, Section 3.2), but Petersen
deals with the more general case of a vector bundle and we restrict our attention to the
simpler case of a Riemannian manifold.

The definition of the inner product ((−,−)) on HomC∞(M)(X(M),Ak(M)) is accom-
plished in four steps.

1The Bochner Laplacian makes sense for noncompact manifolds as long as we consider forms with compact
support, but we have no need for this more general setting.
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1. First, we define the connection ∇ : Ak(M) → HomC∞(M)(X(M),Ak(M)) on k-forms.
We define the covariant derivative ∇Xω of any k-form ω ∈ Ak(M) as the k-form given
by

(∇Xω)(Y1, . . . , Yk) = X(ω(Y1, . . . , Yk))−
k∑
j=1

ω(Y1, . . . ,∇XYj, . . . , Yk); (†)

see Proposition 10.13 for a justification. We can view ∇ as a linear map

∇ : Ak(M)→ HomC∞(M)(X(M),Ak(M)),

where ∇ω is the C∞(M)-linear map X 7→ ∇Xω.

2. The second step is to define the adjoint of a linear map in HomC∞(M)(X(M),Ak(M)).
We use two inner products, one on differential forms and one on vector fields.

The inner product 〈−,−〉p on TpM (with p ∈ M) induces an inner product on differ-
ential forms, namely

(ω, η) =

∫
M

〈ω, η〉VolM =

∫
M

〈ω, η〉 ∗ (1),

as we explained in Section 9.3.

We also obtain an inner product on vector fields if, for any two vector field X, Y ∈
X(M), we define (X, Y )X by

(X, Y )X =

∫
M

〈X, Y 〉VolM ,

where 〈X, Y 〉 is the function defined pointwise by

〈X, Y 〉(p) = 〈X(p), Y (p)〉p.

Now for any linear map A ∈ HomC∞(M)(X(M),Ak(M)), let A∗ be the adjoint of A
defined by

(AX, θ) = (X,A∗θ)X,

for all vector fields X ∈ X(M) and all k-forms θ ∈ Ak(M). It can be verified that
A∗ ∈ HomC∞(M)(Ak(M),X(M)).

3. In the third step, given A,B ∈ HomC∞(M)(X(M),Ak(M)), the expression tr(A∗B) is
a smooth function on M , and it can be verified that

〈〈A,B〉〉 = tr(A∗B)

defines a non-degenerate pairing on HomC∞(M)(X(M),Ak(M)). Using this pairing, we
obtain the (R-valued) inner product on HomC∞(M)(X(M),Ak(M)) given by

((A,B)) =

∫
M

tr(A∗B) VolM .
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4. The fourth and final step is to define the (formal) adjoint ∇∗ of
∇ : Ak(M)→ HomC∞(M)(X(M),Ak(M)) as the linear map
∇∗ : HomC∞(M)(X(M),Ak(M))→ Ak(M) defined implicitly by

(∇∗A, ω) = ((A,∇ω));

that is,

(∇∗A, ω) =

∫
M

〈∇∗A, ω〉VolM =

∫
M

〈〈A,∇ω〉〉VolM

=

∫
M

tr(A∗∇ω) VolM = ((A,∇ω)),

for all A ∈ HomC∞(M)(X(M),Ak(M)) and all ω ∈ Ak(M).

� The notation ∇∗ for the adjoint of ∇ should not be confused with the dual connection on
T ∗M of a connection ∇ on TM ! In the second interpretation, ∇∗ denotes the connection

on A∗(M) induced by the original connection ∇ on TM . The argument type (differential
form or vector field) should make it clear which ∇ is intended, but it might have been better
to use a notation such as ∇> instead of ∇∗.

What we just did also applies to A∗(M) =
⊕n

k=0Ak(M) (where dim(M) = n), and so we
can view the connection ∇ as a linear map ∇ : A∗(M) → HomC∞(M)(X(M),A∗(M)), and
its adjoint as a linear map ∇∗ : HomC∞(M)(X(M),A∗(M))→ A∗(M).

Definition 9.12. Given a compact, orientable Riemannian manifold M , the Bochner Lapla-
cian (or connection Laplacian) ∇∗∇ is defined as the composition of the connection
∇ : A∗(M)→ HomC∞(M)(X(M),A∗(M)) with its adjoint ∇∗ : HomC∞(M)(X(M),A∗(M))→
A∗(M), as defined above.

Observe that

(∇∗∇ω, ω) = ((∇ω,∇ω)) =

∫
M

〈〈∇ω,∇ω〉〉VolM ,

for all ω ∈ Ak(M). Consequently, the “harmonic forms” ω with respect to ∇∗∇ must satisfy

∇ω = 0,

but this condition is not equivalent to the harmonicity of ω with respect to the Hodge
Laplacian.

Thus, in general, ∇∗∇ and ∆ are different operators . The relationship between the
two is given by formulae involving contractions of the curvature tensor, and are known as
Weitzenböck formulae. We will state such a formula in case of one-forms later on. In order to
do this, we need to give another definition of the Bochner Laplacian using second covariant
derivatives of forms.
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If ω ∈ A1(M) is a one-form, then the covariant derivative of ω defines a (0, 2)-tensor T
given by T (Y, Z) = (∇Y ω)(Z). Thus, we can define the second covariant derivative ∇2

X,Y ω
of ω as the covariant derivative of T (see Proposition 10.13); that is,

∇2
X,Y ω = (∇XT )(Y, Z) = X(T (Y, Z))− T (∇XY, Z)− T (Y,∇XZ).

Proposition 9.22. The following formula holds for any one-form ω ∈ A1(M):

∇2
X,Y ω = ∇X(∇Y ω)−∇∇XY ω;

Proof. We have

(∇2
X,Y ω)(Z) = X((∇Y ω)(Z))− (∇∇XY ω)(Z)− (∇Y ω)(∇XZ)

= X((∇Y ω)(Z))− (∇Y ω)(∇XZ)− (∇∇XY ω)(Z)

= X(β(Z))− β(∇XZ)− (∇∇XY ω)(Z), β is the one-form ∇Y ω

= ∇Xβ(Z)− (∇∇XY ω)(Z), definition of covariant derivative given by (†)
= (∇X(∇Y ω))(Z)− (∇∇XY ω)(Z).

Therefore,

∇2
X,Y ω = ∇X(∇Y ω)−∇∇XY ω,

as claimed.

Note that ∇2
X,Y ω is formally the same as the second covariant derivative ∇2

X,YZ with ω
replacing Z; see Gallier and Quaintance [49].

It is natural to generalize the second covariant derivative ∇2
X,Y to k-forms as follows.

Definition 9.13. Given any k-form ω ∈ Ak(M), for any two vector fields X, Y ∈ X(M), we
define ∇2

X,Y ω by

∇2
X,Y ω = ∇X(∇Y ω)−∇∇XY ω.

We also need the definition of the trace of ∇2
X,Y ω.

Definition 9.14. Given any local chart (U,ϕ) and given any orthonormal frame (E1, . . .,
En) over U , we can defined the trace tr(∇2ω) of ∇2

X,Y ω given by

tr(∇2ω) =
n∑
i=1

∇2
Ei,Ei

ω.

It is easily seen that tr(∇2ω) does not depend on the choice of local chart and orthonormal
frame.

By using the this notion of trace, may calculate the connection Laplacian as follows:
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Proposition 9.23. If is M a compact, orientable, Riemannian manifold, then the connection
Laplacian ∇∗∇ is given by

∇∗∇ω = −tr(∇2ω),

for all differential forms ω ∈ A∗(M).

The proof of Proposition 9.23, which is quite technical, can be found in Petersen [92]
(Chapter 7, Proposition 34).

Given any one-forms ω ∈ A1(M), it is natural to ask what is the one-form

∇2
X,Y ω −∇2

Y,Xω.

To answer this question, we need to first recall the definition of the curvature tensor. Given
X, Y, Z ∈ X(M), the curvature tensor R(X, Y )Z is the (1, 3)-tensor defined by

R(X, Y )(Z) = ∇[X,Y ]Z +∇Y∇XZ −∇X∇YZ.

Assuming that ∇ is the Levi-Civita connection, the following result can be shown.

Proposition 9.24. The following equation holds:

R(X, Y )Z = ∇2
Y,XZ −∇2

X,YZ.

For a proof, see Gallot, Hullin, Lafontaine [52] or Gallier and Quaintance [49].

We now are in a position to answer the preceding question. The answer is given by the
following proposition which plays a crucial role in the proof of a version of Bochner’s formula:

Proposition 9.25. For any vector fields X, Y, Z ∈ X(M) and any one-form ω ∈ A1(M) on
a Riemannian manifold M , we have

((∇2
X,Y −∇2

Y,X)ω)(Z) = ω(R(X, Y )Z).

Proof. (Adapted from Gallot, Hullin, Lafontaine [52], Lemma 4.13.) It is proven in Section
10.7 that

(∇Xω)] = ∇Xω
].

We claim that we also have
(∇2

X,Y ω)] = ∇2
X,Y ω

].

This is because

(∇2
X,Y ω)] = (∇X(∇Y ω))] − (∇∇XY ω)]

= ∇X(∇Y ω)] −∇∇XY ω]

= ∇X(∇Y ω
])−∇∇XY ω]

= ∇2
X,Y ω

].
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Thus, using Proposition 9.24 we deduce that

((∇2
X,Y −∇2

Y,X)ω)] = (∇2
X,Y −∇2

Y,X)ω] = R(Y,X)ω].

Consequently,

((∇2
X,Y −∇2

Y,X)ω)(Z) = 〈((∇2
X,Y −∇2

Y,X)ω)], Z〉
= 〈R(Y,X)ω], Z〉
= R(Y,X, ω], Z)

= R(X, Y, Z, ω])

= 〈R(X, Y )Z, ω]〉
= ω(R(X, Y )Z),

using properties of the Riemann tensor; see Gallot, Hullin, Lafontaine [52] or Gallier and
Quaintance [49].

We are now ready to prove the Weitzenböck formulae for one-forms.

Theorem 9.26. (Weitzenböck–Bochner Formula) If is M a compact, orientable, Rieman-
nian manifold, then for every one-form ω ∈ A1(M), we have

∆ω = ∇∗∇ω + Ric(ω),

where Ric(ω) is the one-form given by

Ric(ω)(X) = ω(Ric](X)),

and where Ric] is the Ricci curvature viewed as a (1, 1)-tensor (that is, 〈Ric](u), v〉p =
Ric(u, v), for all u, v ∈ TpM and all p ∈M).

Proof. (Adapted from Gallot, Hullin, Lafontaine [52], Proposition 4.36.) For any p ∈ M ,
pick any normal local chart (U,ϕ) with p ∈ U , and pick any orthonormal frame (E1, . . . , En)
over U . Because (U,ϕ) is a normal chart at p, we have (∇EjEj)p = 0 for all i, j. Recall from
the discussion at the end of Section 9.3 as a special case of Proposition 9.17 that for every
one-form ω, we have

δω = −
∑
i

∇Eiω(Ei),

where δω ∈ C∞(M). Then dδ(w) is the one form defined via

d(δω)(X) = −
∑
i

d(∇Eiω(Ei))(X) = −
∑
i

∇X∇Eiω(Ei).

since (∇Xf)p = dfp(Xp) for all X ∈ X(M). Also recall Proposition 4.16, which states that

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).
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By definition,

∇Xω(Y ) = X(ω(Y ))− ω(∇XY )

∇Y ω(X) = Y (ω(X))− ω(∇YX).

Hence

dω(X, Y ) = ∇Xω(Y ) + ω(∇XY )−∇Y ω(X)− ω(∇YX)− ω([X, Y ])

= ∇Xω(Y )−∇Xω(Y ) + ω(∇XY −∇YX)− ω([X, Y ]).

Since we are using the Levi-Civita connection, ∇XY − ∇YX = [X, Y ], and the preceding
calculation becomes

dω(X, Y ) = ∇Xω(Y )−∇Y ω(X).

Let β be the two-form dω. Note that ∇Eiβ is also a two-form. We use Proposition 9.17 to
calculate the one form δβ as follows:

(δβ)(X) = −
∑
i

(i(Ei)∇Eiβ) (X) = −
∑
i

∇Eiβ(Ei, X).

In other words, we found that

(δdω)(X) = −
∑
i

∇Eidω(Ei, X) = −
∑
i

∇Ei∇Eiω(X) +
∑
i

∇Ei∇Xω(Ei),

where the last equality is an application of Proposition 4.16. Thus, we get

∆ω(X) = −
∑
i

∇Ei∇Eiω(X) +
∑
i

(∇Ei∇X −∇X∇Ei)ω(Ei)

= −
∑
i

∇2
Ei,Ei

ω(X) +
∑
i

(∇2
Ei,X
−∇2

X,Ei
)ω(Ei)

= ∇∗∇ω(X) +
∑
i

ω(R(Ei, X)Ei)

= ∇∗∇ω(X) + ω(Ric](X)),

using the fact that (∇EjEj)p = 0 for all i, j, and using Proposition 9.25 and Proposition
9.23.

For simplicity of notation, we will write Ric(u) for Ric](u). There should be no confusion,
since Ric(u, v) denotes the Ricci curvature, a (0, 2)-tensor. There is another way to express
Ric(ω) which will be useful in the proof of the next theorem.

Proposition 9.27. The Weitzenböck formula can be written as

∆ω = ∇∗∇ω + (Ric(ω]))[.
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Proof. Observe that

Ric(ω)(Z) = ω(Ric(Z))

= 〈ω],Ric(Z)〉
= 〈Ric(Z), ω]〉
= Ric(Z, ω])

= Ric(ω], Z)

= 〈Ric(ω]), Z〉
= ((Ric(ω]))[(Z),

and thus,
Ric(ω)(Z) = ((Ric(ω]))[(Z).

Consequently the Weitzenböck formula can be written as

∆ω = ∇∗∇ω + (Ric(ω]))[.

The Weitzenböck–Bochner formula implies the following theorem due to Bochner:

Theorem 9.28. (Bochner) If M is a compact, orientable, connected Riemannian manifold,
then the following properties hold:

(i) If the Ricci curvature is non-negative, that is Ric(u, u) ≥ 0 for all p ∈ M and all
u ∈ TpM , and if Ric(u, u) > 0 for some p ∈M and all u ∈ TpM , then H1

DRM = (0).

(ii) If the Ricci curvature is non-negative, then ∇ω = 0 for all ω ∈ A1(M), and
dimH1

DRM ≤ dimM .

Proof. (After Gallot, Hullin, Lafontaine [52]; Theorem 4.37.) (i) Assume H1
DRM 6= (0).

Then by the Hodge theorem, Theorem 9.20, there is some nonzero harmonic one-form ω.
The Weitzenböck–Bochner formula implies that

(∆ω, ω) = (∇∗∇ω, ω) + ((Ric(ω]))[, ω).

Since ∆ω = 0, we get

0 = (∇∗∇ω, ω) + ((Ric(ω]))[, ω)

= ((∇ω,∇ω)) +

∫
M

〈(Ric(ω]))[, ω〉VolM

= ((∇ω,∇ω)) +

∫
M

〈Ric(ω]), ω]〉VolM

= ((∇ω,∇ω)) +

∫
M

Ric(ω], ω]) VolM .
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However, ((∇ω,∇ω)) ≥ 0, and by the assumption on the Ricci curvature, the integrand
is nonnegative and strictly positive at some point, so the integral is strictly positive, a
contradiction.

(ii) Again, for any one-form ω, we have

(∆ω, ω) = ((∇ω,∇ω)) +

∫
M

Ric(ω], ω]) VolM ,

so if the Ricci curvature is non-negative, ∆ω = 0 iff ∇ω = 0. This means that ω is invariant
by parallel transport (see Section 11.4), and thus ω is completely determined by its value
ωp at some point p ∈ M , so there is an injection H1(M) −→ T ∗pM , which implies that
dimH1

DRM = dimH1(M) ≤ dimM .

There is a version of the Weitzenböck formula for p-forms, but it involves a more com-
plicated curvature term and its proof is also more complicated; see Petersen [92] (Chapter
7). The Bochner technique can also be generalized in various ways, in particular, to spin
manifolds , but these considerations are beyond the scope of these notes. Let us just say that
Weitzenböck formulae involving the Dirac operator play an important role in physics and
4-manifold geometry. We refer the interested reader to Gallot, Hulin and Lafontaine [52]
(Chapter 4) Petersen [92] (Chapter 7), Jost [66] (Chaper 3), and Berger [11] (Section 15.6),
for more details on Weitzenböck formulae and the Bochner technique.

9.8 Problems

Problem 9.1. Let M be a Riemannian manifold and let f ∈ C∞(M). In local coordinates
with respect to a chart, if we write

df =
n∑
i=1

∂f

∂xi
dxi,

show that

Hess f =
n∑

i,j=1

(
∂2f

∂xi∂xj
−

n∑
k=1

∂f

∂xk
Γkij

)
dxi ⊗ dxj,

where the Γkij are the Christoffel symbols of the connection in the chart, namely

Γkij =
1

2

n∑
l=1

gkl (∂igjl + ∂jgil − ∂lgij) , (∗)

with ∂kgij = ∂
∂xk

(gij).

Hint . See O’Neill [90].
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Problem 9.2. Let G(k, n) be the set of all linear k-dimensional subspaces of Rn. Using the
notation of Section 9.1 show that for any two tangent vectors X1, X2 ∈ TYG(k, n) to G(k, n)
at Y ,

Hess(F )Y (X1, X2) = FY Y (X1, X2)− tr(X>1 X2Y
>FY ),

where

FY =

(
∂F

∂Yij

)
,

and where
FY Y (X1, X2) =

∑
ij,kl

(FY Y )ij,kl(X1)ij(X2)kl,

with

(FY Y )ij,kl =
∂2F

∂Yij∂Ykl
.

Hint . Use Proposition 9.3, and Edelman, Arias and Smith [42].

Problem 9.3. Prove Proposition 9.5.

Hint . See Proposition 3.16.

Problem 9.4. Prove Proposition 9.6.

Problem 9.5. For any one-form ω ∈ A1(M), and any X, Y ∈ X(M), recall that

(∇Xω)(Y ) := X(ω(Y ))− ω(∇XY ).

It turns out that
δω = −tr∇ω,

where the trace should be interpreted as the trace of the R-bilinear map X, Y 7→ (∇Xω)(Y ),
as in Chapter 2 (see Proposition 2.3). By applying this trace definition of δω, show that

δ(fdf) = f∆f − 〈grad f, grad f〉.

Problem 9.6. Prove Proposition 9.17.

Hint . See Petersen [92], Chapter 7, Proposition 37, or Jost [66], Chapter 3, Lemma 3.3.4.

Problem 9.7. Prove Proposition 9.18.

Problem 9.8. Prove Proposition 9.23.

Hint . See Petersen [92], Chapter 7, Proposition 34.



Chapter 10

Bundles, Metrics on Bundles, and
Homogeneous Spaces

A transitive action · : G × X → X of a group G on a set X yields a description of X as a
quotient G/Gx, where Gx is the stabilizer of any element, x ∈ X (see Warner [115], Chapter
3, of Gallier and Quaintance [49]). The points of X are identified with the left cosets gGx

(g ∈ G). If X is a “well-behaved” topological space (say a locally compact Hausdorff space),
G is a “well-behaved” topological group (say a locally compact topological group which is
countable at infinity), and the action is continuous, then G/Gx is homeomorphic to X (see
Bourbaki [18], Chapter IX, Section 5, Proposition 6, or Gallier and Quaintance [49]). In
particular these conditions are satisfied if G is a Lie group and X is a manifold. Intuitively,
the above theorem says that G can be viewed as a family of “fibres” gGx, all isomorphic to
Gx, these fibres being parametrized by the “base space” X, and varying smoothly when the
point corresponding to the coset gGx moves in X. We have an example of what is called a
fibre bundle, in fact, a principal fibre bundle. This view of G as a family of fibres gGx, with
x ∈ X, is a special case of the notion of a fibre bunlde.

Intuitively, a fibre bundle over B is a family E = (Eb)b∈B of spaces Eb (fibres) indexed
by B and varying smoothly as b moves in B, such that every Eb is diffeomorphic to some
prespecified space F . The space E is called the total space, B the base space, and F the
fibre. A way to define such a family is to specify a surjective map π : E → B. We will assume
that E, B, F are smooth manifolds and that π is a smooth map. The theory of bundles can
be developed for topological spaces but we do need such generality. The type of bundles that
we just described is too general and to develop a useful theory it is necessary to assume that
locally, a bundle looks likes a product. Technically, this is achieved by assuming that there
is some open cover U = (Uα)α∈I of B and that there is a family (ϕα)α∈I of diffeomorphisms

ϕα : π−1(Uα)→ Uα × F.

Intuitively, above Uα, the open subset π−1(Uα) looks like a product. The maps ϕα are called
local trivializations .

409
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The last important ingredient in the notion of a fibre bundle is the specifiction of the
“twisting” of the bundle; that is, how the fibre Eb = π−1(b) gets twisted as b moves in the
base space B. Technically, such twisting manifests itself on overlaps Uα ∩ Uβ 6= ∅. It turns
out that we can write

ϕα ◦ ϕ−1
β (b, x) = (b, gαβ(b)(x))

for all b ∈ Uα∩Uβ and all x ∈ F . The term gαβ(b) is a diffeomorphism of F . Then we require
that the family of diffeomorphisms gαβ(b) belongs to a Lie group G, which is expressed by
specifying that the maps gαβ, called transitions maps, are maps

gαβ : Uα ∩ Uβ → G.

The purpose of the group G, called the structure group, is to specify the “twisting” of the
bundle.

Fibre bundles are defined in Section 10.1. The family of transition maps gαβ satisfies an
important condition on nonempty overlaps Uα ∩ Uβ ∩ Uγ called the cocycle condition:

gαβ(b)gβγ(b) = gαγ(b)

(where gαβ(b), gβγ(b), gαγ(b) ∈ G), for all α, β, γ such that Uα ∩ Uβ ∩ Uγ 6= ∅ and all b ∈
Uα ∩ Uβ ∩ Uγ.

In Section 10.2, we define bundle morphisms, and the notion of equivalence of bundles
over the same base, following Hirzebruch [61] and Chern [23]. We show that two bundles
(over the same base) are equivalent if and only if they are isomorphic.

In Section 10.3, we describe the construction of a fibre bundle with prescribed fibre F
and structure group G from a base manifold, B, an open cover U = (Uα)α∈I of B, and a
family of maps gαβ : Uα ∩ Uβ → G satisfying the cocycle condition, called a cocycle. This
construction is the basic tool for constructing new bundles from old ones. This construction
is applied to define the notion of pullback bundle.

Section 10.4 is devoted to a special kind of fibre bundle called vector bundles . A vector
bundle is a fibre bundle for which the fibre is a finite-dimensional vector space V , and the
structure group is a subgroup of the group of linear isomorphisms (GL(n,R) or GL(n,C),
where n = dimV ). Typical examples of vector bundles are the tangent bundle TM and the
cotangent bundle T ∗M of a manifold M . We define maps of vector bundles, and equivalence
of vector bundles. The constuction of a vector bundle in terms of a cocycle also applies to
vector bundles. We give a criterion for a vector bundle to be trivial (isomorphic to B × V )
in terms of the existence of a frame of global sections.

In Section 10.5 we describe various operations on vector bundles: Whitney sums, ten-
sor products, tensor powers, exterior powers, symmetric powers, dual bundles, and Hom
bundles. We also define the complexification of a real vector bundle.

In Section 10.6 we discuss properties of the sections of a vector bundle ξ. We prove that
the space of sections Γ(ξ) is a finitely generated projective C∞(B)-module. We also prove
various useful isomorphisms.
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Section 10.7 is devoted to the covariant derivative of tensor fields, and to the duality
between vector fields and differential forms.

In Section 10.8 we explain how to give a vector bundle a Riemannian metric. This is
achieved by supplying a smooth family (〈−,−〉b)b∈B of inner products on each fibre π−1(b)
above b ∈ B. We describe the notion of reduction of the structure group and define orientable
vector bundles.

In Section 10.9 we consider the special case of fibre bundles for which the fibre coincides
with the structure group G, which acts on itself by left translations. Such fibre bundles are
called principal bundles . It turns out that a principal bundle can be defined in terms of a
free right action of a Lie group on a smooth manifold. When principal bundles are defined
in terms of free right actions, the notion of bundle morphism is also defined in terms of
equivariant maps.

There are two constructions that allow us to reduce the study of fibre bundles to the
study of principal bundles. Given a fibre bundle ξ with fibre F , we can construct a principal
bundle P (ξ) obtained by replacing the fibre F by the group G. Conversely, given a principal
bundle ξ and an effective action of G on a manifold F , we can construct the fibre bundle
ξ[F ] obtained by replacing G by F . The Borel construction provides a direct construction
of ξ[F ]. The maps

ξ 7→ ξ[F ] and ξ 7→ P (ξ)

induce a bijection between equivalence classes of principal G-bundles and fibre bundles (with
structure group G). Furthermore, ξ is a trivial bundle iff P (ξ) is a trivial bundle. The
equivalence of fibre bundles and principal bundles (over the same base B, and with the same
structure group G) is the key to the classification of fibre bundles, but we do not discuss this
deep result.

Section 10.10 is devoted to principal bundles that arise from proper and free actions of a
Lie group. When the base space is a homogenous space, which means that it arises from a
transitive action of a Lie group, then the total space is a principal bundle. There are many
illustrations of this situation involving SO(n+ 1) and SU(n+ 1).

10.1 Fibre Bundles

We begin by carefully stating the definition of a fibre bundle because we believe that it
clarifies the notions of vector bundles and principal fibre bundles, the concepts that are our
primary concern. The following definition is not the most general, but it is sufficient for our
needs.

Definition 10.1. A fibre bundle with (typical) fibre F and structure group G is a tuple
ξ = (E, π,B, F,G), where E,B, F are smooth manifolds, π : E → B is a smooth surjective
map, G is a Lie group of diffeomorphisms of F , and there is some open cover U = (Uα)α∈I
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of B and a family ϕ = (ϕα)α∈I of diffeomorphisms

ϕα : π−1(Uα)→ Uα × F.

The space B is called the base space, E is called the total space, F is called the (typical)
fibre, and each ϕα is called a (local) trivialization. The pair (Uα, ϕα) is called a bundle chart ,
and the family {(Uα, ϕα)} is a trivializing cover . For each b ∈ B, the space π−1(b) is called
the fibre above b; it is also denoted by Eb, and π−1(Uα) is also denoted by E � Uα; see Figure
10.1.

B

E

F

Figure 10.1: The spiky cylinder E is a typical fibre bundle with base B as the purple cylinder
and fibre isomorphic to a line segment.

The following properties hold:

(a) (local triviality) The diagram

π−1(Uα)

π
$$

ϕα // Uα × F

p1
{{

Uα

commutes for all α ∈ I, where p1 : Uα × F → Uα is the first projection. Equivalently,
for all (b, y) ∈ Uα × F ,

π ◦ ϕ−1
α (b, y) = b.

(b) (fibre diffeomorphism) For every (Uα, ϕα) and every b ∈ Uα, because p1 ◦ ϕα = π, by
(a) the restriction of ϕα to Eb = π−1(b) is a diffeomorphism between Eb and {b} × F ,
so we have the diffeomorphism

ϕα,b : Eb → F
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given by

ϕα,b(Z) = (p2 ◦ ϕα)(Z), for all Z ∈ Eb;

see Figure 10.2. Furthermore, for all Uα, Uβ in U such that Uα ∩ Uβ 6= ∅, for every

B
Uα Uα

E b

F

b b

Z
φ

φα

α (Z ) = (b,y)y
p

2

Figure 10.2: An illustration of ϕα,b : Eb → F over B = S1.

b ∈ Uα ∩ Uβ, there is a relationship between ϕα,b and ϕβ,b which gives the twisting of
the bundle.

(c) (fibre twisting) The diffeomorphism

ϕα,b ◦ ϕ−1
β,b : F → F

is an element of the group G.

(d) (transition maps) The map gαβ : Uα ∩ Uβ → G defined by

gαβ(b) = ϕα,b ◦ ϕ−1
β,b,

is smooth. The maps gαβ are called the transition maps of the fibre bundle.

A fibre bundle ξ = (E, π,B, F,G) is also referred to, somewhat loosely, as a fibre bundle
over B or a G-bundle, and it is customary to use the notation

F −→ E −→ B,

or

F // E

��
B,



414 CHAPTER 10. BUNDLES, METRICS ON BUNDLES, HOMOGENEOUS SPACES

even though it is imprecise (the group G is missing!), and it clashes with the notation for
short exact sequences. Observe that the bundle charts (Uα, ϕα) are similar to the charts of
a manifold.

Actually, Definition 10.1 is too restrictive because it does not allow for the addition of
compatible bundle charts, for example when considering a refinement of the cover U . This
problem can easily be fixed using a notion of equivalence of trivializing covers analogous to
the equivalence of atlases for manifolds (see Definition 10.2 below). Also observe that (b),
(c), and (d) imply that the isomorphism ϕα ◦ϕ−1

β : (Uα∩Uβ)×F → (Uα∩Uβ)×F is related
to the smooth map gαβ : Uα ∩ Uβ → G by the identity

ϕα ◦ ϕ−1
β (b, x) = (b, gαβ(b)(x)), (∗)

for all b ∈ Uα ∩ Uβ and all x ∈ F .

We interpret gαβ(b)(x) as the action of the group element gαβ(b) on x; see Figure 10.4.

Intuitively, a fibre bundle over B is a family E = (Eb)b∈B of spaces Eb (fibres) indexed
by B and varying smoothly as b moves in B, such that every Eb is diffeomorphic to F . The
bundle E = B×F , where π is the first projection, is called the trivial bundle (over B). The
trivial bundle B×F is often denoted εF . The local triviality Condition (a) says that locally ,
that is over every subset Uα from some open cover of the base space B, the bundle ξ � Uα is
trivial. Note that if G is the trivial one-element group, then the fibre bundle is trivial. In
fact, the purpose of the group G is to specify the “twisting” of the bundle; that is, how the
fibre Eb gets twisted as b moves in the base space B.

A Möbius strip is an example of a nontrivial fibre bundle where the base space B is
the circle S1, the fibre space F is the closed interval [−1, 1], and the structural group is
G = {1,−1}, where −1 is the reflection of the interval [−1, 1] about its midpoint 0. The
total space E is the strip obtained by rotating the line segment [−1, 1] around the circle,
keeping its midpoint in contact with the circle, and gradually twisting the line segment so
that after a full revolution, the segment has been tilted by π. See Figure 10.3.

Note that U1 = {−π < x < π
2
}, U2 = {0 < x < 3π

2
}, while U1 ∩ U2 = V ∪W where V =

{0 < x < π
2
} and W = {−π < x < −π

2
}. The transition map is ϕ1 ◦ ϕ−1

2 (b, x) = (b, g12(b)x)
where g12(b) = 1 if b ∈ V and g12(b) = −1 if b ∈ W .

A Klein bottle is also a fibre bundle for which both the base space and the fibre are the
circle, S1, while G = {−1, 1}. Again, the reader should work out the details for this example.

Other examples of fibre bundles are:

(1) SO(n+ 1), an SO(n)-bundle over the sphere Sn with fibre SO(n). (for n ≥ 0).

(2) SU(n+ 1), an SU(n)-bundle over the sphere S2n+1 with fibre SU(n) (for n ≥ 0).

(3) SL(2,R), an SO(2)-bundle over the upper-half space H, with fibre SO(2).
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U2
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π

π- π
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π
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2

V

(b,x)

π π3
2

0
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W

(b,x) π
2

(b,x)

W

-π-

V

π
2

0

(b,x)

U1

U2

φ
φ 1
2

Figure 10.3: The Möbius strip as a line bundle over the unit circle.

(4) GL(n,R), an O(n)-bundle over the space SPD(n) of symmetric, positive definite
matrices, with fibre O(n).

(5) GL+(n,R), an SO(n)-bundle over the space, SPD(n) of symmetric, positive definite
matrices, with fibre SO(n).

(6) SO(n + 1), an O(n)-bundle over the real projective space RPn, with fibre O(n) (for
n ≥ 0).

(7) SU(n + 1), an U(n)-bundle over the complex projective space CPn, with fibre U(n)
(for n ≥ 0).

(8) O(n), an O(k)×O(n− k)-bundle over the Grassmannian G(k, n), with fibre
O(k)×O(n− k).

(9) SO(n), an S(O(k)×O(n− k))-bundle over the Grassmannian G(k, n), with fibre
S(O(k)×O(n− k)).

(10) SO(n), an SO(n− k)-bundle over the Stiefel manifold S(k, n), with 1 ≤ k ≤ n− 1.
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(11) The Lorentz group, SO0(n, 1), is an SO(n)-bundle over the space H+
n (1) consisting

of one sheet of the hyperbolic paraboloid Hn(1), with fibre SO(n) (see Gallier and
Quaintance [49]).

Observe that in all the examples above, F = G; that is, the typical fibre is identical to the
group G. Special bundles of this kind are called principal fibre bundles .

The above definition is slightly different (but equivalent) to the definition given in Bott
and Tu [13], page 47-48. Definition 10.1 is closer to the one given in Hirzebruch [61] (Chapter
I, Section 3.2(a)).

Bott and Tu and Hirzebruch assume that G acts effectively (or faithfully) on the left on
the fibre F . This means that there is a smooth action · : G × F → F . If G is a Lie group
and if F is a manifold, an action ϕ : G× F → F is smooth if ϕ is smooth. Also recall that
G acts effectively (or faithfully) on F iff for every g ∈ G,

if g · x = x for all x ∈ F , then g = 1.

Every g ∈ G induces a diffeomorphism ϕg : F → F , defined by

ϕg(x) = g · x, for all x ∈ F .

The fact that G acts effectively on F means that the map g 7→ ϕg is injective. This justifies
viewing G as a group of diffeomorphisms of F . If instead of viewing G as a group of
diffeomorphisms of F we assume that we have a smooth effective action of G on F we
modify Definition 10.1 by deleting Condition (c) and replacing Condition (d) by the following
condition:

(c’) For all α, β, there is a smooth map gαβ : Uα∩Uβ → G called a transition function such
that

ϕα,b ◦ ϕ−1
β,b(x) = gαβ(b) · x, b ∈ Uα ∩ Uβ, x ∈ F,

and thus
ϕα ◦ ϕ−1

β (b, x) = (b, gαβ(b) · x), b ∈ Uα ∩ Uβ, x ∈ F.
With Condition (c’) replacing Conditions (c) and (d) Definition 10.1 is essentially Defi-

nition 4.2 in Davis and Kirk [29]. Since G acts effectively on F , there is a bijection between
G and a subgroup of the group of diffeomorphisms of F so we can view the group element
gαβ(b) as the corresponding diffeomorphism and denote gαβ(b) · x as gαβ(b)(x).

There are situations in which it is desirable to generalize the notion of fibre bundle by
dropping the assumption that the action of G on F is effective. If the action of G on F
is not effective, two different group elements of G may induce the same diffeomorphism of
F , so two distinct group elements gαβ(b) and gα′β′(b) could define the same diffeomorphism
ϕα,b ◦ ϕ−1

β,b = ϕα′,b ◦ ϕ−1
β′,b, but this is not a problem.

We observed that Definition 10.1 is too restrictive because it does not allow for the
addition of compatible bundle charts. We can fix this problem as follows:
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Definition 10.2. Let ξ = (E, π,B, F,G) be fibre bundle defined as in Definition 10.1. Given
a trivializing cover {(Uα, ϕα)}, for any open U of B and any diffeomorphism

ϕ : π−1(U)→ U × F,

we say that (U,ϕ) is compatible with the trivializing cover {(Uα, ϕα)} iff whenever U∩Uα 6= ∅,
there is some smooth map gα : U ∩ Uα → G, so that

ϕ ◦ ϕ−1
α (b, x) = (b, gα(b) · x),

for all b ∈ U ∩ Uα and all x ∈ F , which according to the notational convention introduced
above is also written as

ϕ ◦ ϕ−1
α (b, x) = (b, gα(b)(x)).

Two trivializing covers are equivalent iff every bundle chart of one cover is compatible
with the other cover. This is equivalent to saying that the union of two trivializing covers is
a trivializing cover.

Definition 10.2 implies the following

Definition 10.3. Using the conventions of Definition 10.1, a fibre bundle is a tuple
(E, π,B, F,G, {(Uα, ϕα)}), where {(Uα, ϕα)} is an equivalence class of trivializing covers. As
for manifolds, given a trivializing cover {(Uα, ϕα)}, the set of all bundle charts compatible
with {(Uα, ϕα)} is a maximal trivializing cover equivalent to {(Uα, ϕα)}; see Figure 10.4.

b

(b, x)

φα

φα

(b,x)
-1
α

φ (b,x)
-1
α

φ(b, g   (b)(x)) =

φ

U

U

α x F

x F

Figure 10.4: A schematic illustration of the transition between two elements of a trivializing
cover.

A special case of the above occurs when we have a trivializing cover {(Uα, ϕα)} with
U = {Uα} an open cover of B, and another open cover V = (Vβ)β∈J of B which is a refinement
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of U . This means that there is a map τ : J → I, such that Vβ ⊆ Uτ(β) for all β ∈ J . Then
for every Vβ ∈ V , since Vβ ⊆ Uτ(β), the restriction of ϕτ(β) to Vβ is a trivialization

ϕ′β : π−1(Vβ)→ Vβ × F,

and Conditions (b) and (c) are still satisfied, so (Vβ, ϕ
′
β) is compatible with {(Uα, ϕα)}.

The family of transition functions (gαβ) satisfies the following crucial conditions.

Definition 10.4. Given a fibre bundle ξ = (E, π,B, F,G, {(Uα, ϕα)}) with family of transi-
tion functions (gαβ), the cocycle condition is the set of equations

gαβ(b)gβγ(b) = gαγ(b)

(where gαβ(b), gβγ(b), gαγ(b) ∈ G), for all α, β, γ such that Uα ∩ Uβ ∩ Uγ 6= ∅ and all b ∈
Uα ∩ Uβ ∩ Uγ; see Figure 10.5.

U   x   F

U   x   F

U   x   F

(b,x)

(b, g   (b)x)αγ

γ

αγg

β

(b, g   (b)x)βγ

g
βγ

α

αβg

(b, g   (b)g    (b)x)βγαβ
=

φ

φ

φ

γ

β

α

Figure 10.5: A schematic illustration of the cocycle condition. The three sheets of the bundle
actually glue together into a single sheet.

Setting α = β = γ, we get
gαα = id,
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and setting γ = α, we get
gβα = g−1

αβ .

Again, beware that this means that gβα(b) = g−1
αβ (b), where g−1

αβ (b) is the inverse of gβα(b) in

G. In general, g−1
αβ is not the functional inverse of gβα.

Experience shows that most objects of interest in geometry (vector fields, differential
forms, etc.) arise as sections of certain bundles. Furthermore, deciding whether or not a
bundle is trivial often reduces to the existence of a (global) section. Thus, we define the
important concept of a section right away.

Definition 10.5. Given a fibre bundle ξ = (E, π,B, F,G), a smooth section of ξ is a smooth
map s : B → E, so that π ◦ s = idB. Given an open subset U of B, a (smooth) section of ξ
over U is a smooth map s : U → E, so that π ◦ s(b) = b, for all b ∈ U ; we say that s is a
local section of ξ. The set of all sections over U is denoted Γ(U, ξ), and Γ(B, ξ) (for short,
Γ(ξ)) is the set of global sections of ξ; see Figure 10.6.

B

s(B)

Figure 10.6: An illustration of a global section of E ∼= B × R where B is the unit disk.

Here is an observation that proves useful for constructing global sections. Let s : B → E
be a global section of a bundle ξ. For every trivialization ϕα : π−1(Uα) → Uα × F , let
sα : Uα → E and σα : Uα → F be given by

sα = s � Uα and σα = pr2 ◦ ϕα ◦ sα,

so that
sα(b) = ϕ−1

α (b, σα(b)).

Obviously, π ◦ sα = id, so sα is a local section of ξ, and σα is a function σα : Uα → F .

We claim that on overlaps, we have

σα(b) = gαβ(b)σβ(b).

See Figure 10.7.
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BU U

α

β

β

s

α

= s(U  )α
sβ= s(U  )β

Uα x F U x F

σ

σ

φφ

φ

α

α αs( )(α )
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σ φ ( )( sβ )ββ

gαβ

Figure 10.7: An illustration of the gluing of two local sections sα and sβ.

Proof. Indeed, recall that
ϕα ◦ ϕ−1

β (b, x) = (b, gαβ(b)x),

for all b ∈ Uα ∩ Uβ and all x ∈ F , and as sα = s � Uα and sβ = s � Uβ, sα and sβ agree on
Uα ∩ Uβ. Consequently, from

sα(b) = ϕ−1
α (b, σα(b)) and sβ(b) = ϕ−1

β (b, σβ(b)),

we get
ϕ−1
α (b, σα(b)) = sα(b) = sβ(b) = ϕ−1

β (b, σβ(b)) = ϕ−1
α (b, gαβ(b)σβ(b)),

which implies σα(b) = gαβ(b)σβ(b), as claimed.

Conversely, assume that we have a collection of functions σα : Uα → F , satisfying

σα(b) = gαβ(b)σβ(b)

on overlaps. Let sα : Uα → E be given by

sα(b) = ϕ−1
α (b, σα(b)).

Each sα is a local section and we claim that these sections agree on overlaps, so they patch
and define a global section s.

Proof. We need to show that

sα(b) = ϕ−1
α (b, σα(b)) = ϕ−1

β (b, σβ(b)) = sβ(b),
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for b ∈ Uα ∩ Uβ; that is,
(b, σα(b)) = ϕα ◦ ϕ−1

β (b, σβ(b)),

and since ϕα ◦ ϕ−1
β (b, σβ(b)) = (b, gαβ(b)σβ(b)), and by hypothesis, σα(b) = gαβ(b)σβ(b), our

equation sα(b) = sβ(b) is verified.

10.2 Bundle Morphisms, Equivalent and Isomorphic

Bundles

Now that we have defined a fibre bundle, it is only natural to analyze mappings between two
fibre bundles. The notion of a map between fibre bundles is more subtle than one might think
because of the structure group G. Let us begin with the simpler case where G = Diff(F ),
the group of all smooth diffeomorphisms of F .

Definition 10.6. If ξ1 = (E1, π1, B1, F,Diff(F )) and ξ2 = (E2, π2, B2, F,Diff(F )) are two
fibre bundles with the same typical fibre F and the same structure group G =
Diff(F ), a bundle map (or bundle morphism) f : ξ1 → ξ2 is a pair f = (fE, fB) of smooth
maps fE : E1 → E2 and fB : B1 → B2, such that

(a) The following diagram commutes:

E1

π1

��

fE // E2

π2

��
B1 fB

// B2

(b) For every b ∈ B1, the map of fibres

fE � π
−1
1 (b) : π−1

1 (b)→ π−1
2 (fB(b))

is a diffeomorphism (preservation of the fibre).

A bundle map f : ξ1 → ξ2 is an isomorphism if there is some bundle map g : ξ2 → ξ1, called
the inverse of f , such that

gE ◦ fE = id and fE ◦ gE = id.

The bundles ξ1 and ξ2 are called isomorphic.

Given two fibre bundles ξ1 = (E1, π1, B, F,Diff(F )) and ξ2 = (E2, π2, B, F,Diff(F )) over
the same base space B, a bundle map (or bundle morphism) f : ξ1 → ξ2 is a pair f = (fE, fB),
where fB = id (the identity map). Such a bundle map is an isomorphism if it has an inverse
as defined above. In this case, we say that the bundles ξ1 and ξ2 over B are isomorphic.



422 CHAPTER 10. BUNDLES, METRICS ON BUNDLES, HOMOGENEOUS SPACES

Observe that the commutativity of the diagram in Definition 10.6 implies that fB is
actually determined by fE. Also, when f is an isomorphism, the surjectivity of π1 and π2

implies that
gB ◦ fB = id and fB ◦ gB = id.

Thus when f = (fE, fB) is an isomorphism, both fE and fB are diffeomorphisms.

Remark: Some authors do not require the “preservation” of fibres. However, it is automatic
for bundle isomorphisms.

Let us take a closer look at what it means for a bundle map to preserve fibres. When
we have a bundle map f : ξ1 → ξ2 as above, for every b ∈ B, for any trivializations
ϕα : π−1

1 (Uα)→ Uα × F of ξ1 and ϕ′β : π−1
2 (Vβ)→ Vβ × F of ξ2, with b ∈ Uα and fB(b) ∈ Vβ,

we have the map
ϕ′β ◦ fE ◦ ϕ−1

α : (Uα ∩ f−1
B (Vβ))× F → Vβ × F.

Consequently, as ϕα and ϕ′β are diffeomorphisms and as f is a diffeomorphism on fibres, we

have a map ρα,β : Uα ∩ f−1
B (Vβ)→ Diff(F ), such that

ϕ′β ◦ fE ◦ ϕ−1
α (b, x) = (fB(b), ρα,β(b)(x)),

for all b ∈ Uα ∩ f−1
B (Vβ) and all x ∈ F ; see Figure 10.8.
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Figure 10.8: The construction of the map ϕ′β ◦ fE ◦ ϕ−1
α between the Möbius strip bundle ξ1

and the cylinder bundle ξ2.
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Since we may always pick Uα and Vβ so that fB(Uα) ⊆ Vβ, we may also write ρα instead
of ρα,β, with ρα : Uα → G. Then observe that locally, fE is given as the composition

π−1
1 (Uα)

ϕα // Uα × F
f̃α // Vβ × F

ϕ′β
−1

// π−1
2 (Vβ)

z // (b, x) // (fB(b), ρα(b)(x)) // ϕ′β
−1(fB(b), ρα(b)(x)),

with f̃α(b, x) = (fB(b), ρα(b)(x)), that is,

fE(z) = ϕ′β
−1

(fB(b), ρα(b)(x)), with z ∈ π−1
1 (Uα) and (b, x) = ϕα(z).

Conversely, if (fE, fB) is a pair of smooth maps satisfying the commutative diagram of
Definition 10.6 and the above conditions hold locally, then as ϕα, ϕ′−1

β , and ρα(b) are diffeo-
morphisms on fibres, we see that fE is a diffeomorphism on fibres.

In the general case where the structure group G is not the whole group of diffeomorphisms
Diff(F ), there is no guarantee that ρα(b) ∈ G. This is the case if ξ is a vector bundle or
a principal bundle, but if ξ is a fibre bundle, following Hirzebruch [61], we use the local
conditions above to define the “right notion” of bundle map, namely Definition 10.7. Another
advantage of this definition is that two bundles (with the same fibre, structure group, and
base) are isomorphic iff they are equivalent (see Proposition 10.1 and Proposition 10.2).

Definition 10.7. Given two fibre bundles ξ1 = (E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G)
with the same fibre and the same structure group, a bundle map f : ξ1 → ξ2 is a pair
f = (fE, fB) of smooth maps fE : E1 → E2 and fB : B1 → B2, such that:

(a) The diagram

E1

π1

��

fE // E2

π2

��
B1 fB

// B2

commutes.

(b) There is an open cover U = (Uα)α∈I for B1, an open cover V = (Vβ)β∈J for B2, a family
ϕ = (ϕα)α∈I of trivializations ϕα : π−1

1 (Uα)→ Uα × F for ξ1, a family ϕ′ = (ϕ′β)β∈J of

trivializations ϕ′β : π−1
2 (Vβ)→ Vβ × F for ξ2, such that for every b ∈ B, there are some

trivializations ϕα : π−1
1 (Uα)→ Uα × F and ϕ′β : π−1

2 (Vβ)→ Vβ × F , with fB(Uα) ⊆ Vβ,
b ∈ Uα and some smooth map

ρα : Uα → G,

such that ϕ′β ◦ fE ◦ ϕ−1
α : Uα × F → Vα × F is given by

ϕ′β ◦ fE ◦ ϕ−1
α (b, x) = (fB(b), ρα(b)(x)),

for all b ∈ Uα and all x ∈ F .
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See Figure 10.8. A bundle map is an isomorphism if it has an inverse as in Definition 10.6.
If the bundles ξ1 and ξ2 are over the same base B, then we also require fB = id.

As we remarked in the discussion before Definition 10.7, Condition (b) insures that the
maps of fibres

fE � π
−1
1 (b) : π−1

1 (b)→ π−1
2 (fB(b))

are diffeomorphisms. In the special case where ξ1 and ξ2 have the same base, B1 = B2 = B,
we require fB = id, and we can use the same cover (i.e., U = V), in which case Condition
(b) becomes: There is some smooth map ρα : Uα → G, such that

ϕ′α ◦ f ◦ ϕα−1(b, x) = (b, ρα(b)(x)),

for all b ∈ Uα and all x ∈ F .

Definition 10.8. We say that a bundle ξ with base B and structure group G is trivial iff
ξ is isomorphic to the product bundle B × F , according to the notion of isomorphism of
Definition 10.7.

We can also define the notion of equivalence for fibre bundles over the same base space B
(see Hirzebruch [61], Section 3.2, Chern [23], Section 5, and Husemoller [64], Chapter 5). We
will see shortly that two bundles over the same base are equivalent iff they are isomorphic.

Definition 10.9. Given two fibre bundles ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G)
over the same base space B, we say that ξ1 and ξ2 are equivalent if there is an open cover
U = (Uα)α∈I for B, a family ϕ = (ϕα)α∈I of trivializations ϕα : π−1

1 (Uα)→ Uα × F for ξ1, a
family ϕ′ = (ϕ′α)α∈I of trivializations ϕ′α : π−1

2 (Uα)→ Uα × F for ξ2, and a family (ρα)α∈I of
smooth maps ρα : Uα → G, such that

g′αβ(b) = ρα(b)gαβ(b)ρβ(b)−1, for all b ∈ Uα ∩ Uβ;

see Figure 10.9.

Since the trivializations are bijections, the family (ρα)α∈I is unique. The conditions for
two fibre bundles to be equivalent are local. Nevertheless, they are strong enough to imply
that equivalent bundles over the same base are isomorphic (see Proposition 10.2).

The following proposition shows that isomorphic fibre bundles are equivalent.

Proposition 10.1. If two fibre bundles ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G) over
the same base space B are isomorphic, then they are equivalent.

Proof. Let f : ξ1 → ξ2 be a bundle isomorphism. In a slight abuse of notation, we also let
f : E1 → E2 be the isomorphism between E1 and E2. Then by Definition 10.7 we know that
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Figure 10.9: An illustration of the mapping g′αβ(b) = ρα(b)gαβ(b)ρβ(b)−1. Point 0 is

ϕ′β(z′) = (b, x). Point 1 is (b, ρ−1
β (b)(x)). Point 2 is (b, gαβ(b)ρ−1

β (b)(x)), while Point 3 is

(b, ρα(b)gαβ(b)ρ−1
β (b)(x)) = (b, g′αβ(b)(x)).

for some suitable open cover of the base B, and some trivializing families (ϕα) for ξ1 and
(ϕ′α) for ξ2, there is a family of maps ρα : Uα → G, so that

ϕ′α ◦ f ◦ ϕα−1(b, x) = (b, ρα(b)(x)),

for all b ∈ Uα and all x ∈ F . Recall that

ϕα ◦ ϕ−1
β (b, x) = (b, gαβ(b)(x)),

for all b ∈ Uα ∩ Uβ and all x ∈ F . This is equivalent to

ϕ−1
β (b, x) = ϕ−1

α (b, gαβ(b)(x)),

so it is notationally advantageous to introduce ψα such that ψα = ϕ−1
α . Then we have

ψβ(b, x) = ψα(b, gαβ(b)(x)), (∗)

and
ϕ′α ◦ f ◦ ϕ−1

α (b, x) = (b, ρα(b)(x))

becomes
ψα(b, x) = f−1 ◦ ψ′α(b, ρα(b)(x)). (∗∗)



426 CHAPTER 10. BUNDLES, METRICS ON BUNDLES, HOMOGENEOUS SPACES

By applying (*) and (**) we have

ψβ(b, x) = ψα(b, gαβ(b)(x)) = f−1 ◦ ψ′α(b, ρα(b)(gαβ(b)(x))).

On the other hand applying (**) then (*) gives

ψβ(b, x) = f−1 ◦ ψ′β(b, ρβ(b)(x)) = f−1 ◦ ψ′α(b, g′αβ(b)(ρβ(b)(x))),

from which we deduce
ρα(b)(gαβ(b)(x)) = g′αβ(b)(ρβ(b)(x)),

that is
g′αβ(b) = ρα(b)gαβ(b)ρβ(b)−1, for all b ∈ Uα ∩ Uβ,

as claimed.

Remark: If ξ1 = (E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G) are two bundles over different
bases and f : ξ1 → ξ2 is a bundle isomorphism, with f = (fB, fE), then fE and fB are
diffeomorphisms, and it is easy to see that we get the conditions

g′αβ(fB(b)) = ρα(b)gαβ(b)ρβ(b)−1, for all b ∈ Uα ∩ Uβ.

The converse of Proposition 10.1 also holds.

Proposition 10.2. If two fibre bundles ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G) over
the same base space B are equivalent, then they are isomorphic.

Proof. Assume that ξ1 and ξ2 are equivalent. Then for some suitable open cover of the
base B and some trivializing families (ϕα) for ξ1 and (ϕ′α) for ξ2, there is a family of maps
ρα : Uα → G, so that

g′αβ(b) = ρα(b)gαβ(b)ρβ(b)−1, for all b ∈ Uα ∩ Uβ,

which can be written as
g′αβ(b)ρβ(b) = ρα(b)gαβ(b).

For every Uα, define fα as the composition

π−1
1 (Uα)

ϕα // Uα × F
f̃α // Uα × F

ϕ′α
−1

// π−1
2 (Uα)

z // (b, x) // (b, ρα(b)(x)) // ϕ′α
−1(b, ρα(b)(x));

that is,
fα(z) = ϕ′α

−1
(b, ρα(b)(x)), with z ∈ π−1

1 (Uα) and (b, x) = ϕα(z).
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Since fα = ϕ′−1
α ◦ f̃α ◦ ϕα, the definition of fα implies that

ϕ′α ◦ fα ◦ ϕα−1(b, x) = (b, ρα(b)(x)),

for all b ∈ Uα and all x ∈ F , and locally fα is a bundle isomorphism with respect to ρα. If
we can prove that any two fα and fβ agree on the overlap Uα ∩ Uβ, then the fα’s patch and
yield a bundle isomorphism between ξ1 and ξ2.

Now, on Uα ∩ Uβ,
ϕα ◦ ϕ−1

β (b, x) = (b, gαβ(b)(x))

yields
ϕ−1
β (b, x) = ϕ−1

α (b, gαβ(b)(x)).

We need to show that for every z ∈ Uα ∩ Uβ,

fα(z) = ϕ′α
−1

(b, ρα(b)(x)) = ϕ′β
−1

(b, ρβ(b)(x′)) = fβ(z),

where ϕα(z) = (b, x) and ϕβ(z) = (b, x′).

From ϕ1
α(b, x) = z = ϕ−1

β (b, x′) = ϕ−1
α (b, gαβ(b)(x′)), we get

x = gαβ(b)(x′).

We also have
ϕ′β
−1

(b, ρβ(b)(x′)) = ϕ′α
−1

(b, g′αβ(b)(ρβ(b)(x′))),

and since g′αβ(b)ρβ(b) = ρα(b)gαβ(b) and x = gαβ(b)(x′), we get

ϕ′β
−1

(b, ρβ(b)(x′)) = ϕ′α
−1

(b, g′αβ(b)(ρβ(b))(x′)) = ϕ′α
−1

(b, ρα(b)(gαβ(b))(x′))

= ϕ′α
−1

(b, ρα(b)(x)),

as desired. Therefore, the fα’s patch to yield a bundle map f , with respect to the family of
maps ρα : Uα → G.

The map f is bijective because it is an isomorphism on fibres, but it remains to show that
it is a diffeomorphism. This is a local matter, and as the ϕα and ϕ′α are diffeomorphisms, it

suffices to show that the map f̃α : Uα × F −→ Uα × F given by

(b, x) 7→ (b, ρα(b)(x))

is a diffeomorphism. For this, observe that in local coordinates, the Jacobian matrix of this
map is of the form

J =

(
I 0
C J(ρα(b))

)
,

where I is the identity matrix and J(ρα(b)) is the Jacobian matrix of ρα(b). Since ρα(b)

is a diffeomorphism, det(J) 6= 0, and by the inverse function theorem, the map f̃α is a
diffeomorphism, as desired.
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Remark: If in Proposition 10.2, ξ1 = (E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G) are two
bundles over different bases and if we have a diffeomorphism fB : B1 → B2, and the conditions

g′αβ(fB(b)) = ρα(b)gαβ(b)ρβ(b)−1, for all b ∈ Uα ∩ Uβ

hold, then there is a bundle isomorphism (fB, fE) between ξ1 and ξ2.

It follows from Proposition 10.1 and Proposition 10.2 that two bundles over the same
base are equivalent iff they are isomorphic, a very useful fact. Actually, we can use the proof
of Proposition 10.2 to show that any bundle morphism f : ξ1 → ξ2 between two fibre bundles
over the same base B is a bundle isomorphism. Because a bundle morphism f as above is
fibre preserving, f is bijective, but it is not obvious that its inverse is smooth.

Proposition 10.3. Any bundle morphism f : ξ1 → ξ2 between two fibre bundles over the
same base B is an isomorphism.

Proof. Since f is bijective this is a local matter, and it is enough to prove that each
f̃α : Uα × F −→ Uα × F is a diffeomorphism, since f can be written as

f = ϕ′α
−1 ◦ f̃α ◦ ϕα,

with
f̃α(b, x) = (b, ρα(b)(x)).

However, the end of the proof of Proposition 10.2 shows that f̃α is a diffeomorphism.

10.3 Bundle Constructions Via the Cocycle Condition

Given a fibre bundle ξ = (E, π,B, F,G), we observed that the family g = (gαβ) of transition
maps gαβ : Uα ∩ Uβ → G induced by a trivializing family ϕ = (ϕα)α∈I relative to the open
cover U = (Uα)α∈I for B satisfies the cocycle condition

gαβ(b)gβγ(b) = gαγ(b),

for all α, β, γ such that Uα ∩ Uβ ∩ Uγ 6= ∅ and all b ∈ Uα ∩ Uβ ∩ Uγ.
Without altering anything, we may assume that gαβ is the (unique) function from ∅ to

G, when Uα ∩ Uβ = ∅. Then we call a family g = (gαβ)(α,β)∈I×I as above a U-cocycle, or
simply a cocycle.

Remarkably, given such a cocycle g relative to U , a fibre bundle ξg over B with fibre F
and structure group G having g as family of transition functions can be constructed.

In view of Proposition 10.1, we make the following definition.

Definition 10.10. We say that two cocycles g = (gαβ)(α,β)∈I×I and g′ = (g′αβ)(α,β)∈I×I are
equivalent if there is a family (ρα)α∈I of smooth maps ρα : Uα → G, such that

g′αβ(b) = ρα(b)gαβ(b)ρβ(b)−1, for all b ∈ Uα ∩ Uβ.
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Theorem 10.4. Given two smooth manifolds B and F , a Lie group G acting effectively on
F , an open cover U = (Uα)α∈I of B, and a cocycle g = (gαβ)(α,β)∈I×I , there is a fibre bundle
ξg = (E, π,B, F,G) whose transition maps are the maps in the cocycle g. Furthermore, if g
and g′ are equivalent cocycles, then ξg and ξg′ are isomorphic.

Proof sketch. First, we define the space Z as the disjoint sum

Z =
∐
α∈I

(Uα × F ).

We define the relation ' on Z × Z as follows: For all (b, x) ∈ Uβ × F and (b, y) ∈ Uα × F ,
if Uα ∩ Uβ 6= ∅,

(b, x) ' (b, y) iff y = gαβ(b)(x).

We let E = Z/ ', and we give E the largest topology such that the injections
ηα : Uα×F → Z are smooth. The cocycle condition insures that ' is indeed an equivalence
relation. We define π : E → B by π([b, x]) = b. If p : Z → E is the the quotient map, observe
that the maps p ◦ ηα : Uα × F → E are injective, and that

π ◦ p ◦ ηα(b, x) = b.

Thus,

p ◦ ηα : Uα × F → π−1(Uα)

is a bijection, and we define the trivializing maps by setting

ϕα = (p ◦ ηα)−1.

It is easily verified that the corresponding transition functions are the original gαβ. There
are some details to check. A complete proof (the only one we could find!) is given in Steenrod
[107], Part I, Section 3, Theorem 3.2. The fact that ξg and ξg′ are isomorphic when g and g′

are equivalent follows from Proposition 10.2 (see Steenrod [107], Part I, Section 2, Lemma
2.10).

Remark: (For readers familiar with sheaves) Hirzebruch defines the sheafG∞, whereG∞(U)
= Γ(U,G∞) is the group of smooth functions g : U → G, where U is some open subset of B
and G is a Lie group acting effectively (on the left) on the fibre F . The group operation on
Γ(U,G∞) is induced by multiplication in G; that is, given two (smooth) functions g : U → G
and h : U → G,

gh(b) = g(b)h(b), for all b ∈ U.

� Beware that gh is not function composition, unless G itself is a group of functions, which
is the case for vector bundles.
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Our conditions (b) and (c) are then replaced by the following equivalent condition: For
all Uα, Uβ in U such that Uα ∩ Uβ 6= ∅, there is some gαβ ∈ Γ(Uα ∩ Uβ, G∞) such that

ϕα ◦ ϕ−1
β (b, x) = (b, gαβ(b)(x)),

for all b ∈ Uα ∩ Uβ and all x ∈ F .

The classic source on fibre bundles is Steenrod [107]. The most comprehensive treatment
of fibre bundles and vector bundles is probably given in Husemoller [64]. A more extensive
list of references is given at the end of Section 10.9.

Remark: (The following paragraph is intended for readers familiar with Čech cohomology.)
The cocycle condition makes it possible to view a fibre bundle over B as a member of a
certain (Čech) cohomology set Ȟ1(B,G), where G denotes a certain sheaf of functions from
the manifold B into the Lie group G, as explained in Hirzebruch [61], Section 3.2. However,
this requires defining a noncommutative version of Čech cohomology (at least, for Ȟ1), and
clarifying when two open covers and two trivializations define the same fibre bundle over B,
or equivalently, defining when two fibre bundles over B are equivalent. If the bundles under
considerations are line bundles (see Definition 10.13), then Ȟ1(B,G) is actually a group. In
this case, G = GL(1,R) ∼= R∗ in the real case, and G = GL(1,C) ∼= C∗ in the complex case
(where R∗ = R−{0} and C∗ = C−{0}), and the sheaf G is the sheaf of smooth (real-valued
or complex-valued) functions vanishing nowhere. The group Ȟ1(B,G) plays an important
role, especially when the bundle is a holomorphic line bundle over a complex manifold. In
the latter case, it is called the Picard group of B.

Remark: (The following paragraph is intended for readers familiar with Čech cohomology.)
Obviously, if we start with a fibre bundle ξ = (E, π,B, F,G) whose transition maps are the
cocycle g = (gαβ), and form the fibre bundle ξg, the bundles ξ and ξg are equivalent. This
leads to a characterization of the set of equivalence classes of fibre bundles over a base space
B as the cohomology set Ȟ1(B,G).

In the present case, the sheaf G is defined such that Γ(U,G) is the group of smooth maps
from the open subset U of B to the Lie group G. Since G is not abelian, the coboundary
maps have to be interpreted multiplicatively. If we define the sets of cochains Ck(U ,G), so
that

C0(U ,G) =
∏
α

G(Uα), C1(U ,G) =
∏
α<β

G(Uα ∩ Uβ), C2(U ,G) =
∏

α<β<γ

G(Uα ∩ Uβ ∩ Uγ),

etc., then it is natural to define

δ0 : C0(U ,G)→ C1(U ,G)

by
(δ0g)αβ = g−1

α gβ,
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for any g = (gα), with gα ∈ Γ(Uα,G). As to

δ1 : C1(U ,G)→ C2(U ,G),

since the cocycle condition in the usual case is

gαβ + gβγ = gαγ,

we set
(δ1g)αβγ = gαβgβγg

−1
αγ ,

for any g = (gαβ), with gαβ ∈ Γ(Uα ∩ Uβ,G). Note that a cocycle g = (gαβ) is indeed an
element of Z1(U ,G), and the condition for being in the kernel of

δ1 : C1(U ,G)→ C2(U ,G)

is the cocycle condition
gαβ(b)gβγ(b) = gαγ(b),

for all b ∈ Uα ∩ Uβ ∩ Uγ. In the commutative case, two cocycles g and g′ are equivalent if
their difference is a boundary, which can be stated as

g′αβ + ρβ = gαβ + ρα = ρα + gαβ,

where ρα ∈ Γ(Uα,G), for all α ∈ I. In the present case, two cocycles g and g′ are equivalent
iff there is a family (ρα)α∈I , with ρα ∈ Γ(Uα,G), such that

g′αβ(b) = ρα(b)gαβ(b)ρβ(b)−1,

for all b ∈ Uα ∩ Uβ. This is the same condition of equivalence defined earlier. Thus, it is
easily seen that if g, h ∈ Z1(U ,G), then ξg and ξh are equivalent iff g and h correspond to
the same element of the cohomology set Ȟ1(U ,G).

As usual, Ȟ1(B,G) is defined as the direct limit of the directed system of sets Ȟ1(U ,G)
over the preordered directed family of open covers. For details, see Hirzebruch [61], Section
3.1. In summary, there is a bijection between the equivalence classes of fibre bundles over B
(with fibre F and structure group G) and the cohomology set Ȟ1(B,G). In the case of line
bundles, it turns out that Ȟ1(B,G) is in fact a group.

As an application of Theorem 10.4, we define the notion of pullback (or induced) bundle.

Definition 10.11. Let ξ = (E, π,B, F,G) is a fibre bundle and assume we have a smooth
map f : N → B. The pullback bundle f ∗ξ = (f ∗E, π∗, N, F,G) is the bundle over N , induced
by the bundle map (f ∗, f) : f ∗ξ → ξ

f ∗E
f∗ //

π∗

��

E

π

��
N

f
// B,
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where f ∗E is a pullback in the categorical sense. This means that for any other bundle ξ′

over N and any bundle map

E ′
f ′ //

π′

��

E

π

��
N

f
// B,

there is a unique bundle map (f̃ ′, id) : ξ′ → f ∗ξ, so that (f ′, f) = (f ∗, f)◦(f̃ ′, id) as illustrated
by the following diagram.

E ′

π′

��

f ′

$$
f̃ ′

!!
f ∗E

π∗

��

f∗
// E

π
��

N
f
// B

Definition 10.11 implies there is an isomorphism (natural)

Hom(ξ′, ξ) ∼= Hom(ξ,′ f ∗ξ).

As a consequence, by Proposition 10.3, for any bundle map between ξ′ and ξ,

E ′

π′

��

f ′ // E

π
��

N
f
// B,

there is an isomorphism, ξ′ ∼= f ∗ξ.

The bundle f ∗ξ can be constructed as follows: Pick any open cover (Uα) of B, then
(f−1(Uα)) is an open cover of N , and check that if (gαβ) is a cocycle for ξ, then the maps
gαβ ◦ f : f−1(Uα) ∩ f−1(Uβ) → G satisfy the cocycle conditions. Then, f ∗ξ is the bundle
defined by the cocycle (gαβ ◦ f). We leave as an exercise to show that the pullback bundle
f ∗ξ can be defined explicitly if we set

f ∗E = {(n, e) ∈ N × E | f(n) = π(e)},

π∗ = pr1 and f ∗ = pr2. For any trivialization ϕα : π−1(Uα)→ Uα × F of ξ, we have

(π∗)−1(f−1(Uα)) = {(n, e) ∈ N × E | n ∈ f−1(Uα), e ∈ π−1(f(n))},

and so we have a bijection ϕ̃α : (π∗)−1(f−1(Uα))→ f−1(Uα)× F , given by

ϕ̃α(n, e) = (n, pr2(ϕα(e))).
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By giving f ∗E the smallest topology that makes each ϕ̃α a diffeomorphism, ϕ̃α is a trivial-
ization of f ∗ξ over f−1(Uα), and f ∗ξ is a smooth bundle. Note that the fibre of f ∗ξ over a
point n ∈ N is isomorphic to the fibre π−1(f(n)) of ξ over f(n). If g : M → N is another
smooth map of manifolds, it is easy to check that

(f ◦ g)∗ξ = g∗(f ∗ξ).

Definition 10.12. Given a bundle ξ = (E, π,B, F,G) and a submanifold N of B, we define
the restriction of ξ to N as the bundle ξ � N = (π−1(N), π � π−1(N), B, F,G).

There are two particularly interesting special cases of fibre bundles:

(1) Vector bundles , which are fibre bundles for which the typical fibre is a finite-dimensional
vector space V , and the structure group is a subgroup of the group of linear isomor-
phisms (GL(n,R) or GL(n,C), where n = dimV ).

(2) Principal fibre bundles , which are fibre bundles for which the fibre F is equal to the
structure group G, with G acting on itself by left translation.

First we discuss vector bundles.

10.4 Vector Bundles

Given a real vector space V , we denote by GL(V ) (or Aut(V )) the group of linear invertible
maps from V to V . If V has dimension n, then GL(V ) has dimension n2. Obviously, GL(V )
is isomorphic to GL(n,R), so we often write GL(n,R) instead of GL(V ), but this may be
slightly confusing if V is the dual space W ∗ of some other space W . If V is a complex vector
space, we also denote by GL(V ) (or Aut(V )) the group of linear invertible maps from V to
V , but this time GL(V ) is isomorphic to GL(n,C), so we often write GL(n,C) instead of
GL(V ).

Definition 10.13. A rank n real smooth vector bundle with fibre V is a tuple ξ = (E, π,B, V )
such that (E, π,B, V,GL(V )) is a smooth fibre bundle, the fibre V is a real vector space of
dimension n, the action of the group GL(V ) on V is given by f ·u = f(u) for all f ∈ GL(V )
and all u ∈ V , and the following conditions hold:

(a) For every b ∈ B, the fibre π−1(b) is an n-dimensional (real) vector space.

(b) For every trivialization ϕα : π−1(Uα) → Uα × V , for every b ∈ Uα, the restriction of
ϕα to the fibre π−1(b) is a linear isomorphism π−1(b) −→ V . More precisely, the maps
ϕα,b : π−1(b)→ V are linear isomorphisms for all b ∈ Uα.
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A rank n complex smooth vector bundle with fibre V is a tuple, ξ = (E, π,B, V ), where
(E, π,B, V,GL(V )) is a smooth fibre bundle such that the fibre V is an n-dimensional
complex vector space (viewed as a real smooth manifold), the group GL(V ) acts on V as
above, and Conditions (a) and (b) above hold (for complex vector spaces). When n = 1, a
vector bundle is called a line bundle.

Observe that the action of GL(V ) on V is obviously effective.

Definition 10.14. A holomorphic vector bundle is a fibre bundle where E,B are complex
manifolds, V is a complex vector space of dimension n, the map π is holomorphic, the
ϕα are biholomorphic, and the transition functions gαβ are holomorphic. When n = 1, a
holomorphic vector bundle is called a holomorphic line bundle.

Just as fibre bundles can be generalized by considering a smooth action of a group G on
the fibre F that is not necessarily effective, vector bundles can be generalized. This time we
assume that we have a representation ρ : G → GL(V ), where the fibre V is a vector space
and the diffeomorphism ϕα,b ◦ϕ−1

β,b : V → V of the fibre V is a linear automorphism specified
in terms of a smooth map gαβ : Uα ∩ Uβ → G such that

ϕα,b ◦ ϕ−1
β,b(x) = ρ(gαβ(b))(x), b ∈ Uα ∩ Uβ, x ∈ V,

so that
ϕα ◦ ϕ−1

β (b, x) = (b, ρ(gαβ(b))(x)), b ∈ Uα ∩ Uβ, x ∈ V.

The trivial vector bundle E = B×V is often denoted εV . When V = Rk, we also use the
notation εk. Given a (smooth) manifold M of dimension n, the tangent bundle TM and the
cotangent bundle T ∗M are rank n vector bundles. Let us compute the transition functions
for the tangent bundle TM , where M is a smooth manifold of dimension n.

For every p ∈ M , the tangent space TpM consists of all equivalence classes of triples
(U,ϕ, x), where (U,ϕ) is a chart with p ∈ U , x ∈ Rn, and the equivalence relation on triples
is given by

(U,ϕ, x) ≡ (V, ψ, y) iff (ψ ◦ ϕ−1)′ϕ(p)(x) = y.

We have a natural isomorphism θU,ϕ,p : Rn → TpM between Rn and TpM given by

θU,ϕ,p : x 7→ [(U,ϕ, x)], x ∈ Rn.

Observe that for any two overlapping charts (U,ϕ) and (V, ψ),

θ−1
V,ψ,p ◦ θU,ϕ,p = (ψ ◦ ϕ−1)′z

for all p ∈ U ∩ V , with z = ϕ(p) = ψ(p). We let TM be the disjoint union

TM =
⋃
p∈M

TpM,
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define the projection π : TM → M so that π(v) = p if v ∈ TpM , and we give TM the
weakest topology that makes the functions ϕ̃ : π−1(U)→ R2n given by

ϕ̃(v) = (ϕ ◦ π(v), θ−1
U,ϕ,π(v)(v))

continuous, where (U,ϕ) is any chart of M . Each function ϕ̃ : π−1(U) → ϕ(U) × Rn is a
homeomorphism, and given any two overlapping charts (U,ϕ) and (V, ψ), since
θ−1
V,ψ,p ◦ θU,ϕ,p = (ψ ◦ ϕ−1)′z, with z = ϕ(p) = ψ(p), the transition map

ψ̃ ◦ ϕ̃−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn

is given by

ψ̃ ◦ ϕ̃−1(z, x) = (ψ ◦ ϕ−1(z), (ψ ◦ ϕ−1)′z(x)), (z, x) ∈ ϕ(U ∩ V )× Rn.

It is clear that ψ̃ ◦ ϕ̃−1 is smooth. Moreover, the bijection

τU : π−1(U)→ U × Rn

given by
τU(v) = (π(v), θ−1

U,ϕ,π(v)(v))

satisfies pr1 ◦ τU = π on π−1(U) and is a linear isomorphism restricted to fibres, so it is a
trivialization for TM . For any two overlapping charts (Uα, ϕα) and (Uβ, ϕβ), the transition
function, gαβ : Uα ∩ Uβ → GL(n,R) is given by

gαβ(p) = (ϕα ◦ ϕ−1
β )′ϕ(p).

See Figure 10.10.

We can also compute trivialization maps for T ∗M . This time, T ∗M is the disjoint union

T ∗M =
⋃
p∈M

T ∗pM,

and π : T ∗M →M is given by π(ω) = p if ω ∈ T ∗pM , where T ∗pM is the dual of the tangent
space TpM . For each chart (U,ϕ), by dualizing the map θU,ϕ,p : Rn → TpM , we obtain an
isomorphism θ>U,ϕ,p : T ∗pM → (Rn)∗. Composing θ>U,ϕ,p with the isomorphism ι : (Rn)∗ → Rn

(induced by the canonical basis (e1, . . . , en) of Rn and its dual basis), we get an isomorphism
θ∗U,ϕ,p = ι ◦ θ>U,ϕ,p : T ∗pM → Rn. Then define the bijection

ϕ̃∗ : π−1(U)→ ϕ(U)× Rn ⊆ R2n

by
ϕ̃∗(ω) = (ϕ ◦ π(ω), θ∗U,ϕ,π(ω)(ω)),
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Figure 10.10: An illustration of the line bundle T M over the curve M . The diagram in
the upper left illustrates U and V , two overlapping charts of M . The middle illustrates the
tangent bundle T M , the two trivialization maps, τU and τV , and the chart maps, ϕ̃ and ψ̃.

with ω ∈ π−1(U). We give T ∗M the weakest topology that makes the functions ϕ̃∗ contin-
uous, and then each function ϕ̃∗ is a homeomorphism. Given any two overlapping charts
(U,ϕ) and (V, ψ), as

θ−1
V,ψ,p ◦ θU,ϕ,p = (ψ ◦ ϕ−1)′ϕ(p),

by dualization we get

θ>U,ϕ,p ◦ (θ>V,ψ,p)
−1 = θ>U,ϕ,p ◦ (θ−1

V,ψ,p)
> = ((ψ ◦ ϕ−1)′ϕ(p))

>,

then

θ>V,ψ,p ◦ (θ>U,ϕ,p)
−1 = (((ψ ◦ ϕ−1)′ϕ(p))

>)−1,

and so

ι ◦ θ>V,ψ,p ◦ (θ>U,ϕ,p)
−1 ◦ ι−1 = ι ◦ (((ψ ◦ ϕ−1)′ϕ(p))

>)−1 ◦ ι−1;

that is,

θ∗V,ψ,p ◦ (θ∗U,ϕ,p)
−1 = ι ◦ (((ψ ◦ ϕ−1)′ϕ(p))

>)−1 ◦ ι−1.
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Consequently, the transition map

ψ̃∗ ◦ (ϕ̃∗)−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn

is given by

ψ̃∗ ◦ (ϕ̃∗)−1(z, x) = (ψ ◦ ϕ−1(z), ι ◦ (((ψ ◦ ϕ−1)′z)
>)−1 ◦ ι−1(x)), (z, x) ∈ ϕ(U ∩ V )× Rn.

If we view (ψ ◦ ϕ−1)′z as a matrix, then we can forget ι and the second component of

ψ̃∗ ◦ (ϕ̃∗)−1(z, x) is (((ψ ◦ ϕ−1)′z)
>)−1x.

We also have trivialization maps τ ∗U : π−1(U)→ U × (Rn)∗ for T ∗M , given by

τ ∗U(ω) = (π(ω), θ>U,ϕ,π(ω)(ω)),

for all ω ∈ π−1(U). The transition function g∗αβ : Uα ∩ Uβ → GL(n,R) is given by

g∗αβ(p)(η) = θ>Uα,ϕα,π(η) ◦ (θ>Uβ ,ϕβ ,π(η))
−1(η)

= ((θ−1
Uα,ϕα,π(η) ◦ θUβ ,ϕβ ,π(η))

>)−1(η)

= (((ϕα ◦ ϕ−1
β )′ϕ(p))

>)−1(η),

with η ∈ (Rn)∗. Also note that GL(n,R) should really be GL((Rn)∗), but GL((Rn)∗) is
isomorphic to GL(n,R). We conclude that

g∗αβ(p) = (gαβ(p)>)−1, for every p ∈M.

This is a general property of dual bundles; see Property (f) in Section 10.5.

Maps of vector bundles are maps of fibre bundles such that the isomorphisms between
fibres are linear.

Definition 10.15. Given two vector bundles ξ1 = (E1, π1, B1, V ) and ξ2 = (E2, π2, B2, V )
with the same typical fibre V , a bundle map (or bundle morphism) f : ξ1 → ξ2 is a pair
f = (fE, fB) of smooth maps fE : E1 → E2 and fB : B1 → B2, such that:

(a) The following diagram commutes:

E1

π1

��

fE // E2

π2

��
B1 fB

// B2

(b) For every b ∈ B1, the map of fibres

fE � π
−1
1 (b) : π−1

1 (b)→ π−1
2 (fB(b))

is a bijective linear map.
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A bundle map isomorphism f : ξ1 → ξ2 is defined as in Definition 10.6. Given two vector
bundles ξ1 = (E1, π1, B, V ) and ξ2 = (E2, π2, B, V ) over the same base space B, we require
fB = id.

Remark: Some authors do not require the preservation of fibres; that is, the map

fE � π
−1
1 (b) : π−1

1 (b)→ π−1
2 (fB(b))

is simply a linear map. It is automatically bijective for bundle isomorphisms.

Note that Definition 10.15 does not include Condition (b) of Definition 10.7. However,
because the restrictions of the maps ϕα, ϕ′β, and fE to the fibres are linear isomorphisms, it
turns out that Condition (b) (of Definition 10.7) does hold.

Indeed, if fB(Uα) ⊆ Vβ, then

ϕ′β ◦ fE ◦ ϕ−1
α : Uα × V −→ Vβ × V

is a smooth map of the form

ϕ′β ◦ fE ◦ ϕ−1
α (b, x) = (fB(b), ρα(b)(x))

for all b ∈ Uα and all x ∈ V , where ρα(b) is some linear isomorphism of V . Because
ϕ′β ◦ fE ◦ ϕ−1

α is smooth, the map b 7→ ρα(b) is smooth, therefore, there is a smooth map
ρα : Uα → GL(V ) so that

ϕ′β ◦ f ◦ ϕ−1
α (b, x) = (fB(b), ρα(b)(x)),

and a vector bundle map is a fibre bundle map.

Definition 10.9 (equivalence of bundles) also applies to vector bundles (just replace G by
GL(n,R) or GL(n,C)) and defines the notion of equivalence of vector bundles over B. Since
vector bundle maps are fibre bundle maps, Propositions 10.1 and 10.2 immediately yield

Proposition 10.5. Two vector bundles ξ1 = (E1, π1, B, V ) and ξ2 = (E2, π2, B, V ) over the
same base space B are equivalent iff they are isomorphic.

Since a vector bundle map is a fibre bundle map, Proposition 10.3 also yields the useful
fact:

Proposition 10.6. Any vector bundle map f : ξ1 → ξ2 between two vector bundles over the
same base B is an isomorphism.

Proposition 10.6 is proved in Milnor and Stasheff [83] for continuous vector bundles
(see Lemma 2.3), and in Madsen and Tornehave [80] for smooth vector bundles as well as
continuous vector bundles (see Lemma 15.10). The definition of a continuous vector bundle is
similar to the definition of a smooth vector bundle, except that the manifolds are topological
manifolds instead of smooth maninfolds, and the maps involved are continuous rather than
smooth.

Theorem 10.4 also holds for vector bundles and yields a technique for constructing new
vector bundles over some base B.
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Theorem 10.7. Given a smooth manifold B, an n-dimensional (real, resp. complex) vector
space V , an open cover U = (Uα)α∈I of B, and a cocycle g = (gαβ)(α,β)∈I×I (with
gαβ : Uα ∩ Uβ → GL(n,R), resp. gαβ : Uα ∩ Uβ → GL(n,C)), there is a vector bundle
ξg = (E, π,B, V ) whose transition maps are the maps in the cocycle g. Furthermore, if g
and g′ are equivalent cocycles, then ξg and ξg′ are equivalent.

Observe that a cocycle g = (gαβ)(α,β)∈I×I is given by a family of matrices in GL(n,R)
(resp. GL(n,C)).

A vector bundle ξ always has a global section, namely the zero section, which assigns the
element 0 ∈ π−1(b) to every b ∈ B. A global section s is a nonzero section iff s(b) 6= 0 for all
b ∈ B.

It is usually difficult to decide whether a bundle has a nonzero section. This question is
related to the nontriviality of the bundle, and there is a useful test for triviality.

Assume ξ is a trivial rank n vector bundle. There is a bundle isomorphism f : B×V → ξ.
For every b ∈ B, we know that f(b,−) is a linear isomorphism, so for any choice of a basis
(e1, . . . , en) of V , we get a basis (f(b, e1), . . . , f(b, en)) of the fibre π−1(b). Thus, we have n
global sections s1(b) = f(b, e1), . . . , sn(b) = f(b, en) such that (s1(b), . . . , sn(b)) forms a basis
of the fibre π−1(b), for every b ∈ B.

Definition 10.16. Let ξ = (E, π,B, V ) be a rank n vector bundle. For any open subset U ⊆
B, an n-tuple of local sections (s1, . . . , sn) over U is called a frame over U iff (s1(b), . . . , sn(b))
is a basis of the fibre π−1(b), for every b ∈ U . See Figure 10.11. If U = B, then the si are
global sections and (s1, . . . , sn) is called a frame (of ξ).
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Figure 10.11: A frame of ξ = (E, π,B,R2) over U obtained from a local trivialization. For
i ≤ 0 ≤ 2, s1(bi) = ϕ−1(bi, e1) and s2(bi) = ϕ−1(bi, e2), where e1 and e2 are the standard
basis vectors of R2.

The notion of a frame is due to Élie Cartan who (after Darboux) made extensive use of
them under the name of moving frame (and the moving frame method). Cartan’s terminology
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is intuitively clear: As a point b moves in U , the frame (s1(b), . . . , sn(b)) moves from fibre to
fibre. Physicists refer to a frame as a choice of local gauge.

The converse of the property established just before Definition 10.16 is also true.

Proposition 10.8. A rank n vector bundle ξ is trivial iff it possesses a frame of global
sections.

Proof. (Adapted from Milnor and Stasheff [83], Theorem 2.2.) We only need to prove that
if ξ has a frame (s1, . . . , sn), then it is trivial. Pick a basis (e1, . . . , en) of V , and define the
map f : B × V → ξ as follows:

f(b, v) =
n∑
i=1

visi(b),

where v =
∑n

i=1 viei. Clearly, f is bijective on fibres, smooth, and a map of vector bundles.
By Proposition 10.6, the bundle map, f , is an isomorphism.

The above considerations show that if ξ is any rank n vector bundle, not necessarily
trivial, then for any local trivialization ϕα : π−1(Uα)→ Uα×V , there are always frames over
Uα. Indeed, for every choice of a basis (e1, . . . , en) of the typical fibre V , if we set

sαi (b) = ϕ−1
α (b, ei), b ∈ Uα, 1 ≤ i ≤ n,

then (sα1 , . . . , s
α
n) is a frame over Uα. See Figure 10.11.

Definition 10.17. Given any two vector spaces V and W , both of dimension n, we denote
by Iso(V,W ) the space of all linear isomorphisms between V and W . The space of n-frames
F (V ) is the set of bases of V .

Since every basis (v1, . . . , vn) of V is in one-to-one correspondence with the map from Rn

to V given by ei 7→ vi, where (e1, . . . , en) is the canonical basis of Rn (so, ei = (0, . . . , 1, . . . 0)
with the 1 in the ith slot), we have an isomorphism,

F (V ) ∼= Iso(Rn, V ).

(The choice of a basis in V also yields an isomorphism Iso(Rn, V ) ∼= GL(n,R), so
F (V ) ∼= GL(n,R).)

Definition 10.18. For any rank n vector bundle ξ, we can form the frame bundle F (ξ), by
replacing the fibre π−1(b) over any b ∈ B by F (π−1(b)).

In fact, F (ξ) can be constructed using Theorem 10.4. Indeed, identifying F (V ) with
Iso(Rn, V ), the group GL(n,R) acts on F (V ) effectively on the left via

A · v = v ◦ A−1.
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(The only reason for using A−1 instead of A is that we want a left action.) The resulting
bundle has typical fibre F (V ) ∼= GL(n,R), and turns out to be a principal bundle. We will
take a closer look at principal bundles in Section 10.9.

We conclude this section with an example of a bundle that plays an important role in
algebraic geometry, the canonical line bundle on RPn. Let HR

n ⊆ RPn × Rn+1 be the subset

HR
n = {(L, v) ∈ RPn × Rn+1 | v ∈ L},

where RPn is viewed as the set of lines L in Rn+1 through 0, or more explicitly,

HR
n = {((x0 : · · · : xn), λ(x0, . . . , xn)) | (x0 : · · · : xn) ∈ RPn, λ ∈ R}.

Geometrically, HR
n consists of the set of lines [(x0, . . . , xn)] associated with points

(x0 : · · · : xn) of RPn. If we consider the projection π : HR
n → RPn of HR

n onto RPn, we see
that each fibre is isomorphic to R. We claim that HR

n is a line bundle. For this, we exhibit
trivializations, leaving as an exercise the fact that HR

n is a manifold of dimension n+ 1.

Recall the open cover U0, . . . , Un of RPn, where

Ui = {(x0 : · · · : xn) ∈ RPn | xi 6= 0}.

Then the maps ϕi : π
−1(Ui)→ Ui × R given by

ϕi((x0 : · · · : xn), λ(x0, . . . , xn)) = ((x0 : · · · : xn), λxi)

are trivializations. The transition function gij : Ui ∩ Uj → GL(1,R) is given by

gij(x0 : · · · : xn)(u) =
xi
xj
u,

where we identify GL(1,R) and R∗ = R− {0}.

Interestingly, the bundle HR
n is nontrivial for all n ≥ 1. For this, by Proposition 10.8

and since HR
n is a line bundle, it suffices to prove that every global section vanishes at some

point. So, let σ be any section of HR
n . Composing the projection, p : Sn −→ RPn, with σ,

we get a smooth function, s = σ ◦ p : Sn −→ HR
n , and we have

s(x) = (p(x), f(x)x),

for every x ∈ Sn, where f : Sn → R is a smooth function. Moreover, f satisfies

f(−x) = −f(x),

since s(−x) = (p(−x),−f(−x)x) = (p(x),−f(−x)x) = (p(x), f(x)x) = s(x). As Sn is
connected and f is continuous, by the intermediate value theorem, there is some x such that
f(x) = 0, and thus, σ vanishes, as desired.
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The reader should look for a geometric representation of HR
1 . It turns out that HR

1 is
an open Möbius strip; that is, a Möbius strip with its boundary deleted (see Milnor and
Stasheff [83], Chapter 2). There is also a complex version of the canonical line bundle on
CPn, with

Hn = {(L, v) ∈ CPn × Cn+1 | v ∈ L},

where CPn is viewed as the set of lines L in Cn+1 through 0. These bundles are also nontrivial.
Furthermore, unlike the real case, the dual bundle H∗n is not isomorphic to Hn. Indeed, H∗n
turns out to have nonzero global holomorphic sections!

10.5 Operations on Vector Bundles

Because the fibres of a vector bundle are vector spaces all isomorphic to some given space V ,
we can perform operations on vector bundles that extend familiar operations on vector spaces,
such as: direct sum, tensor product, (linear) function space, and dual space. Basically, the
same operation is applied on fibres. It is usually more convenient to define operations on
vector bundles in terms of operations on cocycles, using Theorem 10.7.

(a) (Whitney Sum or Direct Sum)

If ξ = (E, π,B, V ) is a rank m vector bundle and ξ′ = (E ′, π′, B,W ) is a rank n vector
bundle, both over the same base B, then their Whitney sum ξ⊕ ξ′ is the rank (m+n)
vector bundle whose fibre over any b ∈ B is the direct sum Eb⊕E ′b; that is, the vector
bundle with typical fibre V ⊕ W (given by Theorem 10.7) specified by the cocycle
whose matrices are (

gαβ(b) 0
0 g′αβ(b)

)
, b ∈ Uα ∩ Uβ.

(b) (Tensor Product)

If ξ = (E, π,B, V ) is a rank m vector bundle and ξ′ = (E ′, π′, B,W ) is a rank n
vector bundle, both over the same base B, then their tensor product ξ⊗ ξ′ is the rank
mn vector bundle whose fibre over any b ∈ B is the tensor product Eb ⊗ E ′b; that is,
the vector bundle with typical fibre V ⊗W (given by Theorem 10.7) specified by the
cocycle whose matrices are

gαβ(b)⊗ g′αβ(b), b ∈ Uα ∩ Uβ.

(Here, we identify a matrix with the corresponding linear map.)

(c) (Tensor Power)

If ξ = (E, π,B, V ) is a rank m vector bundle, then for any k ≥ 0, we can define the
tensor power bundle ξ⊗k, whose fibre over any b ∈ B is the tensor power E⊗kb , and with
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typical fibre V ⊗k. (When k = 0, the fibre is R or C). The bundle ξ⊗k is determined
by the cocycle

g⊗kαβ (b), b ∈ Uα ∩ Uβ.

(d) (Exterior Power)

If ξ = (E, π,B, V ) is a rank m vector bundle, then for any k ≥ 0, we can define the
exterior power bundle

∧k ξ, whose fibre over any b ∈ B is the exterior power
∧k Eb,

and with typical fibre
∧k V . The bundle

∧k ξ is determined by the cocycle

k∧
gαβ(b), b ∈ Uα ∩ Uβ.

Using (a), we also have the exterior algebra bundle
∧
ξ =

⊕m
k=0

∧k ξ. (When k = 0,
the fibre is R or C).

(e) (Symmetric Power)

If ξ = (E, π,B, V ) is a rank m vector bundle, then for any k ≥ 0, we can define the
symmetric power bundle Sk ξ, whose fibre over any b ∈ B is the symmetric power Sk Eb,
and with typical fibre Sk V . (When k = 0, the fibre is R or C). The bundle Skξ is
determined by the cocycle

Sk gαβ(b), b ∈ Uα ∩ Uβ.

(f) (Tensor Bundle of type (r, s))

If ξ = (E, π,B, V ) is a rank m vector bundle, then for any r, s ≥ 0, we can define the
bundle T r,s ξ whose fibre over any b ∈ ξ is the tensor space T r,sEb, and with typical
fibre T r,s V . The bundle T r,sξ is determined by the cocycle

g⊗
r

αβ (b)⊗ ((gαβ(b)>)−1)⊗s(b), b ∈ Uα ∩ Uβ.

(g) (Dual Bundle)

If ξ = (E, π,B, V ) is a rank m vector bundle, then its dual bundle ξ∗ is the rank m
vector bundle whose fibre over any b ∈ B is the dual space E∗b ; that is, the vector
bundle with typical fibre V ∗ (given by Theorem 10.7) specified by the cocycle whose
matrices are

(gαβ(b)>)−1, b ∈ Uα ∩ Uβ.

The reason for this seemingly complicated formula is this: For any trivialization
ϕα : π−1(Uα)→ Uα × V , for any b ∈ B, recall that the restriction ϕα,b : π−1(b)→ V of
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ϕα to π−1(b) is a linear isomorphism. By dualization we get a map
ϕ>α,b : V ∗ → (π−1(b))∗, and thus ϕ∗α,b for ξ∗ is given by

ϕ∗α,b = (ϕ>α,b)
−1 : (π−1(b))∗ → V ∗.

As g∗αβ(b) = ϕ∗α,b ◦ (ϕ∗β,b)
−1, we get

g∗αβ(b) = (ϕ>α,b)
−1 ◦ ϕ>β,b

= ((ϕ>β,b)
−1 ◦ ϕ>α,b)−1

= ((ϕ−1
β,b)
> ◦ ϕ>α,b)−1

= ((ϕα,b ◦ ϕ−1
β,b)
>)−1

= (gαβ(b)>)−1,

as claimed.

(h) (Hom Bundle)

If ξ = (E, π,B, V ) is a rank m vector bundle and ξ′ = (E ′, π′, B,W ) is a rank n
vector bundle, both over the same base B, then their Hom bundle Hom(ξ, ξ′) is
the rank mn vector bundle whose fibre over any b ∈ B is Hom(Eb, E

′
b); that is,

the vector bundle with typical fibre Hom(V,W ). The transition functions of this
bundle are obtained as follows: For any trivializations ϕα : π−1(Uα) → Uα × V and
ϕ′α : (π′)−1(Uα)→ Uα×W , for any b ∈ B, recall that the restrictions ϕα,b : π−1(b)→ V
and ϕ′α,b : (π′)−1(b) → W are linear isomorphisms. We have a linear isomorphism
ϕHom
α,b : Hom(π−1(b), (π′)−1(b)) −→ Hom(V,W ) given by

ϕHom
α,b (f) = ϕ′α,b ◦ f ◦ ϕ−1

α,b, f ∈ Hom(π−1(b), (π′)−1(b)).

Then, gHom
αβ (b) = ϕHom

α,b ◦ (ϕHom
β,b )−1. See Figure 10.12.

As an illustration of (d), consider the exterior power
∧r T ∗M , where M is a manifold of

dimension n. We have trivialization maps τ ∗U : π−1(U)→ U ×
∧r(Rn)∗ for

∧r T ∗M , given by

τ ∗U(ω) = (π(ω),
r∧
θ>U,ϕ,π(ω)(ω)),

for all ω ∈ π−1(U). The transition function g
∧r
αβ : Uα ∩ Uβ → GL(n,R) is given by

g
∧r
αβ (p)(ω) = (

r∧
(((ϕα ◦ ϕ−1

β )′ϕ(p))
>)−1)(ω),

for all ω ∈ π−1(U). Consequently,

g
∧r
αβ (p) =

r∧
(gαβ(p)>)−1,
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Figure 10.12: A schematic illustration of ϕHom
α,b .

for every p ∈M , a special case of (f).

In view of the canonical isomorphism Hom(V,W ) ∼= V ∗ ⊗ W , it is easy to show the
following results.

Proposition 10.9. The vector bundle Hom(ξ, ξ′), is isomorphic to ξ∗ ⊗ ξ′. Similarly, ξ∗∗

is isomorphic to ξ. We also have the isomorphism

T r,sξ ∼= ξ⊗r ⊗ (ξ∗)⊗s.

� Do not confuse the space of bundle morphisms Hom(ξ, ξ′) with the bundle Hom(ξ, ξ′).
However, observe that Hom(ξ, ξ′) is the set of global sections of Hom(ξ, ξ′).

Remark: For rank 1 vector bundles, namely line bundles, it is easy to show that the set of
equivalence classes of line bundles over a base B forms a group, where the group operation
is ⊗, the inverse is ∗ (dual), and the identity element is the trivial bundle. This is the Picard
group of B.

In general, the dual ξ∗ of a bundle is not isomorphic to the original bundle ξ. This is
because V ∗ is not canonically isomorphic to V , and to get a bundle isomorphism between ξ
and ξ∗, we need canonical isomorphisms between the fibres. However, if ξ is real, then (using
a partition of unity), ξ can be given a Euclidean metric and so, ξ and ξ∗ are isomorphic.

� It is not true in general that a complex vector bundle is isomorphic to its dual because
a Hermitian metric only induces a canonical isomorphism between E∗ and E, where E

is the conjugate of E, with scalar multiplication in E given by (z, w) 7→ wz.

Remark: Given a real vector bundle, ξ, the complexification ξC of ξ is the complex vector
bundle defined by

ξC = ξ ⊗R εC,
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where εC = B × C is the trivial complex line bundle. Given a complex vector bundle ξ, by
viewing its fibre as a real vector space we obtain the real vector bundle ξR.

Proposition 10.10. The following facts hold.

(1) For every real vector bundle ξ,
(ξC)R ∼= ξ ⊕ ξ.

(2) For every complex vector bundle ξ,

(ξR)C ∼= ξ ⊕ ξ∗.

10.6 Properties of Vector Bundle Sections

It can be shown (see Madsen and Tornehave [80], Chapter 15) that for every real smooth
vector bundle ξ, there is some integer k such that ξ has a complement η in εk, where
εk = B × Rk is the trivial rank k vector bundle, so that

ξ ⊕ η = εk.

This fact can be used to prove an interesting property of the space of global sections Γ(ξ).

First, observe that Γ(ξ) is not just a real vector space, but also a C∞(B)-module (see
Section 2.14). Indeed, for every smooth function f : B → R and every smooth section
s : B → E, the map fs : B → E given by

(fs)(b) = f(b)s(b), b ∈ B,

is a smooth section of ξ.

In general, Γ(ξ) is not a free C∞(B)-module unless ξ is trivial. However, the above
remark implies that

Γ(ξ)⊕ Γ(η) = Γ(εk),

where Γ(εk) is a free C∞(B)-module of dimension dim(ξ) + dim(η).

This proves that Γ(ξ) is a finitely generated C∞(B)-module which is a summand of a free
C∞(B)-module. Such modules are projective modules ; see Definition 2.28 in Section 2.14.
Therefore, Γ(ξ) is a finitely generated projective C∞(B)-module.

The following isomorphisms can be shown (see Madsen and Tornehave [80], Chapter 16).

Proposition 10.11. The following isomorphisms hold for vector bundles:

Γ(Hom(ξ, η)) ∼= HomC∞(B)(Γ(ξ),Γ(η))

Γ(ξ ⊗ η) ∼= Γ(ξ)⊗C∞(B) Γ(η)

Γ(ξ∗) ∼= HomC∞(B)(Γ(ξ), C∞(B)) = (Γ(ξ))∗

Γ(
k∧
ξ) ∼=

k∧
C∞(B)

(Γ(ξ)).
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Using the operations on vector bundles described in Section 10.5, we can define the set of
vector valued differential forms Ak(M ;F ) defined in Section 4.5 as the set of smooth sections

of the vector bundle
(∧k T ∗M

)
⊗ εF ; that is, as

Ak(M ;F ) = Γ
(( k∧

T ∗M
)
⊗ εF

)
,

where εF is the trivial vector bundle εF = M × F .

Proposition 10.12. We have the following isomorphisms:

Ak(M ;F ) ∼= Ak(M)⊗C∞(M) C
∞(M ;F ) ∼= AltkC∞(M)(X(M);C∞(M ;F )),

Proof. By Proposition 10.11 and since Γ(εF ) ∼= C∞(M ;F ) and Ak(M) = Γ
(∧k T ∗M

)
, we

have

Ak(M ;F ) = Γ
(( k∧

T ∗M
)
⊗ εF

)
∼= Γ

( k∧
T ∗M

)
⊗C∞(M) Γ(εF )

= Ak(M)⊗C∞(M) C
∞(M ;F )

∼=
k∧

C∞(M)

(Γ(TM))∗ ⊗C∞(M) C
∞(M ;F )

∼= HomC∞(M)

( k∧
C∞(M)

Γ(TM), C∞(M ;F )

)
∼= AltkC∞(M)(X(M);C∞(M ;F )),

with all of the spaces viewed as C∞(M)-modules, and where we used the fact that X(X) =
Γ(TM) is a projective module, and that Proposition 3.5 is still valid for exterior powers over
a commutative ring. Therefore,

Ak(M ;F ) ∼= Ak(M)⊗C∞(M) C
∞(M ;F ) ∼= AltkC∞(M)(X(M);C∞(M ;F )),

which reduces to Proposition 4.15 when F = R.

In Section 11.2, we will consider a generalization of the above situation where the trivial
vector bundle εF is replaced by any vector bundle ξ = (E, π,B, V ), and where M = B.
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10.7 Duality between Vector Fields and Differential

Forms, Covariant Derivatives of Tensor Fields

Given a manifold M , the covariant derivative ∇X given by a connection ∇ on TM can
be extended to a covariant derivative ∇r,s

X defined on tensor fields in Γ(M,T r,s(M)) for all
r, s ≥ 0, where

T r,s(M) = T⊗rM ⊗ (T ∗M)⊗s.

We already have ∇1,0
X = ∇X and it is natural to set ∇0,0

X f = X[f ] = df(X). Recall that there
is an isomorphism between the set of tensor fields Γ(M,T r,s(M)), and the set of C∞(M)-
multilinear maps

Φ: A1(M)× · · · × A1(M)︸ ︷︷ ︸
r

×X(M)× · · · × X(M)︸ ︷︷ ︸
s

−→ C∞(M),

where A1(M) and X(M) are C∞(M)-modules.

The next proposition is left as an exercise. For help, see O’Neill [90], Chapter 2, Propo-
sition 13 and Theorem 15.

Proposition 10.13. for every vector field X ∈ X(M), there is a unique family of R-linear
map ∇r,s : Γ(M,T r,s(M))→ Γ(M,T r,s(M)), with r, s ≥ 0, such that

(a) ∇0,0
X f = df(X), for all f ∈ C∞(M) and ∇1,0

X = ∇X , for all X ∈ X(M).

(b) ∇r1+r2,s1+s2
X (S ⊗ T ) = ∇r1,s1

X (S)⊗ T + S ⊗∇r2,s2
X (T ), for all S ∈ Γ(M,T r1,s1(M)) and

all T ∈ Γ(M,T r2,s2(M)).

(c) ∇r−1,s−1
X (cij(S)) = cij(∇r,s

X (S)), for all S ∈ Γ(M,T r,s(M)) and all contractions, cij, of
Γ(M,T r,s(M)).

Furthermore,
(∇0,1

X θ)(Y ) = X[θ(Y )]− θ(∇XY ),

for all X, Y ∈ X(M) and all one-forms, θ ∈ A1(M), and for every S ∈ Γ(M,T r,s(M)), with
r + s ≥ 2, the covariant derivative ∇r,s

X (S) is given by

(∇r,s
X S)(θ1, . . . , θr, X1, . . . , Xs) = X[S(θ1, . . . , θr, X1, . . . , Xs)]

−
r∑
i=1

S(θ1, . . . ,∇0,1
X θi, . . . , θr, X1, . . . , Xs)

−
s∑
j=1

S(θ1, . . . , . . . , θr, X1, . . . ,∇XXj, . . . , Xs),

for all X1, . . . , Xs ∈ X(M) and all one-forms, θ1, . . . , θr ∈ A1(M).
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In particular, for S = g, the Riemannian metric on M (a (0, 2) tensor), we get

∇X(g)(Y, Z) = X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ),

for all X, Y, Z ∈ X(M). We will see later on that a connection on M is compatible with a
metric g iff ∇X(g) = 0.

Definition 10.19. The covariant differential ∇r,sS of a tensor S ∈ Γ(M,T r,s(M)) is the
(r, s+ 1)-tensor given by

(∇r,sS)(θ1, . . . , θr, X,X1, . . . , Xs) = (∇r,s
X S)(θ1, . . . , θr, X1, . . . , Xs),

for all X,Xj ∈ X(M) and all θi ∈ A1(M).

For simplicity of notation we usually omit the superscripts r and s. In particular, if r = 1
and s = 0, in which case S is a vector field, the covariant derivative ∇S is defined so that

(∇S)(X) = ∇XS.

If (M, 〈−,−〉) is a Riemannian manifold, then the inner product 〈−,−〉p on TpM , estab-
lishes a canonical duality between TpM and T ∗pM , as explained in Section 2.2. Namely, we
have the isomorphism [ : TpM → T ∗pM , defined such that for every u ∈ TpM , the linear form

u[ ∈ T ∗pM is given by

u[(v) = 〈u, v〉p v ∈ TpM.

The inverse isomorphism ] : T ∗pM → TpM is defined such that for every ω ∈ T ∗pM , the vector
ω] is the unique vector in TpM so that

〈ω], v〉p = ω(v), v ∈ TpM.

The isomorphisms [ and ] induce isomorphisms between vector fields X ∈ X(M) and one-
forms ω ∈ A1(M): A vector field X ∈ X(M) yields the one-form X[ ∈ A1(M) given by

(X[)p = (Xp)
[,

and a one-form ω ∈ A1(M) yields the vector field ω] ∈ X(M) given by

(ω])p = (ωp)
],

so that
ωp(v) = 〈(ωp)], v〉p, v ∈ TpM, p ∈M.

In particular, for every smooth function f ∈ C∞(M), the vector field corresponding to the
one-form df is the gradient grad f , of f . The gradient of f is uniquely determined by the
condition

〈(grad f)p, v〉p = dfp(v), v ∈ TpM, p ∈M.
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Recall from Proposition 10.13 that the covariant derivative ∇Xω of any one-form
ω ∈ A1(M) is the one-form given by

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ).

If ∇ is a metric connection, then the vector field (∇Xω)] corresponding to ∇Xω is nicely
expressed in terms of ω]. Indeed, we have the following proposition.

Proposition 10.14. If ∇ is a metric connection on a smooth manifold M , then for every
vector field X and every one-form ω we have

(∇Xω)] = ∇Xω
].

Proof. We have

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY )

= X(〈ω], Y 〉)− 〈ω],∇XY 〉
= 〈∇Xω

], Y 〉+ 〈ω],∇XY 〉 − 〈ω],∇XY 〉
= 〈∇Xω

], Y 〉,

where we used the fact that the connection is compatible with the metric in the third line
and so,

(∇Xω)] = ∇Xω
],

as claimed.

10.8 Metrics on Vector Bundles, Reduction

of Structure Groups, Orientation

Because the fibres of a vector bundle are vector spaces, the definition of a Riemannian metric
on a manifold can be lifted to vector bundles.

Definition 10.20. Given a (real) rank n vector bundle ξ = (E, π,B, V ), we say that ξ is
Euclidean iff there is a family (〈−,−〉b)b∈B of inner products on each fibre π−1(b), such that
〈−,−〉b depends smoothly on b, which means that for every trivializing map
ϕα : π−1(Uα)→ Uα × V , for every frame, (s1, . . . , sn), on Uα, the maps

b 7→ 〈si(b), sj(b)〉b, b ∈ Uα, 1 ≤ i, j ≤ n

are smooth. We say that 〈−,−〉 is a Euclidean metric (or Riemannian metric) on ξ. If ξ
is a complex rank n vector bundle ξ = (E, π,B, V ), we say that ξ is Hermitian iff there is
a family (〈−,−〉b)b∈B of Hermitian inner products on each fibre π−1(b), such that 〈−,−〉b
depends smoothly on b. We say that 〈−,−〉 is a Hermitian metric on ξ. For any smooth
manifold M , if TM is a Euclidean vector bundle, then we say that M is a Riemannian
manifold .
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Now, given a real (resp. complex) vector bundle ξ, since B is paracompact because it is a
manifold a Euclidean metric (resp. Hermitian metric) exists on ξ. This is a consequence of
the existence of partitions of unity (see Warner [115] , Chapter 1, or Gallier and Quaintance
[49]).

Theorem 10.15. Every real (resp. complex) vector bundle admits a Euclidean (resp. Her-
mitian) metric. In particular, every smooth manifold admits a Riemannian metric.

Proof. Let (Uα) be a trivializing open cover for ξ and pick any frame (sα1 , . . . , s
α
n) over Uα.

For every b ∈ Uα, the basis (sα1 (b), . . . , sαn(b)) defines a Euclidean (resp. Hermitian) inner
product 〈−,−〉b on the fibre π−1(b), by declaring (sα1 (b), . . . , sαn(b)) orthonormal w.r.t. this
inner product. (For x =

∑n
i=1 xis

α
i (b) and y =

∑n
i=1 yis

α
i (b), let 〈x, y〉b =

∑n
i=1 xiyi, resp.

〈x, y〉b =
∑n

i=1 xiyi, in the complex case.) The 〈−,−〉b (with b ∈ Uα) define a metric on
π−1(Uα), denote it 〈−,−〉α. Now, using a partition of unity, glue these inner products using
a partition of unity (fα) subordinate to (Uα), by setting

〈x, y〉 =
∑
α

fα〈x, y〉α.

We verify immediately that 〈−,−〉 is a Euclidean (resp. Hermitian) metric on ξ.

The existence of metrics on vector bundles allows the so-called reduction of structure
group. Recall that the transition maps of a real (resp. complex) vector bundle ξ are functions
gαβ : Uα ∩ Uβ → GL(n,R) (resp. GL(n,C)). Let GL+(n,R) be the subgroup of GL(n,R)
consisting of those matrices of positive determinant (resp. GL+(n,C) be the subgroup of
GL(n,C) consisting of those matrices of positive determinant).

Definition 10.21. For every real (resp. complex) vector bundle ξ, if it is possible to find a
cocycle g = (gαβ) for ξ with values in a subgroup H of GL(n,R) (resp. of GL(n,C)), then
we say that the structure group of ξ can be reduced to H. We say that ξ is orientable if its
structure group can be reduced to GL+(n,R) (resp. GL+(n,C)).

Proposition 10.16. (a) The structure group of a rank n real vector bundle ξ can be re-
duced to O(n); it can be reduced to SO(n) iff ξ is orientable.

(b) The structure group of a rank n complex vector bundle ξ can be reduced to U(n); it can
be reduced to SU(n) iff ξ is orientable.

Proof. We prove (a), the proof of (b) being similar. Using Theorem 10.15, put a metric on
ξ. For every Uα in a trivializing cover for ξ and every b ∈ B, by Gram-Schmidt, orthonormal
bases for π−1(b) exist. Consider the family of trivializing maps ϕ̃α : π−1(Uα)→ Uα× V such
that ϕ̃α,b : π−1(b) −→ V maps orthonormal bases of the fibre to orthonormal bases of V .
Then, it is easy to check that the corresponding cocycle takes values in O(n) and if ξ is
orientable, the determinants being positive, these values are actually in SO(n).
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Remark: If ξ is a Euclidean rank n vector bundle, then by Proposition 10.16, we may
assume that ξ is given by some cocycle (gαβ), where gαβ(b) ∈ O(n), for all b ∈ Uα ∩ Uβ. We
saw in Section 10.5 (f) that the dual bundle ξ∗ is given by the cocycle

(gαβ(b)>)−1, b ∈ Uα ∩ Uβ.

As gαβ(b) is an orthogonal matrix, (gαβ(b)>)−1 = gαβ(b), and thus, any Euclidean bundle is
isomorphic to its dual. As we noted earlier, this is false for Hermitian bundles.

Definition 10.22. Let ξ = (E, π,B, V ) be a rank n vector bundle and assume ξ is orientable.
A family of trivializing maps ϕα : π−1(Uα)→ Uα×V is oriented iff for all α, β, the transition
function gαβ(b) has positive determinant for all b ∈ Uα ∩ Uβ. Two oriented families of
trivializing maps ϕα : π−1(Uα)→ Uα × V and ψβ : π−1(Wβ)→ Wα × V are equivalent iff for
every b ∈ Uα ∩Wβ, the map pr2 ◦ ϕα ◦ ψ−1

β � {b} × V : V −→ V has positive determinant.

It is easily checked that this is an equivalence relation and that it partitions all the
oriented families of trivializations of ξ into two equivalence classes. Either equivalence class
is called an orientation of ξ.

If M is a manifold and ξ = TM , the tangent bundle of M , we know from Section 10.4
that the transition functions of TM are of the form

gαβ(p)(u) = (ϕα ◦ ϕ−1
β )′ϕ(p)(u),

where each ϕα : Uα → Rn is a chart of M . Consequently, TM is orientable iff the Jacobian
of (ϕα◦ϕ−1

β )′ϕ(p) is positive, for every p ∈M . This is equivalent to the condition of Definition
7.4 for M to be orientable. Therefore, we have the following result.

Proposition 10.17. The tangent bundle TM of a manifold M is orientable iff M is ori-
entable.

� The notion of orientability of a vector bundle ξ = (E, π,B, V ) is not equivalent to the
orientability of its total space E. Indeed, if we look at the transition functions of the

total space of TM given in Section 10.4, we see that TM , as a manifold, is always orientable,
even if M is not orientable.

Indeed, the transition functions of the tangent bundle TM are of the form

ψ̃ ◦ ϕ̃−1(z, x) = (ψ ◦ ϕ−1(z), (ψ ◦ ϕ−1)′z(x)), (z, x) ∈ ϕ(U ∩ V )× Rn.

Since (ψ ◦ ϕ−1)′z is a linear map, its derivative at any point is equal to itself, and it follows

that the derivative of ψ̃ ◦ ϕ̃−1 at (z, x) is given by

(ψ̃ ◦ ϕ̃−1)′(z,x)(u, v) = ((ψ ◦ ϕ−1)′z(u), (ψ ◦ ϕ−1)′z(v)), (u, v) ∈ Rn × Rn.
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Then the Jacobian matrix of this map is of the form

J =

(
A 0
0 A

)
where A is an n × n matrix, since (ψ ◦ ϕ−1)′z(u) does not involve the variables in v and
(ψ ◦ ϕ−1)′z(v) does not involve the variables in u. Therefore det(J) = det(A)2, which shows
that the transition functions have positive Jacobian determinant, and thus that TM is
orientable.

Yet, as a bundle, TM is orientable iff M is orientable.

On the positive side, we have the following result.

Proposition 10.18. If ξ = (E, π,B, V ) is an orientable vector bundle and its base B is an
orientable manifold, then E is orientable too.

Proof. To see this, assume that B is a manifold of dimension m, ξ is a rank n vector bundle
with fibre V , let ((Uα, ψα))α be an atlas for B, let ϕα : π−1(Uα)→ Uα × V be a collection of
trivializing maps for ξ, and pick any isomorphism, ι : V → Rn. Then, we get maps

(ψα × ι) ◦ ϕα : π−1(Uα) −→ Rm × Rn.

It is clear that these maps form an atlas for E. Check that the corresponding transition
maps for E are of the form

(x, y) 7→ (ψβ ◦ ψ−1
α (x), gαβ(ψ−1

α (x))y).

Moreover, if B and ξ are orientable, wer can check that these transition maps have positive
Jacobian.

The notion of subbundle is defined as follows:

Definition 10.23. Given two vector bundles ξ = (E, π,B, V ) and ξ′ = (E ′, π′, B, V ′) over
the same base B, we say that ξ is a subbundle of ξ′ iff E is a submanifold of E ′, V is a
subspace of V ′, and for every b ∈ B, the fibre π−1(b) is a subspace of the fibre (π′)−1(b).

If ξ is a subbundle of ξ′, we can form the quotient bundle ξ′/ξ as the bundle over B whose
fibre at b ∈ B is the quotient space (π′)−1(b)/π−1(b). We leave it as an exercise to define
trivializations for ξ′/ξ. In particular, if N is a submanifold of M , then TN is a subbundle of
TM � N and the quotient bundle (TM � N)/TN is called the normal bundle of N in M .

The fact that every bundle admits a metric allows us to define the notion of orthogonal
complement of a subbundle. We state the following theorem without proof. The reader is
invited to consult Milnor and Stasheff [83] for a proof (Chapter 3).



454 CHAPTER 10. BUNDLES, METRICS ON BUNDLES, HOMOGENEOUS SPACES

Proposition 10.19. Let ξ and η be two vector bundles with ξ a subbundle of η. Then there
exists a subbundle ξ⊥ of η, such that every fibre of ξ⊥ is the orthogonal complement of the
fibre of ξ in the fibre of η over every b ∈ B, and

η ∼= ξ ⊕ ξ⊥.

In particular, if N is a submanifold of a Riemannian manifold M , then the orthogonal
complement of TN in TM � N is isomorphic to the normal bundle (TM � N)/TN .

10.9 Principal Fibre Bundles

We now consider principal bundles. Such bundles arise in terms of Lie groups acting on
manifolds. Let L(G) be the group of left translations of the group G, that is, the set of all
homomorphisms Lg : G→ G given by Lg(g

′) = gg′, for all g, g′ ∈ G. The map g 7→ Lg is an
isomorphism between the groups G and L(G) whose inverse is given by L 7→ L(1) (where
L ∈ L(G)).

Definition 10.24. Let G be a Lie group. A principal fibre bundle, for short a principal
bundle, is a fibre bundle ξ = (E, π,B,G, L(G)) in which the fibre is G and the structure
group is L(G), that is, G viewed as its group of left translations (ie., G acts on itself by
multiplication on the left). This means that every transition function gαβ : Uα ∩Uβ → L(G)
satisfies

gαβ(b)(h) = (gαβ(b)(1))h,

for all b ∈ Uα ∩ Uβ and all h ∈ G. A principal G-bundle is denoted ξ = (E, π,B,G).

In view of the isomorphism between L(G) and G we allow ourself the (convenient) abuse
of notation

gαβ(b)(h) = gαβ(b)h,

where on the left, gαβ(b) is viewed as a left translation of G, and on the right as an element
of G.

When we want to emphasize that a principal bundle has structure group G, we use the
locution principal G-bundle.

It turns out that if ξ = (E, π,B,G) is a principal bundle, then G acts on the total space
E, on the right. For the next proposition, recall that a right action · : X ×G→ X is free iff
for every g ∈ G, if g 6= 1, then x · g 6= x for all x ∈ X.

Proposition 10.20. If ξ = (E, π,B,G) is a principal bundle, then there is a right action of
G on E. This action takes each fibre to itself and is free. Moreover, E/G is diffeomorphic
to B.
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Proof. We show how to define the right action and leave the rest as an exercise. Let
{(Uα, ϕα)} be some trivializing cover defining ξ. For every z ∈ E, pick some Uα so that
π(z) ∈ Uα, and let ϕα(z) = (b, h), where b = π(z) and h ∈ G. For any g ∈ G, we set

z · g = ϕ−1
α (b, hg).

If we can show that this action does not depend on the choice of Uα, then it is clear that
it is a free action. Suppose that we also have b = π(z) ∈ Uβ and that ϕβ(z) = (b, h′). By
definition of the transition functions, we have

h′ = gβα(b)h and ϕβ(z · g) = ϕβ(ϕ−1
α (b, hg)) = (b, gβα(b)(hg)).

However,
gβα(b)(hg) = (gβα(b)h)g = h′g,

hence
z · g = ϕ−1

β (b, h′g),

which proves that our action does not depend on the choice of Uα.

Observe that the action of Proposition 10.20 is defined by

z · g = ϕ−1
α (b, ϕα,b(z)g), with b = π(z),

for all z ∈ E and all g ∈ G.

It is clear that this action satisfies the following two properties: For every (Uα, ϕα),

(1) π(z · g) = π(z), and

(2) ϕα(z · g) = ϕα(z) · g, for all z ∈ E and all g ∈ G,

where we define the right action of G on Uα ×G so that (b, h) · g = (b, hg).

Definition 10.25. A trivializing map ϕα satisfying Condition (2) above is G-equivariant
(or equivariant).

The following proposition shows that it is possible to define a principal G-bundle using
a suitable right action and equivariant trivializations:

Proposition 10.21. Let E be a smooth manifold, G be a Lie group, and let · : E ×G→ E
be a smooth right action of G on E satisfying the following properties:

(a) The right action of G on E is free;

(b) The orbit space B = E/G is a smooth manifold under the quotient topology, and the
projection π : E → E/G is smooth;
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(c) There is a family of local trivializations {(Uα, ϕα)}, where {Uα} is an open cover for
B = E/G, and each

ϕα : π−1(Uα)→ Uα ×G
is an equivariant diffeomorphism, which means that

ϕα(z · g) = ϕα(z) · g,

for all z ∈ π−1(Uα) and all g ∈ G, where the right action of G on Uα ×G is
(b, h) · g = (b, hg).

If π : E → E/G is the quotient map, then ξ = (E, π,E/G,G) is a principal G-bundle.

Proof. Since the action of G on E is free, every orbit b = z · G is isomorphic to G, and so
every fibre π−1(b) is isomorphic to G. Thus, given that we have trivializing maps, we just
have to prove that G acts by left translation on itself. Pick any (b, h) in Uβ × G and let
z ∈ π−1(Uβ) be the unique element such that ϕβ(z) = (b, h). Then as

ϕβ(z · g) = ϕβ(z) · g, for all g ∈ G,

we have
ϕβ(ϕ−1

β (b, h) · g) = ϕβ(z · g) = ϕβ(z) · g = (b, h) · g,
which implies that

ϕ−1
β (b, h) · g = ϕ−1

β ((b, h) · g).

Consequently,

ϕα ◦ ϕ−1
β (b, h) = ϕα ◦ ϕ−1

β ((b, 1) · h) = ϕα(ϕ−1
β (b, 1) · h) = ϕα ◦ ϕ−1

β (b, 1) · h,

and since

ϕα ◦ ϕ−1
β (b, h) = (b, gαβ(b)(h)) and ϕα ◦ ϕ−1

β (b, 1) = (b, gαβ(b)(1))

we get
gαβ(b)(h) = gαβ(b)(1)h.

The above shows that gαβ(b) : G → G is the left translation by gαβ(b)(1), and thus the
transition functions gαβ(b) constitute the group of left translations of G, and ξ is indeed a
principal G-bundle.

Bröcker and tom Dieck [19] (Chapter I, Section 4) and Duistermaat and Kolk [40] (Ap-
pendix A) define principal bundles using the conditions of Proposition 10.21. Propositions
10.20 and 10.21 show that this alternate definition is equivalent to ours (Definition 10.24).

It turns out that when we use the definition of a principal bundle in terms of the conditions
of Proposition 10.21, it is convenient to define bundle maps in terms of equivariant maps.
As we will see shortly, a map of principal bundles is a fibre bundle map.
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Definition 10.26. If ξ1 = (E1, π1, B1, G) and ξ2 = (E2, π2, B2, G) are two principal bundles,
a bundle map (or bundle morphism) f : ξ1 → ξ2 is a pair, f = (fE, fB) of smooth maps
fE : E1 → E2 and fB : B1 → B2, such that:

(a) The following diagram commutes:

E1

π1

��

fE // E2

π2

��
B1 fB

// B2

(b) The map fE is G-equivariant ; that is,

fE(a · g) = fE(a) · g, for all a ∈ E1 and all g ∈ G.

A bundle map is an isomorphism if it has an inverse as in Definition 10.6. If the bundles
ξ1 and ξ2 are over the same base B, then we also require fB = id.

At first glance, it is not obvious that a map of principal bundles satisfies Condition (b)

of Definition 10.7. If we define f̃α : Uα ×G→ Vβ ×G by

f̃α = ϕ′β ◦ fE ◦ ϕ−1
α ,

then locally fE is expressed as

fE = ϕ′β
−1 ◦ f̃α ◦ ϕα.

Furthermore, it is trivial that if a map is equivariant and invertible, then its inverse is
equivariant. Consequently, since

f̃α = ϕ′β ◦ fE ◦ ϕ−1
α ,

as ϕ−1
α , ϕ′β and fE are equivariant, f̃α is also equivariant, and so f̃α is a map of (trivial)

principal bundles. Thus, it is enough to prove that for every map of principal bundles

ϕ : Uα ×G→ Vβ ×G,

there is some smooth map ρα : Uα → G, so that

ϕ(b, g) = (fB(b), ρα(b)(g)), for all b ∈ Uα and all g ∈ G.

Indeed, we have the following
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Proposition 10.22. For every map of trivial principal bundles

ϕ : Uα ×G→ Vβ ×G,

there are smooth maps fB : Uα → Vβ and rα : Uα → G, so that

ϕ(b, g) = (fB(b), rα(b)g), for all b ∈ Uα and all g ∈ G.

In particular, ϕ is a diffeomorphism on fibres.

Proof. As ϕ is a map of principal bundles

ϕ(b, 1) = (fB(b), rα(b)), for all b ∈ Uα,

for some smooth maps fB : Uα → Vβ and rα : Uα → G. Now, using equivariance, we get

ϕ(b, g) = ϕ((b, 1)g) = ϕ(b, 1) · g = (fB(b), rα(b)) · g = (fB(b), rα(b)g),

as claimed.

Consequently, the map ρα : Uα → G given by

ρα(b)(g) = rα(b)g for all b ∈ Uα and all g ∈ G

satisfies
ϕ(b, g) = (fB(b), ρα(b)(g)), for all b ∈ Uα and all g ∈ G,

and a map of principal bundles is indeed a fibre bundle map (as in Definition 10.7). Since a
principal bundle map is a fibre bundle map, Proposition 10.3 also yields the useful fact:

Proposition 10.23. Any map f : ξ1 → ξ2 between two principal bundles over the same base
B is an isomorphism.

A natural question is to ask whether a fibre bundle ξ is isomorphic to a trivial bundle.
If so, we say that ξ is trivial. (By the way, the triviality of bundles comes up in physics, in
particular, field theory.) Generally, this is a very difficult question, but a first step can be
made by showing that it reduces to the question of triviality for principal bundles.

Indeed, if ξ = (E, π,B, F,G) is a fibre bundle with fibre F , using Theorem 10.4, we can
construct a principal fibre bundle P (ξ) using the transition functions {gαβ} of ξ, but using
G itself as the fibre (acting on itself by left translation) instead of F .

Definition 10.27. Let ξ = (E, π,B, F,G) is a fibre bundle with fibre F , and P (ξ) be the
bundle obtained by replacing the fibre of ξ with G (as described in the preceding paragraph).
We call P (ξ) the principal bundle associated to ξ.
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For example, the principal bundle associated with a vector bundle is the frame bundle,
discussed at the end of Section 10.4.

Then given two fibre bundles ξ and ξ′, we see that ξ and ξ′ are isomorphic iff P (ξ) and
P (ξ′) are isomorphic (Steenrod [107], Part I, Section 8, Theorem 8.2). More is true: the
fibre bundle ξ is trivial iff the principal fibre bundle P (ξ) is trivial (see Steenrod [107], Part
I, Section 8, Corollary 8.4). Moreover, there is a test for the triviality of a principal bundle,
the existence of a (global) section.

The following proposition, although easy to prove, is crucial:

Proposition 10.24. If ξ is a principal bundle, then ξ is trivial iff it possesses some global
section.

Proof. If f : B ×G→ ξ is an isomorphism of principal bundles over the same base B, then
for every g ∈ G, the map b 7→ f(b, g) is a section of ξ.

Conversely, let s : B → E be a section of ξ. Then, observe that the map f : B ×G → ξ
given by

f(b, g) = s(b)g

is a map of principal bundles. By Proposition 10.23, it is an isomorphism, so ξ is trivial.

Generally, in geometry, many objects of interest arise as global sections of some suitable
bundle (or sheaf): vector fields, differential forms, tensor fields, etc.

Definition 10.28. Given a principal bundle ξ = (E, π,B,G) and given a manifold F , if G
acts effectively on F from the left, using Theorem 10.4, we can construct a fibre bundle ξ[F ]
from ξ, with F as typical fibre, and such that ξ[F ] has the same transitions functions as ξ.
The fibre bundle ξ[F ] is called the fibre bundle induced by ξ.

In the case of a principal bundle, there is another slightly more direct construction that
takes us from principal bundles to fibre bundles (see Duistermaat and Kolk [40], Chapter 2,
and Davis and Kirk [29], Chapter 4, Definition 4.6, where it is called the Borel construction).
This construction is of independent interest, so we describe it briefly (for an application of
this construction, see Duistermaat and Kolk [40], Chapter 2).

As ξ is a principal bundle, recall that G acts on E from the right, so we have a right
action of G on E × F , via

(z, f) · g = (z · g, g−1 · f).

Consequently, we obtain the orbit set E×F/ ∼, denoted E×GF , where ∼ is the equivalence
relation

(z, f) ∼ (z′, f ′) iff (∃g ∈ G)(z′ = z · g, f ′ = g−1 · f).

Note that the composed map
E × F pr1−→ E

π−→ B
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factors through E ×G F as a map p : E ×G F → B given by

p([z, f)] = π(pr1(z, f)),

as illustrated in the diagram below

E × F

q &&

pr1 // E
π // B

E ×G F,
p

::

since
π(pr1(z, f)) = π(z) = π(z · g) = π(pr1(z · g, g−1 · f)),

which means that the definition of p does not depend on the choice of representative in the
equivalence class [(z, f)].

The following proposition is not hard to show:

Proposition 10.25. If ξ = (E, π,B,G) is a principal bundle and F is any manifold such
that G acts effectively on F from the left, then, ξ[F ] = (E ×G F, p,B, F,G) is a fibre bundle
with fibre F and structure group G, and ξ[F ] and ξ have the same transition functions.

Sketch of proof. Let us verify that the charts of ξ yield charts for ξ[F ]. For any Uα in an
open cover for B, we have a diffeomorphism

ϕα : π−1(Uα)→ Uα ×G.

The first step is to show that that there is an isomorphism

(Uα ×G)×G F ∼= Uα × F,

where, as usual, G acts on Uα × G via (z, h) · g = (z, hg), Two pairs ((b1, g1), f1) and
((b2, g2), f2) are equivalent iff there is some g ∈ G such that

(b2, g2) = (b1, g1) · g, f2 = g−1 · f1,

which implies that (b2, g2) = (b1, g1g), so b1 = b2 and g2 = g1g. It follows that g = g−1
1 g2 and

g1 · f1 = g2 · f2, so two pairs ((b1, g1), f1) and ((b2, g2), f2) are equivalent iff

b1 = b2, and g1 · f1 = g2 · f2.

The map θ : (Uα ×G)×G F → Uα × F given by

θ([((b1, g1), f1)]) = (b1, g1 · f1)

is well-defined on the equivalence class [((b1, g1), f1)], and it is clear that it is a bijection since
(b1, g1 · f1) = (b2, g1 · f2) implies that [((b1, g1), f1)] = [((b2, g2), f2)].
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We also have an isomorphism

p−1(Uα) ∼= π−1(Uα)×G F,

and since ϕα : π−1(Uα)→ Uα ×G induces an isomorphism

π−1(Uα)×G F
ξ // (Uα ×G)×G F,

and we have an isomorphism θ : (Uα × G) ×G F → Uα × F , so we have an isomorphism
p−1(Uα) −→ Uα × F and we get the commutative diagram

p−1(Uα)

p
$$

θ◦ξ // Uα × F

pr1zz
Uα,

which yields a local trivialization θ ◦ ξ for ξ[F ]. It is easy to see that the transition functions
of ξ[F ] are the same as the transition functions of ξ.

Now if we start with a fibre bundle ξ with fibre F and structure group G, if we make the
associated principal bundle P (ξ), and then the induced fibre bundle P (ξ)[F ], what is the
relationship between ξ and P (ξ)[F ]?

The answer is: ξ and P (ξ)[F ] are equivalent (this is because the transition functions are
the same.)

Now, if we start with a principal G-bundle ξ, make the fibre bundle ξ[F ] as above, and
then the principal bundle P (ξ[F ]), we get a principal bundle equivalent to ξ. Therefore, the
maps

ξ 7→ ξ[F ] and ξ 7→ P (ξ)

are mutual inverses, and they set up a bijection between equivalence classes of principal
G-bundles over B and equivalence classes of fibre bundles over B (with structure group G).
Moreover, this map extends to morphisms, so it is functorial (see Steenrod [107], Part I,
Section 2, Lemma 2.6–Lemma 2.10).

As a consequence, in order to “classify” equivalence classes of fibre bundles (assuming B
and G fixed), it is enough to know how to classify principal G-bundles over B. Given some
reasonable conditions on the coverings of B, Milnor solved this classification problem, but
this is taking us way beyond the scope of these notes!

Proposition 10.25 can be generalized to the situation where the action of the Lie group G
on F is not necessarily effective. In this case we need the generalization of the notion of fibre
bundle in which the diffeomorphism ϕα,b ◦ ϕ−1

β,b : F → F of the fibre F is not a member of G
since G can’t generally be identified with a group of diffeomorphims of F if our action is not
effective. This more general definition using Condition (c’) is discussed just before Definition
10.2. Recall that we drop Condition (c) and we modify Condition (d) of Definition 10.1 as
follows:
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(c’) For all α, β, there is a smooth map gαβ : Uα ∩ Uβ → G such that

ϕα,b ◦ ϕ−1
β,b(x) = gαβ(b) · x, b ∈ Uα ∩ Uβ, x ∈ F,

and thus
ϕα ◦ ϕ−1

β (b, x) = (b, gαβ(b) · x), b ∈ Uα ∩ Uβ, x ∈ F.
The transition functions (gαβ) are still coycles, etc. A new version of Proposition 10.25 can
be proven, but this time the transition functions of the fibre bundle ξ[F ] are defined in terms
of the action of G on F , although formally they look like the transition functions of ξ, that
involve the action of G on itself. We leave the details as an exercise.

Vector bundles can also be generalized (see just after Definition 10.14) by assuming that
we have a representation ρ : G → GL(V ), where V is the typical fibre, and the diffeomor-
phism ϕα,b ◦ ϕ−1

β,b : V → V of the fibre V is a linear automorphism specified in terms of a
smooth map gαβ : Uα ∩ Uβ → G such that

ϕα,b ◦ ϕ−1
β,b(x) = ρ(gαβ(b))(x), b ∈ Uα ∩ Uβ, x ∈ V,

so that
ϕα ◦ ϕ−1

β (b, x) = (b, ρ(gαβ(b))(x)), b ∈ Uα ∩ Uβ, x ∈ V.
A version of Proposition 10.25 can also be proven for such vector bundles.

The classical reference on fibre bundles, vector bundles and principal bundles, is Steenrod
[107]. More recent references include Bott and Tu [13], Madsen and Tornehave [80], Morita
[87], Griffith and Harris [56], Wells [116], Hirzebruch [61], Milnor and Stasheff [83], Davis
and Kirk [29], Atiyah [5], Chern [23], Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick
[27], Hirsh [60], Sato [101], Narasimham [89], Sharpe [106] and also Husemoller [64], which
covers more, including characteristic classes.

Proposition 10.21 shows that principal bundles are induced by suitable right actions,
but we still need sufficient conditions to guarantee Conditions (a), (b) and (c). The special
situation of homogeneous spaces is considered in the next section.

10.10 Proper and Free Actions, Homogeneous Spaces

Now that we have introduced the notion of principal bundle, we can state various results
about homogeneous spaces. These results are stronger than those stated in Gallier and
Quaintance [49] which apply to groups and sets without any topology or differentiable struc-
ture. We need to review the notion of proper map and proper action.

Definition 10.29. If X and Y are two Hausdorff topological spaces,1 a function a ϕ : X → Y
is proper iff it is continuous and for every topological space Z, the map ϕ×id : X×Z → Y ×Z

1It is not necessary to assume that X and Y are Hausdorff but, if X and/or Y are not Hausdorff, we
have to replace “compact” by “quasi-compact.” We have no need for this extra generality.
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is a closed map (recall that f is a closed map iff the image of any closed set by f is a closed
set).

If we let Z be a one-point space, we see that a proper map is closed .

At first glance, it is not obvious how to check that a map is proper just from Definition
10.29. Proposition 10.27 gives a more palatable criterion.

The following proposition is easy to prove (see Bourbaki, General Topology [17], Chapter
1, Section 10).

Proposition 10.26. If ϕ : X → Y is any proper map, then for any closed subset F of X,
the restriction of ϕ to F is proper.

The following result providing a “good” criterion for checking that a map is proper can
be shown (see Bourbaki, General Topology [17], Chapter 1, Section 10).

Proposition 10.27. A continuous map ϕ : X → Y is proper iff ϕ is closed and if ϕ−1(y) is
compact for every y ∈ Y .

Proposition 10.27 shows that a homeomorphism (or a diffeomorphism) is proper.

If ϕ is proper, it is easy to show that ϕ−1(K) is compact in X whenever K is compact in
Y . Moreover, if Y is also locally compact, then we have the following result (see Bourbaki,
General Topology [17], Chapter 1, Section 10).

Proposition 10.28. If Y is locally compact, a continuous map ϕ : X → Y is a proper map
iff ϕ−1(K) is compact in X whenever K is compact in Y

In particular, this is true if Y is a manifold since manifolds are locally compact. This
explains why Lee [78] (Chapter 9) takes the property stated in Proposition 10.28 as the
definition of a proper map (because he only deals with manifolds).2

Proper actions are defined as follows.

Definition 10.30. Given a Hausdorff topological group G and a topological space M , a left
action · : G×M →M is proper if it is continuous and if the map

θ : G×M −→M ×M, (g, x) 7→ (g · x, x)

is proper.

Proposition 10.29. The action · : H ×G→ G of a closed subgroup H of a group G on G
(given by (h, g) 7→ hg) is proper. The same is true for the right action of H on G.

2However, Duistermaat and Kolk [40] seem to have overlooked the fact that a condition on Y (such as
local compactness) is needed in their remark on lines 5-6, page 53, just before Lemma 1.11.3.
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Definition 10.31. An action · : G×M →M is free if for all g ∈ G and all x ∈M , if g 6= 1
then g · x 6= x.

An equivalent way to state that an action · : G×M →M is free is as follows. For every
g ∈ G, let τg : M →M be the diffeomorphism of M given by

τg(x) = g · x, x ∈M.

Then the action · : G×M →M is free iff for all g ∈ G, if g 6= 1 then τg has no fixed point.

Consequently, an action · : G ×M → M is free iff for every x ∈ M , the stabilizer Gx of
x is reduced to the trivial group {1}.

If H is a subgroup of G, obviously H acts freely on G (by multiplication on the left or
on the right). This fact together with Proposition 10.29 yields the following corollary which
provides a large supply of free and proper actions.

Corollary 10.30. The action · : H × G → G of a closed subgroup H of a group G on G
(given by (h, g) 7→ hg) is free and proper. The same is true for the right action of H on G.

Before stating the main results of this section, observe that in the definition of a fibre
bundle (Definition 10.1), the local trivialization maps are of the form

ϕα : π−1(Uα)→ Uα × F,

where the fibre F appears on the right. In particular, for a principal fibre bundle ξ, the fibre
F is equal to the structure group G, and this is the reason why G acts on the right on the
total space E of ξ (see Proposition 10.20).

To be more precise, we call a right bundle a bundle ξ = (E, π,B, F,G) where the group
G acts effectively on the left on the fibre F and where the local trivialization maps are of
the form

ϕα : π−1(Uα)→ Uα × F.

If ξ is a right principal bundle, the group G acts on E on the right . We call a a left bundle
a bundle ξ = (E, π,B, F,G) where the group G acts effectively on the right on the fibre F
and the local trivialization maps are of the form

ϕα : π−1(Uα)→ F × Uα.

Then if ξ is a left principal bundle, the group G acts on E on the left .

Duistermaat and Kolk [40] address this issue at the end of their Appendix A, and prove
the theorem stated below (Chapter 1, Section 11). Beware that in Duistermaat and Kolk [40],
this theorem is stated for right bundles . However, the weaker version that does not mention
principal bundles is usually stated for left actions; for instance, see Lee [78] (Chapter 9,
Theorem 9.16). We formulate both versions at the same time.
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Theorem 10.31. Let M be a smooth manifold, G be a Lie group, and let · : M ×G→M be
a right smooth action (resp. · : G×M →M a left smooth action) which is proper and free.
Then, M/G is a principal right G-bundle (resp. left G-bundle) of dimension dimM−dimG.
Moreover, the canonical projection π : M → M/G is a submersion,3 and there is a unique
manifold structure on M/G with this property.

Theorem 10.31 has some interesting corollaries. Because a closed subgroup H of a Lie
group G is a Lie group, and because the action of a closed subgroup is free and proper, we
get the following result (proofs can also be found in Bröcker and tom Dieck [19] (Chapter I,
Section 4) and in Duistermaat and Kolk [40] (Chapter 1, Section 11)).

Theorem 10.32. If G is a Lie group and H is a closed subgroup of G, then the right action
of H on G defines a principal (right) H-bundle ξ = (G, π,G/H,H), where π : G → G/H
is the canonical projection. Moreover, π is a submersion, and there is a unique manifold
structure on G/H with this property.

In the special case where G acts transitively on M , for any x ∈M , if Gx is the stabilizer of
x, then with H = Gx, we get Proposition 10.33 below. Recall the definition of a homogeneous
space.

Definition 10.32. A homogeneous space is a smooth manifold M together with a smooth
transitive action · : G×M →M , of a Lie group G on M .

The following result can be shown as a corollary of Theorem 10.32 (see Lee [78], Chapter
9, Theorem 9.24). It is also mostly proved in Bröcker and tom Dieck [19], Chapter I, Section
4):

Proposition 10.33. Let · : G×M →M be smooth transitive action of a Lie group G on a
manifold M . Then, G/Gx and M are diffeomorphic, and G is the total space of a principal
bundle ξ = (G, π,M,Gx), where Gx is the stabilizer of any element x ∈ M . Furthermore,
the projection π : G→ G/Gx is a submersion.

Thus, we finally see that homogeneous spaces induce principal bundles. Going back to
some of the examples mentioned earlier (also, see Gallier and Quaintance [49]), we see that

(1) SO(n+ 1) is a principal SO(n)-bundle over the sphere Sn (for n ≥ 0).

(2) SU(n+ 1) is a principal SU(n)-bundle over the sphere S2n+1 (for n ≥ 0).

(3) SL(2,R) is a principal SO(2)-bundle over the upper-half space H.

(4) GL(n,R) is a principal O(n)-bundle over the space SPD(n) of symmetric, positive
definite matrices.

3Recall that this means that the derivative dπp : TpM → Tπ(p)M/G is surjective for every p ∈M.
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(5) GL+(n,R), is a principal SO(n)-bundle over the space SPD(n) of symmetric, positive
definite matrices, with fibre SO(n).

(6) SO(n+ 1) is a principal O(n)-bundle over the real projective space RPn (for n ≥ 0).

(7) SU(n + 1) is a principal U(n)-bundle over the complex projective space CPn (for
n ≥ 0).

(8) O(n) is a principal O(k)×O(n− k)-bundle over the Grassmannian G(k, n).

(9) SO(n) is a principal S(O(k)×O(n− k))-bundle over the Grassmannian G(k, n).

(10) SO(n) is a principal SO(n− k)-bundle over the Stiefel manifold S(k, n), with 1 ≤ k ≤
n− 1.

(11) The Lorentz group SO0(n, 1) is a principal SO(n)-bundle over the space H+
n (1), con-

sisting of one sheet of the hyperbolic paraboloid Hn(1).

Thus, we see that both SO(n + 1) and SO0(n, 1) are principal SO(n)-bundles, the dif-
ference being that the base space for SO(n+ 1) is the sphere Sn, which is compact, whereas
the base space for SO0(n, 1) is the (connected) surface H+

n (1), which is not compact. Many
more examples can be given, for instance, see Arvanitoyeorgos [4].

10.11 Problems

Problem 10.1. Show that a Klein bottle is a fibre bundle with B = F = S1 and G =
{−1, 1}.

Problem 10.2. Adjust the proof of Proposition 10.1 to prove the following: If ξ1 =
(E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G) are two bundles over different bases and
f : ξ1 → ξ2 is a bundle isomorphism, with f = (fB, fE), then fE and fB are diffeomor-
phisms, and

g′αβ(fB(b)) = ρα(b)gαβ(b)ρβ(b)−1, for all b ∈ Uα ∩ Uβ.

Problem 10.3. Adjust the proof of Proposition 10.2 to prove the following: If ξ1 =
(E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G) are two bundles over different bases and if
there is a diffeomorphism fB : B1 → B2, and the conditions

g′αβ(fB(b)) = ρα(b)gαβ(b)ρβ(b)−1, for all b ∈ Uα ∩ Uβ

hold, then there is a bundle isomorphism (fB, fE) between ξ1 and ξ2.

Problem 10.4. Complete the proof details of Theorem 10.4. In particular check that the
cocycle condition produces an equivalence relation on Z×Z. Also verify that the correspond-
ing transition functions are the original gαβ. Finally prove that ξg and ξg′ are isomorphic
when g and g′ are equivalent cocycles.
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Hint . See Steenrod [107], Part I, Section 3, Theorem 3.2. Also see Steenrod [107], Part I,
Section 2, Lemma 2.10.

Problem 10.5. Show that the transitions functions of the pullback bundle f ∗ξ can be
constructed as follows: Pick any open cover (Uα) of B, then (f−1(Uα)) is an open cover of
N , and check that if (gαβ) is a cocycle for ξ, then the maps gαβ ◦ f : f−1(Uα)∩ f−1(Uβ)→ G
satisfy the cocycle conditions.

Problem 10.6. Show that the pullback bundle f ∗ξ of Definition 10.11 can be defined ex-
plicitly as follows. Set

f ∗E = {(n, e) ∈ N × E | f(n) = π(e)},

π∗ = pr1 and f ∗ = pr2. For any trivialization ϕα : π−1(Uα)→ Uα × F of ξ, we have

(π∗)−1(f−1(Uα)) = {(n, e) ∈ N × E | n ∈ f−1(Uα), e ∈ π−1(f(n))},

and so we have a bijection ϕ̃α : (π∗)−1(f−1(Uα))→ f−1(Uα)× F , given by

ϕ̃α(n, e) = (n, pr2(ϕα(e))).

By giving f ∗E the smallest topology that makes each ϕ̃α a diffeomorphism, prove that each
ϕ̃α is a trivialization of f ∗ξ over f−1(Uα).

Problem 10.7. If g : M → N is another smooth map of manifolds, show that that

(f ◦ g)∗ξ = g∗(f ∗ξ).

Problem 10.8. Let HR
n ⊆ RPn × Rn+1 be the subset

HR
n = {(L, v) ∈ RPn × Rn+1 | v ∈ L},

where RPn is viewed as the set of lines L in Rn+1 through 0, or more explicitly,

HR
n = {((x0 : · · · : xn), λ(x0, . . . , xn)) | (x0 : · · · : xn) ∈ RPn, λ ∈ R}.

Show that that HR
n is a manifold of dimension n+ 1.

Problem 10.9. For rank 1 vector bundles, show that the set of equivalence classes of line
bundles over a base B forms a group, where the group operation is ⊗, the inverse is ∗ (dual),
and the identity element is the trivial bundle.

Problem 10.10. Given a real vector bundle, ξ, recall that the complexification ξC of ξ is
the complex vector bundle defined by

ξC = ξ ⊗R εC,

where εC = B×C is the trivial complex line bundle. Given a complex vector bundle ξ, recall
that by viewing its fibre as a real vector space we obtain the real vector bundle ξR. Prove
the following.
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(1) For every real vector bundle ξ,
(ξC)R ∼= ξ ⊕ ξ.

(2) For every complex vector bundle ξ,

(ξR)C ∼= ξ ⊕ ξ∗.

Problem 10.11. Given ξ, a subbundle of ξ′, we can form the quotient bundle ξ′/ξ as the
bundle over B whose fibre at b ∈ B is the quotient space (π′)−1(b)/π−1(b). Define the
trivializations and transition maps for ξ′/ξ.

Problem 10.12. Prove Proposition 10.13.

Hint . See O’Neill [90], Chapter 2, Proposition 13 and Theorem 15.

Problem 10.13. Prove the following: If ξ = (E, π,B, V ) is an orientable vector bundle and
its base B is an orientable manifold, then E is orientable too.

Hint . Assume that B is a manifold of dimension m, ξ is a rank n vector bundle with fibre
V , let ((Uα, ψα))α be an atlas for B, let ϕα : π−1(Uα)→ Uα×V be a collection of trivializing
maps for ξ, and pick any isomorphism, ι : V → Rn.

(a) Show that the maps

(ψα × ι) ◦ ϕα : π−1(Uα) −→ Rm × Rn.

form an atlas for E.

(b) Check that the corresponding transition maps for E are of the form

(x, y) 7→ (ψβ ◦ ψ−1
α (x), gαβ(ψ−1

α (x))y).

(c) Since B and ξ are orientable, check that these transition maps have positive Jacobian.

Problem 10.14. Prove Proposition 10.19.

Hint . See Milnor and Stasheff [83], Chapter 3.

Problem 10.15. Prove Proposition 10.11.

Hint . See Madsen and Tornehave [80], Chapter 16.

Problem 10.16. Complete the proof of Proposition 10.20. Recall that right action is defined
as follows: Let {(Uα, ϕα)} be some trivializing cover defining ξ. For every z ∈ E, pick some
Uα so that π(z) ∈ Uα, and let ϕα(z) = (b, h), where b = π(z) and h ∈ G. For any g ∈ G, we
set

z · g = ϕ−1
α (b, hg).

Show this action takes each fibre to itself. Also show that E/G is diffeomorphic to B.
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Problem 10.17. Complete the proof details of Proposition 10.25. In particular show that
the map θ : (Uα ×G)×G F → Uα × F given by

θ([((b1, g2), g−1
2 g1 · f1)]) = (b1, g1 · f1)

is well-defined on the equivalence class [((b1, g1), f1)] and that it is a bijection. Also show
that the transition functions of ξ[F ] are the same as the transition functions of ξ.
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Chapter 11

Connections and Curvature in Vector
Bundles

11.1 Introduction to Connections in Vector Bundles

A connection on a manifold B is a means of relating different tangent spaces. In particular,
a connection on B is a R-bilinear map

∇ : X(B)× X(B)→ X(B), (†)

such that the following two conditions hold:

∇fXY = f∇XY

∇X(fY ) = X[f ]Y + f∇XY,

for all smooth vector fields X, Y ∈ X(B) and all f ∈ C∞(B); see Gallot, Hulin, Lafontaine,
[52], Do Carmo [39], or Gallier and Quaintance [49].

Given p ∈ B and X, Y ∈ X(B), we know that Equation (†) is related to the directional
derivative DXY (p) of Y with respect to X, namely

DXY (p) = lim
t→0

Y (p+ tX(p))− Y (p)

t
,

since
DXY (p) = ∇XY (p) + (Dn)XY (p),

where its horizontal (or tangential) component is ∇XY (p) ∈ TpB, and its normal component
is (Dn)XY (p). A natural question is to wonder whether we can generalize this notion of
directional derivative to the case of a vector bundle ξ = (E, π,B, V ). The answer is yes if we
let Y be a smooth global vector field of V instead of a smooth global vector field of tangent
vectors. In other words, since X(B) is the set of smooth sections of the tangent bundle TB,
we may rewrite (†) as

∇ : X(B)× Γ(TB)→ Γ(TB), (††)

471
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replace the two occurrence of Γ(TB) with Γ(ξ) and say a connection on ξ is an R-bilinear
map

∇ : X(B)× Γ(ξ)→ Γ(ξ),

such that the following two conditions hold:

∇fXs = f∇Xs

∇X(fs) = X[f ]s+ f∇Xs,

for all s ∈ Γ(ξ), all X ∈ X(B) and all f ∈ C∞(B). We refer to ∇Xs as the covariant
derivative of s relative to X.

This definition of a connection on a vector bundle has the advantage in that it readily
allows us to transfer all the concepts of connections on a manifold to the context of con-
nections in vector bundles. In particular, we will show that connections in vector bundles
exist and are local operators; see Propositions 11.4 and 11.1 respectively. We will be able
to define the notion of parallel transport along a curve of B in terms of the R-linear map D

dt

where
DX

dt
(t0) = (∇γ′(t0) s)γ(t0),

whenever X is induced by a global section s ∈ Γ(ξ), i.e. X(t0) = s(γ(t0)) for all t0 ∈ [a, b];
see Proposition 11.6 and Definition 11.7. We will also be able to define the notion of a metric
connection in a vector bundle as follows. Given any metric 〈−,−〉 on a vector bundle ξ, a
connection ∇ on ξ is compatible with the metric if and only if

X(〈s1, s2〉) = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉,

for every vector field X ∈ X(B) and sections s1, s2 ∈ Γ(ξ); see Definition 11.17.

We can also generalize the notion of curvature in a Riemannian manifold to the context
of vector bundles if we define the curvature tensor of Γ(ξ) as

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ],

where X, Y ∈ X(B). Note that this definition of curvature implies that

R : X(B)× X(B)× Γ(ξ) −→ Γ(ξ)

is a R-trilinear map where

R(X, Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s,

whenever X, Y ∈ X(B) and s ∈ Γ(ξ).

The reason we are interested in having a definition of curvature on a vector bundle
ξ = (E, π,B, V ) is that it allows us to define global invariants on ξ called the Pontrjagin
and Chern classes; see Section 11.11. However in order to define the Pontrjagin and Chern
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classes in an accessible manner, we will need to associate R(X, Y ) with a vector valued
two-form R∇. We are able to make this association if we realize that a connection on
ξ = (E, π,B, V ) is actually a vector valued one-form with the vector values taken from Γ(ξ).
Therefore, following the lead of Appendix C in Milnor and Stasheff [83], we will rephrase
the notions of connection, metric connection, and curvature in terms of vector valued forms.
This vector valued form approach has another advantage in that it allows for elegant proofs
of the essential properties of connections on vector bundles.

In Section 11.2 we define connections on a vector bundle. This can be done in two
equivalent ways. One of the two definitions is more abstract than the other because it
involves a tensor product, but it is technically more convenient. This definition states that
a connection on a vector bundle ξ, as an R-linear map

∇ : Γ(ξ)→ A1(B)⊗C∞(B) Γ(ξ) (∗)

that satisfies the “Leibniz rule”

∇(fs) = df ⊗ s+ f∇s,

with s ∈ Γ(ξ) and f ∈ C∞(B), where Γ(ξ) and A1(B) are treated as C∞(B)-modules. Here,
A1(B) = Γ(T ∗B) is the space of 1-forms on B. Since there is an isomorphism

A1(B)⊗C∞(B) Γ(ξ) ∼= Γ(T ∗B ⊗ ξ),

a connection can be defined equivalently as an R-linear map

∇ : Γ(ξ)→ Γ(T ∗B ⊗ ξ)

satisfying the Leibniz rule. Milnor and Stasheff [83] (Appendix C) use this second version,
and Madsen and Tornehave [80] (Chapter 17) use the equivalent version stated in (∗). We
show that a connection is a local operator.

In Section 11.3, we show how a connection can be represented in a chart in terms of a
certain matrix called a connection matrix . We prove that every vector bundle possesses a
connection, and we give a formula describing how a connection matrix changes if we switch
from one chart to another.

In Section 11.4 we define the notion of covariant derivative along a curve and parallel
transport.

Section 11.5 is devoted to the very important concept of curvature form R∇ of a connec-
tion ∇ on a vector bundle ξ. We show that the curvature form is a vector-valued two-form
with values in Γ(Hom(ξ, ξ)). We also establish the relationhip between R∇ and the more
familiar definition of the Riemannian curvature in terms of vector fields.

In Section 11.6 we show how the curvature form can be expressed in a chart in terms of
a matrix of two-forms called a curvature matrix . The connection matrix and the curvature
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matrix are related by the structure equation. We also give a formula describing how a
curvature matrix changes if we switch from one chart to another. Bianchi’s identity gives
an expression for the exterior derivative of the curvature matrix in terms of the curvature
matrix itself and the connection matrix.

Section 11.8 deals with connections compatible with a metric, and the Levi-Civita con-
nection, which arises in the Riemannian geometry of manifolds. One way of characterizing
the Levi-Civita connection involves defining the notion of connection on the dual bundle.
This is achieved in Section 11.9.

Levi-Civita connections on the tangent bundle of a manifold are investigated in Section
11.10.

The purpose of Section 11.11 is to introduce the reader to Pontrjagin Classes and Chern
Classes , which are fundamental invariants of real (resp. complex) vector bundles. Here we
are dealing with one of the most sophisticated and beautiful parts of differential geometry.

Pontrjagin, Stiefel, and Chern (starting from the late 1930’s) discovered that invariants
with “good” properties could be defined if we took these invariants to belong to various
cohomology groups associated with B. Such invariants are usually called characteristic
classes . Roughly, there are two main methods for defining characteristic classes: one using
topology, and the other due to Chern and Weil, using differential forms.

A masterly exposition of these methods is given in the classic book by Milnor and Stasheff
[83]. Amazingly, the method of Chern and Weil using differential forms is quite accessible for
someone who has reasonably good knowledge of differential forms and de Rham cohomology,
as long as one is willing to gloss over various technical details. We give an introduction to
characteristic classes using the method of Chern and Weil.

If ξ is a real orientable vector bundle of rank 2m, and if ∇ is a metric connection on ξ,
then it is possible to define a closed global form eu(R∇), and its cohomology class e(ξ) is
called the Euler class of ξ. This is shown in Section 11.13. The Euler class e(ξ) turns out to
be a square root of the top Pontrjagin class pm(ξ) of ξ. A complex rank m vector bundle can
be viewed as a real vector bundle of rank 2m, which is always orientable. The Euler class
e(ξ) of this real vector bundle is equal to the top Chern class cm(ξ) of the complex vector
bundle ξ.

The global form eu(R∇) is defined in terms of a certain polynomial Pf(A) associated with
a real skew-symmetric matrix A, which is a kind of square root of the determinant det(A).
The polynomial Pf(A), called the Pfaffian, is defined in Section 11.12.

The culmination of this chapter is a statement of the generalization due to Chern of
a classical theorem of Gauss and Bonnet. This theorem known as the generalized Gauss–
Bonnet formula expresses the Euler characteristic χ(M) of an orientable, compact smooth
manifold M of dimension 2m as

χ(M) =

∫
M

eu(R∇),
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where eu(R∇) is the Euler form associated with the curvature form R∇ of a metric connection
∇ on M .

11.2 Connections and Connection Forms in

Vector Bundles

The goal of this section is to generalize the notions of a connection to vector bundles. Among
other things, this material has applications to theoretical physics. This chapter makes heavy
use of differential forms (and tensor products), so the reader may want to brush up on these
notions before reading it.

Given a manifold M , as X(M) = Γ(M,TM) = Γ(TM), the set of smooth sections of the
tangent bundle TM , it is natural that for a vector bundle ξ = (E, π,B, V ), a connection on
ξ should be some kind of bilinear map,

X(B)× Γ(ξ) −→ Γ(ξ),

that tells us how to take the covariant derivative of sections.

Technically, it turns out that it is cleaner to define a connection on a vector bundle ξ, as
an R-linear map

∇ : Γ(ξ)→ A1(B)⊗C∞(B) Γ(ξ) (∗)

that satisfies the “Leibniz rule”

∇(fs) = df ⊗ s+ f∇s,

with s ∈ Γ(ξ) and f ∈ C∞(B), where Γ(ξ) and A1(B) are treated as C∞(B)-modules. Since
A1(B) = Γ(B, T ∗B) = Γ(T ∗B) is the space of 1-forms on B, and by Proposition 10.11,

A1(B)⊗C∞(B) Γ(ξ) = Γ(T ∗B)⊗C∞(B) Γ(ξ)
∼= Γ(T ∗B ⊗ ξ)
∼= Γ(Hom(TB, ξ))
∼= HomC∞(B)(Γ(TB),Γ(ξ))

= HomC∞(B)(X(B),Γ(ξ)),

the range of ∇ can be viewed as a space of Γ(ξ)-valued differential forms on B. Milnor and
Stasheff [83] (Appendix C) use the version where

∇ : Γ(ξ)→ Γ(T ∗B ⊗ ξ),

and Madsen and Tornehave [80] (Chapter 17) use the equivalent version stated in (∗). A
thorough presentation of connections on vector bundles and the various ways to define them
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can be found in Postnikov [94] which also constitutes one of the most extensive references
on differential geometry.

If we use the isomorphism

A1(B)⊗C∞(B) Γ(ξ) ∼= HomC∞(B)(X(B),Γ(ξ)),

then a connection is an R-linear map

∇ : Γ(ξ) −→ HomC∞(B)(X(B),Γ(ξ))

satisfying a Leibniz-type rule, or equivalently, an R-bilinear map

∇ : X(B)× Γ(ξ) −→ Γ(ξ)

such that, for any X ∈ X(B) and s ∈ Γ(ξ), if we write ∇Xs instead of ∇(X, s), then the
following properties hold for all f ∈ C∞(B):

∇fXs = f∇Xs

∇X(fs) = X[f ]s+ f∇Xs.

This second version may be considered simpler than the first since it does not involve a
tensor product. Since, by Proposition 2.19,

A1(B) = Γ(T ∗B) ∼= HomC∞(B)(X(B), C∞(B)) = (X(B))∗,

using Proposition 2.42, the isomorphism

α : A1(B)⊗C∞(B) Γ(ξ) ∼= HomC∞(B)(X(B),Γ(ξ))

can be described in terms of the evaluation map

EvX : A1(B)⊗C∞(B) Γ(ξ)→ Γ(ξ),

given by
EvX(ω ⊗ s) = ω(X)s, X ∈ X(B), ω ∈ A1(B), s ∈ Γ(ξ).

Namely, for any θ ∈ A1(B)⊗C∞(B) Γ(ξ),

α(θ)(X) = EvX(θ).

In particular, we have
EvX(df ⊗ s) = df(X)s = X[f ]s.

Then it is easy to see that we pass from the first version of ∇, where

∇ : Γ(ξ)→ A1(B)⊗C∞(B) Γ(ξ) (∗)
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with the Leibniz rule
∇(fs) = df ⊗ s+ f∇s,

to the second version of ∇, denoted ∇′, where

∇′ : X(B)× Γ(ξ)→ Γ(ξ) (∗∗)

is R-bilinear and where the two conditions

∇′fXs = f∇′Xs
∇′X(fs) = X[f ]s+ f∇′Xs

hold, via the equation
∇′X = EvX ◦ ∇.

From now on, we will simply write ∇Xs instead of ∇′Xs, unless confusion arise. As summary
of the above discussion, we make the following definition.

Definition 11.1. Let ξ = (E, π,B, V ) be a smooth real vector bundle. A connection on ξ
is an R-linear map

∇ : Γ(ξ)→ A1(B)⊗C∞(B) Γ(ξ) (∗)

such that the Leibniz rule
∇(fs) = df ⊗ s+ f∇s

holds, for all s ∈ Γ(ξ) and all f ∈ C∞(B). For every X ∈ X(B), we let

∇X = EvX ◦ ∇

where the evaluation map

EvX : A1(B)⊗C∞(B) Γ(ξ)→ Γ(ξ),

is given by
EvX(ω ⊗ s) = ω(X)s, X ∈ X(B), ω ∈ A1(B), s ∈ Γ(ξ),

and for every s ∈ Γ(ξ), we call ∇Xs the covariant derivative of s relative to X. Then the
family (∇X) induces a R-bilinear map also denoted ∇,

∇ : X(B)× Γ(ξ)→ Γ(ξ), (∗∗)

such that the following two conditions hold:

∇fXs = f∇Xs

∇X(fs) = X[f ]s+ f∇Xs,

for all s ∈ Γ(ξ), all X ∈ X(B) and all f ∈ C∞(B). We refer to (∗) as the first version of a
connection and to (∗∗) as the second version of a connection.
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Every vector bundle admits a connection. We need some technical tools to prove this, so
we postpone the proof until Proposition 11.4.

Remark: Given two connections, ∇1 and ∇2, we have

∇1(fs)−∇2(fs) = df ⊗ s+ f∇1s− df ⊗ s− f∇2s = f(∇1s−∇2s),

which shows that ∇1−∇2 is a C∞(B)-linear map from Γ(ξ) to A1(B)⊗C∞(B) Γ(ξ). However

HomC∞(B)(Γ(ξ),Ai(B)⊗C∞(B) Γ(ξ)) ∼= (Γ(ξ))∗ ⊗C∞(B) (Ai(B)⊗C∞(B) Γ(ξ))

∼= Ai(B)⊗C∞(B) ((Γ(ξ))∗ ⊗C∞(B) Γ(ξ))

∼= Ai(B)⊗C∞(B) HomC∞(B)(Γ(ξ),Γ(ξ))

∼= Ai(B)⊗C∞(B) Γ(Hom(ξ, ξ)).

Therefore, ∇1 −∇2 is a one-form with values in Γ(Hom(ξ, ξ)). But then, the vector space
Γ(Hom(ξ, ξ)) acts on the space of connections (by addition) and makes the space of connec-
tions into an affine space. Given any connection, ∇ and any one-form ω ∈ Γ(Hom(ξ, ξ)), the
expression ∇ + ω is also a connection. Equivalently, any affine combination of connections
is also a connection.

If ξ = TM , the tangent bundle of some smooth manifold M , then a connection on TM ,
also called a connection on M , is a linear map

∇ : X(M) −→ A1(M)⊗C∞(M) X(M) ∼= HomC∞(M)(X(M),X(M)),

since Γ(TM) = X(M). Then for fixed Y ∈ X(M), the map ∇Y is C∞(M)-linear, which
implies that ∇Y is a (1, 1) tensor. In a local chart, (U,ϕ), we have

∇ ∂
∂xi

(
∂

∂xj

)
=

n∑
k=1

Γkij
∂

∂xk
,

where the Γkij are Christoffel symbols.

A basic property of ∇ is that it is a local operator.

Proposition 11.1. Let ξ = (E, π,B, V ) be a smooth real vector bundle and let ∇ be a
connection on ξ. For every open subset U ⊆ B, for every section s ∈ Γ(ξ), if s ≡ 0 on U ,
then ∇s ≡ 0 on U ; that is, ∇ is a local operator.

Proof. Using a bump function applied to the constant function with value 1, for every p ∈ U ,
there is some open subset, V ⊆ U , containing p and a smooth function, f : B → R, such
that supp f ⊆ U and f ≡ 1 on V . Consequently, fs is a smooth section which is identically
zero. By applying the Leibniz rule, we get

0 = ∇(fs) = df ⊗ s+ f∇s,

which, evaluated at p yields (∇s)(p) = 0, since f(p) = 1 and df ≡ 0 on V .
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As an immediate consequence of Proposition 11.1, if s1 and s2 are two sections in Γ(ξ)
that agree on U , then s1 − s2 is zero on U , so ∇(s1 − s2) = ∇s1 −∇s2 is zero on U , that is,
∇s1 and ∇s2 agree on U .

Proposition 11.1 implies the following fact.

Proposition 11.2. A connection ∇ on ξ restricts to a connection ∇ � U on the vector
bundle ξ � U , for every open subset U ⊆ B.

Proof. Indeed, let s be a section of ξ over U . Pick any b ∈ U and define (∇s)(b) as follows:
Using a bump function, there is some open subset, V1 ⊆ U , containing b and a smooth
function, f1 : B → R, such that supp f1 ⊆ U and f1 ≡ 1 on V1 so, let s1 = f1s, a global
section of ξ. Clearly, s1 = s on V1, and set

(∇s)(b) = (∇s1)(b).

This definition does not depend on (V1, f1), because if we had used another pair, (V2, f2), as
above, since b ∈ V1 ∩ V2, we have

s1 = f1s = s = f2s = s2 on V1 ∩ V2

so, by Proposition 11.1,
(∇s1)(b) = (∇s2)(b).

It should also be noted that (∇Xs)(b) only depends on X(b).

Proposition 11.3. For any two vector fields X, Y ∈ X(B), if X(b) = Y (b) for some b ∈ B,
then

(∇Xs)(b) = (∇Y s)(b), for every s ∈ Γ(ξ).

Proof. As above, by linearity, it it enough to prove that if X(b) = 0, then (∇Xs)(b) = 0
(this argument is due to O’Neill [90], Chapter 2, Lemma 3). To prove this, pick any local
chart, (U,ϕ), with b ∈ U . We can write

X � U =
d∑
i=1

Xi
∂

∂xi
.

However, as before, we can find a pair, (V, f), with b ∈ V ⊆ U , supp f ⊆ U and f = 1 on V ,
so that f ∂

∂xi
is a smooth vector field on B and f ∂

∂xi
agrees with ∂

∂xi
on V , for i = 1, . . . , n.

Clearly, fXi ∈ C∞(B) and fXi agrees with Xi on V so if we write X̃ = f 2X, then

X̃ = f 2X =
d∑
i=1

fXi f
∂

∂xi

and we have

f 2∇Xs = ∇X̃s =
d∑
i=1

fXi∇f ∂
∂xi

s.

Since Xi(b) = 0 and f(b) = 1, we get (∇Xs)(b) = 0, as claimed.
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Using the above property, for any point, p ∈ B, we can define the covariant derivative
(∇us)(p) of a section s ∈ Γ(ξ), with respect to a tangent vector u ∈ TpB.

Definition 11.2. Pick any vector field X ∈ X(B) such that X(p) = u (such a vector field
exists locally over the domain of a chart, then extend it using a bump function), and define
∇us by (∇us)(p) = (∇Xs)(p).

Proof. By the above property, if X(p) = Y (p), then (∇Xs)(p) = (∇Y s)(p) so (∇us)(p) is
well-defined. Since ∇ is a local operator, (∇us)(p) is also well defined for any tangent vector
u ∈ TpB, and any local section s ∈ Γ(U, ξ) defined in some open subset U , with p ∈ U .

From now on, we will use this property without any further justification.

Since ξ is locally trivial, it is interesting to see what ∇ � U looks like when (U,ϕ) is a
local trivialization of ξ. This can be done in terms of connection matrices.

11.3 Connection Matrices

Fix once and for all some basis (v1, . . . , vn) of the typical fibre V (n = dim(V )). To every
local trivialization ϕ : π−1(U) → U × V of ξ (for some open subset, U ⊆ B), we associate
the frame (s1, . . . , sn) over U , given by

si(b) = ϕ−1(b, vi), b ∈ U. (∗)

Then every section s over U can be written uniquely as s =
∑n

i=1 fisi, for some functions
fi ∈ C∞(U), and we have

∇s =
n∑
i=1

∇(fisi) =
n∑
i=1

(dfi ⊗ si + fi∇si).

On the other hand, each ∇si can be written as

∇si =
n∑
j=1

ωji ⊗ sj,

for some n × n matrix ω = (ωij) of one-forms ωij ∈ A1(U), which we represent in matrix
form as (

∇s1 · · · ∇sn
)

=
(
s1 · · · sn

)ω11 · · · ω1n
...

. . .
...

ωn1 · · · ωnn

 .

Thus we get

∇s =
n∑
i=1

dfi ⊗ si +
n∑
i=1

fi∇si =
n∑
i=1

dfi ⊗ si +
n∑

i,j=1

fiωji ⊗ sj =
n∑
j=1

(dfj +
n∑
i=1

fiωji)⊗ sj,

which we efficiently record as follows:
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Definition 11.3. With respect to the frame (s1, . . . , sn) over the open subset U the connec-
tion ∇ has the matrix form

∇

f1
...
fn

 =

df1
...
dfn

+ ω

f1
...
fn

 ,

where the matrix ω = (ωij) of one-forms ωij ∈ A1(U) is called the connection form or
connection matrix of ∇ with respect to ϕ : π−1(U)→ U × V .

The above computation also shows that on U , any connection is uniquely determined by
a matrix of one-forms, ωij ∈ A1(U).

Example 11.1. Let B = R3 and ξ be the tangent bundle of R3, i.e. ξ = (TR3, π,R3,R3).
Following O’Neil, we describe the spherical frame (s1, s2, s3) for the tangent space at each
point of R3. Recall that each point of R3 may be parametrized via spherical coordinates as
follows:

x = r cosϕ sin θ

y = r sinϕ sin θ

z = r cos θ,

where r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ < 2π. For each p ∈ R3, we define the orthogonal
spherical frame for TR3

p as

s1 =
∂

∂r
= (cosϕ sin θ, sinϕ sin θ, cos θ)

s2 =
∂
∂θ∥∥ ∂
∂θ

∥∥ = (cosϕ cos θ, sinϕ cos θ,− sin θ)

s3 =

∂
∂ϕ∥∥∥ ∂
∂ϕ

∥∥∥ = (− sin θ, cos θ, 0).

See Figure 11.1.
By utilizing an attitude matrix (see O’Neil [91], Chapter 2, Section 2.7), the connection

form for (s1, s2, s3) is given by

(∇s1,∇s2,∇s3) = (s1, s2, s3)

 0 −dθ − sin θdϕ
dθ 0 − cos θdϕ

sin θdϕ cos θdϕ 0

 .

Definition 11.4. The connection on U for which

∇s1 = 0, . . . ,∇sn = 0,

corresponding to the zero matrix is called the flat connection on U (w.r.t. (s1, . . . , sn)).
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s1

s2

s3

r

Θ

φ

Figure 11.1: The spherical frame (s1, s2, s3) associated with the spherical coordinates (r, θ, ϕ).
Note s1 is normal to the sphere, s2 is normal to the teal cone with θ = θ1, while s3 is normal
the peach plane ϕ = ϕ1.

� We are following the convention in Morita [87] in expressing ∇si as ∇si =
∑n

j=1 ωji⊗sj,
except that Morita denotes the matrix ω as (ωij) where i is the row index and j is the

column index, that is,

∇si =
n∑
j=1

ωji ⊗ sj.

Other authors such as Milnor and Stasheff [83] and Madsen and Tornehave [80] define ∇si
as ∇si =

∑n
j=1 ω̃ij ⊗ sj, in matrix form∇s1

...
∇sn

 =

ω̃11 · · · ω̃1n
...

. . .
...

ω̃n1 · · · ω̃nn


s1

...
sn

 ,

so that their matrix ω̃ is the transpose of our matrix ω. As a consequence, some of the
results differ either by a sign (as in ω∧ω) or by a permutation of matrices (as in the formula
for a change of frame). As we will see shortly, the advantage of Morita’s convention is that
it is consistent with the representation of a linear map by a matrix. This will show up in
Proposition 11.5.

Remark: If (σ1, . . . , σn) is a local frame of TB over U , and if (θ1, . . . , θn) is the dual frame
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of (σ1, . . . , σn), that is, θi ∈ A1(U) is the one-form defined so that

θi(b)(σj(b)) = δij, for all b ∈ U, 1 ≤ i, j ≤ n,

then we can write ωik =
∑n

j=1 Γkjiθj and so,

∇si =
n∑

j,k=1

Γkji(θj ⊗ sk),

where the Γkji ∈ C∞(U) are the Christoffel symbols .

Proposition 11.4. Every vector bundle ξ possesses a connection.

Proof. Since ξ is locally trivial, we can find a locally finite open cover (Uα)α of B such that
π−1(Uα) is trivial. If (fα) is a partition of unity subordinate to the cover (Uα)α and if ∇α is
any flat connection on ξ � Uα, then it is immediately verified that

∇ =
∑
α

fα∇α

is a connection on ξ.

If ϕα : π−1(Uα)→ Uα×V and ϕβ : π−1(Uβ)→ Uβ×V are two overlapping trivializations,
we know that for every b ∈ Uα ∩ Uβ, we have

ϕα ◦ ϕ−1
β (b, u) = (b, gαβ(b)u),

where gαβ : Uα ∩ Uβ → GL(V ) is the transition function. As

ϕ−1
β (b, u) = ϕ−1

α (b, gαβ(b)u),

if (s1, . . . , sn) is the frame over Uα associated with ϕα and (t1, . . . , tn) is the frame over Uβ
associated with ϕβ, since si(b) = ϕ−1

α (b, vi) and ti(b) = ϕ−1
β (b, vi) = ϕ−1

α (b, gαβ(b)vi), if (gij)
is the matrix of the linear map gαβ with respect to the basis (v1, . . . , vn), that is

gαβ(b)vj =
n∑
i=1

gijvi, (∗∗)

which in matrix form is

(
gαβ(b)v1 · · · gαβ(b)vn

)
=
(
v1 · · · vn

)g11 · · · g1n
...

. . .
...

gn1 · · · gnn

 ,
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we obtain

ti(b) = ϕ−1
α (b, gαβ(b)vi) = ϕ−1

α

(
b,

n∑
j=1

gjivj

)
=

n∑
j=1

gjiϕ
−1
α (b, vj) =

n∑
j=1

gjisj(b),

that is

ti =
n∑
j=1

gjisj on Uα ∩ Uβ.

Proposition 11.5. With the notations as above, the connection matrices, ωα and ωβ respec-
tively over Uα and Uβ obey the transformation rule

ωβ = g−1
αβωαgαβ + g−1

αβ (dgαβ),

where gαβ is viewed as the matrix function (gij) given by gαβ(b)vj =
∑n

i=1 gijvi for j =
1, . . . , n and for every b ∈ Uα ∩ Uβ.

Proof. To prove the above proposition, apply ∇ to both sides of the equations

ti =
n∑
j=1

gjisj

on Uα ∩ Uβ we obtain

∇ti =
n∑
j=1

dgji ⊗ sj +
n∑
j=1

gji∇sj.

Since ∇ti =
∑n

k=1(ωβ)ki ⊗ tk, ∇sj =
∑n

k=1(ωα)kj ⊗ sk, and tk =
∑n

j=1 gjksj, we get

∇ti =
n∑

j,k=1

(ωβ)kigjk ⊗ sj =
n∑
j=1

dgji ⊗ sj +
n∑

j,k=1

gji(ωα)kj ⊗ sk,

and since (s1, . . . , sn) is a frame, the coefficients of sj on both sides must be equal, which
yields

n∑
k=1

gjk(ωβ)ki = dgji +
n∑
k=1

(ωα)kjgji

for all i, j, which in matrix form means that

gαβωβ = dgαβ + ωαgαβ.

Since gαβ is invertible, we get

ωβ = g−1
αβωαgαβ + g−1

αβ (dgαβ),

as claimed.
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Remark: Everything we did in this section applies to complex vector bundles by considering
complex vector spaces instead of real vector spaces, C-linear maps instead of R-linear map,
and the space of smooth complex-valued functions, C∞(B;C) ∼= C∞(B)⊗R C. We also use
spaces of complex-valued differentials forms

Ai(B;C) = Ai(B)⊗R C,

and we define Ai(ξ) as
Ai(ξ) = Ai(B;C)⊗C∞(B;C) Γ(ξ).

A connection is a C-linear map ∇ : Γ(ξ) → A1(ξ), that satisfies the same Leibniz-type rule
as before. Obviously, every differential form in Ai(B;C) can be written uniquely as ω + iη,
with ω, η ∈ Ai(B). The exterior differential,

d : Ai(B;C)→ Ai+1(B;C)

is defined by d(ω+ iη) = dω+ idη. We obtain complex-valued de Rham cohomology groups,

H i
DR(M ;C) = H i

DR(M)⊗R C.

The complexification of a real vector bundle ξ is the complex vector bundle ξC = ξ ⊗R ε
1
C,

where ε1C is the trivial complex line bundle B × C.

11.4 Parallel Transport

The notion of connection yields the notion of parallel transport in a vector bundle. First we
need to define the covariant derivative of a section along a curve.

Definition 11.5. Let ξ = (E, π,B, V ) be a vector bundle and let γ : [a, b]→ B be a smooth
curve in B. A smooth section along the curve γ is a smooth map X : [a, b] → E, such that
π(X(t)) = γ(t), for all t ∈ [a, b]. When ξ = TB, the tangent bundle of the manifold B, we
use the terminology smooth vector field along γ.

Recall that the curve γ : [a, b]→ B is smooth iff γ is the restriction to [a, b] of a smooth
curve on some open interval containing [a, b]. Since a section X along a curve γ does not
necessarily extend to an open subset of B (for example, if the image of γ is dense in B), the
covariant derivative (∇γ′(t0) X)γ(t0) may not be defined, so we need a proposition showing
that the covariant derivative of a section along a curve makes sense.

Proposition 11.6. Let ξ be a vector bundle, ∇ be a connection on ξ, and γ : [a, b]→ B be
a smooth curve in B. There is a R-linear map D/dt, defined on the vector space of smooth
sections X along γ, which satisfies the following conditions:

(1) For any smooth function f : [a, b]→ R,

D(fX)

dt
=
df

dt
X + f

DX

dt



486 CHAPTER 11. CONNECTIONS AND CURVATURE IN VECTOR BUNDLES

(2) If X is induced by a global section s ∈ Γ(ξ), that is, if X(t0) = s(γ(t0)) for all t0 ∈ [a, b],
then

DX

dt
(t0) = (∇γ′(t0) s)γ(t0).

Proof. Since γ([a, b]) is compact, it can be covered by a finite number of open subsets Uα
such that (Uα, ϕα) is a chart for B and (Uα, ϕ̃α) is a local trivialization. Thus, we may
assume that γ : [a, b] → U for some chart, (U,ϕ), and some local trivialization (U, ϕ̃). As
ϕ ◦ γ : [a, b]→ Rn, we can write

ϕ ◦ γ(t) = (u1(t), . . . , un(t)),

where each ui = pri ◦ ϕ ◦ γ is smooth. Now, for every g ∈ C∞(B), as

dγt0

(
d

dt

∣∣∣∣
t0

)
(g) =

d

dt
(g ◦ γ)

∣∣∣∣
t0

=
d

dt
((g ◦ ϕ−1) ◦ (ϕ ◦ γ))

∣∣∣∣
t0

=
n∑
i=1

dui
dt

(
∂

∂xi

)
γ(t0)

g,

since by definition of γ′(t0),

γ′(t0) = dγt0

(
d

dt

∣∣∣∣
t0

)
,

γ′(t0) =
n∑
i=1

dui
dt

(
∂

∂xi

)
γ(t0)

.

If (s1, . . . , sn) is a frame over U determined by (U, ϕ̃), we can write

X(t) =
n∑
i=1

Xi(t)si(γ(t)),

for some smooth functions, Xi. Then Conditions (1) and (2) imply that

DX

dt
=

n∑
j=1

(
dXj

dt
sj(γ(t)) +Xj(t)∇γ′(t)(sj(γ(t)))

)
and since

γ′(t) =
n∑
i=1

dui
dt

(
∂

∂xi

)
γ(t)

,

there exist some smooth functions, Γkij, so that

∇γ′(t)(sj(γ(t))) =
n∑
i=1

dui
dt
∇ ∂

∂xi

(sj(γ(t))) =
∑
i,k

dui
dt

Γkijsk(γ(t)).

It follows that
DX

dt
=

n∑
k=1

(
dXk

dt
+
∑
ij

Γkij
dui
dt

Xj

)
sk(γ(t)).
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Conversely, the above expression defines a linear operator, D/dt, and it is easy to check that
it satisfies Conditions (1) and (2).

Definition 11.6. The operator D/dt is called the covariant derivative along γ and it is also
denoted by ∇γ′(t) or simply ∇γ′ .

Definition 11.7. Let ξ be a vector bundle and let ∇ be a connection on ξ. For every curve
γ : [a, b]→ B in B, a section X along γ is parallel (along γ) iff

DX

dt
(t0) = 0 for all t0 ∈ [a, b].

If ξ was the tangent bundle of a smooth manifold M embedded in Rd (for some d), then
to say that X is parallel along γ would mean that the directional derivative, (Dγ′X)(γ(t)),
is normal to Tγ(t)M .

The following proposition can be shown using the existence and uniqueness of solutions
of ODE’s (in our case, linear ODE’s).

Proposition 11.7. Let ξ be a vector bundle and let ∇ be a connection on ξ. For every C1

curve γ : [a, b] → B in B, for every t ∈ [a, b] and every v ∈ π−1(γ(t)), there is a unique
parallel section X along γ such that X(t) = v.

Proof. For the proof of Proposition 11.7 it is sufficient to consider the portions of the curve
γ contained in some local trivialization. In such a trivialization, (U,ϕ), as in the proof of
Proposition 11.6, using a local frame, (s1, . . . , sn), over U , we have

DX

dt
=

n∑
k=1

(
dXk

dt
+
∑
ij

Γkij
dui
dt

Xj

)
sk(γ(t)),

with ui = pri ◦ ϕ ◦ γ. Consequently, X is parallel along our portion of γ iff the system of
linear ODE’s in the unknowns, Xk,

dXk

dt
+
∑
ij

Γkij
dui
dt

Xj = 0, k = 1, . . . , n,

is satisfied.

Remark: Proposition 11.7 can be extended to piecewise C1 curves.

Definition 11.8. Let ξ be a vector bundle and let ∇ be a connection on ξ. For every curve
γ : [a, b] → B in B, for every t ∈ [a, b], the parallel transport from γ(a) to γ(t) along γ
is the linear map from the fibre π−1(γ(a)) to the fibre π−1(γ(t)), which associates to any
v ∈ π−1(γ(a)) the vector Xv(t) ∈ π−1(γ(t)), where Xv is the unique parallel section along γ
with Xv(a) = v.
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The following proposition is an immediate consequence of properties of linear ODE’s:

Proposition 11.8. Let ξ = (E, π,B, V ) be a vector bundle and let ∇ be a connection on
ξ. For every C1 curve γ : [a, b] → B in B, the parallel transport along γ defines for every
t ∈ [a, b] a linear isomorphism Pγ : π−1(γ(a)) → π−1(γ(t)) between the fibres π−1(γ(a)) and
π−1(γ(t)).

In particular, if γ is a closed curve, that is, if γ(a) = γ(b) = p, we obtain a linear
isomorphism Pγ of the fibre Ep = π−1(p), called the holonomy of γ. The holonomy group
of ∇ based at p, denoted Holp(∇), is the subgroup of GL(V,R) (where V is the fibre of the
vector bundle ξ) given by

Holp(∇) = {Pγ ∈ GL(V,R) | γ is a closed curve based at p}.

If B is connected, then Holp(∇) depends on the basepoint p ∈ B up to conjugation and so
Holp(∇) and Holq(∇) are isomorphic for all p, q ∈ B. In this case, it makes sense to talk
about the holonomy group of ∇. If ξ = TB, the tangent bundle of a manifold, B, by abuse
of language, we call Holp(∇) the holonomy group of B.

11.5 Curvature, Curvature Form and Curvature

Matrix

If ξ = B × V is the trivial bundle and ∇ is a flat connection on ξ, we obviously have

∇X∇Y −∇Y∇X = ∇[X,Y ],

where [X, Y ] is the Lie bracket of the vector fields X and Y . However, for general bundles
and arbitrary connections, the above fails. The error term,

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

measures what’s called the curvature of the connection. In order to write R(X, Y ) as a
vector valued two-form, we need the following definition.

Definition 11.9. Set

A1(ξ) = A1(B; ξ) = A1(B)⊗C∞(B) Γ(ξ),

and more generally, for any i ≥ 0, set

Ai(ξ) = Ai(B; ξ) = Ai(B)⊗C∞(B) Γ(ξ) ∼= Γ
(( i∧

T ∗B
)
⊗ ξ
)
.

Obviously, A0(ξ) = Γ(ξ) (and recall that A0(B) = C∞(B)).
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The space of differential forms Ai(B; ξ) with values in Γ(ξ) is a generalization of the
space Ai(M,F ) of differential forms with values in F encountered in Section 4.5.

Observe that in terms of the Ai(ξ)’s, a connection is a linear map,

∇ : A0(ξ)→ A1(ξ),

satisfying the Leibniz rule. When ξ = TB, a connection (second version) is what is known
as an affine connection on the manifold B.

The curvature of a connection turns up as the failure of a certain sequence involving the
spaces Ai(ξ) = Ai(B)⊗C∞(B) Γ(ξ) to be a cochain complex. Since the connection on ξ is a
linear map

∇ : A0(ξ)→ A1(ξ)

satisfying a Leibniz-type rule, it is natural to ask whether ∇ can be extended to a family of
operators, d∇ : Ai(ξ)→ Ai+1(ξ), with properties analogous to d on A∗(B).

This is indeed the case, and we get a sequence of maps

0 −→ A0(ξ)
∇−→ A1(ξ)

d∇−→ A2(ξ) −→ · · · −→ Ai(ξ) d∇−→ Ai+1(ξ) −→ · · · ,

but in general, d∇ ◦ d∇ = 0 fails. In particular, d∇ ◦ ∇ = 0 generally fails.

Definition 11.10. The term R∇ = d∇ ◦ ∇ is the curvature form (or curvature tensor) of
the connection ∇.

As we will see, it yields our previous curvature R, back.

Our next goal is to define d∇. We have the notion of wedge defined for A∗(B). But in
order to define d∇, we require a notion of wedge that makes sense on A∗(ξ).

Definition 11.11. Let ξ and η be two smooth real vector bundles. We define a C∞(B)-
bilinear map

Z : Ai(ξ)×Aj(η) −→ Ai+j(ξ ⊗ η)

as follows:
(ω ⊗ s) Z (τ ⊗ t) = (ω ∧ τ)⊗ (s⊗ t),

where ω ∈ Ai(B), τ ∈ Aj(B), s ∈ Γ(ξ), and t ∈ Γ(η), ω∧ τ is the wedge defined over A∗(B),
and where we used the fact that

Γ(ξ ⊗ η) = Γ(ξ)⊗C∞(B) Γ(η).

In order to help with the calculations associated with the propositions of this section, we
need to consider the special case of Z where ξ = ε1 = B × R, the trivial line bundle over B.
In this case, Ai(ξ) = Ai(B) and we have a bilinear map

Z : Ai(B)×Aj(η) −→ Ai+j(η)
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given by
ω Z (τ ⊗ t) = (ω ∧ τ)⊗ t, τ ∈ Aj(B), t ∈ Γ(η). (1)

For j = 0, we have the bilinear map

Z : Ai(B)× Γ(η) −→ Ai(η)

given by
ω Z t = ω ⊗ t. (2)

It can be shown that the bilinear map

Z : Ar(B)×As(η) −→ Ar+s(η)

has the following properties:

(ω ∧ τ) Z θ = ω Z (τ Z θ) (3)

1 Z θ = θ,

for all ω ∈ Ai(B), τ ∈ Aj(B) with i + j = r, θ ∈ As(ξ), and where 1 denotes the constant
function in C∞(B) with value 1.

Proposition 11.9. For every vector bundle ξ, for all j ≥ 0, there is a unique R-linear map
(resp. C-linear if ξ is a complex VB) d∇ : Aj(ξ)→ Aj+1(ξ), such that

(i) d∇ = ∇ for j = 0.

(ii) d∇(ω Z t) = dω Z t+ (−1)iω Z d∇t, for all ω ∈ Ai(B) and all t ∈ Aj(ξ).

Proof. Recall that Aj(ξ) = Aj(B)⊗C∞(B) Γ(ξ), and define d̂∇ : Aj(B)× Γ(ξ)→ Aj+1(ξ) by

d̂∇(ω, s) = dω ⊗ s+ (−1)jω Z∇s,

for all ω ∈ Aj(B) and all s ∈ Γ(ξ). We claim that d̂∇ induces an R-linear map on Aj(ξ), but
there is a complication as d̂∇ is not C∞(B)-bilinear. The way around this problem is to use
Proposition 2.43. For this we need to check that d̂∇ satisfies the condition of Proposition
2.43, where the right action of C∞(B) on Aj(B) is equal to the left action, namely wedging:

f ∧ ω = ω ∧ f f ∈ C∞(B) = A0(B), ω ∈ Aj(B).

As Z and ∧ are C∞(B)-bilinear, for all ω ∈ Ai(B) and all s ∈ Γ(ξ), we have

d̂∇(ωf, s) = d(ωf)⊗ s+ (−1)j(ωf) Z∇s
= d(ωf) Z s+ (−1)jfω Z∇s, by (2)

= ((dω)f + (−1)jω ∧ df) Z s+ (−1)jfω Z∇s, by Proposition 4.12

= fdω Z s+ ((−1)jω ∧ df) Z s+ (−1)jfω Z∇s
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and

d̂∇(ω, fs) = dω ⊗ (fs) + (−1)jω Z∇(fs)

= dω Z (fs) + (−1)jω Z∇(fs), by (2)

= fdω Z s+ (−1)jω Z (df ⊗ s+ f∇s), by Definition 11.1

= fdω Z s+ (−1)jω Z (df Z s+ f∇s), by (2)

= fdω Z s+ ((−1)jω ∧ df) Z s+ (−1)jfω Z∇s, by (3).

Thus, d̂∇(ωf, s) = d̂∇(ω, fs), and Proposition 2.43 shows that d∇ : Aj(ξ) → Aj+1(ξ) given
by d∇(ω⊗ s) = d̂∇(ω, s) is a well-defined R-linear map for all j ≥ 0. Furthermore, it is clear
that d∇ = ∇ for j = 0. Now, for ω ∈ Ai(B) and t = τ ⊗ s ∈ Aj(ξ) we have

d∇(ω Z (τ ⊗ s)) = d∇((ω ∧ τ)⊗ s)), by (1)

= d(ω ∧ τ)⊗ s+ (−1)i+j(ω ∧ τ) Z∇s, definition of d∇

= (dω ∧ τ)⊗ s+ (−1)i(ω ∧ dτ)⊗ s
+ (−1)i+j(ω ∧ τ) Z∇s, by Proposition 4.12

= dω Z (τ ⊗ s) + (−1)iω Z (dτ ⊗ s)
+ (−1)i+jω Z (τ Z∇s), by (1) and (3)

= dω Z (τ ⊗ s) + (−1)iω Z d∇(τ ⊗ s), definition of d∇

which proves (ii).

As a consequence, we have the following sequence of linear maps

0 −→ A0(ξ)
∇−→ A1(ξ)

d∇−→ A2(ξ) −→ · · · −→ Ai(ξ) d∇−→ Ai+1(ξ) −→ · · · .

but in general, d∇ ◦ d∇ = 0 fails. Although generally d∇ ◦ ∇ = 0 fails, the map d∇ ◦ ∇ is
C∞(B)-linear.

Proposition 11.10. The map d∇ ◦ ∇ : A0(ξ)→ A2(ξ) is C∞(B)-linear.

Proof. We have

(d∇ ◦ ∇)(fs) = d∇(df ⊗ s+ f∇s), by Definition 11.1

= d∇(df Z s+ f Z∇s), by (2)

= ddf Z s− df Z∇s+ df Z∇s+ f Z d∇(∇s), by Proposition 11.9

= f Z d∇(∇s), since ddf = 0

= f((d∇ ◦ ∇)(s)).

Therefore, d∇ ◦ ∇ : A0(ξ)→ A2(ξ) is a C∞(B)-linear map.
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Recall that just before Proposition 11.1 we showed that

HomC∞(B)(A0(ξ),Ai(ξ)) ∼= Ai(Hom(ξ, ξ)),

therefore, d∇ ◦ ∇ ∈ A2(Hom(ξ, ξ)) ∼= A2(B)⊗C∞(B) Γ(Hom(ξ, ξ)).

Corollary 11.11. The map d∇ ◦ ∇ is a two-form with values in Γ(Hom(ξ, ξ)).

Recall from Definition 11.10 that

R∇ = d∇ ◦ ∇.

Although this is far from obvious the curvature form R∇ is related to the curvature R(X, Y )
defined at the beginning of Section 11.5. To discover the relationship between R∇ and
R(−,−), we need to explain how to define R∇X,Y (s), for any two vector fields X, Y ∈ X(B)
and any section s ∈ Γ(ξ). For any section s ∈ Γ(ξ), the value ∇s can be written as a linear
combination of elements of the form ω⊗t, with ω ∈ A1(B) and t ∈ Γ(ξ). If∇s = ω⊗t = ωZt,
as above, we have

d∇(∇s) = d∇(ω Z t)

= dω ⊗ t− ω Z∇t, by Proposition 11.9.

But ∇t itself is a linear combination of the form

∇t =
∑
j

ηj ⊗ tj

for some 1-forms ηj ∈ A1(B) and some sections tj ∈ Γ(ξ), so (1) implies that

d∇(∇s) = dω ⊗ t−
∑
j

(ω ∧ ηj)⊗ tj.

Thus it makes sense to define R∇X,Y (s) by

R∇X,Y (s) = dω(X, Y )t−
∑
j

(ω ∧ ηj)(X, Y )tj

= dω(X, Y )t−
∑
j

(ω(X)ηj(Y )− ω(Y )ηj(X))tj

= dω(X, Y )t−
(
ω(X)

∑
j

ηj(Y )tj − ω(Y )
∑
j

ηj(X)tj

)
= dω(X, Y )t− (ω(X)∇Y t− ω(Y )∇Xt), (4)

since ∇Xt =
∑

j ηj(X)tj because ∇t =
∑

j ηj ⊗ tj, and similarly for ∇Y t. We extend this
formula by linearity when ∇s is a linear combinations of elements of the form ω ⊗ t.

The preceding discussion implies that clean way to define R∇X,Y is to define the following
evaluation map:
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Definition 11.12. Let ξ be a smooth real vector bundle. Define

EvX,Y : A2(Hom(ξ, ξ))→ A0(Hom(ξ, ξ)) = Γ(Hom(ξ, ξ)) ∼= HomC∞(B)(Γ(ξ),Γ(ξ))

as follows: For all X, Y ∈ X(B), all θ ⊗ h ∈ A2(Hom(ξ, ξ)) = A2(B)⊗C∞(B) Γ(Hom(ξ, ξ)),
set

EvX,Y (θ ⊗ h) = θ(X, Y )h.

It is clear that this map is C∞(B)-linear and thus well-defined on A2(Hom(ξ, ξ)). (Recall
that A0(Hom(ξ, ξ)) = Γ(Hom(ξ, ξ)) = HomC∞(B)(Γ(ξ),Γ(ξ)).) We write

R∇X,Y = EvX,Y (R∇) ∈ HomC∞(B)(Γ(ξ),Γ(ξ)).

Since R∇ is a linear combination of the form

R∇ =
∑
j

θj ⊗ hj

for some 2-forms θj ∈ A2(B) and some sections hj ∈ Γ(Hom(ξ, ξ)), for any section s ∈ Γ(ξ),
we have

R∇X,Y (s) =
∑
j

θj(X, Y )hj(s),

where hj(s) is some section in Γ(ξ), and then we use the formula obtained above when ∇s is
a linear combination of terms of the form ω ⊗ s for some 1-forms A1(B) and some sections
s ∈ Γ(ξ).

Proposition 11.12. For any vector bundle ξ, and any connection ∇ on ξ, for all X, Y ∈
X(B), if we let

R(X, Y ) = ∇X ◦ ∇Y −∇Y ◦ ∇X −∇[X,Y ],

then
R(X, Y ) = R∇X,Y .

Proof. Since for any section s ∈ Γ(ξ), the value ∇s can be written as a linear combination of
elements of the form ω ⊗ t = ω Z t, with ω ∈ A1(B) and t ∈ Γ(ξ), it is sufficient to compute
R∇X,Y (s) when ∇s = ω ⊗ t, and we get

R∇X,Y (s) = dω(X, Y )t− (ω(X)∇Y t− ω(Y )∇Xt), by (4)

= (X(ω(Y ))− Y (ω(X))− ω([X, Y ]))t− (ω(X)∇Y t− ω(Y )∇Xt), by Prop. 4.16

= ∇X(ω(Y )t)−∇Y (ω(X)t)− ω([X, Y ])t, by Definition 11.1

= ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s,

since ∇Xs = ω(X)t because ∇s = ω⊗ t (and similarly for the other terms involving ω).

Remark: Proposition 11.12 implies that R(Y,X) = −R(X, Y ) and that R(X, Y )(s) is
C∞(B)-linear in X, Y and s.
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Definition 11.13. For any vector bundle ξ and any connection ∇ on ξ, the vector-valued
two-form R∇ = d∇ ◦ ∇ ∈ A2(Hom(ξ, ξ)) is the curvature form (or curvature tensor) of the
connection ∇. We say that ∇ is a flat connection iff R∇ = 0.

Remark: The expression R∇ is also denoted F∇ or K∇.

11.6 Structure Equations

As in the case of a connection, we can express the two-form R∇ locally in any local trivial-
ization ϕ : π−1(U)→ U×V of ξ. Since R∇ ∈ A2(Hom(ξ, ξ)) = A2(B)⊗C∞(B) Γ(Hom(ξ, ξ)),
if (s1, . . . , sn) is the frame associated with (ϕ,U), then

R∇(si) =
n∑
j=1

Ωji ⊗ sj,

for some matrix Ω = (Ωij) of two forms Ωij ∈ A2(U).

Definition 11.14. The matrix Ω = (Ωij) of two forms such that

R∇(si) =
n∑
j=1

Ωji ⊗ sj,

is called the curvature matrix (or curvature form) associated with the local trivialization.

The relationship between the connection form ω and the curvature form Ω is simple.

Proposition 11.13. (Structure Equations) Let ξ be any vector bundle and let ∇ be any
connection on ξ. For every local trivialization ϕ : π−1(U) → U × V , the connection matrix
ω = (ωij) and the curvature matrix Ω = (Ωij) associated with the local trivialization (ϕ,U),
are related by the structure equation:

Ω = dω + ω ∧ ω,

where the above formula is interpreted in an entry by entry fashion.

Proof. By definition,

∇(si) =
n∑
j=1

ωji ⊗ sj,
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so if we apply d∇ and use Property (ii) of Proposition 11.9 we get

R∇(si) = d∇(∇(si)) =
n∑
k=1

Ωki ⊗ sk

=
n∑
j=1

d∇(ωji ⊗ sj)

=
n∑
j=1

dωji ⊗ sj −
n∑
j=1

ωji Z∇sj, by definition of d∇

=
n∑
j=1

dωji ⊗ sj −
n∑
j=1

ωji Z

(
n∑
k=1

ωkj ⊗ sk

)

=
n∑
k=1

dωki ⊗ sk −
n∑
k=1

( n∑
j=1

ωji ∧ ωkj
)
⊗ sk, by (1)

and so,

Ωki = dωki +
n∑
j=1

ωkj ∧ ωji,

which, means that

Ω = dω + ω ∧ ω,

as claimed.

� Some other texts, including Milnor and Stasheff [83] state the structure equations as

Ω = dω − ω ∧ ω.

Example 11.2. In Example 11.1, we showed that the connection matrix for the spherical
frame of TR3 is given by

ω =

 0 −dθ − sin θdϕ
dθ 0 − cos θdϕ

sin θdϕ cos θdϕ 0

 .
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Proposition 11.13 shows that the curvature matrix is

Ω = dω − ω ∧ ω

=

 0 0 − cos θdθ ∧ dϕ
0 0 sin θdθ ∧ dϕ

cos θdθ ∧ dϕ − sin θdθ ∧ dϕ 0


+

 0 −dθ − sin θdϕ
dθ 0 − cos θdϕ

sin θdϕ cos θdϕ 0

 ∧
 0 −dθ − sin θdϕ

dθ 0 − cos θdϕ
sin θdϕ cos θdϕ 0


=

 0 0 − cos θdθ ∧ dϕ
0 0 sin θdθ ∧ dϕ

cos θdθ ∧ dϕ − sin θdθ ∧ dϕ 0


+

 0 0 cos θdθ ∧ dϕ
0 0 sin θdθ ∧ dϕ

− cos θdθ ∧ dϕ − sin θdθ ∧ dϕ 0


=

0 0 0
0 0 2 sin θdθ ∧ dϕ
0 −2 sin θdθ ∧ dϕ 0

 .

If ϕα : π−1(Uα) → Uα × V and ϕβ : π−1(Uβ) → Uβ × V are two overlapping trivializa-
tions, the relationship between the curvature matrices Ωα and Ωβ, is given by the following
proposition which is the counterpart of Proposition 11.5 for the curvature matrix:

Proposition 11.14. If ϕα : π−1(Uα) → Uα × V and ϕβ : π−1(Uβ) → Uβ × V are two over-
lapping trivializations of a vector bundle ξ, then we have the following transformation rule
for the curvature matrices Ωα and Ωβ:

Ωβ = g−1
αβΩαgαβ,

where gαβ is viewed as the matrix function representing the linear map gαβ(b) ∈ GL(V ) for
every b ∈ Uα ∩ Uβ.

Proof. The idea is to take the exterior derivative of the equation

ωβ = g−1
αβωαgαβ + g−1

αβ (dgαβ)

from Proposition 11.5. To simplify notation, write g for gαβ. Now, since g, Ωα and Ωβ are
all matrices, we apply the exterior derivative in a entry by entry fashion. Since g is a matrix
of functions such that g−1g = I, we find that

0 = d(g−1g) = dg−1 g + g−1 dg,

which is equivalent to
dg−1 = −g−1dgg−1.



11.6. STRUCTURE EQUATIONS 497

By recalling that

ddη = 0, d(η ∧ β) = dη ∧ β + (−1)jη ∧ dβ, η ∈ Ai(B), β ∈ Aj(B),

we find that

dωβ = d(g−1ωαg) + d(g−1dg)

= d(g−1ωαg) + dg−1 ∧ dg
= dg−1 ∧ ωαg + g−1 ∧ d(ωαg) + dg−1 ∧ dg
= −g−1dgg−1 ∧ ωαg + g−1 ∧ d(ωαg)− g−1dgg−1 ∧ dg
= −g−1dgg−1 ∧ ωαg + g−1 ∧ (dωαg − ωα ∧ dg)− g−1dgg−1 ∧ dg
= −g−1dgg−1 ∧ ωαg + g−1dωαg − g−1ωα ∧ dg − g−1dgg−1 ∧ dg,

so using the structure equation (Proposition 11.13) we get

Ωβ = dωβ + ωβ ∧ ωβ
= −g−1dgg−1 ∧ ωαg + g−1dωαg − g−1ωα ∧ dg − g−1dgg−1 ∧ dg

+ (g−1ωαg + g−1dg) ∧ (g−1ωαg + g−1dg)

= −g−1dgg−1 ∧ ωαg + g−1dωαg − g−1ωα ∧ dg − g−1dgg−1 ∧ dg
+ g−1ωα ∧ ωαg + g−1ωα ∧ dg + g−1dg ∧ g−1ωαg + g−1dg ∧ g−1dg

= g−1dωαg + g−1ωα ∧ ωαg
= g−1Ωαg,

establishing the desired formula.

Proposition 11.13 also yields a formula for dΩ, know as Bianchi’s identity (in local form).

Proposition 11.15. (Bianchi’s Identity) For any vector bundle ξ and any connection ∇ on
ξ, if ω and Ω are respectively the connection matrix and the curvature matrix, in some local
trivialization, then

dΩ = Ω ∧ ω − ω ∧ Ω.

Proof. If we apply d to the structure equation, Ω = dω + ω ∧ ω, we get

dΩ = ddω + dω ∧ ω − ω ∧ dω
= (Ω− ω ∧ ω) ∧ ω − ω ∧ (Ω− ω ∧ ω)

= Ω ∧ ω − ω ∧ ω ∧ ω − ω ∧ Ω + ω ∧ ω ∧ ω
= Ω ∧ ω − ω ∧ Ω,

as claimed.

We conclude this section by giving a formula for d∇ ◦ d∇(t), for any t ∈ Ai(ξ).
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11.7 A Formula for d∇ ◦ d∇

Consider the special case of the bilinear map

Z : Ai(ξ)×Aj(η) −→ Ai+j(ξ ⊗ η)

given in Definition 11.11 with j = 2 and η = Hom(ξ, ξ). This is the C∞(B)-bilinear map

Z : Ai(ξ)×A2(Hom(ξ, ξ)) −→ Ai+2(ξ ⊗Hom(ξ, ξ)).

Two applications of Proposition 10.11 show that

Γ(ξ ⊗Hom(ξ, ξ)) ∼= Γ(ξ)⊗C∞(B) Γ(Hom(ξ, ξ)) ∼= Γ(ξ)⊗C∞(B) HomC∞(B)(Γ(ξ),Γ(ξ)).

We then have the evaluation map

ev : Aj(ξ ⊗Hom(ξ, ξ)) ∼= Aj(B)⊗C∞(B) Γ(ξ)⊗C∞(B) HomC∞(B)(Γ(ξ),Γ(ξ))

−→ Aj(B)⊗C∞(B) Γ(ξ) = Aj(ξ),

given by
ev(ω ⊗ s⊗ h) = ω ⊗ h(s),

with ω ∈ Aj(B), s ∈ Γ(ξ) and h ∈ HomC∞(B)(Γ(ξ),Γ(ξ)).

Definition 11.15. Let

[ : Ai(ξ)×A2(Hom(ξ, ξ)) −→ Ai+2(ξ)

be the composition

Ai(ξ)×A2(Hom(ξ, ξ))
Z−→ Ai+2(ξ ⊗Hom(ξ, ξ))

ev−→ Ai+2(ξ).

More explicitly, the above map is given (on generators) by

(ω ⊗ s) [H = ω ZH(s), (5)

where ω ∈ Ai(B), s ∈ Γ(ξ) and H ∈ HomC∞(B)(Γ(ξ),A2(ξ)) ∼= A2(Hom(ξ, ξ)).

Proposition 11.16. For any vector bundle ξ and any connection ∇ on ξ, the composition
d∇ ◦ d∇ : Ai(ξ)→ Ai+2(ξ) maps t to t [R∇, for any t ∈ Ai(ξ).

Proof. Any t ∈ Ai(ξ) is some linear combination of elements ω⊗ s ∈ Ai(B)⊗C∞(B) Γ(ξ) and
by Proposition 11.9, we have

d∇ ◦ d∇(ω ⊗ s) = d∇(dω ⊗ s+ (−1)iω Z∇s), by definition of d∇

= ddω ⊗ s+ (−1)i+1dω Z∇s+ (−1)idω Z∇s+ (−1)i(−1)iω Z d∇ ◦ ∇s
= ω Z (d∇ ◦ ∇s)
= (ω ⊗ s) [R∇, by (5)

as claimed.
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Proposition 11.16 shows that d∇ ◦ d∇ = 0 iff R∇ = d∇ ◦∇ = 0, that is, iff the connection
∇ is flat. Thus, the sequence

0 −→ A0(ξ)
∇−→ A1(ξ)

d∇−→ A2(ξ) −→ · · · −→ Ai(ξ) d∇−→ Ai+1(ξ) −→ · · · ,

is a cochain complex iff ∇ is flat.

Remark: Again everything we did in this section applies to complex vector bundles.

11.8 Connections Compatible with a Metric;

Levi-Civita Connections

If a vector bundle (or a Riemannian manifold) ξ has a metric, then it is natural to define
when a connection ∇ on ξ is compatible with the metric. This will require first defining the
following three bilinear pairings.

Definition 11.16. Let ξ be a smooth real vector bundle ξ with metric 〈−,−〉. We can use
this metric to define pairings

A1(ξ)×A0(ξ) −→ A1(B) and A0(ξ)×A1(ξ) −→ A1(B)

as follows: Set (on generators)

〈ω ⊗ s1, s2〉 = 〈s1, ω ⊗ s2〉 = 〈s1, s2〉ω,

for all ω ∈ A1(B), s1, s2 ∈ Γ(ξ) and where 〈s1, s2〉 is the function in C∞(B) given by
b 7→ 〈s1(b), s2(b)〉, for all b ∈ B. More generally, we define a pairing

Ai(ξ)×Aj(ξ) −→ Ai+j(B),

by
〈ω ⊗ s1, η ⊗ s2〉 = 〈s1, s2〉ω ∧ η,

for all ω ∈ Ai(B), η ∈ Aj(B), s1, s2 ∈ Γ(ξ).

Definition 11.17. Given any metric 〈−,−〉 on a vector bundle ξ, a connection ∇ on ξ is
compatible with the metric, for short, a metric connection iff

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉,

for all s1, s2 ∈ Γ(ξ).

In terms of version-two of a connection, ∇X is a metric connection iff

X(〈s1, s2〉) = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉,

for every vector field, X ∈ X(B).

Remark: Definition 11.17 remains unchanged if ξ is a complex vector bundle.

It is easy to prove that metric connections exist.
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Proposition 11.17. Let ξ be a rank n vector with a metric 〈−,−〉. Then ξ possesses metric
connections.

Proof. We can pick a locally finite cover (Uα)α of B such that (Uα, ϕα) is a local trivialization
of ξ. Then for each (Uα, ϕα), we use the Gram-Schmidt procedure to obtain an orthonormal
frame (sα1 , . . . , s

α
n) over Uα, and we let ∇α be the trivial connection on π−1(Uα). By con-

struction, ∇α is compatible with the metric. We finish the argument by using a partition of
unity, leaving the details to the reader.

Remark: If ξ is a complex vector bundle, then we use a Hermitian metric and we call a
connection compatible with this metric a Hermitian connection . The existence of Hermitian
connections is clear.

The condition of compatibility with a metric is nicely expressed in a local trivialization.
Indeed, let (U,ϕ) be a local trivialization of the vector bundle ξ (of rank n). Then using the
Gram-Schmidt procedure, we obtain an orthonormal frame (s1, . . . , sn), over U .

Proposition 11.18. Using the above notations, if ω = (ωij) is the connection matrix of ∇
w.r.t. an orthonormal frame (s1, . . . , sn), then ω is skew-symmetric.

Proof. Since

∇si =
n∑
j=1

ωji ⊗ sj

and since 〈si, sj〉 = δij (as (s1, . . . , sn) is orthonormal), we have d〈si, sj〉 = 0 on U . Conse-
quently,

0 = d〈si, sj〉
= 〈∇si, sj〉+ 〈si,∇sj〉

=

〈 n∑
k=1

ωki ⊗ sk, sj
〉

+

〈
si,

n∑
l=1

ωlj ⊗ sl
〉

=
n∑
k=1

ωki〈sk, sj〉+
n∑
l=1

ωlj〈si, sl〉

= ωji + ωij,

as claimed.

Remark: In Proposition 11.18, if ξ is a complex vector bundle, then ω is skew-Hermitian.
This means that

ω> = −ω,
where ω is the conjugate matrix of ω; that is, (ω)ij = ωij.

If ∇ is a metric connection, then the curvature matrices are also skew-symmetric.
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Proposition 11.19. Let ξ be a rank n vector bundle with a metric 〈−,−〉. In any local
trivialization of ξ, with respect to a orthonormal frame the curvature matrix Ω = (Ωij) is
skew-symmetric. If ξ is a complex vector bundle, then Ω = (Ωij) is skew-Hermitian.

Proof. By the structure equation (Proposition 11.13),

Ω = dω + ω ∧ ω,

that is, Ωij = dωij +
∑n

k=1 ωik ∧ ωkj. Using the skew symmetry of ωij and wedge,

Ωji = dωji +
n∑
k=1

ωjk ∧ ωki

= −dωij +
n∑
k=1

ωkj ∧ ωik

= −dωij −
n∑
k=1

ωik ∧ ωkj

= −Ωij,

as claimed.

We now restrict our attention to a Riemannian manifold; that is, to the case where our
bundle ξ is the tangent bundle ξ = TM of some Riemannian manifold M . We know from
Proposition 11.17 that metric connections on TM exist. However, there are many metric
connections on TM , and none of them seems more relevant than the others. If M is a
Riemannian manifold, the metric 〈−,−〉 on M is often denoted g. In this case, for every
chart (U,ϕ), we let gij ∈ C∞(M) be the function defined by

gij(p) =

〈(
∂

∂xi

)
p

,

(
∂

∂xj

)
p

〉
p

.

(Note the unfortunate clash of notation with the transitions functions!)

The notations g =
∑

ij gijdxi⊗ dxj or simply g =
∑

ij gijdxidxj are often used to denote
the metric in local coordinates.

We observed immediately after stating Proposition 10.13 that the covariant differential
∇g of the Riemannian metric g on M is given by

∇X(g)(Y, Z) = d(g(Y, Z))(X)− g(∇XY, Z)− g(Y,∇XZ),

for all X, Y, Z ∈ X(M). Therefore, a connection ∇ on a Riemannian manifold (M, g) is
compatible with the metric iff

∇g = 0.
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It is remarkable that if we require a certain kind of symmetry on a metric connection,
then it is uniquely determined. Such a connection is known as the Levi–Civita connection.
The Levi–Civita connection can be characterized in several equivalent ways, a rather simple
way involving the notion of torsion of a connection.

Recall that one way to introduce the curvature is to view it as the “error term”

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

Another natural error term is the torsion T (X, Y ), of the connection ∇, given by

T (X, Y ) = ∇XY −∇YX − [X, Y ],

which measures the failure of the connection to behave like the Lie bracket. Then the Levi–
Civita connection is the unique metric and torsion-free connection (T (X, Y ) = 0) on the
Riemannian manifold. The first characterization of the Levi–Civita connection is given by
the following Proposition.

Proposition 11.20. (Levi-Civita, Version 1) Let M be any Riemannian manifold. There
is a unique, metric, torsion-free connection ∇ on M ; that is, a connection satisfying the
conditions:

X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉
∇XY −∇YX = [X, Y ],

for all vector fields, X, Y, Z ∈ X(M). This connection is called the Levi-Civita connection
(or canonical connection) on M . Furthermore, this connection is determined by the Koszul
formula

2〈∇XY, Z〉 = X(〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉)
− 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 − 〈Z, [Y,X]〉.

The proof of Proposition 11.20 can be found in Gallot, Hulin, Lafontaine [52], Do Carmo
[39], Morita [87], or Gallier and Quaintance [49].

Another way to characterize the Levi-Civita connection uses the cotangent bundle T ∗M .
It turns out that a connection ∇ on a vector bundle (metric or not) ξ naturally induces a
connection ∇∗ on the dual bundle ξ∗. If ∇ is a connection on TM , then ∇∗ is a connection
on T ∗M , namely, a linear map, ∇∗ : Γ(T ∗M)→ A1(M)⊗C∞(B) Γ(T ∗M); that is

∇∗ : A1(M)→ A1(M)⊗C∞(B) A1(M) ∼= Γ(T ∗M ⊗ T ∗M),

since Γ(T ∗M) = A1(M). With a slight abuse of notation, we denote by ∧ the map
∧⊗ : A1(M)⊗C∞(B) A1(M) −→ A2(M) induced by the C∞(B)-bilinear map
∧ : A1(M)×A1(M) −→ A2(M). By composition we get the map

A1(M)
∇∗−→ A1(M)⊗C∞(B) A1(M)

∧−→ A2(M).
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Then miracle, a metric connection is the Levi-Civita connection iff

d = ∧ ◦ ∇∗,

where d : A1(M) → A2(M) is exterior differentiation. There is also a nice local expression
of the above equation.

Let us now consider the second approach to torsion-freeness. For this, we have to explain
how a connection ∇ on a vector bundle ξ = (E, π,B, V ) induces a connection ∇∗ on the
dual bundle ξ∗.

11.9 Connections on the Dual Bundle

Let ξ = (E, π,B, V ) be a vector bundle. First, there is an evaluation map Γ(ξ⊗ξ∗) −→ Γ(ε1)
(where ε1 = B × R, the trivial line bundle over B), or equivalently

〈〈−,−〉〉 : Γ(ξ)⊗C∞(B) HomC∞(B)(Γ(ξ), C∞(B)) −→ C∞(B),

given by

〈〈s1, s
∗
2〉〉 = s∗2(s1), s1 ∈ Γ(ξ), s∗2 ∈ HomC∞(B)(Γ(ξ), C∞(B)),

and thus a map

Ak(ξ ⊗ ξ∗) = Ak(B)⊗C∞(B) Γ(ξ ⊗ ξ∗) id⊗〈〈−,−〉〉−→ Ak(B)⊗C∞(B) C
∞(B) ∼= Ak(B).

Using this map, we obtain a pairing

(−,−) : Ai(ξ)⊗Aj(ξ∗) Z−→ Ai+j(ξ ⊗ ξ∗) −→ Ai+j(B)

given by

(ω ⊗ s1, η ⊗ s∗2) = (ω ∧ η)⊗ 〈〈s1, s
∗
2〉〉,

where ω ∈ Ai(B), η ∈ Aj(B), s1 ∈ Γ(ξ), s∗2 ∈ Γ(ξ∗). It is easy to check that this pairing is
non-degenerate. Then given a connection ∇ on a rank n vector bundle ξ, we define ∇∗ on
ξ∗ by

d〈〈s1, s
∗
2〉〉 =

(
∇(s1), s∗2

)
+
(
s1,∇∗(s∗2)

)
,

where s1 ∈ Γ(ξ) and s∗2 ∈ Γ(ξ∗). Because the pairing (−,−) is non-degenerate, ∇∗ is well-
defined, and it is immediately that it is a connection on ξ∗. Let us see how it is expressed
locally.

If (U,ϕ) is a local trivialization and (s1, . . . , sn) is a frame over U , then let (θ1, . . . , θn)
be the dual frame (called a coframe). We have

〈〈sj, θi〉〉 = θi(sj) = δij, 1 ≤ i, j ≤ n.
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Recall that

∇sj =
n∑
k=1

ωkj ⊗ sk,

and write

∇∗θi =
n∑
k=1

ω∗ki ⊗ θk.

Applying d to the equation 〈〈sj, θi〉〉 = δij and using the equation defining ∇∗, we get

0 = d〈〈sj, θi〉〉
=
(
∇(sj), θi

)
+
(
sj,∇∗(θi)

)
=
( n∑
k=1

ωkj ⊗ sk, θi
)

+
(
sj,

n∑
l=1

ω∗li ⊗ θl
)

=
n∑
k=1

ωkj〈〈sk, θi〉〉+
n∑
l=1

ω∗li〈〈sj, θl〉〉

= ωij + ω∗ji.

Proposition 11.21. If we write ω∗ = (ω∗ij), then we have

ω∗ = −ω>.

If ∇ is a metric connection and (s1, . . . , sn) is an orthonormal frame over U , then ω is
skew-symmetric; that is, ω> = −ω.

Corollary 11.22. If ∇ is a metric connection on ξ, then ω∗ = −ω> = ω.

Remark: If ξ is a complex vector bundle, then there is a problem because if (s1, . . . , sn) is
a frame over U , then the θj(b)’s defined by

〈〈si(b), θj(b)〉〉 = δij

are not linear, but instead conjugate-linear. (Recall that a linear form θ is conjugate linear
(or semi-linear) iff θ(λu) = λθ(u), for all λ ∈ C.)

Instead of ξ∗, we need to consider the bundle ξ
∗
, which is the bundle whose fibre over

b ∈ B consist of all conjugate-linear forms over π−1(b). In this case, the evaluation pairing
〈〈s, θ〉〉 is conjugate-linear in s, and we find that ω∗ = −ω>, where ω∗ is the connection
matrix of ξ

∗
over U .

If ξ is a Hermitian bundle, as ω is skew-Hermitian, we find that ω∗ = ω, which makes
sense since ξ and ξ

∗
are canonically isomorphic. However, this does not give any information
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on ξ∗. For this, we consider the conjugate bundle ξ. This is the bundle obtained from ξ by
redefining the vector space structure on each fibre π−1(b), with b ∈ B, so that

(x+ iy)v = (x− iy)v,

for every v ∈ π−1(b). If ω is the connection matrix of ξ over U , then ω is the connection matrix
of ξ over U . If ξ has a Hermitian metric, it is easy to prove that ξ∗ and ξ are canonically
isomorphic (see Proposition 11.33). In fact, the Hermitian product 〈−,−〉 establishes a
pairing between ξ and ξ∗, and basically as above, we can show that if ω is the connection
matrix of ξ over U , then ω∗ = −ω> is the the connection matrix of ξ∗ over U . As ω is
skew-Hermitian, ω∗ = ω.

11.10 The Levi-Civita Connection on TM Revisited

If ∇ is the Levi-Civita connection of some Riemannian manifold M , for every chart (U,ϕ),
in an orthonormal frame we have ω∗ = ω, where ω is the connection matrix of ∇ over U
and ω∗ is the connection matrix of the dual connection ∇∗. This implies that the Christoffel
symbols of ∇ and ∇∗ over U are identical. Furthermore, ∇∗ is a linear map

∇∗ : A1(M) −→ Γ(T ∗M ⊗ T ∗M).

Thus, locally in a chart (U,ϕ), if (as usual) we let xi = pri ◦ ϕ, then we can write

∇∗(dxk) =
∑
ij

Γjikdxi ⊗ dxj.

Now, if we want ∧ ◦ ∇∗ = d, we must have

∧∇∗(dxk) =
∑
ij

Γjikdxi ∧ dxj = ddxk = 0;

that is
Γjik = Γjki,

for all i, k. It is known that this condition on the Christoffel symbols is equivalent to torsion-
freeness (see Gallot, Hulin, Lafontaine [52], or Do Carmo [39]). We record this as

Proposition 11.23. Let M be a manifold with connection ∇. Then ∇ is torsion-free (i.e.,
T (X, Y ) = ∇XY −∇YX − [X, Y ] = 0, for all X, Y ∈ X(M)) iff

∧ ◦ ∇∗ = d,

where d : A1(M)→ A2(M) is exterior differentiation.

Proposition 11.23 together with Proposition 11.20 yield a second version of the Levi-
Civita theorem:
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Proposition 11.24. (Levi-Civita, Version 2) Let M be any Riemannian manifold. There
is a unique, metric connection ∇ on M , such that

∧ ◦ ∇∗ = d,

where d : A1(M) → A2(M) is exterior differentiation. This connection is equal to the Levi-
Civita connection in Proposition 11.20.

Our third version of the Levi-Civita connection is a local version due to Élie Cartan.
Recall that locally with respect to a (orthonormal) frame over a chart (U,ϕ), the connection
∇∗ is given by the matrix, ω∗, such that ω∗ = −ω>, where ω is the connection matrix of
TM over U . That is, we have

∇∗θi =
n∑
j=1

−ωij ⊗ θj,

for some one-forms ωij ∈ A1(M). Then,

∧ ◦ ∇∗θi = −
n∑
j=1

ωij ∧ θj

so the requirement that d = ∧ ◦ ∇∗ is expressed locally by

dθi = −
n∑
j=1

ωij ∧ θj.

In addition, since our connection is metric, ω is skew-symmetric, and so ω∗ = ω. Then it is
not too surprising that the following proposition holds:

Proposition 11.25. Let M be a Riemannian manifold with metric 〈−,−〉. For every chart
(U,ϕ), if (s1, . . . , sn) is an orthonormal frame over over U and (θ1, . . . , θn) is the correspond-
ing coframe (dual frame), then there is a unique matrix ω = (ωij) of one-forms ωij ∈ A1(M),
so that the following conditions hold:

(i) ωji = −ωij.

(ii) dθi = −
n∑
j=1

ωij ∧ θj, or in matrix form, dθ = −ω ∧ θ.

Proof. There is a direct proof using a combinatorial trick. For instance, see Morita [87],
Chapter 5, Proposition 5.32, or Milnor and Stasheff [83], Appendix C, Lemma 8. On the
other hand, if we view ω = (ωij) as a connection matrix, then we observed that Condition (i)
asserts that the connection is metric and Condition (ii) that it is torsion-free. We conclude
by applying Proposition 11.24.
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Example 11.3. In Example 11.1, we introduced the spherical frame for TR3 as

s1 =
∂

∂r
= (cosϕ sin θ, sinϕ sin θ, cos θ)

s2 =
∂
∂θ∥∥ ∂
∂θ

∥∥ = (cosϕ cos θ, sinϕ cos θ,− sin θ)

s3 =

∂
∂ϕ∥∥∥ ∂
∂ϕ

∥∥∥ = (− sin θ, cos θ, 0),

and found that the connection matrix is

ω =

 0 −dθ − sin θdϕ
dθ 0 − cos θdϕ

sin θdϕ cos θdϕ 0

 .

The dual coframe is then given by

θ1 = dr

θ2 = r dθ

θ3 = r sin θ dϕ.

Observe that

dθ1 = d dr = 0 = r dθ ∧ dθ + r sinϕdϕ ∧ r sin θ dϕ = −ω12 ∧ θ2 − ω13 ∧ θ3

dθ2 = dr ∧ dθ = −dθ ∧ dr + cos θ dϕ ∧ r sin θ dϕ = −ω21 ∧ θ1 − ω23 ∧ θ3

dθ3 = sin θ dr ∧ dϕ+ r cos θdθ ∧ dϕ = − sin θ dϕ ∧ dr − cos θ dϕ ∧ r dθ
= −ω31 ∧ θ1 − ω32 ∧ θ2,

which shows that the connection form obeys Condition (ii) of Proposition 11.25, and hence
is the Levi-Civita connection for R3 with the induced Euclidean metric.

For another example of Proposition 11.25 consider an orientable (compact) surface M ,
with a Riemannian metric. Pick any chart (U,ϕ), and choose an orthonormal coframe of
one-forms (θ1, θ2), such that VolM = θ1 ∧ θ2 on U . Then we have

dθ1 = a1θ1 ∧ θ2

dθ2 = a2θ1 ∧ θ2

for some functions, a1, a2, and we let

ω12 = a1θ1 + a2θ2.

Clearly, (
0 ω12

−ω12 0

)(
θ1

θ2

)
=

(
0 a1θ1 + a2θ2

−(a1θ1 + a2θ2) 0

)(
θ1

θ2

)
=

(
dθ1

dθ2

)
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which shows that

ω = ω∗ =

(
0 ω12

−ω12 0

)
corresponds to the Levi-Civita connection on M . Since Ω = dω + ω ∧ ω, we see that

Ω =

(
0 dω12

−dω12 0

)
.

As M is oriented and as M has a metric, the transition functions are in SO(2). We easily
check that (

cos t sin t
− sin t cos t

)(
0 dω12

−dω12 0

)(
cos t − sin t
sin t cos t

)
=

(
0 dω12

−dω12 0

)
,

which shows that Ω is a global two-form called the Gauss-Bonnet 2-form of M . There is a
function κ, the Gaussian curvature of M , such that

dω12 = −κVolM ,

where VolM = θ1∧ θ2 is the oriented volume form on M . It should be noted that Milnor and
Stasheff define the volume form as VolM = −θ1 ∧ θ2 so in their work, the curvature κ should
be replaced by −κ. The reason for such a choice is explained on page 304 of Milnor and
Stasheff [83]. Many other authors (including Warner and Bott and Chern) use the definition
VolM = +θ1 ∧ θ2 that has been adopted here.

The Gauss-Bonnet theorem for orientable surfaces asserts that∫
M

dω12 = 2πχ(M),

where χ(M) is the Euler characteristic of M .

Remark: The Levi-Civita connection induced by a Riemannian metric g can also be defined
in terms of the Lie derivative of the metric g. This is the approach followed in Petersen [92]
(Chapter 2). If θX is the one-form given by

θX = iXg;

that is, (iXg)(Y ) = g(X, Y ) for all X, Y ∈ X(M), and if LXg is the Lie derivative of the
symmetric (0, 2) tensor g, defined so that

(LXg)(Y, Z) = X(g(Y, Z))− g(LXY, Z)− g(Y, LXZ)

(see Proposition 5.14), then it is proved in Petersen [92] (Chapter 2, Theorem 1) that the
Levi-Civita connection is defined implicitly by the formula

2g(∇XY, Z) = (LY g)(X,Z) + (dθY )(X,Z).
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11.11 Pontrjagin Classes and Chern Classes, a Glimpse

The purpose of this section is to introduce the reader to Pontrjagin Classes and Chern
Classes, which are fundamental invariants of real (resp. complex) vector bundles. We focus
on motivations and intuitions and omit most proofs, but we give precise pointers to the
literature for proofs.

Given a real (resp. complex) rank n vector bundle ξ = (E, π,B, V ), we know that locally,
ξ “looks like” a trivial bundle U×V , for some open subset U of the base space B. Globally, ξ
can be very twisted, and one of the main issues is to understand and quantify “how twisted”
ξ really is. Now we know that every vector bundle admits a connection, say ∇, and the
curvature R∇ of this connection is some measure of the twisting of ξ. However, R∇ depends
on ∇, so curvature is not intrinsic to ξ, which is unsatisfactory as we seek invariants that
depend only on ξ.

Pontrjagin, Stiefel, and Chern (starting from the late 1930’s) discovered that invariants
with “good” properties could be defined if we took these invariants to belong to various
cohomology groups associated with B. Such invariants are usually called characteristic
classes . Roughly, there are two main methods for defining characteristic classes: one using
topology, and the other due to Chern and Weil, using differential forms.

A masterly exposition of these methods is given in the classic book by Milnor and Stasheff
[83]. Amazingly, the method of Chern and Weil using differential forms is quite accessible for
someone who has reasonably good knowledge of differential forms and de Rham cohomology,
as long as one is willing to gloss over various technical details.

As we said earlier, one of the problems with curvature is that is depends on a connection.
The way to circumvent this difficulty rests on the simple, yet subtle observation, that locally,
given any two overlapping local trivializations (Uα, ϕα) and (Uβ, ϕβ), the transformation rule
for the curvature matrices Ωα and Ωβ is

Ωβ = g−1
αβΩαgαβ,

where gαβ : Uα ∩Uβ → GL(V ) is the transition function. The matrices of two-forms Ωα and
Ωα are local, but the stroke of genius is to glue them together to form a global form using
invariant polynomials .

Indeed, the Ωα are n×n matrices, so consider the algebra of polynomials R[X1, . . . , Xn2 ]
(or C[X1, . . . , Xn2 ] in the complex case) in n2 variables X1, . . . , Xn2 , considered as the entries
of an n × n matrix. It is more convenient to use the set of variables {Xij | 1 ≤ i, j ≤ n},
and to let X be the n× n matrix X = (Xij).

Definition 11.18. A polynomial P ∈ R[{Xij | 1 ≤ i, j ≤ n}] (or P ∈ C[{Xij | 1 ≤ i, j ≤
n}]) is invariant iff

P (AXA−1) = P (X),

for all A ∈ GL(n,R) (resp. A ∈ GL(n,C)). The algebra of invariant polynomials over n×n
matrices is denoted by In.
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Examples of invariant polynomials are the trace tr(X) and the determinant det(X) of
the matrix X. We will characterize shortly the algebra In.

Now comes the punch line: For any homogeneous invariant polynomial P ∈ In of degree
k, we can substitute Ωα for X; that is, substitute ωij for Xij, and evaluate P (Ωα). This is
because Ω is a matrix of two-forms, and the wedge product is commutative for forms of even
degree. Therefore, P (Ωα) ∈ A2k(Uα). But the formula for a change of trivialization yields

P (Ωα) = P (g−1
αβΩαgαβ) = P (Ωβ),

so the forms P (Ωα) and P (Ωβ) agree on overlaps, and thus they define a global form denoted
P (R∇) ∈ A2k(B).

Definition 11.19. For any vector bundle ξ = (E, π,B, V ), for any homogeneous invariant
polynomial P ∈ In of degree k, the global form P (R∇) ∈ A2k(B) defined above is called the
global curvature form on the vector bundle ξ.

Now we know how to obtain global 2k-forms P (R∇) ∈ A2k(B), but they still seem to
depend on the connection, and how do they define a cohomology class? Both problems are
settled thanks to the following theorems:

Theorem 11.26. For every real rank n vector bundle ξ, for every connection ∇ on ξ, for
every invariant homogeneous polynomial P of degree k, the 2k-form P (R∇) ∈ A2k(B) is
closed. If ξ is a complex vector bundle, then the 2k-form P (R∇) ∈ A2k(B;C) is closed.

Theorem 11.26 implies that the 2k-form P (R∇) ∈ A2k(B) defines a cohomology class
[P (R∇)] ∈ H2k

DR(B). We will come back to the proof of Theorem 11.26 later.

Theorem 11.27. For every real (resp. complex) rank n vector bundle ξ, for every invariant
homogeneous polynomial P of degree k, the cohomology class [P (R∇)] ∈ H2k

DR(B) (resp.
[P (R∇)] ∈ H2k

DR(B;C)) is independent of the choice of the connection ∇.

Definition 11.20. The cohomology class [P (R∇)], which does not depend on ∇, is denoted
P (Rξ) (or P (Kξ)) and is called the characteristic class of ξ corresponding to P .

Remark: Milnor and Stasheff [83] use the notation P (K), Madsen and Tornehave [80] use
the notation P (F∇), and Morita [87] use the notation f(E) (where E is the total space of
the vector bundle ξ).

The proof of Theorem 11.27 involves a kind of homotopy argument; see Madsen and
Tornehave [80] (Lemma 18.2), Morita [87] (Proposition 5.28), or Milnor and Stasheff [83]
(Appendix C).

The upshot is that Theorems 11.26 and 11.27 give us a method for producing invariants
of a vector bundle that somehow reflect how curved (or twisted) the bundle is. However, it
appears that we need to consider infinitely many invariants. Fortunately, we can do better
because the algebra In of invariant polynomials is finitely generated, and in fact, has very
nice sets of generators. For this, we recall the elementary symmetric functions in n variables.
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Definition 11.21. Given n variables λ1, . . . , λn, we can write

n∏
i=1

(1 + tλi) = 1 + σ1t+ σ2t
2 + · · ·+ σnt

n,

where the σi are symmetric, homogeneous polynomials of degree i in λ1, . . . , λn, called ele-
mentary symmetric functions in n variables.

For example,

σ1 =
n∑
i=1

λi, σ2 =
∑

1≤i<j≤n

λiλj, σn = λ1 · · ·λn.

To be more precise, we write σi(λ1, . . . , λn) instead of σi.

Definition 11.22. Given any n× n matrix X = (Xij), we define σi(X) by the formula

det(I + tX) = 1 + σ1(X)t+ σ2(X)t2 + · · ·+ σn(X)tn.

Proposition 11.28. Let X be an n× n matrix. Then

σi(X) = σi(λ1, . . . , λn),

where λ1, . . . , λn are the eigenvalues of X.

Proof. Indeed, λ1, . . . , λn are the roots the the polynomial det(λI −X) = 0, and as

det(λI −X) =
n∏
i=1

(λ− λi) = λn
n∏
i=1

(
1− λi

λ

)
= λn +

n∑
i=1

(−1)iσi(λ1, . . . , λn)λn−i,

by factoring λn and replacing λ−1 by −λ−1, we get

det(I + (−λ−1)X) = 1 +
n∑
i=1

= σi(λ1, . . . , λn)(−λ−1)i,

which proves our claim.

Observe that
σ1(X) = tr(X), σn(X) = det(X).

Also, σk(X
>) = σk(X), since det(I + tX) = det((I + tX)>) = det(I + tX>). It is not very

difficult to prove the following theorem.

Theorem 11.29. The algebra In of invariant polynomials in n2 variables is generated by
σ1(X), . . . , σn(X); that is,

In ∼= R[σ1(X), . . . , σn(X)] (resp. In ∼= C[σ1(X), . . . , σn(X)]).
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Proof sketch. For a proof of Theorem 11.29, see Milnor and Stasheff [83] (Appendix C,
Lemma 6), Madsen and Tornehave [80] (Appendix B), or Morita [87] (Theorem 5.26). The
proof uses the fact that for every matrix X, there is an upper-triangular matrix T , and an
invertible matrix B, so that

X = BTB−1.

Then we can replace B by the matrix diag(ε, ε2, . . . , εn)B, where ε is very small, and make
the off diagonal entries arbitrarily small. By continuity, it follows that P (X) depends only
on the diagonal entries of BTB−1, that is, on the eigenvalues of X. So, P (X) must be
a symmetric function of these eigenvalues, and the classical theory of symmetric functions
completes the proof.

It turns out that there are situations where it is more convenient to use another set of
generators instead of σ1, . . . , σn. Define si(X) by

si(X) = tr(X i).

Of course,

si(X) = λi1 + · · ·+ λin,

where λ1, . . . , λn are the eigenvalues of X. Now the σi(X) and si(X) are related to each
other by Newton’s formula, namely:

si(X)− σ1(X)si−1(X) + σ2(X)si−2(X) + · · ·+ (−1)i−1σi−1(X)s1(X) + (−1)iiσi(X) = 0,

with 1 ≤ i ≤ n. A “cute” proof of the Newton formulae is obtained by computing the
derivative of log(h(t)), where

h(t) =
n∏
i=1

(1 + tλi) = 1 + σ1t+ σ2t
2 + · · ·+ σnt

n,

see Madsen and Tornehave [80] (Appendix B) or Morita [87] (Exercise 5.7).

Consequently, we can inductively compute si in terms of σ1, . . . , σi, and conversely σi in
terms of s1, . . . , si. For example,

s1 = σ1, s2 = σ2
1 − 2σ2, s3 = σ3

1 − 3σ1σ2 + 3σ3.

It follows that

In ∼= R[s1(X), . . . , sn(X)] (resp. In ∼= C[s1(X), . . . , sn(X)]).

Using the above, we can give a simple proof of Theorem 11.26, using Theorem 11.29.
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Proof. (Proof of Theorem 11.26). Since s1, . . . , sn generate In, it is enough to prove that
si(R

∇) is closed. We need to prove that dsi(R
∇) = 0, and for this, it is enough to prove

it in every local trivialization (Uα, ϕα). To simplify notation, we write Ω for Ωα. Now,
si(Ω) = tr(Ωi), so

dsi(Ω) = dtr(Ωi) = tr(dΩi),

and we use Bianchi’s identity (Proposition 11.15),

dΩ = Ω ∧ ω − ω ∧ Ω.

We have

dΩi = dΩ ∧ Ωi−1 + Ω ∧ dΩ ∧ Ωi−2 + · · ·+ Ωk ∧ dΩ ∧ Ωi−k−1 + · · ·+ Ωi−1 ∧ dΩ

= (Ω ∧ ω − ω ∧ Ω) ∧ Ωi−1 + Ω ∧ (Ω ∧ ω − ω ∧ Ω) ∧ Ωi−2

+ · · ·+ Ωk ∧ (Ω ∧ ω − ω ∧ Ω) ∧ Ωi−k−1 + Ωk+1 ∧ (Ω ∧ ω − ω ∧ Ω) ∧ Ωi−k−2

+ · · ·+ Ωi−1 ∧ (Ω ∧ ω − ω ∧ Ω)

= −ω ∧ Ωi + Ω ∧ ω ∧ Ωi−1 − Ω ∧ ω ∧ Ωi−1 + Ω2 ∧ ω ∧ Ωi−2 + · · ·+
− Ωk ∧ ω ∧ Ωi−k + Ωk+1 ∧ ω ∧ Ωi−k−1 − Ωk+1 ∧ ω ∧ Ωi−k−1 + Ωk+2 ∧ ω ∧ Ωi−k−2

+ · · · − Ωi−1 ∧ ω ∧ Ω + Ωi ∧ ω
= Ωi ∧ ω − ω ∧ Ωi.

However, the entries in ω are one-forms, the entries in Ω are two-forms, and since

η ∧ θ = θ ∧ η

for all η ∈ A1(B) and all θ ∈ A2(B) and tr(XY ) = tr(Y X) for all matrices X and Y with
commuting entries, we get

tr(dΩi) = tr(ω ∧ Ωi − Ωi ∧ ω) = tr(Ωi ∧ ω)− tr(ω ∧ Ωi) = 0,

as required.

A more elegant proof (also using Bianchi’s identity) can be found in Milnor and Stasheff
[83] (Appendix C, page 296-298).

For real vector bundles, only invariant polynomials of even degrees matter.

Proposition 11.30. If ξ is a real vector bundle, then for every homogeneous invariant
polynomial P of odd degree k, we have P (Rξ) = 0 ∈ H2k

DR(B).

Proof. As In ∼= R[s1(X), . . . , sn(X)] and si(X) is homogeneous of degree i, it is enough to
prove Proposition 11.30 for si(X) with i odd. By Theorem 11.27, we may assume that we
pick a metric connection on ξ, so that Ωα is skew-symmetric in every local trivialization.
Then, Ωi

α is also skew symmetric and

tr(Ωi
α) = 0,

since the diagonal entries of a real skew-symmetric matrix are all zero. It follows that
si(Ωα) = tr(Ωi

α) = 0.
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Proposition 11.30 implies that for a real vector bundle ξ, non-zero characteristic classes
can only live in the cohomology groups H4k

DR(B) of dimension 4k. This property is specific
to real vector bundles and generally fails for complex vector bundles.

Before defining Pontrjagin and Chern classes, we state another important property of the
homology classes P (Rξ); see Madsen and Tornehave [80] (Chapter 18, Theorem 18.5).

Proposition 11.31. If ξ = (E, π,B, V ) and ξ′ = (E ′, π′, B′, V ) are real (resp. complex)
vector bundles, for every bundle map

E
fE //

π

��

E ′

π′

��
B

f
// B′,

for every homogeneous invariant polynomial P of degree k, we have

P (Rξ) = f ∗(P (Rξ′)) ∈ H2k
DR(B) (resp. P (Rξ) = f ∗(P (Rξ′)) ∈ H2k

DR(B;C)).

In particular, for every smooth map g : N → B, we have

P (Rg∗ξ) = g∗(P (Rξ)) ∈ H2k
DR(N) (resp. P (Rg∗ξ) = g∗(P (Rξ)) ∈ H2k

DR(N ;C)),

where g∗ξ is the pullback bundle of ξ along g.

The above proposition implies that if (fE, f) : ξ → ξ′ is an isomorphism of vector bundles,
then the pullback map f ∗ maps the characteristic classes of ξ′ to the characteristic classes
of ξ bijectively.

We finally define Pontrjagin classes and Chern classes.

Definition 11.23. If ξ be a real rank n vector bundle, then the kth Pontrjagin class of ξ,
denoted pk(ξ), where 1 ≤ 2k ≤ n, is the cohomology class

pk(ξ) =

[
1

(2π)2k
σ2k(R

∇)

]
∈ H4k

DR(B),

for any connection ∇ on ξ.

If ξ be a complex rank n vector bundle, then the kth Chern class of ξ, denoted ck(ξ),
where 1 ≤ k ≤ n, is the cohomology class

ck(ξ) =

[(
−1

2πi

)k
σk(R

∇)

]
∈ H2k

DR(B),

for any connection ∇ on ξ. We also set p0(ξ) = 1, and c0(ξ) = 1 in the complex case.
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The strange coefficient in pk(ξ) is present so that our expression matches the topological
definition of Pontrjagin classes. The equally strange coefficient in ck(ξ) is there to insure that
ck(ξ) actually belongs to the real cohomology group H2k

DR(B), as stated (from the definition,
we can only claim that ck(ξ) ∈ H2k

DR(B;C)).

This requires a proof which can be found in Morita [87] (Proposition 5.30), or in Madsen
and Tornehave [80] (Chapter 18). One can use the fact that every complex vector bundle
admits a Hermitian connection. Locally, the curvature matrices are skew-Hermitian and
this easily implies that the Chern classes are real, since if Ω is skew-Hermitian, then iΩ is
Hermitian. (Actually, the topological version of Chern classes shows that ck(ξ) ∈ H2k(B;Z).)

If ξ is a real rank n vector bundle and n is odd, say n = 2m+1, then the “top” Pontrjagin
class pm(ξ) corresponds to σ2m(R∇), which is not det(R∇). However, if n is even, say n = 2m,
then the “top” Pontrjagin class pm(ξ) corresponds to det(R∇).

Definition 11.24. The Pontrjagin polynomial p(ξ)(t) ∈ H•DR(B)[t], given by

p(ξ)(t) =

[
det

(
I +

t

2π
R∇
)]

= 1 + p1(ξ)t+ p2(ξ)t2 + · · ·+ pbn
2
c(ξ)t

bn
2
c

and the Chern polynomial c(ξ)(t) ∈ H•DR(B)[t], given by

c(ξ)(t) =

[
det

(
I − t

2πi
R∇
)]

= 1 + c1(ξ)t+ c2(ξ)t2 + · · ·+ cn(ξ)tn.

If a vector bundle is trivial, then all its Pontrjagin classes (or Chern classes) are zero for
all k ≥ 1. If ξ is the real tangent bundle ξ = TB of some manifold B of dimension n, then
the bn

4
c Pontrjagin classes of TB are denoted p1(B), . . . , pbn

4
c(B).

For complex vector bundles, the manifold B is often the real manifold corresponding to
a complex manifold. If B has complex dimension n, then B has real dimension 2n. In this
case, the tangent bundle TB is a rank n complex vector bundle over the real manifold of
dimension 2n, and thus, it has n Chern classes, denoted c1(B), . . . , cn(B).

The determination of the Pontrjagin classes (or Chern classes) of a manifold is an impor-
tant step for the study of the geometric/topological structure of the manifold. For example,
it is possible to compute the Chern classes of complex projective space CPn (as a complex
manifold).

The Pontrjagin classes of a real vector bundle ξ are related to the Chern classes of its
complexification ξC = ξ ⊗R ε

1
C (where ε1C is the trivial complex line bundle B × C).

Proposition 11.32. For every real rank n vector bundle ξ = (E, π,B, V ), if ξC = ξ ⊗R ε
1
C

is the complexification of ξ, then

pk(ξ) = (−1)kc2k(ξC) ∈ H4k
DR(B) k ≥ 0.
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Basically, the reason why Proposition 11.32 holds is that

1

(2π)2k
= (−1)k

(
−1

2πi

)2k

For details, see Morita [87] (Chapter 5, Section 5, Proposition 5.38).

We conclude this section by stating a few more properties of Chern classes.

Proposition 11.33. For every complex rank n vector bundle ξ, the following properties hold:

(1) If ξ has a Hermitian metric, then we have a canonical isomorphism ξ∗ ∼= ξ.

(2) The Chern classes of ξ, ξ∗ and ξ satisfy:

ck(ξ
∗) = ck(ξ) = (−1)kck(ξ).

(3) For any complex vector bundles ξ and η,

ck(ξ ⊕ η) =
k∑
i=0

ci(ξ)ck−i(η),

or equivalently
c(ξ ⊕ η)(t) = c(ξ)(t)c(η)(t),

and similarly for Pontrjagin classes when ξ and η are real vector bundles.

To prove (2), we can use the fact that ξ can be given a Hermitian metric. Then we saw
earlier that if ω is the connection matrix of ξ over U then ω = −ω> is the connection matrix
of ξ over U . However, it is clear that σk(−Ω>α ) = (−1)kσk(Ωα), and so ck(ξ) = (−1)kck(ξ).
For details, see Morita [87] (Chapter 5, Section 5, Theorem 5.37 and Proposition 5.40).

Remark: For a real vector bundle ξ, it is easy to see that (ξC)∗ = (ξ∗)C, which implies that
ck((ξC)∗) = ck(ξC) (as ξ ∼= ξ∗) and (2) implies that ck(ξC) = 0 for k odd. This proves again
that the Pontrjagin classes exit only in dimension 4k.

A complex rank n vector bundle ξ can also be viewed as a rank 2n vector bundle ξR and
we have:

Proposition 11.34. For every rank n complex vector bundle ξ, if pk = pk(ξR) and ck = ck(ξ),
then we have

1− p1 + p2 + · · ·+ (−1)npn = (1 + c1 + c2 + · · ·+ cn)(1− c1 + c2 + · · ·+ (−1)ncn).

For a proof, see Morita [87] (Chapter 5, Section 5, Proposition 5.41).

Besides defining the Chern and Pontrjagin classes, the curvature form R∇ also defines an
Euler class. But in order to efficiently define the Euler class, we need a technical tool, the
Pfaffian polynomial.
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11.12 The Pfaffian Polynomial

The results of this section will be needed to define the Euler class of a real orientable rank
2n vector bundle; see Section 11.13.

Let so(2n) denote the vector space (actually, Lie algebra) of 2n×2n real skew-symmetric
matrices. It is well-known that every matrix A ∈ so(2n) can be written as

A = PDP>,

where P is an orthogonal matrix and where D is a block diagonal matrix

D =


D1

D2

. . .

Dn


consisting of 2× 2 blocks of the form

Di =

(
0 −ai
ai 0

)
.

For a proof, see Horn and Johnson [63] (Corollary 2.5.14), Gantmacher [53] (Chapter IX),
or Gallier [48] (Chapter 11).

Since det(Di) = a2
i and det(A) = det(PDP>) = det(D) = det(D1) · · · det(Dn), we get

det(A) = (a1 · · · an)2.

The Pfaffian is a polynomial function Pf(A) in skew-symmetric 2n × 2n matrices A (a
polynomial in (2n− 1)n variables) such that

Pf(A)2 = det(A),

and for every arbitrary matrix B,

Pf(BAB>) = Pf(A) det(B).

The Pfaffian shows up in the definition of the Euler class of a vector bundle. There is a
simple alternative way to define the Pfaffian using some exterior algebra. Let (e1, . . . , e2n)
be any basis of R2n. For any matrix A ∈ so(2n), let

ω(A) =
∑
i<j

aij ei ∧ ej,

where A = (aij). Then
∧n ω(A) is of the form Ce1 ∧ e2 ∧ · · · ∧ e2n for some constant C ∈ R.
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Definition 11.25. For every skew symmetric matrix A ∈ so(2n), the Pfaffian polynomial
or Pfaffian, is the degree n polynomial Pf(A) defined by

n∧
ω(A) = n! Pf(A) e1 ∧ e2 ∧ · · · ∧ e2n.

Clearly, Pf(A) is independent of the basis chosen. If A is the block diagonal matrix D,
a simple calculation shows that

ω(D) = −(a1e1 ∧ e2 + a2e3 ∧ e4 + · · ·+ ane2n−1 ∧ e2n)

and that
n∧
ω(D) = (−1)nn! a1 · · · an e1 ∧ e2 ∧ · · · ∧ e2n,

and so
Pf(D) = (−1)na1 · · · an.

Since Pf(D)2 = (a1 · · · an)2 = det(A), we seem to be on the right track.

Proposition 11.35. For every skew symmetric matrix A ∈ so(2n) and every arbitrary
matrix B, we have:

(i) Pf(A)2 = det(A)

(ii) Pf(BAB>) = Pf(A) det(B).

Proof. If we assume that (ii) is proved then, since we can write A = PDP> for some
orthogonal matrix P and some block diagonal matrix D as above, as det(P ) = ±1 and
Pf(D)2 = det(A), we get

Pf(A)2 = Pf(PDP>)2 = Pf(D)2 det(P )2 = det(A),

which is (i). Therefore, it remains to prove (ii).

Let fi = Bei for i = 1, . . . , 2n, where (e1, . . . , e2n) is any basis of R2n. Since fi =
∑

k bkiek,
we have

τ =
∑
i,j

aij fi ∧ fj =
∑
i,j

∑
k,l

bkiaijblj ek ∧ el =
∑
k,l

(BAB>)kl ek ∧ el,

and so, as BAB> is skew symmetric and ek ∧ el = −el ∧ ek, we get

τ = 2ω(BAB>).

Consequently,

n∧
τ = 2n

n∧
ω(BAB>) = 2nn! Pf(BAB>) e1 ∧ e2 ∧ · · · ∧ e2n.
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Now,
n∧
τ = C f1 ∧ f2 ∧ · · · ∧ f2n,

for some C ∈ R. If B is singular, then the fi are linearly dependent, which implies that
f1 ∧ f2 ∧ · · · ∧ f2n = 0, in which case

Pf(BAB>) = 0,

as e1 ∧ e2 ∧ · · · ∧ e2n 6= 0. Therefore, if B is singular, det(B) = 0 and

Pf(BAB>) = 0 = Pf(A) det(B).

If B is invertible, as τ =
∑

i,j aij fi ∧ fj = 2
∑

i<j aij fi ∧ fj, we have

n∧
τ = 2nn! Pf(A) f1 ∧ f2 ∧ · · · ∧ f2n.

However, as fi = Bei, we have

f1 ∧ f2 ∧ · · · ∧ f2n = det(B) e1 ∧ e2 ∧ · · · ∧ e2n,

so
n∧
τ = 2nn! Pf(A) det(B) e1 ∧ e2 ∧ · · · ∧ e2n

and as
n∧
τ = 2nn! Pf(BAB>) e1 ∧ e2 ∧ · · · ∧ e2n,

we get
Pf(BAB>) = Pf(A) det(B),

as claimed.

Remark: It can be shown that the polynomial Pf(A) is the unique polynomial with integer
coefficients such that Pf(A)2 = det(A) and Pf(diag(S, . . . , S)) = +1, where

S =

(
0 1
−1 0

)
;

see Milnor and Stasheff [83] (Appendix C, Lemma 9). There is also an explicit formula for
Pf(A), namely

Pf(A) =
1

2nn!

∑
σ∈S2n

sgn(σ)
n∏
i=1

aσ(2i−1)σ(2i).

For example, if

A =

(
0 −a
a 0

)
,
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then Pf(A) = −a, and if

A =


0 a1 a2 a3

−a1 0 a4 a5

−a2 −a4 0 a6

−a3 −a5 −a6 0

 ,

then

Pf(A) = a1a6 − a2a5 + a4a3.

It is easily checked that

det(A) = (Pf(A))2 = (a1a6 − a2a5 + a4a3)2.

� Beware, some authors use a different sign convention and require the Pfaffian to have
the value +1 on the matrix diag(S ′, . . . , S ′), where

S ′ =

(
0 −1
1 0

)
.

For example, if R2n is equipped with an inner product 〈−,−〉, then some authors define ω(A)
as

ω(A) =
∑
i<j

〈Aei, ej〉 ei ∧ ej,

where A = (aij). But then, 〈Aei, ej〉 = aji and not aij, and this Pfaffian takes the value +1
on the matrix diag(S ′, . . . , S ′). This version of the Pfaffian differs from our version by the
factor (−1)n. In this respect, Madsen and Tornehave [80] seem to have an incorrect sign in
Proposition B6 of Appendix C.

We will also need another property of Pfaffians. Recall that the ring Mn(C) of n × n
matrices over C is embedded in the ring M2n(R) of 2n × 2n matrices with real coefficients,
using the injective homomorphism that maps every entry z = a+ ib ∈ C to the 2× 2 matrix(

a −b
b a

)
.

If A ∈ Mn(C), let AR ∈ M2n(R) denote the real matrix obtained by the above process.

Observe that every skew Hermitian matrix A ∈ u(n) (i.e., with A∗ = A
>

= −A) yields a
matrix AR ∈ so(2n).

Proposition 11.36. For every skew Hermitian matrix A ∈ u(n), we have

Pf(AR) = in det(A).
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Proof. It is well-known that a skew Hermitian matrix can be diagonalized with respect to a
unitary matrix U and that the eigenvalues are pure imaginary or zero, so we can write

A = U diag(ia1, . . . , ian)U∗,

for some reals aj ∈ R. Consequently, we get

AR = UR diag(D1, . . . , Dn)U>R ,

where

Dj =

(
0 −aj
aj 0

)
and

Pf(AR) = Pf(diag(D1, . . . , Dn)) = (−1)n a1 · · · an,

as we saw before. On the other hand,

det(A) = det(diag(ia1, . . . , ian)) = in a1 · · · an,

and as (−1)n = inin, we get

Pf(AR) = in det(A),

as claimed.

� Madsen and Tornehave [80] state Proposition 11.36 using the factor (−i)n, which is
wrong.

11.13 Euler Classes and The Generalized

Gauss-Bonnet Theorem

Let ξ = (E, π,B, V ) be a real vector bundle of rank n = 2m and let ∇ be any metric
connection on ξ. Then if ξ is orientable (as defined in Section 10.8, see Definition 10.21
and the paragraph following it), it is possible to define a global form eu(R∇) ∈ A2m(B),
which turns out to be closed. Furthermore, the cohomology class [eu(R∇)] ∈ H2m

DR(B) is
independent of the choice of ∇. This cohomology class, denoted e(ξ), is called the Euler
class of ξ, and has some very interesting properties. For example, pm(ξ) = e(ξ)2.

As ∇ is a metric connection, in a trivialization (Uα, ϕα), the curvature matrix Ωα is a
skew symmetric 2m× 2m matrix of 2-forms. Therefore, we can substitute the 2-forms in Ωα

for the variables of the Pfaffian of degree m (see Section 11.12), and we obtain the 2m-form,
Pf(Ωα) ∈ A2m(B). Now as ξ is orientable, the transition functions take values in SO(2m),
so by Proposition 11.14, since

Ωβ = g−1
αβΩαgαβ,
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we conclude from Proposition 11.35 (ii) that

Pf(Ωα) = Pf(Ωβ).

Therefore, the local 2m-forms Pf(Ωα) patch and define a global form Pf(R∇) ∈ A2m(B).

The following propositions can be shown.

Proposition 11.37. For every real, orientable, rank 2m vector bundle ξ, for every metric
connection ∇ on ξ, the 2m-form Pf(R∇) ∈ A2m(B) is closed.

Proposition 11.38. For every real, orientable, rank 2m vector bundle ξ, the cohomology
class [Pf(R∇)] ∈ H2m

DR(B) is independent of the metric connection ∇ on ξ.

Proofs of Propositions 11.37 and 11.38 can be found in Madsen and Tornehave [80]
(Chapter 19) or Milnor and Stasheff [83] (Appendix C) (also see Morita [87], Chapters 5 and
6).

Definition 11.26. Let ξ = (E, π,B, V ) be any real, orientable, rank 2m vector bundle. For
any metric connection ∇ on ξ, the Euler form associated with ∇ is the closed form

eu(R∇) =
1

(2π)m
Pf(R∇) ∈ A2m(B),

and the Euler class of ξ is the cohomology class

e(ξ) =
[
eu(R∇)

]
∈ H2m

DR(B),

which does not depend on ∇.

� Some authors, including Madsen and Tornehave [80], have a negative sign in front of R∇

in their definition of the Euler form; that is, they define eu(R∇) by

eu(R∇) =
1

(2π)m
Pf(−R∇).

However these authors use a Pfaffian with the opposite sign convention from ours and this
Pfaffian differs from ours by the factor (−1)n (see the warning in Section 11.12). Madsen and
Tornehave [80] seem to have overlooked this point and with their definition of the Pfaffian
(which is the one we have adopted) Proposition 11.41 is incorrect.

Here is the relationship between the Euler class e(ξ), and the top Pontrjagin class pm(ξ):

Proposition 11.39. For every real, orientable, rank 2m vector bundle ξ = (E, π,B, V ), we
have

pm(ξ) = e(ξ)2 ∈ H4m
DR(B).
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Proof. The top Pontrjagin class pm(ξ) is given by

pm(ξ) =

[
1

(2π)2m
det(R∇)

]
,

for any (metric) connection ∇, and

e(ξ) =
[
eu(R∇)

]
,

with

eu(R∇) =
1

(2π)m
Pf(R∇).

From Proposition 11.35 (i), we have

det(R∇) = Pf(R∇)2,

which yields the desired result.

A rank m complex vector bundle ξ = (E, π,B, V ) can be viewed as a real rank 2m vector
bundle ξR, by viewing V as a 2m dimensional real vector space.

Proposition 11.40. For any complex vector bundle ξ = (E, π,B, V ), the real vector bundle
ξR is naturally orientable.

Proof. For any basis, (e1, . . . , em), of V over C, observe that (e1, ie1, . . . , em, iem) is a basis
of V over R (since v =

∑m
i=1(λi+ iµi)ei =

∑m
i=1 λiei+

∑m
i=1 µiiei). But, any m×m invertible

matrix A, over C becomes a real 2m × 2m invertible matrix AR, obtained by replacing the
entry ajk + ibjk in A by the real 2× 2 matrix(

ajk −bjk
bjk ajk.

)
Indeed, if vk =

∑m
j=1 ajkej +

∑m
j=1 bjkiej, then ivk =

∑m
j=1−bjkej +

∑m
j=1 ajkiej and when

we express vk and ivk over the basis (e1, ie1, . . . , em, iem), we get a matrix AR consisting of
2× 2 blocks as above. Clearly, the map r : A 7→ AR is a continuous injective homomorphism
from GL(m,C) to GL(2m,R). Now, it is known that GL(m,C) is connected, thus Im(r) =
r(GL(m,C)) is connected, and as det(I2m) = 1, we conclude that all matrices in Im(r) have
positive determinant.1 Therefore, the transition functions of ξR which take values in Im(r)
have positive determinant, and ξR is orientable.

We can give ξR an orientation by fixing some basis of V over R. We have the following
relationship between e(ξR) and the top Chern class, cm(ξ).

1One can also prove directly that every matrix in Im(r) has positive determinant by expressing r(A) as
a product of simple matrices whose determinants are easily computed.
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Proposition 11.41. For every complex, rank m vector bundle ξ = (E, π,B, V ), we have

cm(ξ) = e(ξ) ∈ H2m
DR(B).

Proof. Pick some metric connection ∇ on the complex vector bundle ξ . Recall that

cm(ξ) =

[(
−1

2πi

)m
det(R∇)

]
= im

[(
1

2π

)m
det(R∇)

]
.

On the other hand,

e(ξ) =

[
1

(2π)m
Pf(R∇R )

]
.

Here, R∇R denotes the global 2m-form, which locally, is equal to ΩR, where Ω is the m ×m
curvature matrix of ξ over some trivialization. By Proposition 11.36,

Pf(ΩR) = im det(Ω),

so cm(ξ) = e(ξ), as claimed.

The Euler class enjoys many other nice properties. For example, if f : ξ1 → ξ2 is an
orientation preserving bundle map, then

e(f ∗ξ2) = f ∗(e(ξ2)),

where f ∗ξ2 is given the orientation induced by ξ2. Also, the Euler class can be defined by
topological means and it belongs to the integral cohomology group H2m(B;Z).

Although this result lies beyond the scope of these notes, we cannot resist stating one of
the most important and most beautiful theorems of differential geometry usually called the
Generalized Gauss-Bonnet theorem or Gauss-Bonnet-Chern theorem.

For this we need the notion of Euler characteristic. Since we haven’t discussed trian-
gulations of manifolds, we will use a definition in terms of cohomology. Although concise,
this definition is hard to motivate, and we apologize for this. Given a smooth n-dimensional
manifold M , we define its Euler characteristic χ(M), as

χ(M) =
n∑
i=0

(−1)i dim(H i
DR(M)).

The integers bi = dim(H i
DR(M)) are known as the Betti numbers of M . For example,

χ(S2) = 2.

It turns out that if M is an odd dimensional manifold, then χ(M) = 0. This explains
partially why the Euler class is only defined for even dimensional bundles.

The Generalized Gauss-Bonnet theorem (or Gauss-Bonnet-Chern theorem) is a general-
ization of the Gauss-Bonnet theorem for surfaces. In the general form stated below it was
first proved by Allendoerfer and Weil (1943), and Chern (1944).
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Theorem 11.42. (Generalized Gauss-Bonnet Formula) Let M be an orientable, smooth,
compact manifold of dimension 2m. For every metric connection ∇ on TM , (in particular,
the Levi-Civita connection for a Riemannian manifold), we have∫

M

eu(R∇) = χ(M).

A proof of Theorem 11.42 can be found in Madsen and Tornehave [80] (Chapter 21),
but beware of some sign problems. The proof uses another famous theorem of differential
topology, the Poincaré-Hopf theorem. A sketch of the proof is also given in Morita [87],
Chapter 5.

Theorem 11.42 is remarkable because it establishes a relationship between the geometry
of the manifold (its curvature) and the topology of the manifold (the number of “holes”),
somehow encoded in its Euler characteristic.

Characteristic classes are a rich and important topic and we’ve only scratched the surface.
We refer the reader to the texts mentioned earlier in this section as well as to Bott and Tu
[13] for comprehensive expositions.

11.14 Problems

Problem 11.1. Complete the proof of Proposition 11.4. In particular show that

∇ =
∑
α

fα∇α

is a connection on ξ.

Problem 11.2. Prove Proposition 11.8.

Problem 11.3. Show that the bilinear map

Z : Ar(B)×As(η) −→ Ar+s(η),

as defined in Definition 11.11 (with ξ = B × R), satisfies the following properties:

(ω ∧ τ) Z θ = ω Z (τ Z θ) (3)

1 Z θ = θ,

for all ω ∈ Ai(B), τ ∈ Aj(B) with i + j = r, θ ∈ As(ξ), and where 1 denotes the constant
function in C∞(B) with value 1.

Problem 11.4. Complete the partition of unity argument for Proposition 11.17.
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Problem 11.5. Show that the pairing

(−,−) : Ai(ξ)⊗Aj(ξ∗) Z−→ Ai+j(ξ ⊗ ξ∗) −→ Ai+j(B)

given by
(ω ⊗ s1, η ⊗ s∗2) = (ω ∧ η)⊗ 〈〈s1, s

∗
2〉〉,

where ω ∈ Ai(B), η ∈ Aj(B), s1 ∈ Γ(ξ), s∗2 ∈ Γ(ξ∗), is non-degenerate.

Problem 11.6. Let ξ is a complex vector bundle with connection matrix ω. Consider the
bundle ξ

∗
, which is the bundle whose fibre over b ∈ B consist of all conjugate-linear forms

over π−1(b).

(i) Show that the evaluation pairing 〈〈s, θ〉〉 is conjugate-linear in s.

(ii) Show that ω∗ = −ω>, where ω∗ is the connection matrix of ξ
∗

over U .

Problem 11.7. Let ξ is a complex vector bundle. Consider the conjugate bundle ξ, which
is obtained from ξ by redefining the vector space structure on each fibre π−1(b), with b ∈ B,
so that

(x+ iy)v = (x− iy)v,

for every v ∈ π−1(b). If ω is the connection matrix of ξ over U , prove that ω is the connection
matrix of ξ over U .

Problem 11.8. Let θX is the one-form given by

θX = iXg;

that is, (iXg)(Y ) = g(X, Y ) for all X, Y ∈ X(M). If LXg is the Lie derivative of the
symmetric (0, 2) tensor g, defined so that

(LXg)(Y, Z) = X(g(Y, Z))− g(LXY, Z)− g(Y, LXZ),

show that the Levi-Civita connection is defined implicitly by the formula

2g(∇XY, Z) = (LY g)(X,Z) + (dθY )(X,Z).

Hint . See Petersen [92], Chapter 2, Theorem 1.

Problem 11.9. Investigate the following sources, namely Madsen and Tornehave [80] (Lemma
18.2), Morita [87] (Proposition 5.28), and Milnor and Stasheff [83] (Appendix C), and prove
Theorem 11.27.

Problem 11.10. Complete the proof sketch of Theorem 11.29.

Hint . See Milnor and Stasheff [83], Appendix C, Lemma 6, Madsen and Tornehave [80],
Appendix B, or Morita [87], Theorem 5.26.
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Problem 11.11. Let X be an n × n matrix. Recall that si(X) = tr(X i). Prove Newton’s
formula for symmetric polynomial namely:

si(X)− σ1(X)si−1(X) + σ2(X)si−2(X) + · · ·+ (−1)i−1σi−1(X)s1(X) + (−1)iiσi(X) = 0,

with 1 ≤ i ≤ n.

See Madsen and Tornehave [80], Appendix B, or Morita [87], Exercise 5.7.

Problem 11.12. Prove Proposition 11.31.

Problem 11.13. Complete the proof details of Proposition 11.33.

Problem 11.14. (i) Show that Pf(A) is independent of the basis chosen.

(ii) If A is the block diagonal matrix D, a show that

ω(D) = −(a1e1 ∧ e2 + a2e3 ∧ e4 + · · ·+ ane2n−1 ∧ e2n)

and that
n∧
ω(D) = (−1)nn! a1 · · · an e1 ∧ e2 ∧ · · · ∧ e2n,

and so
Pf(D) = (−1)na1 · · · an.

Problem 11.15. Use Definition 11.25 to that Pf(A) is the unique polynomial with integer
coefficients such that Pf(A)2 = det(A) and Pf(diag(S, . . . , S)) = +1, where

S =

(
0 1
−1 0

)
.

Hint . See Milnor and Stasheff [83], Appendix C, Lemma 9.

Problem 11.16. Show that Pf(A) is explicitly calculated as

Pf(A) =
1

2nn!

∑
σ∈S2n

sgn(σ)
n∏
i=1

aσ(2i−1)σ(2i).

Problem 11.17. Prove Propositions 11.37 and 11.38.

Hint . See Madsen and Tornehave [80], Chapter 19 or Milnor and Stasheff [83], Appendix C.
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Chapter 12

Connections and Curvature in
Principal Bundles

In this very short chapter we explain, mostly without proofs, how to define the notion of
connection and curvature on a principal bundle ξ. Connections on a principal bundle differ in
flavor from connections on vector bundles as discussed in Chapter 11 because connections on
a vector bundle define the notion of covariant derivative (on sections), whereas connections
on a principal bundle reflect the idea of relating two fibres Eb0 and Eb1 using parallel transport,
in terms of the horizontal lift of a curve in the base manifold (where b0 and b1 are points in the
base manifold). So a connection in a principal bundle does not define a notion of covariant
derivative (however, it does if the principal bundle is a frame bundle associated with a vector
bundle). But as in the case of vector bundles, a connection is a way of measuring the twisting
of the fibres, which is technically achieved by the notion of curvature.

Since a vector bundle gives rise to a principal bundle, namely the corresponding frame
bundle (obtained by replacing the fibre Rn by the group GL(n,R), see Definition 10.18), it
is natural to wonder what is the relationship between connections on a vector bundle and
connections on the associated frame bundle. The anwser is that there is a bijection between
these two families of connections.

A connection on a principal bundle ξ with structure group G and base manifold B induces
a notion of curvature. Chern and Weil defined an algebra W (g) called the Weil algebra and
a homomorphism w from W (g) to the space of differential forms A∗(ξ) on ξ (here g is the Lie
algebra of G). This homomorphism depends on the choice of a connection on ξ. However,
one can define a subset I(G) of W (g) consisiting of basic forms , and then it is a remarkable
result of Chern and Weil that there is a homomorphism w : I(G)→ H•DR(B;R) (where B is
the base manifold of the principal bundle ξ) which is independent of the connection chosen
on ξ. This homomorphism assigns characteristic classes to the elements in I(G), and these
characteristic classes are de Rham cohomology classes (more specifically, if f ∈ Ik(G), then
w(f) ∈ H2k

DR(B;R)).

Our presentation relies heavily on Morita [87] and Kobayashi and Nomizu [71]. Exposi-

529
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tions of this material from the physics point of view can be found in Choquet–Bruhat and
DeWitt–Morette [27] (Chapter Vbis) and Nakahara [88] (Chapters 9-11). The point of view
of physics sheds some light on the rather obscure motivations behind this material and we
contend that it makes it even more beautiful. Some of it is actually used in control theory
and robotics.

The Chern–Weil theory is very nicely presented in Morita [87], Chapter 6, in particular
Section 6.3-6.6. The reader may finally come to appreciate the notion of a vector-valued
differential form.

12.1 Connections and Connection Forms in Principal

Bundles

The goal of this section is to define the notion of a connection on a principal bundle. It turns
out that it is technically more convenient to use the definition of a principal bundle in terms
of a free right action as in Proposition 10.21 so for the reader’s convenience we provide this
definition.

Definition 12.1. A principal G-bundle is a quadruple ξ = (E , π, E/G,G), where E be a
smooth manifold, G is Lie group, and · : E × G → E is a smooth right action of G on E
satisfying the following properties:

(1) The right action of G on E is free;

(2) The orbit space B = E/G is a smooth manifold under the quotient topology, and the
projection π : E → E/G is smooth;

(3) There is some open cover U = (Uα)α∈I of B = E/G and a family ψ = (ψα)α∈I of
diffeomorphisms called (local) trivializations

ψα : π−1(Uα)→ Uα ×G

such that

(a) (local triviality) the diagram

π−1(Uα)

π
$$

ψα // Uα ×G

pr1
{{

Uα

commutes.
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(b) Every map ψα : π−1(Uα)→ Uα×G is an equivariant diffeomorphism, which means
that

ψα(z · h) = ψα(z) · h

for all z ∈ π−1(Uα) and all h ∈ G, where the right action of G on Uα ×G is
(x, h1) · h = (x, h1h). Observe that if ψα(z) = (x, h1), then since ψα(z) · h =
(x, h1h), we have pr1(ψα(z) · h) = pr1(ψα(z)) = x = π(z).

Recall that the action · : E × G → E is free if it acts without fixed points, that is, for
every h ∈ G, if h 6= 1, then x · h 6= x for all x ∈ E .

By Conditions (a) and (b) and the definition of the right action of G on Uα ×G, for all
z ∈ π−1(Uα) and all h ∈ G, we have

π(z · h) = pr1(ψα(z · h)) = pr1(ψα(z) · h) = pr1(ψα(z)) = π(z),

so for any x ∈ B = E/G and any z ∈ Ex = π−1(x), we have z ·h ∈ Ex. In fact, for any z ∈ Ex,
it is easily shown that

Ex = {z · h | h ∈ G},

namely the orbits of the right action of G on E are the fibres Ex, with x ∈ B. Since the
action of G on E is free, the action of G on Ex is also free.

The restriction of ψα to Ex for any x ∈ Uα is a diffeomorphism from Ex onto {x} × G
given by

ψα(z) = (x, ψα,x(z)),

where ψα,x : Ex → G is a diffeomorphism between Ex and G.

For all α, β such that Uα ∩ Uβ 6= ∅, for every x ∈ Uα ∩ Uβ, we have a diffeomorphism

ψα,x ◦ ψ−1
β,x : G −→ G,

which yields the map gαβ : Uα ∩ Uβ → Diff(G) called a transition map given by

gαβ(x) = ψα,x ◦ ψ−1
β,x, x ∈ Uα ∩ Uβ.

Intuitively, the transition functions express how the fibre Ex twists as x moves in Uα ∩ Uβ.
From the definition above, the isomorphism ψα ◦ ψ−1

β : (Uα ∩ Uβ) × G → (Uα ∩ Uβ) × G is
given by

(ψα ◦ ψ−1
β )(x, h) = (x, gαβ(x)(h)), x ∈ Uα ∩ Uβ, h ∈ G.

A priori, the map gαβ(x) is a diffeomorphism of the Lie group G, but because the transition
maps ψα are equivariant, it is shown in Proposition 10.21 that gαβ(x) is the left translation
by gαβ(x)(1) ∈ G, that is,

gαβ(x)(h) = gαβ(x)(1)h, x ∈ Uα ∩ Uβ, h ∈ G.
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Since the group of left translations of G (the maps Lh : G → G given by Lh(h1) = hh1

(h, h1 ∈ G)) is isomorphic to G, we usually view the map gαβ(x) as the element gαβ(x)(1) of
G, and thus we view the transition function gαβ as a map gαβ : Uα ∩ Uβ → G such that

(ψα ◦ ψ−1
β )(x, h) = (x, gαβ(x)h), x ∈ Uα ∩ Uβ, h ∈ G.

Definition 12.2. Given a principal bundle ξ, for any fixed z ∈ E , we have the map σz : G→
E given by

σz(g) = z · g, g ∈ G.

From the discussion above, the map σz : G→ E is a diffeomorphism from G to the fibre Eπ(z)

and the derivative of this map defines a linear map

d(σz)e : g→ TzE .

The family of maps σz allows us to associate a vector field A∗ on TE to every A ∈ g defined
as follows:

A∗z = d(σz)e(A), z ∈ E , A ∈ g.

The vector field A∗ is called the fundamental vector field corresponding to A by Kobayashi
and Nomizu [71], Chapter I, Section 5.

Proposition 12.1. The following properties hold.

(1) For any A ∈ g, the vector field A∗ can also be defined as follows: for every z ∈ E,

A∗z =
d

dt
(z · exp(tA))

∣∣∣∣
t=0

.

In other words, the vector field A∗ generates the 1-parameter group of diffeomorphisms
t 7→ Rexp(tA).

(2) The map d(σz)e : g→ TEz is injective.

(3) For all A,B ∈ g, we have
[A,B]∗ = [A∗, B∗].

In other words, the map A 7→ A∗ is Lie algebra homomorphism.

Proof. (1) For any A ∈ g, consider the curve in G given by c(t) = exp(tA). Observe that
c(0) = e and c′(0) = A. Since

z · exp(tA) = σz(exp(tA)),

using the chain rule, we have

d

dt
(z · exp(tA))

∣∣∣∣
t=0

= (σz(exp(tA)))′(0) = (σz(c(t)))
′(0) = d(σz)c(0)(c

′(0)) = d(σz)e(A) = A∗z,
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as claimed.

(2) It suffices to prove that the kernel of d(σz)e is reduced to the zero vector. The proof
uses the chain rule in a tricky way as explained in Duistermaat and Kolk [40]; see the proof
of Theorem 1.11.4, Chapter I. If d(σz)e(A) = 0, then for all t0, s ∈ R we have

d

dt
(z · exp(tA))

∣∣∣∣
t=t0

=
d

ds
(z · exp((s+ t0)A))

∣∣∣∣
s=0

=
d

ds
((z · exp(sA)) · exp(t0A))

∣∣∣∣
s=0

= (Rexp(t0A)(σz(exp(sA))))′(0) = d(Rexp(t0A))z(d(σz)e(A)) = 0,

where Rg is the map Rg : E → E defined by

Rgz = z · g, z ∈ E , g ∈ G.

Since
d

dt
(z · exp(tA))

∣∣∣∣
t=t0

= 0

for all t0 ∈ R, the map t 7→ z · exp(tA) is constant, and since it has the value z for t = 0, we
have

z · exp(tA) = z for all t.

Since the action of G on E is free, we must have exp tA = e for all t, and by taking the
derivative at t = 0 we get A = 0.

Property (3) is proven in Kobayashi and Nomizu [71], Chapter I, Proposition 4.1.

Remark: It is also shown in Kobayashi and Nomizu that the map A 7→ A∗ is injective if
the action is effective; see [71], Chapter I, Proposition 4.1

The following property is the key to the definition of connections in terms of g-valued
differential forms.

Proposition 12.2. For every z ∈ E we have the following exact sequence:

0 // g
(dσz)e // TzE

dπz // Tπ(z)B // 0.

This means that d(σz)e is injective, dπz is surjective, and that Ker dπz = Im d(σz)e. In
particular, Ker dπz = Im d(σz)e is isomorphic to g.

Proof. We already know that d(σz)e is injective. For any x ∈ B = E/G, because Ex = {z ·h |
h ∈ G} for any z ∈ Ex, we have

π ◦ σz(h) = π(z · h) = x, h ∈ G,

a constant map, so by taking the derivative we obtain

dπz ◦ d(σz)e = 0.
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It follows that
Im d(σz)e ⊆ Ker dπz.

By taking derivatives, the local triviality diagram

π−1(Uα)

π
$$

ψα // Uα ×G

pr1
{{

Uα

implies that for any z ∈ π−1(Uα) we have the equation

dπz = d(pr1)ψα(z) ◦ d(ψα)z,

and if we write ψα(z) = (b, h) with b = π(z), we have isomorphisms

TzE ∼= T(b,h)(Uα ×G) ∼= TbB × ThG
ThG ∼= g

Ker dπz ∼= ThG ∼= g

Im dπz = TbB.

The last equation shows that dπz is surjective. Since d(σz)e is injective, dim g = dim Im d(σz)e,
and since dim Ker dπz = dim g and Im d(σz)e ⊆ Ker dπz we deduce that

Ker dπz = Im d(σz)e.

This completes the proof that we have an exact sequence.

If we write Vz = Ker dπz = Im d(σz)e, the tangent vectors in Vz ⊆ TzE are called vertical
vectors . The idea due to Ehresmann is to split each tangent space TzE into a direct sum

TzE = Vz ⊕Hz = Ker dπz ⊕Hz = Im d(σz)e ⊕Hz,

where the vectors in Hz are called horizontal vectors , and since G acts on E , we require that
G also acts nicely on the spaces Hz, namely

(dRg)zHz = Hz·g, z ∈ E , g ∈ G.

Of course we also require that Hz varies diffentiably in z. Such a choice of horizontal
subspaces is called a connection (or Ehresmann connection).

The exact sequence of Proposition 12.2 makes it possible to give an alternative definition
of a connection in terms of certain g-valued linear maps. The idea is to define the horizontal
subspaces as the kernels of certain linear maps.

Indeed, if we have a direct sum decomposition

TzE = Vz ⊕Hz = Ker dπz ⊕Hz = Im d(σz)e ⊕Hz,
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for any Z ∈ TzE , if we write Z = Zv+Zh with Zv ∈ Vz and Zh ∈ Hz, since d(σz)e is injective,
we can define a linear map ωz : TzE → g (a retraction) by

ωz(Z) = d(σz)
−1
e (Zv),

so that

ωz ◦ d(σz)e = idg

Kerωz = Hz.

Conversely, given a linear map ωz : TzE → g such that

ωz ◦ d(σz)e = idg,

we claim that
TzE = Im d(σz)e ⊕Kerωz = Ker dπz ⊕Hz.

First, observe that

ωz(Z − d(σz)e(ωz(Z))) = ωz(Z)− ωz(d(σz)e(ωz(Z))) = ωz(Z)− ωz(Z) = 0,

namely Z − d(σz)e(ωz(Z)) ∈ Kerωz. Since

Z = d(σz)e(ωz(Z)) + Z − d(σz)e(ωz(Z)),

we have
TzE = Im d(σz)e + Kerωz.

Second, if Y ∈ Im d(σz)e ∩ Kerωz, then ωz(Y ) = 0 and Y = d(σz)e(A) for some A ∈ g.
Since

ωz ◦ d(σz)e = idg,

we have
0 = ωz(Y ) = ωz(d(σz)e(A)) = A,

so A = 0, and thus Y = 0 since Y = d(σz)e(A).

Therefore the choice of a horizontal subspace Hz such that TzE = Ker dπz ⊕Hz is equiv-
alent to the choice of a linear map ωz : TzE → g such that

ωz ◦ d(σz)e = idg,

with Hz = Kerωz.

By Definition 12.2, observe that the condition

ωz ◦ d(σz)e = idg, z ∈ E ,

is equivalent to
ωz(A

∗) = A, A ∈ g, z ∈ E .
Also note that each vector A∗z is vertical and that the restriction of dπz to Hz is an isomor-
phism between Hz and Tπ(z)B.

The above discussion yields a definition of a connection in terms of g-valued one-forms.
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Definition 12.3. (Version I) Let ξ = (E , π, E/G,G) be a principal G-bundle and write
B = E/G. A connection form on ξ is a family of linear maps ωz : TzE → g satisfying the
following conditions:

(1) We have ωz(A
∗) = A for all A ∈ g and all z ∈ E , or equivalently

ωz ◦ d(σz)e = idg, z ∈ E .

(2) With Hz = Kerωz, we have

(dRg)zHz = Hz·g, z ∈ E , g ∈ G.

Furthermore, the map z 7→ ωz is smooth. In terms of Definition 4.20, ω = (ωz)z∈E ∈ A1(E ; g),
that is, ω is a smooth g-valued one-form on E .

As explained before, we have a direct sum decomposition of the tangent space TzE into
vertical vectors (in Ker dπz) and horizontal vectors (in Hz = Kerωz),

TzE = Ker dπz ⊕Hz = Im d(σz)e ⊕Hz.

It is often technically more convenient to restate Condition (2) directly in terms of ωz.

Proposition 12.3. Condition (2) of Definition 12.3 is equivalent to the condition

R∗gω = Ad(g−1)ω, g ∈ G,

or more explicitly,

ωz·g(d(Rg)z(Z)) = Ad(g−1)(ωz(Z)), z ∈ E , Z ∈ TzE .

A proof of Proposition 12.3 is given in Kobayashi and Nomizu [71]; see Chapter II,
Proposition 1.1. In view of Proposition 12.3 we have the following equivalent definition of a
connection form which appears to be used most often in the literature.

Definition 12.4. (Version II) Let ξ = (E , π, E/G,G) be a principal G-bundle and write
B = E/G. A connection form on ξ is a family of linear maps ωz : TzE → g satisfying the
following conditions:

(1) We have ωz(A
∗) = A for all A ∈ g and all z ∈ E , or equivalently

ωz ◦ d(σz)e = idg, z ∈ E .

(2)
R∗gω = Ad(g−1)ω, g ∈ G,

or more explicitly,

ωz·g(d(Rg)z(Z)) = Ad(g−1)(ωz(Z)), z ∈ E , Z ∈ TzE .
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Furthermore, the map z 7→ ωz is smooth. In terms of Definition 4.20, ω = (ωz)z∈E ∈ A1(E ; g),
that is, ω is a smooth g-valued one-form on E .

Example 12.1. Consider the trivial principal bundle E = B × G, with π : E → B the
projection onto B (in fact, π = pr1). A special connection form on E arises from the Maurer–
Cartan form on G, but here to conform to the customary notation, instead of denoting it
ωMC, we denote it by ω0, that is, we define the g-valued one-form ω0 ∈ A1(G; g) by

(ω0)g(X) = d(L−1
g )g, (X) g ∈ G, X ∈ TgG.

The form ω0 brings back a vector X ∈ TgG to g = TeG; see Definition 4.22. Then we define
the g-valued one-form ωE,MC on E by

ωE,MC = pr∗2 ω0,

where pr2 : B ×G→ G is the second projection. Thus, for every (b, g) ∈ B ×G,

(ωE,MC)(b,g) = d(Lg−1 ◦ pr2)(b,g).

It is easily verified that ωE,MC is a connection form on E . The connection form ωE,MC

is called the Maurer–Cartan connection or flat connection or canonical connection on E =
B ×G.

Using Example 12.1 and a partition of unity argument the following result can be shown.
See Morita [87], Chapter 6, Proposition 6.3.

Proposition 12.4. Every principal bundle ξ admits a connection form.

For every open subset Uα in the open cover of B we have the Maurer–Cartan connection
form on Uα ×G ' π−1(Uα), and we glue these connection forms using a partition of unity.

Interestingly the set of connection forms on a trivial principal bundle E = B × G is in
bijection with the set of g-valued one-forms in A1(B; g). Let i : B → E be the injection
i(b) = (b, e).

Proposition 12.5. Given a trivial principal bundle E = B × G, with π : B × G → B, for
any one-form ω ∈ A1(B; g), if ω̃ ∈ A1(E ; g) is given by

ω̃(b,g) = Ad(g−1) ◦ ωb ◦ dπ(b,g),

then the map
ω 7→ ω̃ + ωE,MC

is a bijection between the set of one-forms in A1(B; g) and the set of connection forms in
A1(E ; g).

It is easy to see that ω̃ is the unique form in A1(E ; g) such that i∗(ω̃) = ω and
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(1) ω̃z(Z) = 0 for all vertical Z ∈ TzE and all z ∈ E .

(2) R∗g ω̃ = Ad(g−1) ω̃ for all g ∈ G.

We leave it as an exercise to prove Proposition 12.5 using the above facts.

If ξ is a vector bundle with typical fibre V = Rn, for any open subset Uα in the open cover
of the base space B, recall from Section 11.3 that to every local trivialization ϕα : π−1(Uα)→
Uα ×Rn and any basis (v1, . . . , vn) in Rn, we associate the frame (s1, . . . , sn) over Uα, given
by

si(b) = ϕ−1
α (b, vi), b ∈ Uα. (∗)

Then for any connection ∇ on this vector bundle, each ∇si can be written as

∇si =
n∑
j=1

ωji ⊗ sj,

for some n × n matrix ω = (ωij) of one-forms ωij ∈ A1(Uα). This matrix ωα = (ωij)
defines an Mn(R)-valued one form in A1(Uα; g). If G = GL(n,R), then g(n,R) = Mn(R),
so locally on Uα, a connection ∇ on the trivial vector bundle ξ is equivalent to a one-form
ωα ∈ A1(Uα; g(n,R)).

Since the frame bundle associated with the trivial vector bundle Uα × Rn is the trivial
principal bundle Uα×GL(n,R), Proposition 12.5 and the preceding paragraph implies that
locally on Uα, there is a bijection between the space of connections on the trivial vector
bundle Uα × Rn and connection forms on the principal bundle Uα ×GL(n,R).

We can also define connection forms locally.

Definition 12.5. Let ξ = (E , π, E/G,G) be a principal G-bundle and write B = E/G. For
each α, given the local trivialization ψα : π−1(Uα)→ Uα ×G, let sα : Uα → E be the section
given by

sα(b) = ψ−1
α (b, e), b ∈ Uα.

For any connection form ω ∈ A1(E ; g), for every α, let ωα ∈ A1(Uα; g) be the one-form given
by

ωα = s∗αω

for all α.

For all α, β, recall that we view the transition function gαβ as a map gαβ : Uα ∩ Uβ → G
so that

ψα ◦ ψ−1
β (b, h) = (b, gαβ(b)h), b ∈ Uα ∩ Uβ, h ∈ G,

as explained after Definition 12.1. Also, ω0 is the Maurer–Cartan form on G.

The following result is proven in Kobayashi and Nomizu [71]; see Chapter II, Proposition
1.4.
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Proposition 12.6. Let ξ = (E , π, E/G,G) be a principal G-bundle and write B = E/G. For
any connection form ω ∈ A1(E ; g), the forms ωα satisfy the following conditions for all α, β:

ωβ(b) = Ad(g−1
αβ (b))(ωα(b)) + (g∗αβ ω0)(b), b ∈ Uα ∩ Uβ.

Conversely, for any family (ωα) of one forms ωα ∈ A1(Uα; g), if these one-forms satisfy the
above condition, then there is a unique connection form ω ∈ A1(E ; g) such that

ωα = s∗αω

for all α.

Definition 12.6. A family (ωα) of one forms ωα ∈ A1(Uα; g) satisfying the property of
Proposition 12.6 is called a family of local connection forms .

Remark: In physics (Yang–Mills theories) the one-forms ωα are called gauge potentials , and
the local trivialization maps ψα are called local gauges .

Proposition 12.6 and the fact that locally there is an equivalence between connections
on a trivial vector bundle and connection forms on the corresponding frame bundle can be
used to prove that for any vector bundle, there is an equivalence between vector bundle
connections and connection forms on the corresponding frame bundle.

As in the case of vector bundles, a connection on a principal bundle can be used to define
a notion of parallel transport. First we define the horizontal lift of a curve in the base space.

Definition 12.7. Let ξ = (E , π, E/G,G) be a principal G-bundle with base space B = E/G
and let ω be a connection form on ξ. For every piecewise smooth curve c : [a, b]→ B in the
base space B a curve c̃ : [a, b] → E is a horizontal lift of c if c(t) = π(c̃(t)) for all t ∈ [a, b]
and if every tangent vector (c̃)′(t) is a horizontal vector in Hc̃(t).

The following result is proven in Morita [87] (Chapter 6, Proposition 6.36 and Kobayashi
and Nomizu [71]; Chapter II, Section 3, Proposition 3.1..

Proposition 12.7. Let ξ = (E , π, E/G,G) be a principal G-bundle with base space B = E/G
and let ω be a connection form on ξ. For every piecewise smooth curve c : [a, b]→ B in the
base space B and every point z0 in the fibre Ec(a), there is a unique horizontal lift c̃ of c such
that c̃(a) = z0.

Proposition 12.7 allows the definition of the parallel transport along the curve c. This is
the map from the fibre Ec(a) to the fibre Ec(b) which sends any point z0 ∈ Ec(a) to the point
c̃(b) ∈ Ec(b).

The notion of parallel transport can be used to define holonomy groups but we will not
discuss this here and instead refer the reader to Morita [87], Chapter 6, Section 3, and
Kobayashi and Nomizu [71]; see Chapter II, Section 4.
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Given a principal bundle ξ = (E , π, E/G,G) with B = E/G and a representation ρ : G→
GL(m,R) the construction of Proposition 10.25 (the Borel construction) yields a vector
bundle ξ[Rm] = (E ×GRm, p, B,Rm, G), where G acts on the typical fibre Rm in terms of the
representation ρ. This is a generalization of the notion of vector bundle given in Definition
10.13 as explained just after Definition 10.14. In this more general situation the transition
functions of the vector bundle ξ[Rm] are linear maps in the subgroup ρ(G) ⊆ GL(m,R).
In Chapter II, Section 7, of Kobayashi and Nomizu [71], given a connection form in ξ, it
is expained how to define a notion of parallel transport in ξ[Rm], and then in Chapter III,
Section 1, to define the notion of covariant derivative ∇Xs of a section s of the vector bundle
ξ[Rm] in the direction X ∈ TxB, with x ∈ B. Then Kobayashi and Nomizu show that this
notion of covariant derivative satisfies the axioms of the second version of a connection on a
vector bundle given in Definition 11.1.

The above constructions are also presented in a more concrete way in Nakahara [88]
(Section 10.4) and in Choquet–Bruhat and DeWitt–Morette [27] (Chapter Vbis, Section 3).

We are back where we started in Chapter 11. Connections on a principal bundle are the
more general notion of connection, but for manifolds and vector bundles, it is preferable to
define a notion of connection that does not depend on the notion of parallel transport.

The next important concept is the curvature form induced by a connection form.

12.2 Curvature Form

Given a connection form ω ∈ A1(E ; g) on a principal bundle ξ, the exterior derivative dω is
a 2-form, dω ∈ A2(E ; g). If ξ is the trivial principal bundle E = B × G and if ω = ωE,MC is
the Maurer–Cartan form, then Proposition 4.32 implies that

dω = −1

2
[ω, ω].

However, in general, the above equation fails. The quantity

dω +
1

2
[ω, ω]

is 2-form in A2(E ; g) that quantifies this failure; it is the curvature form of ω.

Definition 12.8. Let ξ = (E , π, E/G,G) be a principal G-bundle and write B = E/G. For
any connection form ω ∈ A1(E ; g), the curvature form Ωω ∈ A2(E ; g) of ω, for notational
simplicity denoted by Ω, is defined by

Ωz(Y, Z) = dωz(Y, Z) +
1

2
[ωz(Y ), ωz(Z)], z ∈ E , Y, Z ∈ TzE ,

which is often abbreviated as the equation

dω = −1

2
[ω, ω] + Ω

and called the structure equation of E. Cartan.
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If we pick a basis X1, . . . , Xm of the Lie algebra g, then the connection form ω ∈ A1(E ; g)
can written as

ω =
m∑
i=1

ωiXi,

where the ωi are ordinary one-forms ωi ∈ A1(E), and the curvature form Ω ∈ A2(E ; g) can
written as

Ω =
m∑
i=1

ΩiXi,

where the Ωi are ordinary 2-forms Ωi ∈ A2(E).

Recall that the Lie brackets [Xi, Xj] are defined in terms of the basis X1, . . . , Xm in terms
of the structure constants ckij ∈ R by the equations

[Xi, Xj] =
m∑
k=1

ckijXk, 1 ≤ i, j, k ≤ m.

Then it is easy to see that the structure equation is equivalent to the system of m equations

dωi = −1

2

i∑
j,k=1

cijkωj ∧ ωk + Ωi, 1 ≤ i ≤ m;

compare Proposition 4.31.

The following theorem is proven in Morita [87], Chapter 6, Proposition 6.39, and Kobayashi
and Nomizu [71], Chapter II, Section 5 (in particular, Theorem 5.2 and Theorem 5.4).

Theorem 12.8. Let ξ = (E , π, E/G,G) be a principal G-bundle and write B = E/G. For any
connection form ω ∈ A1(E ; g), the curvature form Ω of ω satisfies the following properties:

(1) For all g ∈ G,

R∗g Ω = Ad(g−1) Ω.

(2) For every z ∈ E and all Y, Z ∈ TzE, we have

Ωz(Y, Z) = dωz(Yh, Zh),

where Yh, Zh ∈ Kerωz are the horizontal components of Y and Z.

(3) If Y, Z ∈ Kerωz are horizontal tangent vectors, then

Ωz(Y, Z) = −1

2
ωz([Y, Z]).
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(4) (Bianchi’s identity)
dΩ = [Ω, ω].

In particular,
dΩz(X, Y, Z) = 0

for all horizontal vectors X, Y, Z ∈ TzE.

If (ωα) is a family a local connection forms defining a connection form ω, then it can be
shown that the curvature form Ω of ω is defined by the family (Ωα) of 2-forms Ωα ∈ A2(Uα; g)
given by

Ωα = dωα +
1

2
[ωα, ωα].

Remark: In physics, the 2-form Ωα is called a field strength in the gauge ψα.

Definition 12.9. Let ξ = (E , π, E/G,G) be a principal G-bundle. A connection ω on ξ is
flat if the curvature form Ω of ω is identically zero, equivalently

dω +
1

2
[ω, ω] ≡ 0.

For example, the Maurer–Cartan connection on a trivial principal bundle E = B × G
is flat. There are various conditions equivalent to flatness; see Kobayashi and Nomizu [71],
Chapter II, Section 9, in particular Theorem 9.1 that we state below.

Proposition 12.9. Let ξ = (E , π, E/G,G) be a principal G-bundle and write B = E/G. A
connection ω on ξ is flat iff there is there an open cover (Uα) of B and some trivializing maps
ψα : π−1(Uα)→ Uα ×G such that the restriction of ω to π−1(Uα) is equal to ψ∗αωπ−1(Uα),MC.

The next step would be to define the Weil algebra and to discuss basic forms and the
Weil homomorphism, which allows the definition of the characteristic classes of a principal
bundle. We refer to Morita [87], Chapter 6, Sections 4-5, for a complete exposition.

When ξ is a principal bundle (G, π,G/H,H) where G is a Lie group and H is a closed
subgroup of G, it is interesting to know when the homogeneous space B = G/H is reductive,
which means that there is a subspace m of g (where m is usually not a Lie subalgebra) such
that

g = h⊕m

Adh(m) = m, h ∈ H.

See Gallier and Quaintance [50], Chapter 23, Definition 23.8. Theorem 11.1 from Kobayashi
and Nomizu [71] (Chapter II) gives an interesting criterion for (G, π,G/H,H) to be reductive
in terms of connection forms.

Proposition 12.10. Let G be a Lie group, H a closed subgroup of G, and consider the
principal bundle (G, π,G/H,H).
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(1) If the homogeneous space G/H is reductive, then the h-component of the Maurer–
Cartan form ω0 on G with respect to the direct sum h ⊕ m defines a connection form
on (G, π,G/H,H) which is invariant by the operations Lg on G/H, with Lg(g1H) =
(gg1)H (g, g1 ∈ G).

(2) Conversely, if there is a connection form ω on (G, π,G/H,H) and if ω is invariant by
the operations Lg, then G/H is reductive.

(3) The curvature form Ω associated with a connection form invariant by the operations
Lg is given by

Ω(Y, Z) = −1

2
[Y, Z]h,

where Y and Z are left-invariant vector fields on G with values in m and [Y, Z]h is the
h-component of [Y, Z], which takes values in g.

More results along this vein are discussed in Kobayashi and Nomizu [71] (Chapter II,
Section 11).
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Chapter 13

Clifford Algebras, Clifford Groups,
and the Groups Pin(n) and Spin(n)

13.1 Introduction: Rotations As Group Actions

The main goal of this chapter is to explain how rotations in Rn are induced by the action
of a certain group Spin(n) on Rn, in a way that generalizes the action of the unit complex
numbers U(1) on R2, and the action of the unit quaternions SU(2) on R3 (i.e., the action
is defined in terms of multiplication in a larger algebra containing both the group Spin(n)
and Rn). The group Spin(n), called a spinor group, is defined as a certain subgroup of units
of an algebra Cln, the Clifford algebra associated with Rn. Furthermore, for n ≥ 3, we are
lucky, because the group Spin(n) is topologically simpler than the group SO(n). Indeed, for
n ≥ 3, the group Spin(n) is simply connected (a fact that it not so easy to prove without
some machinery), whereas SO(n) is not simply connected. Intuitively speaking, SO(n) is
more twisted than Spin(n). In fact, we will see that Spin(n) is a double cover of SO(n).

Since the spinor groups are certain well chosen subgroups of units of Clifford algebras, it is
necessary to investigate Clifford algebras to get a firm understanding of spinor groups. This
chapter provides a tutorial on Clifford algebra and the groups Spin and Pin, including a
study of the structure of the Clifford algebra Clp,q associated with a nondegenerate symmetric
bilinear form of signature (p, q) and culminating in the beautiful “8-periodicity theorem” of
Élie Cartan and Raoul Bott (with proofs). We also explain when Spin(p, q) is a double-
cover of SO(p, q). The reader should be warned that a certain amount of algebraic (and
topological) background is expected. This being said, perseverant readers will be rewarded
by being exposed to some beautiful and nontrivial concepts and results, including Élie Cartan
and Raoul Bott “8-periodicity theorem.”

Going back to rotations as transformations induced by group actions, recall that if V is
a vector space, a linear action (on the left) of a group G on V is a map α : G × V → V
satisfying the following conditions, where, for simplicity of notation, we denote α(g, v) by
g · v:

545
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(1) g · (h · v) = (gh) · v, for all g, h ∈ G and v ∈ V ;

(2) 1 · v = v, for all v ∈ V , where 1 is the identity of the group G;

(3) The map v 7→ g · v is a linear isomorphism of V for every g ∈ G.

For example, the (multiplicative) group U(1) of unit complex numbers acts on R2 (by
identifying R2 and C) via complex multiplication: For every z = a + ib (with a2 + b2 = 1),
for every (x, y) ∈ R2 (viewing (x, y) as the complex number x+ iy),

z · (x, y) = (ax− by, ay + bx).

Now every unit complex number is of the form cos θ + i sin θ, and thus the above action of
z = cos θ+ i sin θ on R2 corresponds to the rotation of angle θ around the origin. In the case
n = 2, the groups U(1) and SO(2) are isomorphic, but this is an exception.

To represent rotations in R3 and R4, we need the quaternions. For our purposes, it is
convenient to define the quaternions as certain 2× 2 complex matrices. Let 1, i, j,k be the
matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,

and let H be the set of all matrices of the form

X = a1 + bi + cj + dk, a, b, c, d ∈ R.

Thus, every matrix in H is of the form

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R.

The quaternions 1, i, j,k satisfy the famous identities discovered by Hamilton:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

As a consequence, it can be verified that H is a skew field (a noncommutative field) called
the quaternions . It is also a real vector space of dimension 4 with basis (1, i, j,k); thus as a
vector space, H is isomorphic to R4. The unit quaternions are the quaternions such that

det(X) = a2 + b2 + c2 + d2 = 1.

Given any quaternion X = a1 + bi + cj + dk, the conjugate X of X is given by

X = a1− bi− cj− dk.
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It is easy to check that the matrices associated with the unit quaternions are exactly the
matrices in SU(2). Thus, we call SU(2) the group of unit quaternions.

Now we can define an action of the group of unit quaternions SU(2) on R3. For this, we
use the fact that R3 can be identified with the pure quaternions in H, namely, the quaternions
of the form x1i + x2j + x3k, where (x1, x2, x3) ∈ R3. Then we define the action of SU(2)
over R3 by

Z ·X = ZXZ−1 = ZXZ,

where Z ∈ SU(2) and X is any pure quaternion. Now it turns out that the map ρZ (where
ρZ(X) = ZXZ) is indeed a rotation, and that the map ρ : Z 7→ ρZ is a surjective homomor-
phism ρ : SU(2)→ SO(3) whose kernel is {−1,1}, where 1 denotes the multiplicative unit
quaternion. (For details, see Gallier [48], Chapter 8).

We can also define an action of the group SU(2)×SU(2) over R4, by identifying R4 with
the quaternions. In this case,

(Y, Z) ·X = Y XZ,

where (Y, Z) ∈ SU(2)×SU(2) and X ∈ H is any quaternion. Then the map ρY,Z is a rotation

(where ρY,Z(X) = Y XZ), and the map ρ : (Y, Z) 7→ ρY,Z is a surjective homomorphism
ρ : SU(2)×SU(2)→ SO(4) whose kernel is {(1,1), (−1,−1)}. (For details, see Gallier [48],
Chapter 8).

Thus, we observe that for n = 2, 3, 4, the rotations in SO(n) can be realized via the
linear action of some group (the case n = 1 is trivial, since SO(1) = {1,−1}). It is also the
case that the action of each group can be somehow be described in terms of multiplication in
some larger algebra “containing” the original vector space Rn (C for n = 2, H for n = 3, 4).
However, these groups appear to have been discovered in an ad hoc fashion, and there does
not appear to be any universal way to define the action of these groups on Rn. It would
certainly be nice if the action was always of the form

Z ·X = ZXZ−1(= ZXZ).

A systematic way of constructing groups realizing rotations in terms of linear action, using
a uniform notion of action, does exist. Such groups are the spin groups.

We just observed that the rotations in SO(3) can be realized by the linear action of the
group of unit quaternions SU(2) on R3, and how the rotations in SO(4) can be realized by
the linear action of the group SU(2)× SU(2) on R4.

The main reasons why the rotations in SO(3) can be represented by unit quaternions are
the following:

(1) For every nonzero vector u ∈ R3, the reflection su about the hyperplane perpendicular
to u is represented by the map

v 7→ −uvu−1,

where u and v are viewed as pure quaternions in H (i.e., if u = (u1, u2, u2), then view
u as u1i + u2j + u3k, and similarly for v).
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(2) The group SO(3) is generated by the reflections.

As one can imagine, a successful generalization of the quaternions, i.e., the discovery
of a group G inducing the rotations in SO(n) via a linear action, depends on the ability
to generalize Properties (1) and (2) above. Fortunately, it is true that the group SO(n) is
generated by the hyperplane reflections. In fact, this is also true for the orthogonal group
O(n), and more generally for the group of isometries O(Φ) of any nondegenerate quadratic
form Φ, by the Cartan-Dieudonné theorem (for instance, see Bourbaki [14], or Gallier [48],
Chapter 7, Theorem 7.2.1).

In order to generalize (1), we need to understand how the group G acts on Rn. The
case n = 3 is special, because the underlying space R3 on which the rotations act can be
embedded as the pure quaternions in H. The case n = 4 is also special, because R4 is the
underlying space of H. The generalization to n ≥ 5 requires more machinery, namely, the
notions of Clifford groups and Clifford algebras.

As we will see, for every n ≥ 2, there is a compact, connected (and simply connected when
n ≥ 3) group Spin(n), the “spinor group,” and a surjective homomorphism ρ : Spin(n) →
SO(n) whose kernel is {−1,1}, where 1 denotes the multiplicative unit of Spin(n). This
time, Spin(n) acts directly on Rn, because Spin(n) is a certain subgroup of the group of
units of the Clifford algebra Cln, and Rn is naturally a subspace of Cln.

The group of unit quaternions SU(2) turns out to be isomorphic to the spinor group
Spin(3). Because Spin(3) acts directly on R3, the representation of rotations in SO(3)
by elements of Spin(3) may be viewed as more natural than the representation by unit
quaternions. The group SU(2) × SU(2) turns out to be isomorphic to the spinor group
Spin(4), but this isomorphism is less obvious.

In summary, we are going to define a group Spin(n) representing the rotations in SO(n),
for any n ≥ 1, in the sense that there is a linear action of Spin(n) on Rn which induces a
surjective homomorphism ρ : Spin(n) → SO(n) whose kernel is {−1,1}. Furthermore, the
action of Spin(n) on Rn is given in terms of multiplication in an algebra Cln containing
Spin(n), and in which Rn is also embedded.

It turns out that as a bonus, for n ≥ 3, the group Spin(n) is topologically simpler than
SO(n), since Spin(n) is simply connected, but SO(n) is not. By being astute, we can also
construct a group Pin(n) and a linear action of Pin(n) on Rn that induces a surjective
homomorphism ρ : Pin(n) → O(n) whose kernel is {−1,1}. The difficulty here is the
presence of the negative sign in (1). We will see how Atiyah, Bott and Shapiro circumvent
this problem by using a “twisted adjoint action,” as opposed to the usual adjoint action
(where v 7→ uvu−1).

Let us now outline in more detail the contents of this chapter. The first step for gener-
alizing the quaternions is to define the notion of a Clifford algebra. Let K be any field of
characteristic different from 2. Let V be a finite-dimensional vector space over a field K of
characteristic 6= 2, let ϕ : V × V → K be a possibly degenerate symmetric bilinear form,
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and let Φ(v) = ϕ(v, v) be the corresponding quadratic form. Roughly speaking, a Clifford
algebra associated with V and Φ is a K-algebra Cl(V,Φ) satisfying the condition

v2 = v · v = Φ(v) · 1 for all v ∈ V ,

where 1 is the multiplicative unit of the algebra. In all rigor, V is not contained in Cl(V,Φ)
but there is an injection of V into Cl(V,Φ).

The algebra Cl(V,Φ) is the quotient T (V )/A of the tensor algebra T (V ) over V modulo
the ideal A of T (V ) generated by all elements of the form v ⊗ v − Φ(v) · 1, where v ∈ V .

If V is finite dimensional and if (e1, . . . , en) is a basis of V , then Cl(V,Φ) has a basis
consisting of the 2n − 1 products

ei1ei2 · · · eik , 1 ≤ i1 < i2 < . . . < ik ≤ n,

and 1. Thus Cl(V,Φ), also denoted by Cl(Φ), has dimension 2n. If (e1, . . . , en) is an orthog-
onal basis of V with respect to Φ, then we can view Cl(Φ) as the algebra presented by the
generators (e1, . . . , en) and the relations

e2
j = Φ(ej) · 1, 1 ≤ j ≤ n, and

ejek = −ekej, 1 ≤ j, k ≤ n, j 6= k.

If V has finite dimension n and (e1, . . . , en) is a basis of V , we can define two maps t and
α as follows. The map t is defined on basis elements by

t(ei) = ei

t(ei1ei2 · · · eik) = eikeik−1
· · · ei1 ,

where 1 ≤ i1 < i2 · · · < ik ≤ n, and of course, t(1) = 1. The map α is defined on basis
elements by

α(ei) = −ei
α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik

where 1 ≤ i1 < i2 < · · · < ik ≤ n, and of course, α(1) = 1. The even-graded elements (the
elements of Cl0(Φ)) are those generated by 1 and the basis elements consisting of an even
number of factors ei1ei2 · · · ei2k , and the odd-graded elements (the elements of Cl1(Φ)) are
those generated by the basis elements consisting of an odd number of factors ei1ei2 · · · ei2k+1

.

The second step is to define the Clifford group, which is a subgroup of the group Cl(Φ)∗

of units of Cl(Φ).

The Clifford group of Φ is the group

Γ(Φ) = {x ∈ Cl(Φ)∗ | α(x)vx−1 ∈ V for all v ∈ V }.
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For any x ∈ Γ(Φ), let ρx : V → V be the map defined by

v 7→ α(x)vx−1, v ∈ V.

The map ρ : Γ(Φ)→ GL(V ) given by x 7→ ρx is a linear action called the twisted adjoint rep-
resentation. It was introduced by Atiyah, Bott and Shapiro [6] and has technical advantages
over the earlier adjoint representation ρ0 given by

v 7→ xvx−1.

The group Γ+(Φ), called the special Clifford group, is defined by

Γ+(Φ) = Γ(Φ) ∩ Cl0(Φ).

The key property of the Clifford groups is that if the bilinear form ϕ is nondegenerate,
then the map ρ : Γ(Φ) → GL(V ) is actually a surjection ρ : Γ(Φ) → O(Φ) onto the orthog-
onal group O(Φ) associated with the quadratic form Φ, and the map ρ : Γ+(Φ)→ SO(Φ) is
a surjection onto the special orthogonal group SO(Φ) associated with the quadratic form Φ.
In both cases, the kernel of ρ is K∗ · 1.

In order to cut down on the size of the kernel of ρ, we need to define groups smaller than
Γ(Φ) and Γ+(Φ). To do so, we introduce a notion of norm on Cl(V,Φ). If ϕ is nondegenerate,
then the restriction of the norm N to Γ(Φ) is a map N : Γ(Φ)→ K∗ · 1.

We can now define the groups Pin and Spin as follows.

Assume ϕ is a nondegenerate bilinear map on V . We define the pinor group Pin(Φ) as
the group

Pin(Φ) = {x ∈ Γ(Φ) | N(x) = ±1},

and the spinor group Spin(Φ) as Pin(Φ) ∩ Γ+(Φ).

If the field K is not R or C, it is not obvious that the restriction of ρ to Pin(Φ) is
surjective onto O(Φ), and that the restriction of ρ to Spin(Φ) is surjective onto SO(Φ).
These maps are surjective if K = R and K = C, but in general it is not surjective. In all
cases the kernel of ρ is equal to {−1,1}. When Φ(x1, . . . , xn) = −(x2

1 + · · ·+ x2
n), the group

Spin(Φ), denoted Spin(n), is exactly the generalization of the unit quaternions (and when
n = 3, Spin(n) ∼= SU(2), the unit quaternions).

Some preliminaries on algebras and tensor algebras are reviewed in Section 13.2.

In Section 13.3, we define Clifford algebras over the field K = R. The Clifford groups
(over K = R) are defined in Section 13.4. In the second half of this section we restrict our
attention to the real quadratic form Φ(x1, . . . , xn) = −(x2

1 + · · · + x2
n). The corresponding

Clifford algebras are denoted Cln and the corresponding Clifford groups as Γn.

In Section 13.5, we define the groups Pin(n) and Spin(n) associated with the real
quadratic form Φ(x1, . . . , xn) = −(x2

1 + · · ·+x2
n). We prove that the maps ρ : Pin(n)→ O(n)
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and ρ : Spin(n) → SO(n) are surjective with kernel {−1,1}. We determine the groups
Spin(n) for n = 2, 3, 4.

Section 13.6 is devoted to the Spin and Pin groups associated with the real nondegenerate
quadratic form

Φ(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p − (x2
p+1 + · · ·+ x2

p+q).

We obtain Clifford algebras Clp,q, Clifford groups Γp,q, and groups Pin(p, q) and Spin(p, q).
We show that the maps ρ : Pin(p, q)→ O(p, q) and ρ : Spin(p, q)→ SO(p, q) are surjective
with kernel {−1,1}.

In Section 13.7 we show that the Lie groups Pin(p, q) and Spin(p, q) are double covers
of O(p, q) and SO(p, q).

In Section 13.8 we prove an amazing result due to Élie Cartan and Raoul Bott, namely
the 8-periodicity of the Clifford algebras Clp,q. This result says that: for all n ≥ 0, we have
the following isomorphisms:

Cl0,n+8
∼= Cl0,n ⊗ Cl0,8

Cln+8,0
∼= Cln,0 ⊗ Cl8,0.

Furthermore,
Cl0,8 = Cl8,0 = R(16),

the real algebra of 16× 16 matrices.

Section 13.9 is devoted to the complex Clifford algebras Cl(n,C). In this case, we have
a 2-periodicity,

Cl(n+ 2,C) ∼= Cl(n,C)⊗C Cl(2,C),

with Cl(2,C) = C(2), the complex algebra of 2× 2 matrices.

Finally, in the last section, Section 13.10, we outline the theory of Clifford groups and of
the Pin and Spin groups over any field K of characteristic 6= 2.

Our presentation is heavily influenced by Bröcker and tom Dieck [19] (Chapter 1, Section
6), where most details can be found. This chapter is almost entirely taken from the first 11
pages of the beautiful and seminal paper by Atiyah, Bott and Shapiro [6], Clifford Modules,
and we highly recommend it. Another excellent (but concise) exposition can be found in
Kirillov [68]. A very thorough exposition can be found in two places:

1. Lawson and Michelsohn [76], where the material on Pin(p, q) and Spin(p, q) can be
found in Chapter I.

2. Lounesto’s excellent book [79].

One may also want to consult Baker [9], Curtis [28], Porteous [93], Fulton and Harris (Lecture
20) [47], Choquet-Bruhat [26], Bourbaki [14], and Chevalley [25], a classic. The original
source is Elie Cartan’s book (1937) whose translation in English appears in [20].
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13.2 Preliminaries

We begin by recalling what is an algebra over a field. Let K denote any (commutative) field,
although for our purposes we may assume that K = R (and occasionally, K = C). Since
we will only be dealing with associative algebras with a multiplicative unit, we only define
algebras of this kind.

Definition 13.1. Given a field K, a K-algebra is a K-vector space A together with a bilinear
operation ? : A× A→ A, called multiplication, which makes A into a ring with unity 1 (or
1A, when we want to be very precise). This means that ? is associative and that there is
a multiplicative identity element 1 so that 1 ? a = a ? 1 = a, for all a ∈ A. Given two
K-algebras A and B, a K-algebra homomorphism h : A → B is a linear map that is also a
ring homomorphism, with h(1A) = 1B.

For example, the ring Mn(K) of all n × n matrices over a field K is a K-algebra with
multiplicative identity element 1 = In.

There is an obvious notion of ideal of a K-algebra:

Definition 13.2. An ideal A ⊆ A is a linear subspace of a K-algebra A that is also a
two-sided ideal with respect to multiplication in A.

If the field K is understood, we usually simply say an algebra instead of a K-algebra.

We will also need tensor products. A rather detailed exposition of tensor products is given
in Chapter 2 and the reader may want to review Section 2.2. For the reader’s convenience,
we recall the definition of the tensor product of vector spaces. The basic idea is that tensor
products allow us to view multilinear maps as linear maps. The maps become simpler, but
the spaces (product spaces) become more complicated (tensor products). For more details,
see Section 2.2 or Atiyah and Macdonald [7].

Definition 13.3. Given two K-vector spaces E and F , a tensor product of E and F is a
pair (E⊗F, ⊗), where E⊗F is a K-vector space and ⊗ : E×F → E⊗F is a bilinear map,
so that for every K-vector space G and every bilinear map f : E×F → G, there is a unique
linear map f⊗ : E ⊗ F → G with

f(u, v) = f⊗(u⊗ v) for all u ∈ E and all v ∈ V ,

as in the diagram below.

E × F ⊗ //

f
%%

E ⊗ F
f⊗
��
G

The vector space E ⊗ F is defined up to isomorphism. The vectors u⊗ v, where u ∈ E
and v ∈ F , generate E ⊗ F .
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Remark: We should really denote the tensor product of E and F by E ⊗K F , since it
depends on the field K. Since we usually deal with a fixed field K, we use the simpler
notation E ⊗ F .

As shown in Section 2.4, we have natural isomorphisms

(E ⊗ F )⊗G ∼= E ⊗ (F ⊗G) and E ⊗ F ∼= F ⊗ E.

Given two linear maps f : E → F and g : E ′ → F ′, we have a unique bilinear map
f × g : E × E ′ → F × F ′ so that

(f × g)(a, a′) = (f(a), g(a′)) for all a ∈ E and all a′ ∈ E ′.

Thus, we have the bilinear map ⊗ ◦ (f × g) : E × E ′ → F ⊗ F ′, and so, there is a unique
linear map f ⊗ g : E ⊗ E ′ → F ⊗ F ′ so that

(f ⊗ g)(a⊗ a′) = f(a)⊗ g(a′) for all a ∈ E and all a′ ∈ E ′.

Let us now assume that E and F are K-algebras. We want to make E ⊗ F into a K-
algebra. Since the multiplication operations mE : E × E → E and mF : F × F → F are
bilinear, we get linear maps m′E : E⊗E → E and m′F : F ⊗F → F , and thus the linear map

m′E ⊗m′F : (E ⊗ E)⊗ (F ⊗ F )→ E ⊗ F.

Using the isomorphism τ : (E ⊗ E)⊗ (F ⊗ F )→ (E ⊗ F )⊗ (E ⊗ F ), we get a linear map

mE⊗F : (E ⊗ F )⊗ (E ⊗ F )→ E ⊗ F,

which defines a multiplication m on E ⊗ F (namely, m(α, β) = mE⊗F (α ⊗ β) for all α, β ∈
E ⊗ F ). It is easily checked that E ⊗ F is indeed a K-algebra under the multiplication m.
Using the simpler notation · for m, we have

(a⊗ a′) · (b⊗ b′) = (ab)⊗ (a′b′) (∗)

for all a, b ∈ E and all a′, b′ ∈ F .

Given any vector space V over a field K, there is a special K-algebra T (V ) together
with a linear map i : V → T (V ), with the following universal mapping property: Given any
K-algebra A, for any linear map f : V → A, there is a unique K-algebra homomorphism
f : T (V )→ A so that

f = f ◦ i,

as in the diagram below.

V
i //

f ""

T (V )

f
��
A
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The algebra T (V ) is the tensor algebra of V ; see Section 2.6. The algebra T (V ) may be
constructed as the direct sum

T (V ) =
⊕
i≥0

V ⊗i,

where V 0 = K, and V ⊗i is the i-fold tensor product of V with itself. For every i ≥ 0, there
is a natural injection ιn : V ⊗n → T (V ), and in particular, an injection ι0 : K → T (V ). The
multiplicative unit 1 of T (V ) is the image ι0(1) in T (V ) of the unit 1 of the field K. Since
every v ∈ T (V ) can be expressed as a finite sum

v = v1 + · · ·+ vk,

where vi ∈ V ⊗ni and the ni are natural numbers with ni 6= nj if i 6= j, to define multiplication
in T (V ), using bilinearity, it is enough to define the multiplication V ⊗m×V ⊗n −→ V ⊗(m+n).
Of course, this is defined by

(v1 ⊗ · · · ⊗ vm) · (w1 ⊗ · · · ⊗ wn) = v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn.

(This has to be made rigorous by using isomorphisms involving the associativity of tensor
products; for details, see see Jacobson [65]) The algebra T (V ) is an example of a graded
algebra, where the homogeneous elements of rank n are the elements in V ⊗n.

Remark: It is important to note that multiplication in T (V ) is not commutative. Also,
in all rigor, the unit 1 of T (V ) is not equal to 1, the unit of the field K. The field K is
embedded in T (V ) using the mapping λ 7→ λ1. More generally, in view of the injections
ιn : V ⊗n → T (V ), we identify elements of V ⊗n with their images in T (V ).

Most algebras of interest arise as well-chosen quotients of the tensor algebra T (V ). This
is true for the exterior algebra

∧• V (also called Grassmann algebra), where we take the
quotient of T (V ) modulo the ideal generated by all elements of the form v⊗ v, where v ∈ V ,
see Section 3.4.

From now on, we assume that K is a field of characteristic different from 2. Given a
symmetric bilinear form ϕ : V × V → K, recall that the quadratic form Φ associated with
ϕ is given by Φ(v) = ϕ(v, v) for all v ∈ V , and that ϕ can be recovered from Φ by the
polarization identity

ϕ(u, v) =
1

2
(Φ(u+ v)− Φ(u)− Φ(v)).

The symmetric bilinear form ϕ is nondegenerate iff for every u ∈ V , if ϕ(u, v) = 0 for all
v ∈ V , then u = 0.

Definition 13.4. Let (V, ϕ) be a vector space equipped with a nondegenerate symmetric
bilinear form ϕ. The the set of linear maps f : V → V such that

ϕ(f(u), f(v)) = ϕ(u, v) for all u, v ∈ V

forms a group denoted O(V,Φ) (or O(V, ϕ)) which is called the group of isometries or
orthogonal group of (V, ϕ).
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The condition

ϕ(f(u), f(v)) = ϕ(u, v) for all u, v ∈ V

is equivalent to the condition

Φ(f(v)) = Φ(v) for all v ∈ V .

Definition 13.5. The subgroup of O(V,Φ) denoted SO(V,Φ) (or SO(V, ϕ)) is defined by

SO(V,Φ) = {f ∈ O(V,Φ) | det(f) = 1}

and is called the special orthogonal group or group of rotations of (V, ϕ).

We often abbreviate O(V,Φ) as O(Φ) and SO(V,Φ) as SO(Φ).

Definition 13.6. If K = R and Φn is the Euclidean quadratic form Φn(x1, . . . , xn) =
x2

1 + · · ·+x2
n, we write O(n,R) or even O(n) for O(Rn,Φn) and SO(n,R) or even SO(n) for

SO(Rn,Φn). Similarly when K = C and Φn(x1, . . . , xn) = x2
1 + · · · + x2

n, we write O(n,C)
for O(Cn,Φn) and SO(n,C) for SO(Cn,Φn).

If K = R and if Φp,q(x1, . . . , xp+q) = x2
1 + · · · + x2

p − (x2
p+1 + · · · + x2

p+q), with n = p + q
we write O(p, q) for O(Rn,Φp,q) and SO(p, q) for SO(Rn,Φp,q).

Observe that Φn,0 = Φn. It is not hard to show that O(p, q) and O(q, p) are isomorphic,
and similarly SO(p, q) and SO(q, p) are isomorphic. In the special cases where p = 0 or
q = 0, we have

Φ0,n(x1, . . . , xn) = −(x2
1 + · · ·+ x2

n) = −Φn(x1, . . . , xn) = −Φn,0(x1, . . . , xn),

so for any linear map f we have Φ0,n(f(x1, . . . , xn)) = Φ0,n(x1, . . . , xn) iff Φn(f(x1, . . . , xn)) =
Φn(x1, . . . , xn), which shows that O(0, n) = O(n, 0) = O(n) and SO(0, n) = SO(0, n) =
SO(n).

13.3 Clifford Algebras

A Clifford algebra may be viewed as a refinement of the exterior algebra, in which we take
the quotient of T (V ) modulo the ideal generated by all elements of the form v⊗ v−Φ(v) ·1,
where Φ is the quadratic form associated with a symmetric bilinear form ϕ : V × V → K,
and · : K × T (V ) → T (V ) denotes the scalar product of the algebra T (V ). For simplicity,
let us assume that we are now dealing with real algebras.

Definition 13.7. Let V be a real finite-dimensional vector space together with a symmetric
bilinear form ϕ : V × V → R and associated quadratic form Φ(v) = ϕ(v, v). A Clifford
algebra associated with V and Φ is a real algebra Cl(V,Φ) together with a linear map iΦ : V →
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Cl(V,Φ) satisfying the condition (iΦ(v))2 = Φ(v) · 1 for all v ∈ V , and so that for every real
algebra A and every linear map f : V → A with

(f(v))2 = Φ(v) · 1A for all v ∈ V ,

there is a unique algebra homomorphism f : Cl(V,Φ)→ A so that

f = f ◦ iΦ,

as in the diagram below.

V
iΦ//

f $$

Cl(V,Φ)

f
��
A

We use the notation λ ·u for the product of a scalar λ ∈ R and of an element u in the algebra
Cl(V,Φ), and juxtaposition uv for the multiplication of two elements u and v in the algebra
Cl(V,Φ).

By a familiar argument, any two Clifford algebras associated with V and Φ are isomorphic.
We often denote iΦ by i.

To show the existence of Cl(V,Φ), observe that T (V )/A does the job, where A is the
ideal of T (V ) generated by all elements of the form v⊗ v−Φ(v) · 1, where v ∈ V . The map
iΦ : V → Cl(V,Φ) is the composition

V
ι1−→ T (V )

π−→ T (V )/A,

where π is the natural quotient map. We often denote the Clifford algebra Cl(V,Φ) simply
by Cl(Φ).

Remark: Observe that Definition 13.7 does not assert that iΦ is injective or that there is
an injection of R into Cl(V,Φ), but we will prove later that both facts are true when V
is finite-dimensional. Also, as in the case of the tensor algebra, the unit 1 of the algebra
Cl(V,Φ) and the unit 1 of the field R are not equal.

Since
Φ(u+ v)− Φ(u)− Φ(v) = 2ϕ(u, v)

and
(i(u+ v))2 = (i(u))2 + (i(v))2 + i(u)i(v) + i(v)i(u),

using the fact that
i(u)2 = Φ(u) · 1,

we get
i(u)i(v) + i(v)i(u) = 2ϕ(u, v) · 1. (∗)
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As a consequence, if (u1, . . . , un) is an orthogonal basis w.r.t. ϕ (which means that
ϕ(uj, uk) = 0 for all j 6= k), we have

i(uj)i(uk) + i(uk)i(uj) = 0 for all j 6= k.

Remark: Certain authors drop the unit 1 of the Clifford algebra Cl(V,Φ) when writing the
identities

i(u)2 = Φ(u) · 1

and
2ϕ(u, v) · 1 = i(u)i(v) + i(v)i(u),

where the second identity is often written as

ϕ(u, v) =
1

2
(i(u)i(v) + i(v)i(u)).

This is very confusing and technically wrong, because we only have an injection of R into
Cl(V,Φ), but R is not a subset of Cl(V,Φ).

� We warn the readers that Lawson and Michelsohn [76] adopt the opposite of our sign
convention in defining Clifford algebras, i.e., they use the condition

(f(v))2 = −Φ(v) · 1 for all v ∈ V .

The most confusing consequence of this is that their Cl(p, q) is our Cl(q, p).

Observe that when Φ ≡ 0 is the quadratic form identically zero everywhere, then the
Clifford algebra Cl(V, 0) is just the exterior algebra

∧• V .

Example 13.1. Let V = R, e1 = 1, and assume that Φ(x1e1) = −x2
1. Then Cl(Φ) is spanned

by the basis (1, e1). We have
e2

1 = −1.

Under the bijection
e1 7→ i,

the Clifford algebra Cl(Φ), also denoted by Cl1, is isomorphic to the algebra of complex
numbers C.

Example 13.2. Now let V = R2, (e1, e2) be the canonical basis, and assume that Φ(x1e1 +
x2e2) = −(x2

1 + x2
2). Then Cl(Φ) is spanned by the basis (1, e1, e2, e1e2). Furthermore, we

have
e2e1 = −e1e2, e2

1 = −1, e2
2 = −1, (e1e2)2 = −1.

Under the bijection
e1 7→ i, e2 7→ j, e1e2 7→ k 1 7→ 1,
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it is easily checked that the quaternion identities

i2 = j2 = k2 = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j,

hold, and thus the Clifford algebra Cl(Φ), also denoted by Cl2, is isomorphic to the algebra
of quaternions H.

Our prime goal is to define an action of Cl(Φ) on V in such a way that by restricting
this action to some suitably chosen multiplicative subgroups of Cl(Φ), we get surjective
homomorphisms onto O(Φ) and SO(Φ), respectively. The key point is that a reflection in
V about a hyperplane H orthogonal to a vector w can be defined by such an action, but
some negative sign shows up. A correct handling of signs is a bit subtle and requires the
introduction of a canonical anti-automorphism t, and of a canonical automorphism α, defined
as follows:

Proposition 13.1. Every Clifford algebra Cl(Φ) possesses a canonical anti-automorphism
t : Cl(Φ)→ Cl(Φ) satisfying the properties

t(xy) = t(y)t(x), t ◦ t = id, and t(i(v)) = i(v),

for all x, y ∈ Cl(Φ) and all v ∈ V . Furthermore, such an anti-automorphism is unique.

Proof. Consider the opposite algebra Cl(Φ)o, in which the product of x and y is given by
yx. It has the universal mapping property. Thus, we get a unique isomorphism t, as in the
diagram below.

V
i //

i ##

Cl(V,Φ)

t
��

Cl(Φ)o

We also denote t(x) by xt. When V is finite-dimensional, for a more palatable description
of t in terms of a basis of V , see the paragraph following Theorem 13.4.

The canonical automorphism α is defined using the proposition.

Proposition 13.2. Every Clifford algebra Cl(Φ) has a unique canonical automorphism
α : Cl(Φ)→ Cl(Φ) satisfying the properties

α ◦ α = id, and α(i(v)) = −i(v),

for all v ∈ V .
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Proof. Consider the linear map α0 : V → Cl(Φ) defined by α0(v) = −i(v), for all v ∈ V . We
get a unique homomorphism α as in the diagram below.

V i //

α0 ##

Cl(V,Φ)

α

��
Cl(Φ)

Furthermore, every x ∈ Cl(Φ) can be written as

x = x1 · · · xm,

with xj ∈ i(V ), and since α(xj) = −xj, we get α ◦ α = id. It is clear that α is bijective.

When V is finite-dimensional, a more palatable description of α in terms of a basis of V
can be given; see the paragraph following Theorem 13.4.

If (e1, . . . , en) is a basis of V , then the Clifford algebra Cl(Φ) consists of certain kinds
of “polynomials,” linear combinations of monomials of the form

∑
J λJeJ , where J =

{i1, i2, . . . , ik} is any subset (possibly empty) of {1, . . . , n}, with 1 ≤ i1 < i2 · · · < ik ≤ n,
and the monomial eJ is the “product” ei1ei2 · · · eik .

We now show that if V has dimension n, then i is injective and Cl(Φ) has dimension 2n.
A clever way of doing this is to introduce a graded tensor product.

First, observe that
Cl(Φ) = Cl0(Φ)⊕ Cl1(Φ),

where
Cli(Φ) = {x ∈ Cl(Φ) | α(x) = (−1)ix}, where i = 0, 1.

We say that we have a Z/2-grading , which means that if x ∈ Cli(Φ) and y ∈ Clj(Φ), then
xy ∈ Cli+j (mod 2)(Φ).

When V is finite-dimensional, since every element of Cl(Φ) is a linear combination of the
form

∑
J λJeJ as explained earlier, in view of the description of α given above, we see that

the elements of Cl0(Φ) are those for which the monomials eJ are products of an even number
of factors, and the elements of Cl1(Φ) are those for which the monomials eJ are products of
an odd number of factors.

Remark: Observe that Cl0(Φ) is a subalgebra of Cl(Φ), whereas Cl1(Φ) is not.

Definition 13.8. Given two Z/2-graded algebras A = A0 ⊕ A1 and B = B0 ⊕ B1, their
graded tensor product A ⊗̂B is defined by

(A ⊗̂B)0 = (A0 ⊗B0)⊕ (A1 ⊗B1),

(A ⊗̂B)1 = (A0 ⊗B1)⊕ (A1 ⊗B0),
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with multiplication
(a′ ⊗ b)(a⊗ b′) = (−1)ij(a′a)⊗ (bb′),

for a ∈ Ai and b ∈ Bj.

The reader should check that A ⊗̂B is indeed Z/2-graded.

Proposition 13.3. Let V and W be finite dimensional vector spaces with quadratic forms
Φ and Ψ. Then there is a quadratic form Φ⊕Ψ on V ⊕W defined by

(Φ + Ψ)(v, w) = Φ(v) + Ψ(w).

If we write i : V → Cl(Φ) and j : W → Cl(Ψ), we can define a linear map

f : V ⊕W → Cl(Φ) ⊗̂ Cl(Ψ)

by
f(v, w) = i(v)⊗ 1 + 1⊗ j(w).

Furthermore, the map f induces an isomorphism (also denoted by f)

f : Cl(Φ + Ψ)→ Cl(Φ) ⊗̂ Cl(Ψ).

Proof. See Bröcker and tom Dieck [19], Chapter 1, Section 6, page 57.

As a corollary, we obtain the following result:

Theorem 13.4. For every vector space V of finite dimension n, the map i : V → Cl(Φ) is
injective. Given a basis (e1, . . . , en) of V , the 2n − 1 products

i(ei1)i(ei2) · · · i(eik), 1 ≤ i1 < i2 · · · < ik ≤ n,

and 1 form a basis of Cl(Φ). Thus, Cl(Φ) has dimension 2n.

Proof. The proof is by induction on n = dim(V ). For n = 1, the tensor algebra T (V ) is just
the polynomial ring R[X], where i(e1) = X. Thus, Cl(Φ) = R[X]/(X2 − Φ(e1)), and the
result is obvious ((1, X) is a basis). Since

i(ej)i(ek) + i(ek)i(ej) = 2ϕ(ei, ej) · 1,

it is clear that the products

i(ei1)i(ei2) · · · i(eik), 1 ≤ i1 < i2 < · · · < ik ≤ n,

and 1 generate Cl(Φ). In order to conclude that these vectors form a basis it suffices to
show that the dimension of Cl(Φ) is 2n. Now there is always a basis that is orthogonal with
respect to ϕ (for example, see Artin [3], Chapter 7, or Gallier [48], Chapter 6, Problem 6.14),
and thus, we have a splitting

(V,Φ) ∼=
n⊕
k=1

(Vk,Φk),

where Vk has dimension 1. Choosing a basis so that ek ∈ Vk, the theorem follows by induction
from Proposition 13.3.
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Since i is injective, for simplicity of notation, from now on we write u for i(u). Theorem
13.4 implies the following result.

Proposition 13.5. If (e1, . . . , en) is an orthogonal basis of V with respect to Φ, then Cl(Φ)
is the algebra presented by the generators (e1, . . . , en) and the relations

e2
j = Φ(ej) · 1, 1 ≤ j ≤ n, and

ejek = −ekej, 1 ≤ j, k ≤ n, j 6= k.

If V has finite dimension n and (e1, . . . , en) is a basis of V , by Theorem 13.4, the maps t
and α are completely determined by their action on the basis elements. Namely, t is defined
by

t(ei) = ei

t(ei1ei2 · · · eik) = eikeik−1
· · · ei1 ,

where 1 ≤ i1 < i2 · · · < ik ≤ n, and of course, t(1) = 1. The map α is defined by

α(ei) = −ei
α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik

where 1 ≤ i1 < i2 < · · · < ik ≤ n, and of course, α(1) = 1. Furthermore, the even-graded
elements (the elements of Cl0(Φ)) are those generated by 1 and the basis elements consisting
of an even number of factors ei1ei2 · · · ei2k , and the odd-graded elements (the elements of
Cl1(Φ)) are those generated by the basis elements consisting of an odd number of factors
ei1ei2 · · · ei2k+1

.

We are now ready to define the Clifford group and investigate some of its properties.

13.4 Clifford Groups

Definition 13.9. Let V be a real finite-dimensional vector space with a quadratic form Φ.
Let Cl(Φ) be the Clifford algebra (see Definition 13.7). The multiplicative group of invertible
elements of Cl(Φ) is denoted by Cl(Φ)∗.

Proposition 13.6. For any x ∈ V , Φ(x) 6= 0 if and only if x is invertible.

Proof. This follows from the fact that x2 = Φ(x) (where we abused notation and wrote
Φ(x) · 1 = Φ(x)). If Φ(x) 6= 0, then x−1 = x(Φ(x))−1, and if x is invertible then x 6= 0 and
x = Φ(x)x−1, so Φ(x) 6= 0.

We would like Cl(Φ)∗ to act on V via

x · v = α(x)vx−1,

where x ∈ Cl(Φ)∗ and v ∈ V . In general, there is no reason why α(x)vx−1 should be in V or
why this action defines an automorphism of V , so we restrict this map to the subset Γ(Φ)
of Cl(Φ)∗ as follows.
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Definition 13.10. Given a finite dimensional vector space V and a quadratic form Φ on V ,
the Clifford group of Φ is the group

Γ(Φ) = {x ∈ Cl(Φ)∗ | α(x)vx−1 ∈ V for all v ∈ V }.

Definition 13.11. For any x ∈ Γ(Φ), let ρx : V → V be the map defined by

v 7→ α(x)vx−1, v ∈ V.

It is not entirely obvious why the map ρ : Γ(Φ) → GL(V ) given by x 7→ ρx is a linear
action, and for that matter, why Γ(Φ) is a group. This is because V is finite-dimensional
and α is an automorphism.

Proposition 13.7. The set Γ(Φ) is a group and ρ is a linear representation.

Proof. For any x ∈ Γ(Φ), the map ρx from V to V defined by

v 7→ α(x)vx−1

is clearly linear. If α(x)vx−1 = 0, since by hypothesis x is invertible and since α is an
automorphism α(x) is also invertible, so v = 0. Thus our linear map is injective, and since
V has finite dimension, it is bijective. This proves that ρ is a linear representation.

To prove that x−1 ∈ Γ(Φ), pick any v ∈ V . Since the linear map ρx is bijective, there
is some w ∈ V such that ρx(w) = v, which means that α(x)wx−1 = v. Since x is invertible
and α is an automorphism, we get

α(x−1)vx = w,

so α(x−1)vx ∈ V ; since this holds for any v ∈ V , we have x−1 ∈ Γ(Φ). Since α is an
automorphism, if x, y ∈ Γ(Φ), for any v ∈ V we have

ρy(ρx(v)) = α(y)α(x)vx−1y−1 = α(yx)v(yx)−1 = ρyx(v),

which shows that ρyx is a linear automorphism of V , so yx ∈ Γ(Φ) and ρ is a homomorphism.
Therefore, Γ(Φ) is a group and ρ is a linear representation.

Definition 13.12. Given a finite dimensional vector space V and quadratic form Φ on V ,
the special Clifford group of Φ is the group

Γ+(Φ) = Γ(Φ) ∩ Cl0(Φ).

Remarks:
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1. The map ρ : Γ(Φ)→ GL(V ) given by x 7→ ρx is called the twisted adjoint representa-
tion. It was introduced by Atiyah, Bott and Shapiro [6]. It has the advantage of not
introducing a spurious negative sign, i.e., when v ∈ V and Φ(v) 6= 0, the map ρv is
the reflection sv about the hyperplane orthogonal to v (see Theorem 13.9). Further-
more, when Φ is nondegenerate, the kernel Ker (ρ) of the representation ρ is given by
Ker (ρ) = R∗ · 1, where R∗ = R− {0}. The earlier adjoint representation ρ0 (used by
Chevalley [25] and others) is given by

v 7→ xvx−1.

Unfortunately, in this case ρ0
v represents −sv, where sv is the reflection about the hy-

perplane orthogonal to v. Furthermore, the kernel of the representation ρ0 is generally
bigger than R∗ ·1. This is the reason why the twisted adjoint representation is preferred
(and must be used for a proper treatment of the Pin group).

2. According to Lounesto (in Riesz [95]), the Clifford group was actually discoved by
Rudolf Lipschitz in 1880 and not by Clifford, two years after Clifford’s discovery of
Clifford algebras. Lounesto says (page 219): “Chevalley introduced the exterior expo-
nential of bivectors and used it to scrutinize properties of Lipschitz’s covering group
of rotations (naming it unjustly a “Clifford group”).”

Proposition 13.8. The maps α and t induce an automorphism and an anti-automorphism
of the Clifford group, Γ(Φ).

Proof. It is not very instructive; see Bröcker and tom Dieck [19], Chapter 1, Section 6, page
58.

The following key result shows why Clifford groups generalize the quaternions.

Theorem 13.9. Let V be a finite dimensional vector space and let Φ a quadratic form on
V . For every element x of the Clifford group Γ(Φ), if x ∈ V then Φ(x) 6= 0 and the map
ρx : V → V given by

v 7→ α(x)vx−1 for all v ∈ V

is the reflection about the hyperplane H orthogonal to the non-isotropic vector x.

Proof. We already observed that if x ∈ V is an invertible element then Φ(x) 6= 0. Recall
that the reflection s about the hyperplane H orthogonal to the vector x is given by

s(u) = u− 2
ϕ(u, x)

Φ(x)
· x.

However, we have

x2 = Φ(x) · 1 and ux+ xu = 2ϕ(u, x) · 1.
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Thus, we have

s(u) = u− 2
ϕ(u, x)

Φ(x)
· x

= u− 2ϕ(u, x) ·
(

1

Φ(x)
· x
)

= u− 2ϕ(u, x) · x−1

= u− 2ϕ(u, x) · (1x−1)

= u− (2ϕ(u, x) · 1)x−1

= u− (ux+ xu)x−1

= −xux−1

= α(x)ux−1,

since α(x) = −x, for x ∈ V .

Recall that the linear representation

ρ : Γ(Φ)→ GL(V )

is given by
ρx(v) = α(x)vx−1,

for all x ∈ Γ(Φ) and all v ∈ V . We would like to show that ρ is a surjective homomorphism
from Γ(Φ) onto O(Φ), and a surjective homomorphism from Γ+(Φ) onto SO(Φ). For this,
we will need to assume that ϕ is nondegenerate, which means that for every v ∈ V , if
ϕ(v, w) = 0 for all w ∈ V , then v = 0. In order to prove that ρx ∈ O(Φ) for any x ∈ Γ(Φ),
we define a notion of norm on Γ(Φ), and for this we need to define a notion of conjugation
on Cl(Φ).

Definition 13.13. We define conjugation on a Clifford algebra Cl(Φ) as the map

x 7→ x = t(α(x)) for all x ∈ Cl(Φ).

Observe that since (t ◦ α)(v) = (α ◦ t)(v) for all v ∈ V and since α is an automorphism
and t is an anti-automorphism, we have

t ◦ α = α ◦ t on Cl(Φ).

For all x, y ∈ Cl(Φ) we also have

xy = t(α(xy)) = t(α(x)α(y)) = t(α(y))t(α(x)) = y x.

Thus we showed the following fact.
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Proposition 13.10. Conjugation is an anti-automorphism.

If V has finite dimension n and (e1, . . . , en) is a basis of V , in view of previous remarks,
conjugation is defined by

ei = −ei
ei1ei2 · · · eik = (−1)keikeik−1

· · · ei1

where 1 ≤ i1 < i2 · · · < ik ≤ n, and of course, 1 = 1.

Definition 13.14. The map N : Cl(Φ)→ Cl(Φ) given by

N(x) = xx

is called the norm of Cl(Φ).

Observe that N(v) = vv = −v2 = −Φ(v) · 1 for all v ∈ V , that is,

N(v) = −Φ(v) · 1 for all v ∈ V .

Also, if (e1, . . . , en) is a basis of V , since conjugation is an anti-automorphism, we obtain

N(ei1ei2 · · · eik) = ei1ei2 · · · eikei1ei2 · · · eik
= ei1ei2 · · · eik(−1)keik · · · ei2ei1
= (−1)kΦ(ei1)Φ(ei2) · · ·Φ(eik) · 1.

In general, for an arbitrary element x ∈ Cl(Φ), there is no guarantee that N(x) is a scalar
multiple of 1. However, we will show in Proposition 13.12 that if x ∈ Γ(Φ), thenN(x) ∈ R∗·1.

For simplicity of exposition, we first assume that Φ is the quadratic form on Rn defined
by

Φ(x1, . . . , xn) = Φ0,n(x1, . . . , xn) = −(x2
1 + · · ·+ x2

n).

Note that the isometry groups associated with Φ = Φ0,n are O(0, n) and SO(0, n), but we
know that O(0, n) = O(n) and SO(0, n) = SO(n).

Let Cln denote the Clifford algebra Cl(Φ) and Γn denote the Clifford group Γ(Φ). The
following lemma plays a crucial role.

Lemma 13.11. The kernel of the map ρ : Γn → GL(n) is R∗ · 1, the multiplicative group of
nonzero scalar multiples of 1 ∈ Cln.

Proof. If ρx = id, then
α(x)v = vx for all v ∈ Rn. (1)

Since Cln = Cl0n ⊕ Cl1n, we can write x = x0 + x1, with xi ∈ Clin for i = 0, 1. Then Equation
(1) becomes

x0v = vx0 and − x1v = vx1 for all v ∈ Rn. (2)
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Using Theorem 13.4, we can express x0 as a linear combination of monomials in the canonical
basis (e1, . . . , en), so that

x0 = a0 + e1b
1, with a0 ∈ Cl0n, b

1 ∈ Cl1n,

where neither a0 nor b1 contains a summand with a factor e1. Applying the first relation in
(2) to v = e1, we get

e1a
0 + e2

1b
1 = a0e1 + e1b

1e1. (3)

Now the basis (e1, . . . , en) is orthogonal w.r.t. Φ, which implies that

ejek = −ekej for all j 6= k.

Since each monomial in a0 is of even degree and contains no factor e1, we get

a0e1 = e1a
0.

Similarly, since b1 is of odd degree and contains no factor e1, we get

e1b
1e1 = −e2

1b
1.

But then from (3), we get

e1a
0 + e2

1b
1 = a0e1 + e1b

1e1 = e1a
0 − e2

1b
1,

and so, e2
1b

1 = 0. However, e2
1 = −1, and so, b1 = 0. Therefore, x0 contains no monomial

with a factor e1. We can apply the same argument to the other basis elements e2, . . . , en,
and thus, we just proved that x0 ∈ R · 1.

A similar argument applying to the second equation in (2), with x1 = a1 +e1b
0 and v = e1

shows that b0 = 0. By repeating the argument for the other basis elements, we ultimately
conclude that x1 = 0. Finally, x = x0 ∈ (R · 1) ∩ Γn = R∗ · 1.

Remark: If Φ is any nondegenerate quadratic form, we know (for instance, see Artin [3],
Chapter 7, or Gallier [48], Chapter 6, Problem 6.14) that there is an orthogonal basis
(e1, . . . , en) with respect to ϕ (i.e. ϕ(ej, ek) = 0 for all j 6= k and ϕ(ej, ej) 6= 0 for all
j). Thus, the commutation relations

e2
j = Φ(ej) · 1, with Φ(ej) 6= 0, 1 ≤ j ≤ n, and

ejek = −ekej, 1 ≤ j, k ≤ n, j 6= k

hold, and since the proof only rests on these facts, Lemma 13.11 holds for the Clifford group
Γ(Φ) associated with any nondegenerate quadratic form.
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� However, Lemma 13.11 may fail for degenerate quadratic forms. For example, if Φ ≡ 0,
then Cl(V, 0) =

∧• V . Consider the element x = 1 + e1e2. Clearly, x−1 = 1− e1e2. But
now, for any v ∈ V , we have

α(1 + e1e2)v(1 + e1e2)−1 = (1 + e1e2)v(1− e1e2) = v.

Yet, 1 + e1e2 is not a scalar multiple of 1.

If instead of the twisted adjoint action we had used the action ρ0 : Γn → GL(n) given by

ρ0
x(v) = xvx−1,

then when n is odd the kernel of ρ0 contains other elements besides scalar multiples of 1.
Indeed, if (e1, . . . , en) is an orthogonal basis, we have eiej = −ejei for all j 6= i and e2

i = −1
for all i, so the element e1 · · · en ∈ Cl∗n commutes with all ei (it belongs to the center of Cln),
and thus e1 · · · en ∈ Ker ρ0. Thus, we see that another subtle consequence of the “Atiyah–
Bott–Shapiro trick” of using the action ρx(v) = α(x)vx where α takes care of the parity of
x ∈ Γn is to cut down the kernel of ρ to R∗ · 1.

The following proposition shows that the notion of norm is well-behaved.

Proposition 13.12. If x ∈ Γn, then N(x) ∈ R∗ · 1.

Proof. The trick is to show that N(x) = xx is in the kernel of ρ. To say that x ∈ Γn means
that

α(x)vx−1 ∈ Rn for all v ∈ Rn.

Applying t, we get
t(x)−1vt(α(x)) = α(x)vx−1,

since t is the identity on Rn. Thus, we have

v = t(x)α(x)v(t(α(x))x)−1

= t(x)α(x)v(xx)−1

= α(α(t(x)))α(x)v(xx)−1, since α ◦ α = id

= α(t(α(x)))α(x)v(xx)−1, since α ◦ t = t ◦ α
= α(x)α(x)v(xx)−1

= α(xx)v(xx)−1,

so xx ∈ Ker (ρ). By Proposition 13.8, we have x ∈ Γn, and so, xx = xx ∈ Ker (ρ).

Remark: Again, the proof also holds for the Clifford group Γ(Φ) associated with any non-
degenerate quadratic form Φ. When Φ(v) = −‖v‖2, where ‖v‖ is the standard Euclidean
norm of v, we have N(v) = ‖v‖2 · 1 for all v ∈ V . However, for other quadratic forms, it is
possible that N(x) = λ · 1 where λ < 0, and this is a difficulty that needs to be overcome.
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Proposition 13.13. The restriction of the norm N to Γn is a homomorphism N : Γn →
R∗ · 1, and N(α(x)) = N(x) for all x ∈ Γn.

Proof. We have

N(xy) = xyy x = xN(y)x = xxN(y) = N(x)N(y),

where the third equality holds because N(x) ∈ R∗ · 1. Next, observe that since α and t
commute we have

α(x) = t(α(α(x))) = α(t(α(x))) = α(x),

so we get

N(α(x)) = α(x)α(x) = α(x)α(x) = α(xx) = α(N(x)) = N(x),

since N(x) ∈ R∗ · 1.

Remark: The proof also holds for the Clifford group Γ(Φ) associated with any nondegen-
erate quadratic form Φ.

Proposition 13.14. We have Rn − {0} ⊆ Γn and ρ(Γn) ⊆ O(n).

Proof. Let x ∈ Γn and v ∈ Rn, with v 6= 0. We have

N(ρx(v)) = N(α(x)vx−1) = N(α(x))N(v)N(x−1) = N(x)N(v)N(x)−1 = N(v),

since N : Γn → R∗ · 1. However, for v ∈ Rn, we know that

N(ρxv) = −Φ(ρxv) · 1,

and

N(v) = −Φ(v) · 1.

Thus, ρx is norm-preserving, and so ρx ∈ O(n).

Remark: The proof that ρ(Γ(Φ)) ⊆ O(Φ) also holds for the Clifford group Γ(Φ) associated
with any nondegenerate quadratic form Φ. The first statement needs to be replaced by the
fact that every non-isotropic vector in Rn (a vector is non-isotropic if Φ(x) 6= 0) belongs to
Γ(Φ). Indeed, x2 = Φ(x) · 1, which implies that x is invertible.

We are finally ready for the introduction of the groups Pin(n) and Spin(n).
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13.5 The Groups Pin(n) and Spin(n)

Definition 13.15. We define the pinor group Pin(n) as the kernel Ker (N) of the homo-
morphism N : Γn → R∗ · 1, and the spinor group Spin(n) as Pin(n) ∩ Γ+

n .

Observe that if N(x) = 1, then x is invertible, and x−1 = x since xx = N(x) = 1. Thus,
we can write

Pin(n) = {x ∈ Cln | α(x)vx−1 ∈ Rn for all v ∈ Rn, N(x) = 1}
= {x ∈ Cln | α(x)vx ∈ Rn for all v ∈ Rn, xx = 1},

and

Spin(n) = {x ∈ Cl0n | xvx−1 ∈ Rn for all v ∈ Rn, N(x) = 1}
= {x ∈ Cl0n | xvx ∈ Rn for all v ∈ Rn, xx = 1}

Remark: According to Atiyah, Bott and Shapiro, the use of the name Pin(k) is a joke due
to Jean-Pierre Serre (Atiyah, Bott and Shapiro [6], page 1).

Theorem 13.15. The restriction of ρ : Γn → O(n) to the pinor group Pin(n) is a surjective
homomorphism ρ : Pin(n) → O(n) whose kernel is {−1,1}, and the restriction of ρ to the
spinor group Spin(n) is a surjective homomorphism ρ : Spin(n) → SO(n) whose kernel is
{−1,1}.

Proof. By Proposition 13.14, we have a map ρ : Pin(n)→ O(n). The reader can easily check
that ρ is a homomorphism. By the Cartan-Dieudonné theorem (see Bourbaki [14], or Gallier
[48], Chapter 7, Theorem 7.2.1), every isometry f ∈ O(n) is the composition f = s1 ◦ · · · ◦sk
of hyperplane reflections sj. If we assume that sj is a reflection about the hyperplane Hj

orthogonal to the nonzero vector wj, by Theorem 13.9, ρ(wj) = sj. Since N(wj) = ‖wj‖2 ·1,
we can replace wj by wj/ ‖wj‖, so that N(w1 · · ·wk) = 1, and then

f = ρ(w1 · · ·wk),

and ρ is surjective. Note that

Ker (ρ | Pin(n)) = Ker (ρ) ∩Ker (N) = {t ∈ R∗ · 1 | N(t) = 1} = {−1,1}.

As to Spin(n), we just need to show that the restriction of ρ to Spin(n) maps Γn into
SO(n). If this was not the case, there would be some improper isometry f ∈ O(n) so that
ρx = f , where x ∈ Γn∩Cl0n. However, we can express f as the composition of an odd number
of reflections, say

f = ρ(w1 · · ·w2k+1).

Since
ρ(w1 · · ·w2k+1) = ρx,
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we have x−1w1 · · ·w2k+1 ∈ Ker (ρ). By Lemma 13.11, we must have

x−1w1 · · ·w2k+1 = λ · 1

for some λ ∈ R∗, and thus

w1 · · ·w2k+1 = λ · x,

where x has even degree and w1 · · ·w2k+1 has odd degree, which is impossible.

Let us denote the set of elements v ∈ Rn with N(v) = 1 (with norm 1) by Sn−1. We
have the following corollary of Theorem 13.15.

Corollary 13.16. The group Pin(n) is generated by Sn−1, and every element of Spin(n)
can be written as the product of an even number of elements of Sn−1.

Example 13.3. In Example 13.1 we showed that Cl1 is isomorphic to C. The reader should
verify that

Pin(1) ∼= Z/4Z

as follows. By definition

Pin(1) = {x ∈ Cl1 | α(x)vx−1 ∈ R for all v ∈ R, N(x) = 1}.

A typical element in Pin(1) has the form a1 + be1 where e2
1 = −1. Set e1 7→ i and 1 7→ 1 as

in Example 13.1. The condition N(x) = 1 implies that

N(x) = xx = (a+ bi)(a− bi) = a2 + b2 = 1.

Thus

x−1 =
x

a2 + b2
= x.

and x ∈ Pin(1) implies that α(x)x−1 ∈ R where

α(x)x−1 = (a− ib)(a− ib) = a2 − b2 − 2abi.

Thus either a = 0 or b = 0. This constraint, along with a2 + b2 = 1, implies that

Pin(1) = {1, i,−1,−i} ∼= Z/4Z

since i generates Pin(1) and i4 = 1. Since Spin(1) = Pin(1) ∩ Cl0n, we conclude that

Spin(1) = {−1, 1} ∼= Z/2Z.
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Example 13.4. Definition 13.15 also implies

Pin(2) ∼= {ae1 + be2 | a2 + b2 = 1} ∪ {c1 + de1e2 | c2 + d2 = 1}, Spin(2) = U(1).

We may also write Pin(2) = U(1) + U(1), where U(1) is the group of complex numbers of
modulus 1 (the unit circle in R2).

Let us take a closer look at Spin(2). The Clifford algebra Cl2 is generated by the four
elements

1, e1, e2, e1e2,

and they satisfy the relations

e2
1 = −1, e2

2 = −1, e1e2 = −e2e1.

We saw in Example 13.2 that Cl2 is isomorphic to the algebra of quaternions H. According
to Corollary 13.16, the group Spin(2) consists of all products

2k∏
i=1

(aie1 + bie2)

consisting of an even number of factors and such that a2
i + b2

i = 1. In view of the above
relations, every such element can be written as

x = a1 + be1e2,

where x satisfies the conditions that xvx−1 ∈ R2 for all v ∈ R2, and N(x) = 1. Since

1 = 1, e1 = −e1, e2 = −e2, e1e2 = −e1e2,

the definition of conjugation implies that

x = t(α(x)) = t(α(a1 + be1e2)) = at(α(1)) + bt(α(e1e2)) = a1 + be1e2 = a1− be1e2.

Then we get
N(x) = xx = (a2 + b2) · 1,

and the condition N(x) = 1 is simply a2 + b2 = 1.

We claim that if x ∈ Cl02, then xvx−1 ∈ R2. Indeed, since x ∈ Cl02 and v ∈ Cl12, we have
xvx−1 ∈ Cl12, which implies that xvx−1 ∈ R2, since the only elements of Cl12 are those in
R2. This observation provides an alternative proof of the fact that Spin(2) consists of those
elements x = a1 + be1e2 so that a2 + b2 = 1.

If we let i = e1e2, we observe that

i2 = −1,

e1i = −ie1 = −e2,

e2i = −ie2 = e1.
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Thus, Spin(2) is isomorphic to U(1). Also note that

e1(a1 + bi) = (a1− bi)e1.

Let us find out explicitly what is the action of Spin(2) on R2. Given X = a1 + bi, with
a2 + b2 = 1, then X = a1− bi, and for any v = v1e1 + v2e2, we have

α(X)vX−1 = X(v1e1 + v2e2)X−1

= X(v1e1 + v2e2)(−e1e1)X

= X(v1e1 + v2e2)(−e1)(e1X)

= X(v11 + v2i)Xe1

= X2(v11 + v2i)e1

= (((a2 − b2)v1 − 2abv2)1 + ((a2 − b2)v2 + 2abv1)i)e1

= ((a2 − b2)v1 − 2abv2)e1 + ((a2 − b2)v2 + 2abv1)e2.

Since a2 +b2 = 1, we can write X = a1+bi = (cos θ)1+(sin θ)i, and the above derivation
shows that

α(X)vX−1 = (cos 2θv1 − sin 2θv2)e1 + (cos 2θv2 + sin 2θv1)e2.

This means that the rotation ρX induced by X ∈ Spin(2) is the rotation of angle 2θ around
the origin. Observe that the maps

v 7→ v(−e1), X 7→ Xe1

establish bijections between R2 and Spin(2) ∼= U(1). Also, note that the action of X =
cos θ+ i sin θ viewed as a complex number yields the rotation of angle θ, whereas the action
of X = (cos θ)1 + (sin θ)i viewed as a member of Spin(2) yields the rotation of angle 2θ.
There is nothing wrong. In general, Spin(n) is a two–to–one cover of SO(n).

Next let us take a closer look at Spin(3).

Example 13.5. The Clifford algebra Cl3 is generated by the eight elements

1, e1, e2, e3, e1e2, e2e3, e3e1, e1e2e3,

and they satisfy the relations

e2
i = −1, eiej = −ejei, 1 ≤ i, j ≤ 3, i 6= j.

It is not hard to show that Cl3 is isomorphic to H ⊕ H. By Corollary 13.16, the group
Spin(3) consists of all products

2k∏
i=1

(aie1 + bie2 + cie3)
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consisting of an even number of factors and such that a2
i + b2

i + c2
i = 1. In view of the above

relations, every such element can be written as

x = a1 + be2e3 + ce3e1 + de1e2,

where x satisfies the conditions that xvx−1 ∈ R3 for all v ∈ R3, and N(x) = 1. Since

e2e3 = −e2e3, e3e1 = −e3e1, e1e2 = −e1e2,

we observe that

x = a1− be2e3 − ce3e1 − de1e2.

We then get

N(x) = (a2 + b2 + c2 + d2) · 1,

and the condition N(x) = 1 is simply a2 + b2 + c2 + d2 = 1.

It turns out that the conditions x ∈ Cl03 and N(x) = 1 imply that xvx−1 ∈ R3 for all
v ∈ R3. To prove this, first observe that N(x) = 1 implies that x−1 = x, and that v = −v
for any v ∈ R3, and so,

xvx−1 = x−1 v x = −xvx−1.

Also, since x ∈ Cl03 and v ∈ Cl13, we have xvx−1 ∈ Cl13. Thus, we can write

xvx−1 = u+ λe1e2e3, for some u ∈ R3 and some λ ∈ R.

But

e1e2e3 = −e3e2e1 = e1e2e3,

and so,

xvx−1 = −u+ λe1e2e3 = −xvx−1 = −u− λe1e2e3,

which implies that λ = 0. Thus, xvx−1 ∈ R3, as claimed. By using this observation, we
once again conclude that Spin(3) consists of those elements x = a1 + be2e3 + ce3e1 + de1e2

so that a2 + b2 + c2 + d2 = 1.

Under the bijection

i 7→ e2e3, j 7→ e3e1, k 7→ e1e2,

we can check that we have an isomorphism between the group SU(2) of unit quaternions
and Spin(3). If X = a1 + be2e3 + ce3e1 + de1e2 ∈ Spin(3), observe that

X−1 = X = a1− be2e3 − ce3e1 − de1e2.

Now using the identification

i 7→ e2e3, j 7→ e3e1, k 7→ e1e2,
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we can easily check that

(e1e2e3)2 = 1,

(e1e2e3)i = i(e1e2e3) = −e1,

(e1e2e3)j = j(e1e2e3) = −e2,

(e1e2e3)k = k(e1e2e3) = −e3,

(e1e2e3)e1 = −i,

(e1e2e3)e2 = −j,

(e1e2e3)e3 = −k.

Then if X = a1 + bi + cj + dk ∈ Spin(3), for every v = v1e1 + v2e2 + v3e3, we have

α(X)vX−1 = X(v1e1 + v2e2 + v3e3)X−1

= X(e1e2e3)2(v1e1 + v2e2 + v3e3)X−1

= (e1e2e3)X(e1e2e3)(v1e1 + v2e2 + v3e3)X−1

= −(e1e2e3)X(v1i + v2j + v3k)X−1.

This shows that the rotation ρX ∈ SO(3) induced by X ∈ Spin(3) can be viewed as the
rotation induced by the quaternion a1+bi+cj+dk on the pure quaternions, using the maps

v 7→ −(e1e2e3)v, X 7→ −(e1e2e3)X

to go from a vector v = v1e1 + v2e2 + v3e3 to the pure quaternion v1i + v2j + v3k, and back.

We close this section by taking a closer look at Spin(4).

Example 13.6. We will show in Section 13.8 that Cl4 is isomorphic to M2(H), the algebra
of 2 × 2 matrices whose entries are quaternions. According to Corollary 13.16, the group
Spin(4) consists of all products

2k∏
i=1

(aie1 + bie2 + cie3 + die4)

consisting of an even number of factors and such that a2
i + b2

i + c2
i + d2

i = 1. Using the
relations

e2
i = −1, eiej = −ejei, 1 ≤ i, j ≤ 4, i 6= j,

every element of Spin(4) can be written as

x = a11 + a2e1e2 + a3e2e3 + a4e3e1 + a5e4e3 + a6e4e1 + a7e4e2 + a8e1e2e3e4,

where x satisfies the conditions that xvx−1 ∈ R4 for all v ∈ R4, and N(x) = 1. Let

i = e1e2, j = e2e3, k = e3e1, i′ = e4e3, j′ = e4e1, k′ = e4e2,



13.5. THE GROUPS PIN(n) AND SPIN(n) 575

and I = e1e2e3e4. The reader will easily verify that

ij = k

jk = i

ki = j

i2 = −1, j2 = −1, k2 = −1

iI = Ii = i′

jI = Ij = j′

kI = Ik = k′

I2 = 1, I = I
i = −i, j = −j, k = −k

i′ = −i′, j′ = −j′, k′ = −k′.

Then every x ∈ Spin(4) can be written as

x = u+ Iv, with u = a1 + bi + cj + dk and v = a′1 + b′i + c′j + d′k,

with the extra conditions stated above. Using the above identities, we have

(u+ Iv)(u′ + Iv′) = uu′ + vv′ + I(uv′ + vu′).

Furthermore, the identities imply

u+ Iv = t(α(u+ Iv)) = t(α(u)) + t(α(Iv))

= u+ t(α(I)α(v)) = u+ t(α(v))t(α(I))
= u+ vI = u+ vI
= u+ Iv.

As a consequence,

N(u+ Iv) = (u+ Iv)(u+ Iv) = uu+ vv + I(uv + vu),

and thus, N(u+ Iv) = 1 is equivalent to

uu+ vv = 1 and uv + vu = 0.

As in the case n = 3, it turns out that the conditions x ∈ Cl04 and N(x) = 1 imply that
xvx−1 ∈ R4 for all v ∈ R4. The only change to the proof is that xvx−1 ∈ Cl14 can be written
as

xvx−1 = u+
∑
i,j,k

λi,j,keiejek, for some u ∈ R4, with {i, j, k} ⊆ {1, 2, 3, 4}.
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As in the previous proof, we get λi,j,k = 0. So once again, Spin(4) consists of those elements
u+ Iv so that

uu+ vv = 1 and uv + vu = 0,

with u and v of the form a1 + bi + cj + dk.

Finally, we see that Spin(4) is isomorphic to Spin(3)× Spin(3) under the isomorphism

u+ vI 7→ (u+ v, u− v).

Indeed, we have
N(u+ v) = (u+ v)(u+ v) = 1,

and
N(u− v) = (u− v)(u− v) = 1,

since
uu+ vv = 1 and uv + vu = 0,

and

(u+ v, u− v)(u′ + v′, u′ − v′) = (uu′ + vv′ + uv′ + vu′, uu′ + vv′ − (uv′ + vu′)).

In summary, we have shown that Spin(3) ∼= SU(2) and Spin(4) ∼= SU(2)×SU(2). The
group Spin(5) is isomorphic to the symplectic group Sp(2), and Spin(6) is isomorphic to
SU(4) (see Curtis [28] or Porteous [93]).

Remark: It can be shown that the assertion if x ∈ Cl0n and N(x) = 1, then xvx−1 ∈ Rn for
all v ∈ Rn, is true up to n = 5 (see Porteous [93], Chapter 13, Proposition 13.58). However,
this is already false for n = 6. For example, if X = 1/

√
2(1 + e1e2e3e4e5e6), it is easy to see

that N(X) = 1, and yet, Xe1X
−1 /∈ R6.

13.6 The Groups Pin(p, q) and Spin(p, q)

For every nondegenerate quadratic form Φ over R, there is an orthogonal basis with respect
to which Φ is given by

Φ(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p − (x2
p+1 + · · ·+ x2

p+q),

where p and q only depend on Φ. The quadratic form corresponding to (p, q) is denoted Φp,q

and we call (p, q) the signature of Φp,q. Let n = p + q. We define the group O(p, q) as the
group of isometries w.r.t. Φp,q, i.e., the group of linear maps f so that

Φp,q(f(v)) = Φp,q(v) for all v ∈ Rn

and the group SO(p, q) as the subgroup of O(p, q) consisting of the isometries f ∈ O(p, q)
with det(f) = 1. We denote the Clifford algebra Cl(Φp,q) where Φp,q has signature (p, q) by
Clp,q, the corresponding Clifford group by Γp,q, and the special Clifford group Γp,q ∩Cl0p,q by
Γ+
p,q. Note that with this new notation, Cln = Cl0,n.
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� As we mentioned earlier, since Lawson and Michelsohn [76] adopt the opposite of our
sign convention in defining Clifford algebras; their Cl(p, q) is our Cl(q, p).

As we mentioned in Section 13.4, we have the problem that N(v) = −Φ(v) ·1, but −Φ(v)
is not necessarily positive (where v ∈ Rn). The fix is simple: Allow elements x ∈ Γp,q with
N(x) = ±1.

Definition 13.16. We define the pinor group Pin(p, q) as the group

Pin(p, q) = {x ∈ Γp,q | N(x) = ±1},

and the spinor group Spin(p, q) as Pin(p, q) ∩ Γ+
p,q.

Remarks:

(1) It is easily checked that the group Spin(p, q) is also given by

Spin(p, q) = {x ∈ Cl0p,q | xvx ∈ Rn for all v ∈ Rn, N(x) = ±1}.

This is because Spin(p, q) consists of elements of even degree.

(2) One can check that if N(x) = xx 6= 0, then x−1 = x(N(x))−1. This in turn implies

α(x)vx−1 = α(x)vx(N(x))−1

= α(x)vα(t(x))(N(x))−1

= α(x)α(−v)α(t(x))(N(x))−1, since α(v) = −v
= α(−xvt(x))(N(x))−1

= xvt(x)(N(x))−1.

Thus, we have

Pin(p, q) = {x ∈ Clp,q | xvt(x) ∈ Rn for all v ∈ Rn, N(x) = ±1}
= {x ∈ Clp,q | xvx ∈ Rn for all v ∈ Rn, N(x) = ±1}.

Theorem 13.15 generalizes as follows:

Theorem 13.17. The restriction of ρ : Γp,q → GL(n) to the pinor group Pin(p, q) is a
surjective homomorphism ρ : Pin(p, q)→ O(p, q) whose kernel is {−1,1}, and the restriction
of ρ to the spinor group Spin(p, q) is a surjective homomorphism ρ : Spin(p, q)→ SO(p, q)
whose kernel is {−1,1}.

Proof. The Cartan-Dieudonné also holds for any nondegenerate quadratic form Φ, in the
sense that every isometry in O(Φ) is the composition of reflections defined by hyperplanes
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orthogonal to non-isotropic vectors (see Dieudonné [31], Chevalley [25], Bourbaki [14], or Gal-
lier [48], Chapter 7, Problem 7.14). Thus, Theorem 13.15 also holds for any nondegenerate
quadratic form Φ. The only change to the proof is the following: Since N(wj) = −Φ(wj) ·1,
we can replace wj by wj/

√
|Φ(wj)|, so that N(w1 · · ·wk) = ±1, and then

f = ρ(w1 · · ·wk),

and ρ is surjective. If f ∈ SO(p, q), then k is even and w1 · · ·wk ∈ Γ+
p,q and by replacing wj

by wj/
√
|Φ(wj)| we obtain w1 · · ·wk ∈ Spin(p, q).

If we consider Rn equipped with the quadratic form Φp,q (with n = p + q), we denote
the set of elements v ∈ Rn with N(v) = ±1 by Sn−1

p,q . We have the following corollary of
Theorem 13.17 (generalizing Corollary 13.16).

Corollary 13.18. The group Pin(p, q) is generated by Sn−1
p,q , and every element of Spin(p, q)

can be written as the product of an even number of elements of Sn−1
p,q .

Example 13.7. In Example 13.1 we showed that

Cl0,1 ∼= C.

We use a similar argument to calculate Cl1,0. The basis for Cl1,0 is 1, e1 where

e2
1 = 1.

By using the bijection
1 7→ 1 + 0, e1 7→ 0 + 1

we find that
Cl1,0 ∼= R⊕ R,

where the multiplication on R⊕ R is given by

(a1 + b1)(a2 + b2) = (a1a2 + b1b2) + (a1b2 + a2b1)
∼= (a11 + b1e1)(a21 + b2e1) = (a1a2 + b1b1)1 + (a1b2 + a2b1)e1.

From Example 13.3 we have
Pin(0, 1) ∼= Z/4Z.

To calculate

Pin(1, 0) = {x ∈ Cl1,0 | α(x)vx−1 ∈ R for all v ∈ R, N(x) = ±1},

we first observe that a typical element of Cl1,0 has the form x = a1 + be1, where e2
1 = 1.

Then
N(x) = xx = (a1 + be1)(a1− be1) = (a2 − b2)1 = ±1,
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which in turn implies
a2 − b2 = ±1,

and that

x−1 = xN(x)−1 =
a1− be1

a2 − b2
.

Since x ∈ Pin(1, 0), we have α(x)x−1 ∈ R, or equivalently

(a1− be1)
a1− be1

a2 − b2
=

1

a2 − b2
[(a2 + b2)1− 2abe1] ∈ R.

This implies that a = 0 or b = 0. If a = 0, we set a2 − b2 = −1 to obtain b = ±1. If b = 0,
we set a2 − b2 = 1 to obtain a = ±1. Thus

Pin(1, 0) = {1, e1,−e1,−1} ∼= Z/2Z× Z/2Z,

since 12 = e2
1 = −e2

1. Since Spin(1, 0) = Pin(1, 0) ∩ Γ+
1,0, we deduce that

Spin(1, 0) = {1,−1} ∼= Z/2Z.

Example 13.8. We now turn our attention to Clifford algebras over R2. In Example 13.2
we showed that

Cl0,2 ∼= H.
To calculate Cl2,0 we first observe that Cl2,0 is spanned by the basis {1, e1, e2, e1e2}, where

e2
1 = 1, e2

2 = 1, e1e2 = −e2e1.

Define the bijection

1 7→
(

1 0
0 1

)
, e1 7→

(
1 0
0 −1

)
, e2 7→

(
0 1
1 0

)
.

Then

e1e2 =

(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 1
−1 0

)
.

A few basic computations show that

(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 1
−1 0

)
form a basis for

M2(R). Furthermore (
1 0
0 −1

)2

=

(
1 0
0 1

)
(

0 1
1 0

)2

=

(
1 0
0 1

)
(

0 1
1 0

)(
1 0
0 −1

)
=

(
0 −1
1 0

)
.
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From this bijection we conclude that

Cl2,0 ∼= M2(R).

A similar calculation shows that
Cl1,1 ∼= M2(R).

But this time

1 7→
(

1 0
0 1

)
, e1 7→

(
1 0
0 −1

)
, e2 7→

(
0 1
−1 0

)
,

which implies that

e1e2 =

(
1 0
0 −1

)(
0 1
−1 0

)
=

(
0 1
1 0

)
,

and that
e2

1 = 1, e2
2 = −1, e1e2 = −e2e1.

One can also work out what are Pin(2, 0), Pin(1, 1), and Pin(0, 2). See Choquet-Bruhat
[26], Chapter I, Section 7, page 26, for details As far as Spin(0, 2), we know from Example
13.3 that

Spin(0, 2) = Spin(2) ∼= U(1).

By applying the results of the following paragraph regarding the isomorphism between Cl0p,q
and Cl0q,p, we may deduce that

Spin(0, 2) = Spin(2, 0) ∼= U(1).

Finally an application of Corollary 13.18 implies that

Spin(1, 1) = {a1 + be1e2 | a2 − b2 = ±1},

and
Pin(1, 1) = {a1 + be1e2 | a2 − b2 = ±1} ∪ {ae1 + be2 | a2 − b2 = ±1}.

Observe that Spin(1, 1) has four connected components and Pin(1, 1) has eight connected
components. It is easy to show that

SO(1, 1) =

{(
a b
b a

) ∣∣∣∣ a2 − b2 = 1

}
,

which has two connected components, and

O(1, 1) =

{(
a b
b a

) ∣∣∣∣ a2 − b2 = ±1

}
,

which has four connected components.



13.7. THE GROUPS PIN(p, q) AND SPIN(p, q) AS DOUBLE COVERS 581

More generally, it can be shown that Cl0p,q and Cl0q,p are isomorphic, from which it follows
that Spin(p, q) and Spin(q, p) are isomorphic, but Pin(p, q) and Pin(q, p) are not isomor-
phic in general, and in particular, Pin(p, 0) and Pin(0, p) are not isomorphic in general (see
Choquet-Bruhat [26], Chapter I, Section 7). However, due to the “8-periodicity” of the Clif-
ford algebras (to be discussed in Section 13.8), it follows that Clp,q and Clq,p are isomorphic
when |p− q| = 0 mod 4.

Remark: We can also define the group Spin+(p, q) as

Spin+(p, q) = {x ∈ Cl0p,q | xvx ∈ Rn for all v ∈ Rn, N(x) = 1},

and SO0(p, q) as the connected component of SO(p, q) containing the identity. Then it
can be shown that the map ρ : Spin+(p, q)→ SO0(p, q) is a surjective homomorphism with
kernel {−1,1}; see Lounesto [79] (Chapter 17, Section 17.2). In particular,

Spin+(1, 1) = {a1 + be1e2 | a2 − b2 = 1}.

This group has two connected components, but it can be shown that for p + q ≥ 2 and
(p, q) 6= (1, 1) the groups Spin+(p, q) are connected; see Lounesto [79] (Chapter 17, Section
17.2).

13.7 The Groups Pin(p, q) and Spin(p, q) as double cov-

ers of O(p, q) and SO(p, q)

It turns out that the groups Pin(p, q) and Spin(p, q) have nice topological properties w.r.t.
the groups O(p, q) and SO(p, q). To explain this, we review the definition of covering maps
and covering spaces (for details, see Fulton [46], Chapter 11). Another interesting source is
Chevalley [24], where it is proved that Spin(n) is a universal double cover of SO(n) for all
n ≥ 3.

Since Clp,q is an algebra of dimension 2p+q, it is a vector space isomorphic to V = R2p+q .

Proposition 13.19. The spaces Cl∗p,q, Pin(p, q), and Spin(p, q) are Lie groups.

Proof. The group Cl∗p,q of units of Clp,q is open in Clp,q, because x ∈ Clp,q is a unit if the
linear map Lx is a bijection iff det(Lx) 6= 0 (where Lx is defined by Lx(y) = xy for all
y ∈ Clp,q). Thus we have a continuous map L : Clp,q → R given by L(x) = det(Lx) and since
Cl∗p,q = L−1(R−{0}) and R−{0} is open, Cl∗p,q is open. Thus, Cl∗p,q is a Lie group, and since
Pin(p, q) and Spin(p, q) are clearly closed subgroups of Cl∗p,q, they are also Lie groups.

The definition below is analogous to the definition of a covering map (see Gallot, Hulin,
Lafontaine [52] or Gallier and Quaintance [49]), except that now, we are only dealing with
topological spaces and not manifolds.
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Definition 13.17. Given two topological spaces X and Y , a covering map is a continuous
surjective map p : Y → X with the property that for every x ∈ X, there is some open subset
U ⊆ X with x ∈ U , so that p−1(U) is the disjoint union of open subsets Vα ⊆ Y , and the
restriction of p to each Vα is a homeomorphism onto U . We say that U is evenly covered
by p. We also say that Y is a covering space of X. A covering map p : Y → X is called
trivial if X itself is evenly covered by p (i.e., Y is the disjoint union of open subsets Yα
each homeomorphic to X), and nontrivial otherwise. When each fiber p−1(x) has the same
finite cardinality n for all x ∈ X, we say that p is an n-covering (or n-sheeted covering). See
Figure 13.1.

Ux Ux

p

V1

2V

V3

V1

2V

V3

Figure 13.1: Two coverings of S1. The left illustration is p : R → S1 with π(t) =
(cos(2πt), sin(2πt)), while the right illustration is the trivial 3-fold covering.

Note that a covering map p : Y → X is not always trivial, but always locally trivial (i.e.,
for every x ∈ X, it is trivial in some open neighborhood of x). A covering is trivial iff Y is
isomorphic to a product space of X × T , where T is any set with the discrete topology. See
Figure 13.1. Also, if Y is connected, then the covering map is nontrivial.

Definition 13.18. An isomorphism ϕ between covering maps p : Y → X and p′ : Y ′ → X
is a homeomorphism ϕ : Y → Y ′ so that p = p′ ◦ ϕ.

Typically, the space X is connected, in which case it can be shown that all the fibers
p−1(x) have the same cardinality.

One of the most important properties of covering spaces is the path–lifting property, a
property that we will use to show that Spin(n) is path-connected.
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Proposition 13.20. (Path lifting) Let p : Y → X be a covering map, and let γ : [a, b]→ X
be any continuous curve from xa = γ(a) to xb = γ(b) in X. If y ∈ Y is any point so that
p(y) = xa, then there is a unique curve γ̃ : [a, b]→ Y so that y = γ̃(a) and

p ◦ γ̃(t) = γ(t) for all t ∈ [a, b].

See Figure 13.2.

=

~
=

~

Y

a b

p

X

Υ

Υ

Υy (a)

p(y) Υ (a) = x a

Figure 13.2: The lift of a curve γ when π : R→ S1 is π(t) = (cos(2πt), sin(2πt)).

Proof. See Fulton [47], Chapter 11, Lemma 11.6.

Many important covering maps arise from the action of a group G on a space Y . If
Y is a topological space, recall that an action (on the left) of a group G on Y is a map
α : G × Y → Y satisfying the following conditions, where for simplicity of notation, we
denote α(g, y) by g · y:

(1) g · (h · y) = (gh) · y, for all g, h ∈ G and y ∈ Y ;

(2) 1 · y = y, for all ∈ Y , where 1 is the identity of the group G;

(3) The map y 7→ g · y is a homeomorphism of Y for every g ∈ G.
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We define an equivalence relation on Y as follows: x ≡ y iff y = g · x for some g ∈ G
(check that this is an equivalence relation). The equivalence class G · x = {g · x | g ∈ G} of
any x ∈ Y is called the orbit of x. We obtain the quotient space Y/G and the projection
map p : Y → Y/G sending every y ∈ Y to its orbit. The space Y/G is given the quotient
topology (a subset U of Y/G is open iff p−1(U) is open in Y ).

Given a subset V of Y and any g ∈ G, we let

g · V = {g · y | y ∈ V }.

Definition 13.19. We say that G acts evenly on Y if for every y ∈ Y , there is an open
subset V containing y so that g · V and h · V are disjoint for any two distinct elements
g, h ∈ G.

The importance of the notion a group acting evenly is that such actions induce a covering
map. See Figure 13.3.

q

-1(q)

-1 (q)

V

U

1

2

p

V
p

p

Figure 13.3: The 2-fold antipodal covering of RP2 induced by {−1, 1} acting evenly on S2.

Proposition 13.21. If G is a group acting evenly on a space Y , then the projection map
p : Y → Y/G is a covering map.

Proof. See Fulton [47], Chapter 11, Lemma 11.17.

The following proposition shows that Pin(p, q) and Spin(p, q) are nontrivial covering
spaces, unless p = q = 1.
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Proposition 13.22. For all p, q ≥ 0, the groups Pin(p, q) and Spin(p, q) are double covers
of O(p, q) and SO(p, q), respectively. Furthermore, they are nontrivial covers unless p = q =
1.

Proof. We know that kernel of the homomorphism ρ : Pin(p, q)→ O(p, q) is Z2 = {−1,1}.
If we let Z2 act on Pin(p, q) in the natural way, then O(p, q) ∼= Pin(p, q)/Z2, and the reader
can easily check that Z2 acts evenly. By Proposition 13.21, we get a double cover. The
argument for ρ : Spin(p, q)→ SO(p, q) is similar.

Since

Pin(1, 1) = {a1 + be1e2 | a2 − b2 = ±1} ∪ {ae1 + be2 | a2 − b2 = ±1}

and

O(1, 1) =

{(
a b
b a

) ∣∣∣∣ a2 − b2 = ±1

}
,

we see that Pin(1, 1) is the disjoint union of two open subsets each homeomorphic with
O(1, 1), and so the covering is trivial. Similarly, since

Spin(1, 1) = {a1 + be1e2 | a2 − b2 = ±1},

and

SO(1, 1) =

{(
a b
b a

) ∣∣∣∣ a2 − b2 = 1

}
,

Spin(1, 1) is the disjoint union of two open subsets each homeomorphic with SO(1, 1), so
the covering is also trivial.

Let us now assume that p 6= 1 or q 6= 1. In order to prove that we have nontrivial
covers, it is enough to show that −1 and 1 are connected by a path in Pin(p, q) (If we
had Pin(p, q) = U1 ∪ U2 with U1 and U2 open, disjoint, and homeomorphic to O(p, q),
then −1 and 1 would not be in the same Ui, and so, they would be in disjoint connected
components. Thus, −1 and 1 can’t be path–connected, and similarly with Spin(p, q) and
SO(p, q).) Since (p, q) 6= (1, 1), we can find two orthogonal vectors e1 and e2 so that either
Φp,q(e1) = Φp,q(e2) = 1 or Φp,q(e1) = Φp,q(e2) = −1. Then,

γ(t) = ± cos(2t) 1 + sin(2t) e1e2 = (cos t e1 + sin t e2)(sin t e2 − cos t e1),

for 0 ≤ t ≤ π, defines a path in Spin(p, q), since

(± cos(2t) 1 + sin(2t) e1e2)−1 = ± cos(2t) 1− sin(2t) e1e2,

as desired.

In particular, if n ≥ 2, since the group SO(n) is path-connected, the group Spin(n) is
also path-connected. Indeed, given any two points xa and xb in Spin(n), there is a path
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γ from ρ(xa) to ρ(xb) in SO(n) (where ρ : Spin(n) → SO(n) is the covering map). By
Proposition 13.20, there is a path γ̃ in Spin(n) with origin xa and some origin x̃b so that
ρ(x̃b) = ρ(xb). However, ρ−1(ρ(xb)) = {−xb, xb}, and so x̃b = ±xb. The argument used in
the proof of Proposition 13.22 shows that xb and −xb are path-connected, and so, there is a
path from xa to xb, and Spin(n) is path-connected.

In fact, for n ≥ 3, it turns out that Spin(n) is simply connected. Such a covering space
is called a universal cover (for instance, see Chevalley [24]).

This last fact requires more algebraic topology than we are willing to explain in detail,
and we only sketch the proof. The notions of fibre bundle, fibration, and homotopy sequence
associated with a fibration are needed in the proof. We refer the perseverant readers to Bott
and Tu [13] (Chapter 1 and Chapter 3, Sections 16–17) or Rotman [97] (Chapter 11) for a
detailed explanation of these concepts.

Recall that a topological space is simply connected if it is path connected and if π1(X) =
(0), which means that every closed path in X is homotopic to a point. Since we just proved
that Spin(n) is path connected for n ≥ 2, we just need to prove that π1(Spin(n)) = (0) for
all n ≥ 3. The following facts are needed to prove the above assertion:

(1) The sphere Sn−1 is simply connected for all n ≥ 3.

(2) The group Spin(3) ∼= SU(2) is homeomorphic to S3, and thus, Spin(3) is simply
connected.

(3) The group Spin(n) acts on Sn−1 in such a way that we have a fibre bundle with fibre
Spin(n− 1):

Spin(n− 1) −→ Spin(n) −→ Sn−1.

Fact (1) is a standard proposition of algebraic topology, and a proof can found in many
books. A particularly elegant and yet simple argument consists in showing that any closed
curve on Sn−1 is homotopic to a curve that omits some point. First, it is easy to see that
in Rn, any closed curve is homotopic to a piecewise linear curve (a polygonal curve), and
the radial projection of such a curve on Sn−1 provides the desired curve. Then we use the
stereographic projection of Sn−1 from any point omitted by that curve to get another closed
curve in Rn−1. Since Rn−1 is simply connected, that curve is homotopic to a point, and so is
its preimage curve on Sn−1. Another simple proof uses a special version of the Seifert—van
Kampen’s theorem (see Gramain [54]).

Fact (2) is easy to establish directly, using (1).

To prove (3), we let Spin(n) act on Sn−1 via the standard action: x ·v = xvx−1. Because
SO(n) acts transitively on Sn−1 and there is a surjection Spin(n) −→ SO(n), the group
Spin(n) also acts transitively on Sn−1. Now we have to show that the stabilizer of any
element of Sn−1 is Spin(n− 1). For example, we can do this for e1. This amounts to some
simple calculations taking into account the identities among basis elements. Details of this
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proof can be found in Mneimné and Testard [84], Chapter 4. Then by Proposition 10.33,
the Lie group Spin(n) is a principal fibre bundle over Sn−1 with fibre Spin(n− 1).

Now a fibre bundle is a fibration (as defined in Bott and Tu [13], Chapter 3, Section 16,
or in Rotman [97], Chapter 11). For a proof of this fact, see Rotman [97], Chapter 11, or
Mneimné and Testard [84], Chapter 4. So, there is a homotopy sequence associated with the
fibration (Bott and Tu [13], Chapter 3, Section 17, or Rotman [97], Chapter 11, Theorem
11.48), and in particular, we have the exact sequence

π1(Spin(n− 1)) −→ π1(Spin(n)) −→ π1(Sn−1).

Since π1(Sn−1) = (0) for n ≥ 3, we get a surjection

π1(Spin(n− 1)) −→ π1(Spin(n)),

and so, by induction and (2), we get

π1(Spin(n)) ∼= π1(Spin(3)) = (0),

proving that Spin(n) is simply connected for n ≥ 3.

We can also show that π1(SO(n)) = Z/2Z for all n ≥ 3. For this, we use Theorem 13.15
and Proposition 13.22, which imply that Spin(n) is a fibre bundle over SO(n) with fibre
{−1,1}, for n ≥ 2:

{−1,1} −→ Spin(n) −→ SO(n).

Again, the homotopy sequence of the fibration exists, and in particular we get the exact
sequence

π1(Spin(n)) −→ π1(SO(n)) −→ π0({−1,+1}) −→ π0(Spin(n)).

Since π0({−1,+1}) = Z/2Z, π0(Spin(n)) = (0), and π1(Spin(n)) = (0), when n ≥ 3, we
get the exact sequence

(0) −→ π1(SO(n)) −→ Z/2Z −→ (0),

and so, π1(SO(n)) = Z/2Z. Therefore, SO(n) is not simply connected for n ≥ 3.

Remark: Of course, we have been rather cavalier in our presentation. Given a topological
space X, the group π1(X) is the fundamental group of X, i.e. the group of homotopy classes
of closed paths in X (under composition of loops). But π0(X) is generally not a group!
Instead, π0(X) is the set of path-connected components of X. However, when X is a Lie
group, π0(X) is indeed a group. Also, we have to make sense of what it means for the
sequence to be exact. All this can be made rigorous (see Bott and Tu [13], Chapter 3,
Section 17, or Rotman [97], Chapter 11).
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13.8 Periodicity of the Clifford Algebras Clp,q

It turns out that the real algebras Clp,q can be build up as tensor products of the basic
algebras R, C, and H. As pointed out by Lounesto (Section 23.16 [79]), the description of
the real algebras Clp,q as matrix algebras and the 8-periodicity was first observed by Elie
Cartan in 1908; see Cartan’s article, Nombres Complexes, based on the original article in
German by E. Study, in Molk [85], article I-5 (fasc. 3), pages 329-468. These algebras are
defined in Section 36 under the name “‘Systems of Clifford and Lipschitz,” pages 463-466.
Of course, Cartan used a very different notation; see page 464 in the article cited above.
These facts were rediscovered independently by Raoul Bott in the 1960’s (see Raoul Bott’s
comments in Volume 2 of his collected papers.).

We adopt the notation K(n) for the algebra of n × n matrices over a ring or a field K;
here K = R,C,H. This is the notation used in most of the literature on Clifford algebras,
for instance Atiyah, Bott and Shapiro [6], and it is a departure from the notation Mn(K)
that we have been using all along.

As mentioned in Examples 13.3 and 13.7, it is not hard to show that

Cl0,1 = C Cl1,0 = R⊕ R
Cl0,2 = H Cl2,0 = R(2),

and
Cl1,1 = R(2).

The key to the classification is the following lemma:

Lemma 13.23. We have the isomorphisms

Cl0,n+2
∼= Cln,0 ⊗ Cl0,2

Cln+2,0
∼= Cl0,n ⊗ Cl2,0

Clp+1,q+1
∼= Clp,q ⊗ Cl1,1,

for all n, p, q ≥ 0.

Proof. Let Φ0,n+2(x) = −‖x‖2, where ‖x‖ is the standard Euclidean norm on Rn+2, and let
(e1, . . . , en+2) be an orthonormal basis for Rn+2 under the standard Euclidean inner product.
We also let (e′1, . . . , e

′
n) be a set of generators for Cln,0 and (e′′1, e

′′
2) be a set of generators

for Cl0,2. We can define a linear map f : Rn+2 → Cln,0 ⊗ Cl0,2 by its action on the basis
(e1, . . . , en+2) as follows:

f(ei) =

{
e′i ⊗ e′′1e′′2 for 1 ≤ i ≤ n
1⊗ e′′i−n for n+ 1 ≤ i ≤ n+ 2.

Observe that for 1 ≤ i, j ≤ n, we have

f(ei)f(ej) + f(ej)f(ei) = (e′ie
′
j + e′je

′
i)⊗ (e′′1e

′′
2)2 = −2δij1⊗ 1,
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since e′′1e
′′
2 = −e′′2e′′1, (e′′1)2 = −1, and (e′′2)2 = −1, and e′ie

′
j = −e′je′i, for all i 6= j, and

(e′i)
2 = 1, for all i with 1 ≤ i ≤ n. Also, for n+ 1 ≤ i, j ≤ n+ 2, we have

f(ei)f(ej) + f(ej)f(ei) = 1⊗ (e′′i−ne
′′
j−n + e′′j−ne

′′
i−n) = −2δij1⊗ 1,

and

f(ei)f(ek) + f(ek)f(ei) = 2e′i ⊗ (e′′1e
′′
2e
′′
k−n + e′′k−ne

′′
1e
′′
2) = 0,

for 1 ≤ i, j ≤ n and n+ 1 ≤ k ≤ n+ 2 (since e′′k−n = e′′1 or e′′k−n = e′′2). Thus, we have

(f(x))2 = −‖x‖2 · 1⊗ 1 for all x ∈ Rn+2,

and by the universal mapping property of Cl0,n+2, we get an algebra map

f̃ : Cl0,n+2 → Cln,0 ⊗ Cl0,2.

Since f̃ maps onto a set of generators, it is surjective. However

dim(Cl0,n+2) = 2n+2 = 2n · 2 = dim(Cln,0)dim(Cl0,2) = dim(Cln,0 ⊗ Cl0,2),

and f̃ is an isomorphism.

The proof of the second identity is analogous. For the third identity, we have

Φp,q(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p − (x2
p+1 + · · ·+ x2

p+q),

and let (e1, . . . , ep+1, ε1, . . . , εq+1) be an orthogonal basis for Rp+q+2 so that Φp+1,q+1(ei) = +1
and Φp+1,q+1(εj) = −1 for i = 1, . . . , p+1 and j = 1, . . . , q+1. Also, let (e′1, . . . , e

′
p, ε
′
1, . . . , ε

′
q)

be a set of generators for Clp,q and (e′′1, ε
′′
1) be a set of generators for Cl1,1. We define a linear

map f : Rp+q+2 → Clp,q ⊗ Cl1,1 by its action on the basis as follows:

f(ei) =

{
e′i ⊗ e′′1ε′′1 for 1 ≤ i ≤ p
1⊗ e′′1 for i = p+ 1,

and

f(εj) =

{
ε′j ⊗ e′′1ε′′1 for 1 ≤ j ≤ q
1⊗ ε′′1 for j = q + 1.

We can check that

(f(x))2 = Φp+1,q+1(x) · 1⊗ 1 for all x ∈ Rp+q+2,

and we finish the proof as in the first case.

To apply this lemma, we need some further isomorphisms among various matrix algebras.
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Proposition 13.24. The following isomorphisms hold:

R(m)⊗ R(n) ∼= R(mn) for all m,n ≥ 0

R(n)⊗R K ∼= K(n) for K = C or K = H and all n ≥ 0

C⊗R C ∼= C⊕ C
C⊗R H ∼= C(2)

H⊗R H ∼= R(4).

Proof. Details can be found in Lawson and Michelsohn [76]. The first two isomorphisms are
quite obvious. The third isomorphism C⊕ C→ C⊗R C is obtained by sending

(1, 0) 7→ 1

2
(1⊗ 1 + i⊗ i), (0, 1) 7→ 1

2
(1⊗ 1− i⊗ i).

The field C is isomorphic to the subring of H generated by i. Thus, we can view H as a
C-vector space under left scalar multiplication. Consider the R-bilinear map
π : C×H→ HomC(H,H) given by

πy,z(x) = yxz,

where y ∈ C and x, z ∈ H. Thus, we get an R-linear map π : C ⊗R H → HomC(H,H).
However, we have HomC(H,H) ∼= C(2). Furthermore, since

πy,z ◦ πy′,z′ = πyy′,zz′ ,

the map π is an algebra homomorphism

π : C×H→ C(2).

We can check on a basis that π is injective, and since

dimR(C×H) = dimR(C(2)) = 8,

the map π is an isomorphism. The last isomorphism is proved in a similar fashion.

We now have the main periodicity theorem.

Theorem 13.25. (Cartan/Bott) For all n ≥ 0, we have the following isomorphisms:

Cl0,n+8
∼= Cl0,n ⊗ Cl0,8

Cln+8,0
∼= Cln,0 ⊗ Cl8,0.

Furthermore,
Cl0,8 = Cl8,0 = R(16).
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Proof. By Lemma 13.23 we have the isomorphisms

Cl0,n+2
∼= Cln,0 ⊗ Cl0,2

Cln+2,0
∼= Cl0,n ⊗ Cl2,0,

and thus,

Cl0,n+8
∼= Cln+6,0 ⊗Cl0,2 ∼= Cl0,n+4 ⊗Cl2,0 ⊗Cl0,2 ∼= · · · ∼= Cl0,n ⊗Cl2,0 ⊗Cl0,2 ⊗Cl2,0 ⊗Cl0,2.

Since Cl0,2 = H and Cl2,0 = R(2), by Proposition 13.24, we get

Cl2,0 ⊗ Cl0,2 ⊗ Cl2,0 ⊗ Cl0,2 ∼= H⊗H⊗ R(2)⊗ R(2) ∼= R(4)⊗ R(4) ∼= R(16).

The second isomorphism is proved in a similar fashion.

From all this, we can deduce the following table.

n 0 1 2 3 4 5 6 7 8
Cl0,n R C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
Cln,0 R R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

A table of the Clifford groups Clp,q for 0 ≤ p, q ≤ 7 can be found in Kirillov [68], and for
0 ≤ p, q ≤ 8, in Lawson and Michelsohn [76] (but beware that their Clp,q is our Clq,p). It can
also be shown that

Clp+1,q
∼= Clq+1,p

Clp,q ∼= Clp−4,q+4

with p ≥ 4 in the second identity (see Lounesto [79], Chapter 16, Sections 16.3 and 16.4).
Using the second identity, if |p−q| = 4k, it is easily shown by induction on k that Clp,q ∼= Clq,p,
as claimed in the previous section.

We also have the isomorphisms

Clp,q ∼= Cl0p,q+1,

frow which it follows that

Spin(p, q) ∼= Spin(q, p)

(see Choquet-Bruhat [26], Chapter I, Sections 4 and 7). However, in general, Pin(p, q) and
Pin(q, p) are not isomorphic. In fact, Pin(0, n) and Pin(n, 0) are not isomorphic if n 6= 4k,
with k ∈ N (see Choquet-Bruhat [26], Chapter I, Section 7, page 27).
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13.9 The Complex Clifford Algebras Cl(n,C)

One can also consider Clifford algebras over the complex field C. In this case, it is well-known
that every nondegenerate quadratic form can be expressed by

ΦC
n(x1, . . . , xn) = x2

1 + · · ·+ x2
n

in some orthonormal basis. Also, it is easily shown that the complexification C ⊗R Clp,q
of the real Clifford algebra Clp,q is isomorphic to Cl(ΦC

n). Thus, all these complex algebras
are isomorphic for p + q = n, and we denote them by Cl(n,C). Theorem 13.23 yields the
following periodicity theorem:

Theorem 13.26. The following isomorphisms hold:

Cl(n+ 2,C) ∼= Cl(n,C)⊗C Cl(2,C),

with Cl(2,C) = C(2).

Proof. Since Cl(n,C) = C⊗R Cl0,n = C⊗R Cln,0, by Lemma 13.23, we have

Cl(n+ 2,C) = C⊗R Cl0,n+2
∼= C⊗R (Cln,0 ⊗R Cl0,2) ∼= (C⊗R Cln,0)⊗C (C⊗R Cl0,2).

However, Cl0,2 = H, Cl(n,C) = C ⊗R Cln,0, and C ⊗R H ∼= C(2), so we get Cl(2,C) = C(2)
and

Cl(n+ 2,C) ∼= Cl(n,C)⊗C C(2),

and the theorem is proven.

As a corollary of Theorem 13.26, we obtain the fact that

Cl(2k,C) ∼= C(2k) and Cl(2k + 1,C) ∼= C(2k)⊕ C(2k).

The table of the previous section can also be completed as follows

n 0 1 2 3 4 5 6 7 8
Cl0,n R C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
Cln,0 R R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

Cl(n,C) C 2C C(2) 2C(2) C(4) 2C(4) C(8) 2C(8) C(16),

where 2C(k) is an abbreviation for C(k)⊕ C(k).
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13.10 Clifford Groups Over a Field K

In this final section we quickly indicate which of the results about Clifford algebras, Clifford
groups, and the Pin and Spin groups obtained in Sections 13.3–13.6 for vector spaces over
the fields R and C generalize to nondegenerate bilinear forms on vector spaces over an
arbitrary field K of characteristic different from 2. As we will see, most results generalize,
except for some of the surjectivity results such as Theorem 13.17.

Let V be a finite-dimensional vector space over a field K of characteristic 6= 2, let
ϕ : V × V → K be a possibly degenerate symmetric bilinear form, and let Φ(v) = ϕ(v, v) be
the corresponding quadratic form.

Definition 13.20. A Clifford algebra associated with V and Φ is a K-algebra Cl(V,Φ)
together with a linear map iΦ : V → Cl(V,Φ) satisfying the condition (iΦ(v))2 = Φ(v) · 1 for
all v ∈ V , and so that for every K-algebra A and every linear map f : V → A with

(f(v))2 = Φ(v) · 1A for all v ∈ V ,

there is a unique algebra homomorphism f : Cl(V,Φ)→ A so that

f = f ◦ iΦ,

as in the diagram below.

V
iΦ//

f $$

Cl(V,Φ)

f
��
A

We use the notation λ · u for the product of a scalar λ ∈ K and of an element u in the
algebra Cl(V,Φ), and juxtaposition uv for the multiplication of two elements u and v in the
algebra Cl(V,Φ).

By a familiar argument, any two Clifford algebras associated with V and Φ are isomorphic.
We often denote iΦ by i.

To show the existence of Cl(V,Φ), since the tensor algebra T (V ) makes sense for a vector
space V over any field K, observe that T (V )/A does the job, where A is the ideal of T (V )
generated by all elements of the form v⊗v−Φ(v)·1, where v ∈ V . The map iΦ : V → Cl(V,Φ)
is the composition

V
ι1−→ T (V )

π−→ T (V )/A,

where π is the natural quotient map. We often denote the Clifford algebra Cl(V,Φ) simply
by Cl(Φ).

Proposition 13.27. Every Clifford algebra Cl(Φ) possesses a canonical anti-automorphism
t : Cl(Φ)→ Cl(Φ) satisfying the properties

t(xy) = t(y)t(x), t ◦ t = id, and t(i(v)) = i(v),

for all x, y ∈ Cl(Φ) and all v ∈ V . Furthermore, such an anti-automorphism is unique.
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Proposition 13.28. Every Clifford algebra Cl(Φ) has a unique canonical automorphism
α : Cl(Φ)→ Cl(Φ) satisfying the properties

α ◦ α = id, and α(i(v)) = −i(v),

for all v ∈ V .

Write

Cl(Φ) = Cl0(Φ)⊕ Cl1(Φ),

where

Cli(Φ) = {x ∈ Cl(Φ) | α(x) = (−1)ix}, where i = 0, 1.

We say that we have a Z/2-grading .

The theorem about the existence of a nice basis of Cl(Φ) only depends on the fact that
there is always a basis of V that is orthogonal with respect to ϕ (even if ϕ is degenerate) so
we have

Theorem 13.29. For every vector space V of finite dimension n, the map i : V → Cl(Φ) is
injective. Given a basis (e1, . . . , en) of V , the 2n − 1 products

i(ei1)i(ei2) · · · i(eik), 1 ≤ i1 < i2 · · · < ik ≤ n,

and 1 form a basis of Cl(Φ). Thus, Cl(Φ) has dimension 2n.

Since i is injective, for simplicity of notation, from now on we write u for i(u). Theorem
13.29 implies that if (e1, . . . , en) is an orthogonal basis of V with respect to Φ, then Cl(Φ) is
the algebra presented by the generators (e1, . . . , en) and the relations

e2
j = Φ(ej) · 1, 1 ≤ j ≤ n, and

ejek = −ekej, 1 ≤ j, k ≤ n, j 6= k.

If V has finite dimension n and (e1, . . . , en) is a basis of V , by Theorem 13.29, the maps t
and α are completely determined by their action on the basis elements. Namely, t is defined
by

t(ei) = ei

t(ei1ei2 · · · eik) = eikeik−1
· · · ei1 ,

where 1 ≤ i1 < i2 · · · < ik ≤ n, and of course, t(1) = 1. The map α is defined by

α(ei) = −ei
α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik
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where 1 ≤ i1 < i2 < · · · < ik ≤ n, and of course, α(1) = 1. Furthermore, the even-graded
elements (the elements of Cl0(Φ)) are those generated by 1 and the basis elements consisting
of an even number of factors ei1ei2 · · · ei2k , and the odd-graded elements (the elements of
Cl1(Φ)) are those generated by the basis elements consisting of an odd number of factors
ei1ei2 · · · ei2k+1

.

The definition of the Clifford group given in Section 13.4 does not depend on the field K
or on the fact that the symmetric bilinear form ϕ is nondegenerate.

Definition 13.21. Given a finite dimensional vector space V over a field K and a quadratic
form Φ on V , the Clifford group of Φ is the group

Γ(Φ) = {x ∈ Cl(Φ)∗ | α(x)vx−1 ∈ V for all v ∈ V }.

For any x ∈ Γ(Φ), let ρx : V → V be the map defined by

v 7→ α(x)vx−1, v ∈ V.

As in Section 13.4, the map ρ : Γ(Φ)→ GL(V ) given by x 7→ ρx is a linear action, and Γ(Φ)
is a group. This is because V is finite-dimensional and α is an automorphism.

We also define the group Γ+(Φ), called the special Clifford group, by

Γ+(Φ) = Γ(Φ) ∩ Cl0(Φ).

Proposition 13.30. The maps α and t induce an automorphism and an anti-automorphism
of the Clifford group, Γ(Φ).

The following key result obtained in Section 13.4 still holds because its proof does not
depend on the field K.

Theorem 13.31. Let V be a finite dimensional vector space over a field K and let Φ a
quadratic form on V . For every element x of the Clifford group Γ(Φ), if x ∈ V then Φ(x) 6= 0
and the map ρx : V → V given by

v 7→ α(x)vx−1 for all v ∈ V

is the reflection about the hyperplane H orthogonal to the non-isotropic vector x.

We would like to show that ρ is a surjective homomorphism from Γ(Φ) onto O(Φ), and
a surjective homomorphism from Γ+(Φ) onto SO(Φ).

In order to prove that ρx ∈ O(Φ) for any x ∈ Γ(Φ), we define a notion of norm on Γ(Φ),
and for this we need to define a notion of conjugation on Cl(Φ).

Definition 13.22. We define conjugation on a Clifford algebra Cl(Φ) as the map

x 7→ x = t(α(x)) for all x ∈ Cl(Φ).
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Conjugation is an anti-automorphism.

If V has finite dimension n and (e1, . . . , en) is a basis of V , in view of previous remarks,
conjugation is defined by

ei = −ei
ei1ei2 · · · eik = (−1)keikeik−1

· · · ei1

where 1 ≤ i1 < i2 · · · < ik ≤ n, and of course, 1 = 1.

Definition 13.23. The map N : Cl(Φ)→ Cl(Φ) given by

N(x) = xx

is called the norm of Cl(Φ).

Observe that N(v) = vv = −v2 = −Φ(v) · 1 for all v ∈ V .

Up to this point, there is no assumption regarding the degeneracy of ϕ. Now we will
need to assume that ϕ is nondegenerate. We observed that the proof of Lemma 13.11 goes
through as long as ϕ is nondegenerate. Thus we have

Lemma 13.32. Assume ϕ is a nondegenerate bilinear map on V . The kernel of the map
ρ : Γ(Φ)→ GL(V ) is K∗·1, the multiplicative group of nonzero scalar multiples of 1 ∈ Cl(Φ).

We also observed that the proof of Proposition 13.12 goes through as long as ϕ is non-
degenerate.

Proposition 13.33. Assume ϕ is a nondegenerate bilinear map on V . If x ∈ Γ(Φ), then
N(x) ∈ K∗ · 1.

Similarly the following holds.

Proposition 13.34. Assume ϕ is a nondegenerate bilinear map on V . The restriction of
the norm N to Γ(Φ) is a homomorphism N : Γ(Φ) → K∗ · 1, and N(α(x)) = N(x) for all
x ∈ Γ(Φ).

Finally we obtain the following result.

Proposition 13.35. Assume ϕ is a nondegenerate bilinear map on V . The set of non-
isotropic vectors in V (those x ∈ V such that Φ(x) 6= 0) is a subset of Γ(Φ), and ρ(Γ(Φ)) ⊆
O(Φ).

We have the following theorem.

Theorem 13.36. Assume ϕ is a nondegenerate bilinear map on V . The map ρ : Γ(Φ) →
O(Φ) is a surjective homomorphism whose kernel is K∗ ·1, and the map ρ : Γ+(Φ)→ SO(Φ)
is a surjective homomorphism whose kernel is K∗ · 1.
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Proof. The Cartan-Dieudonné holds for any nondegenerate quadratic form Φ over a field
of characteristic 6= 2, in the sense that every isometry f ∈ O(Φ) is the composition f =
s1◦· · ·◦sk of reflections sj defined by hyperplanes orthogonal to non-isotropic vectors wj ∈ V .
(see Dieudonné [31], Chevalley [25], Bourbaki [14], or Gallier [48], Chapter 7, Problem 7.14).
Then we have

f = ρ(w1 · · ·wk),

and since the wj are non-isotrotpic Φ(wj) 6= 0, so wj ∈ Γ(Φ) and we have w1 · · ·wk ∈ Γ(Φ).

For the second statement, we need to show that ρ maps Γ+(Φ) into SO(Φ). If this was
not the case, there would be some improper isometry f ∈ O(Φ) so that ρx = f , where
x ∈ Γ(Φ) ∩ Cl0(Φ). However, we can express f as the composition of an odd number of
reflections, say

f = ρ(w1 · · ·w2k+1).

Since
ρ(w1 · · ·w2k+1) = ρx,

we have x−1w1 · · ·w2k+1 ∈ Ker (ρ). By Lemma 13.32, we must have

x−1w1 · · ·w2k+1 = λ · 1

for some λ ∈ K∗, and thus
w1 · · ·w2k+1 = λ · x,

where x has even degree and w1 · · ·w2k+1 has odd degree, which is impossible.

The groups Pin and Spin are defined as follows.

Definition 13.24. Assume ϕ is a nondegenerate bilinear map on V . We define the pinor
group Pin(Φ) as the group

Pin(Φ) = {x ∈ Γ(Φ) | N(x) = ±1},

equivalently

Pin(Φ) = {x ∈ Cl(Φ) | xvx ∈ V for all v ∈ V , N(x) = ±1},

and the spinor group Spin(Φ) as Pin(Φ) ∩ Γ+(Φ). Equivalently,

Spin(Φ) = {x ∈ Cl0(Φ) | xvx ∈ V for all v ∈ V , N(x) = ±1}.

This time, if the field K is not R or C, it is not obvious that the restriction of ρ to Pin(Φ)
is surjective onto O(Φ) and that the restriction of ρ to Spin(Φ) is surjective onto SO(Φ).

To understand this better, assume that

ρx = ρ(y) = f
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for some x, y ∈ Γ(Φ) and some f ∈ O(Φ). Then ρ(yx−1) = id, which by Lemma 13.32
implies that yx−1 = λ1 for some λ ∈ K∗, that is,

y = λx.

Then we obtain

N(y) = yy = λxλx = λ2xx = λ2N(x).

This suggests defining a map σ from O(Φ) to the group K∗/(±(K∗)2) by

σ(f) = [N(x)] for any x ∈ Γ(Φ) with ρx = f,

where ±(K∗)2 denotes the multiplicative subgroup of K∗ consisting of all elements of the
form ±λ2, with λ ∈ K∗, and [N(x)] denotes the equivalence class of N(x) in K∗/(±(K∗)2).
Then we have the following result.

Proposition 13.37. Assume ϕ is a nondegenerate bilinear map on V . We have the exact
sequences

(1) // {−1,1} // Pin(Φ)
ρ //O(Φ) σ // Imσ // (1)

and

(1) // {−1,1} // Spin(Φ)
ρ // SO(Φ) σ // Imσ // (1).

Proof. Since by Lemma 13.32 the kernel of the map ρ : Γ(Φ)→ GL(V ) is K∗ · 1, and since
N(x) = ±1 if x ∈ Pin(Φ), the sequence is exact at Pin(Φ). For any x ∈ Pin(Φ), since
N(x) = ±1, we have σ(ρx) = 1, which means that Im ρ ⊆ Kerσ. Assume that f ∈ Kerσ,
which means that ρx = f some x ∈ Γ(Φ) such that N(x) = ±λ2 for some λ ∈ K∗. Then
N(λ−1x) = ±1 so λ−1x ∈ Pin(Φ) and since ρ is a homomorphism, ρ(λ−1x) = ρ(λ−1)ρx =
id ◦ f = f , which shows that Kerσ ⊆ Im ρ. The fact that the second sequence is exact
follows from the fact that the first sequence is exact and by definition of Spin(Φ).

If K = R or K = C, every element of K is of the form ±λ2, so ρ is surjective, which
gives another proof of Theorem 13.15.

Remarks:

(1) Our definition of σ is inspired by the definition of Mnemné and Testard [84] (Chapter
4, Section 4.7) who define σ from SO(Φ) to the group K∗/(K∗)2 by

σ(f) = [N(x)] for any x ∈ Γ(Φ) with ρx = f.

Allowing negative squares as well as positive squares yields the surjectivity of ρ when
K = R or C.
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(2) We define the subgroup Spin+(Φ) of Spin(Φ) by

Spin+(Φ) = {x ∈ Cl0(Φ) | xvx ∈ V for all v ∈ V , N(x) = 1}.

The image of Spin+(Φ) by ρ is a subgroup of SO(Φ) denoted by SO+(Φ). For example,
when K = R and Φ = Φp,q, we have SO+(Φp,q) = SO0(p, q), the connected component
of the identity. The group Spin+(1, 1) has two connected components but Spin+(p, q)
is connected for p + q ≥ 2 and (p, q) 6= (1, 1). The groups Spin+(n, 1) ∼= Spin+(1, n)
are simply connected for n ≥ 3, but in general Spin+(p, q) is not simply connected;
for example, Spin+(3, 3) is not simply connected; see Lounesto [79] (Chapter 17).

If K is a an arbitrary field, we can’t expect that the periodicity results of Section 13.8
and Section 13.9 hold for the Clifford algebra Cl(Φ). Still some interesting facts about the
structure of the algebras Cl(Φ) can be established. For this, we need to define the notion of
a central simple K-algebra.

If A is an associative K-algebra over a field K with identity element 1, then there is an
injection of the field K into A given by λ 7→ λ · 1, so that we can view K · 1 as a copy of K
in A. Observe that every element λ · 1 ∈ K · 1 commutes with every element u ∈ A, since
by K-bilinearity of the multiplication operation (u, v) 7→ uv on A, we have

(λ · 1)u = λ · (1u) = λ · u

and
u(λ · 1) = λ · (u1) = λ · u.

This shows that K · 1 is a contained in the center of A, which is defined as follows.

Definition 13.25. Given any associative K-algebra with identity element 1 (where K is a
field), the center Z(A) of A is the subalgebra of A given by

Z(A) = {u ∈ A | uv = vu for all v ∈ A}.

The K-algebra A is called a central algebra if Z(A) = K · 1.

As we just observed, K · 1 ⊆ Z(A). A typical example of a central K-algebra is the
algebra Mn(K) of n× n matrices over a field K.

Definition 13.26. An associative K-algebra with identity element 1 is simple if for any
two-sided ideal A in A, either A = (0) or A = A. In other words A contains no nonzero
proper two-sided ideals.

Again, a typical example of a simple K-algebra is the algebra Mn(K) of n× n matrices
over a field K. By a theorem of Wedderburn, any finite-dimensional central simple K-algebra
is isomorphic to the algebra Mn(∆) of n× n matrices over some division ring (also called a
skew field) ∆ whose center is K, for some n ≥ 1; see Dummit and Foote [41], Chapter 17,
Section 4, and Chapter 18, Section 2, Theorem 4.

Based on results of Chevalley [25], the following results are proved in Bourbaki [14] (§9,
no 4, Theorem 2, its Corollary, and Theorem 3).
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Theorem 13.38. If m = 2r is even, for any nondegenerate quadratic form Φ over a K-
vector space E of dimension m, the Clifford algebra Cl(Φ) is a central simple algebra of
dimension 2m. If m > 0, the Clifford algebra Cl0(Φ) has a center Z of dimension 2, and
either Cl0(Φ) is simple if Z is a field, or Cl0(Φ) is the direct sum of two simple subalgebras
of dimension 2m−2.

Remark: More is true when Φ is a neutral form (which means that E is the direct sum
of two totally isotropic subspaces). In this case, Cl(Φ) is isomorphic to the algebra of
endomorphisms End(

∧
N) of the exterior product

∧
N of some totally isotropic subspace N

of E of dimension r.

Theorem 13.39. If m = 2r + 1 is odd, for any nondegenerate quadratic form Φ over a K-
vector space E of dimension m (with char(K) 6= 2), the Clifford algebra Cl0(Φ) is a central
simple algebra of dimension 22r. The Clifford algebra Cl(Φ) has a center Z of dimension 2,
and Cl(Φ) is isomorphic to Z ⊗K Cl0(Φ); as a consequence, Cl(Φ) is either simple or the
direct sum of two simple subalgebras.

A related result due to Chevalley asserts that Cl(Φ) is isomorphic to a subalgebra of
the algebra of endomorphisms End(

∧
E). To prove this, Chevalley introduced a product

operation on
∧
E called the Clifford product . The reader is referred to Lounesto [79] (Chapter

22) for details on this construction, as well as a simpler construction due to Riesz (who
introduces an exterior product in Cl(Φ)).

The above results have some interesting applications to representation theory. Indeed,
they lead to certain irreducible representations known as spin representations or half-spin
representations first discovered by Élie Cartan. The spaces that they act on are called
spinors or half-spinors . Such representations play an important role in theoretical physics.
The interested reader is referred to Fulton and Harris [47] (Lecture 20) or Jost [66] (Section
2.4).

13.11 Problems

Problem 13.1. The “right way” (meaning convenient and rigorous) to define the unit
quaternions is to define them as the elements of the unitary group SU(2), namely the
group of 2× 2 complex matrices of the form(

α β

−β α

)
α, β ∈ C, αα + ββ = 1.

Then, the quaternions are the elements of the real vector space H = RSU(2). Let 1, i, j,k
be the matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,
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then H is the set of all matrices of the form

X = a1 + bi + cj + dk, a, b, c, d ∈ R.

Indeed, every matrix in H is of the form

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R.

(1) Prove that the quaternions 1, i, j,k satisfy the famous identities discovered by Hamil-
ton:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

Prove that H is a skew field (a noncommutative field) called the quaternions , and a real
vector space of dimension 4 with basis (1, i, j,k); thus as a vector space, H is isomorphic to
R4.

A concise notation for the quaternion X defined by α = a+ ib and β = c+ id is

X = [a, (b, c, d)].

We call a the scalar part of X and (b, c, d) the vector part of X. With this notation,
X∗ = [a,−(b, c, d)], which is often denoted by X. The quaternion X is called the conjugate
of q. If q is a unit quaternion, then q is the multiplicative inverse of q. A pure quaternion is
a quaternion whose scalar part is equal to zero.

(2) Given a unit quaternion

q =

(
α β

−β α

)
∈ SU(2),

the usual way to define the rotation ρq (of R3) induced by q is to embed R3 into H as the
pure quaternions, by

ψ(x, y, z) =

(
ix y + iz

−y + iz −ix

)
, (x, y, z) ∈ R3.

Observe that the above matrix is skew-Hermitian (ψ(x, y, z)∗ = −ψ(x, y, z)). But, the space
of skew-Hermitian matrices is the Lie algebra su(2) of SU(2), so ψ(x, y, z) ∈ su(2). Then, q
defines the map ρq (on R3) given by

ρq(x, y, z) = ψ−1(qψ(x, y, z)q∗),
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where q∗ is the inverse of q (since SU(2) is a unitary group) and is given by

q∗ =

(
α −β
β α

)
.

Actually, the adjoint representation of the group SU(2) is the group homomorphism
Ad: SU(2)→ GL(su(2)) defined such that for every q ∈ SU(2),

Adq(A) = qAq∗, A ∈ su(2).

Therefore, modulo the isomorphism ψ, the linear map ρq is the linear isomorphism Adq. In
fact, ρq is a rotation (and so is Adq), which you will prove shortly.

Since the matrix ψ(x, y, z) is skew-Hermitian, the matrix −iψ(x, y, z) is Hermitian, and
we have

−iψ(x, y, z) =

(
x z − iy

z + iy −x

)
= xσ3 + yσ2 + zσ1,

where σ1, σ2, σ3 are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Check that i = iσ3, j = iσ2, k = iσ1. Prove that matrices of the form xσ3 + yσ2 + zσ1

(with x, y, x ∈ R) are exactly the 2× 2 Hermitian matrix with zero trace.

(3) Prove that for every q ∈ SU(2), if A is any 2 × 2 Hermitian matrix with zero trace
as above, then qAq∗ is also a Hermitian matrix with zero trace.

Prove that
det(xσ3 + yσ2 + zσ1) = det(qAq∗) = −(x2 + y2 + z2).

We can embed R3 into the space of Hermitian matrices with zero trace by

ϕ(x, y, z) = xσ3 + yσ2 + zσ1.

Check that
ϕ = −iψ

and
ϕ−1 = iψ−1.

Prove that every quaternion q induces a map rq on R3 by

rq(x, y, z) = ϕ−1(qϕ(x, y, z)q∗) = ϕ−1(q(xσ3 + yσ2 + zσ1)q∗)

which is clearly linear, and an isometry. Thus, rq ∈ O(3).
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(4) Find the fixed points of rq, where q = (a, (b, c, d)). If (b, c, d) 6= (0, 0, 0), then show
that the fixed points (x, y, z) of rq are solutions of the equations

−dy + cz = 0

cx− by = 0

dx− bz = 0.

This linear system has the nontrivial solution (b, c, d) and the matrix of this system is0 −d c
c −b 0
d 0 −b

 .

Prove that the above matrix has rank 2, so the fixed points of rq form the one-dimensional
space spanned by (b, c, d). Deduce from this that rq must be a rotation.

Prove that r : SU(2)→ SO(3) given by r(q) = rq is a group homomorphism whose kernel
is {I,−I}.

(5) Find the matrix Rq representing rq explicitly by computing

q(xσ3 + yσ2 + zσ1)q∗ =

(
α β

−β α

)(
x z − iy

z + iy −x

)(
α −β
β α

)
.

You should find

Rq =

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2bc+ 2ad a2 − b2 + c2 − d2 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2

 .

Since a2 + b2 + c2 + d2 = 1, this matrix can also be written as

Rq =

2a2 + 2b2 − 1 2bc− 2ad 2ac+ 2bd
2bc+ 2ad 2a2 + 2c2 − 1 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd 2a2 + 2d2 − 1

 .

Prove that rq = ρq.

(6) To prove the surjectivity of r algorithmically, proceed as follows.

First, prove that tr(Rq) = 4a2 − 1, so

a2 =
tr(Rq) + 1

4
.

If R ∈ SO(3) is any rotation matrix and if we write

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33,
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we are looking for a unit quaternion q ∈ SU(2) such that rq = R. Therefore, we must have

a2 =
tr(R) + 1

4
.

We also know that
tr(R) = 1 + 2 cos θ,

where θ ∈ [0, π] is the angle of the rotation R. Deduce that

|a| = cos

(
θ

2

)
(0 ≤ θ ≤ π).

There are two cases.

Case 1 . tr(R) 6= −1, or equivalently θ 6= π. In this case a 6= 0. Pick

a =

√
tr(R) + 1

2
.

Then, show that

b =
r32 − r23

4a
, c =

r13 − r31

4a
, d =

r21 − r12

4a
.

Case 2 . tr(R) = −1, or equivalently θ = π. In this case a = 0. Prove that

4bc = r21 + r12

4bd = r13 + r31

4cd = r32 + r23

and

b2 =
1 + r11

2

c2 =
1 + r22

2

d2 =
1 + r33

2
.

Since q 6= 0 and a = 0, at least one of b, c, d is nonzero.

If b 6= 0, let

b =

√
1 + r11√

2
,

and determine c, d using

4bc = r21 + r12

4bd = r13 + r31.
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If c 6= 0, let

c =

√
1 + r22√

2
,

and determine b, d using

4bc = r21 + r12

4cd = r32 + r23.

If d 6= 0, let

d =

√
1 + r33√

2
,

and determine b, c using

4bd = r13 + r31

4cd = r32 + r23.

(7) Given any matrix A ∈ su(2), with

A =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,

write θ =
√
u2

1 + u2
2 + u2

3 and prove that

eA = cos θI +
sin θ

θ
A, θ 6= 0,

with e0 = I. Therefore, eA is a unit quaternion representing the rotation of angle 2θ and
axis (u1, u2, u3) (or I when θ = kπ, k ∈ Z). The above formula shows that we may assume
that 0 ≤ θ ≤ π.

An equivalent but often more convenient formula is obtained by assuming that u =
(u1, u2, u3) is a unit vector, equivalently det(A) = −1, in which case A2 = −I, so we have

eθA = cos θI + sin θA.

Using the quaternion notation, this read as

eθA = [cos θ, sin θ u].

Prove that the logarithm A ∈ su(2) of a unit quaternion

q =

(
α β

−β α

)
with α = a+ bi and β = c+ id can be determined as follows:
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If q = I (i.e. a = 1) then A = 0. If q = −I (i.e. a = −1), then

A = ±π
(
i 0
0 −i

)
.

Otherwise, a 6= ±1 and (b, c, d) 6= (0, 0, 0), and we are seeking some A = θB ∈ su(2) with
det(B) = 1 and 0 < θ < π, such that

q = eθB = cos θI + sin θB.

Then,

cos θ = a (0 < θ < π)

(u1, u2, u3) =
1

sin θ
(b, c, d).

Since a2+b2+c2+d2 = 1 and a = cos θ, the vector (b, c, d)/ sin θ is a unit vector. Furthermore
if the quaternion q is of the form q = [cos θ, sin θu] where u = (u1, u2, u3) is a unit vector
(with 0 < θ < π), then

A = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
is a logarithm of q.

Show that the exponential map exp: su(2) → SU(2) is surjective, and injective on the
open ball

{θB ∈ su(2) | det(B) = 1, 0 ≤ θ < π}.

(8) You are now going to derive a formula for interpolating between two quaternions.
This formula is due to Ken Shoemake, once a Penn student and my TA! Since rotations in
SO(3) can be defined by quaternions, this has applications to computer graphics, robotics,
and computer vision.

First, we observe that multiplication of quaternions can be expressed in terms of the
inner product and the cross-product in R3. Indeed, if q1 = [a, u1] and q2 = [a2, u2], then
check that

q1q2 = [a1, u1][a2, u2] = [a1a2 − u1 · u2, a1u2 + a2u1 + u1 × u2].

We will also need the identity

u× (u× v) = (u · v)u− (u · u)v.

Given a quaternion q expressed as q = [cos θ, sin θ u], where u is a unit vector, we can
interpolate between I and q by finding the logs of I and q, interpolating in su(2), and then
exponentiating. We have

A = log(I) =

(
0 0
0 0

)
, B = log(q) = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
.
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Since SU(2) is a compact Lie group and since the inner product on su(2) given by

〈X, Y 〉 = tr(X>Y )

is Ad(SU(2))-invariant, it induces a biinvariant Riemannian metric on SU(2), and the curve

λ 7→ eλB, λ ∈ [0, 1]

is a geodesic from I to q in SU(2). We write qλ = eλB. Given two quaternions q1 and q2,
because the metric is left invariant, the curve

λ 7→ Z(λ) = q1(q−1
1 q2)λ, λ ∈ [0, 1]

is a geodesic from q1 to q2. Remarkably, there is a closed-form formula for the interpolant
Z(λ). Say q1 = [cos θ, sin θ u] and q2 = [cosϕ, sinϕv], and assume that q1 6= q2 and q1 6= −q2.

Define Ω by
cos Ω = cos θ cosϕ+ sin θ sinϕ(u · v).

Since q1 6= q2 and q1 6= −q2, we have 0 < Ω < π. Prove that

Z(λ) = q1(q−1
1 q2)λ =

sin(1− λ)Ω

sin Ω
q1 +

sinλΩ

sin Ω
q2.

(9) We conclude by discussing the problem of a consistent choice of sign for the quaternion
q representing a rotation R = ρq ∈ SO(3). We are looking for a “nice” section s : SO(3)→
SU(2), that is, a function s satisfying the condition

ρ ◦ s = id,

where ρ is the surjective homomorphism ρ : SU(2)→ SO(3).

I claim that any section s : SO(3)→ SU(2) of ρ is neither a homomorphism nor contin-
uous. Intuitively, this means that there is no “nice and simple ” way to pick the sign of the
quaternion representing a rotation.

To prove the above claims, let Γ be the subgroup of SU(2) consisting of all quaternions of
the form q = [a, (b, 0, 0)]. Then, using the formula for the rotation matrix Rq corresponding
to q (and the fact that a2 + b2 = 1), show that

Rq =

1 0 0
0 2a2 − 1 −2ab
0 2ab 2a2 − 1

 .

Since a2 + b2 = 1, we may write a = cos θ, b = sin θ, and we see that

Rq =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

 ,
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a rotation of angle 2θ around the x-axis. Thus, both Γ and its image are isomorphic to
SO(2), which is also isomorphic to U(1) = {w ∈ C | |w| = 1}. By identifying i and i
and identifying Γ and its image to U(1), if we write w = cos θ + i sin θ ∈ Γ, show that the
restriction of the map ρ to Γ is given by ρ(w) = w2.

Prove that any section s of ρ is not a homomorphism. (Consider the restriction of s to
the image ρ(Γ)).

Prove that any section s of ρ is not continuous.

Problem 13.2. Let A = A0 ⊕ A1 and B = B0 ⊕B1 be two Z/2-graded algebras.

(i) Show that A ⊗̂B is Z/2-graded by

(A ⊗̂B)0 = (A0 ⊗B0)⊕ (A1 ⊗B1),

(A ⊗̂B)1 = (A0 ⊗B1)⊕ (A1 ⊗B0).

(ii) Prove Proposition 13.3.

Hint . See See Bröcker and tom Dieck [19], Chapter 1, Section 6, page 57.

Problem 13.3. Prove Proposition 13.8.

Hint . See Bröcker and tom Dieck [19], Chapter 1, Section 6, page 58.

Problem 13.4. Recall that

Spin+(p, q) = {x ∈ Cl0p,q | xvx ∈ Rn for all v ∈ Rn, N(x) = 1},

and that SO0(p, q) is the connected component of SO(p, q) containing the identity. Show
that the map ρ : Spin+(p, q)→ SO0(p, q) is a surjective homomorphism with kernel {−1,1}.
Hint . See Lounesto [79], Chapter 17, Section 17.2.

Problem 13.5. Prove Proposition 13.20.

Hint . See Fulton [47], Chapter 11, Lemma 11.6.

Problem 13.6.

(i) Prove Proposition 13.21.

Hint . See Fulton [47], Chapter 11, Lemma 11.17.

(ii) Show that Z2 acts evenly on Pin(p, q).

Problem 13.7. Show that the complexification C⊗R Clp,q of the real Clifford algebra Clp,q
is isomorphic to Cl(ΦC

n), where

ΦC
n(x1, . . . , xn) = x2

1 + · · ·+ x2
n

in some orthonormal basis.
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[12] J.E. Bertin. Algèbre linéaire et géométrie classique. Masson, first edition, 1981.

[13] Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology. GTM No.
82. Springer-Verlag, first edition, 1986.
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[36] Jean Dieudonné. Éléments d’Analyse, Tome II. Chapitres XII à XV. Edition Jacques
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[54] André Gramain. Topologie des Surfaces. Collection Sup. Puf, first edition, 1971.

[55] Robin Green. Spherical harmonic lighting: The gritty details. In Archives of the Game
Developers’ Conference, pages 1–47, 2003.

[56] Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. Wiley Inter-
science, first edition, 1978.

[57] Brian Hall. Lie Groups, Lie Algebras, and Representations. An Elementary Introduc-
tion. GTM No. 222. Springer-Verlag, first edition, 2003.

[58] Sigurdur Helgason. Geometric Analysis on Symmetric Spaces. SURV, Vol. 39. AMS,
first edition, 1994.

[59] Sigurdur Helgason. Groups and Geometric Analysis. Integral Geometry, Invariant
Differential Operators and Spherical Functions. MSM, Vol. 83. AMS, first edition,
2000.

[60] Morris W. Hirsch. Differential Topology. GTM No. 33. Springer-Verlag, first edition,
1976.

[61] Friedrich Hirzebruch. Topological Methods in Algebraic Geometry. Springer Classics
in Mathematics. Springer-Verlag, second edition, 1978.

[62] Harry Hochstadt. The Functions of Mathematical Physics. Dover, first edition, 1986.

[63] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,
first edition, 1990.

[64] Dale Husemoller. Fiber Bundles. GTM No. 20. Springer-Verlag, third edition, 1994.

[65] Nathan Jacobson. Basic Algebra II. Dover Press, second edition, 1989.



BIBLIOGRAPHY 613

[66] Jürgen Jost. Riemannian Geometry and Geometric Analysis. Universitext. Springer-
Verlag, fourth edition, 2005.

[67] A.A. Kirillov. Representation Theory and Noncommutative Harmonic Analysis. En-
cyclopaedia of Mathematical Sciences, Vol. 22. Springer-Verlag, first edition, 1994.

[68] A.A. Kirillov. Spinor representations of orthogonal groups. Technical report, University
of Pennsylvania, Math. Department, Philadelphia, PA 19104, 2001. Course Notes for
Math 654.

[69] Anthony W. Knapp. Representation Theory of Semisimple Groups. Princeton Land-
marks in Mathematics. Princeton University Press, first edition, 2001.

[70] Anthony W. Knapp. Lie Groups Beyond an Introduction. Progress in Mathematics,
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14. Hermann, first edition, 1972.

[82] Jerrold E. Marsden and T.S. Ratiu. Introduction to Mechanics and Symmetry. TAM,
Vol. 17. Springer-Verlag, first edition, 1994.



614 BIBLIOGRAPHY

[83] John W. Milnor and James D. Stasheff. Characteristic Classes. Annals of Math. Series,
No. 76. Princeton University Press, first edition, 1974.
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((−,−)), 399
((−,−)) : Hk

DR(M)×Hn−k
DR (M) −→ R, 398

((A,B)), 400
((ui)i∈Σ,≤), 101

(−,−) : Ai(ξ)⊗Aj(ξ∗) Z−→ Ai+j(ξ⊗ ξ∗), 503
(K(I), ι), 37
(Uα, ϕα), 412
(X, Y )X, 400
(uk)k∈K , 291
(ω, η), 389
(dω)x, 147
(fi)i∈I , 36
(gij), 27
(gij), 27
(u∅), 103
∗α, 113
1M , 275
A, 57
A ⊗̂B, 559
AR ∈M2n(R), 520
B, 411
B(x, y), 350
B∗(U), 153
Bk(M), 168
Bp(U), 153
C(Sn), 328
Ck(U ,G), 430
CC(Sn), 328
D(p), 222
Dp, 222
E, 411
E � Uα, 412

E ×G F , 459
E∗, 26
E1 ⊗ · · · ⊗ En, 38
Eb, 412
Ek, 329
F , 411
F (V ), 440
F (ξ), 440
F∇, 494
Fk(σ, τ), 337
G, 411
G∞, 429
G∞(U), 429
Hk

DR(M), 168
Hm
l (r, θ, ϕ), 313

Hp(U), 153
Hp

DR(U), 153
H•(U), 153
H•DR(M), 168
H•DR(U), 153
Hi, 273
HR
n , 441, 467

In, 510
Iσ(f), 266
K ? f , 345
K(n), 588
K(I), 36
K∇, 494
L(G), 454
L2(S1), 302
L2(S2), 305, 312
L2(Sn), 327
L2
C(Sn), 328
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LXY , 175
LXω, 176
Lv∗1 ,...,v∗n : E1 ⊗ · · · ⊗ En −→ K, 50
M(m, J, k1, . . . , kn), 78
N(x), 246, 269
Nm
l , 311

P (Kξ), 510
P (R∇), 510
P (Rξ), 510
P (Ωα), 510
P (ξ), 458
Pm
k (t), 309
Pk(t), 308
P λ
k (t), 345
Pγ, 488
Pk,n(t), 334, 336
Qk(t), 308
R∇, 489, 492, 494
R∇X,Y , 492
Sn−1
p,q , 578
TM , 434
T , 271
T (V ) =

⊕
m≥0 V

⊗m, 57, 59
T ∗M , 434
T •,•(V ), 61
T •(V ), 57
T r,s(M), 162, 448
T r,s(V ), 61
T r,s ξ, 443
T rs (V ), 63
V ⊗0, 57
V ⊗m, 57
X[f ], 175
X[, 375, 449
Y mk
k , 330
Z(A), 599
Z∗(U), 153
Z1(U ,G), 431
Zk(M), 168
Zp(U), 153
Zτ
k , 333, 336

[P (R∇)], 510

[Pf(R∇)], 522
∆f , 303, 305
∆(g), 278
∆C , 391
Γ, 343
Γ(B, ξ), 419
Γ(U,G∞), 429
Γ(U, ξ), 419
Γ(Φ), 562, 595
Γ(ξ), 419
Γ+(Φ), 562, 595
Γn, 565
Γp,q, 576
Γ+
p,q, 576

Ω = (Ωij), 494
ΦC
n , 592

Φn, 555
Φp,q, 576
Φp,q, 555
Z : Ai(ξ)×Aj(η) −→ Ai+j(ξ ⊗ η), 489⊗

V , 57⊗m V , 57∧
T ∗M , 161∧
ξ, 443∧
(E;F ), 133∧
(V ), 60∧k ξ, 443∧nE, 99∧n(E), 99∧n(V ), 108∧•(V ), 108

Ȟ1(B,G), 430, 431
χ(M), 508, 524
C[X1, . . . , Xn2 ], 509∐

α∈I , 429
δi j, 50
dom(M), 75, 77
[ : Ai(ξ)×A2(Hom(ξ, ξ)) −→ Ai+2(ξ), 498
εF , 414
εV , 434
εk, 434
εi,J,H , 129
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∂(ψi1 ,ψi2 ,...,ψin )

∂(u1,u2,...,un)
, 246

L2(T ), 301
L2([a, b]), 290∫
G
f , 277∫

G
f(g)dg, 279∫

G
fω, 277∫

M
ω, 250∫

M
f , 275∫

M
f(t)dt, 275∫

M
f VolM , 275∫

M
: Anc (M) −→ R, 250∫

M
ω, 251∫

U
ω, 249∫

S1 f(θ)g(θ) dθ, 302∫
Rn ω, 248∫
Rn f(x)dx1 · · · dxn, 248
ι�, 75
ι⊗, 39
ι∧, 100
〈−,−〉E∗ , 30
〈f, g〉Sn , 327
〈f, h〉M , 322
〈〈−,−〉〉, 503
〈〈A,B〉〉, 400(
ai1...irj1...js

)
, 64

y :
∧pE ×

∧p+q E∗ −→
∧q E∗, 116

Cl(V,Φ), 555, 593
Cl(Φ), 556, 593
Cl(Φ)∗, 561
Cl(Φ)o, 558
Cl(n,C), 592
Cli(Φ), 559, 594
Cl1, 557
Cl2, 558
Cln, 565
Clp,q, 576
Pin(n), 569
Pin(p, q), 577
Spin(n), 569
Spin(p, q), 577
(f ∗, f) : f ∗ξ → ξ, 431
∗ :
∧

(V )→
∧

(V ), 114

∗ :
∧k V →

∧n−k V , 113
D : M → TM , 222
Lv∗1 ,...,v∗n :

∧n(E)→ K, 104
Lv∗1 ,...,v∗n : Sn(E)→ K, 80
N : Cl(Φ)→ Cl(Φ), 565, 596
∆: Ak(M)→ Ak(M), 386
α⊗ : E∗ ⊗ F → Hom(E,F ), 54
α : Cl(Φ)→ Cl(Φ), 558, 594∧p f :

∧pE →
∧p F , 106

· : Altn(E;R)× F → Altn(E;F ), 135
δ :
∧pE∗ →

∧n−pE, 124
δ : Ak(M)→ Ak−1(M), 385
η : En → E⊗n, 83, 107
[ : E → E∗, 27
γ :
∧pE →

∧n−pE∗, 124

d̂∇ : Aj(B)× Γ(ξ)→ Aj+1(ξ), 490
ι0 : K → T (V ), 58
ιn : V ⊗n → T (V ), 58
ι : (Rn)∗ → Rn, 435
ι : I → K(I), 36
〈−,−〉 : E × F → K, 26
Evx : P ∗ ⊗R Q→ Q, 89
EvX,Y : A2(Hom(ξ, ξ))→ A0(Hom(ξ, ξ)), 493
µ : V n → R, 253
µ :
∧n V → R, 253

∇∗ : Γ(T ∗M)→ A1(M)⊗C∞(B) Γ(T ∗M), 502
∇ : Γ(ξ)→ A1(B)⊗C∞(B) Γ(ξ), 477
∇ : X(B)× Γ(ξ)→ Γ(ξ), 477
∇ : X(M)× X(M)→ X(M), 216
∇ : Ak(M)→ HomC∞(M)(X(M),Ak(M)), 400
∆: G→ R, 278
f :
∧

(V )→ A, 110
π : E → B, 411
ψα,x : Ex → G, 531
ρx : V → V , 550, 562, 595
ρα : Uα → G, 423
ρ : Γ(Φ)→ GL(V ), 562
] : E∗ → E, 27
σ : {1, . . . , n} → {1, . . . , n}, 72
τU : π−1(U)→ U × Rn, 435
τg : M →M , 464
τ ∗U : π−1(U)→ U × (Rn)∗, 437
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θ∗U,ϕ,p = ι ◦ θ>U,ϕ,p : T ∗pM → Rn, 435
θ>U,ϕ,p : T ∗pM → (Rn)∗, 435
θU,ϕ,p : Rn → TpM , 434
ϕ∗ : H•(N)→ H•(M), 168
ϕ∗ : Ak(N)→ Ak(M), 163
ϕ∗ : Ap(V )→ Ap(U), 155
ϕg : F → F , 416
ϕα,b : Eb → F , 412
ϕ̃∗ : π−1(U)→ ϕ(U)× Rn, 435
ϕ̃ : π−1(U)→ ϕ(U)× Rn, 435
ci,j : T r,s(V )→ T r−1,s−1(V ), 69, 71
d∇ : Ai(ξ)→ Ai+1(ξ), 489, 490
dp : Ap(U)→ Ap+1(U), 147
d : A∗(M)→ A∗(M), 166
d : Ap(U)→ Ap+1(U), 147
f ⊗ g : E ⊗ F → E ′ ⊗ F ′, 41
f \ : E → E, 30
gαβ : Uα ∩ Uβ → G, 413
gαβ : Uα ∩ Uβ → Diff(G), 531
i(X) : Ak(M)→ Ak−1(M), 174

iG : G(p, n)→ RP(np)−1, 130
iΦ : V → Cl(V,Φ), 556, 593
o : V n → R, 255
p1 : Uα × F → Uα, 412
pri : Rn → R, 148
rσ : En → E⊗n, 82
s : B → E, 419
s : U → E, 419
t : Cl(Φ)→ Cl(Φ), 558, 593
vg : C0(M)→ R, 275
xi : U → R, 149
H, 546
Hk(M), 397
Hm, 258
I, 575
1, 546
GL(V ), 433
GL(n,C), 451
GL+(n,R), 451
O(V,Φ), 554
O(V, ϕ), 554
O(Φ), 555

Pin(Φ), 597
SO(V,Φ), 555
SO(V, ϕ), 555
SO(Φ), 555
Spin(Φ), 597
Spin+(Φ), 599
Spin+(p, q), 581
i, 546
j, 546
k, 546
Alt(E), 111
AltkC∞(M)(X(M)), 172
Altn(E;F ), 96
Aut(V ), 433
Diff(F ), 421
EvX , 477
Hess(f), 376
Holp(∇), 488
Hom(E,E), 30
Hom(E,E;K), 30
Hom(E,K), 26
Hom(E1, . . . , En;F ), 32
Hom(ξ, ξ′), 445
HomR(M,R), 88
HomC∞(M)(X(M), C∞(M)), 173
Homalg(A,B), 58
Homsymlin(En, F ), 72
Int(M), 259
Int(Hm), 258
Iso(V,W ), 440
L(E1, . . . , En;F ), 32
Mn(K), 58
Or(V ), 255
Pf(A), 517, 518
Pf(R∇), 522
Pf(Ωα), 521, 522
Sym, 75
Sym(V ), 60
Symn(E;F ), 72
S(V ), 84
Sk ξ, 443
Sn(E), 73
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S•(V ), 84
VolM , 244
VolSn , 245
VolRPn , 247, 283
curlF , 270
den(M), 255
den(V ), 253
divF , 269
divX, 314
eu(R∇), 522
ev, 498
grad f , 314, 375
shuffle(m,n), 85
sign(λ), 255
supp(ω), 250
vol(Sn), 328
I(D), 230
Ik(D), 230
Ia, 108
Sn, 72
µ′, 106
µ : E∗1 ⊗ · · · ⊗ E∗n ∼= Hom(E1, . . . , En;K), 51
µ :
∧n(E∗) ∼= Altn(E;K), 106

µ : Sn(E∗) −→ Symn(E;K), 85
µF : (

∧n(E∗))⊗ F −→ Altn(E;F ), 134
µF : (

∧p(Rn)∗)⊗ F −→ Altp(Rn;F ), 181
∇∇f , 377
∇ω, 400
∇df , 377
∇(X, Y ), 216
∇∗, 401
∇2
X,Y ω, 402
∇r,sS, 449
∇XY , 216
∇Xθ, 377
∇Xs, 472, 477
∇r,s
X , 448
‖f‖, 328
‖f‖2, 328
‖f‖∞, 328
ω = (ωij), 481
ω(A), 517

ω(p), 161
ω(x), 145
ω ∈ A∗c(M), 250
ω ∈ Anc (M), 250
ω ∈ Anc (U), 249
ω ∧Φ η, 133
ω∗ = (ω∗ij), 504
ω], 27, 313, 449
ωx, 145
ωSn , 240
ωRn , 239
Rm

+ , 273
ξ, 505
ξ
∗
, 504

x, 564
〈E, ‖ ‖〉, 289
〈E,ϕ〉, 289
∂M , 259
∂Rm

+ , 273
∂(P ), 325
∂Hm, 258
±(K∗)2, 598
ψ = (ψα)α∈I , 530
ψ(v) = 〈−, v〉, 26
1, 58
RXp, 221
R[X1, . . . , Xn2 ] , 509
x :

∧p+q E∗ ×
∧pE −→

∧q E∗, 116
ρH,L, 119
σ1, . . . , σak,n+1

, 341
σi, 511
?, 552
A∗(M), 161
A∗(U), 143
A∗(U ;F ), 181
A0(U), 143
A1(B; ξ), 488
A1(U), 143
A1(ξ), 488
Ai(B; ξ), 488
Ai(ξ), 488
Ak(M), 161
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Ak(M ;F ), 188, 447
Ap(U), 143
Ap(U ;F ), 181
A•(U), 144
C(T ), 301
C∞[a, b], 290
F = {Fα}α, 233
Hom(ξ, ξ′), 444
HC
k (Sn), 324
Hk(S

1), 302
Hk(S

2), 305
Hk(S

n), 324
Hk(n+ 1), 324
HC
k (n+ 1), 324
Hl(S

2), 312
Pk(Sn), 324
Pk(n+ 1), 324
PC
k (Sn), 324
PC
k (n+ 1), 324

ω̃Rn , 245
ϕ = (ϕα)α∈I , 412
ϕ(u) = 〈u,−〉, 26
ϕ∗ω, 155
ϕ∗(ω), 155
ϕ∗(ω)x, 155
ϕHom
α,b , 444

u1 � · · · � un, 73
u1 ⊗ · · · ⊗ un, 38
u1 ∧ · · · ∧ un, 99
u�k, 78
∧ : A1(M)×A1(M) −→ A2(M), 502
∧R(u) :

∧q E −→
∧p+q E, 116

∧Φ, 133, 183
⊗̂, 112
ξ = (E , π, E/G,G), 530
ξ, 411
ξ′/ξ, 453
ξ[F ], 459
ξ ⊕ ξ′, 442
ξ ⊗ ξ′, 442
ξ∗, 443
ξ⊗k, 442

ξg, 429
ξC, 445
ξR, 446
ak,n, 327
c(ξ)(t), 515
ck, 291
ck,mk , 330
ck(ξ), 514
dS, 269
dr, 271
dI, 231
dF , 183
ds, 271
e(ξ), 522
e∗I , 144
f = (fE, fB), 421
f ∗ξ, 431
f�, 73
f⊗, 33
f∧, 98
gHom
αβ , 444
i(u)z∗, 124
iXg, 375
l2, 290
l2(K), 296
lv∗1 ,...,v∗n : (u1, . . . , un) 7→ det(v∗j (ui)), 104
lv∗1 ,...,v∗n : (u1, . . . , un) 7→ v∗1(u1) · · · v∗n(un), 50
lv∗1 ,...,v∗n : (u1, . . . , un), 80
ni = ni(x), 246
ni1,i2,··· ,in(x), 246
p(ξ)(t), 515
pk(ξ), 514
si, 512
u y z∗, 117
u[, 27, 313
uI , 101
xt, 558
yml , 311
z x u∗, 122
z∗ x u, 121
Sn−1, 570
divC , 391
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(m,n)-shuffle, 85
(r, s)-tensor fields, 197
Ck-manifold with boundary

boundary, 259
definition, 259
interior, 259

K-algebra
Z/2-graded

graded tensor product, 559
center, 599
central, 599
definition, 58, 552
graded, 60, 554

homogeneous elements rank n, 60, 554
homomorphism, 58, 552
ideal, 58, 552
multiplication, 552
simple, 599

L2-norm, 285
d : Ak(M)→ Ak+1(M), 385

adjoint, 389
Hom bundle, 444
k-dimensional foliation of smooth manifold,

233
flat chart, 233
involutive distribution, 233
leaves, 233

r-dimensional tangential distribution
completely integrable, 222
definition, 222
flat chart, 225
integral manifold, 222
involutive, 223

differential ideal criterion, 231
integrability conditions, 232

lannihilating k-form, 230
locally defining one-form, 230
locally spanned, 222
vector space I(D), 230

Čech cohomology set Ȟ1(B,G), 430
Picard group, 430

algebra of differential forms A∗(U), 143
wedge product, 145

alternating multilinear map, 96
antiderivation on differential forms, 169

degree, 169

Bessel inequality, 293
beta function, 350
Betti numbers, 524
bi-invariant of integral on Lie group, 279
Bochner’s formula, 403
Bochner(connection) Laplacian

definition, 401
harmonic form, 401
relationship to Laplacian, 404
via second covariant derivative, 403

Borel construction for fibre bundles, 459
bundle map(morphism)

definition, 421
isomorphism, 421
isomorphism(local definition), 424
isomorphsim, 421
local definition, 424
preservation of fibre, 421
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cannonical isomorphism
] : E∗ → E, 27

canonical isomorphism
[ : E → E∗, 27
[ : TpM → T ∗pM , 313
] : T ∗pM → TpM , 314
definition, 26

Cartan’s formula for Lie derivative, 178
Cartan’s moving frame method, 439
Cartan-Dieudonné Theorem, 548
central K-algebra, 599
characteristic class, 474, 509

Chern class, 514
Chern polynomial, 515

de Rham cohomology class [P (R∇)], 510
definition, 510
Euler class, 522
Euler form, 522
global form Pf(Ωα), 521
global form P (R∇), 510
Pontrjagin class, 514

Pontrjagin polynomial, 515
chart with corners, 273
Clifford algebra

canonical anti-automorphsim, 558, 594
canonical automorphism, 558, 594
Z/2-grading, 559, 594

Clifford product, 600
conjugation, 564, 595
definition(for real vector space), 556
definition(over field K), 549, 593
existence, 556
generators and relations representation,

549, 561, 594
group of invertible elements, 561
monomial basis, 560, 594
norm, 565, 596
periodicity theorem, 590–592
relationship to exterior algebra, 557

Clifford group
definition(arbitrary vector space), 549, 595
definition(for real vector space), 562

representation ρx : V → V , 550, 595
representation ρ : Γ(Φ)→ GL(V ), 562

geometric interpretation, 563
special Clifford group, 550, 562, 595
twisted adjoint representation, 563

closed convex cone Rm
+ , 273

boundary, 273
corner point, 273

closed upper half space Hm, 258
boundary ∂Hm, 258
interior, 258

cocycle
definition, 428
equivalent, 429
reduction, 451

cocycle condition
cocycle, 428

complete metric space, 289
complex-valued differential forms, 485
conjugate linear form, 504
connection form(matrix)

definition, 481
transformation rule, 484

connection Laplacian of a function, 392
connection on manifold

definition, 216, 471
connection on vector bundle

connection matrix(form), 481
connection on dual bundle

connection matrix, 504
connection on dual bundle, 503
covariant derivative, 477
curvature form
R∇ = d∇ ◦ ∇, 492

definition first version, 477
definition second version, 477
dual basis representation, 483

Christoffel symbols, 483
evaluation map, 477
existence, 483
flat, 481
Hermitian, 500
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Leibniz rule, 477
local section representation, 480
metric connection, 499

existence, 500
parallel transport, 488

convex function
definiton via Hessian, 380

cotangent bundle
definition, 436
transition map, 437
trivialization map, 437

covariant derivative
k-form, 400
one-form, 450
Riemannian metric, 449
tensor fields, 448

covariant derivative ∇XY , 216
covariant derivative of vector bundle, 477
covariant differential ∇r,sS , 449
covering map

topological, 582
n-covering, 582
covering space, 582
isomorphism, 582
path lifting, 583

covering space, 582
curl of F : R3 → R3, 270
curvature form on vector bundle

R∇ = d∇ ◦ ∇, 494
R∇ = d∇ ◦ ∇, 492
curvature matrix, 494

Bianchi’s Identity, 497
global form P (R∇), 510
structure equation, 494
transformation rule, 496

definition, 494
flat, 494
local section representation, 494

Darboux derivative, 194
de Rham complex

de Rham cohomology algebra, 153, 168

de Rham cohomology group Hp(U), 153
for manifold, 142, 168
Hodge Theorem, 397
Poincaré duality, 398

de-Rham complex, 140, 153
density of vector space, 253

n-form definition, 253, 283
properites, 254
vector space den(V ), 254

derivation on differential forms, 169
differential p-form

Rn

basis representation, 145
closed, 153
compact support, 248
definition, 143
exact, 153
integration, 249
pull-back, 155
pull-back properties, 157
vector space Ap(U), 143

on manifold, 141, 161
AltkC∞(M)(X(M)), 172
compact support, 248, 250
coordinate representation, 162
integration, 251
pull-back, 163
vector space ω ∈ Apc(M), 250
vector space A∗c(M), 248
vector space Ak(M), 141, 161

vector-valued
basis representation, 182, 186
definition, 181
exterior derivative, 183, 185
exterior derivative basis representation,

186
manifolds, 188
pull-back, 185
vector space Ap(U ;F ), 181
wedge product, 182, 183
wedge product basis representation, 186

differential ideal of A•(M), 231
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directional derivative DXY (p), 471
divergence

divF : R3 → R , 269
divX : M → R, 314

chart representation, 315, 318, 370
connection, 392

chart representaton, 392
Hodge, 388

Divergence Theorem, 269
Green’s Formula, 322

domain with smooth boundary, 261
outward directed tangent vector, 262

dual bundle
construction, 443

dual space, 26
dual basis, 27

effective action, 416
Einstein summation convention, 28, 64
elementary symmetric functions in n variables

definition, 511
Newton’s formula, 512

Euler characteristic, 524
Betti number, 524

evaluation map Evx : P ∗ ⊗R Q→ Q, 89
exterior algebra, 60, 99

construction, 109
inner product, 112
interior products, 110

insertion operator, 124
left hook, 117
right hook, 121

universal mapping property, 110
wedge product, 108

exterior differential d : Ap(U)→ Ap+1(U)
anti-derivation degree −1, 150

exterior differential d : Ap(U)→ Ap+1(U)
basis representation, 147
calculating, 149
curl, 152
definition, 147
divergence, 152

gradient, 151
exterior differential on manifold

calculation, 165
definition, 164
vector field interpretation, 173

exterior differentiation on manifold, 166
exterior tensor power

linear maps, 100
simple or decomposable

Plücker’s criteria, 130
criteria, 127

vector space
alternating n-forms, 100
alternating n-tensors, 100
basis, 102
compound, 100
construction, 99
definition, 98
duality, 106
simple or decomposable, 100
universal mapping property, 98

faithfull action, 416
fibre bundle

associated principal bundle, 459
frame bundle, 459

base space, 412
bundle chart, 412
bundle map, 421, 424
cocycle condition, 418, 428
definition, 412
equivalent, 424
fibre, 412
global section, 419

construction, 420
isomorphic, 421
left bundle, 464
local section, 419
local trivialization, 412
principal fibre bundle, 416, 433
pullback or induced, 431

construction, 432
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restriction, 433
right bundle, 464
smooth section, 419
structure group, 412
total space, 412
transition maps, 413
trivial bundle, 424
trivializing cover, 412

compatible with, 417
equivalent, 417

vector bundle, 433
Fourier coefficient, 286

Bessel inequality, 293
properties, 293

Fourier series
Hilbert space, 291

Fourier coefficient, 291
partial sum, 291

on S1, 302
Parseval identity, 297

frame bundle
construction, 441

free vector space generated by I, 35
construction, 36
universal mapping property, 36

Frobenius theorem, 225, 232, 233
fundamental group, 587
Funk-Hecke Formula, 348

Gamma function
integral, 343
recurrence relation, 343

Gauss-Bonnet 2-form, 508
Gauss-Bonnet theorem, 508
Gaussian curvature, 508
Gegenbauer (ultraspherical) polynomial, 336

addition formula, 340
differential equation, 344
fundamental system on Sn, 341
generating function, 345
generating spherical harmonics, 342
relationship to Legendre polynomials, 337

reproducing kernel, 340
Rodrigues’ formula, 344

Gelfand pair
character of L2

C(K\G/K), 366
definition, 364
Fourier transform, 367
Pontrjagin dual, 367
zonal spherical function, 364

general Legendre equation, 308
Generalized Gauss-Bonnet theorem, 525
gradient

f ∈ C∞(M), 314, 375
chart representation, 315, 376

f ∈ C∞(M), 450
Grassmann algebra, see exterior algebra, see

exterior algebra
Grassmannian

complex
embedding in projective space, 131
Klein quadratic, 131

real
embedding in projective space, 130
gradient, 383
Hessian, 383

Green’s Formula, 395
Green’s formula, 322
group action

acting evenly, 584
diffeomorphism τg : M →M , 464
faithful or effective, 416
free, 454, 464, 531
left action, 584
linear action, 546
orbit, 584
proper, 463
smooth, 416

Haar measure
compact Lie group, 357
left, 282
modular function, 282
right, 282

half-spin representation, 600
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half-spinor, 600
harmonic form, 386

space of Hk(M), 397
harmonic function, 386
harmonic functions

on R2, 304
harmonic polynomial

complex coefficients, 324
real coefficients, 324
restricted to S1, 305
restricted to S2, 313
restriction to Sn, 324

eigenfunction of ∆Sn , 329
reproducing kernel, 337

Hermitian form, 289
positive definite, 289

Hermitian/unitary vector space, 289
Hessian, 376

as covariant derivative, 377
computed via geodesic, 378
defined via gradient, 377
in local coordinates, 379

Hilbert space, 290
L2(S1), 302

Hilbert basis, 302
L2(S2), 305

Hilbert basis, 305, 312
L2(Sn), 330

eigenspace decomposition, 330
Fourier coefficients, 330
Hilbert basis, 330
Hilbert basis via Gegenbauer polynomi-

als, 340
psuedo-convolution, 346

L2
C(G), 357
central function, 359
convolution, 357
Hilbert basis, 359
left regular representation, 361
master decomposition, 359
subspace L2

C(K\G), 363
subspace L2

C(G/K), 362

subspace L2
C(K\G/K), 363

l2(K), 296
Cauchy family, 292
Hilbert basis, 291

properties, 299
orthogonal family, 291

Fourier coefficient, 291
Fourier series, 291
partial sum, 291

orthonormal family, 291
real, 290
representation of Lie group, 357

subrepresentation, 357
Riesz-Fischer theorem, 300
separable, 300
summable family, 292
total orthogonal family, see Hilbert basis

Hilbert sum decomposition, 13, 286
Hodge ∗-operator, 114

basis application, 114
properties, 114
Riemannian manifold, 384

Hodge Decomposition Theorem, 397
Hodge Laplacian, see Laplace-Beltrami oper-

ator
holonomy of closed curve, 488

holonomy group, 488
homogeneous function of degree k

on R2, 304
on Rn, 324

homogeneous polynomial of degree k
complex coefficients, 323
Laplacian, 323
real coefficients, 323
restriction to Sn, 324

homogenous space
definition, 465

immersed submanifold
integral manifold, 222, 232

maximal, 232
insertion operator, 396

definition, 124
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integral
complex valued function on Riemannian

manifold, 275
differential form in Rn, 249

change of variable, 249
differential form on smooth oriented man-

ifold, 251
real-valued function on Lie group, 277

bi-invariant, 279
left-invariant, 277
right-invariant, 277

real-valued function on Riemannian man-
ifold, 275

integral manifold, 222, 232
Frobenius theorem, 225
maximal, 232

interior multiplication, see insertion operator
interior product, see insertion operator
invariant polynomial

algebra In, 510
symmetric polynomial generators , 511

definition, 510

Laplace equation, 304
Laplace-Beltrami operator (Laplacian)

chart representation, 315, 318, 391
definition, 314
for differential forms, 386
self-adjoint, 322, 390

Laplacian
Euclidean, 12, 286, 303
polar coordinates, 303, 319
restricted to S1, 303

eigenfunctions, 305
restricted to S2, 307

eigenfunctions, 311
restricted to Sn, 319, 322
spherical coordinates, 307

left hook
connection to right hook, 122
criteria for decomposability, 127
definition, 117
duality version, 118

properties, 120
left-invariant differential forms, 189

isomorphism with g∗, 189
Maurer-Cartan form, 189

left-invariant of integral on Lie group, 277
left-invariant volume form, 279
Legendre equation, 308
Legendre function (associated), 309

band index, 309
Condon Shortley phase factor, 309
recurrence relation, 310

Legendre functions of the first and second
kinds, 308

Legendre polynomials, 308
recursion formula, 309
Rodrigues’ formula, 308

Levi-Civita connection, 502
Élie Cartan’s criteria, 506
Christoffel symbol condition, 505
dual connection

local chart representation, 505
dual connection criteria, 505
Koszul formula, 502
via dual connection, 503
via Lie derivative, 377, 508

Lie bracket
structure constants, 191

Lie derivative
Ck-function, 175
k-form, 176

Cartan’s formula, 179
properties, 176, 180

tensor field, 218
vector field, 175

Lie group
function of positive type, 365
integral of smooth function, 277

modular function ∆, 278
left-invariant differential form, 189
volume form, 248

linear action of G on vector space V , 546
SU(2) on R3, 547
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SU(2)× SU(2) on R4, 547
U(1) on R2, 546

local operator
definition, 168
on differential forms, 168

manifold
domain with smooth boundary, 261
smooth

orientable, 238
orientation, 243
orientation atlas, 238
volume form, 239

smooth with boundary, 259
manifold with corners, 260, 273
Maurer-Cartan equations, 191
Maurer-Cartan form, 189, 191

flat connection, 194
linear Lie group, 193
properties, 192

metric connection
as covariant derivative, 501

metric space
complete, 289

modular function of Lie group ∆, 278
unimodular, 278

module over commutative ring, 87
free, 87
projective, 88
torsion element, 87

morphism of representations of Lie group, 355
multilinear map

Hom(E1, . . . , En;F ), 32
L(E1, . . . , En;F ), 32
definition, 32

multiset
definition, 75
multiplicity, 75
size, 76

nondegenerate pairing
induced linear maps, 26
of vector spaces, 26

nowhere-vanishing n-form, see volume form

open cover
refinement, 418

orbifold, 584
orbit of group action, 584
ordered basis, 101
orientation

of vector space, 237, 255
top form, 237

orientation of vector space
properties, 256

orientation preserving diffeomorphism, 243
orientation preserving linear map, 238
oriented manifold, 243

VolM
embedded manifold, 246

canonical volume form VolM , 244
positive atlas, 243
positively oriented basis, 243

oriented vector space, 113
negatively oriented, 113
positively oriented, 113

parallel transport
vector bundle, 488

Parseval identity, 297, 299
path lifting lemma, 583
permanent, 80
Peter–Weyl Theorem, 352
Peter-Weyl Theorem, 358

trivial ideal, 358
Pfaffian polynomial

explicit definition, 519
exterior algebra definition, 518
intrinsic definition, 517
skew Hermitian matrix, 520

Picard group, 445
pinor group Pin(Φ), 597
pinor group Pin(n)

Pin(1), 570
Pin(2), 571

relationship to U(1) , 571
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defintion, 569
pinor group Pin(p, q)

Pin(1, 0), 578, 579
definition, 577

Plücker’s equations, 130
Plücker coordinates, 130

Poincaré Duality Theorem, 398
Poincaré’s Lemma, 160
polar coordinates, 319
principal G-bundle, 530

local trivializations, 530
transition map, 531

principal fibre bundle
G-equivariant trivializing map, 455
Borel construction, 459
bundle map(morphism), 457
construction, 456
definition, 454
frame bundle, 441
induced bundle, 459
isomorphism, 457
triviality criteria, 459

proper map
criteria, 463

for manifolds, 463
definition, 462

pullback
categorical definition, 432

quaternion
algebra H, 546
conjugate, 547
defintion, 546
pure, 547
unit, 546

SU(2), 547
quaternions, 600

Radon measure
Riemannian manifold, 276

representation of Lie group
G-map, 355
(left) regular in L2

C(G), 361

character, 359
equivalent, 355
Hilbert space, 357

Hilbert sum theorem, 361
multiplicity, 361

invariant subspace, 355
irreducible, 355
linear of dimension n, 353
representation space, 353
G-module, 353

special functions, 354
subrepresentation, 355
trivial representation, 353
unitary representation, 353

reprodcing kernel Fk(σ, τ)
relationship to zonal function Zτ

k (σ), 339
reproducing kernel Fk(σ, τ)

in terms of Gegenbauer polynomials, 340
reproducing kernel Fk(σ, τ), 337
Riemannian manifold, 450
Riemannian metric

Gram matrix, 27
Riesz-Fischer theorem, 300
right hook

connection to left hook, 122
definition, 121
duality version, 122
insertion operator, 124
properties, 123

right-invariant of integral on Lie group, 277
right-invariant volume form, 279

Schur’s Lemma for irreducible representations,
355

second covariant derivative
k-form, 402

trace, 402
one-form, 402

Bochner’s formula, 403
semilinear function, 288
sequence

Cauchy sequence
metric space, 289
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sesquilinear form, 289
signed integral

differential form in Rn, 249
simply connected, 586
skew-symmetric multilinear map, 96
space of n-frames F (V )

definition, 440
spherical harmonic polynomials, 12, 285
spherical harmonics, 305
spin representation, 600

spinor, 600
spinor group

Spin+(p, q), 581, 608
spinor group Spin(Φ), 550, 597
spinor group Spin+(Φ), 599
spinor group Pin(p, q)

Pin(1, 1), 580
spinor group Spin(n)

Spin(1), 570
Spin(2), 571

relationship to U(1), 572
Spin(3), 573

relationship to unit quaternions, 573
Spin(4), 574

relationship to Spin(4) , 576
definition, 569

spinor group Spin(p, q)
Spin(1, 1), 580, 581
Spin(2, 0), 579, 580

connection to U(1), 580
definition, 577

star-shaped, 160
Stiefel manifold

real
gradient, 382

Stokes’ Theorem
classical, 271

Stokes’ Theoreom
for domain with smooth boundary, 266

symmetric bilinear form
associated quadratic form, 554

signature, 576

group of isometries(orthogonal group), 555
nondegenerate, 554
polarization identity, 554
special orthogonal group, 555

symmetric multilinear map, 72
symmetric tensor algebra, 60

construction, 84
definition, 84
universal mapping property, 85

symmetric tensor power
linear maps, 76
vector space

basis, 78
compound, 76
construction, 73
definition, 73
duality, 82
simple or decomposable, 76
universal mapping property, 73

tangent bundle
definition, 435
orientable criterion, 452
smooth vector field along a curve, 485
transition map, 435
trivializing map, 435

tensor algebra of vector space, 57, 59, 554
exterior algebra, 60
symmetric algebra, 60
universal mapping property, 59

tensor product
R-module, 87
linear maps, 41, 553
vector space, 33, 552
m-th tensor power, 57
n-tensor, 41
n-th symmetric power, 73
antisymmetrized tensors, 107
basis, 45
compound, 41
construction, 38
Currying property, 49
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duality, 51
properties, 46
simple or decomposable, 41
symmetrized tensors, 83
tensor space T r,s(V ), 61
universal mapping property, 33

tensor space T r,s(V ), 61
contraction, 69
contravariant, 63
covariant, 63
duality, 62
homogeneous of degree (r, s), 61

trace
bilinear form, 31

trivial bundle, 414

vector bundle
Hom bundle, 444
bundle map(morphism), 437
canonical line bundle on RPn, 441
conjugate bundle, 505

connection matrix, 505
covariant derivative along curve, 487
definition(complex), 434
definition(real), 433

complexification, 446
dual bundle, 443
Euclidean, 450

Euclidean(Riemannian) metric, 450
existence, 451

exterior algebra, 443
exterior power, 443
frame bundle, 440
frame over U , 439

construction, 440
global frame, 439
global nonzero section, 439
Hermitian, 450

Hermitian metric, 450
holomorphic, 434
holomorphic line bundle, 434
isomorphism, 438

line bundle, 434
orientable, 451
oriented

equivalent family trivializing maps, 452
orientation, 452
oriented family trivializing maps, 452

parallel section along curve, 487
quotient bundle, 453

normal bundle, 453, 454
smooth section along a curve, 485
subbundle, 453

orthogonal complement, 453
tensor bundle of type (r, s), 443
tensor power, 443
tensor product, 442
Whitney(direct) sum, 442
zero section, 439

vector field
dual, 173
mutually commutative, 223

vector valued differential forms
section of vector bundle, 447

vector-valued alternating form
basis representation, 133, 135
definition, 133
multiplication, 133

vector-valued differential p-form, see vector-
valued alternating form

vector-valued form
Ai(ξ), 489
d∇ : Aj(ξ)→ Aj+1(ξ), 490
wedge product, 489

volume form, 239
canonical, 244

chart representation, 244
equivalent, 243
Lie group, 248

left-invariant, 279
right-invariant, 279

relationship to density, 257
relationship to orientation, 257

weak integral, 360
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wedge product
Z : Ai(ξ)×Aj(η) −→ Ai+j(ξ ⊗ η), 489
definition, 108
Hodge ∗-operator, 114
on A∗(U), 145
skew-symmetry, 109

Weitzenböck–Bochner Formula, 404, 406

zonal function Zτ
k , 336

relationship to reproducing kernel, 339
zonal spherical, 336

geometric interpretation, 342
on S2, 337

zonal harmonics, 333
zonal spherical function

Gelfand pair, 364


