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Preface

The question that motivated writing this book is:

What is the Fourier transform?

We were quite surprised by how involved the answer is, and how much mathematics is
needed to answer it, from measure theory, integration theory, some functional analysis, to
some representation theory.

First we should be a little more precise about our question. We should ask two questions:

(1) What is the input domain of the Fourier transform?

(2) What is the output domain of the Fourier transform?

The answer to (1) is that the domain of the Fourier transform, denoted by F, is a set
of functions on a group G. Now in order for the Fourier transform to be useful, it should
behave well with respect to convolution (denoted f x g) on the set of functions on G, which
implies that these functions should be integrable.

This leads to the first subtopic, which is what is integration on a group? The technical
answer involves the Haar measure on a locally compact group. Thus, any serious effort
to understand what the Fourier transform is entails learning a certain amount of measure
theory and integration theory, passing through versions of the Radon—Riesz theorem relating
Radon functionals and Borel measures, and culminating with the construction of the Haar
measure. The two candidates for the domain of the Fourier transform are the spaces L!(G)
and L?(G). Unfortunately, convolution and the Fourier transform are not necessarily defined
for functions in L?(G), so the domain of the Fourier transform is L'(G). Then the equation
F(f xg) = F(f)F(g) holds, as desired. If G is a compact group, L?(G) is a suitable (and
better) domain.

The answer to Question (2) is more complicated, and depends heavily on whether the
group G is commutative or not. The answer is much simpler if G is commutative. In both
cases, the output domain of the Fourier transform should be a set of functions from a space
Y to a space Z.



If G is commutative, then we can pick Z = C. However, the space Y is rarely equal to G
(except when G = R). It turns out that a good theory (which means that it covers all cases
already known) is obtained by picking Y to be the group G , the Pontrjagin dual of G, which
consists of the characters of the group GG. A character of GG is a continuous homomorphism
x: G — U(1) from G to the group of complex numbers of absolute value 1. For any function
f € LY(G), the Fourier transform F(f) of f is then a function

F(f): G=cC.

In general, G is completely different from G, and this creates problems. For the familiar

cases, G =T =U(1) = {z eC ] |z| = 1} G=7Z,G= R and G = Z/nZ, the characters

are well known, namely T = Z, Z = T, R = R, and Z/ nZ = Z/nZ. The case G = Z/nZ
corresponds to the discrete Fourier transform.

For the groups listed above, we know that under some suitable restriction, we have Fourier
inversion, which means that there is some transform F (called Fourier cotransform) such
that

f=F(F(f)). (%)

We have to be a bit careful because the domain of F is L'(G), and not L'(G), are they are
usually very different beause in general G and G are not isomorphic. Then (assuming that it

makes sense), F(F(f)) is a function with domain G, so there seems no hope, except in very
special cases such as G = R, that (%) could hold. Fortunately, Pontrjagin duality asserts

that G and G are isomorphic, so (x) holds (under suitable conditions) in the form
f=FF()en

where 1: G — G is a canonical isomorphism.

If G is a commutative locally compact group, there is a beautiful and well understood
theory of the Fourier transform based on results of Gelfand, Pontrjagin, and André Weil.
In particular, even though the Fourier transform is not defined on L?*(G) in general, for any
function f € L'(G)NL23(G), we have F(f) € L*(@), and by Plancherel’s theorem, the Fourier

transform extends in a unique way to an isometric isomorphism between L?(G) and LQ(CA}’)

(see Section 10.8). Furthermore, if we identify G' and G by Pontrjagin duality, then F and F
are mutual inverses (see Section 10.9). Harmonic analysis on locally compact abelian groups
is covered quite thoroughly in this book (Volume I).

If G is not commutative, things are a lot tougher. Characters no longer provide a
good input domain, and instead one has to turn to wnitary representations. A unitary
representation is a homomorphism U: G — U(H) satisfying a certain continuity property,
where U(H) is the group of unitary operators on the Hilbert space H. Then G is the
set of equivalence classes of irreducible unitary representations of GG, but it is no longer a



group. Aspects of harmonic analysis on noncommutative locally compact groups (based on
representation theory) are presented in a second book (Volume II).

In particular, we discuss quite extensively the case where G is compact. In this case,
an important theorem due to Peter and Weyl gives a nice decomposition of L?(G) as a
Hilbert sum of finite-dimensional matrix algebras corresponding to the irreducible unitary
representations of G.
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S. Lang, A.A. Kirillov, Laurent Schwartz, E. Stein and R. Shakarchi, and W. Rudin, is
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Chapter 1

Introduction

The main topic of this two volume book is the Fourier transform and Fourier series, both
understood in a broad sense.

Historically, trigonometric series were first used to solve equations arising in physics, such
as the wave equation or the heat equation. D’Alembert used trigonometric series (1747) to
solve the equation of a vibrating string, elaborated by Euler a year later, and then solved
in a different way essentially using Fourier series by D. Bernoulli (1753). However it was
Fourier who introduced and developed Fourier series in order to solve the heat equation, in
a sequence of works on heat diffusion, starting in 1807, and culminating with his famous
book, Théorie analytique de la chaleur, published in 1822.

Originally, the theory of Fourier series is meant to deal with periodic functions on the
circle T = U(1) = {z € C| |z| = 1}, say functions with period 27. Remarkably the theory
of Fourier series is captured by the following two equations:

f(0) = Z cme™. (1)

in= [ s @)

Equation (1) involves a series, and Equation (2) involves an integral. There are two ways
of interpreting these equations.

The first way consists of starting with a convergent series as given by the right-hand side
of (1) (of course ¢, € C), and to ask what kind of function is obtained. A second question is
the following: Are the coefficients in (1) computable in terms of the formulae given by (2)?

The second way is to start with a periodic function f, apply Equation (2) to obtain the ¢,,,
called Fourier coefficients, and then to consider Equation (1). Does the series >, Cme™?
(called Fourier series) converge at all? Does it converge to f7?

Observe that the expression f(0) = >, ., ¢ne™ may be interpreted as a countably infi-
nite superposition of elementary periodic functions (the harmonics), intuitively representing

11



12 CHAPTER 1. INTRODUCTION

simple wave functions, the functions € — e™’. We can think of m as the frequency of this
wave function.

The above questions were first considered by Fourier. Fourier boldly claimed that every
function can be represented by a Fourier series. Of course, this is false, and for several
reasons. First, one needs to define what is an integrable function. Second, it depends on
the kind of convergence that are we dealing with. Remarkably, Fourier was almost right,
because for every function f in L?(T), a famous and deep theorem of Carleson states that
its Fourier series converges to f almost everywhere in the L?-norm.

Given a periodic function f, the problem of determining when f can be reconstructed as
the Fourier series (Equation (1)) given by its Fourier coefficients ¢, (Equation (2)) is called
the problem of Fourier inversion. To discuss this problem, it is useful to adopt a more
general point of view of the correspondence between functions and Fourier coefficients, and
Fourier coefficients and Fourier series.

Given a function f € LYT), Equation (2) yields the Z-indexed sequence (¢y,)mez of

Fourier coefficients of f, with
g o dl
i = 0 —imf 7
=[O

which we call the Fourier transform of f, and denote by f, or F(f). We can view the Fourier
transform F(f) of f as a function F(f): Z — C with domain Z.

On the other hand, given a Z-indexed sequence ¢ = (¢, )mez of complex numbers ¢,,, we
can define the Fourier series F(c) associated with ¢, or Fourier cotransform of ¢, given by

F)(®) = cme™.

This time, F(c) is a function F(c): T — C with domain T. Fourier inversion can be stated
as the equation

£(0) = ((F o F)(£))(0).

Of course, there is an issue of convergence. Namely, in general, f = F(f) does not
belong to ¢*(Z). There are special cases for which Fourier inversion holds, in particular, if
f e L¥T).

Let us now consider the Fourier transform of (not necessarily periodic) functions defined
on R. For any function f € L'(R), the Fourier transform ]/“\ = F(f) of f is the function
F(f): R — C defined on R given by

~

fm=fﬁmﬂ=4ﬂwﬂwgg,

and the Fourier cotransform F(f) of f is the function F(f): R — C defined on R given by

Fiia) = [ e L,
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This time, the domain of the Fourier transform is the same as the domain of the Fourier
cotransform, but this is an exceptional situation. Also, in general the Fourier transform f is
not integrable, so Fourier inversion only holds in special cases.

The preceding examples suggest two questions:

(1) What is the input domain of the Fourier transform?

(2) What is the output domain of the Fourier transform?

The answer to (1) is that the domain of the Fourier transform, denoted by F, is a set
of functions on a group G. In order for the Fourier transform to be useful, it should behave
well with respect to an operation on the set of functions on G called convolution (denoted
f * g), which implies that these functions should be integrable.

This leads to the first subtopic, which is: what is integration on a group? The technical
answer involves the Haar measure on a locally compact group. Thus, any serious effort
to understand what the Fourier transform is entails learning a certain amount of measure
theory and integration theory, passing through versions of the Radon-Riesz theorem relating
Radon functionals and Borel measures, and culminating with the construction of the Haar
measure. This preliminary material is discussed in Chapters 2, 3, 4, 5, 7, and 8.

Chapter 2 gathers some basic results about function spaces, in particular, about different
types of convergence (pointwise, uniform, compact). Some sophisticated notions cannot be
avoided, such as equicontinuity, filters, topologies defined by semi-norms, and Fréchet spaces.

Chapter 3 provides a quick review of the Riemann integral and its generalization to
regulated functions.

Chapter 4 is devoted to basics of measure theory: o-algebras, semi-algebras, measurable
spaces, monotone classes, (positive) measures, measure spaces, null sets, and properties
holding almost everywhere. We also define outer measures and prove Carathéodory’s theorem
which gives a method for constructing a measure from an outer measure. We conclude
by using Carathéodory’s theorem to define the Lebesgue measure on R and R"™ from the
Lebesgue outer measure. Our presentation relies on Halmos [36], Rudin [57], Lang [43], and
Schwartz [63].

Chapter 5 develops the theory of Lebesgue integration in a fairly general context, namely
functions defined on a measure space taking values in a Banach space. This integral is
usually known as the Bochner integral (developed independently by Dunford). We agree
with Lang (Lang [43]) that the investment needed to deal with functions taking values in a
Banach space rather than in R is minor, and that the reward is worthwhile. This approach
is presented in detail in Dunford and Schwartz [25], and more recent (and easier to read)
expositions of this method are given in Lang [43] and Marle [48].

After reading this chapter, the reader will know what are the spaces L'(X), L*(X), and
L>°(X), which is essential to move on to the study of harmonic analysis on locally compact
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abelian groups (abbreviated as LCA groups), which is the subject of this book (Volume I)
In Chapter 5 we provide some proofs.

Chapter 7 presents the theory of integration on locally compact spaces due to Radon
and Riesz based on linear functionals on the space of continuous functionals with compact
support. Although this material is well-known to analysts, it may be less familiar to other
mathematicians, and most computer scientists have not been exposed to it. Our presentation
relies heavily on Rudin [57] (Chapter 2), Lang [43] (Chapter IX), Folland [29] (Chapter 7),
Marle [48], and Schwartz [63]. We also borrowed much from Dieudonné [20] (Chapter XIII).

We state the famous representation theorem of Radon and Riesz for positive linear func-
tionals and certain types of positive Borel measures (Theorem 7.8 and Theorem 7.15). Here,
inspired by Folland and Lang, we define a o-Radon measure as a Borel measure which is
outer regular, o-inner regular, and finite on compact subsets. A Radon measure is a o-Radon
measure which is also inner regular. Linear functionals which are bounded on the space of
continuous functions with support contained in a fixed compact support are called Radon
functionals. We have avoided Bourbaki and Dieudonné’s use of the term Radon measure for
a Radon functional, which is just too confusing.

We define complex measures, and following Rudin, we present the Radon—Riesz corre-
spondence between bounded Radon functionals and complex (regular) measures (Theorem
7.30). This theorem is absolutely crucial to the construction of the Haar measure and to the
definition of the convolution of complex measures and of functions.

Chapter 8 contains a rather complete discussion of the Haar measure on a locally com-
pact group, convolution, and the application of convolution to regularization. After some
preliminaries about topological groups (Section 8.1), we describe the method for construct-
ing a left Haar measure from a left Haar functional, following essentially Weil’s proof as
presented in Folland [28] (see Sections 8.2 and 8.3). We prove almost everything, except for
a technical lemma. Then we prove the uniqueness of the left Haar measure up to a positive
constant, using Dieudonné’s method [20] (Section 8.4). We introduce the modular function
and the modulus of an automorphism. We show how to use the Haar measure to construct a
hermitian inner product invariant under the representation of a compact group. We discuss
G-invariant measures on homogeneous spaces.

One of the main applications of the Haar measure is the definition of the convolution
w* v of (complex) measures and the convolution f * g of functions; see Section 8.11. Un-
der convolution, the set M!(G) of complex regular measures is a Banach algebra with an
involution, and a multiplicative unit element. This algebra contains the Banach subalgebra
LY(@), which doesn’t have a multiplicative unit in general. In Section 8.14, we show that by
convolving a function f with functions g, from a “well-behaved” family we obtain a sequence
(f * gn) of functions more regular that f that converge to f. This technique is known as
reqularization.

Chapter 8 is the last of the chapters dealing with background material. Similar material
is coved in Folland [28], and very extensively in Hewitt and Ross [37] (over 400 pages).
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The main chapters presenting some elements of harmonic analysis on locally compact
abelian groups, in particular the Fourier transform, are:

1. Chapter 6, in which the classical theory of the Fourier transform (and cotransform)
on T, R, and then T" and R", is presented. We also present the sampling theorem
due to Shannon, and discuss the Heisenberg uncertainty principle. Our presentation is
inspired by Rudin [57], Folland [27, 29], Stein and Shakarchi [67], and Malliavin [47].

2. Chapter 10, which is devoted to harmonic analysis on locally compact abelian groups,
based on the seminal work of A. Weil, Gelfand, and Pontrjagin. Our presentation is
based on Folland [28] and Bourbaki [§].

Chapter 10 requires more preparatory material.

If G is a commutative locally compact group, then the domain of the Fourier transform

on LY(G) is the group G of characters of G, the homomorphisms y: G — C such that
Ix(g)| = 1 for all ¢ € G. The group G is called the Pontrjagin dual of G. It turns out
that G is homeomorphic to the space X(L!(G)) of characters of the Banach algebra L!(G).
Thus we need some knowledge about normed algebras. Chapter 9 presents the basic theory
of normed algebras and their spectral theory needed for Chapter 10. The study of algebras

and normed algebras focuses on three concepts:
(1) The notion of spectrum o(a) of an element a of an algebra A.

(2) If Ais a commutative algebra, the notion of character, and the space X(A) of characters

of A.
(3) If A is a commutative algebra, the notion of Gelfand transform, G: A — C(X(A);C).

The Gelfand transform from L'(G) to X(L'(G)) is the Fourier cotransform on L'(G). Our
presentation is inspired by Dieudonné [20], Bourbaki [8], and Rudin [58].

If G is a locally compact abelian group, then for any function f € L'(G), the Fourier
transform F(f) of f is then a function

F(f): G —>cC.

In general, G is completely different from G, and this creates problems. For the familiar
cases, G =T =U(1), G =7Z, G =R, and G = Z/nZ, the characters are well known. The
case G = Z/nZ corresponds to the discrete Fourier transform.

For the groups listed above, we know that under some suitable restriction, we have Fourier
inversion, which means that there is some transform F (called Fourier cotransform) such
that

f=F(F) (%)
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We have to be a bit careful because the domain of F is L'(G), and not L(G), are they
are usually very different because in general G and G are not isomorphic. Then (assuming

that it makes sense), F(F(f)) is a function with domain @, so there seems no hope, except
in very special cases such as G = R, that (x) could hold. Fortunately, Pontrjagin duality

asserts that G and G are isomorphic, so (x) holds (under suitable conditions) in the form

f=F(F(f)en,

where 7: G — G is a canonical isomorphism.

If G is a commutative locally compact group, there is a beautiful and well understood
theory of the Fourier transform based on results of Gelfand, Pontrjagin, and André Weil
presented in Chapter 10. In particular, even though the Fourier transform is not defined

-~

on L?(G) in general, for any function f € L'(G) N L*G), we have F(f) € L*(G), and
by Plancherel’s theorem, the Fourier transform extends in a unique way to an isometric

isomorphism between | L%(G@) and L2(@). Furthermore, if we identify G and G by Pontrjagin
duality, then F and F are mutual inverses.

If G is not commutative, things are a lot tougher. Characters no longer provide a good
input domain, and instead one has to turn to wunitary representations. Some aspects of
harmonic analysis on noncommutative locally compact groups are presented in a second

book (Volume II).

More basic background material dealing with elementary topology, matrix norms, groups
and group actions, and Hilbert spaces is found in Appendices A, B, C, D and E. These
chapters should be considered as appendices and should be consulted by need.

To keep the length of this book under control, we resigned ourselves to omit many proofs.
This is unfortunate because some beautiful proofs (such as the proof of the Radon—Riesz
theorem for bounded Radon functional) had to be omitted. However, whenever a proof is
omitted, we provide precise pointers to sources where such a proof is given.

After Chapter 1 the logical starting point of this book is Chapter 2, followed by the other
chapters in consecutive order. However, some readers might find it more illuminating to
proceed directly to Chapter 6 which provides a less abstract view of Fourier analysis and
harmonic analysis. Readers not familiar with the Lebesgue theory of integration should not
be concerned, and they should replace this fancy notion with the notion of integral that
they are familiar with. The consequence of such a simplifying assumption is that some of
the results may not be quite correct, but this should be a good motivation to return to the
chapters dealing with measure theory and integration.



Chapter 2

Function Spaces Often Encountered

Various spaces of functions f: E — F from a topological space F to a metric space or
a normed vector space F' come up all the time. The most frequently encountered are the
spaces (F'¥), of bounded functions, the spaces C(E; F) of continuous functions with compact
support, the spaces Cy(E; F') of continuous functions which tend to zero at infinity, and
the spaces Cp(F; F') of continuous bounded functions. When F' is a normed vector space,
all these spaces are normed vector spaces with the sup norm. An important issue about
function spaces is the convergence of sequences of functions. We review the main three
notions, pointwise convergence (also known as simple convergence), uniform convergence,
and compact convergence. A sequence of continuous functions may converge pointwise to
a function which is not continuous. Uniform convergence has a better behavior. If F is a
complete normed vector space, then both spaces Cy(E; F) and (F'F), are also complete under
uniform convergence. An interesting family of functions in (F1¢%), is the space Reg([a, b]; F)
of regulated functions. These functions have at most only countably many simple kinds of
discontinuities called discontinuities of the first kind. If F'is a complete normed vector space,
then the space Reg([a, b]; F') is complete. It contains a subspace Step([a, b]; F') consisting of
very simple functions called step functions, which take finitely many different values on
consecutive open intervals. The space Step([a,b]; F') is dense in Reg([a,b]; F'). If E is a
locally compact space, then the space Cy(E;C) is the closure of IC(F;C) in Cp(E;C). This
chapter relies heavily on the material discussed Appendix A so the reader may want to refer
to this appendix whenever the need arises.

2.1 The Function Space F”* and Pointwise Convergence

In this section we study the space of functions f: £ — F, where E and F' are arbitrary
topological spaces. We denote the set of all functions from E to F by FE.

Our first goal is to make F'¥ into a topological space in its own right. Surprisingly, one

17
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of the easiest ways to describe a topology on F¥ is to follow Tychonoff and observe that

FP=1[F, F=F

zelR

Since F'F is isomorphic to an E-indexed product space, we may give it a product topology
as follows: a subset of functions in F'¥ is open if it is the union of subsets U, of functions
f: E — F for which there is some finite subset A of E such that f(x) € U, for all x € A,
where U, is an open subset of F', and f(z) € F is arbitrary for all z € ' — A; see Figure 2.1.

A:{xw,xz,x3)

Figure 2.1: A schematic illustration of an open set U4 of F¥ (where the reader may assume
E = F =R). The three functions f, g, h € U, since they pass “through” the open sets U,,,
for 1 <4 < 3.

Equivalently, for any z € E and any open subset U of F, let S(z,U) be the set
S(z,U)={f | f € F, f(z) € U};
see Figure 2.2. Then observe that

Us=()S(x,Uy), A finite,

€A
that is, the sets S(z,U) form a subbasis of the product topology on F¥.
For every x € E, if m,: F¥ — F is the projection map given by
m(f) = f(x),  feF",

(evaluation at x), then the product topology on F'F is the weakest topology that makes all
the 7, continuous. Indeed, the weakest topology on F'¥ making all the 7, continuous consists
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Figure 2.2: A schematic illustration of an open set S(x,U) of F¥ (where the reader may
assume F = F = R). The four functions f, g, h,s € S(x,U) since they pass “through” the
open set U.

of all unions of finite intersections of subsets of F'¥ of the form 7 (U,), for any open subset
U, of F, but
= (U,) = S(z,U,),

xT

is one of the sets in the subbasis defined above. For this reason, the product topology on
FF is also called the weak topology induced by the family of functions (7, ).cr; see Rudin
[58] (Chapter 3, Section 3.8).

Now that we have made F'¥ into a topological space, we can ask ourselves what it means
for a sequence (f,,)n>1 of functions f,,: F — F to converge to f. By definition of the product
topology, (fn)n>1 converges to f if and only if given any subbasic open set S(x, U) containing
f, there exists ng > 0 such that f, € S(z,U) whenever n > ng. A moment of reflection
shows that we may reinterpret the previous statement as saying for a fized point z € F,
fn(x) becomes “arbitrarily” close to f(x). This reinterpretation is rigorously stated in terms
of pointwise convergence, namely that for fized x € E, lim,_,, fn.(z) = f(z). The notion of
pointwise convergence does not require F' to be a metric space, but since this is the situation
we most often encounter, we give the definition assuming that (F,d) is a metric space,

Definition 2.1. Let (F,d) be a metric space. A sequence (f,),>1 of functions f,: E — F
converges pointwise (or converges simply) to a function f: E — F if for every = € E, for
every € > 0, there is some N > 0 such that

d(fn(z), f(x)) <e foralln > N.

See Figure 2.3.

To reiterate, Definition 2.1 says that for every x € E, the sequence (f,(z)),>1 converges
to f(x). Observe that the above ¢ depends on z.
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Figure 2.3: A schematic illustration of f,(z) converging pointwise f(z), where £ = F = R.
As n increases, the graph of f,(x) near x must be in the band determined by the graphs of
f(z) —eand f(z)+e.

A sequence (f,)n>1 of elements of F'¥ converges pointwise to f € FF iff the sequence
(fn)n>1 converges to f in the product topology; see Munkres [54] (Chapter 7, Section 46,
Theorem 46.1), or Folland [29] (Chapter 4, Proposition 4.12). Consequently, the product
(weak) topology is also called the topology of pointwise convergence and pointwise conver-
gence is also known as weak convergence. We summarize the previous discussion in the
following definition.

Definition 2.2. If F is any topological space and F is any set, the topology on F¥ having
the sets

S(x,U)={f|feFE f(x)eU}, x € E, U open in F,

as a subbasis is the topology of pointwise convergence. An open subset of F'¥ in this topology
is any union (possibly infinite) of finite intersections of subsets of the form S(z,U) as above.

If F is Hausdorff, so is the topology of pointwise convergence. Indeed, if f,g € F'¥ and
f # g, then there is some x € E such that f(z) # g(z), and since F' is Hausdorff, there
exist two disjoint open subsets Upe,) and Uy, with f(x) € Up,) and g(x) € Uyy). Then
7, (Upy) and 731 (Uy) are disjoint open subsets with f € 7,1 (Uy () and g € 7 (Uye));
see Figure 2.4.

When F is a metric space there are two important subsets within F¥, the subspace of
continuous functions C(F; F'), and the subspace of bounded functions (F¥),. As shown in
Figure 2.5, both C(E; F) and (F¥), inherit subspace topologies from the product topology
of F'¥. But if F is either a metric or a normed vector space, we can place “finer” topologies
on both C(E; F) and (FF),. In the next section we discuss how such a topology makes
(FE), into its own metric space by considering it an independent space in its own right, not
necessarily embedded in FF.
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Figure 2.4: If F' is Hausdorff, so is the topology of pointwise convergence. For convenience,
let E = F = R. The top figure illustrates two distinct elements of F'¥. The bottom left
figure illustrates the open set 7, ' (Up(,)), while the bottom right figure illustrates the open
set m, 1 (Uy(z))- These two sets separate f and g within F'F.

2.2 Spaces of Bounded Functions

In this section we are dealing with functions f: £ — F, where I is either a metric space or
a normed vector space.

First assume that F is a metric space with metric d. We would like to make F¥ into a
metric space. It is natural to define a metric on F'¥ by setting

doo(f,9) = Sup d(f(z),g(z))

for any two functions f,g: E — F, but if d(f(z), g(z)) is unbounded as z ranges over E, the
expression sup,cp d(f(z), g(z)) is undefined. Therefore, we consider the space of bounded
functions defined as follows.

Definition 2.3. If (F,d) is a metric space, a function f: E — F is bounded if its image
f(E) is bounded in F, which means that f(E) C B(a,«), for some closed ball B(a,«) of
center a and radius a > 0. See Figure 2.6. The space of bounded functions f: £ — F'is
denoted by (FF),.

If f: E — F and g: E — F are bounded functions, then it is easy to see that if
f(F) C B(a,«) and if g(E) C B(b, 3), then
d(f(z),g9(x)) <a+p+d(a,b) foral zekF,;

see Figure 2.7. Therefore, sup,cp d(f(x), g(x)) is well defined. It is easy to check that if we
define

dos(f, 9) = supd(f(z), g(z))

zel
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Fis a METRIC space, (F.d)

FE topology of pointwise convergence

CEP (F5),
continuous) (bounded)

e inherited topology

Figure 2.5: A Venn diagram of illustration of F'¥ and the subsets C(E; F) and (F¥), with
the inherited topology of pointwise convergence.

[+ !
f
|
a

7T E

Figure 2.6: Let F = F' = R with the Euclidean metric. In Figure (i), f is unbounded since
f(E) =R. In Figure (ii), f € (F¥), since f(E) = (0,1] and (0,1] € B(0,1) = [-1,1].

for any two bounded functions f, g, then d is indeed a metric on (F'¥),.

Definition 2.4. If (F,d) is a metric space, then for any two bounded functions f, g € (FF),
the quantity

ds(f,9) = supd(f(z), g(x))

zel

is a metric on (FF);. See Figure 2.8.

If (F,||) is normed metric space, then F'¥ is a vector space, and it is easy to check
that (F"), is also a vector space. For any bounded function f: F — F (which means that
f(E) C B(0,«), for some closed ball B(0, «)), then

(F,
FE

[flloe = sup [|.f ()]
el

is a norm on the vector space (F'F),.
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|
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g | | 3 ’d(fm,g(x)l
\ “X B

Figure 2.7: An illustration of d(f(x),¢(z)) < a +  + d(a,b), when E = F = R with the
Euclidean metric.

_____________________________________________________________________________

Figure 2.8: Let E = F = R with the Euclidean metric. Both f, g € (F'¥), since f(E) = (0,1),
while g(E) = [—1,0). The concatenation of the vertical dashed red lines is dy(f,g9) =

supgep d(f(2), 9(x)) =1 - (=1) = 2.

Definition 2.5. If (F,|| ||) is a normed vector space, then for any bounded function f €
(FF),, the quantity
[flloe = sup [[f(2)]
el

is a norm on (F¥),, often called the sup norm; see Figure 2.9.

The following important theorem can be shown; see Schwartz [60] (Chapter XV, Section
1, Theorem 1).

Theorem 2.1. (1) If (F,d) is a complete metric space, then ((F¥)y, dy) is also a complete
metric space.

(2) If (F,||l]) is a complete normed vector space, then ((F¥),| ||..) is also a complete
normed vector space.
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Figure 2.9: Let f € (FF¥),, where E = F' = R with norm given by the absolute value. Then
1l =2

2.3 Uniform Convergence of Functions

When dealing with spaces of functions, a crucial issue is to identify notions of limit that
preserve certain desirable properties, such as continuity.

Unfortunately the notion of pointwise convergence within F'¥ does not have such a prop-
erty. If a sequence (f,,)n>1 of continuous functions converges pointwise to a function f, this f
is not necessarily continuous. For example, the functions f,,: [0,1] — R given by f,(z) = 2"
are continuous, and the sequence (f,),>1 converges pointwise to the discontinuous function
f:[0,1] = R given by

fz) =

0 fo<z<l1
1 ifz=1,

as evidenced by Figure 2.10.

0.84
0.6
0.4

0.2

Figure 2.10: The sequence of functions f,(x) = z™ over [0, 1] converges pointwise to the
discontinuous green graph.
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However, if F' is a metric space there is a stronger notion of convergence, uniform con-
vergence, which ensure that continuity is preserved in the limit.

Definition 2.6. Let (F,d) be a metric space. A sequence (f,),>1 of functions f,: £ — F
converges uniformly to a function f: E — F if for every € > 0, there is some N > 0 such
that

d(fu(z), f(z)) <e foralln > N and for all z € E.

See Figure 2.11.

Figure 2.11: A schematic illustration of f,, converging uniformly to f, where £ = F' = R.
As n increases, the graph of f,, must lie entirely in the band determined by the graphs of
f—eand f+e.

Observe that convergence in the metric space of bounded functions ((F'¥)y,d) is the
uniform convergence of sequences of functions. Similarly, convergence in the normed vector
space of bounded functions ((F'®),, || ||..) is the uniform convergence of sequences of func-
tions. For this reason, the topology on (F*¥), induced by the metric dw (or the norm || ||_.)
is sometimes called the topology of uniform convergence. Figure 2.12 illustrates how the
intrinsic metric based topology of uniform convergence is the finer topology which replaces
the inherited topology of pointwise convergence.

The difference between simple (pointwise) and uniform convergence is that in uniform
convergence, € is independent of x. For example the functions f,,: [0,27] — R defined by
fn(z) = nsin (%) converges uniformly to f(x) = x, as evidenced by Figure 2.13. Conse-
quently, uniform convergence implies simple convergence, but the converse is false, as the
following examples illustrate.
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F is a METRIC space, (F,d)

rE topology of pointwise convergence

CER (F5),

(continuous) (bounded) /%@\

: E
inherited topology inherited topology (F )b

topology of uniform convergence

new (intrinsic) metric space d,,

Figure 2.12: A Venn diagram illustration of F'¥ and two of its subspaces; C(E; F'), which
has the inherited topology of pointwise convergence, and (F'¥),, which has the inherited
topology of pointwise convergence replaced with the topology of uniform convergence.
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|

Figure 2.13: The colored functions f,(z) = nsin (%), over the domain [0,27], converge
uniformly to the black line f(x) = x.

Example 2.1. Let g: R — R be the function given by

B 1
14

g9(z)

and for every n > 1, let f,: R — R be the function given by

1

I =G e

The function f,, is obtained by translating ¢ to the right using the translation x — = + n;
see Figure 2.14.
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Figure 2.14: The bell curve graphs of Example 2.1; g(z) in brown; fi(x) in red; fo(z) in
purple; f3(x) in blue.

Since
lim — 0
noo 14+ (x—n)2

the sequence (f,),>1 converges pointwise to the zero function f given by f(z) = 0 for all
x € R. However, since the maximum of each f,, is 1, we have

doo(fr, f) =1 foralln>1,

so the sequence (f,)n>1 does not converge uniformly to the zero function.

Example 2.2. Pick any positive real a > 0. For each n > 1, let f,,: R — R be the piecewise
affine function defined as follows:
0 ifx<Oorxz>1/n
fo(z) = ¢ (2n)n°x if0<z<1/(2n)
2n*(1 —nz) if1/(2n) <z <1/n.

See Figure 2.15.

For every = > 0, there is some n such that 1/n < z, so lim, s fu(x) = 0 for x > 0, and
since f,(z) = 0 for x < 0, we see that the sequence (f,)n,>1 converges pointwise to the zero
function f. However, the maximum of f,, is n® (for z = 1/(2n)) so

dOO(fn7 f) = na}

and lim,, o doo (fn, f) = 00, so the sequence (f,,)n>1 does not converge uniformly to the zero
function.

If £ is a topological space, it is useful to define the following local notion of uniform
convergence.
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60
501
40 4
30 4

20 A

Figure 2.15: The piecewise affine functions of Example 2.2 with o = 3; fi(x) in magenta;
fa(z) in red; f3(x) in purple; fs(x) in blue. Each f,(z) has a symmetrical triangular peak.
As n increases, the peak becomes taller and thinner.

Definition 2.7. Let E be a topological space and let (F,d) be a metric space. A sequence
(fu)n>1 of functions f,: E — F converges locally uniformly to a function f: E — F' if for
every x € F, there is some open subset U of E containing = such that for every e > 0, there
is some N > 0 such that

d(fu(z), f(x)) <e foralln > N and for all x € U;

see Figure 2.16.

If E is locally compact, it is easy to see that a sequence ( f,,),>1 converges locally uniformly
iff it converges uniformly on every compact subset of E.

As we saw at the beginning of this section, the pointwise limit of a sequence (f,),>1 of
continuous functions needs not be continuous. However, if the convergence is locally uniform,
then the limit is continuous. The following theorem gives sufficient conditions for the limit
of a sequence of continuous functions to be continuous.

Theorem 2.2. Let E be a topological space, (F,d) be a metric space, and let (f,)n>1 be
a sequence of functions f,: E — F converging locally uniformly to a function f: E — F.
Then the following properties hold:

(1) If the functions f, are continuous at some point a € E, then the limit f is also
continuous at a.

(2) If the functions f, are continuous (on the whole of E'), then the limit f is also contin-
uous (on the whole of E).
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fnﬂ fn

fns2

Figure 2.16: Let £ = F = R with the FEuclidean metric, and let f be red horizontal line.
The sequence (f,),>1 converges locally uniformly to f. Note that for a given x and a given
€, the N will vary. For example, for 1, N = n, while for x5, N =n + 4.

(3) If E is a metric space, the sequence (fy)n>1 converges uniformly to f, and the f, are
uniformly continuous on E, then the limit f is also uniformly continuous on E.

The proof of Theorem 2.2 can be found in Schwartz [60] (Chapter XV, Section 4, Theorem
1).

Here are a few applications of Theorem 2.2.

Definition 2.8. Let E be a topological space, and let (F,d) be a metric space. The metric
subspace of ((F'F),,ds) consisting of all continuous bounded functions f: E — F is de-
noted Cy(E; F). If (E,] ||) is a normed vector space, the normed subspace of ((F€), || ||..)
consisting of all continuous bounded functions f: F — F' is also denoted Cy(F; F).

Proposition 2.3. Let E be a topological space, and let (F,d) be a metric space. The met-
ric subspace Cy(E; F) of ((FE)y,ds) is closed. If (F,d) is a complete metric space, then
(Co(E; F),dw) is also complete.

Proposition 2.4. Let E be a topological space, and let (F,|| ||) be a normed vector space.
The normed subspace Co(E; F) of ((FF)y, || ||..) s closed. If (F,||||) is a complete normed
vector space, then (Cp(E; F), || ||..) is also complete.

An important special case of Proposition 2.4 is the case where F' = R or F' = C, namely,
our functions are real-valued continuous and bounded functions f: E — R, or complex-
valued continuous and bounded functions f: E — C. The spaces of functions (Cy(E;R), d )
and (Cy(E;C), | ||,) are complete.

If E is compact and if (F, || ||) is a complete normed vector space, then every continuous
function f: E'— F' is bounded. As a consequence, the space C(F; F') of continuous functions
f: E — F is complete.
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2.4 Compact Convergence; The Space of Continuous
Functions

In the past two sections, for the case of a metric space (F,d), we investigated (F'F),. The
topology we placed on (F'¥),, that of uniform convergence, was intrinsic in nature and was not
induced by the topology of pointwise convergence on F'¥. but in fact finer than the induced
topology. Still assuming that F' is a metric space, we now want to investigate C(E; F').
Unlike the case of (FF),, we can use F'F to induce an appropriate topology on C(E; F),
but the key is to create a new finer topology on F¥ namely that of compact convergence.
This is not an arbitrary choice, but one based on experience, since the topology of compact
convergence occurs in the definition of the dual of an abelian locally compact group.

Definition 2.9. Let E be any topological space and let (F,d) be a metric space. For any
€ >0, any f € FE, and any compact subset K of E, define the set B (f,€) by

Bi(f.0)={a € F* [supd(f(a).glo) <}
xe
see Figure 2.17. The family of sets By (f, €) is a subbasis of the topology of compact conver-
gence; that is, an open set of F'¥ in this topology is any union (possibly infinite) of finite
intersections of subsets of the form By (f,€). The space of continuous functions from E to
F with the topology of compact convergence is denoted by (F'F)..

Figure 2.17: Let £ = F' = R with the Euclidean metric, and let K be the disjoint union of
the brown closed interval and single point. Then g, h,s € Bg(f, €).

The difference between this topology and the topology of pointwise convergence is that
a general basis subset containing a function f contains functions that are close to f not
just at finitely many points, but at all points of some compact subset. Thus the topology
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of pointwise convergence is weaker than the topology of compact convergence, which itself
is weaker than the topology of uniform convergence. It is easy to see the sets Bg(f,¢)
actually form a basis of the topology of compact convergence (they are closed under finite
intersections).

It is easy to show that a sequence (f,) of functions in F'¥ converges to a function f in
the topology of compact convergence iff for every compact subset K of E, the sequence (f,)
converges uniformly to f on K.

If the space E is compactly generated, then the topology of compact convergence is even
better behaved.

Definition 2.10. A topological space E is compactly generated if any subset U of F is open
if and only if U N K is open in K for every compact subset K.

The following result is shown in Munkres [54] (Chapter 7, Section 46, Lemma 46.3).

Proposition 2.5. If a topological space E s locally compact or first countable, then it is
compactly generated.

A nice consequence of E being compactly generated is that, as in the case of uniform
convergence, the limit of a sequence of continuous functions that converges to a function f
in the topology of compact convergence is continuous.

Proposition 2.6. Let E be a compactly generated topological space and let (F,d) be a metric
space. Then the space C(E; F) of continuous functions from E to F is closed in F¥ in the
topology of compact convergence.

Proposition 2.6 is proven in Munkres [54] (Chapter 7, Section 46, Theorem 46.5).

In many applications we are interested in considering the space C(E; F') of continuous
functions from FE to F' as an independent space in its own right, not as a subspace embedded
in F¥. As such there is an intrinsic way to define a topology on C(E;F) which has the
advantage of not requiring F' to be a metric space. Fortunately, as we will discover, and as
illustrated in Figure 2.18, if F' is a metric space, this intrinsic methodology corresponds to
the inherent topology of compact convergence.

Definition 2.11. Let £ and F' be two topological spaces. For any compact subset K of F
and any open subset U of F', let S(K,U) be the set of continuous functions

S(K,U) ={f | f e C(E; F), J(K) CU};

see Figure 2.19. The sets S(K,U) form a subbasis for a topology on C(E; F) called the
compact-open topology. An open set in the topology is any union (possibly infinite) of finite
intersections of subsets of the form S(K,U).
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Fis a METRIC space, (F.d)

FE topology of compact convergence

C(EF)
(continuous)

Compact-open topology

Figure 2.18: A Venn diagram illustration of F'¥ with the finer topology of compact conver-
gence, along with the subsets C(E; F') and (F¥),. There are two equivalent approaches for
placing a topology on C(F; F'), an inherited subspace approach and an intrinsic approach.
The metric topology on (F¥), still requires the intrinsic approach.

It is immediately verified that if F' is Hausdorff, then the compact-open topology on
C(E; F) is Hausdorff.

Remark: Observe that the open subsets S(z,U) of the topology of pointwise convergence
can be viewed as the result of restricting K to be a single point but relaxing f to belong to
FE.

The compact-open topology is interesting in its own right and coincides with the topology

of compact convergence when F' is a metric space. The following result is proven in Munkres
[54] (Chapter 7, Section 46, Theorem 46.8).

Proposition 2.7. If E is a topological space and if (F,d) is a metric space, then on the space
C(E; F) of continuous functions from E to F, the compact-open topology and the topology of
compact convergence coincide.

2.5 Equicontinuous Sets of Continuous Functions

Recall that in uniform convergence the limit of a sequence of continuous function is contin-
uous. Another notion that is often useful to show that a sequence of continuous functions
converges pointwise to a continuous function is the notion of an equicontinuous set of func-
tions. Intuitively speaking equicontinuity is of sort of uniform continuity for sets of functions.

Definition 2.12. Let E be a topological space and let (F,dr) be a metric space. A subset
S C C(E;F) of the set of continuous functions from E to F' is equicontinuous at a point
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Figure 2.19: Let F = F' = R with the Euclidean metric, and let K be the disjoint union
of the brown closed interval and single point. Let U be the purple open interval. Then
f,9,h,s € S(K,U) since each function passes through the light purple region.

ro9 € FE if for every € > 0, there is some open subset U C FE containing xo such that
dr(f(z), f(zo)) < efor all x € U and for all f € S; see Figure 2.20. If F is also a metric
space with metric dg, then the above condition says that for every € > 0 and for all f € S,
there is some 1 > 0 such that dp(f(z), f(z0)) < € whenever dg(z,z9) < 1. The set of
functions S is equicontinuous if it is equicontinuous at every point x € F.

Figure 2.20: Let £ = F' = R with the Euclidean metric, and let U be the green open interval
containing xo. The set S = {f1, fo, f3, f1} is equicontinuous at z.

For example, if E is a metric space and if there exists two constants ¢, > 0 such that
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we have the Lipschitz condition
de(f(2), f(y)) < e(dp(x,y))®,  forall f € S and all 2,y € E,

then S is equicontinuous.

Proposition 2.8. Let (f,) be a sequence of functions f, € C(E;F), and let (x,) be a
sequence of points x, € E. If the set {f,} is equicontinuous, the sequence (x,) converges
to x € E, and the sequence (f,) converges pointwise to some function f: E — F, then the
sequence (fn(x,)) converges to f(x) € F.

Proof. We have, as shown in Figure 2.21, the inequality
dp(fu(@n), f(2)) < dp(fu(zn), fo(2) + dr(fa(z), f(2)).

Close up

Figure 2.21: An illustration of dr(f,(x,), f(x)) < dp(fu(zn), fo(@)) +de(fo(x), f(x)), where
E = F = R. For simplicity we suppressed the first coordinate of the ordered pair.

For every € > 0, since the sequence (f,,) converges pointwise to f, there is some Ny > 0
such that dp(f.(z), f(z)) < €/2 for all n > Nj. Since {f,} is equicontinuous, there is some
open subset U C E containing x such that

dp(fa(y), fu(z)) <€/2  foralln>1andally € U.
Since (z,,) converges to x, there is some N7 > 0 such that z, € U for all n > Ny, so
dF(fn(xn>afn<Jf)> < 6/2 for all n > Ny,

and for all n > max{Ny, No}, we have dp(fn(z,), f(z)) < €, which proves that (f,(z,))
converges to f(z). ]
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There are various results about equicontinuous sets of functions usually known as variants
of Ascoli’s theorem. Schwartz [60] (Chapter XX) gives one of the most complete expositions
we are aware of. We only consider three variants of Ascoli’s theorem that we will need.

Theorem 2.9. (Ascoli I) Let E be a topological space, let (F,dp) be a metric space, and
let S C C(E;F) be a set of equicontinuous functions at some xo € E. Then the closure S
of S in FE with the topology of pointwise convergence is also equicontinuous at xo. As a
corollary, if S C C(E; F) is a set of equicontinuous functions, then every function f € S is
continuous, and for every sequence (f,) of functions f, € S, if (f.) converges pointwise to
a function f € F¥, then f is continuous.

Proof. Since S is equicontinuous at xg, for every € > 0, there is some open subset U C F
containing xzy such that

dr(f(xg), f(x)) <, forall fe Sandall zeU.

But for x € U fixed, the map f +— (f(x), f(x)) from F*¥ to F? = F x F is continuous (this
is a projection onto a product), and d is continuous on F2. As a consequence, the set

{f € F¥ | dp(f(x0), f(2)) < €}

is closed in F'?, and since it contains S, it also contains S. Thus, for every € > 0, we fourgi
an open subset U containing zy such that dp(f(z¢), f(z)) < e for all z € U and all f € S,
which means that S is equicontinuous.

Since every function in an equicontinuous set of functions is continuous, every function
f € S is continuous. By definition of the pointwise topology, if a sequence (f,) of functions
f, € S converges pointwise to a function f € F'¥, then f € S, so f is continuous. n

Dieudonné proves a weaker version of Theorem 2.9, namely that for every subset S of
the space of bounded continuous functions Co(E; F), if S is equicontinuous, then its closure
S'is also equicontinuous. This is Proposition 7.5.4 in Dieudonné [21] (Chapter 7, Section 5).

The second version of Ascoli’s theorem involves a dense subset Ey of E. We need the
following variant of Definition 2.2.

Definition 2.13. The topology of pointwise convergence in Ej is the topology on F'¥ having
the sets
S(z,U)={f|fe€F¥ flx) €U}, x € Ey, U open in I,

as a subbasis.

Theorem 2.10. (Ascoli II) Let E be a topological space, let (F,dr) be a metric space,
Ey be a dense subset of E, and S C C(E; F) be a set of equicontinuous functions. Then
the topology of pointwise convergence in Ey, the topology of pointwise convergence, and the
topology of compact convergence (all three topologies being defined in F¥), induce identical
topologies on S.
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Theorem 2.10 is proven in Schwartz [60] (Chapter XX, Theorem XX.3.1). The following
corollaries of Theorem 2.10 are particularly useful. The first of these two propositions is an
immediate consequence of Theorem 2.10.

Proposition 2.11. Let E be a topological space and let (F,dr) be a metric space. If a
sequence (f,) of continuous functions f, € C(E; F) converges pointwise to a function f € F¥
and if { f,} is equicontinuous, then f is continuous and the sequence (f,,) converges uniformly
to f on every compact subset.

Proposition 2.12. Let E be a topological space, Ey a dense subset of E, and let (F,dr) be
a metric space. If the following properties hold:

(1) The sequence (f,) of continuous functions f, € C(E; F') converges pointwise for every
x € Ey;

(2) The set {fn} is equicontinuous;
(3) The set {fn(x) | n > 1} is contained in a complete subset of F' for every x € E;

then the sequence (f,) converges pointwise (for all x € E) to a continuous function f, and
(fn) converges uniformly to f on every compact subset. If ' complete, then Condition (3)
18 automatically satisfied and can be omitted.

Proof. Since by Theorem 2.10, the topology of pointwise convergence on FEjy is identical to
the topology of pointwise convergence on E, as the sequence (f,) converges pointwise for
every x € Fjy, it also converges pointwise for every x € E. This implies that for every x,
the sequence (f,(z)) is a Cauchy sequence in F', but since by (3) the set {f,(x) | n > 1} is
contained in a complete subset of F', the sequence (f,(x)) converges. Thus (f,) converges
pointwise to a function f € F¥, and since {f,} is equicontinuous, by Proposition 2.11, the
function f is continuous, and (f,,) converges uniformly to f on every compact subset. n

Dieudonné proves a special case of Proposition 2.12 where F is a metric space, I is
a complete normed vector space (a Banach space), the functions f, are continuous and
bounded, and {f,} is equicontinuous; see Proposition 7.5.5 and Proposition 7.5.6 in [21]
(Chapter 7, Section 5).

In most applications of Ascoli I and II, E is a metric space and F' is a (complete) normed
vector space. The following result about sets of continuous linear maps will be needed.

Proposition 2.13. Let E be a metrizable vector space and F be a normed vector space. A
subset of continuous linear maps S C L(E; F) is equicontinuous if and only if there is some
open subset V- C E containing 0 and some real ¢ > 0 such that || f(x)|| < ¢ for allx € V and
all f € S.
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Proof. 1f S is equicontinuous, then obviously the property of the proposition holds. Con-
versely, for any € > 0, the condition ||f(z)]| < ¢ for all x € V and all f € S implies that
|f(x)]| < e€forall z € (¢/c)V and all f € S, so S is equicontinuous at 0. For any zy € E,
and for all x € zg + (¢/c)V, we have

1 () = fl@o)ll = 1f(z — o)l < e

for all f € S, that is, S is equicontinuous at xy. H

A third version of Ascoli’s theorem involving relative compactness will be needed in Vol
IT, Section 9.1. Recall that a subset A of a Hausforff space X is relatively compact if its
closure A is compact in X.

Theorem 2.14. (Ascoli I11) Let E be a topological space, let (F,dg) be a metric space, and
let S CC(FE; F) be a set of continuous functions. Assume the following two conditions hold:

(1) The set S is equicontinuous.
(2) For every x € E, the set S(x) = {f(x) | f € S} is relatively compact in F'.

Then the set S is relatively compact in the space (F¥). of continuous functions from E to F
with the topology of compact convergence. Conversely, if E is locally compact and if the set
S is relatively compact in the space (F¥)., then Conditions (1) and (2) hold.

Proof. A complete proof is given in Schwartz [60] (Chapter XX, Theorem XX.4.1). We only
prove the first part of the theorem. The proof uses Tychonoft’s powerful product theorem.

By hypothesis, for every x € F, the closure S(x) of S(x) is compact in F, so by Tychonoft’s
theorem, the product [] .5 S(z) is compact in F. By definition of the above product, this

means that the set S of functions f € F¥ such that f(z) € S(x) for all z € F is compact in
FE with the topology of pointwise convergence. Since S is contained in the compact set S ,
we deduce that its closure S is compact in F'¥ (with the topology of pointwise convergence).
By Ascoli I (Theorem 2.9), since S is equicontinuous, the set S is also equicontinuous. By
Ascoli II (Theorem 2.10), since the restriction to .S of the topology of pointwise convergence
on FP coincides with the restriction to S of the topology of compact convergence on FF,
the set S is compact in (FF),, and thus S is relatively compact in (FF),. O

The special case of Theorem 2.14 in which E is compact and F' is a Banach space is
proven in Dieudonné [21] (Chapter 7, Section 5, Theorem 5.7.5). Because F' is complete the
proof is simpler and does not use Tychonoff’s theorem.
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2.6 Continuous Functions of Compact Support

In this section we consider F' to be a normed vector space. We know that two important
subspaces of F¥ are (FF),, the space of bounded functions, and C(E;F), the space of
continuous functions. The intersection of these subspaces, with the inherited sup norm of
(FF),, is the space of continuous bounded functions C,(E; F). Within Cy(E; F) there is
another interesting subspace, namely C.(F; F'), the space of continuous functions of compact
support. In this section we investigate C.(F; F') and describe its closure within C,(E; F). So
first we recall what is the support of a function.

Definition 2.14. Given any function f: E — F, where FE is a topological space and F' is a
vector space, the support supp(f) of f is the closure of the subset of E' where f is nonzero,
that is, supp(f) = {x € E | f(x) # 0}. The function f has compact support if its support
supp(f) is compact. If E is Hausdorff, this is equivalent to saying that f vanishes outside
some compact subset K of F. See Figure 2.22.

Figure 2.22: The graph of f: R* — R with compact support supp = B(0,2) = {(x,y) € R? |
r? +y? < 2}

It is easy to see that the set of continuous functions f: E — F with compact support is
a vector space.

Definition 2.15. The vector space of continuous functions f: F — F with compact support
is denoted by C.(E; F'), or K(E; F). For every compact subset K of E, we denote by K(K; F)
the space of continuous functions whose support is contained in K. Then

K(E; F) = U K(K; F).

KCE, K compact
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Observe that every function in KC(E; F') is bounded, that is, K(E; F') C Cy(E; F).

If F =R or F = C, then we write Kgr(F) or K¢(FE) for (E; F). Radon functionals are
certain kinds of linear forms on K¢(E).

The following results will be needed in Vol II, Chapter 3.

Proposition 2.15. If E is a compact metric space, then the spaces Cr(E) and Cc(E) are
separable.

Proof sketch. The proof is nontrivial and can be found in Dieudonné [21] (Chapter 7, Theo-
rem 7.4.4). The proof makes a crucial use of the Stone-Weierstrass Theorem (Theorem 9.36)
The first step is to observe that it suffices to prove that Cg(E) is separable because C¢(FE)
is the direct (topological) sum of Cx(FE) and iCgr(FE). As a second step, we observe that by
Proposition A.47, since E is a compact metric space, it is separable, and by Proposition A.46,
a separable metric space is second countable. Thus there is a countable base (U,,) for the
topology. Then the trick is to define the family of continuous functions g, (t) = d(t, E — U,,)
(see Definition A.5 for the definition of the distance to a subset). The next step is to define
the subalgebra B of Cr(E) generated by the monomials g/ (t) - - - g;"*(t) and to check that
B satisfies the hypotheses of the Stone-Weierstrass Theorem (Theorem 9.36). The final
step is to show that by using rational linear combinations of the monomials i (¢) - - - g;"* (t)
we obtain a countable dense subset of Cg(E) (see Dieudonné [21] (Chapter 5, Theorem
5.10.1)). O

Proposition 2.16. If E is a locally compact separable metric space, then the spaces Kg(E)
and Kc(E) are separable.

Proof sketch. A proof is implicitly given in Dieudonné [20] (Chapter XIII, Theorem 13.11.6).
As in the proof of Proposition 2.15 it suffices to prove our result for Kg(F). By Proposition
A.49(1), since E' is locally compact, metric, and separable, there is a countable sequence
(K,) of compact subsets of E such that K, C K, and E =, -, K,,. Then

Ke(E) = | Ka(K,).

n>1

By Proposition 2.15, for each n > 1, there is a dense sequence (gmn)n>1 in Kr(K,). Then
the countable double sequence (g, ) is dense in Kgr(E). O

If (F,]||) is a Banach space and K is a fixed compact subset of E, then so is IC(K; F)
(for the sup norm || || ), because it is closed in Cy(£; F'). However, the normed vector space
(K(E;F), | ]l) is not complete!

Example 2.3. For every n > 1, consider the function u,: R — R defined as follows:
1 ifn<z<n

r+n+1 f—-(n+1)<zx<-n

—x4+n+1 ifn<zx<nit+l

0 if |z] >n+ 1.

U () =
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Now consider the sequence of functions (f,,) given by

fulz) = w, e 1.

Each function f,, is continuous and has compact support [—(n + 1),n + 1], and it is easy to
show that the sequence (f,) converges uniformly to the function f given by f(z) = eI,
but f does not have compact support. The problem is that the domains of the functions f,,,
although compact, keep growing as n goes to infinity. See Figure 2.23.

Figure 2.23: The functions of Example 2.3. Figure (i) illustrates the u; () in magenta; us(z)
in red, us(x) in orange, u4(x) in purple, and us(x) in blue. Figure (ii) uses the same color
scheme to illustrate the corresponding f,(x). Note these f,(z) converge uniformly to green

Flw) = el

Example 2.3 shows that the normed vector space (IC(E; F'), | ||.) is not closed in the
complete normed vector space (Cp(E; F), | ||..). It would be useful to identify the closure

K(E; F) of K(E; F) in Cy(E; F), and this can indeed be done when E is locally compact.

Assume that f belongs to the closure IC(F; F) of K(E; F'). This means that there is a
sequence (f,,) of functions f,, € K(E; F) such that lim,, . || f — full., = 0, so for every € > 0,
there is some n > 1 such that ||f(x) — f.(x)|| < € for all z € E, and since f, has compact
support, there is some compact subset K of E such that || f(z)|| < e for all z € F— K. This
suggests the following definition.
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Definition 2.16. The subspace of Cy(F; F'), denoted Cy(E; F'), consisting of the continuous
functions f such that for every e > 0, there is some compact subset K of F such that

IIf(x)|| <eforall z € E— K, is called the space of continuous functions which tend to 0 at
infinity; see Figure 2.24.

Cb (E; F)SUP norm
CEP (FE),

Figure 2.24: The Venn diagram relationships between Cy(E

 F)
subspaces KC(E; F') and Cy(E; F'), where KC(E; F) C Co(E; F) C

(FE),NC(E; F), and the
o(E; F).

QII

If F is compact, we can pick K = F, in which case E— K = (). This shows that Definition
2.16 has been designed so that if £ is compact, then Co(E; F) = C(E; F) = K(E; F).

Observe that if E = R, then a function f € Cy(R; F') does indeed have the property that
limg,, o f(2) = limg 1o f(x) = 0; see Figure 2.25.

Figure 2.25: A schematic illustration of f € Cy(R; F'), where the reader may consider F' = R.
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We showed that IC(E; F') C Co(E; F). If E is locally compact, then we have the following
result from Dieudonné [20] (Chapter XIII, Section 20) and Rudin [57] (Chapter 3, Theorem
3.17).

Proposition 2.17. If E is locally compact, then Co(E;C) is the closure of IC(E;C) in
Co(E;C). Consequently, Co(E;C) is complete.

Proof. We already showed just before Definition 2.16 that if a function f belongs to the
closure of KL(E;C), then it tends to zero at infinity. Conversely, pick any f in Co(F;C).
For every € > 0, there is a compact subset K of E such that |f(x)| < € outside of K. By
Proposition A.39, there is continuous function g: E — [0, 1] with compact support such that
g(z) =1for all x € K. Clearly fg € Kc(E), and || fg — fl|., < €. This shows that K(E;C)
is dense in Cy(E; C). O

In summary, if E' is locally compact, then we have the inclusions
K(E;C) € Go(E;C) € C(E;C),

with Co(F; C) and Cy(F; C) complete, and IC(E; C) dense in Cy(E;C). If E is not compact,
these inclusions are strict in general. It turns out that the space of continuous linear forms
on Co(F; C) is isomorphic to the space of bounded Radon functionals.

2.7 Topologies Defined by Semi-Norms;
Fréchet Spaces

Certain function spaces, such as the space C(X; C) of continuous functions on a topological
space X, do not come with “natural” topologies defined by a norm or a metric for which they
are complete. However, the weaker notion of semi-norm can be used to define a topology,
and under certain conditions, although such topologies are not defined by any norm, they are
metrizable and complete. In this section we briefly discuss the use of semi-norms to define
topologies. It turns out that the corresponding spaces are locally convex.

Recall from Definition B.1 that a semi-norm satisfies Properties (N2) and (N3) of a
norm, but in general does not satisfy Condition (N1), so ||z|| = 0 does not necessarily imply
that x = 0. Here is a method for defining a topology on a vector space using a family of
semi-norms.

Definition 2.17. Let X be a vector space and let (p,)aecs be a family of semi-norms on X.
For every x € X, every € > 0, and every a € I, let

Usae ={y € X | pay — x) < €}

The topology induced by the family of semi-norms (pa)acr is the weakest (coarsest) topology
whose open sets are arbitrary unions of finite intersections of subsets of the form U, , .
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We can think of the subset U, , . as an open ball of center x and radius € in X, determined
by the semi-norm p,,.

Two good examples of topologies induced by families of semi-norms are the topology of

pointwise convergence and the topology of compact convergence on a normed vector space
F.

Example 2.4. Let F be any set and let F' be a normed vector space. If we define the family
of semi-norms (p;).cp by

p(f) = f@)l, feF" z€k,

then it is easy to see that the topology defined by the family (p,).cg is the topology of
pointwise convergence on F'¥ which has the subsets

S(x,U)={f|feFE f(x)ecU}, x € FE, Uopenin F,
as a subbasis.

Example 2.5. Let F be a topological space and let F' be a normed vector space. If we
define the family of semi-norms {px | K compact in E}, by

pr(f) =sup||f(x)l, fe€FF K compactin E,
zeK

then it is easy to see that the topology defined by the family (pg) is the topology of compact
convergence on F'¥. which has the subsets

Bi(f.0) = {g e FP | supd(f(x), g(x)) < }

zeK

as a subbasis.

We have made our vector space X into a topological space but it is not clear that the
operations (addition and scalar multiplication) are continuous. Also, in general, this topology
is not Hausdorff. The following proposition addresses these issues.

Proposition 2.18. Let X be a vector space and let (pa)acs be a family of semi-norms on
X.

(1) With the topology induced by the family of semi-norms (pa)acr, addition and scalar
multiplication are continuous, so X is a topological vector space.

(2) For every x € X, the finite intersections of subsets of the form U, . is a neighborhood
base of x.

(3) Every open set Uy o s convet.
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(4) Every p, is continuous.

(5) The topology induced by the family of semi-norms is Hausdor(f if and only if, for every
x # 0, there is some o € I such that p,(x) # 0.

Proposition 2.18 is proven in Folland [29] (Chapter 5, Section 5.4, Theorem 5.14), or
Rudin [58] (Chapter 1, Theorem 1.37). In view of Property (3), the topological space X is
said to be locally convez.

In a vector space X whose topology defined by a family of semi-norms (p,)aes is Haus-
dorff, it is easy to see that the convergence of a sequence (x,) to a limit x is expressed
conveniently as follows.

Proposition 2.19. Let X be a space whose topology is defined by a family of semi-norms
(Pa)acr- If X is Hausdorff, then a sequence (x,) converges to a limit x iff for every a € I,
for every € > 0, there is some N, > 0 such that p,(x — x,) < € for alln > N,; equivalently,
limy, 00 Po(® — ) = 0, for every o € 1.

When the index family I is countable and the topology induced by a family of semi-norm
is Hausdorff, then X is actually metrizable.

Proposition 2.20. Let X be a vector space and let (py)acr be a family of semi-norms on X.
If the topology induced by (pa)acr is Hausdorff and if I is countable, then X is metrizable with
a translation-invariant metric d (this means that d(a,b) = d(a+u,b+u) for all a,b,u € X ).
In fact, we can use the metric d given by

Proposition 2.18 is proven in Dieudonné [20] (Chapter 12, Section 4, Theorem 12.4.6),
and in Rudin [58] (Chapter 1, Page 29, with an equivalent metric).

Definition 2.18. A vector space X whose topology is defined by a countable family of semi-
norms, and which is Hausdorff and complete for some translation-invariant metric defining
the topology of X is called a Fréchet space.

A prime example of a Fréchet space is the space C(X;C) of continuous functions on a
separable, locally compact, metrizable space X. This will be proven shortly.

The following technical result is needed to prove Proposition 2.22.

Proposition 2.21. Let X be a metrizable Hausdorff topological vector space. For any
translation-invariant metric d defining the topology of X, a sequence (x,) is a Cauchy se-
quence if and only if for every neighborhood V' of 0, there is some N > 0 such that x,,—x, € V
for all m,n such that m > N and n > N.



2.7. TOPOLOGIES DEFINED BY SEMI-NORMS; FRECHET SPACES 45

Proof. A slightly more general result is proven for topological groups in Dieudonné [20]
(Chapter 12, Section 9, Theorem 12.9.2) and Rudin [58] (Chapter 1, Page 21). If a metric d
defining the topology of X is translation-invariant, then

d([En, ZEm> = d(07 Tm — xn);

and the sequence (z,,) is a Cauchy sequence iff for every € > 0, there is some N > 0 such that
d(0, z,, — ,) < € for all m > N and n > N, which is equivalent to saying that z,, —x, € V,
where V' is the open ball of center 0 and radius €, which is an open subset of X, by definition
of the metric topology. Conversely, since the topology of X is defined by the metric d, every
open ball of center 0 is an open set, so the condition of the proposition implies that (z,) is
a Cauchy sequence for every translation-invariant metric defining the topology of X. m

Proposition 2.22. If a metrizable topological vector space X is Hausdorff and complete for
some translation-invariant metric d defining the topology of X, then it is also complete for
every translation-invariant metric d' defining the topology of X,

We now prove that the space C(X;C) of continuous functions on a separable, locally
compact, metrizable space X is a Fréchet space.

Recall from Proposition A.49 that since X is metrizable, there is a sequence (Un)n>0
of open subsets sucht_hat for all n € N, U, C U,1, U, is compact, U, C U,,1, and
X =U,>0Un = U, 50 Un. For every n € N, define the function p,: C(X;C) — R by

pn(f) = sup [f(z)],  fe€C(X;C).

Z‘eUn

It is immediately verified that the p, are semi-norms (but none of the p, are norms
if X is not compact). For each f € C(X;C), if f # 0, then there is some n such that
x € Uy, hence p,(f) # 0. Thus, by Proposition 2.18(5), the space C(X; C) with the topology
induced by the family of semi-norms (p,) is Hausdorff. By Proposition 2.20, this topology
is metrizable. Note that the restriction of p,,; to the compact subset U, is actually a norm,
and by definition of the metric d given by Proposition 2.20, the restriction of d to U, is
equivalent to p,1.

Proposition 2.23. Let X be a separable, locally compact, metrizable space. The space
C(X;C) with the topology induced by the family of semi-norms (p,) is complete. Therefore,
it 1s a Fréchet space.

Proof. Since the restriction of the metric d to U, is equivalent to p,, by Proposition 2.22,
a sequence (fx) of functions in C(X;C) is a Cauchy sequence if for every n, the sequence
of restrictions f3,|U, is a Cauchy sequence in the Banach space C(U,;C), hence converges
uniformly in U, to a continuous function g, € C(U,;C). Since g,.1|U, = gn, there exists a
continuous function f € C(X;C) whose restriction to each U, agrees with the restriction of
gn to U,; see Figure 2.26. It is clear that lim,, oo pp(f — fin) = 0 for all n > 0, hence by
Proposition 2.19, f is the limit of the Cauchy sequence (f;), and C(X;C) is complete. [
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Figure 2.26: A schematic illustration of the function g, and its continuous extension g,1.
In this figure X is represented by the horizontal plane and C is the vertical axis. The graph
of gn.1 is the dusty rose surface while the graph of g, is the plum surface patch inside of
that surface.

It is shown in Rudin [58] (Chapter 1, Example 1.44) that the Fréchet space C(X;C) is
not normable.

The following result is shown in Dieudonné [20] (Chapter 12, Section 14, Theorem
12.14.6.2).

Proposition 2.24. Let X be a separable, locally compact, metrizable space. The Fréchet
space C(X;C) is separable. In fact, there is a countable dense set consisting of continuous
functions with compact support.

Another good example of a Fréchet space is the Schwartz space; see Section 6.8.

2.8 Regulated Functions

In the last two sections we focused on C(E; F') where F is a normed vector space. We return
to (FF), and in preparation for the next chapter on the Riemann integral investigate two
important subspaces of (F®),, the space of regulated functions and then the space of step
functions, both of which inherit the sup norm from (F¥),. Since the space of regulated
functions contains the space of step functions we begin with the definition of the larger
subspace. Recall that there are four kinds of intervals of R: (a,b), [a,b), (a,b], and [a, b],
with a < b. By convention, (a,b) = [a,b) if @ = —o0, and (a,b) = (a,b] if b = co.

Definition 2.19. Let I be an interval of R, and let F' be a metric space (or a normed vector
space). Given a function f: I — F, for any x € I with = # b, we say that f has a limit to the
right in  if limyes 4>, f(y) exists as y € I tends to x from above. This limit is denoted by
f(x+). For any = € I with x # a, we say that f has a limit to the left in x if limye; <o f(y)
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exists as y € I tends to x from below. This limit is denoted by f(x—). Given any interval
I, a function f: I — F' is a regulated function (or ruled function) if it has a left limit and
a right limit for every x € I. If F' is a metric space (or a normed vector space), a function
f: R — Fis a requlated function (or ruled function) if there is some interval I such that f
vanishes outside 7, and the restriction f: I — F of f to I is regulated. See Figure 2.27.

Figure 2.27: An illustration of a regulated function f: R — R. This function has three
discontinuities x1, o, and x3, each of the first kind. Note that f(x1—) = vy, f(ax1+) =

f(@1) =y, f(w2—) = f(x2) = y3, f(22+) = W6, f(w3—) = y3, f(3+) = ¥5, yet f(z3) = 1.

The notion of a regulated function can also be defined in terms of certain kinds of dis-
continuities.

Definition 2.20. Let I be an interval of R, and let F' be a metric space (or a normed vector
space). Given a function f: I — F, we say that a point x € I is a discontinuity of the
first kind if the left limit f(x—) and the right limit f(x+) both exist, but f(x—) # f(z) or

fla+) # f(x).

It is clear that a function f: I — F is regulated iff for every x € I, either f is continuous
or x is a discontinuity of the first kind. Thus every continuous function is a regulated
function. It is also easy to see that a monotonic function f: I — R is a regulated function.

The function f: R — R defined by

o=

is discontinuous at = = 0, but this is not a discontinuity of the first kind. See Figure 2.28.

The following result is shown in Schwartz [62] (Chapter I1I, Section 2, Theorem 3.2.3).
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Figure 2.28: The graph of f(x) = sin (%), x # 0.
Proposition 2.25. If f: I — F is a requlated function (where F is a metric space), then f
has at most countably many discontinuities of the first kind.

Regulated functions on a closed and bounded interval [a,b] must be bounded. As a
consequence, they arise as limits of uniformly convergent sequences of step functions.

Definition 2.21. A function f: R — F (where F' is any set) is a step function if there
is a finite sequence (ag, ay, ..., a,) of reals such that a;, < axy; for k = 0,...,n — 1, and
f is constant on each of the open intervals (—o0, aq), (ax,ars1) for k = 0,...,n — 1, and
(@n, +00). The sequence (ag, ai, ..., a,) is called an admissible subdivision for f. See Figure
2.29. If a step function f has compact support, then we assume that f vanishes on (—o0, ay)
and on (a,,+oo) for any admissible subdivision (ag, a1, ...,a,) for f. By a step function
f:[a,b] = F, we mean a step function such that f(z) =0 for all z < a and for all = > b.

Observe that Definition 2.21 does not make any restriction on the values f(ax), but a
step function is regulated. Also, by refining a given subdivision, a given step function admits
infinitely many admissible subdivisions.

The following result is easy to prove.

Proposition 2.26. If F' is a vector space, then the set of step functions f: R — F s a
vector space denoted by Step(R; F'). The set of step functions f: [a,b] — F is also vector
space denoted by Step([a, b]; F').

The following proposition is much more interesting.

Proposition 2.27. Let F' be a metric space and let [a,b] be a closed and bounded interval.
Then every regulated function f: [a,b] — F' is the limit of a uniformly convergent sequence
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Figure 2.29: An illustration of a step f: R — R with admissible subdivision (ag, a, as, as, as).

(fu)n>1 of step functions f,: [a,b] — F. Furthermore, if F' is a complete metric space,
then the limit of any uniformly convergent sequence (fn)n>1 of step functions is a requlated
function.

The proof of Proposition 2.27 is given in Schwartz [62] (Chapter III, Section 2, Theorem
3.2.9).

As a corollary of Proposition 2.27 we have the following result.

Proposition 2.28. If F' is a complete metric space, then the space of requlated functions on
[a,b] is closed in (FI*%), and the space of step functions on [a,b] is dense in the space of
regulated functions on |a,b]. Thus if F is complete, since (F1*"), is complete, the space of
requlated function on |a,b] is also complete.

Another corollary of Proposition 2.27 is that every continuous function f: [a,b] — F to

a metric space F' is the limit of a uniformly convergent sequence (f,),>1 of step functions
fn:la,b] = F.

If I is a vector space, the set of regulated functions defined on the closed and bounded
interval [a, b] is a vector space denoted by Reg([a, b]; F'). Then Proposition 2.27 implies the
following result.

Proposition 2.29. Let F' be a complete normed vector space. The space Reg(la,b]; F) of
regulated functions on [a,b] is complete, and the space Step(|a, b]; F') is dense in Reg([a, b]; F').

Step functions can be used to define the Riemann integral. To do so it is convenient
to consider functions of finite support. Furthermore, a modified version of step functions
involving a measure will be used to define the integral on a measure space.
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2.9 Problems

Problem 2.1. Prove Theorem 2.1. Hint: See Schwartz [60] (Chapter XV, Section 1, Theo-
rem 1).

Problem 2.2. Prove Theorem 2.2. Hint: See Schwartz [60] (Chapter XV, Section 4, Theo-
rem 1).

Problem 2.3. Prove that the sets Bg/(f,¢€) form a basis for the topology of compact con-
vergence.

Problem 2.4. Prove Proposition 2.6. Hint: See Munkres [54] (Chapter 7, Section 46,
Theorem 46.5).

Problem 2.5. Prove that if F' is Hausdorff, then C(F, F') is also Hausdorff with respect to
the compact-open topology.

Problem 2.6. Prove Proposition 2.7. Hint: See Munkres [54] (Chapter 7, Section 46,
Theorem 46.8).

Problem 2.7. Advanced Exercise: Prove Theorem 2.10. Hint: See Schwartz [60] (Chapter
XX, Theorem XX.3.1).

Problem 2.8. Prove Proposition 2.18. Hint: See Folland [29] (Chapter 5, Section 5.4,
Theorem 5.14) or Rudin [58] (Chapter 1, Theorem 1.37).

Problem 2.9. Prove Proposition 2.19.

Problem 2.10. Prove Proposition 2.27. Hint: See Schwartz [62] (Chapter III, Section 2,
Theorem 3.2.9).



Chapter 3

The Riemann Integral

Let f: [a,b] — R be a continuous function. Intuitively, the Riemann integral fab f(t)dt is the
area of the surface “under the curve” ¢t — f(t) from z = a to z = b. It can be approximated
by the sum s7(f) (called Cauchy-Riemann sum) of the areas (tx+1 —tx) f(tx) of n > 1 narrow
rectangles, where T' = (to,11,...,t,) is any sequence of reals such that t, = a, t,, = b and
ty < tgyq, for K =0,...,n — 1; see Figure 3.1. The fact that the function f is continuous
on the compact interval [a, b] implies that the sums sr(f) have a limit when the diameter
of the subdivision tends to zero (see Definition 3.1), which means the maximum of the
distances t41 — tx tends to zero (as n goes to infinity), and this limit is independent of the
subdivision. Thus we can define the Riemann integral fj f(t)dt as this common limit. The

mapping f — f: f(t)dt is a positive linear form on the space of continuous functions on
la, b]. This procedure applies unchanged to continuous functions f: [a,b] — F, where F'is a
complete normed vector space.

The method for constructing the integral of a continuous function can be adapted to
define the integral of regulated functions (see Definition 2.19). We proceed in two steps:

(1) The method of Cauchy-Riemann sums is easily adapted to define the notion of integral
for a step function (see Definition 2.21). This yields a mapping [: Step([a,b]; F) — F
which is easily seen to be linear and continuous.

(2) By Proposition 2.29, the vector space Step([a,b]; F') of step functions over [a,b] is
dense in Reg([a, b]; F'), the space of regulated functions over [a, b], and Reg([a, b]; F') is
complete. By Theorem A.73, the continuous linear map [: Step([a,b]; F') — F has a
unique extension [: Reg([a,b]; F) — F to Reg([a, b]; F'), which is also continuous and
linear. This is how the integral of a regulated function is defined.

In summary, we define an “obvious” notion of integral on the simple set Step([a,b]; F').

It is a linear and continuous mapping, so we extend it by continuity to the bigger space
Reg([a, b]; F) in which Step([a, b]; F') is dense.

o1
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3.1 Riemann Integral of a Continuous Function

In this section we define the Riemann integral of a real-valued continuous function.

Definition 3.1. Let a < b be any two reals. A set T = {to,11,...,t,} of reals such that
to = a, t, = band ty < tyyq, for k = 0,...,n — 1, is called a subdivision of [a,b]. The
diameter 6(T) of T is defined by

(S(T) = ogrggfq(tkﬂ — tk)

Given a continuous function f: [a,b] — R, define the Cauchy—Riemann sum sr(f) by

n—1

sr(f) = Z(tk+1 — te) f(tr)-

k=0

See Figure 3.1.

Figure 3.1: The Cauchy-Riemann sum sp(f) = Zizo(zﬁkﬂ — t) f(tr) is the “signed” area
represented by the pastel shaded boxes.

Observe that

n—1
Z(tk+1 - tk) =b—a.
k=0

We immediately check that s is a linear form on the set of continuous functions on [a, b].
Furthermore, if f > 0, which means that f(¢) > 0 for all ¢ € [a, b], then sp(f) > 0.

The question is, as the subdivision 7" becomes finer and finer, in the sense that §(7)
becomes smaller and smaller (which means that n gets bigger and bigger), do the sums
st(f) have a limit?
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The answer is yes.

The reason is that a continuous function on a compact interval [a, b] is uniformly contin-
uous, and this implies that for any sequence (7,,) of subdivisions such that §(7},,) — 0 as m
goes to infinity, the sums sz (f) form a Cauchy sequence, as we now explain.

Proposition 3.1. Let f: [a,b] — R be a continuous function defined on a closed and bounded
(compact) interval [a,b]. For every ¢ > 0, there is some n > 0 such that for any two
subdivisions T and T" of |a,b] such that 6(T) <n and §(T") < n, we have

s7(f) — s (f)] <e.
Proof. Since a continuous function on [a, b] is actually uniformly continuous, for any € > 0,
we can find some n > 0 such that
|f(z) — f(z")| < €/2(b—a) forall x,2" € [a,b] such that |z — 2| < 7.
T = {to, t1,...,tn} and T" = {tg, ¢}, ..., ¢/, }, let T" = TUT" and let T}/ be the subdivision
T =T N [tg, tk+1], more precisely, T} = {so, 1, ..., 8-}, with sg = t, s, = tx41, and
{51, s} = {t) |t <t < trya},
with r = 0 if the above set on the right-hand side is empty, for kK =0,...,n — 1.
Then we immediately check that
n—1 n—1
1/
=T, and sp(f) =) srp(f).
k=0 k=0
See Figure 3.2.
Since sy (f) is of the form

r—1
ST,Q’(f) - Z(5i+1 — 5i)f(si),
i=0
where t, < s; < t4q for i = 0,...,7, and since Z:;&(siﬂ —8;) = 8 — Sop = tpy1 — lg, wWe
have
r—1

sy (f) = (tkyr — ti) f(te)]| =

IR
= (ths1 — th) s
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Figure 3.2: An illustration of the refinement ST,Q’( f) utilized in the proof of Proposition 3.1.
Note that T is given by the black dots while 7" is given by the brown dots.

As a consequence, we obtain

510) = st (D] = | (i — ) f (1) = S sz (f)

<3 fsnp(f) — (e — 1) £ (80

€

< i(tkﬂ - tk:)Q(b —a)

<

)

N

that is,
€
sr(f) — sro(f)] < &
By a similar argument applied to T, we obtain

€

[s7:(f) = s (f) < 5.

But then we obtain

s7(f) = s ()| = [s0(f) = soo(f) + spo(f) — s (f)]
<|sr(f) = s (f)| + sz (f) — s (f)]
< §+ g =€,

as claimed. n
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Remark: It is easy to check that the proof of Proposition 3.1 is still valid if we use more
general Cauchy-Riemann sums. Namely, given a subdivision T = {t¢, 1, ...,t,} of [a,b], and
any choice of reals 6y, ..., 0, such that ty < 0pq <tgrq for k=0,...,n—1, define sp(f) as

st(f) =) (teyr —tr) f(Ory1);

see Figure 3.3.

01 '% 051
R E

0 :
f@s)

Figure 3.3: The general Cauchy Riemann sum sp(f) = S5 (terr — te)f(Orr1) is the
“signed” area represented by the pastel shaded boxes.

Proposition 3.1 implies the following result, which establishes the existence of the Rie-

mann integral of a continuous function defined on a closed and bounded (compact) interval
la, b].

Theorem 3.2. Let f: [a,b] — R be a continuous function defined on a closed and bounded
(compact) interval [a,b]. For every sequence T = (T,,)m>1 of subdivisions of [a,b] such that
limyyy00 0(1hn) = 0, the sequence (st,,(f))m>1 s a Cauchy sequence, and thus has a limit
St(f). For any two sequences T = (Ty)m>1 and T' = (T}, )m>1 of subdivisions of [a,b], if
im0 0(T0n) = 0 and limy, 00 6(1),) = 0, then Sr(f) = St (f), that is, the limit of the
sequence (st, (f)) is independent of the sequence T = (Tpn)m>1 such that lim,, o 6(T,,) = 0.

Proof. Pick any € > 0, and let n > 0 be some number given by Proposition 3.1, such that
for any two subdivisions T" and T” of [a, b] such that §(7") < n and §(T") < n, we have

ls7(f) — s (f)] <e

Since lim,, o0 6(T},,) = 0, there is some N > 0 such that for all m,n > N, we have §(T},,) <7
and 6(T,,) < n, which by the definition of 1, implies that

ls7, (f) — s, (f)] <e forall myn>N.
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Therefore, (sz,,(f)) is a Cauchy sequence. Since R is a complete metric space, this sequence
has a limit S7(f). The same argument shows that (s7 (f)) is a Cauchy sequence which has
a limit S7(f).

Since by hypothesis lim,;, 0 6(73,) = 0 and lim,, oo §(77,) = 0, there is some N > 0 such
that for all m > N, we have 6(T,,) < n and §(7),) < n, so by Proposition 3.1,

|s7,,(f) —sm (f)] <e forallm>N. (eql)
By the triangle inequality

1S7:(f) = ST < 1S (f) = 827, (N + 73, () = 873, (N + |52, () = S7(f)],

since the Cauchy sequences (s7,, (f)) and (s7r (f)) converge and (eql) holds, we deduce that
St (f) = St(f), that is, the sequences (s7,,(f)) and (s7; (f)) have the same limit. O

Theorem 3.2 also holds for the more general Cauchy-Riemann sums defined in the Remark
after Proposition 3.1.

Theorem 3.2 justifies the following definition.

Definition 3.2. Let f: [a,b] — R be a continuous function defined on a closed and bounded
(compact) interval [a,b]. The common limit S7(f) of the Cauchy sequences (sz,,(f))m>1,
for all sequences T = (T},,)m>1 of subdivisions of [a, b] such that lim,, ., §(T},) = 0, is called

the Riemann integral of f, and is denoted by f; ft)de.

The following are basic properties of the Riemann integral, which are easy to prove (using
suitable subdivisions of [a, b]):

1. The mapping f — fab f(t)dt is a linear form on the space of continuous functions on
[a, b]. This means that for any two continuous functions f, g: [a,b] — R and any scalar
A € R,

[ o= [ soas [ oo
/ ) (0t = A / "yt

where, as usual, f + ¢ is the function given by (f + ¢)(t) = f(t) + g(¢t), and Af is
the function given by (Af)(t) = Af(t), for all ¢ € [a,b]. Furthermore, it is a positive
linear form, which means that if f > 0, then fab f(t)dt > 0. These seemingly innocuous
properties turn out to be very important. Indeed, we will see later how the notion of
integral on a locally compact space can be defined in terms of such linear forms (Radon
functionals).
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b b
/°ﬂ0ﬁ's/°ﬁ@»ﬁs<n—@nwxuwh

t€la,b]

see Figure 3.4.
3. If f>0and f(t) > 0 for some t € [a, b], then f; f(t)dt > 0.

[ rwas [ o= [ s

5. If H: [a,b] — R is the function given by

4. If a < b < ¢, then

see Figure 3.5.

then H is differentiable on [a,b] and H'(x) = f(x) (the so-called first fundamental
theorem of calculus).

f [f]

" N NV N
b b

Figure 3.4: The left figure illustrates fab f(t)dt = A+(—A) = 0, while the middle figure illus-
trates [*]£(£)]dt = 24, so ‘ I f(t)dt‘ < ["|f(t)|dt. The right figure shows that [”|f(t)|dt

is contained within the orange rectangle of area (b — a) maxcjay) | f(2)]-

The process that we just described only requires that the codomain be complete and
that a continuous function f: [a,b] — F' be uniformly continuous. We also need the linear
combinations S 7} (tgy1 — tx) f(tr) to make sense, so F' should be a vector space. If we
assume that F' is a complete normed vector space (a Banach space), then the Riemann
integral of a continuous vector-valued function f: [a,b] — F can be defined by using the
method that we just presented.
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A+B =C

Figure 3.5: In the left figure, fabf(t)dt = A, while fbcf(t)dt = B, and this is equal to the
peach area under the curve from a to c.

In the next section we show how to define the integral of functions with discontinuities,
provided that these discontinuities are “reasonable.” For this, a new crucial idea is needed:
to define the integral on a class of simple functions with a finite number of reasonable
discontinuities, and then to extend the integral to a bigger class of functions by taking
limits of simple functions. For this process to work, the bigger space of functions should be
complete.

3.2 The Riemann Integral of Regulated Functions

In this section we show how to define the integral of regulated functions f: [a,b] — F, where
F' is any complete normed vector space, in particular R or any finite-dimensional vector
space (real or complex).

The first key ingredient is that the method of Cauchy-Riemann sums can be immediately
adapted to define the notion of integral for a step function. The mapping [ : Step([a, b]; F) —
F'is seen to be linear and continuous.

The second key ingredient is that, by Proposition 2.29, the vector space Step([a, b]; F)
of step functions over [a, b] is dense in Reg([a,b]; F), the space of regulated functions over
la,b], and Reg([a, b]; F) is complete, where [a, b] is a closed and bounded interval.

Then, because Step([a, b]; F') is dense in Reg([a, b]; F'), and Reg([a, b]; F') is complete, by
Theorem A.73, the continuous linear map [: Step([a,b]; F) — F has a unique extension
[: Reg([a,b]; F) — F to Reg([a, b]; F'), which is also continuous and linear. This is how the
integral of a regulated function is defined.

Thus it remains to define the integral of a step function.
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Definition 3.3. Let f: [a,b] — F be a step function. For any admissible subdivision
T = (ag,ay,...,a,) for f, for any sequence § = (&, . ..,&,) of reals such that {1 € (ag, ags1)
for k=0,...,n—1, define sp¢(f) by

i
L

ste(f) = (ar+1 — ag) f(Ergr)-

k=0
See Figure 3.6.
—— 3
b —
| 1
a g a & ay & ay &b
-1 |
2 - [ .

Figure 3.6: An illustration of spe(f) = S0;_,(ars1 — ax) f(Exsr) for step function f: [a,b] —
R.

The above is a linear combination of vectors in F', and since F' is a vector space, it is
well defined. Note that because {11 € (ag, agt1), STe(f) does not depend on the value of
f at the a;. For simplicity of language, we refer to a pair (7€) as in Definition 3.3 as an
admissible pair for f.

The problem with the above definition of sp¢(f) is that it depends on the admissible
subdivision 7', and on &, but because f is a step function, it is constant on each interval
(ag, agt1), so in fact sp¢(f) is independent of the admissible pair (7', &).

Proposition 3.3. Given a step function f: [a,b] — F, for any two admissible pairs (T, §)
and (T",&") for f, we have spe(f) = s e(f).

Proposition 3.3 is proved by using an admissible pair which is finer than both (7', ¢) and
(T",¢'). The details are left to the reader, or see Schwartz [63] (Chapter V, Section §1).

Proposition 3.3 justifies the following definition.

Definition 3.4. Let f: [a,b] — F be a step function. The integral of f, denoted f[a . f,is
the common value of the sum sr¢(f), for any any admissible pair (7', €) for f.
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The following proposition follows almost immediately from the definitions.

Proposition 3.4. The map [: Step([a,b]; F) — F', where [ f = f[ f is the integral defined

in Definition 3.4, is linear. Furthermore, we have

d h—
H/M]fHS/[a’b]llfll an '/[Chb]fug( a) [l f]l

where || f|| means the real-valued function x — ||f(x)|. If f = R and if f > 0, then
f[a,b] f Z 0.

a’b]

Proposition 3.4 shows that the map [: Step([a,b]; F) — F is linear and continuous.
As we explained earlier, by Theorem A.73, the map [: Step([a,b]; F) — F has a unique
extension [: Reg([a,b]; F) — F to Reg([a,b]; F'), which is also linear and continuous.

Definition 3.5. The integral f[a.b] f of any regulated function f € Reg([a,b]; F') is equal to

[ f, where [: Reg([a,b]; F) — F is the unique linear and continuous extension of the linear
and continuous map [: Step([a, b]; F) — F. This integral is called the Riemann integral of
the regulated function f.

Definition 3.5 is not very constructive. It turns out that the Riemann integral of a
regulated function can be defined more directly in terms of generalized Riemann sums. This
approach is presented in Schwartz [63] (Chapter V, Section §1).

Note that we actually haven’t defined the notion of Riemann-integrable function. What
we did is to exhibit a family of functions, the regulated functions, which are Riemann-
integrable function. The notion of Riemann-integrable function is defined in various books,
including Schwartz [63]. This can be done using the notion of upper integral [~ f, which
is defined for a positive function f € IC(R, F) as the infimum of the integrals of the step
functions that bound f from above.

The space of Riemann-integrable functions contains other functions besides the regulated
functions. For example, functions with compact support which are continuous except at
finitely many points, are Riemann-integrable. The function z + sin(1/z) is such a function
(with value 0 at = = 0). It is Riemann-integrable on [0, 1], even though 0 is not a discontinuity
of the first kind.

The method of this section, which consists in defining the notion of integral for a “big” set
of functions, such as Reg([a, b]; F'), by first defining a notion of integral on a very simple set
of functions for which the definition is obvious, such as Step([a, b]; F'), and then to extend the
integral on Step([a, b]; F') to a notion of integral on Reg([a, b]; ') using a completion process,
is a key idea. In this situation we are lucky that Reg([a, b]; F') is complete.

In order to define a notion of integral for functions defined on a domain X which is more
general than a compact interval [a,b] of R, we can proceed as above, but some additional
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structure on X is needed to define step functions and the notion of integral of step functions.
This new ingredient is the notion of measure. The other technical difficulty is that the
completion of the space of generalized step functions is not a space identifiable with a space
of familiar functions. By Theorem A.72, the completion always exists, but its elements are
equivalence classes of functions, so it will take some work to exhibit this space as a set of
functions.

3.3 Problems

Problem 3.1. Let f: [a,b] — R be a continuous function. Prove that f is uniformly
continuous.

Problem 3.2. Check that the proof of Proposition 3.1 is valid for general Cauchy-Riemann
sums defined as follows s (f): given a subdivision T = {tg, t1,...,t,} of [a, b], and any choice
of reals 61, ...,6, such that t; < 0y <ty for k=0,...,n— 1, define sp(f) as

—_

n—

st(f) =) (tesr —tr) f(Org1)-

0

£
Il

Problem 3.3. Check that Theorem 3.2 holds for the more general Cauchy-Riemann sums
st(f) defined in Problem 3.2.

Problem 3.4. Let f: [a,b] — R be a continuous function. Prove the following properties
of the Riemann integral.

(V) |J2 eyt < 21701t < (b = @) maxiera | (1)

(2) If f >0 and f(t) > 0 for some t € [a,b], then fab f(t)dt > 0.

/abf(t)dt + /bcf(t)dt - /acf(t)dt.

(4) If H: [a,b] — R is the function given by

(3) If a < b < ¢, then

H(x) = / Cpeyt,

then H is differentiable on [a,b] and H'(z) = f(z).

Problem 3.5. Prove Proposition 3.3. Hint: Use an admissible pair which is finer than both
(T,¢) and (T7,¢'). Alternatively, see Schwartz [63] (Chapter V, Section §1).

Problem 3.6. Prove Proposition 3.4.
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Chapter 4

Measure Theory; Basic Notions

Let X be a nonempty set. Intuitively, a measure on X is a function p that assigns a
nonnegative real number p(A) to every subset A in some specified nonempty collection A of
subsets of X, where p(A) is a generalization of the notion of length, area, or volume. For
example, any natural measure g on R should have the property that p((a,b)) = u([a,b]) =
b — a for all @ < b. It is natural to require that if a subset A is sliced into countably many
pairwise disjoint small pieces A;, then p(A) = p(U,—, A;) = >, #(A;). This property is
called o-additivity. Then the family A of subsets on which p is defined should be closed under
countable unions. It is also natural to require A to be closed under complementation. This
leads to the important notion of a o-algebra, which is closed under complementation and
countable unions. The weaker notion which only requires closure under complementation
and closure under finite unions is that of an algebra. In general it is not easy to construct
nontrivial o-algebras, so it is useful to have tools to do so. A pair (X,.A) consisting of a
nonempty set and a o-algebra A is called a measurable space.

Given any nonempty family S of subsets of X, there is a smallest o-algebra A(S) con-
taining S. If X is a topological space, then the o-algebra B(X) containing the open subsets
of X is an important o-algebra called the Borel o-algebra.

The notion of monotone class is also useful to construct o-algebras. Given any nonempty
family S of subsets of X, there is a smallest monotone class 9(S) containing S. Given an
algebra B, the smallest o-algebra A(B) containing B and the smallest monotone class 9t(B)
containing B are identical: A(B) = M(B).

Next we define (positive) measures on a c-algebra. A triple (X, A, u) consisting of a
nonempty set, a o-algebra A, and a measure p on A is called a measure space. We investigate
a few properties of measures. In particular, we show that every measure can be extended to
a complete measure, which means that all A € A, if u(A) =0, then B € A for all B C A.

As we said earlier, it is not easy to construct nontrivial measures. A very useful concept
to achieve this is the notion of outer measure, introduced in Section 4.4. Outer measures
are defined for all subsets of X, which makes them much easier to construct. In particular,
we construct the Lebesgue outer measure py .

63
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A fundamental theorem due to Carathéodory shows that every outer measure induces a
measure space; see Theorem 4.11.

By applying Theorem 4.11 to the outer measure pj we obtain the o-algebra L(R) of
Lebesgue measurable sets and the Lebesgue measure pp; see Section 4.5. The Borel o-algebra
B(R) is properly contained in the o-algebra L(R) of Lebesgue measurable sets, and there
are subsets of R that are not Lebesgue measurable sets (assuming the axiom of choice). We
also discuss various regularity properties of the Lebesgue measure.

4.1 o-Algebras

Let X be a nonempty set. We would like to define the notion of “measure” for the subsets of
X in such a way that familiar properties of the notion of length, area, or volume of polyhedral
objects in R, R? or R? hold. The measure m(A) of a subset of X should be nonnegative,
but we have to allow “big” objects to have infinite measure so it is desirable to extend the
nonnnegative real numbers by adding a new element corresponding to infinity.

Technically, we define R, as the union
Ri={acR|a>0}U{+oo} =R, U{+oo},
where +00 is not in R, and we assume that the following properties hold:
(a) o < 400, for all & € Ry,
(b) a+ (+00) = (+00) + a = +oo, for all @ € Ry,
(¢) a-(4+00) = (+0) - a = +oo, for all « € R, — {0},
(d) 0 (400) = (+00)-0=0,
() If (a;)i>1 is a sequence with a; € Ry, and if a; = 400 for some i, then Y% «; = +oo.

The set R, is also denoted by [0, 4+00].

In this chapter we closely follow Halmos [36] and some course notes given by Philippe G.
Ciarlet in 1970-1971 at ENPC (Paris, France). Other nice (but concise) presentations can
be found in Rudin [57], Folland [29], and Lang [43]. A very detailed presentation is given in
Schwartz [63].

An “ideal measure” should be a function m satisfying the following properties:

(1) m: 2% — [0, +oc], that is, m is defined for all subsets of X.

(2) m(0) =0.
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(3) For any countable sequence (A;);>1 of subsets A; of X such that A; N A; = ( for all
i # 7,
i=1 j
This property is called o-additivity.
The intuition behind o-additivity is that if we slice an object A into countably many

pairwise disjoint small pieces A;, then the measure m(A) of A should be the sum of the
measures m(A;) of the pieces A;.

Observe that by choosing a sequence (A;);>1 such that A; = () for all j > n, and A;NA; =
() if 7 # j, we obtain the property

known as additivity; see Figure 4.1.

+m +m tm +m

VIR AR R &Y

Figure 4.1: A pictorial representation of the identity m (U?:1 A) = S0 m(A).

For any two subsets A and B, if A C B, we can write B = AU(B—A), with AN(B—A) =
(), so by additivity,
m(B) = m(A) + m(B — A),

and since m(B — A) > 0, we obtain
m(A) < m(B);

see Figure 4.2.
We claim that the following property holds.
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B-A

Figure 4.2: A pictorial representation of the identities m(B) = m(A) + m(B — A) and
m(A) < m(B).

Proposition 4.1. If a function m satisfies Properties (1-3) above, then for any countable
sequence (A;)i>1 of (not necessarily pairwise disjoint) subsets A; of X,

m (U Ai> <> m(A).
i=1 i=1
Proof. Define the sequence (B;) of subsets of X as follows: By = Ay, By = Ay — Ay,..
B; = A; — (U;;ll Aj>, for all ¢ > 2. See Figure 4.3.

*)

4 <,
e o

(/11 By= /'\»"LZJAi
g P

i~

Figure 4.3: A schematic illustration of the set construction (B;).

It is easy to check that |J;2, B; = U;~, Ai, BN B; =0 for all i # j, and m(B;) < m(4;)
for all ¢ > 1, so by o-additivity,

m (U A,-) =m (U B,-) = Zm(BZ) < Zm(Az'),

as claimed. n



4.1. 0-ALGEBRAS 67

In general, for an arbitrary set X, there may be no function m satisfying Properties (1-3)
for all subsets of X, as well as certain desirable properties. For example, there is no such
translation invariant function on 2% such that m([0,1)) # 0 and m([0,1)) # +oo, and no
such translation invariant function on 2% such that m([a,b]) = b — a for every interval [a, b];
see Section 4.5.

Thus we are led to relax some of these conditions. There are two options:
(1) The first option is to relax (3) by replacing it by the result of Proposition 4.1, namely

(3”) For any countable sequence (A;);>1 of subsets A; of X,

m <U Ai) < Zm(Ai).

This approach leads to outer measures, and is discussed in Section 4.4.

(2) Condition (3) is highly desirable, so the second option is to restrict the domain of m
to be a proper family of subsets of X; the right notion is that of a o-algebra.

The notion of a g-algebra is more important that the notion of outer measure, which is
needed for technical reasons. Thus we now consider Option 2, and define o-algebras. Once
the notion of o-algebra is defined, we will be able to define the abstract notion of a measure
(see Definition 4.9), which is the crucial ingredient in defining a general notion of integral.

Definition 4.1. Let X be any nonempty set. A family A of subsets of X is a o-algebra if
it satisfies the following conditions:

(Al) X € A
(A2) For every subset A of X, if A € A, then X — A € A (closure under complementation).

(0-A3) For every countable family (A;);>1 of subsets of X, if A, € A for all ¢ > 1, then
U:; A; € A (closure under countable unions).

From (Al) and (A2), we see that ) € A. From (A2) and (0-A3) and the fact that
A=X—-(X—-A4) and N2, A4 =X — (U, (X —4)),if A, € A for all ¢ > 1, then
Nz, Ai € A (closure under countable intersections). In particular, if we let A; = () for all
1 > 3, we see that if A; € A and A, € A, then A4, UA; € Aand A N Ay € A. Since
Ap — Ay = A1 N (X — Ay), we also have A; — Ay € A.

Axiom (0-A3) is a strong condition, and this is the reason why it is not easy to construct
nontrivial o-algebras. There are two extreme o-algebras:

1. A={0,X}.

2. A = 2% the family of all subsets of X.
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Interesting o-algebra lie in-between.

Remarks:

1. Some authors use the term o-field instead of o-algebra. This is a rather unfortunate
terminology, because in algebra, a field is a set with two operations that have identity
elements. Here the operations are union and intersection, but there is no identity
element for intersection.

2. If we weaken Condition 0-A3 to finite unions, then we obtain a structure called an
algebra (or boolean algebra of sets).

Definition 4.2. Let X be any nonempty set. A family B of subsets of X is an algebra (or
boolean algebra of sets) if it satisfies the following conditions:

(Al) X € B.
(A2) For every subset A of X, if A € B, then X — A € B (closure under complementation).

(A3) For every finite family (A;), of subsets of X, if A; € B for all i = 1,...,n, then
Ui—, A; € B (closure under finite unions).

As in the case of o-algebras, an algebra contains () and is closed under (finite) unions
and intersections. In the construction of a product of measurable spaces, another notion of
algebra will come up. These are the semi-algebras.

Definition 4.3. Let X be any nonempty set. A family S of subsets of X is a semi-algebra
if it satisfies the following conditions:

(S1) X,0 e S.
(S2) Forall A,B €S, we have ANB € S.

(S3) For all A € S, we have X — A = X; U---U X, for finitely many pairwise disjoint
subsets X; € S.

Example 4.1. First consider the family of intervals of R of the form [a, ), with a < b, where
a = —o0 or b= oo is allowed. By convention, let [a,b) = () if a > b. This is a semi-algebra,
because

[Cll, bl) N [CLQ, bg) = [max(al, CL2>, min(bl, bg)),

and
X —[a,b) = [—00,a) U [b,00);

see Figure 4.4.
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) by —

Figure 4.4: The left figure illustrates [a1, by) N [ag, b2) = [max(aq, az), min(by, b)) = [az, by),
while the right figure illustrates R — [a,b) = [—00,a) U [b, 00).

Example 4.2. Next, let X and Y be two nonempty sets, and let A be an algebra on X and
let B be an algebra on Y. Define the set R of rectangles in X x Y as follows:
R={AxBeXxY|AecA BehB}
It is easy to check that R is a semi-algebra. For example,
(A1 X B1) N (Ag X By) = (A1 N Ay) x (B N By),
and
(XXY)—(AxB)=(X—-A)x (Y -B)U(X—-A)xB)U(Ax (Y —DB));

see Figure 4.5.

A; X By

Ay x By

Figure 4.5: Let X and Y be arbitrary topological spaces (for example R). The left figure
illustrates (A; x By) N (As x By) = (A1 N Ay) X (B N By) as the overlap of the red and lilac
rectangles while the right figure illustrates (X xY) - (A x B) = (X —A) x (Y — B)) U
(X—A)xB)U(Ax (Y —B)).

Then it can be shown that the set B(R) of finite unions of pairwise disjoint sets in R is
the smallest algebra containing the semi-algebra R. This algebra will be used to construct
the product of measurable spaces.
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The following result can be shown.

Proposition 4.2. Given a semi-algebra S, the smallest algebra B(S) containing S is the
famaly of finite unions of pairwise disjoint subsets in S.

Definition 4.4. Let X be any nonempty set. A pair (X,.A) where A is a c-algebra of
subsets of X is called a measurable space. The subsets of X that belong to A are called the
measurable subsets of X.

Proposition 4.3. Let X be any nonempty set, and let S be any nonempty family of subsets
of X. Then there is a o-algebra A(S) with the following properties:

(a) S C A(S).
(b) If A" is any o-algebra such that S C A’, then A(S) C A'.
This means that A(S) is the smallest o-algebra containing S.

Definition 4.5. Let X be any nonempty set, and let § be any nonempty family of subsets
of X. The smallest o-algebra A(S) containing S is called the o-algebra generated by S.

The o-algebra A(S) is the intersection of the family of all o-algebras containing S. This
family is nonempty since 2% belongs to it. This way of defining A(S) is highly nonconstruc-
tive. A bottom-up construction of A(S) can be performed, but to guarantee closure under
countable infinite unions, transfinite induction is required; see Schwartz [63] (Chapter V,
Section §2) or Folland [29] (Proposition 1.23).

Remark: Readers not familiar with ordinals should skip this remark. For a quick review of
the notion of ordinal and their basic properties, see Chapter E. Recall that an ordinal o > 0
is either a successor ordinal, which means that o = 8 + 1 for some ordinal 8 < «, or a limit
ordinal, which means that o = [ J s<a - Given § we define the sequence S, by transfinite
induction. In fact, it suffices to construct this sequence for countable ordinals. We set

S =8

S@+1285U{UAZ-|Ai685}U{X—A|A€Sg}

=1

So=J s

B<a
where « is a limit ordinal. If €2 is the set of all countable ordinals, then we let
St={]s..
a€e

Because every increasing sequence in € has a supremum, it can shown that A(S) = ST; see
Folland [29] (Proposition 1.23). The cardinal of the set R of real numbers is denoted by ¢ or
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2% The proof also implies that if S is of cardinality 8y < |S| < ¢, then A(S) has cardinality
c.

An important example arises when X is a topological space (X, O).

Definition 4.6. Let (X, Q) be a topological space. The o-algebra B(X) generated by the
family O of open sets is called the Borel o-algebra of X. The subsets in B(X) are called
Borel sets.

All open subsets and all closed sets are Borel sets. Countably infinite unions of closed
sets and countable infinite intersections of open sets are Borel sets. But there are many more
Borel sets.

Another way to construct o-algebras is to use algebras and monotone classes. Although
we are not going to use monotone classes in this book, there are a useful tool in constructing
o-algebras. They are used in the proof of Theorem 5.55 on the existence of measures on
products of measure spaces. They are also useful in proving that certain functions defined
on semi-algebras or algebras B having some of the properties of measures can be extended
to measures on certain o-algebras induced by B.

Definition 4.7. Let X be any nonempty set. A nonempty family 9t of subsets of X is a
monotone class if for every countable family (A;);>; of subsets of X, if A; € M for all : > 1
then:

1. If A; C A;4y for all ¢ > 1, then J;2, A; € M. See Figure 4.6, Diagram (i).
2. If Ajy1 C A; for all i > 1, then ()2, A; € M. See Figure 4.6, Diagram (ii).

n+1

Figure 4.6: The rose colored sets of Figure (i) satisfy the increasing nesting condition of

A; C Ay, while the periwinkle sets of Figure (ii) satisfy the decreasing nesting condition
A1 C A
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Proposition 4.4. Let X be any nonempty set. For any algebra B, if B is a monotone class,
then B is a o-algebra.

Proof. Let (A;);>1 be a countable family of subsets of X, such that A; € B for all i > 1.
Since B is an algebra, it is closed under finite unions, so B, = |J;_, A; € B, and obviously
B, C By for alln > 1, and |J;2; Ai = U,—, B,. Since B is a monotone class, | J;~, A; =
U,—, B, € B. O

Here is a version of Proposition 4.3 for monotone classes.

Proposition 4.5. Let X be any nonempty set, and let S be any nonempty family of subsets
of X. Then there is a monotone class IM(S) with the following properties:

(a) S CM(S).
(b) If M is any monotone class such that S C M, then M(S) C M.
This means that M(S) is the smallest monotone class containing S.

Definition 4.8. Let X be any nonempty set, and let S be any nonempty family of subsets of
X. The smallest monotone class MM(S) containing S is called the monotone class generated
by S.

The following theorem yields another way of generating a o-algebra from an algebra.

Theorem 4.6. Let X be any nonempty set. For any algebra B, the o-algebra A(B) generated
by B and the monotone class M(B) generated by B are identical; that is,

A(B) = M(B).
Theorem 4.6 is proven in Folland [29] (Lemma 2.35).

We now come to the very important notion of measure.

4.2 Measures

Definition 4.9. Let X be any nonempty set. A measure on X is a map pu satisfying the
following properties:

(pl) p: A — [0, +00], where A is a o-algebra of subsets of X.

(12) pu(0) = 0.
(u3) For any countable sequence (A;);>1 of subsets A; of A such that 4; N A; = 0 for all

i F 7 N N
H (U Ai) = ZM(Az)

This property is called o-additivity.
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A measure space is a triple (X, A, ), where (X, .A) is a measurable space and p is a measure
on X. A measure p is also called a positive measure, to stress that its range is nonnegative.

Remarks:

1. The degenerate situation where p(A) = 400 for all nonempty subsets in A is allowed.
If 1 is montrivial, which means that A possesses some nonempty subset A such that
w(A) is finite, then by letting A} = A and A; = () for all i > 2, by (u3) we get
p(A) = p(A) + >°7%, u(0), which implies p(@) = 0. In this situation Axiom (p2) is
unnecessary. Rudin makes the assumption that a measure is nontrivial; see [57].

2. Axiom (p3) raises a subtle point. If (A;);>; is a countable family of pairwise disjoint
subsets A; € A, the subset A = [J;, A; does not depend on the order of the A;, so for
any permutation o of the positive integers we should have

n(A) = Z#(Aa(i)) = ZM(AJ

How do we know that this is the case?

But the numbers p(A;) are nonnegative, so the series Y .-, 1(A;) converges absolutely,
and thus commutatively. For example, see Schwartz [61] (Chapter II, Theorem 2.12.7
and Theorem 2.12.12, which says that in a normed vector space of finite dimension,
a series is commutatively convergent iff its is absolutely convergent). Thus there is
actually no problem with Axiom (u3).

There are more general measures taking their values in R or C, or even in a Banach
space. For such measures, Condition (u3) needs to be slightly strengthened.

3. Some authors use the term measured space instead of measure space.

Definition 4.10. Let (X, A, p) be a measure space. The measure p is finite if p(X) is
finite. If p: A — [0,1] and if pu(X) = 1, then (X, A, u) is called a probability space. The
measure p is a o-finite if there exist a countable family (A;);>1 of subsets A; € A such that
X =2, A;, and p(A;) is finite for all ¢ > 1; see Figure 4.7. The measure p is complete if
for all A € A, if u(A) =0, then B € A for all B C A. A subset A € A such that u(A) =0

is called a set of measure zero.

Example 4.3. Let X be any nonempty set, and consider the o-algebra A = 2%. The map
p: 2% — [0, +00] given by

|A|  if A is finite
n(A) = .
400 if A is infinite

is a measure called the counting measure on X.
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Figure 4.7: Let X = R? and let u be the Lebesgue measure on R?. Then X is o-finite since
X =2, Ai, where A; = {z € R | ||z|]| < i}. The illustration shows the solid spheres Ay,
AQ, and A3.

Here is a summary of useful properties of measures.
Proposition 4.7. Let (X, A, u) be a measure space. The following properties hold:
(1) For any finite sequence (A, ..., A,) of subsets A; € A such that A;NA; = ) whenever

1 # j, we have
1 (U Az') => A
i=1 i=1

(2) For any two subsets A, B of X, if A,B € A and if A C B, then u(A) < u(B).

(3) For any countable sequence (A;);>1 of subsets A; € A,

m (U Ai) < ZM(A

(4) For any countable sequence (A;);>1 of subsets A; € A, if Aiy1 C A; for alli > 1 and if

w(Ay) is finite, then
(ﬂA) = lim u(A,).
n—oo

(5) For any countable sequence (A;);>1 of subsets A; € A, if A; C Ay for alli > 1, then

(UA>—$$~A>
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Proof. The proof of (1) and (2) is identical to the proof given just before Proposition 4.1,
and (3) is Proposition 4.1. We prove (4), leaving the proof of (5) as an exercise.

A, = (ﬁ Ai) U (G(Az - Ai—l—l)) ;

i=n

We can write

a union of pairwise disjoint subsets since 4,1 C A; for all i > 1. By (u3), we have

Y (ﬂ Ai) + ZM(Ai — Aiy1) = u(An) < p(Ar) < +oo,

since A; 41 C A; for all i > 1 and since p(A;) is assumed to be finite. See Figure 4.8.

Figure 4.8: Decomposing the decreasing nested sequences of periwinkle sets into disjoint
rings. Note Al = (Al — Ag) U (A2 — Ag) Uu---u (An — An—l—l) U An+1-

Consequently, for n = 1 we deduce that the series Y .o, 1(A; — A;41) converges, which
implies that

lim ZM(Ai — A1) =0.

n»00 4

Since
M (ﬂ Ai) + ZN(Az‘ — Aiy1) = p(An),
i=1 i=n
we conclude that g (2, A;) = limy, o0 (Ay). O

The following result shows that every measure can be completed; this is technically useful.

Proposition 4.8. Let (X, A, ;1) be a measure space. A measure space (X, A, 1) with the
following properties can be constructed:
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(a) AC A
(b) T extends u; that is, i(A) = u(A) for all A € A.

(¢) The measure fi is complete.
We force the completeness property by defining A as follows:
A={ACX|(BAA c ABBCA)A=AUB, u(A)=0)}

The measure i is defined such that
fi(A) = (AU B) = p(A).

See Figure 4.9.

Figure 4.9: A schematic illustration of a set in A. The magenta set A has positive measure,
while the grayish set A’, and all of its subsets, including B, have zero measure. Then
A=AUB.

Proposition 4.8 is proven in Rudin [57] (Theorem 1.36). The verification that A is a
o-algebra with the required properties and that z is a measure with the required proper-

ties is tedious (among other things, one needs to check that 7i(A) does not depend on the
representation of A).

Definition 4.11. The measure i given by Proposition 4.8 is called the completed measure
of p.

4.3 Null Subsets and Properties Holding Almost Ev-
erywhere

One of the secrets of measure theory is that subsets of measure zero should be ignored. Since
a measure is not necessarily complete the correct technical definition is as follows.
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Definition 4.12. Let (X, A, ;1) be a measure space. A subset £ C X is null' (or negligible)
if there is some A € A such that £ C A and p(A) = 0. A property P of the elements of X
holds almost everywhere, abbreviated holds a.e., if the subset where it fails is null; that is,
the set {z € X | P(z) = false} is null.

To be very precise, we should say p-null and holds p-a.e., since these notions depend on
the measure p. In most cases there is no risk of confusion, and we drop pu.

Observe that if the measure u is complete, then a subset £ C X is null iff u(F) = 0,
and a property P holds a.e. iff p({z € X | P(z) = false}) = 0. In general, a null set may
either be measurable or nonmeasurable, and a nonmeasurable set has no reason to be null,
but may be null.

Here are a few properties of null sets.

Proposition 4.9. Let (X, A, 1) be a measure space. Every subset of a null set is null. Every
countable union of null sets is a null set.

Proof. The first property follows immediately from the definition. Let (A4;);>1 be a countable
family of null sets. There are subsets B; € A such that A; C B; and u(B;) =0 for all ¢ > 1.

We have N o
Jaicl B eAa
i=1 i=1

because A is a o-algebra, so it remains to show that (J;-, B; has measure zero. For this,

observe that
0<pu (UB’L> < ZM(Bi) =0,
i=1

i=1

so 1 (U;2, Bi) =0, as desired. O

Let P and P’ be two properties of X. If P implies P’ and if P holds a.e., then P’ holds
a.e.

Definition 4.13. Consider the set of functions f: X — R, where (X, .4, i) is a measure
space. We say that f and g are equal a.e. if the set {x € X | f(z) # g(z)} is null. Write

f=gl(ae.).
It is an easy exercise to show that equality a.e. is an equivalence relation.

It should be observed that the notion of equality a.e. is more subtle than one might
think.

!Beware that in measure theory, the notion of null set has more than one meaning. Some authors mean
something different from what we define here.
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Example 4.4. For example, consider the function yg: R — R, given by

() = 1 ifze@Q
A 0 ifzé¢@Q;

see Figure 4.10.

01
(p/q.7)

(x = p/q, 0)

Figure 4.10: The graph of xg. The points on the light brown line have rational z-coordinates
while the points on the light gray line have irrational z-coordinates.

In other words, xq is the characteristic function of the rationals. It is easy to see that xq
is discontinuous at every point x € R (if z is irrational, then every small interval containing z
contains some rational number; similarly, if x is rational, then every small interval containing
x contains some irrational number, say of the form x + 5/—3 for n large enough). Now, the
Lebesgue measure p, discussed in Section 4.5 has the property that every countable set has
measure zero, so in particular Q has Lebesgue measure zero. It follows that xg is equal to
the zero function (on Q) a.e., and the zero function is a “very nice” function; it is infinitely

differentiable.

This is the beauty of equality a.e. Given a “very bad” function, we can ignore its bad
behavior on a set of measure zero, as least from the point of view of integration.

An interesting variation of xq is the following function Dg: R — R, given by

. fr=p/geQ, ¢>0,p#0, ged(p,q) =1,
Do(z) =40 ifz¢Q,
1 ifx=0.

It is easy to show that Dg is discontinuous at every rational point z, but is continuous at
every irrational point . In fact, Dg is a regulated function. Again Dy is equal to the zero
function a.e. (with respect to the Lebesgue measure).
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A property that will play an important role is pointwise convergence a.e.

Definition 4.14. Let (X, A4, 1) be a measure space, and let F' be any topological space (in
most cases a normed vector space). A sequence (f,)n>1 of functions f,: X — F converges
pointwise a.e. to a function f: X — F if there is a null set Z C X such that the sequence
(fu(2))n>1 converges to f(z) for all x € X — Z. See Figure 4.11.

Figure 4.11: A schematic illustration of pointwise convergence a.e. Let X be the solid black
line, F = R, and Z = Z; U Zy U Z3, where each Z; has measure zero. The sequence (f,)
converges pointwise to the graph f (in red) for all x € X — Z. As shown in the bottom right
corner, the magenta graph f,.1 is "close” to f outside of Z.

4.4 Construction of a Measure from an Outer
Measure

It turns out that defining explicitly a function m satisfying Conditions (2) and (3) from
the beginning of Section 4.1 on a c-algebra is not easy, but defining a function p* on 2%
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satisfying (1), (2), and (3’), is quite easy. Furthermore, given such a function p*, called an
outer measure, there is a way of generating a o-algebra and a measure on it.

If X is a locally compact topological space, then there is a way to construct a o-algebra
and a function m satisfying (2) and (3) on this o-algebra using Radon functionals. This
method will be explored in Chapter 7.

We now consider Option 1 from Section 4.1 and define outer measures.

Definition 4.15. Given a nonempty set X, an outer measure p* on X is a function satisfying
the following properties:

(u*1) p*: 2% — [0, +00], that is, pu* is defined for all subsets of X.

(w2) p(0) =0.

(1*3) For any countable sequence (A;);>1 of subsets A; of X,
< (Ua) <3
=1 =1
This property is called o-subadditivity.

(u4) If A C B, then p*(A) < p*(B).

Example 4.5. (Outer measure of Dirac) Let X be any nonempty set, and let a be any point
chosen in X. The map p;: 2% — [0, +00] given by

1 ifac A
*(A) =
HalA) {o ifadA

is an outer measure called the outer measure of Dirac.
Here is a simple way to construct outer measures.

Proposition 4.10. Let X be a nonempty set, and I C 2% be a family of subsets with the
following properties:

(a) DeT

(b) For every subset A of X, there is a countably infinite sequence (I,)n>1 of subsets I,, € J
such that A C | J> | I,.

Moreover, let A\: T — [0,400] be any function such that

(¢c) A0) =
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Then the map p* given by

mf{Z)\ )| AC UIn,I GJ}

n=1
is an outer measure on X.
Proof. The verification of (u*1), (1*2), and (p*4) is immediate and left to the reader.

Let (A;);>1 be an arbitrary family of subsets A; of X. We may assume that >~ p*(4;) <
+00, since otherwise (p*3) holds trivially. Then we have p*(A4;) < +oo for all @ > 1. By
definition of 1*(A;) as an infimum, for every € > 0, for every fixed ¢ > 1, there is a countable
family (1;,)n>1 of subsets [;, € J such that

A € | L oand 7 (A) <) OAL) < pt(A) + @
=1

Since, as shown in Figure 4.12,

UacUU L,

i=1n=1

by definition of p* (J;=; A;) as an infimum and since

> AL, < (A + 5
n=1

we have

since

which is (p*3). O
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Figure 4.12: A Venn diagram illustration of J;=, A; € U;o, U>, L.

As an application of Proposition 4.10, we obtain the outer Lebesgue measure.

Example 4.6. Let J consist of the set of all open intervals (a,b), where a = —o0 or b = +00
is allowed. It is easy to see that Properties (a) and (b) of Proposition 4.10 are satisfied. Let
A:J — [0, +00] be given by A((a,b)) = b — a. Obviously, Property (c) holds. The outer
measure given by Proposition 4.10 is called the outer Lebesgue measure pj on R.

A similar construction could be performed on R™ by using products of open intervals
(al,bl) X X (an,bn) and )\((al,bl) X X (Cl,n, bn)) = H?:l(bl — ai).

We now state a fundamental theorem due to C. Carathéodory which gives a method for
constructing a measure space from an outer measure.

Theorem 4.11. (Carathéodory) Let p*: 2% — [0,+00]| be an outer measure. Define the
family A of subsets of X as follows:

A={Ae2¥ | (E)=p (ENA) +p (EN(X — A)), for all EC X}. (C)
See Figure 4.13. Then the following properties hold:
(a) A is a o-algebra which contains all subsets A C X such that pu*(A) = 0.

(b) The restriction p of u* to A is a measure. Furthermore, u is a complete measure.

Proof. (a) To prove that A is a o-algebra, we show that in order to prove the defining
equation in (C) it suffices to prove the inequality (C’) shown below. For this we prove

Claim 1. A subset A of X belongs to A if and only if, for all E C X such that p*(E) <
—+00,
W(ENA)+ (B0 (X — A)) < ' (B). (©)



4.4. CONSTRUCTION OF A MEASURE FROM AN OUTER MEASURE 83

+ ' =
ENA) ‘
WE(E N (X-A) g

Figure 4.13: A schematic illustration of the Carathéodory construction of A. The o-algebra
A consists of those magenta sets A which “cut” (with respect to p*) arbitrary subsets F in
a “nice” manner.

Proof of Claim 1. We have E = (ENA)U (EN (X — A)) and by Condition (u*3),
fE=(ENA)UENX—A)), then u*(F) < p*(ENA)+ p(EN (X — A)),

so it suffices to prove the reverse inequality when p*(E) < 400, because if u*(E) = +o0,
then

pENA) +p (BN (X = A) = +00 = p'(E),

since both sides are equal to +oc. O

Next the proof consists of several steps.

Step 1. Verification of (Al). By (u*2), for every E C X, we have
pH(ENX)+p (EN(X = X)) = p"(E) + 1 (0) = p(E) + 0 = p*(E),

which shows that X satisfies Equation (C), and thus X € A.

Step 2. Verification of (A2). This follows from the fact that Equation (C) implies that
AcAiff X —Ac A

Step 3. Verification of (0-A3). We begin by verifying (o-A3) for finite unions. Since by
Step 2, A is closed under complementation, this shows that A is an algebra.
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Step 3a. The case of any finite union [J;, A; reduces by induction to the case where
n = 2, so it suffices to prove that for all A;, Ay C X, if A, A € A, then A; UAy; € A. In
view of Claim 1, this is equivalent to checking that for all £ C X (with p*(F) < +00),

p(EN (AU A)) + p" (BN (X = (AU Ag))) < p'(E). (*1)

We begin by rewriting the terms p*(E N (A3 U As)) and p*(EN (X — (A1 U Ay))). Since,
(see Figure 4.14),

EN(AiUA)=(ENA)U(ENA)=(ENA)UEN(X —A)NA,),
by (1*3), we have
p(EN (A UA)) < p (ENAD)+p" (BN (X —A)NAy). (*2)

42 o
(\Y = o
ENA ENA;
____________________________________________________________________
EN(A,UA)) EN(AUA)

Figure 4.14: A Venn diagram illustration of £ N (A; U As) = (ENA) U (ENAy) =
(ENA)U(EN(X —A)N As).

Since, (see Figure 4.15), we also have
EN(X—(AiUA))=EN(X —A)N(X — Ay),
by (x2), we obtain

PH(EN (AU A) + (BN (X — (AL UAR))) < (BN A + (BN (X — A N A)
P EN X = ADN (X — A). (%)

Since A; € A and A, € A, for any £ C X, by applying (C) to A; with £ we have
W) = i (B0 Ay + (B0 (X — Ay)),
and by applying (C) to A, with £ N (X — A;) we have

pHEN(X —A)) = p (BN (X = A1) 0 Ag) + (BN (X = A1) N (X = Ay))
= (EN(X —A)NAg) +p"(EN (X = A) N (X = Ay)),
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EN (X-A) N (X-A)

Figure 4.15: A Venn diagram illustration of EN (X — (A1 UAy)) = EN(X — A1) N (X — Ag).

EN (X-A)
E

E N (X-A) N (X-A)

4

o . EN (X-A) NA
ENA
E (\ Ay !

EN (X-A)

Figure 4.16: Venn diagram illustrations associated with the identities p*(E) = p*(ENA;) +
i (BN(X—Ay)) and = (BA(X = Ar)) = o ((BO(X = A1)y (BO(X — A1))N(X —Ay)).

so we obtain
pr(E)=p (ENA) +p (BN (X —A)NA) +p(EN(X —A)N(X = Az)); ()
see Figure 4.16.
Since the right-hand sides of (x3) and (%) are identical, we obtain
PHEN (AU A)) + p* (BN (X = (AU Ay))) < p(E),
as desired.

Step 3b. We prove that (0-A3) holds for countably infinite unions B = |J;5, B;, with
B; € Aand B; N B; = { for all i # j, which means that we have to show that for all E C X
such that p*(E) < 400, we have
W(ENB)+ 1 (BN (X — B) < 4 (E).

We begin by analyzing the term p*(£ N B). Since EN B = |J;2,(E N B;), by (©*3) we
have

W(ENB) =1 <U(E N Bi>> <SS w(ENB,

i=1 i=1
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which implies the inequality

P(ENB)+p (EN(X = B)) <Y W (ENB)+u"(EN (X~ B)). (*5)

=1

Thus if we prove that

S W (BN B+ (BN (X - B)) < ' (E),

i=1

we are done. To deal with the infinite sum on the left-hand side we use Step 3a. By the
result of Step 3a, we have C,, = |J._, B; € A for all n > 1. Since, as shown in Figure 4.17,
ENn(X—-B)CEN(X —C,), by (u*4), we have

pHENC) +p(EN(X = B)) <p (ENC,) +p (EN(X = Cn)) = p(E). (%)

Figure 4.17: Venn diagram illustration of EN (X — B) C EN (X — C,,).

On the other hand, since B; € A, we can show by induction using the fact that C, =
UL, B; and the B; are pairwise disjoint that

PW(ENCy) =p (ENC,NB,) + " (ENC, N (X — By))

n

= (ENB);

i=1
see Figure 4.18.

Consequently, by (%) and the above equation, we obtain

W(ENC) +p (EN(X =B) =) w(ENB)+u (EN(X —B) <p'(E). (%)

=1
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ENCpy

ENCn1 _€ncon s,

ENCp

ENGNB

By ”
ENGNB;

Figure 4.18: Venn diagram illustration associated with p*(ENC,) =>""  p*(EN B;).

i=

Since by hypothesis p*(E) < 400 and by (p*4),
p(EN(X = B)) < p'(E) < +oo,

passing to the limit the inequality (*7) implies that

Z,u*(E N B;) < 400,

i=1
and also that -
S W (BN B+ (BN (X - B) < 1" (E), (1

i=1
as desired.

Step 3c. We prove that (0-A3) holds for arbitrary countably infinite unions A = (J,-, 4;,
with Az c A N

The trick (already used in the proof of Proposition 4.1) is to define the family (B;);>1 as
follows:

B, = A,
oea () - () oex- )

see Figure 4.3. Since A is an algebra, it is closed under finite unions and complementation,
so B; € A. Furthermore, by definition, B; N B; = () for all i # j, and

UJa. =B
i=1 =1
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so by Step 3b, we get ;o Ai = Ui, Bi € A.
Therefore, we proved that A is a o-algebra.
Step 4. Proving (a). If p*(A) = 0, since by (p*4) we have
pw(ENA) <p(A)=0

and
Ww(EN(X - A) < ' (E),

we obtain

§(B A A) + 0B (X = A)) < u(B)
for all E C X such that u*(E) < 400, which by Claim I means that A € A.

(b) We prove that the restriction p of pu* to A is a measure, which means that we need
to check Condition (p1), (#2) and (u3), which is achieved in three steps.

Step 5. Property (ul) is obvious.
Step 6. Since A is a o-algebra, () € A, so by (1*2),

which is (u2).

Step 7. Let B = |J;2, B; be a countably infinite union of subsets B; € A which are
pairwise disjoint. For all £ C X such that u*(E) < +o0, we proved in () that

Y W(ENB)+u (EN(X = B)) < p(E).

=1

If u*(B) < +00, then we can let £ = B in the above inequality, and we get
Do w(By) < p(B). ()
i=1
By (1*3), since B = |J;=, B;, we also have
w(B) <Y u(By). (*0)
i=1

Then (xg) and (x9) yield
Zu*(Bi) = (B).
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Since B € A and B; € A, u(B) = p*(B) and u(B;) = u*(B;), we get
> u(Bi) = u(B),
i=1

which is (u3). If u*(B) = 400, then (xg) implies that trivially

D_i(Bi) =) W (Bi) = w'(B) = p(B) = +oo.

Step 8. Finally it remains to show that p is a complete measure. Let A € A such that
i1(A) = 0 and consider any subset B C A. Since A € A, by definition of p,

and by (u*4), B C A implies that
i (B) < i (A) =0,
so u*(B) = 0, and we proved in Step 4 that B € A. Therefore, 11 is a complete measure. []

Example 4.7. If we apply Theorem 4.11 to the Dirac outer measure y; of Example 4.5, we
find easily that A = 2% and that u = u*. The Dirac measure u} is usually denoted by d,.

If we apply Theorem 4.11 to the Lebesgue outer measure of Example 4.6, we obtain the
Lebesgue measure on R. It can be shown that the o-algebra of Lebesgue-measurable sets
obtained from the construction contains the o-algebra of Borel sets of R. This example is
considered in slightly more details in the next section.

4.5 The Lebesgue Measure on R

Recall that in Example 4.6 we defined the outer Lebesgue measure pj on R. For this we
considered the set J consisting of all open intervals (a,b), where a = —o0 or b = 400 is
allowed. By Proposition 4.10 applied to the function A: 3 — [0, +o0] given by A((a,b)) =
b — a, we obtained the outer Lebesgue measure uj given by

(i (A) = inf {Z ML) [AC |, I € J} .
i=1

n=1

By applying Theorem 4.11 to the outer measure pj, we obtain the o-algebra L(R) of
Lebesgue-measurable sets, and the Lebesque measure fiy .

The construction used by Theorem 4.11 yields very little explicit information regarding
what the Lebesgue-measurable sets look like, but it is possible to describe some of them. In
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particular, if B(R) denotes the Borel o-algebra generated by the open sets of R, it turns out
that B(R) C L(R), a proper inclusion. Actually, every open subset of R can be expressed
as a countable disjoint union of finite open intervals, so the Borel g-algebra is generated by
the open intervals (a,b). The following proposition gives convenient characterizations of the
Borel sets.

Proposition 4.12. The o-algebra B(R) of Borel sets of R is generated by the following
intervals:

1. [a,b], with a <b finite.
2. la,b), with a < b finite.
3. (a,00) and (—oo,a), with a finite.

Proof. (1) We know that the open intervals (a, b) generate B(R). We have

(a,00) = U(a,a—i—n), (—o0,a) = U(a—n,a),

so (a,00) and (—o0,a) are elements of B(R); see Figure 4.19.

a10—0, 40— —0
atn
o———0 A0— 0
a2 a at2
a.nc 0a ao—oaﬂ
00— 0
a d

Figure 4.19: The left figure illustrates (—oo,a) = |J,—,(a — n,a), while the right figure
illustrates (a,00) = o>, (a,a +n).

n=1

Observe that

[a,b] = (—00,a) N (b,00) = [a,00) N (—o0,b],
so [a,b] € B(R). We also have

> 1 1
(a,b)—H {a+ﬁ,b—g],

so the closed intervals [a, b] generate B(R); see Figure 4.20.
(2) We have

la,b) = O [a,b—ﬂ,

n=1
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a+1/N Qg -1/

ob A+1/2 O 1r.1/2
26 _ at]e——0p-|

O 0
O

a b a b

Figure 4.20: The left figure illustrates [a,b] = [a,00) N (—o0, b], while the right figure illus-
trates (a,b) =Uoo, [a+ 1,0 —21].

n=1

so [a,b) € B(R). Then

(a,b) = G [aJr%,b),

n=1

so the intervals [a,b) generate B(R). See Figure 4.21.

a.*. b
) b-1/n alh® —0
b-12 atl/2 0b
e——bl atl ——o
¢ 0 0 0
a b a b

Figure 4.21: The left figure illustrates [a,b) = ;= [a,b — 1], while the right figure illus-
trates (a,b) = Up—; [a + £,b).

n=1

(3) We already know from (1) that (a,00) € B(R). This implies that

SO
= 1
- = - ——| B[R
(—o0,a) H( 00, @ n] € B(R),
and thus
(CL, b) = <_OO7 b) N (a’v 00)7
so the intervals (a,00) generate B(R). See Figure 4.22. O

Let’s use the notation a, b to denote any of the four types of intervals (a,b), [a, b), (a, b],
and [a,b] (with @ = —o0 or b = 400 allowed, and a = b allowed). The following result can
be shown.

Theorem 4.13. Let B(R) be the Borel o-algebra of open sets, L(R) be the o-algebra of
Lebesgue-measurable sets, and piy, be the Lebesque measure for R.
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®a-1/n

®a-1/2

®a-1

O
9
a

9
n=1

Figure 4.22: An illustration of the identity (—o0,a) = J;2, (—o0,a — 1].

n

(1) L(R) # 2%; that is, there exist non-measurable sets. The proof requires the aziom of
choice.

(2) B(R) C L(R), the inclusion being strict. This is because |B(R)| = 2% = ¢, but
[L(R)] = 2°.
(8) The Borel o-algebra contains all four types of intervals, and

b—a ifa# —oo and b# +oo
+o00 ifa=—00 orb=+o0.

wra, b)) = {

(4) The restriction of the Lebesgue measure py, to the Borel o-algebra is a measure ppg.
The completion of the measure space (R, B(R), ug) given by Proposition 4.8 gives back
the measure space (R, L(R), ur) of Lebesque-measurable sets.

The proofs for most parts of Theorem 4.13 are given in Halmos [36] (some of them as
exercises). The fact that [B(R)| = 2% follows from the fact that B(R) is generated by the
open intervals (a,b) and the remark just before Definition 4.6. It is surprising how much
work it takes to prove Part (3) of Theorem 4.13. See also Folland [29] and Rudin [57].

As a corollary, every one-point set {a} has Lebesgue measure 0, and thus every countable
subset has Lebesgue measure 0. There are also uncountable subsets of Lebesgue measure 0.
The Cantor set is such an example; see Folland [29], Section 1.5.

The Lebesgue measure also has the following regularity properties which show that every
Lebesgue-measurable set can be approximated either by an open set or by a closed set; see
Folland [29] (Section 1.5).

Proposition 4.14. For any subset A of R, we have
pr(A) =inf{u,(0) | AC O, O is open}.
For every Lebesgue-measurable set A € L(R), the following facts hold:
(a) For every e > 0, there is some open subset O such that A C O and pp(O — A) < e.

(b) For every € > 0, there is some closed subset F' such that F C A and up(A—F) < e.
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As a corollary of Proposition 4.14 we have the following facts.
Proposition 4.15. For every Lebesgue-measurable set A € L(R):
(a’) pr(A) = inf{p,(0) | AC O, O is opent.
(b)) pr(A) =sup{ur(F) | FF C A, F is closed};
see Figure 4.23.

Figure 4.23: A Lebesgue-measurable set A of R is approximated from the “outside” by an
open set O; it is also approximated from the “inside” by a closed set F'.

It should be noted that Properties (a’) and (b’) are weaker than Properties (a) and (b),
because they imply Properties (a) and (b) only when p(A) is finite.

It can also be shown that for every Lebesgue-measurable set A € L(R), we have

pr(A) =sup{ur(K) | K C A, K is compact}.

Proposition 4.14 also holds for the Lebesgue-measurable subsets of R".

Another important property of the Lebesgue measure is that it is translation-invariant.

Proposition 4.16. For any Lebesgue measurable set A € L(R), we have pp(x+ A) = pr(A)
for allx € R, where t + A = {x+a | a € R}. This property is called translation-invariance.

For a proof, see Section 8.5, Example 8.1.

Proposition 4.17. There is no translation-invariant measure p defined on all subsets of
R such that p([0,1)) # 0 and p([0,1)) # +oo. As a consequence, there is no translation-
invariant measure defined on all subsets of R such that yu([a,b)] = b — a.
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Proof. To prove the proposition, we consider the quotient set R/Q of the reals modulo the
equivalence relation = ~ y iff + — y € Q. Using the axiom of choice, we can form a subset
E C [0,1) which contains exactly one number from each equivalence class of R/Q. Let
R=Qn][0,1), and for each r € R, let

E.={z+r|zeEn0,1-r)}u{z+r—1|ze EN[l—r1)};

see Figure 4.24. Clearly E, C [0,1), and we claim that every x € [0,1) belongs to some
unique F,.

shift by r

> v O -0
0 =13 23 1 43

same equivalence class

N

A d ol \9 -0
0 r=173 23 1 43

Figure 4.24: The construction of FE,.

Indeed, if y € E belongs to the equivalence class of z € [0,1), then z € E, wherer = x—y
ife >yorr=x—y+1if x <y. Furthermore, if x € E. N E, with r # s, then x — r
(orz —r+1)and x — s (or x — s + 1) would be distinct elements of E belonging to the
same equivalence class, which is impossible (since r,s € R C Q). It follows that [0, 1) is the
countable disjoint union of the E,. If a translation-invariant measure p exists, then for any
r € R we have

W(E) = p(EN[0,1 =)+ (BN 1= 1,1)) = u(E,).

Since [0, 1) is the countable disjoint union of the E,,

p([0,1)) =) u(B) = uE).

rek rek
Now by assumption p([0,1)) # 0 and u([0, 1)) # +o0, but the sum on the right-hand side is
either 0 if p(E) = 0 or +oo otherwise, a contradiction. O

The above proof also implies that E is an uncountable subset of [0,1) which is not
Lebesgue measurable (since the Lebesgue measure is translation-invariant).

We conclude by mentioning that if X is a topological space, given a function p defined
on the open subsets and the compact subsets of X, we can define the following maps for
every subset A of X:

p(A) =inf{u(0O) | AC O, Ais open}
wi(A) = sup{u(K) | K C A, K is compact}.
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Then the measurable subsets are those subsets A of X such that

p(A) = p(A).

It can be shown that these subsets form a o-algebra A, and that the map p with domain A
given by p(A) = u*(A) = p.(A) is a measure. This is the approach using Radon measures.

4.6 Problems

Problem 4.1. Let X and Y be two nonempty sets, and let A be an algebra on X and let
B be an algebra on Y. Define the set R of rectangles in X x Y as R

R={AxBeXxY|AecA Bec B}

Show that the set B(R) of finite unions of pairwise disjoint sets in R is the smallest algebra
containing the semi-algebra R.

Problem 4.2. Prove Proposition 4.2.
Problem 4.3. Prove Theorem 4.6. Hint: See Folland [29] (Lemma 2.35).
Problem 4.4. Prove Part (5) of Proposition 4.7.

Problem 4.5. Advanced Exercise: Prove Proposition 4.8. Hint: See Rudin [57] (Theorem
1.36).

Problem 4.6. Let X = (X, A, 1) be a measure space. Consider S := {f | f: X — R}.
Show that equality a.e. is an equivalence relation on S.

Problem 4.7. Let Dg: R — R be defined as

. fr=p/geQ, ¢>0,p#0, ged(p,q) =1,
Do(z) =40 ifz¢Q,
1 ifz=0.

Show that Dg is discontinuous at every rational point x, but is continuous at every irrational
point z. Also prove that Dg is a regulated function.

Problem 4.8. Advanced Exercise: Prove Proposition 4.14. Hint: See Folland [29] (Section
1.5).

Problem 4.9. Prove Proposition 4.15.
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Chapter 5

Integration

Given a measure space (X, A, 1), we would like to define the integral of a real-valued function
f: X — R, or more generally of a complex-valued function f: X — C, or even of a function
f: X — F, where F'is a normed vector space. The key idea is that the integral of a very
simple function f, such as a function taking only a finite number of nonzero values y1, .. ., y,,
should be “obvious.” Namely, if A; = f~*(y;) is the subset of X over which f has the value
y;, then each A; should be measurable (that is, A; € A), and A; should have finite measure,
so that the expression

=1

makes sense. Then we define the integral [ fdu of our simple function f as

/fdu = Zu(Ai)yi. ()

Observe that the function f can be written as

f - Z YiXA;»
=1

where Y4, is the characteristic function of the subset A;. Such a function is called a u-step
function.

Observe that (x) is a generalization of the notion of area under the curve. If the subsets A;
are closed adjacent intervals, then we are back to the notion of Riemann integral. However, in
our new setting, the subsets A; can be very complicated, but as long as they are measurable
and have finite measure, the integral () makes sense.

If we define || f|| as
A= el xeass
i=1

97
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(remember that our set F' of values is a normed vector space), then the integral of || f]| is

S5 =Y w40 i) € ..
=1

If we define Ni(f) = [||f|ldu, then Ny satisfies all the properties of a norm, except that
Ni(f) = 0 does not necessarily imply that f = 0. However, Ni(f) = 0 iff f = 0 almost
everywhere. The set S tep“(X ,A, F) of p-step functions is a vector space, and N is almost
a norm on it; it is a semi-norm. The integral given by (x) is a linear continuous map on
Step, (X, A, F). However, the space Step (X, A, F') is not Cauchy-complete under the semi-
norm N; (there are Cauchy sequences with respect to Ny that do not have a limit). The
problem then is to complete the space Step, (X, A, 1) and to extend the integral (*) to this
bigger set of functions.

There are several ways to proceed.

(1) If we let SN be subspace of Step, (X, A, F) consisting of the u-step functions equal to
0 a.e., then the quotient space Step, (X, A, F) = Step,,(X, A, ) /SN is a vector space
and N; induces a (true) norm on it. Therefore we can apply the general completion
theorem (Theorem A.72) to obtain a complete normed vector space (L, (X, A, F), || ||,)-
Since integration is a linear continuous map on Step, (X, A, F), it extends uniquely to
a linear continuous map on L, (X, A, F).

In theory we have achieved our goal of defining a complete normed vector space of func-
tions containing the p-step functions for which every function is integrable. However,
the completion (L,(X, A, F),| ||,) is a very complicated object. It consists of equiv-
alence classes of Cauchy sequences of functions in the quotient space StepM(X JALE).
It would be much more convenient if the objects in L, (X, A, F') could be described as
functions, and this is indeed possible.

(2) The second approach is to first define a set £,(X, A, F') of functions using a limit
process. Every function f in £, (X, A, F') is the limit pointwise a.e. of a N;-Cauchy
sequence (f,)n>1 (called an approximation sequence) of functions f, in Step (X, A, F).
We also define the space M, (X, A, F) of u-measurable functions, and L, (X, A, F) is
the subspace of M, (X, A, F') consisting of the functions for which the integral is well
defined.

It turns out that £,(X,A, F) is complete with respect to an extension || ||; of the
semi-norm N, and the integral [ fdu of any function f € £,(X, A, F) can be defined
by a limit process. There are technical complications when F' is infinite-dimensional,
and it also takes some work to show that the integral of a function f € £,(X, A, F)
does not depend on the approximation sequence used to define f, but all difficulties
can be overcome. Finally, the subspace A of functions f such that || ||, = 0 is the set
of functions equal to 0 a.e., and we obtain the complete space (L,(X, A, F),| |,) of
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the first approach as the quotient space £,(X, A, F)/N. However, the construction of
L,(X, A, F) is much more informative.

We also investigate convergence properties of £,(X, A, F'), as well as other related spaces
(the spaces L(X, A, F), p=1,2,00). We conclude with the construction of the integral on
a product space.

The vector valued-integral defined in this chapter (where the space F' of values is a Banach
space) was first discovered by Bochner in 1933. The version discussed here is due to Dunford
(1935), and is presented in detail in Dunford and Schwartz [25]. More recent expositions of
this method are given in Lang [43] and Marle [48].

5.1 Measurable Maps

Measurable functions are functions between measurable spaces that are the analog of con-
tinuous functions between topological spaces, but as we will see, they are a lot more flexible,
especially in terms of convergence properties. In this chapter our presentation follows Marle
[48] and Lang [43] very closely.

Definition 5.1. Given any two measurable spaces (X, .A) and (Y, B), a function f: X - Y
is measurable if f~'(B) € A for every B € B. A measurable function is also called a
measurable map.

If (X,.A) is a measurable space, then obviously the identity id: X — X is measurable.

The composition of two measurable maps is also measurable.

Proposition 5.1. Given three measurable spaces (X, A), (Y,B), and (Z,C), if f: X =Y
and g: Y — Z are measurable maps, then go f: X — Z is a measurable map.

Proof. Recall that one of the properties of inverse images is that (go f)~1(C) = f~(¢7}(C)),
for any subset C of Z. But if C' € C, since g is measurable, ¢g~*(C) € B, and since f is
measurable, f~!(g7!(C)) € A, which shows that g o f is measurable. ]

Remark: The above properties show that measurable spaces are the objects of a category
whose morphisms are the measurable maps.

Proposition 5.2. Let X and Y be any two nonempty sets, and let f: X —Y be a function
between them.

(1) If A is a o-algebra on X, then we can define Ay as the family of subsets of Y given by
A ={Be?2" | f1(B) e A}

Then Ay is the largest o-algebra on'Y which makes f measurable.
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(2) If B is a o-algebra on Y, then let f=1(B) be the family of subsets of X given by
fHB)={f(B) €2¥ | BeB}.

Then f~Y(B) is the smallest o-algebra on X which makes f measurable.

The proof of Proposition 5.2 is left as an exercise.

Using Proposition 5.2 we obtain the following proposition which gives simple criteria to
check that a map is measurable.

Proposition 5.3. Let (X, A) and (Y, B) be two measurable spaces.

(1) If S generates the o-algebra B (which means that the smallest o-algebra containing S
is B), then a function f: X —'Y is measurable iff f~1(S) € A for all S € S.

(2) IfY is a topological space and if B is its Borel o-algebra of open subsets, then a function

f: X =Y is measurable iff f~(U) € A for every open subset U of Y (or f~71(U) € A
for every closed subset U of Y ).

(3) If X and Y are both topological spaces and if A and B are their respective Borel o-
algebras, then every continuous map f: X — Y is measurable.

Given any subset A of X, recall that the characteristic function x4 of A is defined by

() 1 ifzeA
) =
xa 0 ifzx ¢ A

Then, as illustrated in Figure 5.1, it is easy to show that for any subset A of X, the function
Xa: X — R (where R is equipped with its o-algebra of Borel sets) is measurable iff A € A,
that is, A is measurable.

In the theory of integration, all maps of interest will be measurable maps! f: X — F
where (X, .A) is a measurable space, and (F, B) is a measurable space such that either F' = R,
or ' = C, or more generally F'is a Banach space (a complete normed vector space over R
or C), and B is the Borel g-algebra of open subsets of F'. In this case various operations can
be performed on functions f: X — F.

Assume that F'is a normed vector space over the field K, where K = R or K = C, and

that f: X — F is any function, not necessarily measurable.

1. Given any function f: X — F, for any A € K, let A\f: X — F be the function given
by
(\f)() = Mf(z), @€ X.

! Actually, not quite in the most general case, but they will be equal to a measurable map a.e.
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X-A X-A
NG P4
\‘;[’/:(S)=X-A

Figure 5.1: The left figure illustrates y4: X — R. If S; C R contains 1 but not 0, x;'(5;) =
A. If Sy C R contains 0 but not 1, x;*(S;) = X — A. Finally, if S3 C R contains both 0 and
L x;'(S) =AU (X —A) =X.

2. Given any function f: X — F| let || f|| : X — Ry be the function given by

11 (@) = [[f ()], zeX;
see Figure 5.2.

6 II£l

Figure 5.2: Let f: R — R3 be f(t) = (sint, cost,t), the graph of which is the space curve in
the left figure. If we use the Euclidean norm on R3, || f|| (t) = V2 + 1, the graph of which
is shown in the right figure.

Beware that || f|| is not the norm of the function f, where || || is the norm on some
function space consisting of functions from X to F'. Instead, || f|| is the function defined
pointwise as || f(z)|| for every x € X, where | f(x)| is the norm of f(x) in F. This
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notation is somewhat confusing but appears to be standard. Later on, we will equip
our space of functions from X to F' with a norm, but it will be denoted || ||,, or more
generally || ||, so there will be no risk of confusion.

3. For any two functions f: X — R and g: X — R, let sup(f,g) and inf(f,g) be the
functions given by

sup(f,g) () = max(f(z),g(z)), @ € X,
inf(f, g) () = min(f (), g(x)), @ € X

see Figure 5.3.

4
3 /
2
! /

| T2 3
1

supl(fg)
inf(f,g)

Figure 5.3: Let f: R — R be f(z) = z, and let g: R — R be g(z) = 2%. The graph of
sup(f, g) is the lower left figure, while the graph of inf(f, g) is the lower right figure.

4. For any two functions f: X — R, let f™ and f~ be the functions given by

() = 0 if f(x) <0
f {f<x> it f(z) > 0,

() = 0 if f(x) >0
/(@) {—f(x) if f(z) <0

We also define |f| as |f| = f 4+ f~ = sup(f, —f). Observe that f = f* — f~. See
Figures 5.4 through 5.6.
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/
/
nel=1n/

Figure 5.4: Let f: R — R be f(z) = x(z — 1)(z + 2). The lower figures illustrate f* and

f~, while the right figures illustrate the identity |f| = f* + f~.

Figure 5.5: Let f: R — R be f(z) = z(x —1)(x+2). The right figure illustrates the identity

|f| = Sup(fa _f)

suplf, -H) = |
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Figure 5.6: Let f: R — R be f(z) = z(x — 1)(z + 2). The lower left figure, when combined
with the two right figures, illustrates the identity f = f* — f~.

5. For any two functions f: X — F and g: X — F, let f + g: X — F be the function
given by

(f+9)(x)=f(x)+g(x), z€X.

6. For any two functions f: X — K and g: X — K, where K = R of K = C, let
fg: X — K be the function given by

(fg)(z) = f(x)g(x), z€X.

Definition 5.2. Let (X,.A) be a measurable space, and let (F,B) be a measurable space
such that =R, or F' = C, or more generally F is metric space (not necessarily complete),
and B is the Borel g-algebra of open subsets of F'. The set of measurable maps f: X — F
is denoted by M(X, A, F).

The following technical result is needed; see Marle [48] (Proposition 2.1.10).

Proposition 5.4. Let (X,.A) be any measurable space, and let (Fy,By), (Fy, Bs), and (G,G)
be three measurable spaces, where Fy, Fy, G are topological spaces, and By, Bs, G are their
respective Borel o-algebras. Let h: Fy x Fy — G be a continuous map, and let fi: X — Fy
and fo: X — Fy be two measurable maps. If the subspace topologies on fi1(X) C Fy and
fo(X) C Fy are second-countable (which means that they have a countable basis of open
subsets), then ho (f1, f2): X — G is measurable.
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Recall that a topological space E is separable if it contains a countable subset which is
dense in E (see Definition A.42). If E is a metric space, then by Proposition A.46, the space
E' is separable if and only if it is second-countable. Using Proposition 5.4 we obtain the
following important result stating various closure properties of M(X, A, F); see Marle [48]
(Corollary 2.1.11).

Proposition 5.5. Let (X, A) be any measurable space, and assume that F' is a normed
vector space over the field K, where K =R or K = C. The following properties hold:

1. For any f € M(X, A F) and any X\ € K, we have \f € M(X, A, F).
2. For any f € M(X, A, F), we have || f|| € M(X, A, R).

3. Forany f € M(X, A,R) and any g € M(X, A, R), we have sup(f,g),inf(f,9), f*, f,
|fl € M(X, AR).

4. For any f € M(X, A F) and any g € M(X, A, F), if f(X) and g(X) are separa-
ble subsets of F', then f+ g € M(X, A, F). In particular, if F is separable, then
M(X, A, F) is a vector space over K.

5. Forany f € M(X, A, K) and any g € M(X, A, K), we have fg € M(X, A, K). This
implies that M(X, A, K) is actually a K-algebra.

One will observe that in (4), if F' is infinite-dimensional, the sum of two measurable
maps may not be measurable. This is the first technical difficulty of the general theory of
integration (with values in an infinite-dimensional vector space). As we will see, a second
technical difficulty has to do with the approximation of a measurable map by step functions.
Fortunately these technical difficulties can be overcome in a simple way.

The following important result shows that measurable maps behave better than contin-
uous maps in terms of simple (pointwise) convergence.

Theorem 5.6. Let (X, A) and (F,B) be two measurable spaces, where F is a metric space
and B is the Borel o-algebra on F. If (f,)n>1 is a sequence of measurable maps f, €
M(X, A, F) which converges pointwise to a function f: X — F, then f € M(X, A, F); that
18, f 1s measurable.

A proof of Theorem 5.6 can be found in Lang [43] (Chapter VI, Section 1, Property MT).

Our next goal is to generalize the notion of step function given in Definition 2.21 to the
framework of measure spaces.

5.2 Step Maps on a Measurable Space

Let (X, .A) be a measurable space. The generalization of the notion of step map is obtained
by replacing the intervals (a;, a;+1) by arbitrary measurable sets.
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Definition 5.3. Let (X,.A) be a measurable space, and let F' be any set. A function
f: X — F is a step map (with respect to A) if there is a finite partition (Ay,..., A4,) of X
by pairwise disjoint nonempty subsets A; € A such that X = (J_, A;, and such that the
restriction of f to each A; is a constant function with some value y; € F. The partition
(Aq,...,A,) is said to be adapted to f; see Figure 5.7. The set of all step maps is denoted

by Step(X, A, F).

)

Figure 5.7: Let (X, A) = (R,B(R)) and F = R. A step map is shown in blue with values
{yi}1~,. The partition (A;, ..., A,) adapted to f is shown underneath the peach box.

Observe that every constant function is a step map, and that f(X) is a finite subset of
F'. At this stage, no measure p is involved, but for the theory of integration, we will have a
measure space (X, A, u) and we will need to require each A; for which y; # 0 to have finite
measure (this makes sense since in this case F is a vector space).

We gather some useful properties of step maps in the following proposition.
Proposition 5.7. Let (X, .A) be a measurable space, and let F' be any set.

1. For any o-algebra B on F, every step map Step(X, A, F') is measurable.
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2. Let I\, F5,G be three sets, and let h: Fy x Fy — G be any function. For any f; €
Step(X, A, F1) and any fo € Step(X, A, ), we have ho (fi, f2) € Step(X, A, G).

3. If K =R or K =C, then Step(X, A, K) is a vector space and a ring under pointwise
multiplication of functions. Thus, Step(X, A, K) is an algebra over K.

4. If F is a vector space over K (with K = R or K = C), then Step(X, A, F) is a
vector space over K, and a module over Step(X, A, K), which means that if f €
Step(X, A, F) and g € Step(X, A, K), then gf € Step(X, A, F).

5. If F' is a normed vector space, and if f € Step(X, A, F), then ||f|| € Step(X, A,R).

6. If f € Step(X, A, R) and g € Step(X, A,R), then we have sup(f,g),inf(f,q), [T, f,
|f] € Step(X, A, R).

Proposition 5.7 is proven in Marle [48] (Corollary 2.1.14).
Theorem 5.6 and Proposition 5.7 imply the following result.

Proposition 5.8. Given a metric space F' equipped with its o-algebra of Borel sets, if a
function f: X — F is the limit of a sequence (fn)n>1 of step functions f, € Step(X, A, F)
that converges pointwise, then the function f: X — F must be measurable.

Unfortunately, in general, a measurable map f: X — F may not be the pointwise limit
of a sequence of step maps if F' has infinite dimension. For one thing, such a limit of steps
maps has its image contained in the closure of a countable subset of F. This is the second
technical difficulty of the general theory.

To overcome this second difficulty, we need to define a more refined notion of measurable
map and of step map. We will do so shortly, but first we observe that if we only need to
consider values in a finite-dimensional vector space, then there is no problem.

Proposition 5.9. Let (X, .A) and (F,B) be two measurable spaces, where F is a topological
space and B is its Borel o-algebra, and let f: X — F be a measurable map.

1. If F is either a finite-dimensional vector space over R or C, or F = R, then there
is a sequence (f,) of step maps f, € Step(X, A, F) that converges pointwise to f. If
F =R, we may assume that the f, take finite values.

2. If F=R or F =R, and if f > 0, then we may assume that f, > 0 and f, < foi1
for alln > 1.

A proof of Proposition 5.9 can be found in Lang [43] (Chapter VI, Section 1, Properties
M8 and M9).
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5.3 p-Step Maps

We explained in the previous sections that in general, the space M(X, A, F') of measurable
maps from X to F' is not a vector space, and that a measurable map f: X — F may not
be the pointwise limit of a sequence of step maps. This suggests modifying the notion of
measurable map and the notion of step map to recover these properties. The second property
is crucial in extending the notion of integral to more general functions.

So far, the space X was only a measurable space, but no measure was involved. The
new ingredient is to define suitable notions of step maps and measurable maps relative to a
measure space (X, A, 1), where the measure p plays a role.

The main trick is to relax the notion of pointwise convergence to pointwise convergence
almost everywhere, and more generally, to consider that two functions are equivalent if they
are equal almost everywhere (they differ on a null set). The plan is the following:

1. Define the space Step,, (X, A, F') of p-step maps.

2. Define the space M, (X, A, F') of p-measurable maps, where a p-measurable map is
the limit of a sequence (f,,) of p-step maps f, € Step,(X, A, F) converging pointwise
almost everywhere.

3. Prove that if F' is a vector space, then M, (X, A, F) is a vector space.

Our presentation of the method that we just sketched follows Marle [48] and Lang [43]
very closely. It is a generalization (with some simplifications) to functions with values in a
Banach space of the approach followed by Halmos [36]. The results that we state without
proof are proved either in Marle [48] or in Lang [43].

Definition 5.4. Let (X, A, 1) be a measure space, and let F' be any vector space (over R or
C). A function f: X — F'is a u-step map if it is a step map, and if {z € X | f(z) #0} € A
and has finite measure; see Figure 5.8. The set of y-step maps is denoted by Step (X, A, F).

For technical reasons, it is useful to have the following equivalent characterization of a
p-step map.

Proposition 5.10. Let (X, A, n) be a measure space, and let F' be any vector space (over R
or C). A function f: X — F is a u-step map iff there is a nonempty subset A € A of finite
measure such that f vanishes outside A, that is, f(x) =0 for allx € X — A, and if there is
a finite partition (Aq, ..., A,) of A of subsets A; € A (nonempty pairwise disjoint subsets)
such that the restriction of f to each A; has a constant value y;.

Proof. Let f be a p-step map, that is, a step map with respect to a partition (Ay,..., A,)
of X such that {x € X | f(z) # 0} € A and has finite measure. Then any A; on which f
has value y; # 0 must have finite measure. If f =0 on X, then pick A to be any A; and the



5.3. u-STEP MAPS 109

U(A,+ A+ As) < oo

Figure 5.8: Let (X, A) = (R,B(R)) and FF = R. A p-step map is shown in red where
A1UA2UA3:{ZL'€X|JC((E)7AO}€A

partition to be (A;). Otherwise, let J = {j € {1,...,n} | f #0onA;}, and let A =J;; 4;.
Then, (A;);es is a partition of A with A; € A, where A is a nonempty set of finite measure,
and f vanishes on X — A; see Figure 5.9.

Conversely, since A has finite measure and since the A; belongs to A, each A; has finite
measure, so {x € X | f(x) # 0} € A is a set of finite measure. If A = X, then we already
have a step map (as defined in Definition 5.3). Otherwise, X — A € A and f vanishes on
X — A, so (Aq,...,A,, X — A) is partition of X, and f is a step map with respect to this
partition; see Figure 5.10. O]

The condition that a p-step map must vanish outside of a measurable set of finite measure
is the measure-theoretic analog of the topological notion of compact support.

Proposition 5.10 suggests the following equivalent definition of a u-step map.

Definition 5.5. Let (X, A, 1) be a measure space, and let F' be any vector space (over R
or C). A function f: X — F'is a pu-step map if there is a nonempty subset A € A of finite
measure such that f vanishes outside A, that is, f(z) =0 for all z € X — A, and if there is a
finite partition (Ay, ..., A,) of A consisting of nonempty pairwise disjoint subsets in A, such
that the restriction of f to each A; has a constant value y; (possibly zero). The partition
(A,..., A,) of Ais said to be adapted to f.

Technically, Definition 5.5 appears to be more convenient. Observe that a u-step map
can be expressed as a (necessarily finite) linear combination

f = Z YiX A
=1
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Figure 5.9: Let (X, A) = (R,B(R)) and F' = R. A step map is shown in red with adapted
partition R = UZ:1 A;. To interpret this step map as a p-step map, let A = Ay U Ay U Ag,
where u(A) < oo, A = {z € X | f(z) # 0} € A Then f(z) = 0 on X — A where
X —-—A=AUA3UA5U A;.

for some y; € F and for some nonempty pairwise disjoint measurable sets A; € A of finite
measure, a concise and convenient representation.

Remark: The proof of Proposition 5.10 shows that if a u-step function f is not identically
zero, then we can find a subset A in A of finite measure, and a partition (Aq,..., A4,) of A
of subsets in A such that the value of f on each A; is nonzero, and f is zero outside of A.
However, it turns out to be more convenient for certain proofs to allow f to be zero on some
of the A;, and this is why we allow this possibility in Definition 5.5.

Example 5.1. Consider the function f: R — R, given by

4

0 ifz<Ooraz>1
1 ifzef0,1/2]—Q
flx)=<0 ifze[0,1/2]N
2 ifzrell/2,1]-Q
0 ifzel1/2,1]NQ;

\

see Figure 5.11. If we let A; = [0,1/2] — Q, A2 = [0,1/2] N Q, A3 = [1/2,1] — Q, Ay =
[1/2,1] N Q, and A = [0, 1], with the Lebesgue measure py on R, then Ay, Ay, A, Ay are
Lebesgue measurable, p(A;) = 1/2, u(As) =0, u(Asz) = 1/2, u(As) =0, (Ay, Ag, Az, Ay) is
a partition of A, a set of measure 1. Thus f is a ur-step function.

This example shows that a p-step function can be very complicated, unlike the step
functions of Definition 2.21.
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Figure 5.10: Let (X, A4) = (R,B(R)) and F' = R. A p-step map is shown in red with
A=A UAUA3U A, The turquoise set is X — A and (Aj, A, A3, Ay, X — A) forms an
adapted partition for the corresponding step map.

Proposition 5.11. Let (X, A, ) be a measure space, and let F' be any vector space

1. Let Iy, F5,G be three Banach spaces over R or C, and let h: Fy x Fy — G be any
function. If h satisfies h(0,0) = 0, then for any fi € Step, (X, A, F1) and any fa €
Step, (X, A, Fy), we have ho (fi, f2) € Step (X, A, G).

2. If K =R or K =C, then Step,(X, A, K) is a subspace of Step(X, A, K), and for any
g € Step(X, A, K) and any f € Step,(X, A, K) we have gf € Step,,(X, A, K). Thus
Step (X, A, K) is an ideal in Step(X, A, K).

3. If F is a vector space over K (with K = R or K = C), then Step, (X, A, F) is
a subspace of Step(X, A, F) and a module over Step(X, A, K), which means that if
f € Step, (X, A F) and g € Step(X, A, K), then gf € Step, (X, A, F).

4. If F is a normed vector space, and if f € Step (X, A, F), then | f|| € Step,(X, A, R).
In fact, if f =320 yixa,, then || fll =320 N1l xa.-

5. If f € Step, (X, A,R) and g € Step,(X, A,R), then sup(f,g),inf(f,9), f*, f~,|f]
€ Step, (X, A, R).

Proposition 5.11 is proven in Marle [48] (Proposition 2.2.3).

We now come to the crucial notion of g-measurable map.
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Figure 5.11: The p-step map of Example 5.1.

5.4 p-Measurable Maps

Definition 5.6. Let (X, A, 1) be a measure space, and let F' be any vector space (over R
or C). A function f: X — F is a pu-measurable if there is a sequence (f,),>1 of p-step
maps f, € Step, (X, A, F') which converges pointwise to f almost everywhere. See Figures
5.12 and 5.13. Recall that this means that there is a null set Z C X such that for every

x € X —Z, the sequence (f,,(z)) converges to f(z). The set of y-measurable maps is denoted
by M, (X, A, F).

Observe that a p-measurable map is not necessarily measurable, so M, (X, A, F) is not
a subspace of M(X, A, F'). However, we will see shortly that a p-measurable map is equal
to a measurable map almost everywhere, and this is good enough to construct the Lebesgue
integral. The following proposition can be proved using Proposition 5.11 by passing to the
limit (carefully).

Proposition 5.12. Let (X, A, p) be a measure space, and let F' be any vector space

1. Let Fy, F5, G be three Banach spaces over R or C, and let h: Fy x Fy — G be any
function. If h satisfies h(0,0) = 0, then for any fi € M, (X, A, F1) and any f, €
M, (X, A, F), we have ho (f1, f2) € M, (X, A, G).

2.If K = R or K = C, then M, (X, A,K) is a vector space, and for all f,g €
M, (X, A, K) we have fg € M, (X, A K). Thus M, (X, A, K) is an algebra over
K. For any g € M(X, A, K) and any f € M, (X, A, K) we have gf € M, (X, A, K).

3. If F is a vector space over K (with K =R or K = C), then M, (X, A, F) is a vector
space over K and a module over M(X, A, K), which means that if f € M (X, A, F)
and g € M(X, A K), then gf € M, (X, A, F). The space M, (X, A, F) is also a
module over M, (X, A, K).
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Figure 5.12: Let X = F = R. Assume p is the Lebesgue measure on R. The graph of
the p-measurable f is shown in the upper left corner. The middle figure illustrates the
sequence (f,)n>1 of p-step maps f, € Step, (X, A, F) which converges pointwise to f almost
everywhere.

4. If Fis a normed vector space, and if f € M, (X, A, F), then | f]| € M.(X, A R).

5. If f € Mu(X, A R) and g € M, (X, A, R), then we have sup(f, g),inf(f,g), f*, £, [f]
e M, (X, AR).

The following result gives a characterization of a py-measurable map which shows that
a p-measurable map is equal to a measurable map almost everywhere, and that there are
strong countability restrictions on its domain and its range.

Proposition 5.13. Let (X, A, u) be a measure space, and let F' be any Banach space. A
function f: X — F is p-mesurable iff there is a null set Z such that the following three
conditions hold:

(1) There is a measurable map g € M(X, A, F') such that f and g are equal on X — Z.

(2) The function f vanishes outside of a measurable o-finite subset of X (recall Definition
4.10).

(8) The image f(X —Z) is separable in F', which means that f(X —Z) contains a countable
dense subset.
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Figure 5.13: A more detailed look at the pointwise convergence of converges the (fy,)n>1.
The pointwise limit only differs from f on a set of measure zero, namely {3/2}.

In particular, if u is o-finite and if F is separable, then f: X — F' is p-measurable iff f
is measurable almost everywhere (there is a null set Z such that f agrees with a measurable
map on X — Z).

A proof of Proposition 5.13 can be found in Lang [43] (Chapter VI, Section 1, Property
M11). Again, Condition (2) is a measure-theoretic analog of the notion of compact support.

The version of Theorem 5.6 for p-measurable maps is stated below.

Theorem 5.14. Let (X, A, ) be a measure space and let (F,B) be a measurable space,
where F is a metric space and B is the Borel o-algebra on F. If (fu)n>1 15 a sequence of
p-measurable maps f, € M, (X, A, F) which converges pointwise to a function f: X — F,
then f € M, (X, A, F); that is, f is p-measurable.

A proof of Theorem 5.6 can be found in Lang [43] (Chapter VI, Section 1, Property
M12).

We are now ready construct a very general version of the integral. The original construc-
tion was first proposed by Lebesgue, but the more general version presented here applying
to functions with values in a Banach space is due to Bochner and Dunford.
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5.5 The Integral of u-Step Maps

Let (X, A, i) be a measure space and let (F, B) be a measurable space consisting of a Banach
space F' and its Borel o-algebra B. There is an “obvious” definition of the integral of a u-step

map [ = Z?:l Yix4, (where y; € F'), namely
I(f) = /fdu = ul(Ad)yi.
i=1

Since by definition the A; belong to A and have finite measure, the linear combination
Yoy w(A)y; is a well-defined vector in F'. The only problem is that I(f) seems to depend
on the subset A (and its partition) chosen to express f, but it is easy to show that I(f) is
independent of the representation of f. Then it is easy to show that I: Step,(X, A, F') — F
is a linear map. Furthermore, by Proposition 5.12, we have || f| € Step,(X, A, R), so we
can define

mm:ﬁww,

|/ 7

It turns out that N; satisfies all the axioms of a norm, except that N;(f) = 0 does not
necessarily imply that f = 0. We say that IV; is a semi-norm, see Definition A.3. Fortunately,
for any f € Step, (X, A, F), we have Ni(f) = 0 iff f = 0, except on a subset of measure
Zero.

and we have

< [1Al1dn =),

We can define the notion of N;-Cauchy sequence of a sequence (f,) of functions f, €
Step, (X, A, F) as follows: for all € > 0, there is some N > 0, such that for all m,n > N, we
have Ni(fm — fn) < €. We can also define the notion of Nj-convergence of a sequence (f,,) of
functions f, € Step,(X, A, F) to a limit f € Step,(X, A, F') as follows: for all € > 0, there
is some N > 0, such that for all n > N, we have Ny(f — f,,) < e. A convergent N;j-sequence
does not necessarily have a unique limit, but we will see that any two limits are equal a.e.

The problem is that an N;-Cauchy sequence may not have a limit in Step, (X, A, F).
Thus we are led to completing Step, (X, A, F') with respect to the semi-norm N;. This can
be done and we obtain a vector space L£,(X, A, F') which is a subspace of M, (X, A, F). The
integral map I and the semi-norm N; can be extended to £,(X, A, F') as a semi-norm denoted
| ll;, the space £,(X, A, F) is Cauchy-complete with respect to the semi-norm || ||,, and
Step, (X, A, F) is dense in £,(X, A, F') with respect to the semi-norm || [[,. This situation
is schematically illustrated in Figure 5.14.

It also turns out that the subspace SN of Step,(X, A, I) consisting of all functions
f such that Ni(f) = 0 is the set of functions in Step,(X, A, F) that are equal to 0 a.e.
Similarly, the subspace N of £,(X, A, F) consisting of all functions f such that || f||, = 0
is the set of functions in £,(X, A, F) that are equal to 0 a.e. Thus, we can form the
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F A (pointwise convergence)

’.M“(X, A,F)

Ly(X,3,F)
completion w.rt. || ||

Figure 5.14: Let (X, A, u) be a measure space and (F,B) be a Banach space with the
Borel o-algbera. The completion of Step, (X, A, F) with respect to the semi-norm || |, is
L (X, AF).

quotients spaces Step,, (X, A, F') = Step,(X, A, F')/SN and L,(X, A, F) = L.(X, A, F)/N.
In Step, (X, A, F') and in L, (X, A, F) the semi-norm || ||, is really a norm, and L, (X, A, F)
is the completion of Step,(X, A, F).

Theoretically, we could define L, (X, A, F) directly as the Cauchy completion (see Theo-
rem A.62 and Theorem A.72) of Step,, (X, A, I), but we obtain equivalence classes of Cauchy
sequences of equivalence classes of functions in Step u<X , A, F), which are not easily inter-
pretable as functions. The same space L, (X, A, F') is obtained, see the diagram below.

completion

Step, (X, A F)

'CM(X> Aa F)

quotient quotient

Step,, (X, A, F') = Step,,(X, A, ) [SN L.(X, A F)=L,X, A F)/N.

completion
The construction that we alluded to, although involving some extra work, yields a very

clear description of these equivalence classes in terms of functions (in £,(X, A, F')). The

completeness of L, (X, A, F') (under the || ||,-norm) is also immediately obtained.

As in the previous section the results that we state without proof are proved either in
Marle [48] or in Lang [43].
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We now return to the definition of the integral of a p-step maps.

Proposition 5.15. Let (X, A, u) be a measure space and let (F,B) be a measurable space,
with F' a Banach space and B its Borel o-algebra. For any p-step map f € Step, (X, A, F),
for any two partitions (Ay, ..., Ay) and (By, ..., By) adapted to f, so that f =" yixa, =

Yz h
> i=1ZjXB;s we have
m

> Ay = Z 1(B))z;.

i=1
Proposition 5.15 justifies the following definition.

Definition 5.7. Let (X, A, 1) be a measure space and let (F,B) be a measurable space,
with I a Banach space and B its Borel o-algebra. For any u-step map f € Step, (X, A, F),
the common value

/ fdp

I(f) = ZN(Ai)yi

of the expression

for any partition (A, ..., A,) adapted to f is called the integral of f (relative to the measure
w); see Figure 5.15.2

IJ(A1+A2+A3)< )

Y2 —

Ay,
2k

H(AY; A
3

Ay A H(AS)y;
Y3

Figure 5.15: Let (X, A) = (R,B(R)) and F' = R. The integral of the u-step map f is the
signed area of the pastel “boxes”.

Recall that if the p-step map f is expressed as f = > _© | yixa,, then the pu-step map || f||
is expressed as || f]| = 221 [lvill xa,-

2This integral is usually called the Lebesgue integral or Bochner integral. A more appropriate name might
be the Bochner—Dunford integral.
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Definition 5.8. We define the semi-norm N;(f) of the p-step map f = >  yixa, as

M) = [Ildn =3 )l

For any measurable subset £ € A, since xpf € Step,(X, A, F), we let

/E fFin = [ xutin

For simplicity of notation, we often write [ | instead of Il g fdp, and if B = X, we write
[ f instead of [ fdpu.

We stress that the integral [ fdu or [ g fdp is always finite; that is, an element of F,
but not oo. This is in contrast with the approach where the integral of a step function may
have the value +o0, as in Rudin [57] (Chapter 1). At some later stage, in defining the space
LY(X, A, F), it is necessary to require the integral to be finite anyway. We find the approach
where the integral is finite in the first place less confusing. It also yields a more explicit
definition of L'(X, A, F).

Example 5.2. The special case in which X is a countable set, A = 2%, u is the counting
measure defined in Example 4.3, and F' = C is of particular interest. Say X = N. A u-step
function is of the form
f= Z YiX A
i=1

where A; must be a finite subset of N, and y; € C. By definition of u, we have u(A4;) = |A;l,

SO
/fdu = il Al
=1

But f is the function with finite support A = (J;_, 4;, such that f(j) = y; for all j € A,
and f(j) =0 for all j ¢ A, so

[ fin=3" 1) =3 10

jEA jeN

the sum of the (finite) sequence (f(j));jen. Similarly, if X = Z, then for any sequence (f;) ez
with only finitely many nonzero entries,

[ in=3 10

=
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Example 5.3. Recall from Example 4.7 that for any a € X, the Dirac measure ¢, is defined
such that for any A C X,
1 if A
5a(A) _ { Irae

0 ifa¢ A

Here the o-algebra is A = 2%. Then it is easy to check that for any p-step function

f = Z YiXA;»
=1

we have
/ Fds, = fla).
So f(a) =y, iff a € A;, and f(a) = 0 otherwise.
Here are some of the main properties of the integral.

Proposition 5.16. Let (X, A, u) be a measure space and let (F,B) be a measurable space,
with F a Banach space and B its Borel o-algebra. The following properties hold:

1. The integral map [ : Step, (X, A, F) — F is a linear map.

2. If A and B are any two disjoint measurable subsets, then

s /A Fdu+ /B fd.

3. For any map f € Step (X, A, F), we have || f|| € Step,(X, A, R), and

H/fd“” S/HfHdule(f).

/ 1l dp < p({x € X | f(z) # 0} [/l

We also have

4. For any two maps f,g € Step (X, A, F), if f =g a.e., then [ fdu= [ gdp.

5. For any two maps f,g € Step,(X, AR), if f < g a.e., then [ fdu < [gdu. In
particular, if f >0 a.e., then [ fdu > 0.

6. Ny is a semi-norm on Step, (X, A, F). Furthermore, for any f € Step, (X, A, F), we
have N1(f) =0 iff f =0, except on a subset of measure zero.
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7. If F\ and Fy are two Banach spaces over R or C, and if h: Fy — Fy is a continuous
linear map, then for any f € Step, (X, A, F1), we have ho f € Step, (X, A, F3), and

/(hof)du:h</fdu>.

If ' = C, the above property holds for any semi-linear map.

Proof. We prove (3) and (6), leaving the other properties as exercises.

(3) If f = 373y yixa, then [ fdu = 370, p(Ai)yi. We also have ||f]| = 375, [13ill xa,
and [ ||l dp =21, p(A) |yl Tt follows that

H/fduH = éu(fh)yi

We also have

<> Al = 34 Il = [ 171

J1ldn =3 ) il < (o € X | $() # 0) max
= (e € X | £(z) # 0} Ifll..

(6) Since by (1) the integral is linear, we have
M) = [IAfldn= [ INFde= ] [ 151 = D)
Since [|(f + 9)(@)]l < [1/(@)] + lg(@)]| for all 2 € X, by (5) we have
Nl +9)= [ 15 +alldu< [Uflldu+ [ lglldn=Na(H)+ Nilo).

Assume that Nq(f) = 0, which means that [ ||f||du = 0. Since f is a p-step function, we

can write .
f= Z YiXAi»
i=1

for a finite sequence (Ay,...,A,) of nonempty pairwise disjoint subsets A; € A of finite
measure. Since

£ =D llwill xais
i=1

SO

Ni(f) = / 170 die = S sl 4) = .
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Since ||y;]| > 0 and p(A;) > 0, the following must hold:

if u(A;) # 0, then ||y;|| = 0, that is y; = 0.
if y; # 0, that is ||y;|| # 0, then u(A;) = 0.

Consequently
{reX|f(x)#0}=|JA, with I={i|1<i<n]|y #0},
i€l
where (J,.; Ai € A is a set of measure 0, since 7 € I implies that p(A;) = 0. O

By Proposition 5.16(6), the set
SN ={f eStep, (X, A F) | Ni(f) =0} = {f € Step (X, A, F)| f =0ae.}
is a subspace of Step (X, A, F).
Definition 5.9. Let Step, (X, A, I) be the quotient space Step, (X, A, ') /SN

For every equivalence class f € Step, (X, A, F'), we can define

/fduz/fdu

for any function f € Step,(X, A, F) in the equivalence class of f, because if f = g a.e., then
[ fdu = [ gdu, so [fdu does not depend on the representative chosen in the equivalence
class f. Similarly, we define N;(f) by

zwﬂszz/wwm

for any function f € Step,(X, A, F) in the equivalence class of f. Again if f = g a.e., then
£l = llgll a-e., so N1(f) = Ni(g), which means that N;(f) is well defined. It is immediately
verified that N; is a semi-norm, and in fact a norm, since Ny(f) = 0 iff N;(f) = 0 for any
representative f € Step, (X, A, F') in the equivalence class f iff f = 0 a.e., which means that
f = 0. Therefore, (Step,(X, A, F), Ny) is a normed vector space. It is easy to see that the

inequality
| [t < [ = wice)

holds, which shows that the map | Step, (X, A, F') — F is continuous (in fact, uniformly
continuous). The space (Step,(X,A, F'), N1) is not complete, so we can apply Theorem
A.72) to form its completion L,(X, A, F) and extend the map [ to it. Theoretically we
have achieved our goal of defining a notion of integral on a normed vector space L, (X, A, F)
which is complete and in which Step#(X , A, F') is dense, but the elements in this abstract
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completion are equivalence classes of Cauchy sequences, and are not easily identifiable with
functions.

We will follow a different path, still very much inspired by the completion method in-
volving Cauchy sequences, the twist being that we consider Cauchy sequences whose limit
is known ahead of time, but where we use pointwise convergence almost everywhere, instead
of pointwise convergence.

5.6 Integrable Functions; the Spaces £,(X, A, F)
and L, (X, A, F)

In this section we construct the completion £,(X, A, F) of the vector space Step,,(X, A, F)
equipped with the semi-norm Ny, and construct the integral of a function in £,(X, A, F).
The semi-norm Nj is extended to L£,(X, A, F) as a semi-norm || ||, called the L'-semi-
norm, and we find that the space of functions such that ||f||; = 0 is the set N of func-
tions in £,(X, A, F') that are zero a.e. Then we define the quotient space L, (X, A, F) =
L, (X, A, F)/N. The space L, (X, A, F) is the completion of Step,(X, A, F'); this is one of
the most important results of this section (the Fischer-Riesz theorem).

As in the previous section the results that we state without proof are proved either in
Marle [48] or in Lang [43].

Recall the following definitions.

Definition 5.10. A sequence (f,) of functions f,, € Step,(X, A, F') is a Ny-Cauchy sequence
if for every € > 0, there is some N > 0, such that for all m,n > N, we have Ny(f,, — f.) <
e, where Ni(fm — fo) = [|fm — falldp. A sequence (f,) of maps f, € Step,(X, A, F)
converges pointwise almost everywhere to a limit f: X — F if there is a null set Z such that
for every x € X — Z, for every € > 0, there is some N > 0, such that ||f(z) — f.(2)|| < € for
alln > N.

We define the space £,(X, A, F) as follows.

Definition 5.11. Let (X, A, 1) be a measure space and let (F,3) be a measurable space,
with F' a Banach space and B its Borel o-algebra. The set £,(X, A, F) of p-integrable
functions consists of all functions f: X — F such that there is some N;-Cauchy sequence
(fn)nz1 of p-step maps f, € Step,(X, A, ) which converges pointwise almost everywhere
to f. A sequence (f,),>1 of p-step maps as above is called an approzimation sequence for f.

Observe that not only do we require that the sequence (f,),>1 converges pointwise to f
a.e., which makes f a pu-measurable map, but also that this sequence is N;-Cauchy. This is
the key to defining the notion of integral of the function f, as shown technically in Proposition
5.17.
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We will see that £,(X, A, F) is a vector space containing Step,,(X, A, F'), and a subspace
of M, (X, A, F). Also, and this is the point of the construction, £,(X, A, F) is complete
with respect to the extension || ||, of the semi-norm N; to £,(X, A, F), a fact that is not
obvious at all from the definition.

The crucial point is that Definition 5.11 is designed so that the following fact holds.

Proposition 5.17. For any Ny-Cauchy sequence (fn)n>1 of p-step maps, the sequence of
integrals ( i fndu) 1 1s a Cauchy sequence in F.

Proof. Indeed, by Proposition 5.16(3), we have

H/f”d’“‘ /f””‘d“H H/ fm)duHS/an—fmudu:Nl(fn—fm),

and since by hypothesis (f,,) is an N;-Cauchy sequence, the sequence ( i fnd,u) > 1s a Cauchy

sequence in F. Indeed, for every e > 0, since the sequence (f,) is N;-Cauchy, there is some
N > 0such that Ny(f,—fn) < e for all m,n > N, which implies that ||f fodp— [ fmduH <€
for all m,n > N. ]

Then, since F' is complete, the sequence ( i fndu) >, converges to an element of F', and if
(fn)n>1 is an approximation sequence for f € £, (X, A, F), it is natural to define the integral

of f as
/fdp,: lim /fnd,u.

The problem is that the definition of [ fdu depends on the approximation sequence
(fn)n>1 chosen for f.

Actually, the definition of | fdu does not depend on the approximation sequence (f,,)n>1
chosen for f, but proving this is nontrivial. The proof relies on a remarkable fact called the
fundamental lemma of integration by Serge Lang; see [43], Chapter VI, §3.

Proposition 5.18. Let (fu)n>1 be any Ni-Cauchy sequence of maps f, € Step, (X, A, F).
There exists a subsequence (gy) which converges pointwise almost everywhere to a limit f €
L,(X, A, F). Furthermore, for any € > 0, there is a measurable subset Z. € A such that

w(Z.) < e, and the subsequence (gi) converges uniformly to f on X — Z. (recall Definition
2.6).
Proof. We follow Lang’s proof; see Lang [43] (Chapter VI, §3, Lemma 3.1). Since (fy,)n>1 is
an N;-Cauchy sequence, for every k > 1, there is some M} such that if m,n > My, then

1

By induction we can define the sequence (M) such that My, < My, for all £ > 1. We define
the subsequence (gi) such that gp = fas,. By construction, we have

1 .
Ni(gm — gn) < Jon if m > n. (1)
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In particular, the sequence (g) is N;-Cauchy.

Our next goal is to prove that the series
)+ Z Jr+1(z) — g(z)) (*2)
k=1

converges absolutely (thus pointwise) to a function f € £,(X, A, F) outside a subset Z of
measure 0, and in fact the convergence is uniform except on a set of arbitrary small measure.
Observe that the partial sums of the series (x5) are g,(x), so this establishes the statement
of the proposition.

Let Y,, be the set of all z € X such that

1

||gn+1(x) - gn($)|| Z %

Since the g are p-step maps and since by Proposition 5.11(3) and 5.11(4) the function
|gn+1 — gn|| is measurable, the set Y;, has finite measure. Since

1
901 (2) = ga(@)]) > 5

on Y, using (*;) we have

1
/ o< / 190s1(2) — gn(@)] dit = Ni(gss — ga) < .
X

The above implies that

1
w(Yn) < on (*3)
If we let
Zn = U Yna
k>n
then we have
1 1 (1 1
ZEWISEN o SR 109 RS
k>n k>n k=0
If x ¢ Z,, then for all k£ > n we have
1
o162 (2) — gu()] < o

and this implies that we have

[ee]

> lgsa(@) = gu@)ll < Y- 5 < 5oy
k=n

k=n
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so the series

g1 ()|l + Z lgk+1(2) — gr(2)]]
k=1

converges, and since F' is complete, the series in (k2) is uniformly convergent outside Z,, to a
limit f(x). For every e > 0 there is an n such that Zn—l_l < €, so the statement about uniform
convergence holds with Z = Z,,. If we define Z by

Z = Zn,

n>1

then p(Z) = 0 and since « € X — Z iff there is some n such that x € X — Z,,, so the series
(%2) converges to f(z) and thus g,(z) converges to f(z), which means that the sequence (g, )
converges pointwise to f outside the subset Z of measure zero. O

It should be mentioned that in general, the original sequence (f,) may not converge
pointwise, even a.e. An example of such a sequence (f,,) which is N;-Cauchy, yet (f.(x))
diverges for every x € X, is given in Schwartz [63] (Chapter 5, §6).

Using Proposition 5.18, the following result is obtained. This result implies that the
integral [ fdu is well defined.

Proposition 5.19. Let (fn)n>1 and (gn)n>1 be two Ni-Cauchy sequences of u-step maps
frs gn € Step (X, A, F) which approzimate the same function f. The sequences (f fnd,u)

and (f gnd,u)m1 converge to the same limit, and

n>1

lim / | fn — gnll dpw = 0,
n—oo

that is, lim,, oo N1(f, — gn) = 0.

Proof. We follow Lang’s proof; see Lang [43] (Chapter VI, §3, Lemma 3.2). The convergence
of the sequences ( 1l fml,u)w1 and ( i gndu) > follows from Proposition 5.17. Note that

‘Uﬁ@—/ﬁMMSMm—my (+)

Next let h,, = f,, — g,. Since the maps f,, and g, approximate the same function f, the fact
that

/Mm—hamﬂz/Mn—gw—mn—%mmNs/Mn—ﬁmdu+/M%—ngM

implies that the sequence (h,) is N;-Cauchy and converges almost everywhere to the zero
function. We will prove that Ny(h,) = [ ||h,|| dp converges to 0, and since

| [ | < [ e
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the integral [ h,du also converges to 0.

Since (hy,) is Ni-Cauchy, for every € > 0 there is some N > 0 such that for all m,n > N
we have
Ni(hy, — hp) < €. (*1)

Since f, and g, are p-step functions for all n there is some subset A of finite measure
such that hy vanishes outside A. Then for all n > N we have

/'|mmmu3/ Hm—hmwué/HM—hMMMZNKM—hM<€
X

SO

lL[yMWM<a n>N. (x2)

By Proposition 5.18, there is a subset Z of A such that

€

_ *
T (%)

n(Z) <

and a subsequence (h,,) that tends to 0 uniformly on A—Z. The reason for using 1+ ||hn/||,
is to avoid division by zero. The point is that in all cases we have p(Z2) ||hn|,, < €. Then
for m > N large enough we conclude that

A Vel i < e. (x2)
-z

Finally for m large enough we have

[ Walldi < [ o= sl die [

< Ni(hn = hy) + p(Z) ||l < 26,

SO

/ |l dpe < 2e. (x5)
z

Using (%), (*9) and (*5), we obtain

— [ Whalidi= [ bt [l [l < e e 2e = e
X X—A z A7

proving our result. O]

Proposition 5.19 justifies the following definition.
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Definition 5.12. Let (X, A, 1) be a measure space and let (F,3) be a measurable space,
with F' a Banach space and B its Borel o-algebra. For any function f € £,(X, A, F), we
define the integral® of f (with respect to u) by

/ fdp = lim / Fudi,
n—oo

where (f,)n>1 is any approximation sequence of f by p-step maps.

Proposition 5.20. For any function f € L,(X, A, F) and any approzimation sequence (f,)
of f with f, € Step,(X, A, F), we have ||f|| € L,(X, A, R), and the sequence (||f.|) is an
approzimation sequence of || f|| with || f.| € Step, (X, A, R). Furthermore,

Jsldn = i [ 15dn = tim N(£,).

Proof. Since the sequence (f,,) converges pointwise to f a.e., we verify immediately that the
sequence (|| f,||) converges pointwise to || f|| a.e. Since

LAl = T < [ fr = Sl

(see just after Definition A.3), by Proposition 5.16(5) we have

Nl(”an_Hme):/H|fn||_Hme Idué/Ilfn—fmlldule(fn—fm),

and since (f,) is an N;-Cauchy sequence, the sequence (||f,||) is an N;-Cauchy sequence.
Therefore || f|| € £,(X, A, R), and (|| f,||) is an approximation sequence of || f||. By definition
of the integral,

Jsldn= i [ 15dn = tim Nc£),

as claimed. O

Definition 5.13. For any function f € £,(X, A, F), we define the L'-semi-norm || f||, of f
as

11, = [ 171w

Observe that if f € Step, (X, A, F), then | f|l; = Ni(f). The following proposition is
easily shown by passing to the limit.

Proposition 5.21. The set L,(X, A, F) is a vector space, and |||, is a semi-norm on
L. (X, A, F). The space Step, (X, A, F) is a subspace of L,(X, A, F), which is a subspace
of M (X, A F).

3This integral is usually called the Lebesgue integral or Bochner integal.
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We are almost ready to prove that £,(X, A, F) is complete with respect to the L'-semi-
norm, but first we need the following result.

Proposition 5.22. The subspace Step (X, A, F) is dense in L,(X, A, F') with respect to the
L*-semi-norm || ||,. Furthermore, any approzimation sequence (fy)n>1 of [ by u-step maps
converges to f according to the semi-norm || ||,.

Proof. Pick any f € L£,(X,A,R) and let (f,) be any approximation sequence for f. This
means that the sequence (f,,) is a Nj-Cauchy sequence of p-step maps which converges
pointwise to f a.e. We will prove that

lim | f = full, =0,
n—oo
which shows that the sequence (f,,) converges to f in the L'-semi-norm.

First we claim that for any fixed n > 1, the sequence (||f, — full)p>1 is an N;-Cauchy
sequence which converges to ||f — f.|| a.e. Indeed, we have

J 1= 2l =150 £l < [ Wy = £ = Gy = £l do
:/||fp_fq||dﬂ:N1(fp_fq)7

and since (f,,) is a Ni-Cauchy sequence, for every e > 0, there is some N > 0 such that
Ni(fp—fy) < eforall p,¢ > N, which shows that (|| f, — f||)p>1 is a N;-Cauchy sequence (in
R). The fact that (f,),>1 converges pointwise a.e. to f immediately implies that || f, — f.||
converges to || f — f,| a.e. By definition of || ||, and of the integral

I£= 5l =[5 = £ulld= i [ 1f, = fulldi = Jim NG5, — £).
P00 P00

Thus for every € > 0, there is some M; > 0 such that

€
| Hf - fn”l - Nl(fp - fn)l < 5 for all p= M17
and since (f,) is an N;-Cauchy sequence, there is some My > 0 such that
Nify = fa) <5 forall n,p> My,
so for all n, p > max(M;, Ms) we have

1 = Falls STIF = fulls = Milly = )l + Nalfy = Ja) < 5+ 5 =€,

which proves that lim, . ||f — fall; = 0; that is, the sequence (f,,) converges to f in the
L'-semi-norm. O

Remark: It appears that Lang [43] skipped this step, which is used in the proof his Theorem
3.4, and the proof of the next theorem.

Now we can prove one of our main theorems.
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5.7 The Fischer—Riesz Theorem

Theorem 5.23. (Fischer-Riesz) The space L, (X, A, F) is complete with respect to the
L-semi-norm. This means that for every sequence (fn)n>1 of functions f, € L, (X, A, F), if
(fn) is || [|;-Cauchy, then there is some function f € L,(X, A, F) such that for every e > 0,
there is some N > 0 such that || f — f,||, <€ for alln > N.

Proof. Let (fn)n>1 be an || ||;-Cauchy sequence of functions f, € £,(X, A, F'). By Propo-
sition 5.22, for every n there is an approximation sequence (g m)m>1 of p-step maps that
converges to f, pointwise a.e. and in the || ||;-semi-norm. Thus, for every n > 1, there is
some m(n) such that

1

an - gn,m(n)”l = E (*6)

Each sequence (gn,m(n))n>1 is Ni-Cauchy, because

N1(Gpm(p) — Yam(@) = ||Ipme) — Jam@ |l
< ng,m(p) - prl +11fp — fq||1 + qu - gq,m(tI)Hl

1 1
<—-+-+ f_f )
D q Hp (I”1

and the right-hand side tends to 0 when p and ¢ tend to +o0, since the sequence (f,) is ||||,-
Cauchy. By Proposition 5.18, for each sequence (gn m(n))m>1, We can extract a subsequence
(Gnym(ny) k=1 that converges pointwise a.e. to some function f € £,(X, A, F'), and is also N;-
Cauchy. By the second part of Proposition 5.22, the subsequence (gn, m(n,))r>1 converges to f
for the semi-norm || ||;. Since (gpm(n))n>1 is N1-Cauchy and has a subsequence (gn, m(n,))k>1
| ||,-convergent to f, it also || ||,-converges to the function f. Using (%) and the inequality

1f = fally <N = Gnmen ||y + | 9nmem) = fall,

1

and since the sequence (gnm(n))n>1 || ||;-converges to the function f, we deduce that the
sequence ( fy,)n>1 converges to f for the semi-norm || ||, .

In the following diagram, the original sequence (f,),>1 is shown as the top horizontal
row. Below each f,,, we have the approximation sequence (gy ,)m>1 shown as an ascending
column. The sequence of g, ;m(n) chosen for each n is shown in boldface, and its subsequence
in red.
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fi fo f3 fa f5 fe . fn
Jim(n)  92,m(n) 93m(n) Y4,m(n) Ysm(n) Y6,m(n) --- Bnm(n)

91,6 92,6 23,6 ga6 5.6 96,6 ce 9n6

915 825 g3,5 945 gs5,5 96,5 cen 9ns

g14 92,4 g3.4 84,4 J5.4 J6,4 cen 9na
813 92,3 g33 94,3 953 96,3 ce gn3

91,2 92,2 93,2 94,2 gs5,2 86,2 e gn2

g11 92,1 g3 94,1 g5.1 96,1 e 9n,1

This concludes the proof. O

The following properties of the integral are easily obtained by passing to the limit.

Proposition 5.24. Let (X, A, n) be a measure space and let (F,B) be a measurable space,
with F' a Banach space and B its Borel o-algebra. The following properties hold:

1. For any f € L, (X, A F), if f =0 a.e., then [ fdu = 0. More generally, if f,g €
L X, A F) and if f =g a.e., then [ fdu= [ gdp.

2. For any f € L,(X, A, F), and for any measurable subset A € A, the integral [, fdu =
[ fxadu exists, and

H/f dﬂ“ < / 171l du < [1£1l.. ().

Furthermore, if A, B € A are disjoint, then

/AUdeuz/Afdwr/deu-

3. The integral [: L, (X, A, F) — F is linear.
4. For any f € L,(X, A, F), we have || f]| € L,(X, A, R), and

H/fduH < [1slda =171,

5. If f,g € L, (X, AR), then sup(f,g),inf(f,g), f*, 7, |f| € L(X, AR). Since ft =
(1fl+1)/2 and f~ = (|f| = f)/2, we have f € L, (X, AR) iff ft € L,(X, AR) and
[~ e L (X, AR).

6. If f,g€ L (X, AR) and f < g a.e., then [ fdu < [ gdu. In particular, if f >0 a.e.,
then [ fdu > 0.
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7. Let Fy and Fy be two Banach spaces, and let h: Fy — F5 be a linear map (or semi-linear
map when the field is C). If f € L,(X, A, F1), then ho f € L,(X, A, F,), and

/(hof)du:h(/fdu).

8. Let Fy and Fy be two Banach spaces, and let Fy x Fy be the product space (under any of
the product norms defined just before Definition A.13). Then there is an isomorphism
between L,(X, A, Fy x Fy) and L,(X, A, F1) x L,(X, A, F3), and if f = (f1, f2), then

| fn- ( [ han. [ fzdu) .

In particular, since C is isomorphic to R x R, a function f € L,(X, A, C) corresponds
uniquely to a function f = u+iv with u,v € L£,(X, A, R), and we have

/fd,u:/ud,u+i/vdu.

Remark: Observe that in our approach, if f is a real-valued function or a complex-valued
function, the integral | fdu is defined directly. There is another approach in which the
integral is first defined for real-valued positive functions. Then the integral of a real-valued
function f is defined in terms of the integrals of f* and f~, and the integral of a complex
valued function f = u + iv is defined in terms of the integrals of u*,u~,v",v~. See Rudin
[57], Definition 1.31.

5.8 Characterizing Which Functions Satisfy ||f||; =0

The next step is to identify the functions f in £,(X, A, R) such that || f||, = 0. For this, we
need two propositions.

Proposition 5.25. For any function f € L,(X, A, F), and for any real a > 0, the subset
E,={x e X | ||f(x)|| > a} can be written as E, = (B — Z) U N, with B a measurable
subset of finite measure, and Z and N two null subsets. The function f vanishes outside of
a o-finite measurable set.

Proof. We begin by showing that F, is a measurable set with finite measure. Since f €
L,(X, A F), by Proposition 5.5(2), the function || f|| is measurable, so E, is measurable.
By Proposition 5.18, there is an N;-Cauchy sequence (f,,) of u-step maps which converges
pointwise to f a.e., and for every € > 0, there is a measurable subset Z; of measure p(Z;) < €
such that f,, converges uniformly to f on X — Z;. Pick € = a/2. The uniform convergence
implies that there is some M > 0 such that for all n > M and all x € X — 77,

1 () = fu(@)]| < a/2,



132 CHAPTER 5. INTEGRATION

and since [|f(2)[| < [[f(z) — fa(@)[| + [|f2(2)]], we have
1f @) < [ fu(2)]l + a/2,
and thus || f,(x)] = [|£@)] = a/2, so || f(z)]| = a implies || fu(2)|| > a/2, which implies that
E,Cl{r e Zi [ ||f(2)| 2 a} U{z € X = Zy [ [|fu(@)]| = a/2},

where both sets on the right-hand side have finite measure (the second one because f, is
a p-step function, and so is || f,||, and a p-step function vanishes outside of a set of finite
measure). See Figure 5.16. Since both sets are measurable and the set on the right-hand
side has finite measure, by Proposition 4.7(2) we deduce that E, has finite measure. Since

11l

Na72T T T T T T e e e ee—
Ea

Figure 5.16: Let X = R. The red curve is the graph of || f||, while the aqua graph is the
p-step function || f,,||. The set Z; corresponds to the three magenta dots on the z-axis. The
purple horizontal line segment is E,, the two horizontal aqua line segments are Z5, and

E,C{zeZ||f(z)|| > a}UZy, where Zy = {x € X — Z1 | || ful2)]] > a/2}.

the function ||f|| is p-measurable, by Proposition 5.13(1), it is equal a.e. to a measurable
function g, so there is a null set such Z that ||f|| (x) = g(z) for all € X — Z. Then we have

E,={z e X |[|f(2)] = a}
={reX-Z||f@)|>aU{zeZ]||f(x)]>a}
={reX-Zlg(x)>a}u{zeZ||f(x)|>a}
=({reX|glz)za} -2)U{zeZ||f(2)]=a}
—(B—Z)UN,
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with B={z € X | g(x) > a} and N = {x € Z | ||f(x)|| > a}. Since g is measurable and
la,00) is closed, B is measurable, and N as a subset of a null set is a null set; see Figure
5.17.

|l

Figure 5.17: A continuation of Figure 5.16 where || f]| is replaced by the magenta bell curve
g. Note that Z is the union of the two reddish dots while /V is the darker red dot contained
within F,. In this particular illustration B = E,.

What we showed above with || f|| replaced by g measurable implies that B has finite
measure. The second statement of the proposition follows from Proposition 5.13(2). ]

Proposition 5.18 can be promoted to £, (X, A, F') as follows.

Proposition 5.26. Let (f,)n>1 be any || ||,-Cauchy sequence of maps f, € L, (X, A, F)
that converges to some function f € L,(X, A, F) in the semi-norm || ||,. There exists a
subsequence (gr) which converges pointwise almost everywhere to f. Furthermore, for any
€ > 0, there is a measurable subset Z. € A such that u(Z.) < €, and the subsequence (gi
converges uniformly to f on X — Z. (recall Definition 2.6).

Proposition 5.26 is proven in Lang [43] (Chapter VI, Theorem 5.2). The proof is very
similar to the proof of Proposition 5.18. However, the f, are no longer u-step functions so
we need Proposition 5.25 to justify the fact that the sets Y, have finite measure.

Here are some corollaries of Proposition 5.26.

Proposition 5.27. For any function f € L,(X, A, F), we have ||f|l; =0 iff f =0 a.e.
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Proof. If f = 0 a.e., then | f|| = 0 a.e., and by Proposition 5.24(1), we have || f||, = 0.
Conversely, the sequence (f,,) where f,, is the zero function is || ||,-Cauchy and converges to
f in the || ||;-norm. By Proposition 5.26 there is a subsequence that converges pointwise a.e.
to f. But since f,, is the zero function for all n, this subsequence also converges pointwise
a.e. to the zero function, so f =0 a.e. [

Proposition 5.27 is the second main important result of this section because it provides
a very natural characterization of the functions f such that || f||, = 0.

Proposition 5.28. Let (f,) be a sequence of functions f, € L, (X, A F). If (f.) is an
| ||,-Cauchy sequence which converges pointwise a.e. to a function f: X — F, then f €
L, (X, A F), and (f,) converges to f in the semi-norm || ||;.

Proof. Since the sequence (f,) is an || ||;-Cauchy sequence, by the Fischer-Riesz theorem
(Theorem 5.23) it converges to some function g € £,(X, A, F) in the || ||,-semi-norm. By
Proposition 5.26, some subsequence (f,, )r>1 of (f,) converges pointwise a.e. to g. Since
(fn) converges pointwise a.e. to f, the subsequence (f,, )r>1 also converges pointwise a.e. to
f,s0 f =g ae., and since g € L,(X, A, F) and (f,,) converges to g in the semi-norm || ||,,
we also have f € £,(X, A, F), and (f,,) converges to f in the semi-norm || ||, . O

The main disadvantage of the space £,(X, A, F') is that it is not a normed vector space
under the semi-norm || ||,. Thus it is natural to consider the quotient of £, (X, A, F) by the
subspace N consisting of the functions such that || f]|, = 0.

Definition 5.14. Let A be the subspace of £,(X, A, F') given by
N = {fe ‘CM<X7A7 F) | Hf”l = 0},

which is just the subspace of function equal to 0 a.e. Then we define L, (X, A, F') as the
quotient space

LM(X,A,F) - cu(X7A7 F)/N

For any equivalence class f € L,(X, A, F), since for any two representatives f,g €
L,(X, A, F) in the equivalence class f, we have f = g a.e., by Proposition 5.24(1),

/fduz /gdu,
/fdu:/fdu.

1£]l, = LfIl:
for any f € £,(X, A, F) in the equivalence class f.

so we can define [ fdu as

Similarly, ||f]|, is defined as

The following theorem is immediately obtained from Theorem 5.23 by passing to the
quotient.
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Theorem 5.29. (Fischer—Riesz) The semi-norm || ||, on L, (X, A, F) induced by the semi-
norm || ||, on L, (X, A, F) by passing to the quotient is a norm on L, (X, A, F) called the
L'-norm. With this norm, the space L, (X, A, F) is complete (it is a Banach space). The
subspace Step,, (X, A, F) is dense in L,(X, A, F).

Finally, the following proposition confirms one of our earlier claims.

Proposition 5.30. The space L, (X, A, F) = L, (X, A, F)/N s isomophic to the Cauchy
completion of the space Step (X, A, F)/SN; see the diagram

completion

Step, (X, A F) L,(X,AF)

quotient quotient

Stepu(Xa -Av F) = Step,u,(Xa -A: F)/SN Lu(Xa Aa F) = ﬁ#(Xa -’47 F)/N

completion

In the next section we consider some fundamental convergence theorems. A very useful
corollary of these theorems is that a function f belongs to L£,(X, A, F') iff it belongs to
M, (X, A, F) (it is p-measurable), and if [ ||f|| du exists. By Proposition 5.21, the space
L, (X, A F) is a subspace of M, (X, A, F), and we already know from Proposition 5.24(4)
that if f € £,(X, A, F) then | f|| € £.(X, A,/ R). The converse is not trivial, but it will be
shown as a corollary of the dominated convergence theorem discussed in Section 5.9.

5.9 Fundamental Convergence Theorems

Besides the fact that the Lebesgue—Bochner integral is defined for a much bigger class of
functions than the regulated functions (or the Riemann-integrable functions), one of its main
advantages is that it leads to simple and flexible criteria to tell whether the limit of a sequence
of integrable functions is integrable. Most of these results allow interchanging a limit and
an integral. We begin with criteria applying to real-valued functions. These results actually
apply to extended functions with values in RU{+o0}, but for simplicity we stick to functions
f: X — R. As in the previous section the results that we state without proof are proven
either in Marle [48] or in Lang [43].

Theorem 5.31. (Monotone Convergence Theorem) Let (f,)n>1 be a sequence of functions
fn € L(X, A R) such that f, < foi1 for alln > 1, and assume that there is some M > 0
such that

‘/fnd,u‘ <M foralln>1.
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Then the sequence (fy)n>1 converges pointwise a.e., and also in the || ||;-norm, to a function
fe L, (X, AR). We also have lim,,, || fu|l; = || f|l; and

ggrgo/fndMZ /fdu-

The same result applies to a nonincreasing sequence (f,) (with f,, > faor1 for allm > 1).

Proof. We follow Lang [43] (Chapter VI, §5, Theorem 5.5). Let

o= Sup/fkdu,
k

which is well defined since
‘/fnd,u‘ <M foralln>1.

For n > m, since f, < f,41 for all n > 1, we have

1o = Full, = / (Fo— fu)dp

— [ fudn~ [ i

Sa—/ﬁwm

which implies that (f,) is a || ||;-Cauchy sequence. By the Fischer-Riesz theorem (Theorem
5.23), the sequence converges to some limit f € £,(X, A, R) in the || ||;-norm. By Proposition
5.26, there is a subsequence (f,,)r>1 of (f,) that converges a.e. to f € L£,(X,A,R), and
since the sequence (f,) is increasing, by a standard e-argument, it also converges a.e. to f.
Since

I fally = AU T < e = Iy

and (f,,) converges to f in the || ||;-norm, we deduce that lim,, , || f.||; = || f|l;- We have
‘/fndu— /fdu‘ = '/(fn - f)du‘
< [1. - flau
=lfa = flly

and since (f,) converges to f in the || ||,-norm, this implies that

lim /fnduz /fdu,
nH—00

as claimed. n
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The following theorem has a different flavor. It asserts the existence of the sup of a
sequence of functions.

Theorem 5.32. (Beppo-Levi) Let (f,) be a sequence of functions f, € L,(X, A R). If
there is a function g € L,(X,A,R) such that g > 0 and |f,| < g for all n > 1, then
sup,,>; fn and inf,>1 f, belong to L£,(X, A,R), and we have

sup [ fodp < [ (sup fn)dp and (inf f,)dp < inf | f.du.
n>1 n>1 n>1

n>1

Proof. We follow Lang [43] (Chapter VI, §5, Corollary 5.6). By Proposition 5.24(5), the
functions

gn = Sup{fh s 7fn}
belong to £,,(X,.A,R) and form an increasing sequence bounded by g. Since

/gndﬂg /gn-i-ldlu and /gnd:uS /gdﬂ?

there is some M > 0 such that | [ g,du| < M for all n > 1. Therefore, by the monotone
convergence theorem (Theorem 5.31), the sequence (g,) converges pointwise a.e. to some
function in £,(X,A,R), but (g,) converges pointwise to sup,-; f,, so the sequence (g,)
converges pointwise a.e. to sup,,>; fn. Since f,, <sup,>; fn, we have

/ fadp < / (ig fa)du,

which implies

sup / fadp < / (ilg) fa)du,

n>1

as claimed. n

Given a sequence (f,),>1 of functions f,,: X — R such that f,, > 0, recall that

liminf f,, = klim H>l£: fn-
00 N>

Theorem 5.33. (Fatou’s Lemma) Let (f,)n>1 be a sequence of functions f, € L,(X, A, R)
such that f, > 0. If liminf|/f,||, = lUminf [ f,dyp exists, then there is a function f €
L, (X, AR) such that liminf f,, converges pointwise to f a.e., and

/fd,ugliminf/fnd,u.

A proof of Theorem 5.33 is given in Lang [43] (Chapter VI, §5).

The next theorem applies to functions with values in any Banach space F' and is the
most important convergence theorem.
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Theorem 5.34. (Lebesque Dominated Convergence Theorem) Let (fn)n>1 be a sequence of
functions f, € L,(X, A, F). If (f,) converges pointwise a.e. to a function f: X — F, and
if there is some function g € L£,(X, A, R) such that g > 0 and || f,|| < g for all n > 1, then
fe Ll X, AF) and (fn)n>1 converges to f in the || ||;-norm. Consequently

lim [ f.dp = /fd,u.
N0
Proof. We follow Marle [48] (Chapter 2, Section 4, Theorem 2.4.7). For each n,p > 1, let

gnp=sup | fm = frll
n<m<n-+p
n<r<n-+p
gn = Sup ||fm_fr|| = SUpP Gnp-
m,r>n p>1

By Proposition 5.24(4,5), for all n,p > 1, we have g, , € L,(X, A, R), gnp < gnp+1, and

0 < gnp < 29.

‘/gn,pdu‘ < 2/gdu,

so by the monotone convergence theorem (Theorem 5.31), the sequence (g, ,)p>1 converges
pointwise a.e. to a limit in £,(X,.A,R). However, by construction this limit is g,. Thus
gn € L,(X, A, R), and we also have

/gndu§2/gdﬂ-

The sequence (g,)n>1 is nonincreasing and since by hypothesis (f,,) converges pointwise a.e.
to f, the sequence (g,) converges pointwise a.e. to 0. By the monotone convergence theorem
(Theorem 5.31),

We get

lim [ g,du=0.

n—oo

Hence, by definition of g, the sequence (f,) is actually an | ||,-Cauchy sequence, and by
Proposition 5.28, we have f € £,(X, A, F) and (f,) converges to f in the || ||;-norm. We

have
- ] -0

S/an—f!ldu
= ”fn - f”l?
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and since (f,) converges to f in the || ||,-norm, this implies that

tim [ fodp = / i
N0
as claimed. O

The first important application of Theorem 5.34 is to provide a characterization of the
integrability of a function f € M, (X, A, F) in terms of [ | f|| du.

Theorem 5.35. A function f: X — F is integrable, that is, f € L,(X, A F), iff f €
M (X, A F) and ||f| € L.(X, A R). More generally, if f € M, (X, A, F) and if there is a
function g € L,(X, A,R) such that g > 0 and || f]| < g, then f € L, (X, A, F).

Proof. By Proposition 5.21, the space £, (X, A, F) is a subspace of M, (X, A, F), and we
already know from Proposition 5.24(4) that if f € £,(X, A, F) then | f|| € £,.(X, A, R).

For the converse, we may assume that f and g are measurable, since a u-measurable
function is equal a.e. to a measurable function. There is a sequence (hy,),>1 of p-step maps
that converges pointwise a.e. to f. For every x € X and every n > 1, let

W () = {hnu) if || ()] < 29(2)
" 0 if ||hn ()] > 2¢9(x).

For every n > 1, the function £/, is a p-step function and ||h, || < 2g € £,(X, A, R). We claim
that for every € X such that (h,(z)) converges to f(z), the sequence (k! (x)) also converges
to f(x). If g(x) = 0, then || f(z)]| = 0, so f(z) = 0, and then A/ (z) = 0 for all n > 1. If
g(x) # 0, since the sequence (h,(x)) converges to f(z) and since || f(z)|| < 2¢g(x), there is
some M > 0 such that [|h,(z)] < 2¢(x) for all n > M, which implies that h! (z) = hy(x).
It follows that the sequence (h),),>1 converges pointwise a.e. to f. By Theorem 5.34, since
||l < 2g, we conclude that f € £,(X, A, F). O

A wuseful corollary of Theorem 5.35 is the following result.
Proposition 5.36. The following facts hold:

(1) If f € LU(X, AF), g € M, (X, A K) with K =R or K = C, and ||g|| is bounded,
then fg e L, (X, A, F).

(2) Let h: E x F'— G be a continuous bilinear map, where E, F,G are Banach spaces. If
fe Ll X, AFE)andge M,(X,A, F) with ||g| bounded, then h(f,g) € L,(X,A,G).

(3) Let f € L,(X,AR), with f >0, and let g € M, (X, A R) with values in an interval
im, M|. Then fg e L,(X,AR), and we have

m/fdug/gfduSM/fdu-
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Another corollary involves series of functions in £,(X, A, F).

Proposition 5.37. Let (f,)n> be a sequence of functions f, € L,(X, A, F). If the series

Il
> 1

converges, then the series
f(x) =) fal@)
n=1

converges a.e., f € L, (X, A F), and
/fdu= Z/fn dp
n=1

The following proposition is needed for the proof of several results stated in Chapter 7.

Proposition 5.38. (Averaging Theorem) Let f € L,(X, A, F') be any function and let S be
any closed subset of F. If for any measurable subset A of finite measure p(A) > 0 we have

1
_— S
u<A>/Afd“€ ’

and if 0 € S or if X is o-finite, then f(x) € S for all almost all x € X.

Proposition 5.38 is proven in Lang [43] (Chapter VI, Theorem 5.15). By applying Propo-
sition 5.38 to the set S = {0}, we obtain the following useful corollary.

Proposition 5.39. For any function f € L, (X, A, F), if

/Afd,uzo

for every measurable subset A of finite measure, then f =0 almost everywhere.

We conclude this section with two results about the continuity and the differentiability
of a function defined by an integral.

Proposition 5.40. Let (X, A, pu) be a measure space, let U be metric space, let F' be a
Banach space (over R or C), and let f: U x X — F be a function.

1. (Continuity of the integral) Assume that f has the following properties:
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(a) For every w € U, the map f,_: X — F given by
fu—(z) = flu,x) ze€lX,

belongs to L, (X, A, F),
(b) For every x € X, the map f_,: U — F given by

fou(u) = fu,z) wel,

18 CONtINUOUS.
(¢) There is some g € L,(X, A, R), g > 0, such that

If(u,2)|| < g(x) forallueU, and all v € X.

Then the map h: U — F given by

) = [ fu-du
1S continuous.

2. (Taking a derivative under the integral sign) Suppose U is an open subset of a Banach
space G, and let L(G; F) be the space of linear continuous maps from G to F with the
operator norm (see Definition A.50). Assume that f has the following properties:

(d) For every w € U, the map f,_: X — F given by
fu—(z) = flu,x) ze€X,

belongs to L,(X, A, F),

(e) For every x € X, the map f_,: U — F is differentiable, and let Df_ , be this
derivative (a map from U to L(G; F)).

(f) For every uw € U, the map from X to L(G; F) given by
v s Df- ()
belongs to L,(X, A, L(G; F)), and there is some g € L,(X, A, R), g > 0, such
IDf-o(u)| < g(z) forallueU, and all x € X.

Then the map h: U — F given by

h(u) Z/fu,— du

is differentiable in U, and its derivative at uw € U s given by

Dh, = /nyx(u) dpu.
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Proposition 5.40 is proven in Marle [48] (Proposition 2.4.10).

More could be said about the applications of the convergence theorems, but we have
everything we need.

Remark: There is another approach to the definition of the integral that applies only to
real and complex-valued functions, presented in various texts such as Rudin [57]. In this
approach, positive functions play a central role. This approach relies on the fact that for
any measurable function f: X — [0, +oc] there is a monotonic sequence (f,,) of positive step
functions that converges pointwise to f; see Rudin [57] (Chapter 1, Theorem 1.17). The
integral of a step function is defined in the usual way. Then given any measurable function
f: X — [0, +0o0], the integral of f is defined as

/fduz sup /sdu,
0<s<f

A main difference with the approach we followed is that this definition of the integral
allows it to take the value +oo. Of course, later on, in order to define what it means for a
measurable complex-valued function f: X — C to be integrable, the condition

where s is a step function.

[ 1k < o

is required. Thus in this approach, the space £,(X, A, C) is defined as the space of measur-
able functions such that the positive function |f| has a finite integral.

In the approach that we followed, due to Bochner and Dunford, the space £,(X, A, C)
is defined in terms of various Cauchy sequences, and the fact that if a function f: X — C
is measurable and if |f| has a finite integral, then f € £,(X, A, C), is a theorem (Theorem
5.35). Ultimately, it is proved that £,(X,A,C) is complete (see Rudin [57] Chapter 3,
Theorem 3.11), and it is observed that as a corollary, from a || ||,-Cauchy sequence, one can
extract a subsequence that converges pointwise a.e. (Rudin [57] Chapter 3, Theorem 3.12).
It is also shown that the p-step functions are dense in £,(X, A, C) (Rudin [57] Chapter 3,
Theorem 3.13).

The circle is closed. What we took as a definition of £,(X, A, C) is obtained as a corol-
laries in the other approach, and the two approaches yield the same notion of integrability
(the same space L,(X, A, C)).

One might argue that the approach relying on the integral of positive functions is simpler,
or at least takes less efforts. For one thing, it does not need the refined notion of u-step maps
and p-measurable maps. However, our feeling is that the approach we followed provides a
better understanding of the structure of £, (X, A, C). Also, it can’t be avoided if one wants
to integrate functions with values in an infinite-dimensional vector space.
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5.10 The Spaces L/(X, A, F) and LJ(X, A, F); p=1,2
Theorem 5.35 suggests the definition of other families of integrable functions.

Definition 5.15. Let (X, A, 1) be a measure space and let (F,3) be a measurable space,
with F' a Banach space and B its Borel g-algebra. For any p > 1, the set of functions
LP(X, A, F) is the set of functions f € M, (X, A, F) such that | f||” € L£,(X, A R), or
equivalently

Sl dn < o0,

By Theorem 5.35, we have L(X, A, F) = L,(X, A, F), and we know that £}(X, A, F)
is a vector space. Although it is possible to develop a theory of LP spaces for any p > 1,
for our applications to harmonic analysis we only need the cases p = 1,2. The case where
p = oo arises when we consider duality, but we postpone the definition of £ (X, A F).

The space EZ(X , A, F') is particularly interesting because if F' is a Hilbert space, then
it can be given a Hilbert space structure which uses the inner product on F (not quite,
because the Hermitian form (—,—), that we obtain is not positive definite, which means
that (f, f), = 0 does necessarily imply that f = 0).

Let us start with the simple case where FF = C. If f: X — C is a complex-valued
function, then by |f|?> we mean the function defined such that

|fI2(x) = f(z)f(x) forall z € X.
For any two functions f,g: X — C, by (f, g) we mean the function defined such that

(f,9)(x) = f(x)g(z) forallze X.

For the more general case where F' is a Hilbert space with Hermitian inner product
(—, —)p, for any two functions f,g: X — F, then by (f, g) we mean the function defined
such that

(f,9)(x) = (f(z),9(x))p foralzeX.

In particular, since (f, f) is the function given by (f, f)(z) = (f(z), g(z))r and || f||* is the
function given by

LI () = [[f(@))1* = (f(x), f(2))F,

we have

2
A" =(F )
To simplify notation we will drop the subscript F’ when referring to the inner product on F'.

From now on, when dealing with Ei(X, A, F), we assume that F' is a Hilbert space (over
C). If the reader feels more comfortable, he/she may assume that F' = C, but significant
simplifications do not arise.



144 CHAPTER 5. INTEGRATION

Proposition 5.41. The set Ez(X, A, F) is a vector space. For any two maps f,g €
L2(X, A, F), we have (f,g) € L,(X, A,C), and the map

(f,9) — /(f, g)dp

is a Hermitian positive map (not necessarily positive definite).

Proof. 1t is easy to see that (f, g) is a limit of step maps a.e., so (f,g) € M, (X, A,C), and
by the Cauchy-Schwarz inequality, we have the standard inequality

2/(f. ) < /1P + Ngll”

with ||f[|* + [lgI* € £L(X, AR) since f,g € L2(X, A, F). By Theorem 5.35, we have
(f,9) € L,(X, A C),s0 [({f, g)duis well defined. If f € L2(X, A, F) and g € L2(X, A, F),
then since

1F+ gll* < 11" + 21 f, )] + gl
as all the functions on the right-hand side are in E}L(X, A,R), we have f+ g € Ei(X, A, F).
For any A € C, we have || f||* € LL(X, A,R), so Af € L2(X, A, F). Thus, £2(X, A, F)

is a vector space. Using the linearity of the integral, it is easy to check that the map

(f.9) / (f, 9)du

is a Hermitian positive map. ]

Definition 5.16. For any two functions f,g € Ei(X, A, F'), the Hermitian map (f, g), is
defined by

(fs9)u= /<f, g)dp.

The L*-semi-norm || ]|, is given by

11 =270 = ([ 7 ) " ([ 1017 an) "

It is a standard result of linear algebra that the Cauchy—Schwarz inequality holds:
[(Fs @bl < [1Fll2 Mgl -

As a consequence || ||, is a semi-norm.

Proposition 5.42. For any f € L2,(X, A, F), we have ||f|l, =0 iff f =0 a.e.

Proof. If f =0 a.c., then (f, f) = 0 a.e., so || f|l5 = [(f, f)du = 0. Conversely, if || f]|, = 0,
then this means that [(f, f)du = 0, but (f, f) € L},(X, A, R) is a positive function, so we
know from Proposition 5.27 that (f, f) = 0 a.e., that is, f =0 a.e. ]
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If X has finite measure, then £7(X, A, F) is contained in £, (X, A, F).

Proposition 5.43. If X has finite measure, then for any f € L2,(X, A, F), we have || f||, <
[ flls 11xly, and £2(X, A, F) is contained in L(X, A, F).

Proof. The function ||f|| (namely = +— | f(x)]) is complex-valued so we can apply the
Cauchy—Schwarz inequality to || f|| and to the constant function 1x equal to 1 on X. To be
more specific, since

(LA ) = 1A T = NI

we have
<||f||,1x>u=/<||f||,1x>du=/||f||du= 11y

and

|H|fHH§=(HfH,Hf!|>u=/<HfH,Hf!|>du=/I|f!\2du: 1£15

and so the Cauchy-Schwarz inequality (for functions in £2(X, A, C))

AL L < A1l 1x ]l
implies that || f||, < |Ifll, [[1x]l,- Obviously, this inequality shows that £(X, A, F) is con-
tained in £),(X, A, F). O
It should be noted that if X has finite measure then the inclusion can be strict, and if X
has infinite measure, then in general there are no inclusion properties.

Example 5.4.

1. If X =(0,1), with the Lebesgue measure, then \/LE € L1((0,1), uz) but
\/%E ¢ L£2((0,1), ur); see Figure 5.18.

} fx) = 1VX f(x)=1/x

area=2 unbounded area

Figure 5.18: The first figure shows that \/%E € L£'((0,1), ) since the area between f and

the z-axis has finite value, while the second figure shows that \/LE ¢ L%*((0,1), puz). The third
figure shows a direct comparison between the areas under the respective graphs.
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2. If X = (1,00) with the Lebesgue measure, then = € £2((1,00), p11,) but
L¢ £1((1,00), u1); see Figure 5.19.

T

f(x) = 1/x2

area=1 unbounded area

Figure 5.19: The first figure shows that < € £?((1,00), uz,) since the area between f? and
the 2-axis has finite value, while the second figure shows that < ¢ £((1,00), z1z). The third
figure shows a direct comparison between the areas under the respective graphs.

3. If X = (0, 00) with the Lebesgue measure, then = +1)\f € L((0,00), pz,) but

(x+1 §é L£2((0,00), uz.); see Figure 5.20.

0 = /K o) = 1/0c+1Px

unbounded area

L

0

Figure 5.20: The first figure shows that +1) 7 € L£1((0,00), pr)s since the area between f
and the z-axis has finite value, while the second figure shows that - +1) GIOve ¢ L%((0,00), piz)-
The third figure shows a direct comparison between the areas under the respective graphs.

One of the main properties of £ (X, A, F) is that it is complete for the semi-norm || |l,.
By taking the quotient of EZ(X , A, F') by the space of function equal to 0 a.e., we obtain a
Hilbert space.

Theorem 5.44. Let (f,)n>1 be an || ||,-Cauchy sequence of functions f, € Ei(X, A, F).
Then there is a function f € Ei(X, A, F) with the following properties:
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1. The sequence (fn)n>1 converges to f in the || ||,-semi-norm. Thus L7,(X, A, F) is com-
plete.

There is a subsequence (fy, )k>1 of (fu)n>1 with the following properties:
2. The subsequence (fp, )k>1 converges pointwise a.e. to f.

3. For every € > 0, there is a subset Z such that u(Z) < € and the subsequence (fy, )r>1
converges uniformly to f on X — Z.

A proof of Theorem 5.44 is given in Lang [43] (Chapter VII, §1).
In view of Proposition 5.42, we make the following definition.
Definition 5.17. Let L7 (X, A, F)) be the quotient of the vector space L7,(X, A, F) by the

subspace of functions equal to 0 a.e. (which is the set of functions f such that ||f|, = 0).
The norm induced by the semi-norm || ||, on L2(X, A, F) is called the L*-norm.

Obviously the positive Hermitian form (f, g),, induces a positive definite Hermitian form
on Li(X ,A, ). Theorem 5.44 immediately implies the following result.

Theorem 5.45. (Fischer-Riesz) The space L2 (X, A, F) is a Hilbert space under the positive
definite Hermitian form induced by (—,—),.

Definition 5.18. The norm || ||, associated with the inner product (—, —), on L2 (X, A, F)
is called the L?-norm.

Example 5.5. In the special case where X = N (or X = Z), A = 2%, p is the counting
measure, and F' = C, as in Example 5.2, we see that for p = 1,2, we have

L2 (X, A, C) = {(zn)nen | 7n € C, Y _ |2a|’ < 00}

neN
It is customary to denote this space by ?(N). We define ¢(Z) similarly by replacing N by
Z.

We will show shortly that the space of u-step functions is dense in Li(X , A, F) (for the
L2-norm). First here is a corollary of Theorem 5.45.

Proposition 5.46. If (f,)n>1 is a || ||,-Cauchy sequence of functions f, € L2(X, A, F), and
if (fn)n>1 converges pointwise a.e. to a function f: X — F, then f € Eg(X, A, F), and
(fn)n>1 converges to f in the || ||,-semi-norm.

The Lebesgue dominated convergence theorem also holds for ﬁi (X, A F).
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Theorem 5.47. (Lebesque Dominated Convergence Theorem for L) Let (fn)n>1 be a
sequence of functions f, € EZ(X, A, F). If (f.) converges pointwise a.e. to a function
f: X = F, and if there is some function g € L3(X, A,R) such that g > 0 and || f,|| < g for
alln > 1, then f € L2(X, A, F) and (fn)n>1 converges to f in the || ||,-norm. Consequently

lim / Fodp = / fdp.

A proof of Theorem 5.47 is given in Lang [43] (Chapter VII, §1).
The following version of Theorem 5.35 also holds for £3(X, A, F').

Theorem 5.48. A function f: X — F is L?-integrable, that is, f € Ei(X, A F), iff f €
Mu(X, A F) and || f||, € L5(X, A R).

As a corollary of Theorem 5.47 we can show that the u-step functions are dense in

L2(X, A, F).

Proposition 5.49. The subspace Step, (X, A, F') is dense in EZ(X, A, F) with respect to
the L*-semi-norm.

Proof. Let f € L2(X, A, F). Since f is y-measurable, there is a sequence (fy)n>1 of p-step
functions f,, that converges pointwise a.e. to f. For every n > 1 and every z € X, define g,
by
() = fu(z) ([ fu(@)]] < 21| f ()]
0 if || fu(2) |l > 2|1 f ()]

We may assume that f is measurable since it differs from a measurable function on a set of
measure zero. Then the functions g, are u-step functions, they satisfy the inequality || g,|| <
2| fl with 2] f|| € £2(X, A, R), and the sequence (g,) converges a.e. to f. By Theorem
5.47, the sequence (g,) converges to f in the || [[,-norm, which proves that Step (X, A, F)
is dense in L7 (X, A, F') with respect to the L*-semi-norm O

We now would like to understand the duals of L, (X, A, F) and L7 (X, A, F), that is, the
spaces of continuous linear forms on L,(X, A, F) and L7,(X, A, F) (with values in C). In the
case of L2 (X, A, F), it is a classical theorem (the Riesz respresentation theorem) that the
dual of a Hilbert space is isomorphic to itself, so the dual of LZ(X , A, I) is isomorphic to
LZ(X, A, F). In the case of LL(X, A, F), it turns out that its dual is isomorphic to a space
denoted L°(X, A, F). Here we assumed that F' is a Hilbert space.

5.11 The Spaces L7(X, A, F) and L°(X, A, F)

To define L£7°(X, A, F), we only need the fact that F' is a Banach space. The space
L2(X, A, F) consists of all functions f: X — F that are equal to a bounded y-measurable
function a.e. We can define a semi-norm on £3°(X, A, F') as follows.
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Definition 5.19. For any function f € MM(X, A, F), define the essential sup or semi-norm
Neo(f) of f by

Noo(f) =infla € Ry | p({z € X | [|f(z)|| = a}) = 0};

see Figure 5.21. The space L77(X, A, F) is the set of functions f € M, (X, A, F) such that
Noo(f) < +o0.

essential sup

Figure 5.21: Let X = F = R with absolute value as norm and A as the Borel o-algebra.
The graph of f € M, (X, A, F) is in red and has essential sup Ny (f) = 2. Note this is not
the same as the sup norm for f € (F*),, which in this particular case is || f||, = 3.

Remark: We decided to use the notation N (f) for the essential sup semi-norm to avoid
the confusion with the sup norm, ||f|| ., since these norms differ in general. In the case of
the semi-norms || f||; and || f||, there is little risk of confusion. A number of authors prefer
the notation N,(f), but the notation [ ||, seems more prevalent (if 1 < p < 00). Another
way to avoid confusion is to use the notation || ||;, (even if p = 00).

The definition of N (f) makes is clear that N (f) = 0iff f = 0 a.e. Observe that N (f)
is the greastest lower bound of the numbers o > 0 such that a py-measurable function f has
the property that || f(x)|| > « on a set of measure zero, in other words, such a y-measurable
function is bounded a.e.

The space Eff(X A, F) is a vector space. We also have the following result showing that
EEO(X , A, F') is complete in the semi-norm N, but unless X has finite measure, the p-step
maps are not dense in L7 (X, A, F).

Theorem 5.50. The following properties hold.

1. The space LT(X, A, F) is complete in the semi-norm Nu. Furthermore, if (fn)n>1
is an Noo-Cauchy sequence, then there is a set Z of measure zero such that (fn)n>1
converges uniformly to f on X — Z.
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2. If F is finite-dimensional, then the step maps (not the u-step maps) are dense in
LX(X, A F).

3. If X has finite measure, then for every € > 0 and every f € L3°(X, A, F), there is a
p-step map s and a subset Z with u(Z) < € such that

lf—sll<e on X—2Z.

Theorem 5.50 is proven in Lang [43] (Chapter VII, Theorem 2.1).

Note that the constant with value 1 belongs to E,‘jO(X , A, C), so if X has infinite measure,
there is no way that it is a uniform limit of p-step maps, since a p-step map vanishes outside
of a set of finite measure.

Remark: If X has finite measure, then we have the inclusion £77(X, A, F) C L2(X, A, F).
In fact, L7(X, A, F) C LE(X, A F) C LI(X, A F) for all p,qg > 1 with p > ¢; see Marle
[48] (Chapter 4, Proposition 4.5.7).

Definition 5.20. Let L7(X, A, F) be the quotient of the vector space LY (X, A, F) by the
subspace of functions equal to 0 a.e. (which is the set of functions f such that No(f) =0).
The norm induced by the semi-norm Ny, on L°(X, A, F') is called the L*>-norm.

It should be noted that both the monotone convergence theorem and the dominated
convergence theorem fail for £L3°(X, A, F). Convergence in the N.-semi-norm fails; see
Marle [48] (Chapter 4, Section 2).

We now consider the duality between the spaces L), (X, A, F) and L;?(X, A, F). The field
C is a Hilbert space, but for the general case we need to assume that F'is a Hilbert space. The
key point is that by Proposition 5.36(2), for any f € LL(X, A, F) and any g € L*(X, A, F),
then (f,g) € L,(X, A,C).

Definition 5.21. For any functions f € L},(X, A, F) and g € LY (X, A, F), define [f, g, by

fodly = / ().

We obtain a map

[—, —]u: Li(X, A F) x LY(X, A F) = C
which is a sesquilinear pairing.
For simplicity, let us consider the special case where F' = C. In this case, we can define a

bilinear (as opposed to sesquilinear) pairing [—, —],: L}L(X, A,C) x LY(X, A, C) — C given
by

[f, 9l Z/fgdu-
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Observe that we intentionally used fg instead of fg, because we simply want a bilinear
pairing.

Whenever we have a bilinear pairing ¢: E x F' — C, recall that we define the linear maps
lo: E— F* and r,: I' — E* such that, for every u € F,

lo(u)(y) = p(u,y) forallye F,

and for every v € F,
ro(v)(z) = p(z,v) forall z € E.

Definition 5.22. A bilinear pairing ¢ is nondegenerate if for every u € E, if ¢(u,v) = 0 for
all v € F, then v = 0, and for every v € F, if p(u,v) =0 for all uw € E, then v = 0.

Then if ¢ is nondegenerate, then the maps [, and r, are injective. They are not surjective
in general.

If E is a normed vector space, then its dual E’ is the space of all continuous linear maps
from E to C. We have E' C E*, and the inclusion is strict if F is infinite-dimensional.

The following result holds. For simplicity of notation, we drop ¢ when writing [, and 7.

Theorem 5.51. Assume (X, A, i) is a measure space and that p is o-finite. Then the
bilinear pairing

[—, =] L;(X, A C)xLY(X,AC)—C

1s nondegenerate. It satisfies the inequality

f5 glul < M Fglly < W1 N9l -

The map | is a norm-preserving injective linear map between LL(X, A,C) and the dual
Lo (X, A, C) of LP(X, A, C), and the map r is a norm-preserving injective linear map be-
tween LY (X, A, C) and the dual L, (X, A,C) of L,(X, A,C). Furthermore, the map

r: LY(X, A, C) = L (X, A,C) is an isomorphism.

A proof of Theorem 5.51 is given in Lang [43] (Chapter VII, §2). Theorem 5.51 can be
generalized to a Hilbert space F', one just has to exercise caution in defining [ and r to deal
with sequilinearity.

The map I: LL(X A, C) — L2(X, A, C) is not surjective, and understanding which
linear forms in L*(X,.A,C)’ can be represented by functions in L) (X,.A,C) is a natural
question. A partial answer to this question is the Radon—Nikodym theorem, but will this
would lead us too far. The interested reader is referred to Lang [43] or Rudin [57].
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5.12 Products of Measure Spaces and Fubini’s Theo-

reim
The purpose of this section is to define, given two measure spaces (X, A, u) and (Y, B, v), the
notion of product measure space and product measure. Then we will state Fubini’s theorem

(also known as the theorem of Lebesque—Fubini), which allows us to compute the integral on
a product space as two successive integrals. The technical details are surprisingly involved.

We begin by recalling what we did in Example 4.1. We defined the set R of rectangles
in X x Y as follows:
R={AxBeXxY|AecA Bec B}

The set R is a semi-algebra, and it can be shown that the set B(R) of finite unions of
pairwise disjoint sets in R is the smallest algebra containing the semi-algebra R.

Definition 5.23. Let A ® B be the smallest o-algebra generated by R (and thus by B(R));
see Proposition 4.3.4

The hard part is now to define a product measure X\ on A ® B which satisfies the natural
identity
AMA x B) = u(A)v(B)

for all rectangles A x B. Here as in Section 4.1 we use extended multiplication on R, where
a-(4+00) = (400) - a =400

if 0 < a < +o00, and
0-(+00) = (+00)-0=0.

We need a few definitions.

Definition 5.24. Given any subset £ C X x Y, for any x € X, we define the section of E
(determined by x) as the subset E, given by

E,={yeY|(zy e E}CY.

Similarly, for any y € Y, we define the section of E (determined by y) as the subset E, given
by
E, = {z€X|(r,y) € E} C X;

see Figure 5.22.

Proposition 5.52. The sections of any subset E € A® B are measurable.

4The meaning of the tensor sign ® in the notation A ® B is a completely different from its meaning in a
tensor product of vector spaces. Hopefully, the two notions will never appear together!
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Y

Figure 5.22: Let X =Y = R. The top figure illustrates an z-section of the peach set F,
while the bottom figure illustrates a y-section.

Proof idea. Let £ be the family of subsets of X x Y defined as follows:
E={FCXxY|F,eB forallze€ X, and F,€ A forallyeY}.

These are the subsets of X x Y whose sections are measurable. Then prove that £ is a
o-algebra containing R, which implies that £ = A ® B. ]

Definition 5.25. Given any function f: X XY — F (where F is any set), for any = € X,
we define the section of f (determined by x) as the function f,: Y — F given by

fe(y) = f(z,y) forally eY.

Similarly, for any y € Y, we define the section of f (determined by y) as the function
fy: X — F given by
fy(x) = f(z,y) forallze X.

See Figure 5.23.

Proposition 5.53. If f: X x Y — R is a measurable function (on (X x Y, A® B), then
every section of f is measurable.
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Figure 5.23: Let X =Y = F = R. The graph of f is the pink surface. The left figure
illustrates a section of f determined by x, while the right figure illustrates a section of f
determined by y

Proof. By Proposition 4.12, it suffices to show that the inverse image of every open subset
of the form (—oo, @) is measurable.

For any = € X, for any a € R, we have

weY | fuly) <a}={yeY| f(r,y) <a}
={(z,y) € X xY | f(z,y) < a},,

and this last subset is measurable by Proposition 5.52. The proof for f, is similar. [

Definition 5.26. Given an algebra 2 of sets, a measure on 2 satisfies the same axioms as
a measure on a o-algebra; see Definition 4.9.

The next two results take a lot more work.

Proposition 5.54. Let (X, A, ) and (Y,B,v) be two measure spaces, and assume that
and v are o-finite. Then the map A\: R — [0, +00] given by

A(A x B) = u(A)w(B)

has a unique extension to a o-finite measure on the algebra B(R).

A proof of Proposition 5.54 can be found in course notes given by Philippe G. Ciarlet in
1970-1971 at ENPC (Paris, France). Interestingly, the proof uses the monotone convergence
theorem. A related treatment is given in Halmos [36] (Chapter VII); see also Lang [43]
(Chapter VI, §8) and Marle [48] (Chapter 5, Section 2).
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Theorem 5.55. Let (X, A, p) and (Y, B,v) be two measure spaces, and assume that p and
v are o-finite. Then the map A\: R — [0, +00] given by

A(A x B) = u(A)(B)

has a unique extension to a measure A\ = u @ v is on the o-algebra A @ B. The measure
1R v is o-finite.

The following properties hold for any measurable subset E € A x B:
(1) We have

(n @ v)(E) = inf {Z u(Aiv(Bi) | E C

1Cs

(A x B;), A; € A, BiEB}' (*)

See Figure 5.24.

(2) The map vg from X to R, given by x — v(E,) is measurable (w.r.t. A), and the map
pe fromY to Ry given by y — p(Ey,) is measurable (w.r.t. B). One of these maps is
integrable iff the other is integrable.

(3) We have

Jvedu= [updv if both vg and pp are integrable

()

+00 otherwise.

(@ v)(E) = {

See Figure 5.25.

Bi

Figure 5.24: A schematic illustration of Equation (x) in Theorem 5.55, where the measure
of the peach set E is calculated by the “area” of the rectangles.
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Figure 5.25: Two ways of calculating (1 ® v)(E). The top row of figures illustrates (1 ®
v)(E) = [wvpdu, where the vertical slices represent v(E,). The bottom row of figures
illustrates (4 ® v)(E) = [ up dv, where the horizontal slices represent u(E,).

A proof of Theorem 5.55 can be found in course notes given by Philippe G. Ciarlet
in 1970-1971 at ENPC (Paris, France). Again, the proof uses the monotone convergence
theorem. A related treatment is given in Halmos [36] (Chapter VII); see also Lang [43]
(Chapter VI, §8) and Marle [48] (Chapter 5, Section 2, Proposition 5.2.3).

If (X, A, pn) and (Y,B,v) are two measure spaces with p and v both o-finite, then for
any Banach space F', we have the space of integrable functions £z, (X x Y, A® B, F'). The
problem is to find a way to compute an integral [[ fd(pu® v), also written [[ fdu® dv, as
two successive integrals. The answer is given by a theorem known as Fubini’s theorem. The
first version of this theorem was proved by Lebesgue and then was generalized by Fubini.
For this reason some authors refer to this theorem as the Lebesgue—Fubini theorem, but it
seems more common to call it simply Fubini’s theorem.

Theorem 5.56. (Fubini’s Theorem, Part 1) Let (X, A,u) and (Y,B,v) be two measure
spaces with p and v both o-finite. Consider a function f: X XY — F, where F' is a Banach
space. If f € L,0,(X xY, A® B, F) then:

1. The section f,: Y — I is v-integrable for almost all x € X, the section f,: X — F is
w-integrable for almost all y € Y.

2. The map from X to F defined a.e. by

a:r—>/fxdy
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15 p-integrable, and the map from'Y to F defined a.e. by

yﬁ/ﬁw

1s v-integrable.

/ fdu®du:/X(/fodu>du:/y(/xfydu)dy;

Then

see Figure 5.26.

Figure 5.26: Two ways of calculating [[ fdu ® dv when F = R. The top row of figures
illustrates [[ fdp @ dv = [, ([, fodv) dp as the “volume” under the graph calculated by
the stacked “areas” of [, f, dv “sheets”. The bottom row of figures illustrates [[ fdu ®
dv = fY ( | < Jy d,u) dv as the “volume” under the graph calculated by the stacked “areas” of
[ [y dp “sheets”.

Theorem 5.56 is proved in Marle [48] (Chapter 5, Section 2, Theorem 5.2.10), and Lang
[43] (Chapter VI, §8, Theorem 8.4).

Theorem 5.56 assumes that f is integrable. It is possible to weaken this assumption at
the price of strengthening the other conditions. However, this is worth it in practice.

Theorem 5.57. (Fubini’s Theorem, Part 2) Let (X, A,pn) and (Y,B,v) be two measure
spaces with p and v both o-finite. Consider a function f: X XY — F, where F' is a Banach
space. If f € Mg, (X xY, A® B, F) and if the following conditions hold:
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1. The section f,: Y — F is v-integrable for almost all x € X, the section f,: X — F is
pu-integrable for almost all y € Y.
2. The map from X to R defined a.e. by

IH/IIJ%II dv

15 p-integrable, and the map from'Y to R defined a.e. by

w/nfyu dy

1s v-integrable.

Then f € Lug,(X XY, A® B, F) and

//fdu@du:/X(Lfmdu)du:/y(/xfydu>dy

Theorem 5.57 is proved in Lang [43] (Chapter VI, §8, Theorem 8.7); see also Marle [48]
(Chapter 5, Section 2).

In practice, it is customary to use a less formal notation to express Fubini’s theorem,
namely

st sain= [ ([ o) = (] s

and the measure du(z) ® dv(y) is often denoted simply by du(z)dv(y).

As an application of the product measure, we define the Lebesgue measure in R".

5.13 The Lebesgue Measure in R"

As an application of Theorem 5.55, since the Lebesgue measure pz, on R is o-finite, we see
that the product measure jiz, ,, of n copies of jir, is a measure on R". The completed o-algebra
(see Proposition 4.8) obtained from the product algebra L(R) ® --- ® L(R) is called the o-

algebra of Lebesgue measurable subsets of R™; it is denoted L£(R™). To simplify notation, we
may write j,, instead of pir,,, and £'(p,) instead of £, (R", L(R"),C).

A crucial property of the Lebesgue integral is that the space K (R") of smooth functions
with compact support is dense in £'(u,). To prove this, one needs to show the existence
of smooth “bump functions” in order to approximate the characteristic function x4 of a
rectangle A = [ay,b1] X - -+ X [ap, b,]. The following results are shown in Lang [43] (Chapter
VI, Section 9).
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Proposition 5.58. For any function f € LY (), if

[ Fodun=0 for atl € kxR,

then f =0 a.e.

Proposition 5.59. For every rectangle A = [ay,b1] X - -+ X [an, by], for every € > 0, there
exits some functions ¢, € KF(R"™) such that

(1) 0<p<xa<ty <1
(2) [(— @)dp, <e.

Furthermore, 1 vanishes outside the rectangle [a; —€,by + €| X -+ - X [a, —€,b, + €], and ¢ = 1
on the rectangle [ay + €,by — €] X -+ X [a, + €, b, — €.

Using the above results, we obtain the following theorem.
Theorem 5.60. The space KX (R™) is dense in L (u,) (for the L*-semi-norm).
Theorem 5.60 is proven in Lang [43] (Chapter VI, Section 9).
The Lebesgue measure p,, on R™ has the same regularity properties as the Lebesgue

measure on R, and we have the following version of Proposition 4.14.

Proposition 5.61. For every Lebesque-measurable set A € L(R™), the following facts hold:

(a)
tn(A) = inf{u,(0) | A C O, O is open}
tn(A) = sup{u,(K) | K C A, K is compact}.

(b) For every € > 0, if u,(A) has finite measure then there is some open subset O such
that A C O and 1, (O — A) < ¢, and there is some compact subset F' such that FF C A
and p,(A—F) <.

Proposition 5.61 is proven in Lang [43] (Chapter VI, Section 9).

The Lebesgue measure on R" is translation-invariant, which means that u,(x + A) =
tn(A) for all z € R™ and all A € L(R™), where 2+ A = {x+a | a € A}. This will be proved
in Section 8.9.

We conclude this section with the change of variables formula. Without this formula, it
would be basically impossible to compute the integrals of familiar functions. The proof is
not really difficult but quite long and tedious. The interested reader is referred to Lang [43]
(Chapter XXI, Section 2, Theorem 2.6).

Given an injective C! function f: U — R"™ where U is some open subset of R", which
means that the derivative df : U — L(R™,R") is defined and continuous on U, we denote the
Jacobian matrix of df, at € U (in the canonical basis of R") by J;(z) (where L(R",R")
denotes the vector space of linear maps from R™ to itself).
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Theorem 5.62. (Change of variables formula, I) Let U be an open subset of R, and let
f:U — R"™ be an injective C* function. For every function g € LY(f(U), u,), we have
(g0 f)ldet(Jp)| € LU, pn), and

[ s@diala) = [ (g0 i)l den(Ty()] dinf)
fU) U

In some cases, for example using polar coordinates, we deal with a C! function f: U — R"
which is only injective on the interior of a measurable subset A of U whose boundary has
measure zero. In this case, the following theorem can be used. For a proof, see Lang [43]
(Chapter XXI, Section 2, Corollary 2.67).

Theorem 5.63. (Change of variables formula, II) Let U be an open subset of R, and let
f: U — R™ be an injective C* function. Let A be a measurable subset of U whose boundary
has measure zero, and such that f is injective on the interior of A. For every function

g € LYf(A), un), we have (go f)|det(Js)| € LY (A, ), and

[ s@iduata) = [ (g0 @) dety0)| dpa(a).
f(4) A

5.14 Problems

Problem 5.1. Prove Proposition 5.2.
Problem 5.2. Prove Proposition 5.3.

Problem 5.3. Prove Proposition 5.5. Hint: Use Proposition 5.4. Alternatively, see Marle
[48] (Corollary 2.1.11).

Problem 5.4. Prove Theorem 5.6. Hint: See Lang [43] (Chapter VI, Section 1, Property
MT7).

Problem 5.5. Prove Proposition 5.7. Hint: See Marle [48] (Corollary 2.1.14).
Problem 5.6. Prove Proposition 5.11. Hint: See Marle [48] (Proposition 2.2.3).

Problem 5.7. Prove Proposition 5.13. Hint: See Lang [43] (Chapter VI, Section 1, Property
M11).

Problem 5.8. Prove Properties (1), (2), (4), (5), and (7) of Proposition 5.16.

Problem 5.9. Prove Proposition 5.26. Hint: Use Proposition 5.25 to adjust the proof of
Proposition 5.18. Alternatively, see [43] (Chapter VI, Theorem 5.2).

Problem 5.10. Prove Fatou’s Lemma, Theorem 5.33. Hint: See Lang [43] (Chapter VI,
§5).
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Problem 5.11. Prove Propositions 5.36 and 5.37.

Problem 5.12. Advanced Exercise: Prove Proposition 5.40. Hint: See Marle [48] (Propo-
sition 2.4.10).

Problem 5.13. Advanced Exercise: Prove Theorem 5.44. Hint: See Lang [43] (Chapter
VII, §1).

Problem 5.14. Prove Proposition 5.46.

Problem 5.15. Prove the Lebesgue Dominated Convergence Theorem of Ei, Theorem 5.47.
Hint: See Lang [43] (Chapter VII, §1).

Problem 5.16. Advanced Exercise: Prove Theorem 5.50. Hint: See Lang [43] (Chapter
VII, Theorem 2.1).

Problem 5.17. Advanced Exercise: Prove Theorem 5.51. Hint: See Lang [43] (Chapter
VL, §2).

Problem 5.18. Complete the proof of Proposition 5.52.

Problem 5.19. Advanced Exercise: Prove Fubini’s Theorem, Part 1, Theorem 5.56. Hint:
See Marle [48] (Chapter 5, Section 2, Theorem 5.2.10) or Lang [43] (Chapter VI, §8, Theorem
8.4).

Problem 5.20. Advanced Exercise: Prove Fubini’s Theorem, Part 2, Theorem 5.57. Hint:
See Lang [43] (Chapter VI, §8, Theorem 8.7) or Marle [48] (Chapter 5, Section 2).

Problem 5.21. Prove Proposition 5.61. Hint: See Lang [43] (Chapter VI, Section 9).

Problem 5.22. Prove Proposition 5.62. Hint: See Lang [43] (Chapter XXI, Section 2,
Theorem 2.6).
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Chapter 6

The Fourier Transform and the
Fourier Cotransform on T", Z", R"

Historically, trigonometric series were first used by D’Alembert (1747) to solve the equation
of a vibrating string, elaborated by Euler a year later, and then solved in a different way
essentially using Fourier series by D. Bernoulli (1753). However it was Fourier who introduced
and developed Fourier series in order to solve the heat equation, in a sequence of works on
heat diffusion, starting in 1807, and culminating with his famous book, Théorie analytique
de la chaleur, published in 1822.

Originally, the theory of Fourier series is meant to deal with T = U(1) = {2 € C| |2| =
1} 2 R/(2nZ), say functions with period 27. Remarkably (but we must apologize for the
oversimplification), the theory of Fourier series is captured by the following two equations:

fO) =) eme™, (1)

(2)

Equation (1) involves a series, and Equation (2) involves an integral. There are two ways
of interpreting these equations.

—T

The first way consists of starting with a convergent series as given by the right-hand side
of (1) (of course ¢, € C), and to ask what kind of function is obtained. A second question is
the following: are the coefficients in (1) computable in terms of the formulae given by (2)?

Such questions were considered by Riemann and then Cantor and Lebesgue. Since they
deal with the notion of integral, it is not surprising that they motivated the invention of the
Riemann integral and then the Lebesgue integral.

The second way is to start with a periodic function f, apply Equation (2) to obtain the ¢,,,
called Fourier coefficients, and then to consider Equation (1). Does the series Y, ¢,,e™
(called Fourier series) converge at all? Does it converge to f?

163
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Observe that the expression f(0) = >, c,e™ may be interpreted as a countably
infinite superposition of elementary periodic functions, intuitively representing simple wave
functions, the functions 6 — ¢™?. We can think of m as the frequency of this wave function.

The above questions were first considered by Fourier. Fourier boldly claimed that every
function can be represented by a Fourier series. Of course this is false, and for several
reasons. First, one needs to define what is an integrable function, and there are plenty of
nonintegrable functions. Second, it depends on the kind of convergence that are we dealing
with. The nth partial sum S, s of the Fourier series ) cme™ for f (where the ¢, are
given by Equation (2)) is given by

mEZ

Smf(@) = Z Ckeike.

k=—n

The most common type of convergence is pointwise convergence, which means that for every
6, we have lim,,, o | f(6) — S, £(0)] = 0. Even if f is a continuous function, there are examples
of Fourier series that do not converge pointwise for # = 0 (du Bois-Reymond). There is even
a function in L'(T) whose Fourier series diverges for all § (Kolmogoroff). The convergence
of Fourier series is a subtle matter.

But Fourier was almost right. If we consider a function f in L?(T), a famous and deep
theorem of Carleson states that its Fourier series converges to f pointwise almost everywhere.
Other ways to ensure the convergence of the Fourier series of a function is to either restrict the
class of functions being considered (Dirichlet, Jordan), or to use different kinds of summation
(Abel, Cesaro). Abel summation leads to the Poisson kernel, and Cesaro summation leads
to the Féjer kernel; see Example 8.10, Section 6.1, and Stein and Shakarchi [67] (Chapter 2).

In Section 6.1, as a motivation for Fourier analysis on T, we solve the wave equation for
a vibrating string. We are led immediately to the problem of Fourier inversion.

Given a periodic function f, the problem of determining when f can be reconstructed as
the Fourier series (Equation (1)) given by its Fourier coefficients ¢, (Equation (2)) is called
the problem of Fourier inversion. To discuss this problem, it is useful to adopt a more
general point of view of the correspondence between functions and Fourier coefficients, and
Fourier coefficients and Fourier series.

Given a function f € L!Y(T), Equation (2) yields the Z-indexed sequence (c,)mez of

Fourier coefficients of f, with
T g d0
= 4 —imf 7
on = [ 1@

which we call the Fourier transform of f and denote by f, or F (f). We can view the Fourier
transform F(f) of f as a function F(f): Z — C with domain Z.

On the other hand, given a Z-indexed sequence ¢ = (¢, )mez of complex numbers ¢,,, we
can define the Fourier series F(c) associated with ¢, or Fourier cotransform of ¢, given by

F)®) = cme™.

meZ
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This time F(c) is a function F(c): T — C with domain T. Of course there is an issue of
convergence. If ¢ = (c,,) € (*(Z), then the series F(c) converges uniformly. In general, if
c = (cn) & €Y7Z), then F(c)() may be undefined. If (F o F)(f))(0) is defined, Fourier
inversion can be stated as the equation

FO) = (F o F)())(O).
In general, even if f € L!(T), the above equation fails.

There are special cases for which Fourier inversion holds. One case is if F(f) € ¢}(Z),
which means that the sum Y . |cy| is finite. Another case is if f € L*(T). In fact,

Plancherel’s theorem asserts that the map f — f is an isometric isomorphism between
L*(T) and (?*(Z).

In Section 6.3 we return to the issue of pointwise convergence of Fourier series on T. We
give examples of functions for which the Fourier series does not converge pointwise, or worse.
We show that for the class of functions of bounded variation there is a pointwise convergence
theorem due to Dirichlet and Jordan.

In Section 6.4 we generalize the results of Section 6.1 to T" and Z". In addition to the
definition of the Fourier transform on T", we define the Fourier cotransform on T", and in
addition to the definition of the cotransform on Z", we define the Fourier transform on Z".
We also generalize the Poisson kernel to T™ and prove generalizations of the results of Section
6.1 on spectral synthesis and Abel summation. Plancherel’s theorem asserts that the map
[+ [ is an isometric isomorphism between L*(T") and ¢*(Z").

In Section 6.5 we discuss the Fourier transform of functions defined on the entire real
line R that are not necessarily periodic. Because R is not compact, L!(R) and L*(R) are
incomparable (with respect to inclusion), and the theory of the Fourier transform on R is
more delicate than the Fourier theory on T.

In Section 6.6 we consider a classical problem in signal processing, which is to reconstruct
a function f: R — C which is band-limited, which means that its Fourier transform f
vanishes outside some interval [—€, Q]. Then f can be completely reconstructed by sampling
at the points ¢, = nw/Q, for n € N. We obtain the sampling theorem (Theorem 6.25).

The results of Section 6.5 are generalized to R™ in Section 6.7.

In Section 6.8 we define a class S(R") of smooth functions that decay quickly when ||z||
goes to infinity called the Schwartz space. The space S(R") is not a normed vector space,
but its topology can be defined by a countable family of semi-norms. It is a metrizable space
that is complete, called a Fréchet space. The Schwartz space is closed under the Fourier
transform and cotransform and is generally well-behaved. Fourier inversion holds and taking
the Fourier transform of a derivative is just multiplication of the Fourier transform by a
variable.

This last property can be exploited to solve certain partial differential equations by
converting them to ordinary differential equations via the Fourier transform. We illustrate
this method by solving the steady-state heat equation in the upper half-plane.



166CHAPTER 6. THE FOURIER TRANSFORM AND COTRANSFORM ON T", 7", R"

In Section 6.9 we discuss the Poisson summation formula, which is a way of finding the
Fourier coefficients of the periodic function obtained from a nonperiodic function by applying
the process of periodization.

In Section 6.10 we show that roughly, a function f and its Fourier transform fcan’t be
both highly localized. This can be stated precisely in terms of the dispersion of f about the

point a given by
df = [ aflf@Pas | [ i) do

The Heisenberg inequality states that if f is a function in L?(R), then for all a,b € R, we

have R 1
(D)) =

We briefly discuss the interpretation of this inequality in quantum mechanics, called the
Heisenberg uncertainty principle.

In the last section, Section 6.11, we give a brief summary of Fourier’s captivating life.

6.1 Fourier Analysis on T

We begin this chapter with a preview of Fourier analysis on one of the simplest locally
compact abelian groups, namely T.

Definition 6.1. The circle group T = U(1) is the group {z € C | |z| = 1} of complex

numbers of unit length under multiplication. We give T the subspace topology induced by
C.

The circle group T is abelian (commutative). As a set,
T={c?|0¢c[-mn)}

Geometrically, this is the unit circle S = S1.

The map o: R — T given by
o(6) = e”
is clearly a surjective group homomorphism (with R under addition, and T under multipli-
cation); see Figure 6.1. Since e = 1 iff § = k27 with k € Z, we see that the kernel of o is
277, so by the first isomorphism theorem the additive group R/(2n7Z) is isomorphic to the
multiplicative group T. This isomorphism allows to view a complex number of unit length as
e with 6 defined modulo 27, which is often more convenient than picking a representative
of the equivalence class of § (mod 27) in [—m, 7).

Functions on the unit circle T are equivalent to periodic functions on R as defined next.

Definition 6.2. A function f: R — C is periodic with period T (for some T" € R, with
T>0),if f(x+T) = f(x) for all x € R.
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o(9n/2)

ofs Aot
o(11n/2)

a(3m)

2 3n2 s m 92 11nf2
R R

Figure 6.1: The map o: R — T which “wraps” the line around the unit circle.

Obviously, a periodic function is completely defined by its restriction to the interval
[—T/2,T/2). In most cases, the periods T' =1 or T' = 27 are considered, and which is picked
is a matter of taste. We pick 7" = 27. Then we have the following two transformations.

Given a periodic function f: R — C (with period 27), let fr: T — C be the function
given by |
fr(€?) = f(0), —-m<0<m.

Given a function g: T — C, let gg: R — C be the periodic function (with period 27)
given by '
gr(0) = g(e), 0 eR.

Observe that because the map 0 — €' is a bijection between [—m, ) and T, we have

(fr)r = f, (gr)T = 9,

which shows that there is a bijection between the space of periodic function f: R — C (with
period 27), and the space of functions g: T — C. This bijection restricts to the space of
periodic L? functions that are integrable over [—m, 7|, and the space LP(T), for p = 1,2, cc.

The identification between R/(27Z) and T, and between the space of functions defined
on T and the space of periodic function on R is often implicit, and in what follows, we take
the view that functions on T are periodic (with period 27). The reader should be cautioned
that other authors use the period 1, so the factor 1/(27) showing up in our formulae is
missing in the other version (assuming period 1).

To be completely rigorous, we need to equip the abelian group T with an invariant
measure called a Haar measure. This will be done very thoroughly in Chapter 8. For
the time being, it suffices to know that in Example 8.10, we show that a normalized Haar
measure on T is given by dz /2w, where dx is the Lebesgue on R (so that T has measure
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1). Readers not familiar with the Lebesgue theory of integration should not be concerned,
and they should replace this fancy notion with the notion of integral that they are familiar
with. After reading this motivating chapter, they should return to the chapters presenting
measure theory and integration.

The solution of the wave equation for a vibrating string provides an excellent motivation
for using Fourier series on T.

Consider a homogeneous string in the (z,y)-plane, stretched along the z-axis between
x =0 and x = m. The constant 7 is chosen for mathematical convenience; we could use any
constant L > 0, but by a change of units, we may assume that it is equal to w. If the string
is set to vibrate, its displacement u(x,t) is then a function of z and ¢t. We assume that its
endpoints are fixed, so that we have the initial conditions

u(0,t) = u(m,t) =0 for all ¢t.

We also assume that the initial position and velocity of the string are given by two functions

f and g defined on [0, 7] (with f(0) = f(7) = 0), so that

u(r,0)= f@), Fw.0) = gla)

We extend the functions f and g to [—m, 7] by making them odd, namely, we set f(—z) =
—f(x) and g(—z) = —g(z) for x € [0, 7], and then we extend f and g to R by making them
periodic of period 27 (so, f(x + 27k) = f(x) and g(z + 27k) = g(x), for all k € Z and
x € [—m, 7).
Using some physics, it can be shown that u is a solution of the one-dimensional wave-

equation,

Pu 1 0%

0x2 2 o2’
for some constant c. Again, by a change of units, we may assume that ¢ = 1, so the wave
equation becomes

Pu  *u
o2 = o *)

Equation (x) can be solved by two methods:
1. Using traveling waves.
2. Using standing waves.

The method of traveling waves was used by d’Alembert, and the method of standing
waves by D. Bernoulli; see Stein and Shakarchi [67] (Chapter 1).

The method of standing waves leads immediately to Fourier series. In this method we
use the technique of separation of variables, which means that we express the solution u(z, t)
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as the product u(x,t) = p(z)1(t), where p(x) and ¥ (t) are functions of the two independent
variables = and t. Equation (x) yields the equation

p(2)" (t) = " (2)¥ (1),

which can be written as

() _ ¢"(x)

b))  elx)
Since the left-hand side depends only on ¢, and the right-hand side depends only on x, the
above equation can hold only if both sides are equal to the same constant, say A, so we

deduce that

©"(x) = Mp(z) =
P (t) — Mp(t)

These equations have well-known solutions. If A > 0, then

o(x) = AeV™ 4 Be VM,

0
0.

and we obtain a solution which is not physically possible since the displacement of the string
is unbounded, so we must have A < 0, say A = —m?. The solution is given by

QO(Z') — aeimx _'_5efimx

with a, 8 € C, or equivalently

p(x) = %(COS max + isinmax) + g(cos max — isinma)

(@ + ) (o —B)
2

= ———2cosmx +1 sin max.

2

Since we are seeking real functions as solutions, the solutions are given by

p(x) = C cosmax + D sinma
Y(t) = Acosmt + Bsinmt,

with A, B,C, D € R. Since ¢(0) = ¢(7) = 0, we get C' = 0, and if D # 0, then m must be
an integer in order to have sinmm = 0. If m = 0, then ¢(x) = 0 for all z, and if m < —1, we
can rename the constants and reduce to the case m > 1 (since cos is even and sin is odd).
Finally, we arrive at the solution

um(x,t) = (A, cosmt + B, sinmt) sinmz, m > 1. (xx)

Since the wave equation is linear, any linear combination of the functions in (xx) is also
a solution, so we are led to the fact that a general solution u(x,t) of the wave equation is a
superposition of the solutions u,,, that is,
oo
u(z,t) = Z (A,, cosmt + By, sinmt) sin mz.

m=1
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There is obviously an issue of convergence, but we will not worry about this yet. The
last step is to impose the boundary conditions

ou

u(x,O):f(x), E(xao) :g(x),

which yield the equations

flz) = i A, sinmz

g(x) = Z mB,, sinmz.

m=1

Thus we arrived at the following question: given a “reasonable” periodic function f: T —
C (say f € LY(T)), can we find some coefficients c,, € C such that

f(e) _ Z cmeime’

where the series on the right-hand side is the Fourier series associated with ¢,,”

This is the basic problem that motivated Fourier in his quest for solving the heat equation
on various domains.

The integer m > 11is the frequency of the wave component ( A,, cos mt+ B,, sin mt) sin mz,
which is called a harmonic or tone. The general solution is thus a superpositions of harmon-
ics. The case m = 1 corresponds to the first harmonic or fundamental tone. If the vibrating
string is the string of a violin, then the first harmonic is the sound of lowest pitch.

If f € LY(T), then we can compute the Fourier coefficients c,, by the formula

Crm = /_7T f(t)e ™ dg_frt),

and then the question is whether the Fourier series >, ¢,,e™™
sense).

9 converges to f (and in what

Recall that the nth partial sum S, ; of the Fourier series ) _, cme™ for f is given by

n

Snvf(e) = Z Ck‘eikev

k=—n

and the average A, ; of these partial sums is given by

1
n
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It would be desirable that the partial sums S, ; converge pointwise to f, but in general,
this is not the case, even for continuous functions. We will see that if f € L?(T), then S, ¢
converge to f in the L?-sense (Proposition 6.2), but the convergence may fail to be pointwise.

In Example 8.10 we discuss Cesaro sums and Féjer’s theorem. We show that the average
sums A, ; converge uniformly to f if f is continuous. We now discuss Abel’s sums and
Poisson kernels, which yield another kind of convergence.

The Poisson kernel on the unit disk is the family of functions P,.(f), parametrized by
r € [0,1), and given by
1—7r?

1 —27’0059—1—7"2;

P.(0) = Z rinlemn? —

n=—oo

see Example 8.11 for the derivation of this formula. Also see Figures 6.2 and 6.3.

Figure 6.2: The graph P,(f) = 1727};0229“2 = 1712;?;3@2 over the region —1/4 < x < 1/4

and —1/4 <y < 1/4. When r = 0, the z-coordinate is 1.

A key concept in Fourier analysis is the notion of convolution. To discuss convolution
rigorously requires some work so in this chapter we content ourselves with a definition leaving
justifications to Section 8.12.

Definition 6.3. The convolution f * g of two functions f, g € L(T) is given by

Fea)0) = [ 10- 2960 52 = [ #0100 - ) 2,

where dx is the Lebesgue measure on R.

By Proposition 8.48, we have f * g € L!(T).

We have the following result using the Poisson kernel which gives a preview of Fourier
analysis.
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Figure 6.3: Another graphical interpretation of P.(f) = % when r is fixed. Figure
(a) shows the graphs of Py(f) = 1 and P;/5(6). Figure (b) shows the graphs of P;/(0),
Py3(0), and P3/4(0), while Figure (c) shows the graphs of Ps,4(0), Py5(0), and Ps5,6(0). As
r — 1, the sinusoid curves have “narrower” peaks centered at 0 = 27k, k € 7Z, and outside

of those peaks, the function limits to the constant value of zero.

Proposition 6.1. For any r € [0,1), if f € LY(T) and if P, is the Poisson kernel, then for
all 0 € R/27Z, we have

m=0o0

(P x f)(0) = Z Crmletm?.

m=—0oQ

where ¢, is the mth Fourier coefficient of f,

dx(t)

= t_imt—,
en= [ st &L

Proof. For 0 < r < 1, the series defining P, is absolutely convergent, so

e DO = [ R0 050 150

o 2

T M=00

: d
— Z T\m\ezm(ﬁ—g&)f((p) '7;(7:0)

T m=—oc0

_ 2 /7; T\m\eimw—(p)f(go> dx(@)

i 2m
Nl imo [ me 47()
_ |m| imb —imgp
mgm rile /_ flele o
m=00
_ § CmT‘lm|€im9,

as claimed. n
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The functions D,, and K,, are defined as

Dn(l") _ Z eikzz

Ko(z) = % STy et = %(DO(@ 4 Dy ().

It can be shown that
_ sin((2n + 1)2/2)

Dnf) sin(z/2)
_ 1 (sin(nx/2) 2
Knle) =2 ( sin(z/2) ) '

The functions D,, are known as Dirichlet kernels, and the functions K, are Fejér kernels.
See Figures 6.4 and 6.5. Also see Section 8.15 for applications.

Figure 6.4: Figure (a) is the graph of D;(x), Figure (b) is the graph of Dy(x), Figure (c) is
the graph of Ds(z), while Figure (d) is the graph of Dio(z). In all cases the “spike” at x =0
has y-value 2n + 1.

Observe that for r = 1, the partial sum » "_" cmr™e™ is the partial sum S, ; of the
Fourier series for f, and the partial sum ) "—" rlmlei™? of the Poisson kernel is the Dirichlet
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(@ (b)

(0 (d

Figure 6.5: Figure (a) is the graph of Ks(x), Figure (b) is the graph of Kj(x), Figure (c)
is the graph of Kjo(x), while Figure (d) is the graph of K5o(x). In all cases the “spike” at
x = 0 has y-value n.

kernel D,,. A slight modification of the proof of Proposition 6.1 shows that
Dn * f - Sn, I
and this immediately implies that

Kn * f = An,f‘

Recall that for any p > 1, the space ¢(7Z) is the set of sequences © = (2,)nez wWith z,, € C
such that ) . |z,[P < oco. Also, if 1 < p < g, then (P(Z) C (9(Z); see Figure 6.6.

Indeed, since the sequence |z, [P converges, for some M > 0 we have |z,,| < 1 for all |m| >
M, and since if ¢ > p we have |z,,|? < |z,,|P (because |x,,|P — 2|7 = |20 [P(1 — |2,]77P) >0
since |z < 1), thus 37 o [@m|? < 3250 [Tm[P, and since 37 ;) |2, [P < oo, we also
have ) . |2,|? < oo.

Each space ¢P(Z) (p > 1) is a normed vector space with the norm

1/p
|(Zm)mezl| = (Z \xm\p> )

meZ
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¢°(7)

Figure 6.6: A Venn diagram of the containments ¢'(Z) C (*(Z) C (*(Z) C ¢*(Z), where
p > 3.

The space (P(Z) (p > 1) is a Banach space (it is complete). This is proven by a simple
modification of the proof of Proposition D.14.

In general, given a function f € L'(T), the Fourier series Y, _, ¢;ne™? does not converge
pointwise. However, if 0 <7 < 1, then f,.(0) = (P x f)(0) = >,z cmr™e™? o the series
on the right-hand side converges pointwise. The following results shows that if  tends to 1,
then f, is an approximation of f that tends to f (in a technical sense). Since T is compact,
we have || fllpyq) < [[fllgzr) and so L*(T) € LY(T). Then if f € L*(T), the partial sums of

the Fourier series of f converge to f in the L?-norm.
Theorem 6.2. (Spectral Synthesis)
(1) If f € L?(T) forp=1,2, and if r € [0,1), for all 6 € R/27Z, write

m=0o0

F(0) = (P f)O) = D eqrmem™,
with L /F " de(t)
S 2
Then lim, || f = £, = 0.
(2) If £ € C(T), then iy | — fill.. = 0.
(3) If f € LA(T), then
lim || f — "ff‘ eme™|| = 0.
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Furthermore, we have the Parseval theorem:

m=00

A= lewl

The above implies that ¢ = (¢p)mez € (*(Z).

Theorem 6.2 is proven in Malliavin [47] (Chapter 3, Section 2.2.5). The function

L0 = (Pe D) = 3 el

m=—0o0

is known as the rth Abel mean of the Fourier series

of f. The Fourier series does not always converge pointwise, but the rth Abel mean f,
converges uniformly for all » < 1 (r > 0).

The results of Theorem 6.2 are examples of spectral synthesis, namely, the reconstruction
of a function from its Fourier coefficients. Facts (1) and (2) are not very practical because
they require first summing the series f,.. Fact (2) for continuous functions is better because
it shows uniform convergence. Fact (3) is very satisfactory since it shows convergence of the
partial sums of the Fourier series in the L?-sense, but convergence pointwise generally fails.
If (¢,,) € €*(Z), for some 0 € R/(27Z), the sums > "'—"  ¢,,e™ may not converge. For more
about this phenomenon, see Section 6.3.

Remark: Lennart Carleson showed in 1966 that for any function f € L?(T), the partial
sums of the Fourier series of f converge pointwise almost everywhere to f, putting a close
to a problem that had been open for fifty years.

6.2 Fourier Inversion on T

Recall that for any p > 1, the space (P(Z) is the set of sequences x = (x,)nez with z, € C
such that Y _,|z.[P < co. For p = 2, the space *(Z) is a Hilbert space with the inner
product

<(xm)mEZ; ym mEZ meym
meZ

and norm

1/2
(@ )mez|| = (Z Ixm\2> ;

meZ
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see Proposition D.14.

The following result shows that if the sequence ¢ = (¢, )mez of Fourier coefficients of f
is well-behaved, then f can be reconstructed from c.

Theorem 6.3. (Foum'er inversion formula) Let f € LYT). If ¢ = (¢y)mez € (1(Z), that is,
if the series > "—> || converges, where ¢, is the Fourier coefficient

m=—0oQ

de(t)

o’

[ e

then

m=0o0

F0)= > cme™

m=—0Q

for all almost all @ € R/277Z. Furthermore, if f is continuous, then equality holds everywhere.

Proof. Write

(,0(‘9) — Z Cmesz
and recall that B
f-(0) = Z Ccpr™letm?.

Since the series > "~ |c,,| converges, the series defining ¢ converges absolutely, so ¢ is
continuous. We claim that

tim [l — £l =
We have B
le = frllo < D leml (X =),

m=—0Q

Given € > 0, we can find p so that 3, |cn| < €/2. Then 370, en|(1 — rIm) is the
sum of 2p + 1 terms that tend to 0 as r tends to 1, so for r close enough to 1 so that
> misp lem|(1 = riml) < €/2, we have

Z |Cm|(1—7‘|m| Z |Cm] 1—7“"”' ) <€/24¢€/2 =k,
lm[>p Im|<p
which shows that lim, 1 || — fr]|
Since by Proposition 5.24(2), |l — f;|l; < 27 ||l¢ — fi|l., we also have

lim [l — f,]l, = 0
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Since f € L}(T), by Theorem 6.2(1),
ti 1 = ], =0,

and since
If =l < Uf = Felli + 11 =l
we deduce that
If =l =0,

which means that f = ¢ almost everywhere. If f is continuous, since ¢ is also continuous,
f — @ = his continuous. But if h # 0, then h is nonzero on some interval, which contradicts
the fact that f = ¢ almost everywhere. m

Definition 6.4. Given any function f € L(T), the function F(f): Z — C given by
F(f)(m) = ¢, where ¢, is the Fourier coefficient
B odx(t)
= t —imt 7
c B ft)e™™ ——=
is called the Fourier transform of f. We identify the sequence F(f) with the sequence
(€¢m)mez, which is also denoted by f.

Theorem 6.2(3) (Parseval’s theorem) implies that if f € L?(T), then fe (*(Z). However,
if f € L2(T), then it may not be the case that f € (1(Z).

Theorem 6.3 says that if f € L'(T) and if fe (Y(Z), then f can be reconstructed by its
Fourier series > > ¢,,e"™’. Theorem 6.2(3) says that if f € L*(T) then the partial sums
Spp (with Sy, ;(0) = >""=" ¢,,e"™?) of the Fourier series of f converge to f in the L*norm.

In fact, we have a stronger result.

Theorem 6.4. (Plancherel) The map F: f f s an isometric isomorphism of the Hilbert
spaces L2(T) and (*(Z).

Proof sketch. Theorem 6.4 is classical theorem of Hilbert theory. Its proof can be found
in Rudin [57] (Chapter 4) or Malliavin [47] (Chapter 3, Section 2.2.5). Consider the map
F:LA(T) — (*(Z) given by Ff = f. The fact that the linear map F is an isometry is
an immediate consequence of Parseval’s theorem. This fact implies that F is injective. We

prove the surjectivity of the map F by a density argument. Since F is an isometry, its image
F(L*(T)) is complete in £?(Z), and thus closed. Consider the subset W of ¢*(Z) given by

W = {(cm) € (*(Z) | c;n = 0 for all but finitely many m € Z}.

The subset W is dense in ¢?(Z), and obviously W C ¢(Z). For any ¢ = (c,,) € W, the series
o(0)=>""" cme™? only has finitely many nonzero terms ¢,,e™?, so ¢ is continuous, and

thus in L*(T). It is also immediately verified that F(¢) = c. It follows that W C F(L*(T)),
and since W is dense in ¢?(Z) and F(L3(T)) is closed in £*(Z), we have F(L*(T)) = (*(Z). O
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Definition 6.5. Given a sequence ¢ = (¢)mez € ('(Z), we define the Fourier cotransform
F(c) of c as the function F(c): T — C defined on T given by

F(c)(9) = nf eme™? = "io cm (€)™,

the Fourier series associated with ¢ (with § € R/27xZ). Given a function f € L}(T), if 7
is the Fourier transform of f, then the Fourier cotransform F(f) = Y= f,.e™? of f is
called the Fourier series of f.

Note that ¢ is used instead of the term e~ occurring in the Fourier transform.

If ¢ € (1(Z) C (*(Z), then the series F(c)(f) converges uniformly. On the other hand,
if ¢ € (*(Z) — (*(Z), the series F(c) may not converge pointwise or uniformly, although
it converges to a function in L*(T) in the L%norm. In general, for an arbitrary function
f € LY(T) — L%(T), we must have f ¢ (%(Z), so the Fourier series F(f) = .7~ f,.e™*

m=—o00
may not converge to f pointwise or in the L! sense.

Remark: The maps e — e™? = (¢?)™ for m € Z and 0 € R/(27Z), are continuous
homomorphisms of the group T = U(1) into itself. In fact, it can be shown that they are
the only ones of this kind. They are called the characters of T; see Section 10.1 and more
generally Chapter 10 for a detailed treatment. Obviously the set of characters of T is in
bijection with Z. Thus the Fourier transform F(f) of a function f € L*(T), a sequence of
complex numbers indexed by Z, can be viewed as a function of the characters of T.

The characters of Z are the group homomorphisms ¢: Z — T. Since Z is generated by
1, a homomorphism satisfies the equation

so it is uniquely determined by picking p(1) = ¢ € T (with § € R/(27Z)), and is of the
form @(m) = (€)™ = €™ for all m € Z. Thus the set of characters of Z is in bijection
with T. Then the Fourier cotransform F(c) of a “function” ¢ € (*(Z) (F(c) is the Fourier
series associated with ¢) can also be viewed as a function on the characters of Z, namely a
function on T. This fact generalizes to an arbitrary abelian locally compact group and is

the key to the definition of the Fourier transform on such a group; see Chapter 10.
Sometimes it is more convenient to express the Fourier series F(c)(0) = > "—> c,,e™? in
terms of cosm# and sin m#@ instead of the complex exponentials ¢, Here we are assuming
that ¢ = (cm)mez € (*(Z), so the series > "—> ¢,,e"™ is absolutely convergent and it is
0

permissible to permute terms. Since ¢/ = cos mf + i sin mf, the Fourier series F(c)(6) can
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be expressed as

m=oo m=oc

F(e)(0) = Z cme™ = Z Cm(cosmb + i sinmb)

—1
= Z Cm(cosmb + isinm@) +

m=—0Q

WE

¢m(cosmb + isin mb)
0

3
]

=co+ Z c_m(cosmb — isinmb) + Z Cm(cos mé + i sin mé)

m=1 m=1

=co+ Z((cm + c_m) cosmb + i(cp, — c_py) SinMB).

m=1
Therefore, if we let
ag = 2c, Um = Cm + C_m, b = i(Cm — C—m), m > 1,
then we have
F(e)(0) = 2o+ 3 (e cosmb + by, sinmd) h
c =—q Uy, COS N m Sin mo).
2 0

m=1

Equation (f) makes it very clear that the function F(c)(6) can be viewed as the count-
ably infinite superposition of the basic periodic functions cosmf and sinm#, often called
harmonics. The number m € N — {0} is called a frequency.

Conversely, if

— 1

F(e)(0) = 500+ mZZI(am cosmb + by, sinmb),
then if we let
1 1 1
Co = 5(107 Cm = §(am - me)a Com = §(am + ibm)7 m Z ]-7
then I
F(e)(9) = Z cme™?
From d(1)
T . z(t
= t —imt 7
on= [ e
and
ag = 2cy, A, = Cm + C—pm, by, = i(Cp — ), m > 1,

for m > 1, we get

dx(t)

™

Um = Cp + C_pyy = ) (e ™ 4 et dg_(t) = 2/ f(t) cosmt
—7 m -7
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and

dx( dx(t
by, = i(Cm — Cm /f et _ ’mt)g —2/ f(t) sinmt ;U

™

that is, for m > 1, we have
1 s
= —/ f(t) cosmt dt
™ —T
1 (7 .
= —/ f(t) sinmt dt.
™ —T

a0—2co—2/f 27 /f

Therefore we can combine the above equations and we obtain

We also have

:%/:rf(t)cosmtdt (m >0)
:%/_if(t)sinmtdt (m>1).

Note that the equation for a,, also holds for m = 0. This is the reason for the term (1/2)ag
in equation (f). The numbers a,, and b,, are also called the Fourier coefficients of f. If the
function f is real-valued, then the coefficients a,, and b,, are real.

Observe that
Co = —ao / f(t)

is the mean value of f over the interval [—, 7r].

Here are a few examples of Fourier transforms. Many more examples can be found in

Folland [27].

Example 6.1. Let f: [—m, 7] — R be the periodic function given by
f(0) = 19|, —r<0<m.

The graph of f(6) is shown in Figure 6.7.
Let us compute the coefficients a,, and b,,. Since the function f is even, we have b,, = 0
for all m > 1, and

:l/ f(@)cosm@d@:z/ f(0) cosm@ db.
™) _x T Jo

2 [T 1 o
ao——/o 06 = 1675 =

™

Thus for m = 0 we have
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Figure 6.7: The graph of the periodic function f(0) = |0|, where —7 < 0 < 7.

and for m > 1, integrating by parts we have

2[0sinmf]™ 2 /7T sin mf 50 2 [cosmf]™ 2(-1)m—1
Ay — — —_ — = — = ——
T m |, TJo m Tl m? |, ®™ m?
since sinmm = 0 and cosmm = (—1)™. Now (—1)™ — 1 = —2 when m is odd and 0 when m

is even, so we find that the Fourier series for f is given by

If we plot the graphs of the partial sums for a few terms (say five terms), we see that they
provide a very good approximation to f. See Figures 6.8 and 6.9. The series converges
uniformly to f due to the presence of the term 1/(2k — 1)2.

Example 6.2. Let f: [—m, 7] — R be the periodic function given by
f(0) =4, —m <0 <.

The graph of f(0) is shown in Figure 6.10.

This time let us compute the coefficients ¢,,. We have

T

1
co=— [ 6do=0,

T o o
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Figure 6.8: Let Sy = 2 — 2 Zk R D0 Pigure (a) is the graph of S; Figure (b) is the

2 (2k— 1)2
graph of Sy; Figure (c) is the graph of Sz, and Figure (d) is the graph of Sy.

and for m # 0, by integrating by parts, we have

L[t
w=om | B0 dg
c 27r/_7re

_i[ge—imer _i T p—imf 0
2r | —im | __ 27 J_ . —im
sl (sl
2T —imm  m?)|
(_1)m+1
N m

imT — efmm™ — (—1)™. Hence the Fourier series for f is

-1 m+1
Z ( ) ezme.
mn

m#0

since e~

Since (—1)™ = (—1)~™, the mth and the (—m)th term can be combined to give

im@ —im8 2(—1 m+1
(—1m* (e‘ +€ : ): (=1) sin m#,

m
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Figure 6.9: The partial sums S; through S; approximating f(6) of Example 6.1.

Figure 6.10: The graph of the periodic function f(0) = 6, where —7 < 6 < .

and we obtain the Fourier series

Here to be rigorous we should consider the partial sums

m

Smp(0) = Y cre™,

k=—m

in which the terms corresponding to the indices —m and m can be combined. The details
are left as an exercise. Note that f € L*(T) and ¢, ¢ ¢*(Z). The series belongs to L*(T)
but it does not converge to f pointwise or uniformly:.

This time if we plot the graphs of the partial sums, we see that they approximate the
function f, but the quality of the approximation is inferior to that of Example 6.1. See
Figures 6.11 and 6.12.

This is due to the fact that the function of Example 6.1 is continuous, but the function of
Example 6.2 has jump discontinuities. The other reason why the quality of approximation
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Figure 6.11: Let Sy, = 22%:1 % sinmf@. Figure (a) is the graph of S3; Figure (b) is
the graph of Ss; Figure (c) is the graph of Si4, and Figure (d) is the graph of Sy.

is not as good as in Example 6.1 is that the terms of the series in Example 6.1 tend to zero
faster than the terms of the series in Example 6.2. Thus, in Example 6.2, the influence of the
higher order terms is much more significant in Example 6.2. The point is that the rougher
the function is, the more difficult it is to approximate it by smooth functions such as cos m#
and sinm#@. In fact, it is not obvious that the series

(_1 m+1

Qi % sin méd

m=1

converges pointwise. It does, with

= (—1)mtt 0 if — 0
ZZLsianZ 1 TS
0 if = 4m.

This series converges pointwise to the function f of Example 6.2, except for § = (2k + 1)7
where f((2k+1)7—) =7 and f((2k+1)7+) = —, according to a theorem of Dirichlet (see
Section 6.3).

A phenomenon that shows up in Example 6.2 is the Gibbs phenomenon. Even for a
partial sum of 40 terms, we observe some spikes near the discontinuties. These spikes tend
to zero in width, but not in height; see Folland [27] (Chapter 2, Section 2.6).



186CHAPTER 6. THE FOURIER TRANSFORM AND COTRANSFORM ON T", 7", R"

Figure 6.12: The partial sums S3,55,514,540 approximating f(6) of Example 6.2.

6.3 Pointwise Convergence of Fourier Series on T

By Theorem 6.2, if f € L*(T), then

m=n
li . imb —
Jm |f = 3 ene™) =0,
m=—n 2
where ¢, is the mth Fourier coefficient of f,
dx(t)

m: t—zmt .
cn= | set

Thus the partial sums
k=m
Sm.f(0) = Z cpe?
k=—m

converge to f in the L?>-norm. However, even if f is continuous, the partial sums S, ; may
not converge to f pointwise.

The first example of a function whose Fourier series diverges at 0 was given by du Bois—
Reymond in 1873. This is a fairly complicated example involving a piecewise monotone
function that oscillates indefinitely near 0. Simpler examples were given later by Fejér and
Lebesgue.

Fejér’s example makes use of the functions

1 1
F,(x) =sinz + §Sin2x+---+ —sinnz,
n
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Fy(x) =sinx

!
b
a

Figure 6.14: The graphs of Fj(x) through Fj(z) superimposed on each other.

which are uniformly bounded; see Figures 6.13 and 6.14.

The series
o0

1 . 2
Z = sin(3" @) F,.2 ()
n=1
defines a continuous function f, but it can be shown that its Fourier series diverges for x = 0.

See also the example in Stein and Shakarchi [67] (Chapter 3, Section 2.2).

In 1926 Kolmogoroff gave an example of a function f € L!(T) whose Fourier series
diverges for all x.

Later it was found that a systematic method for producing functions with a “bad” Fourier
series was to use the Banach—Steinhaus theorem.

Definition 6.6. For any fixed § € R/27Z and for any continuous function f € C(T;C), let
S*(f,0) = sup | S, £(8)].

meN
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Also recall the following definition about Borel sets.

Definition 6.7. Let X be a topological space. Countable unions of closed subsets of X are
called F,-sets, and countable intersections of open sets of X are called Gs-sets.

The following result is proven in Rudin [57] (Chapter 5, Page 102). The proof uses the
Banach—Steinhaus theorem.

Proposition 6.5. For every 0 € R/2nZ, there is a subset Ey C C(T;C) of continuous func-
tions which is a dense G set in C(T; C) such that S*(f,0) = oo for all f € Ey. Consequently,
the Fourier series of every f € Fy diverges at 6.

Using Baire’s theorem a stronger result can be obtained, as shown in Rudin [57] (Chapter
5, Theorem 5.12).

Proposition 6.6. There is a set E C C(T;C) of continuous functions which is a dense G
set in C(T; C) and which has the following property: For every f € E, the set

Q= {0 e R/27Z | 5°(f,0) = oo}

is a dense Gy set in R/2nZ.

As a consequence, the Fourier series of every continuous function f € E diverges for
infinitely many points. In fact, £ and @y are uncountable; see Rudin [57] (Chapter 5,
Theorem 5.13).

We just saw that in general, the partial sums S, ; do not behave well, so if we want to
approximate a continuous function on T, we should not count on the partial sums to do the
job. We will see in Example 8.10 that the Cesaro means,

1
Any = E<So’f + o+ Spoag),

have a much better behavior, since they converge uniformly to f.

We are led to the conclusion that in order to obtain positive results for pointwise conver-
gence of the partial sums S,, ¢, we must restrict the class of functions that we are considering.
Dirichlet was the first to obtain a significant result. In 1829 he proved that the partial sums
Sm,s converge pointwise to (f(z+)+ f(x—))/2, for every piecewise continuous and piecewise
monotone function f. Here f(xz+) is the limit when y tends to x from above, and f(z—) is
the limit when y tends to = from below (see Definition 2.19). His paper is not only significant
because of its results but because it raised the standards of rigor in mathematical exposition
to a new level. Dirichlet’s full paper is reproduced in Kahane and Lemarié-Rieusset [39]. As
Kahane comments, “Dirichlet’s style is superb and incredibly modern.”

Later on it was realized that what is really needed for this pointwise convergence result
to hold is that the functions have bounded variation. Camille Jordan, whose mathematical
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interests were group theory, algebra, and its relations to geometry, introduced the notion
of a function of bounded variation in 1881 and published one paper generalizing Dirichlet’s
paper to this class of functions.

Let f: [a,b] — R be a function. The intuition is that the variation of f over [a,b] is
the total distance travelled from time a to time b. If f’ exits and is continuous, then the
variation is f; |f/(t)] dt. Otherwise, we approximate the curve by a piecewise affine function.
For this we subdivide the interval [a, b] into smaller intervals, [¢;_1,t;] and approximate f on
this subinterval by the line segment from (¢;_1, f(t;_1)) to (¢;, f(¢;)); see Figure 6.15.

Figure 6.15: The graph of f is represented in pink. The linear approximation from
(tj—1, f(tj—1)) to (t;, f(t;)), where 0 < j < 5, is represented in blue. A variation of f
over [a, b] is the sum of lengths of the solid orange vertical lines found in the right figure.

More precisely, consider a function f: R — C. For any x € R, we consider subdivisions
of the interval (—oo, x] using finite sequences xy < z1 < -+ - < x,, = .

Definition 6.8. Let f: R — C be a function. The total variation function Ty of f is the
function given by

Tf(x)zsup{Z|f(xj)—f(xj_1)||—oo<x0<m1<---<xn:x,nEN—{O}},
=1

where the supremum is taken over all finite subdivisions zg < x; < -+ < z,, = x. If [a, b] is
a finite interval (a < b), then the total variation of f on |a,b] is the quantity

V(f,a,b) :sup{i:]f(xj)—f(a:jlﬂ la=xg<x1 <--- <z =, neN—{O}}.

The set BV of functions of bounded variation is the set of functions f: R — C such that
limg, 4o Ty (x) < 0o. The set BV ([a,b]) of functions of bounded variation over [a,b] is the
set of functions f: [a,b] — C such that V(f,a,b) is finite.
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If f: R — C is a function in BV, since a can be chosen as a subdivision point we see
immediately that
V(f, a, b) == Tf(b) - Tf((l),

so f € BV ([a,b]). We also see that Ts(z) is an increasing function. The limits lim,,,_, f(2)
and limg, , 1o f(x) also exist, as a corollary of Proposition 6.9.

Example 6.3.

(1) If f: R — Ris bounded and increasing, then f € BV. In fact, T¢(z) = f(z) — f(—00);
see Figure 6.16.

Figure 6.16: Let f(z) = tan~'(x). Then f(z) is a bounded, increasing function whose total
variation Ty(z) = f(x) — f(—o00) = f(z) + 3.

(2) The space BV is a complex vector space.

(3) If f is differentiable on R and if f’ is bounded, then f € BV ([a,b]) for every finite
interval [a, b] (by the mean value theorem); see Figure 6.17.

Figure 6.17: Figure (a) is the graph of f(z) = ﬁ, a bounded decreasing function. Its
derivative f'(x) = —ﬁ, whose graph is shown in Figure (b), is also bounded. Hence
f € BV ([a,b]) for every finite interval [a, b].
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(4) If f(x) = sinx, then f € BV([a,b]) for every finite interval [a,b], but f ¢ BV (it
oscillates forever); see Figure 6.18.

Figure 6.18: In Figure (a), the graph of f(z) = sinx is the dark red curve, while f'(z) = cosz
is the lighter red curve. The total variation of f(z) on [r, 7] is given by [7_|f'(z)|dz =
J7 | cos(z)| dz = 4 and is visualized as the area under the graph of y = | cos(z)|, as illustrated
by Figure (b).

(5) If f(z) = zsin(z™") for  # 0 and f(0) = 0, then f ¢ BV([a,b]) for a < 0 < b or
a < 0 < b; see Figure 6.19.

Figure 6.19: The graph of f(x) = xsin(z?!) for x # 0 and f(0) = 0. This function has too
much oscillation around 0 for it to be of bounded variation.

Here are some of the main properties of functions of bounded variation; proofs can be
found in Folland [29] (Chapter 3, Section 3.5).

Proposition 6.7. Let f: R — C be a function. If f € BV, then lim,,, o, T¢(z) = 0.

Proof. By definition of T(x) as a least upper bound, for every € > 0, there is some subdivi-
sion g < 1 < --+ < x, = x such that

Z |f(x;) = fzj—1)] > Ty(z) — e
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By definition of V'(f, z¢, ), this implies that
Ty(z) = Ty(zo) = Ty(x) — €,

so Ty(zg) < e. Since Ty is increasing, we also have T(y) < e for all y < xy. Since € is
arbitrary, we must have lim,,, ., f(z) = 0. O

Proposition 6.8. Let f: R — R be a function. If f € BV, then Ty + f and Ty — f are
increasing functions.

Proposition 6.9. Let f: R — C be a function.
(1) We have f € BV iff both the real part and the imaginary part of f belong to BV .

(2) If f: R — R, then f € BV iff f can be written as the difference of two bounded
increasing functions; these can be chosen as (T + f)/2 and (T — f)/2. This is called
a Jordan decomposition.

(8) If f: R — C and if f € BV, then the left limit f(x—) and the right limit f(x+) exist
for all x € R, including xr = —o0 and x = +00.

(4) If f: R — C and if f € BV, then f has at most countably many discontinuities.

(5) If f € BV and if we let g(x) = f(z+), then f' and ¢’ exist almost everywhere and are
equal almost everywhere.

Remark: The space NBV consists of the functions f: R — C in BV which are right
continuous and such that f(—oo) = 0. There is a relationship between the space NBV
and the complex Borel measures on R. If i is a complex Borel measure, then the function
F(z) = p((—o0,z]) is in NBV, and conversely, given any function f € NBV, there is a
unique complex measure g such that f(z) = pug((—o0,x]); see Folland [29] (Chapter 3,
Section 3.5, Theorem 3.29).

We now return to Fourier series on T and state the following theorem essentially due to
Jordan which generalizes an historically famous result of Dirichlet.

Theorem 6.10. For any f € LY(T), if f € BV([—=,7]), then

i 5, (o) L)1)

me—roo 2

for all x € [—m,x|. In particular, lim,, oo Sim ¢(x) = f(x) whenever f is continuous at x.

Theorem 6.10 is proven in Folland [29] (Chapter 8, Section 8.5, Theorem 8.43).

Other convergence theorems (some about pointwise convergence) are discussed in Folland
[27] and Stein and Shakarchi [67].
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The behavior of S,, s at a jump discontinuity z = m, with m € Z, (a point x where
f(z) # f(z—) or f(x) # f(x+)) is a little strange. It turns out that near an integer value
of z, the function S,, ; contains spikes that overshoot or undershoot the function f, and
when m tends to infinity, the width of the spikes tends to zero but the height does not. This
behavior is known as Gibbs phenomenon. For example, the function

o) =27 (5~ (o~ Lo

(where |x] is the greatest integer < x) is periodic (of period 2m) and exhibits the Gibbs
phenomenon. One easily computes the Fourier coefficients, which are

=0, ¢p=—, m#0.

Then we get

See Figures 6.20 and 6.21.

Figure 6.20: The graph of ¢(z) =27 (5 — (z — [z])).

For more details see Folland [29] (Chapter 8, Section 8.5).

6.4 The Fourier Transform and the Fourier
Cotransform on T" and Z"

In Section 6.1 we introduced the Fourier transform on T and the Fourier cotransform on Z.
In this section we briefly present the generalization to T" =T x --- x T, called the n-torus,
—_——

and to Z™. As in Section 6.1, a normalized Haar measure on T" is dz,,/(27)", where dz,, the
Lebesgue measure on R™ (so that T" has measure 1).



194CHAPTER 6. THE FOURIER TRANSFORM AND COTRANSFORM ON T", 7", R"

(b) (©

Figure 6.21: Figure (a.) is the graph of S; ,(z), Figure (b.) is the graph of S, ,(z), while
Figure (c.) shows the supersition of the graphs of Sy (), S2,(2), Ss,(2), Si,(x), and
Slo’({,(l'>.

Recall that given any function f € L(T), the function F(f): Z — C given by F(f)(m) =
Cm, Where ¢, is the Fourier coefficient

B iy dx(t)
o mt
Cm - . f(t)e 27_‘_ )

is called the Fourier transform of f. We identify the sequence F(f) with the sequence
(€¢m)mez, which is also denoted by f.

Given a sequence ¢ = (¢)mez € €'(Z), we define the Fourier cotransform F(c) of c as
the function F(c¢): T — C defined on T given by

m=0o0

?(C)(@): Z Cmeimea

m=—0Q0

the Fourier series associated with ¢ (with § € R/277Z). Note that ¢™? is used instead of the
term e~ occurring in the Fourier transform.

For symmetry reasons, it seems natural to define a Fourier cotransform on T and a Fourier
transform on Z.

Definition 6.9. The Fourier cotransform F(f) of a function f € LY(T) is the Z-indexed
sequence F(f): Z — C given by

Fom = [ swem S,

and the Fourier transform F(c) of a sequence ¢ = (¢, )mez € €*(Z) is the function F(c): T —
C given by

m=00

F(e)(0) = Z eme "m0

m=—0oQ

with 8 € R/2rZ.
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Observe that if f € L!(T), then

where § € R/277Z. Thus only one of the two transforms is really needed, but it is convenient
to use both (especially in stating Fourier inversion).

Remark: Note a certain asymmetry in the measure chosen on T and Z. The measure on T
is dx /27, so that T has measure 1, and the measure on Z is the counting measure.

The main results are:
(1) The spectral synthesis, Theorem 6.2.

(2) The Fourier inversion formula, Theorem 6.3. This result can be expressed as follows.
If fe€LYT) and if f = F(f) € (*(Z), then

J0) = (FoF)N)O) = fme™.

meZ

(3) Plancherel’s theorem, Theorem 6.4. This theorem asserts that F is an isometric iso-
morphisms between the Hilbert spaces L?(T) and (*(Z).

All three results stated above generalize to T" and Z". First we need a bit of notation.

Definition 6.10. A multi-index is a sequence « = (ay, ..., a,) of natural numbers «; € N.
Define |al, al, 0%, and z* by

n 9 a1 9 [e7%) n
_E: A = aq! X --- R, R a_” o
o « (o} aq: X X Oyt X xZ: .
| | i—1 v " (51‘1) (5,1’”) ’ ‘

=1

Example 6.4. For a specific example of Definition 6.10, let n = 3 and a = (g, g, 3) =
(1,3,4). Then |a| = a1+ as+az3 = 1 +3+4 =8, ol = oqlaglag! = 11314 = 144,

3 4
o 0 o) 0 o o1 .02 .03 3.4
0% = 5o <8m2> <am3> ,and 2% = 21" r5% 5% = T2505.

We now generalize the Poisson kernel and the Fourier transform (and cotransform) to T”
and Z".

Observe that a function z: Z" — C can be viewed as a Z"-indexed sequence z = (2, )mezn,
with z,, € C.



196CHAPTER 6. THE FOURIER TRANSFORM AND COTRANSFORM ON T", 7", R"

Example 6.5. To gain some insight into a Z"-indexed sequence, set n = 2 and z: Z? — C.
The indices of z are the integer-indexed lattice points of R?. In particular, if we assume
that the nonzero elements of z are entries whose lattice points lie in the closed unit square
centered at the origin, z is the finite sequence

z = (Z(—l,—l), 2(=1,0)s #(=1,1)» 2(0,—1)s £(0,0)s £(0,1)5 Z(1,—1)5 #(1,0)» 2(1,1)) ,

where we implicitly made use of the following total ordering for Z*: given (i, ), (p,q) € Z?,
(1,7) < (p,q) if either i < p or i = p and j < ¢; see Figure 6.22.

Figure 6.22: Figure (a) illustrates the lattice points in R? associated with the ZZ-indexed
sequence of Example 6.5. The directed red curve of Figure (b) illustrates the total ordering
of Z? used in Example 6.5.

Let (P(Z"™) (p > 1) be the space

> |zm|p<oo}.

mezZm™

(™) = {z = (Zm)mezn, 2m € C

As in the case n = 1, if 1 < p < q, then ¢?(Z") C (9(Z").
We denote the product measure on T" by dz,/(27)" = (1/(27)")dz ® - - - ® dx, where
—_—

n
dz is the Lebesgue measure on R. With this measure, T" has measure 1.

Definition 6.11. The Poisson kernel P,(0) on T" (with 6 = (6,,...,0,) € R"/27Z") is the
family of functions P,(#), parametrized by r € [0,1), given by

n

Pr(e) = HPr(ek)v

k=1
with

Pr<(9k) — Z rlrl gini

n=—oo
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Definition 6.12. For any function f € L*(T"), the Fourier transform f= F(f) of fis the
Z"-indexed sequence F(f): Z™ — C given by

By Y — dx,(0)
f(m) = F(f)(m) Tnf(Q) )

and the Fourier cotransform F(f) of f is the Z"-indexed sequence F(f): Z" — C given by

Fim = | o) e

with m € Z", 0 € R"/27Z", and with m -0 = 3, _, my0y, the inner product of the vectors
m=(my,...,my,) and 6 = (0,...,0,).

For any ¢ € (*(Z"), the Fourier transform F(c) of c is the function F(c): T" — C defined
on T™ given by

with 6 € R"/27 7"

Remark: The Fourier cotransform is also called the inverse Fourier transform by some
authors, including Hewitt and Ross.

~

It can be shown that |f(m)| tends to zero when |m/| tends to infinity. This is a special
case of Proposition 10.18.

Definition 6.13. The convolution f * g of two functions f,g € L}(T") is given by

(Fra)0) = [ 160 o) G = [ 00 - o) G,

where dx,, is the Lebesgue measure on R".

By Proposition 8.48, we have f * g € L}(T").

One of the main reasons why the Fourier transform is useful is that it converts a convo-
lution into a product.

Proposition 6.11. For any two functions f,g € L*(T"), we have

F(f+g)=F(NF(g),  F(f*g)=F()F(g)
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—_—

The equation F(f * g) = F(f)F(g) can also be written as f x g = f/g\

Proposition 6.11 actually holds in the more general framework of locally compact abelian
groups, and a proof is given in Proposition 10.5 (see also Proposition 10.18).

It is not hard to adapt the proof of Proposition 6.1 to prove that for any f € L'(T"), for
all @ € R"/27Z"™, we have

(f* P,) Z f yrlmih gim-o,
mezn
where ||m||, = [mi| + -+ |my|. As a consequence we have the following result.
Theorem 6.12. (Spectral Synthesis)
(1) If f € LP(T™) for p=1,2 and if r € [0,1), for any 0 € R"/2xZ", write
£:(0) = (Pox £)(0) = Y Fmyrlml e,

mezm"

Then lim, . | = ]}, = 0
(2) If f € C(T"), then lim, 1 || f — frll =
For any p € N, let
Sp={meZ"||my| <p, k=1,...,n}
Note that the sequence z of Example 6.5 is the case of S; (when n = 2).

Recall that the inner product of two functions f, g € L?(T") is given by
dx,(6)
(2m)"
and the inner product of two sequences x,y € (*(Z") is given by
=D b
mezn

Theorem 6.13. Let f € L*(T"). Then we have the equality (Parseval)

Il =">" 1f(m

mezn

= Z Flm)e™?®.

meSy

{f.9) = f( )g(6)

Define s,(0) by

Then we have
Jim [If = s, = 0.
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Plancherel’s theorem holds.

Theorem 6.14. (Plancherel) The map [ +— f 18 an isometric isomorphism of the Hilbert
spaces L2(T™) and (*(Z™).

The Fourier inversion formula is generalized as follows.

Theorem 6.15. (Fourier inversion formula) Let f € L'(T™). Iffe (Y(Z") then

FO) =D Fme™ = (F(H)O),

mezZm™

for all almost all @ € R"™/2xZ"™. Furthermore, if f is continuous, then equality holds every-
where.

Theorem 6.14 and Theorem 6.15 are proven in Malliavin [47]. They allow the extension
of the Fourier cotransform F on ¢'(Z") to (*(Z™) in such a way that F and F are mutual
inverses.

We now turn to the Fourier transform on R.

6.5 The Fourier Transform and the Fourier
Cotransform on R

In this section we discuss the Fourier transform of functions defined on the entire real line
R that are not necessarily periodic. Because R is not compact, L!'(R) and L?*(R) are incom-
parable (with respect to inclusion), and the theory of the Fourier transform on R is more
delicate than the Fourier theory on T. In particular, although Plancherel’s theorem holds
(Theorem 6.14), its proof is more complicated.

Definition 6.14. For any function f € LY(R), the Fourier transform fA: F(f) of fis the
function F(f): R — C defined on R given by

~

Flo) = F(f)(x) = / Fly)e e dé_fj

and the Fourier cotransform F(f) of f is the function F(f): R — C defined on R given by

Fia) = [ s L

where dx is the Lebesgue measure on R.
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Remark: The Fourier cotransform is also called the inverse Fourier transform by some
authors, including Hewitt and Ross.

The formula for F(f) (and F(f)) is reminiscent of the formula

= Z Cme” ™
meEZ
where (¢;,)mez is a sequence, except that the infinite sum is replaced by an integral. The
integer m is replaced by the real number y, the coefficient ¢, is replaced by the value f(y)
of the function f at y, and the exponential e~ is replaced by e~®%*. Thus we can view
F(f)(x) as a continuous superposition of the basic periodic functions y + e~®*. However,
this time, F(f)(z) is not necessarily periodic. We can still think of y as a frequency. In fact,
in signal analysis, the domain of the Fourier transform is called the frequency domain.

—iyT

The reader might be puzzled by the presence of the scale factor 1/4/27. The reason why
it is included is that it makes certain formulae more symmetric, for example, the Fourier
inversion formula and the Plancherel isomorphism. The deep reason for its need has to do
with the fact that the domain of a Fourier transform f is not actually R, but an isomorphic
copy R of R, with a certain measure which is not necessarily identical to the measure on R.

In order for certain results to hold, such as Fourier inversion, if R is given the Lebesgue
measure dx, then R should be given the measure dz/27. Some authors use this normalization.
Following Rudin [57, 58], a more symmetric normalization is to use the same scale factor

1/+/2m for both R and R. Another approach is to incorporate the factor 27 in the exponential;
that is, to use e~ 2™ instead of e~®¥*. In this case, the Lebesgue measure can be used for
both R and R; see Folland [29, 28]. All of this will be elucidated in Chapter 10.

A consequence of using the measure dz/+/27 is that the convolution of two functions

f.g € LY(R) is
_ / fe— )ey) dj;_ff _ / f(y)g(x—y)cii—égf,

and the inner product of two functions f,g € L3(R) is given by

(frg) = /f

By Proposition 8.48, we have f * g € L(R)
It is immediately verified that F(f)(x) = F(f)(—z) = F(f)(z).

We will now state the most important results about the Fourier theory for R without
proof. Proofs of these results can be found in Folland [29], Rudin [57, 58], Stein and Shakarchi
[67], and Malliavin [47]. The most important results will be proven in Chapter 10.

First, following Stein and Shakarchi [67] (Chapter 5 Section 1), observe that there is a
nice class Mod(R) of continuous functions f such that Mod(R) C L'(R), and such that the
Fourier transform f = F(f) of f is well-defined.




6.5. THE FOURIER TRANSFORM AND THE FOURIER COTRANSFORM ON R 201

Definition 6.15. A continuous function f: R — C is of moderate decrease is there is some
A > 0 such that

for all € R;

@) <

see Figure 6.23. The set of functions of moderate decrease is denoted by Mod(R).

Figure 6.23: The blue real-valued “bump” function is of moderate decrease since it is under

magenta graph of g(z) = %.

It is shown in Stein and Shakarchi [67] (Chapter 5 Section 1) that Mod(RR) is a vector space
contained in L'(R), and that the Fourier transform f = F(f) of every function f € Mod(R)
is well-defined. However, the Fourier transform f may not be of moderate decrease.

Let us give a few examples of Fourier transforms.

Example 6.6.
(1) Let f be the characteristic function x[_qq of the interval [—a,a], with @ > 0. Then we
have
o dy @ dy elar _ glaz 2 sinax
F x:/ _aa(y)eTVr — = e W = =
D)= | XeaW)e™ o= e e = v Ve @
Therefore,
2 sinax
F T) = ——
() = ==

We also have 5

— sin ax

F(N@) = —= :

V2t

because

dy @ dy glar _ g—iax 2 sinax

PO = [[xeaalietn o= [ v S = =

see Figure 6.24.
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—hp——

Figure 6.24: The red graph is the plot of x[—2 2], while the wavy salmon graph is the plot of
F(Hz) = 7557 = F(H(@).

Remark: The function sinc is defined by

. SMEL - if g £ Q)
sinc(z) = .
1 if x =0.

Since clearly x[—4,q € L'(R) NL?(R), by Plancherel theorem (Theorem 6.22), X[_4.0 =
\/%% € L%(R), so by setting a = 7 we see that sinc € L*(R). This can also be
shown directly by showing that (sinmz/(7z))? is continuous and bounded near zero.

However, the function sinc is not in L'(R), because
oo
.

see Figure 6.25. As a consequence, its Fourier transform is undefined. However, by

sin Tx

T = 00;
T

(a) (b)

Figure 6.25: Figure (a) is the graph of sinc(x), while Figure (b) is the graph of |sinc(x)|.
Since sinc ¢ L!(R), the area under the graph of the purple curve is unbounded.

Plancherel’s theorem (Theorem 6.22) the Fourier transform has a unique extension to
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Figure 6.26: Let y = 2. Figure (a) is the graph of f(x)

L*(R), and the Fourier inversion formula holds. This implies that

f(@) = (FH)) @) = (FF)(~2),
(F(F)(@) = f(—=)
Consequently, since .
S msm T

T
the (extended) Fourier transform of sinc is (1/v27)X[—x 7]

The function sinc plays a crucial role in the sampling theorem, which gives a nice

~

expression for a function f € L?(R) which is band-limited, which means that f(z) =0
for all = such that |z| > a.

Let f be the function given by
Y
@) = 4.
with y > 0 fixed, and let g be the function given by

T
V2T

e—y\ml;

9()
see Figure 6.26. Then we have

0.5

/ 03 \

0.2
0.1

(a.) (b)

= —2, while Figure (b) is the graph

of g(x) = \/Lﬂe_m‘.
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The second formula is proven as follows. Using the fact that y > 0, we have

Flow) = [ o 2

/0 T e A /°° T ot it AU

— e e’L T + — ¢ Yy mnr _

oo V21 \ 2T 0o V2w V2T
0 00

_ / T pil—iy)t dt 4 / T i+t dt
oo V21 V2T 0o V2r v 2w

T 6i(xfiy)t 0 N T ei(:eriy)t 0
C2mi(—iy)] . [2mi(z+iy) ],

1 1
2i(x —iy)  2i(x +iy)
_ Y
a2y

The first formula is harder to prove directly, but it follows from Fourier inversion (see
Theorem 6.20).

We now return to the general case of functions in L'(R).

Proposition 6.16. (Riemann—Lebesque) For any function f € LY(R), the Fourier transform
f (and the Fourier cotransform F(f)) is continuous and tends to zero at infinity; that is,

fe Co(R; C). Furthermore
[ flloo < 11l -

Proposition 6.16 is proven in Malliavin [47].

As for the Fourier transform on T, the Fourier transform converts a convolution into a
product. The following proposition is a special case of Proposition 10.18 and Proposition
10.19, Parts (3) and (4). First we need some notation. For any function f: R™ — R, for any
y € R", the function \,(f): R" — R is given by

Ay (f)(2) = f(x —y) forall z € R™

The above is a special case of Definition 8.7 for the abelian group R™. The operator A, is
often called a translation operator.

Proposition 6.17. For any two functions f, g € L}(R), the following properties hold:
(1) F+g9=f3
(2) M) (@) = e f(x).
(3) (¥ f) (x) = Ay (f)(@).
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(4) If « > 0 and h(z) = f(x/«), then /ﬁ(:v) = af(ax).
For spectral synthesis in L'(R), the Poisson kernel is replaced by a function G, defined
using the following result.

Proposition 6.18. For any pu > 0, we have

ef“—f — L /e—gi eizy dCL’(y)
VI V27

Let ¢ be the function given by

M)

T

plr) =e =
Then @ = ¢, and ¢(0) = [ ¢(x) dz.

For a proof of Proposition 6.18, see Rudin [58] (Chapter 7, Lemma 7.6) or Folland [29]
(Chapter 8, Section 8.3, Proposition 8.24).

Definition 6.16. The function ¢ given by

M

x

plx)=e 2

is called a Gauss kernel or Weierstrass kernel.

For any p > 0, let G, be the following function:

R
Gu(z) = ﬁe 20

In view of Proposition 6.18 (replacing p by 1/u) we have

1 22 _w? i, d2(y)
G,(2) = —e = §= gioy 20/
ul@) = e /e © Vor

Here is our first result about spectral synthesis analogous to Theorem 6.2(1)—(2). First,
we leave it as an exercise to prove that

26 = [ et L

Nord

Proposition 6.19. (Spectral Synthesis) Let f € LY(R), let f be its Fourier transform, and
for any pu >0, let

o) = (£ G)a) = [ Tyt dj;_fj.

If f € L\(R), then

i [ f = gull, =0,
and if f € LY(R) NL*(R), then

lim I g, = 0.
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Proposition 6.19 is proven in Malliavin [47] (Chapter 3, Section 2.4, Theorem 2.4.5).
The proof uses Fubini’s theorem and some technical properties about g, that are proven in
Malliavin [47].

In general, given a function f € L'(R), the integral

iyz 7 dx_(y)_ T()) (x
/ o fiw) L = F )

does not converge. However, for ;1 > 0, the function g,(x) = (f * G,)(x) is well-defined and
when 4 tends to 0, the function g, is an approximation of f that tends to f.

Now comes our first Fourier inversion theorem analogous to Theorem 6.3.
Theorem 6.20. (Fourier inversion formula) Let f € L\(R). If f € LY(R), then

_ ey dx_(y)_ () (x
f(a) = / v flo) L = (F(P)a).

almost everywhere. If f is continuous, the equation holds for all x € R.

Theorem 6.20 is proven in Rudin [57] (Chapter 9, Theorem 9.11) Folland [29] (Chapter
8, Section 8.3, Theorem 8.26) and Malliavin [47] (Chapter 3, Section 2.4).

Proposition 6.21. If f € L}Y(R) N L*(R), then

1£1l5 = [1£]]2-

Proposition 6.21 is proven in Malliavin [47] (Chapter 3, Section 4.2).

Here is the version of Plancherel’s theorem for L?(R).

Theorem 6.22. (Plancherel) If f € LY(R)NL2(R), then f € L2(R). The Fourier transform
defined on L*(R) N L*(R) has a unique extension F to L*(R) which is an isometric isomor-
phism of the Hilbert space 1?(R) whose inverse is the (extension of) Fourier cotransform

F.

Theorem 6.22 proven in Rudin [57] (Chapter 9, Theorem 9.13) Folland [29] (Chapter 8,
Section 8.3, Theorem 8.29) and Malliavin [47] (Chapter 3, Section 2.4)

Although Theorem 6.22 says that the Fourier transform F extends to an isometric iso-
morphism of the Hilbert space L*(R), this result is useless in practice because for a function
f € L3(R) not in L'(R) N L3(R), the extension of F to f is given by a limit.

The Fourier inversion formula also holds in the following situation.
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Proposition 6.23. (Fourier inversion formula, II) Let f € L2(R). If f € L\(R), then

_ iyz 7 dx_(y)_ () (x
f(z) = / i) T2 = FD)e),

almost everywhere. If f is continuous, the equation holds for all x € R.

Proposition 6.23 is proven in Rudin [57] (Chapter 9, Theorem 9.14).
Definition 6.17. Let B(R) = {f € L'(R) | f € L'(R)}.
Proposition 6.24. The space B(R) is dense in L'(R), L*(R), and Cy(R;C).

Proposition 6.24 is proven in Malliavin [47] (Chapter 3, Section 2.4).

6.6 The Sampling Theorem

In signal analysis a function f: R — C represents a physical signal, and a common problem
is to try to reconstruct this signal by sampling it, which means to compute its values at some
sequence t; < ty < ... of times. A basic issue is to determine how much information can be
gained this way.

It turns out that if the signal f is band-limited, which means that its Fourier transform ]/”\
vanishes outside some interval [—, ], then f can be completely reconstructed by sampling
at the points ¢, = n7/Q, for n € N.

Theorem 6.25. (Sampling theorem) Suppose that f € L*(R) and that there is some > 0

~

such that f(x) = 0 for all |x| > Q. Then f is completely determined by its values at the
points t, = nn/Q, n € N. In fact, we have

=3 1(5) "y

n=—oo

Proof. We follow Folland [27] (Chapter 7, Section 7.3). We can extend f to a periodic
function of period 22, and expand it as a Fourier series over the interval [—£2, Q)]. For reason
of later convenience, we use the index —n instead of n, so we write

flt)y =3 cne™™™2 (|t < Q).

nez

By Plancherel’s theorem (extended to L2(R)), f € L2(R), and since f(t) = 0 for [t| > €, by
Proposition 5.43, we have L?(R) C L!(R) and so f € L*(R). By adjusting the computation
below, we can show that the Fourier coefficients c_,, are given by

AL 1 [~ . V2r  /nmw
= — ¢ inmt/Q dt = _/ ¢ inmt/Q dt = o
¢ zﬂ/ﬂf()e 2 ) TWe ZQf(Q>’
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where we used Fourier inversion (Theorem 6.23) and the fact that f(¢) = 0 for [t| > Q.
Again, using these two facts we have

“ Y wt dw _ “ - \/ﬁ nm —inmTw iwt dw
o= [ Fet = [ 3 B () e

1 2 & nmw\ .
_ i i(Qt—nm)w/NQ)
“an ), 30 1 ()

i Q—nm)w/Q) ] w=0
w=—0

= %n;of (%) [m

 « nm\ sin(Qt — nr)
B Z f(ﬁ) Ot —nm

n=-—00
Since f € L2(R) the above manipulations are legitimate. O

sin Tx
T

Observe that variants of the function sinc(z) = show up.

Theorem 6.25 is due independently to E.T. Whittaker and Shannon (a similar result was
published by Kotelnikov).

It worth noting that the functions

sin(Q — nw
sn(t) = S(lt —nm !

form an orthonormal Hilbert basis for the Hilbert space of functions f in L*(R) such that
]?: 0 a.e. outside (—€,Q); see Figure 6.27. This is because the computations in the proof
of the sampling theorem show that s, is the Fourier cotransform (inverse Fourier transform)
of the function

0 otherwise.

By Plancherel theorem and the fact that the functions t — e~/ constitute an orthonormal

Hilbert basis for L?(—, ), we deduce that the s,, form a Hilbert basis.

From a practical point of view, the expansion of f given by the sampling theorem has
the disadvantage that it generally does not converge very rapidly. By oversampling, that is,
evaluating f at a more closely spaced sequence of points nw/A\Q, with A > 1, we can replace
the functions s, by functions gy (t — nm/AQ) that vanish like 1/t* when ¢ goes to infinity.

The function g, is given by
~ cos Qt — cos ANt

t) =
g)\( ) 7'('()\ _ 1)Qt2 )
see Folland [27] (Chapter 7, Section 7.3, Exercise 8) and Stein and Shakarchi [67] (Chapter
5, Exercise 20). Also see Figure 6.28.
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(@ a=2 (b) 0=2

A 3:Na xS \%/"
AT 7
Aa

(0 Q=n (d) Q=n

Figure 6.27: The graphs of various s,(t). Note that n — —n results in a reflection over the
y-axis.

There is also a dual version of the sampling theorem for functions f € L?(R) that vanish
outside an interval [—L, L]. Then the Fourier transform f of f is determined by sampling
at the points w = nw/L, and f is given by the formula

~ =~ a/nm\ sin(Q — nm)
fi= 3 7(9) =

which is obtained from the formula of Theorem 6.25 by replacing f with ]?

6.7 The Fourier Transform and the Fourier
Cotransform on R"

The generalization of the results of Section 6.5 to R" is straightforward.
Definition 6.18. For any function f € LY(R"™), the Fourier transform F= F(f) of fisthe
function F(f): R® — C defined on R" given by

ry —iyx dxn(fg)
Fio) = 7@ = [ e S0,

and the Fourier cotransform F(f) of f is the function F(f): R® — C defined on R" given
by

Fiw = [ e i),
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n=1,7\ /

Figure 6.28: Figure (a) shows the graphs of various g, (¢). Figure (b) shows graphs of g;5(t)
when t — t —nw/AQ and Q2 = 2. Figure (c) shows graphs of ¢g10(t) when t — t —nw/AQ and
Q=m.

where dx,, is the Lebesgue measure on R", and x -y = Y ,_, 23y, is the inner product of
z,y € R".

Remark: The Fourier cotransform is also called the inverse Fourier transform by some
authors, including Hewitt and Ross.

Again, we are using Rudin’s normalization scale factor 1/(27)"/2, so we are really using

the measure dx, /(27)™2. In particular, the convolution of two functions f,g € L*(R") is

o) = [ o= ) 557 = [ Sota =0 55

and the inner product of two functions f, g € L2(R") is given by

— dz,

(f.9) = . f(x)g(z) )

By Proposition 8.48, we have f * g € L}(R").
It is immediately verified that F(f)(x) = F(f)(—z) = F(f)(z).

Proposition 6.26. (Riemann—Lebesque) For any function f € LY(R™), the Fourier trans-
form f (and the Fourier cotransform F(f)) is continuous and tends to zero at infinity; that

is, f € Co(R™;C). Furthermore
1 flloe < I1£1I5 -
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As for the Fourier transform on T", the Fourier transform converts a convolution into a
product.

Proposition 6.27. For any two functions f,g € L'(R"), the following properties hold for
all v,y € R":

(1) Fxg=73d

(2) N(HN(2) = e f(z).

(3) (€7 [V () = Ay (F)(x).

(4) If @ > 0 and h(z) = f(z/a), then h(z) = o™ f(ox).

Proposition 6.27 is proven in Rudin [58] (Chapter 7, Theorem 7.2).

Another useful property of convolution is that under certain conditions it allows differen-
tiation under the integral sign. This property is another regularization feature of convolution.
By convolving a function with a “nice” function, we obtain a “nice” function.

Proposition 6.28. If f € LY(R"), g € C*(R"), and 0%g is bounded for all o such that
la| < k, then f* g € C*(R") and
0%(fxg) = f*(0%), lal <k
See Folland [29] (Proposition 8.10).

For any i > 0, an for any € R", let G, be the following function:

e ( ) 1 _H;cI\Q
xr) = —€ H 5
H Mn/?

where ||z||* = 22 4 - - - 4+ 22; see Figure 6.29. Using Proposition 6.18, it is easy to see that

— ,u\ligl\Q 1Ty dl’n(y>
Gu(z) /e e o)

We also easily verify that

(f * G)() = / e Fly)e %

Proposition 6.29. (Spectral Synthesis) Let f € L'(R"), let f be its Fourier transform, and
for any p >0, let

gu(z) = (f x G,)(z) = /6@'?”'9”]/‘:(7;)@Wé’2 %
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Figure 6.29: Let n = 2, Figure (a) is the graph of G;(x), while Figure (b) shows graph of
G5(x) nested inside the graph of Gy(z), which itself is nested inside Gi(x). A smaller u

1
leads to a larger peak above the origin. ’

If f € LY(R"), then
lljg(l) |f — 9#“1 =0,

and if f € LYR™) NL3(R"™), then
tim 17~ g, = 0.
Proposition 6.19 is proven in Malliavin [47] (Chapter 3, Section 2.4).
Theorem 6.30. (Fourier inversion formula) Let f € LX(R™). If f € L'(R"), then

o eiy-x/\ dxn(y) e 2 Tar o
@) = [ e f) a2 = FD)@.

almost everywhere. If f is continuous, the equation holds for all x € R™.

Theorem 6.20 is proven in Rudin [58] (Chapter 7, Theorem 7.7) Folland [29] (Chapter 8,
Section 8.3, Theorem 8.26) and Malliavin [47] (Chapter 3, Section 2.4).

Definition 6.19. Let B(R") = {f € L'(R") | f € LY(R")}.
Proposition 6.31. The space B(R") is dense in L*(R"), L*(R"), and Co(R™; C).

Proposition 6.24 is proven in Malliavin [47] (Chapter 3, Section 2.4)

Here is the version of Plancherel’s theorem for L2(R").
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Theorem 6.32. (Plancherel) If f € LY(R") N L3(R"), then f € L2(R"). The Fourier
transform defined on LY(R™) N L2(R") has a unique extension F to L*(R™) which is an
isometric isomorphism of the Hilbert space L*(R™) whose inverse is the (extension of ) Fourier
cotransform F.

Theorem 6.22 proven in Rudin [58] (Chapter 7, Theorem 7.9), Folland [29] (Chapter 8,
Section 8.3, Theorem 8.29) and Malliavin [47] (Chapter 3, Section 2.4)

6.8 The Schwartz Space

It turns out that L'(R™) contains an important subspace S(R™) of rapidly decreasing smooth
functions and that the Fourier transform is an isomorphism of this space, whose inverse is
the Fourier cotransform. Functions in the space S(R™) and all their derivatives vanish at
infinity faster than any power of ||z||, where ||z|| is the Euclidean norm on R"™. Technically,
we introduce the following family of norms.

Definition 6.20. A continuous function f € C(R",C) is rapidly decreasing if for every
integer m > 0, there is some C' > 0 such that (1 + ||z||*)™|f(z)| remains bounded for all
x such that ||z| > C. Let Cyo(R"™) be the set of rapidly decreasing functions. For every
m € N, define the norm || f[],, , by

1 £llmo = sup (1 + %)™ ().

Observe that Definition 6.20 immediately implies that Cyo(R™) is a subspace of Co(R"; C).

: 2\ m 2\ m 20 . 2 m :

Also, since (1 + [l2[|")™[f ()] < (L+ [l=[I)™ S (@)[/(1 + [lz]1°), if (1 + [lz[7)" [ f ()] s
bounded for all = such that [|z|| is large enough, we see that

lim (14 [|z]*)™|f(z)] =0, for all m € N. (%)

l[z[|—>o00

Conversely, Condition (*) implies that (1 + [|z]|*)™*"|f(z)| is bounded for all z such that
||| is large enough. Therefore, (x) is equivalent to the condition used in Definition 6.20. In
view of all this, we have

Coo(R") ={f € G(R™;C) | || fll,.0 < o0, for all m > 0}

Definition 6.21. The Schwartz space S(R™) consists of all smooth functions (that is, dif-
ferentiable at all orders) given by

S[R") ={f € C®R")NCoo(R") | 0°f € Coo(R") for every multi-index a}.

For all m,p € N, define the norm || f|,, , by

1F 1l = s [0 fll,po = sup (L4 J|*)™|0°f(x)].

la|<p z€R™,|a|<p
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Definition 6.21 is due to Laurent Schwartz. Observe that when p = 0, the norm || f||,,
is just the norm [/ f],, , introduced in Definition 6.20, and that by definition,

S[R") ={f € CG[R";C) [ fl],,, < oo, forallm,pe N}

Functions such as zFe~*" where k € N belong to S(R); see Figure 6.30. The functions

e=l=l”™ where m is a positive integer and e=(H121) with ¢ > 0 and o > 0 belong to S(R™);
see Figures 6.31 and 6.32.

T

Figure 6.30: Various graphs of z¥e~ * where k is a nonnegative integer.

Remark: Although it decreases very fast at infinity, the function z ~ e %7l (with y > 0
fixed) does not belong to S(R), because it is not differentiable at = = 0; see the sharp peak
at x = 0 in Figure 6.26(b).

The space D(R™) of smooth functions with compact support is obviously a subspace of
S(R™). In Section 5.13 the space D(R") was denoted KF(R"), but the notation D(R") is
more common.

Since the Schwartz space is a subspace of Cy(R";C), we can make it a normed vector
space by giving it the norm || || . Unfortunately, with this norm it is not complete. We can
give it a topology induced by the family of norms || ||, ,, according to the standard process
for defining a topology in terms of a family of semi-norms described in Section 2.7. Moreover,
because this topology is Hausdorff and the family of norms is countable, S(R™) is actually a
metric space; better, a complete metric space.

Let us now use the family of semi-norms || ||mp to define a topology on the Schwartz
space S(R™). The semi-norms || ||, , are actually norms, so by Proposition 2.18, the space
S(R™) is Hausdorft.
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(b)c=1,m=3

(d)c=1/2,m=3

Figure 6.31: Let n = 2. Figure (a) is the graph of e llzl” | while Figure (b) is the graph
of e~ll=l’. Figure (c) is the juxtaposition of these two graphs and shows for fixed ¢, as m
increases, the peak becomes wider. Figure (d) is e 2lleI° while Figure (e) is e2II° | Figure
(f) is the juxtaposition of Figures (b), (e), and (d), and shows that for fixed m, as ¢ increases,

the peak becomes thinner.

Definition 6.22. The vector space S(R™) endowed with the topology induced by the count-
able family of norms || [|,,, , is a Hausdorff space called the topological Schwartz space.

We usually omit the word topological in topological Schwartz space. The value of the
topology defined above is that S(R") is complete.

Theorem 6.33. The topological Schwartz space S(R™) is a Fréchet space; that is, it is
complete for the metric given by

[e.9]

1 y—zl,
d(z,y) = ) =

PALES + ||y - ‘r”m,p‘

m=0,p=0

The space D(R™) of smooth functions with compact support is dense in S(R™).

Note that the above metric is the metric used in Proposition 2.20. Theorem 6.33 is proven
in Rudin [58] (Chapter 7, Theorem 7.4 and Theorem 7.10).

The following result is proven in Malliavin [47] using the technique of regularization by
some suitable convolution (Chapter 3, Section 3.2, Proposition 3.2.4).
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(d) c=1/2,a=3 (e) (f)

Figure 6.32: Let n = 2. Figure (a) is the graph of e~ (412l while Figure (b) is the graph
of e=(Fllel? igure (c) is the juxtaposition of these two graphs and shows for fixed ¢, as
« increases, the peak becomes narrower. Figure (d) is e~ 221’ while Figure (e) is the
juxtaposition of Figures (b) and (d), and shows that for fixed «, as ¢ increases, the peak
becomes shorter and narrower. This phenomenon is also see in Figure (f), which is the
juxtaposition of the graphs of e~(+lIel)* and e=2(1+l=l*)?,

Proposition 6.34. The space D(R™) of smooth functions with compact support is dense in
LY(R") and L*(R™) (with the Lebesque measure). As a corollary, the Schwartz space S(R™)
is dense in LY(R™) and L*(R™) .

The Fourier theory of S(R") is particularly nice because the Fourier transform is a map
from S(R™) to itself. The following results can be shown.

Theorem 6.35. If f is any function in S(R™), then the following properties hold:

(1) We have f = F(f) € L*(R") and Fourier inversion holds:

27'(' n/2

0= [ Fue wa H0l0) (750,

(2) Actually, f € S(R") and there exist constants ¢rs such that

HfHTS — C7”7S Hf”m#»s,r’ m > n.
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(8) The map f f = F(f) is an algebra isomorphism and a homeomorphism from
S(R™) to itself whose inverse is F, under both algebra structures given by pointwise
multiplication and convolution.

(4)

— o ~

(5)

—

(aif) () = i (@),

(6) If f,g € S(R"), then fg € S(R") and E =f*3.
(7) If f,g € S(R™), then f+ g € S(R") and f+g = f 3.

Theorem 6.35 is proven Malliavin [47] (Chapter 3, Section 4, Theorem 4.2) and Rudin
[58] (Chapter 7, Sections 7.3 pages 184-189). Parts of it are also proven in Folland [29]
(Chapter 8, Section 8.3).

Equation (5) is a small miracle since it says that the Fourier transform of a derivative
acts as multiplication of the Fourier transform by iz, and it can be used to solve certain
partial differential equations. Several examples of this technique are presented in Folland
[27] and Stein and Shakarchi [67]. We give an example involving the heat equation.

Consider a region of the plane. Given an initial heat distribution, we are interested in
finding the temperature u(x,y,t) of the point (z,y) at time ¢. Using Newton’s law of cooling,
it can be shown that u satisfies the partial differential equation called the time-dependent
heat equation

Pu  Pu  odu

Ox? + oy kOt
see Stein and Shakarchi [67] (Chapter 1) or Folland [29] (Section 8.7). After a long period
of time, there is no more heat exchange, so that the system reaches a thermal equilibrium,
and then % = 0. In this case, u depends only on x and y, and the time-dependent equation
reduces to the steady-state heat equation

Pu  Pu

@—Fa—gﬁ—o. (1)

The expression Au on the left-hand side of (1) is the Laplacian of u. Suppose our domain is

the upper half plane
R% = {(z,y) eR*| y > 0}

We would like to find a (the?) solution u(zx,y) of the above equation, given that

u(z,0) = f(x) (2)
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on the boundary, where f is some given function (in S(R)).
The method for finding the solution u proceeds in two steps.

Step 1. The first trick is to apply the Fourier transform with respect to « to both (1)
and (2). We assume that u € S(R?) even though the solution is only defined on the closure
of the upper half plane and may not be extendable to a function in S(R?). The goal of this
step is to show that u must be given in terms of a convolution defined on the upper-half
plane. After guessing a solution using this step and the next, it is still necessary to prove
that it works.

In view of Equation (5) of Theorem 6.35, we get the two equations
2/\
u
+ a_y2($7 y)=0
u(z,0) = f(x).

Observe that we now have a much simpler problem, namely an ordinary differential equation
with respect to y in the unknown u(z,y). The solution of the first equation is well-known:

—132/12(.7}, y)

u(x,y) = 01(@6‘:0"1/ + 02(@6_'@7

with R
Ci(x) + Ca(x) = f(z).

Since the first term has exponential increase, it has to be discarded (because we are seeking
solutions in S(R)), so we must have C; = 0, and we get

~

(e, y) = flx)e . (1)

Step 2. The second trick is that if we can find the Fourier cotransform (inverse Fourier
transform) x +— P,(z) of x — e ¥ since F(P,)(z) = e 1*l¥ we have (by Proposition
6.17(1)),

(w,y) = f(x)e W = F(f)(2)F(P,)(x) = F(f * P,)(x), y>0.

Note that for y fixed, P, ¢ S(R), but P, € L'(R), so f * P, € L'(R) for y fixed. Since
u(x,y) € S(R) C LY(R) for y > 0 fixed, by Fourier inversion (Theorem 6.20) we deduce that

u(z,y) = (f*Py)(x) forallz € R andall y>0.

But we showed in Example 6.6(2) that the Fourier cotransform (inverse Fourier transform)
of

g(x) = ——=e Ml

V2r

(with y > 0) is

f(m):%—f—]ﬁ,
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so the Fourier cotransform (inverse Fourier transform) of x + e~ 1*I¥ is

V2m oy
1S A

Therefore we obtain the solution

u(@,y) = (f * Py) ().

[ yflz—1)
u(z,y) —/R—W(m”yg) dt,

which is called the Poisson integral formula, and the function

Var oy

T x2+y2

Explicitly, we have

Py(z) =

is called the Poisson kernel for the upper half plane (there are variants of P,(x) with different
constants).

To be honest, we still need to check carefully that u(z,y) = (f * P,)(z) is indeed a
solution of the problem. For this we use Proposition 6.28. It can be shown that Au = 0
on R?, but u(z,0) may not be equal to f(z) on the boundary. What we can claim is that
u(z,y) tends to f(x) uniformly as y tends to 0. For details see Folland [29] (Theorem 8.53)
and Stein and Shakarchi [67] (Chapter 5, Theorem 2.6).

Various other problems involving the wave equation or the heat equation can be solved
using the above method; see Stein and Shakarchi [67] and Folland [27].

It turns out that if we use certain kinds of generalized functions, called distributions, then
we can apply a more general version of Theorem 6.35 and obtain more general solutions for
various partial differential equations.

6.9 The Poisson Summation Formula

Given a function f € S(R) it is sometimes desirable to make a periodic function from f.
One way to do this is to define the function Fj as follows.

Definition 6.23. Given a function f € S(R), the function F;: R — C is given by
Fi(x) = Zf(x + 27n).
nez

Since f € S(R), the series converges absolutely and uniformly on every compact subset
of R, so F} is continuous. It is also clear that

Fi(z) = Fi(x 4+ 2mn), n€Z,
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so Fi is indeed periodic. We call F; the periodization of f.

There is another way to make f periodic, which is to use the sequence of numbers

~

(f(n))nez and to make the Fourier series from it,

Fy(z) =Y f(n)e™.

nez

Again, since f € S(R), the sum converges absolutely and uniformly since fes (R), so
F5 is continuous. The remarkable fact is that £} = F.

Theorem 6.36. (Poisson summation formula) For any function f € S(R), we have

S fa+2mn) =Y fn)e™.

nel neZ

-~

In other words, the Fourier coefficients of Fy\(x) =, ., f(x +2mn) are the numbers f(n).

In particular, R
Y f@m) =Y fn).

neL neL

The proof of Theorem 6.36 can be found in Stein and Shakarchi [67] (Chapter 5, Theorem
3.1). It consists in computing the Fourier coefficients of F}.

Theorem 6.36 also holds when both f and fare of moderate decrease (recall Definition
6.15).

Remark: There is a relationship between the Poisson kernel on the unit disk,

n=0o0o

- 1—7?
P.(9) = In| ,ind _
(9) Z e 1—2rcos@ +r?’

n=—oo

and the Poisson kernel on the upper-half plane,

Vm oy

T x2 +_y2’

Py(x) =

obtained by applying the Poisson summation formula to f(z) = P,(z) and F(0) = eIy,
We get

Z Py(x +2mn) = Z e Ilygine — Z(e—y)lnleinw = P.—y(x).

neL nez nez

In summary, (for y > 0), we have

Poy(x) =Y Pylx + 2mn).

nez
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6.10 The Heisenberg Uncertainly Principle

A fundamental fact about Fourier series is that it is émpossible for a nonzero function f €
L%(R) that both f and its Fourier transform f vanish outside of some finite interval. This
can be shown easily using some elementary complex analysis; see Folland [27] (Chapter 7).

There is an even stronger limitation. Roughly, f and fcan’t be both highly localized.
A precise way to state this fact is to define the notion of dispersion.

Definition 6.24. For any function f € L?(R), the dispersion of f about the point a is given

by
df = [ aflpwPas | [P o

Then we have the following theorem.

Theorem 6.37. (Heisenberg inequality) Let f be a function in L*(R). Then for all a,b € R,
we have

—_

(Baf)(Mf) = 1.

Theorem 6.37 is proven in Stein and Shakarchi [67] in the case where f € S(R) (Chapter
5, Section 4), and in Folland [27] (Chapter 7) in a more general situation.

Theorem 6.37 has an interpretation in quantum mechanics (we apologize to those who
are familiar with quantum mechanics for the vagueness of our comments). In quantum
mechanics, among other things, one studies the motion of particles. For this, we need to
know the position and the momentum of the particle, but these are not known exactly, but
instead described in terms of probabilities. For simplicity, assume that we are dealing with
an electron that travels along the real line. There is a function 1, called a state function (or
wave function), which we assume to be in S(R), normalized so that

/ ()t = 1,

such that the probability that the electron is located in the interval [a, b] is

[

The expectation of where the particle might be is the best guess of the position of the particle,
and it is given by

f:/Rth(t)th.

The uncertainty attached to our expectation, or variance, is given by the quantity

At = / (t — 2P (t)[? dt.
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By differentiating under the integral sign with respect to a, we can show that the expectation
T is the choice of a that minimizes the variance [ (t — a)?[4(t)|* dt.

Now in quantum mechanics the momentum § of the particle is determined by the Fourier
transform ¢ of ¢, in the sense that the probability that the electron has momentum £ in the

interval [a, b] is
b
IS

As above, we also have the expectation

z_ - 2
: / 1) 2 dt,

and the variance
Mg = [ (¢ =P dr
R
Theorem 6.37 states that .
(As) (Agh) 2 7,

which is the Heisenberg uncertainty principle. Intuitively, it says that the more certain we
are about the position of the particle, the less certain we are about its momentum, and vice
versa. Actually, we have ignored units of measurements, and in fact Planck’s constant A
should be inserted, so the physically correct statement of Heisenberg uncertainty principle
is that

(Ar)(agh) = 0.

For more details, see Stein and Shakarchi [67] (Chapter 5, Section 4), and Folland [27]
(Chapter 7), and for even more, any text on quantum mechanics.

6.11 Fourier’s Life; a Brief Summary

Joseph Fourier was born on March 21, 1768, in Auxerre, a town in northern Burgundy,
France, and died in 1830. Because he was 21 during the French revolution (1789), he had a
particularly exciting life. In this section we give a very condensed summary of his life, based
on the wonderful account in Chapter 1 of Kahane [39].

Fourier’s family was poor. At age 10 Fourier had already lost his mother and his fa-
ther. The organist of the cathedral had noticed that Fourier was exceptionally gifted, so
he arranged to have him attend the military college in Auxerre. Teaching was provided by
Benedictine monks. Fourier fell in love with mathematics through the writings of Bézout and
Clairaut. He worked very hard and completed his studies early at age 14. It was arranged
that he stayed in the college, in preparation for starting teaching there at age 16. He already
sent some papers on locating the roots of algebraic equations to the Institut, which were
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noticed by Legendre. Legendre requested that Fourier join the army in the artillery (the
most scientific branch), but his request was denied because Fourier was not a “noble” (he
was of humble extraction). So in 1787 he entered the benedictine abbey of Saint-Benoit in
Fleury in preparation for becoming a monk.

Fourier stayed in Fleury until 1789, where he taught mathematics. He was going to
become a monk on November 5, 1798, but the revolution had taken place and put a hold on
new religious positions on November 2. Fourier never became a monk!

Between 1789 and 1793 Fourier continues working on mathematics, but also gets involved
in the revolution. He is involved in the supply of food and weapons to Orléans, and being a
good politician, does a very good job at that.

In 1794 he is sent to Paris where a new school called “Ecole Normale” has been created.
There he meets other mathematicians such as Laplace and Monge. The “Ecole Polytech-
nique” is created in 1794, and Fourier teaches there between 1795 and 1798.

Apparently, Fourier is noticed by Napoleon, and he follows Napoleon for the expedition
to Egypt. There, Napoleon creates a replica of the “Institut de France,” headed by Monge,
and with Fourier as “perpetual secretary.” So Fourier becomes an archeologist.

Napoleon goes back to France where he proclaims himself emperor. Still in Egypt, Fourier
negotiates the retreat of the French defeated by the British. Fourier returns to France in
1801. At his return Napoleon charges Fourier with the important administrative position
of “préfet” (sort of superintendent) of the department of Isere. France was divided in 90
departments (districts), and the main city in Isere is Grenoble. One might think that this
would signal the end of Fourier’s mathematical life, but not at all. Fourier was also an astute
politician, and a good administrator, so he excelled at everything he did. He started working
on his theory of heat propagation.

In 1807 he submitted a paper on this subject to the Institut. Lagrange, Laplace, Lacroix,
and Monge were the referees. Lagrange felt that the paper was not rigorous enough, and
the paper was rejected. The topic of heat propagation was then proposed for a competition.
Fourier reworked his paper which was submitted in 1811, and this time the same referees
awarded him the price. However, the commentaries, although they praised the originality of
the work, especially the heat equation, pointed out some lack of rigor.

Fourier continued to work on a major manuscript on the analytic theory of heat, but this
manuscript was not published until 1822.

In the meantime, Napoleon abdicated in 1815. Life is hectic. Fourier is opposed to
Napoleon III. Although he is promoted as préfet of the Rhone, he resigned from this position
and returns to Paris. There, with the help of a former student, he finds the position of director
of the bureau of statistics! He is elected at the Academy of Sciences in 1817.

Fourier continues working on his book on the analytic theory of heat, but also does some
work in statistics. In 1822 he finally publishes his book, Théorie anaytique de la chaleur,
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which includes all of his work on the subject, starting with his work between 1807 and 1811,
and then 1816, 1821.

Laplace, Monge, Liouville, Dirichlet, Navier, Sturm had great respect for Fourier. How-
ever, Poisson and Cauchy, who were his rivals, were not his friends. The obituaries by Arago
and Cousin did not do justice to Fourier’s work. It is sad that the collected works of Fourier
were never gathered and published. Darboux collected some of Fourier’s papers, but ignored
all his work on what is now called linear programming, saying that Fourier attributed an ex-
aggerated importance to this type of work. After all, Fourier adapted Gaussian elimination
to linear inequalities (Fourier-Motzkin elimination).

However, Fourier’s work had a tremendous influence in mathematics, physics, and engi-
neering, so even if he did not get the recognition that he deserved from his peers, the public
voted with their feet.

We must conclude with a famous note of Jacobi to Legendre, sent on July 2, 1831, after
Fourier’ death.

Fourier deeply believed that the main goal of mathematics was to provide a clear expla-
nation of natural phenomena. In his book he writes:

“L’étude approfondie de la nature est la source la plus féconde des découvertes
mathématiques.”

Jacobi (1804-1851) complains to Legendre that Poisson included in a report that Fourier
made the reproach to Abel and Jacobi that they did not work enough on the theory of heat,
but instead on number theory. Jacobi says:

(13

. mais un philosophe comme lui aurait di savoir que le but unique de la science, c¢’est
I’honneur de l'esprit humain, et que, sous ce titre, une question de nombres vaut autant
qu’une question du systeme du monde.”

Roughly translated: But such a philosopher should have known that the unique goal of
science is the honor of the human spirit, and that, as such, a question about numbers is as
worthy as a question about the system of the world.

A very complete account of the mathematical history of Fourier series and its influence
on mathematics can be found in the captivating book by Kahane and Lemarié-Rieusset [39].

6.12 Problems

Problem 6.1. Recall that D,, and K,, are defined as
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Show that
D, (x) =

Also show that D, x f =S, ;.

sin((2n + 1)z/2) 1 (Sin(m"/ 2))2.

sin(xz/2) Kalw) = n \_sin(z/2)

Problem 6.2. Recall that for any p > 1, the space (P(Z) is the set of sequences & = (z,,)nez
with z,, € C such that ) _, |,|P < oco. Verify that (P(Z) (p > 1) is a normed vector space

with the norm
1/p
|(Zm)mezl| = (Z |xm|p> :

MEZ

Prove that the space (?(Z) (p > 1) is a Banach space. Hint: Adapt the proof of Proposition
D.14.

Problem 6.3. Prove Theorem 6.2. Hint: See Malliavin [47] (Chapter 3, Section 2.2.5).
Problem 6.4. Consider the periodic function (over (—m, 7)) given by

0 if—7m<6<0
0) =
19) {9 ifo<o <.

Compute the real Fourier coefficients a,, and b,, of f as defined in Section 6.2 and prove that
the corresponding Fourier series defined by (1) is given by

2 _1 0 —1)n+1
g__zcos s B e

Problem 6.5. Consider the periodic function (over (—m, 7)) given by
f(0) =sin” 6.

Compute the real Fourier coefficients a,, and b,, of f as defined in Section 6.2 and prove that
the corresponding Fourier series defined is given by

1 1
3~ 500829.

Problem 6.6. Consider the periodic function (over (—m, 7)) given by

0 if—-7m<6<0
(0) = .
1 f0<fl<m.

Compute the real Fourier coefficients a,, and b, of f as defined in Section 6.2 and prove that
the corresponding Fourier series is given by

1 sm n—l
2 Z on —1
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Problem 6.7. Consider the periodic function (over (—m, 7)) given by

£(0) = 62

Compute the real Fourier coefficients a,, and b, of f as defined in Section 6.2 and prove that
the corresponding Fourier series is given by

7T2 > (_1)71
— 44

Problem 6.8. Prove Proposition 6.6. Hint: See Rudin [57] (Chapter 5, Page 102).

cosnd.

Problem 6.9. Let f: R — C be a function. Recall that the total variation function 7% of
f is given by

Tf(x):sup{zn:|f(a7j)—f(xj_1)||—oo<m0<x1<~--<xn:x,nEN—{O}},
=1

where the supremum is taken over all finite subdivisions zg < 1 < - -+ < x,, = . Show that
Ty(x) is an increasing function.

Problem 6.10. Recall that BV is the set of functions f: R — C such that lim,, , . T¢(z) <
oo. Prove that BV is a complex vector space.

Problem 6.11. Prove that if f is differentiable on R and if f’ is bounded, then f € BV ([a, b])
for every finite interval [a, b]. Hint: Use the mean value theorem.

Problem 6.12. Show that sinxz ¢ BV
Problem 6.13. Prove Proposition 6.8.
Problem 6.14. Prove Proposition 6.9. Hint: See Folland [29] (Chapter 3, Section 3.5).

Problem 6.15. Prove Theorem 6.10. Hint: See Folland [29] (Chapter 8, Section 8.5, The-
orem 8.43).

Problem 6.16. Adapt the proof of Proposition 6.1 to prove that for any f € L'(T"), for all
0 € R" /212", we have

(£ P)O) = > Famyrimh e,

mezn

where ||m]|, = [mq| + -+ |my|.

Problem 6.17. Prove Theorem 6.12.
Problem 6.18. Prove Theorem 6.13.
Problem 6.19. Prove Theorem 6.15.
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Problem 6.20. Let f be the function given by
o Y
f(ZL') - 1’2 + y2)
with y > 0 fixed, and let g be the function given by

T
V2T

e ylel

g(z) =

Show that F(f)(z) = g(x).
Problem 6.21. Prove Proposition 6.16.
Problem 6.22. Prove Proposition 6.17.

Problem 6.23. Prove Proposition 6.18. Hint: See Rudin [58] (Chapter 7, Lemma 7.6) or
Folland [29] (Chapter 8, Section 8.3, Proposition 8.24).

Problem 6.24. Prove Proposition 6.19. Hint: See Malliavin [47] (Chapter 3, Section 2.4,
Theorem 2.4.5).

Problem 6.25. Prove Theorem 6.20. Hint: See Rudin [57] (Chapter 9, Theorem 9.11) or
Folland [29] (Chapter 8, Section 8.3, Theorem 8.26) or Malliavin [47] (Chapter 3, Section
2.4).

Problem 6.26. Prove Proposition 6.21. Hint: See Malliavin [47] (Chapter 3, Section 4.2).
Problem 6.27. Prove Proposition 6.23. Hint: See Rudin [57] (Chapter 9, Theorem 9.14).

Problem 6.28. State a dual version of the sampling theorem for functions f € L*(R) that
vanish outside an interval [—L, L]. In this case the Fourier transform f of f is determined
by sampling at the points w = n7/L, and f is given by the formula

o= 3 7(5) s

n=—oo

Problem 6.29. Prove Proposition 6.26.
Problem 6.30. Prove Proposition 6.27. Hint: See Rudin [58] (Chapter 7, Theorem 7.2).
Problem 6.31. Prove Proposition 6.29. Hint: See Malliavin [47] (Chapter 3, Section 2.4).

Problem 6.32. Prove Theorem 6.30. Hint: See Rudin [58] (Chapter 7, Theorem 7.7) or
Folland [29] (Chapter 8, Section 8.3, Theorem 8.26) or Malliavin [47] (Chapter 3, Section
2.4).

Problem 6.33. Prove Theorem 6.35: Hint: See Malliavin [47] (Chapter 3, Section 4, The-
orem 4.2) or Rudin [58] (Chapter 7, Sections 7.3 pages 184-189).
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Problem 6.34. Prove Theorem 6.36. Hint: See Stein and Shakarchi [67] (Chapter 5, The-
orem 3.1).

Problem 6.35. Prove Theorem 6.37 for f € S(R). Hint: See Stein and Shakarchi [67]
(Chapter 5, Section 4).

Problem 6.36. Consider the periodic function f given by

1
— if 7<0<0,0<0<m7

£0) =14 V10l

0 it 6 =0.
(1) Prove that f € L}(T) — L*(T).
(2) Prove that the Fourier coefficients ¢, are given by

T cosmf do

; Wﬁam%oy

co = Cm = 2

2
VT
so that c¢_,, = ¢, if m # 0.

(3) By making a suitable change of variable twice, prove that for m > 0 we have

_ 2 /W (6?) do
cm—w\/ﬁ0 cos

and that the corresponding Fourier series is

AV UG
— + cos(6%) df | cos mep.
Al e

Remark: The integral C'(y/mm) = fo\/m cos(6?)df is a Fresnel integral. It can be

shown that it is bounded by 1 and that lim,, . C(y/mm) = /3.

(4) Using the above fact prove that (c,,) does not belong to (*(Z).



Chapter 7

Radon Functionals and Radon
Measures on Locally Compact Spaces

After having considered a very general theory of integration of functions defined on an
arbitrary measure space and taking their values in any Banach space, we turn to the special
case of complex-valued or real-valued functions defined on a locally compact space X. This
corresponds to measure spaces (X, B, ), where X is a locally compact space, B is the o-
algebra of Borel sets (which is the smallest o-algebra containing the open subsets of X), and
w is any (positive) measure on B, which we call a Borel measure.

The theme of this chapter is that a Borel measure i can be used to define linear forms
on various function spaces. For example, pick the space K¢ (X) of continuous functions on
X with compact support. For every function f € K¢(X) we can compute the integral

ould) = [ s

We have to check that functions in f € Kc(X) are integrable, which is indeed true if p(K)
is finite for every compact subset. We obtain a map ¢,,: K¢(X) — C, and since the integral
is a linear operator, the map ¢, is linear. In general it is not continuous, but it satisfies
some weaker continuity properties. It is also a positive map, which means that ¢, (f) > 0
for every positive function f > 0.

What F. Riesz and J. Radon discovered is that, in some sense to be made precise, a
special class of Borel measures is in one-to-one correspondence with the positive linear forms
on the space K¢(X). This means that for every positive linear form ® on K¢ (X), there is a
(unique) Borel measure mg with some special properties such that ® is represented by mg,
in the sense that

O(f) = /fqu> for all f € Ke(X).

There are two versions of this correspondence theorem known as the Radon—Riesz theo-
rem, depending on the conditions imposed on the Borel measures.

229
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These results are similar in flavor to the fact known from linear algebra that, in a finite-
dimensional vector space E with an inner product (—,—), every linear form ¢ € E* is
represented by a unique vector u € E, in the sense that

o(v) = (v,u) forallveE.

If (£, (—,—)) is an infinite-dimensional vector space which is a Hilbert space (it is complete
for the norm u — /(u,u)), then by the Riesz representation theorem, every continuous
linear form ¢ € E’ is represented by a unique vector u € F, in the sense that

p(v) = (v,u) forallve E.

The Radon-Riesz theorems show that certain kinds of (possibly discontinuous) linear forms
on K¢(X) can be represented using integration instead of an inner product.

The main limitation of this approach is that the linear forms ® induced by a positive
measure are positive, which means that ®(f) > 0 if f > 0. In particular, it is impossible to
represent an arbitrary continuous linear form on K¢ (X) using integration. The solution to
overcome this limitation is to generalize the notion of measure so that a measure can take
negative, or even complex values! We will show how to do this. We will also see that, in
the end, complex measures can be expressed in terms of four positive measures, but these
positive measures only take finite values in R,. Then we will obtain a third Radon—Riesz
correspondence between the continuous linear forms on K¢(X) and certain kinds of complex
Borel measures. This correspondence plays a crucial role in defining the notion of convolution
on a locally compact group.

In this chapter every topological space X is assumed to be locally compact (and Hausdorff).

7.1 Positive Radon Functionals Induced by
Borel Measures

For the record a Borel measure is defined as follows.

Definition 7.1. A Borel measure is any (positive) measure on a measurable space (X, B)
where X is a locally compact space and B is the o-algebra of Borel sets (which is the smallest
o-algebra containing the open subsets of X).

One direction of the correspondence (Borel measures = linear forms) is easy to describe.
It is the observation that the linear forms induced by Borel measures are positive.

Definition 7.2. For any function f: X — C, we write f > 0if f(X) C [0,00). If f,9: X —
R, we write f < g iff g — f > 0. A linear form &: K¢(X) — C is positive if for every
f € Ke(X),if f >0, then ®(f) € R and ®(f) > 0.
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A positive linear form has the following properties.

Proposition 7.1. If &: K¢(X) — C is a positive linear form, then the following properties
hold:

(1) For any real-valued function f € Kr(X) we must have ®(f) € R.
(2) For any two real-valued functions f,g € Kr(X), if f < g, then ®(f) < ®(g).

Proof. Indeed, a real-valued function f can be written uniquely as f = f* — f~, with
fHfmeKr(X), ff>0and f~ > 0. Since ® is linear,

o(f)=2(f") —2(f7) €R,
since (fT) >0 and ®(f~) > 0 as P is positive.

We have f < g iff g— f > 0, and since ® is positive, (g — f) > 0, but since P is linear
and positive, ®(g) — ®(f) > 0 with &(f), P(g) € R, that is, (f) < D(g). O

The following proposition yields the mapping from Borel measures to positive linear
forms.

Proposition 7.2. Assume that the Borel measure p has the property that p(K) is finite for
every compact subset of X (since X is Hausdorff, a compact set is closed, and thus a Borel
set). Every function f € Kc(X) is integrable. Furthermore, the map ¢, : Kc(X) — C given

by

eu(f) = / fdp
s a positive linear form.

Proof. Since f has compact support, say K, and since it is continuous, it is bounded, say
|f| < M. Since f is continuous, it is measurable, and the function My is a step function
which is integrable since p(K) is finite. By Theorem 5.35, the function f is integrable. By
Proposition 5.24, the map ¢, is linear and positive. O

Remark: As a point of terminology, the map ¢, : Kc(X) — C just is just a linear form, but
since its domain is a function space (K¢ (X)), it is customary to call it a linear functional.

The remarkable fact is that any positive linear functional ®: K¢(X) — C determines a
Borel measure mg (with some special properties) such that

O(f) = /fqu> for all f € K¢e(X).

Knowing how to integrate functions in K¢ (X) is sufficient to determine the measure mg
completely. In some sense, continuous functions with compact support play the role of
p-step functions.
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Recall that for any compact subset K of X, we denote by KC(K;C) the set of complex-
valued continuous functions whose support is contained in K (and similarly K(K;R) for
real-valued functions). Interestingly, every positive linear functional on K¢ (X) is continuous
on IC(K; C) for every compact subset K of X.

Proposition 7.3. If &: K¢ (X) — C is a positive linear functional on K¢ (X), then for every

compact subset K of X, there is some real number cx > 0 such that |®(f)| < cx ||f|l, for
all f € K(K;C).

Proof. Every function f in IC(K;C) can be written uniquely as f = f; +ify with fi, fo €
Kr(X). Since ® is a positive linear functional, we have ®(f;) € R, ®(f;) € R and ®(f) =

O(f1 +ife) = P(f1) +iP(f2), so

[2(f)] = VO(f1)? + ©(f2)*.

Since

zeK zeK

11 = sup 1)) = sup VIR + P = | foup()? + sup(ato)

we obtain the inequalities
11l = sup [f1(@)] < 1]l -
reK

and
[ f2lloo = sup | fa(z)| < || f]l -
reK

Using the above inequalities, if we can show that |®(f1)| < ¢1 || fill, and [®(f2)] < 2 || fa] oo
then we get

2 2
DN < S IAIL + B IRIL < /3 +a Il

Therefore we may assume that f € K(K;R). By Proposition A.39, there is a continuous
function with compact support ¢ € Kc(X) (a bump function) such that g(x) = 1 for all
x € K. For any f € KCr(X), we have

—glfllo <F<alfll

and since ® is a positive linear functional, by Proposition 7.1(2), we get

—0(9) | flle < @(f) < 2(9) [[fll

that is
D() <2(9) 1fll >
as desired. ]
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Proposition 7.3 suggests that the linear functionals ®: K¢(X) — C satisfying the con-
clusion of the proposition are of particular interest, and they are. In fact the measure theory
and the integration theory for complex-valued functions on a locally compact space can be
developed entirely in terms of these functionals. This approach is presented in Dieudonné
[20], Bourbaki [5, 7, 10], and Schwartz [63]. Dieudonné and Bourbaki even go as far as call-
ing such functionals measures, which we feel is unfortunate because this term already has a
well established meaning. Unlike these two previous sources, Schwartz actually develops in
parallel both the theory of integration using measure theory, and the theory of integration
using certain linear functionals that he calls Radon measures. Again, we find this terminol-
ogy unfortunate because these are functionals and not measures in the traditional sense. We
propose to use the term Radon functional.

Definition 7.3. A linear functional ®: c(X) — C is a Radon functional if for every
compact subset K of X, there is some real number cx > 0 such that |®(f)| < cx || f]|, for
all f € K(K;C). The set of Radon functionals is denoted M¢(X), or simply, M(X). The
set of positive Radon functionals is denoted MT (X)), and the set of continuous (or bounded)
Radon functionals is denoted M'(X). See Figure 7.1.

$:% (X —C

linear functional

Radon functional

M*(X)
positive Radon M1(X)

functional
bounded Radon
functional

Figure 7.1: A Venn diagram classification of Radon functionals.

Equivalently, a linear functional is a Radon functional if it is continuous when restricted
to K(K; C), for every compact subset K of X.

In general, a Radon functional is not continuous on K¢ (X) for the sup norm || || . For
a continuous Radon functional, there is a uniform constant ¢ > 0 such that

()| < clfll. forall f € Ke(X).
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Continuous Radon functionals are often called bounded Radon functionals.

Proposition 7.3 immediately implies the following result.

Proposition 7.4. Any positive linear functional ®: Kc(X) — C is a positive Radon func-
tional.

Observe that a Radon functional ®: IC¢(X) — C is completely determined by its restric-
tion ®p: Cr(X) — C to the space of real-valued functions in Kr(X). Indeed, every function
f € Ke(X) can be written uniquely as f = fi +ifs with fi, fo € Kg(X), and by C-linearity,

O(f) = P(f1 +ifo) = Pr(f1) +iPr(fo).

Furthermore, if ® is a positive Radon functional, then by Proposition 7.1 we have ®(f) € R
for all f € Kgr(X), so ®r: Kr(X) — R. Therefore, there is a bijection between the space
M™(X) of positive linear functionals ®@: ¢(X) — C and the space My (X) of positive linear
functionals ¥: ICr(X) — R as illustrated by Figure 7.2

d: % (X)—C

linear functional

M(X)
Radon functional

Figure 7.2: The correspondence between M (X) and Mg (X).

Also observe that M(X) and M!(X) are vector spaces. The operator norm || || is well
defined on the vector space M!(X). For any bounded linear functional ®, by definition

[]] = sup{|®(/)] | f € Ke(X), [[fllo =1}
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Using Proposition 2.17 it is easy to show that M!(X) is isomorphic to the dual Co(X; C)’
of the space Co(X;C), that is, the space of all continuous linear forms on Cy(X;C). Recall

that Co(X; C) is the space of continuous functions which tend to 0 at infinity; see Definition
2.16.

Proposition 7.5. Let X be a locally compact space. The space MY(X) of bounded Radon
functionals is isomorphic to the dual Co(X; C)" of Co(X; C), that is, the space of all continuous
linear forms on Co(X; C). Consequently M*(X) is a Banach space (w.r.t. the sup norm,).

Proof. By Proposition 2.17, the space Co(X; C) is the closure of K¢ (X). By definition, M*(X)
is the space of continuous linear forms on K¢ (X). By Theorem A.73, every continuous linear
form has a unique continuous extension to Cy(X; C). Therefore M'(X) is isomorphic to the
dual of Co(X;C). Since C is complete, it is known that the set of continuous linear maps
from any vector space into C is complete. O

Here are some example of Radon functionals.
Example 7.1.

1. Pick any a € X. The map J, given by

for all f € Kc(X) is a Radon functional called (with an abuse of terminlogy) the Dirac
measure. Since |f(a)| <[/ f||., it is a bounded Radon functional.

2. Consider the space K¢(R) of continuous functions f: R — C with compact support.
For each function f € K¢ (R), there is a compact interval [a, b] such that f vanishes
outside of [a, b], and from Section 3.1, the Riemann integral 5

1(f) = / £(t)dt

is defined. We obtain a map I: K¢(R) — C which is obviously linear. Since

/ bf(t)dt‘ <B—a)|fl.

this map is a Radon functional. Actually, this functional is positive. We will see later
that this Radon functional corresponds to the Lebesgue measure.

3. Let @ be any Radon functional and pick any continuous function g € C(X;C). It is
clear that if f € K¢(X), then gf € K¢(X), and we have a map ¥ given by

U(f)=®(gf) forall feKc(X).
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Clearly, this is a linear functional. For any compact subset K of X if f € K¢(X),
then we have

19/ le < If]loo sup [g()].
zeK

Since ¢ is a Radon functional, there is some real cx > 0 such that

1P(gf)] < exlloflls

so we obtain
[D(gf)] < ck Sup l9(2) |1 ]l
S

which shows that ¥ is a Radon functional. The Radon functional W is called the Radon
functional with density g relative to ®, and it is denoted g - ®. Such Radon functionals
play an important role in the definition of the notion of convolution in the theory
of integration based on Radon functionals developed in Dieudonné [20] and Bourbaki

[5, 7, 10, 6].

In the next section we state the most important theorem of the theory of Radon func-
tionals, which is that every positive Radon functional arises from a unique Borel measure
with some regularity properties.

7.2 The Radon—Riesz Theorem and Positive
Radon Functionals

In this section we deal with the direction of the correspondence positive Radon functionals
—> Borel measures. Our first goal is to show that for every positive Radon functional ®,
there is a o-algebra 9t and a unique positive measure mg on M (with certain properties)
representing ® as an integral, which means that

O(f) = /fqu, for all f € Ke(X).

For instance, the positive Radon functional of Example 7.1(2) yields the Lebesgue measure.
In a second stage, by imposing some reasonable conditions on the measure, we obtain a
bijective correspondence.

Complete proofs of these results are quite long and intricate. Such proofs can be found
in Rudin [57] (Chapter 2), Lang [43] (Chapter IX), Folland [29] (Chapter 7, Theorem 7.2),
and Schwartz [63] (Chapters 5 and 7). Going back and forth between Rudin, Folland, and
Lang is a possible strategy to understanding the proof.

Theorem 7.6 is often referred to as the Riesz representation theorem. A version of this
theorem for X = [0, 1] was first proven by Frigyes Riesz! in 1909. In 1913, Radon extended

'Not to be confused with his younger brother Marcel Riesz.
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Riesz’ result to a compact subset of R™ in terms of regular measures rather than a Stieltjes
integral. Following Malliavin [47], it seems appropriate to call it the Radon—Riesz theorem,
but it should be noted that other versions of this theorem were obtained by Banach, Saks,
Markov, and Kakutani, which gives the most general version stated in Theorem 7.30; see
Dunford and Schwartz [25].

Theorem 7.6. (Radon-Riesz) Let X be a locally compact (Hausdorff) space. For every
positive linear functional ®: Kc(X) — C, there is a o-algebra M containing the Borel o-
algebra, and there is a unique positive measure mg on M with the following properties:

(1) The linear functional ® is represented by me, that is,
O(f) = /fqu, for all f € Ke(X).

(2) The measure mg(K) is finite for every compact subset K of X.

(3) We have
me(E) = inf{me(V) | E CV, V open}

for every E € 9.

(4) We have
me(E) = sup{me(K) | K C E, K compact}

for every open subset E, and for every E € MM with me(E) < +o0.
(5) For any E € M and any A C E, if me(E) = 0, then mg(A) = 0, in other words, me

18 a complete measure.

Let us make a few comments about the proof. The uniqueness of me is not so bad.
Observe that by (3) and (4), the measure mg is determined by its values on compact subsets.
Hence it suffices to prove that if two measures p; and po satisfy the theorem, then they agree
on all compact subsets.

Pick any compact K and any € > 0. By (3) and (4), there is some open subset V' such
that K C V and pe(V) < pe(K) + €. By Proposition A.39, there is a continuous function
f: X — [0,1] such that f(z) = 1 for all # € K, and such that supp(f) is compact and
supp(f) C V; this implies that

() = [ e
< /fdul = ®(f) =/fduz

< /XV dpg = pa(V')
< /.I/Q(K) + €.



238 CHAPTER 7. RADON FUNCTIONALS AND RADON MEASURES

Therefore, pu1(K) < po(K). By swapping pq and ps, we obtain po(K) < pi(K), and thus
w1 (K) = pa(K). Observe that the above derivation also shows that p(K) is finite for every
compact subset K.

To construct me we proceed as follows; for simplicity of notation, write u instead of me.

(a) For every open set V in X, for every continuous function g: X — R, write g < V if
g: X — [0,1], supp(g) is compact, and supp(g) C V. Let

w(V) = sup{®(g) [ g < V}.
This will force Condition (4).

(b) Next, to force Condition (3), we extend p to arbitrary subsets. For every £ C X let
w(E) =inf{u(V) | E CV, Vopen}.
It can be checked that p is an outer measure.

(c¢) In order to obtain a c-algebra and a measure, we need to cut down the family of
subsets, still forcing Conditions (3) and (4). Let A be the family of all subsets A of X
such that p(A) < 400 and

w(A) =sup{u(K) | K C A, K compact}.

Then A is an algebra containing all compact sets and all open sets of finite measure.
The map p is a measure on 4, and if pu(A) < +oo, then A € A.

(d) Let 9t be the family of all subsets Y of X such that Y N K lies in A for all compact
subsets K. Then 91 is the desired o-algebra containing the Borel sets, and p is a
positive measure on 9. The algebra A consists of the sets of finite measure in 9.

Having done all this, one still needs to check that Conditions (1), (3), and (4) hold.
Proposition A.40 (existence of finite partitions of unity) is used for some of these checks.

Theorem 7.6 shows that the measure that arises from a positive linear functional has
special regularity properties that we already encountered when we met the Lebesgue measure
in Section 4.5.

7.3 o-Regular Borel Measures
Definition 7.4. A Borel measure p on the Borel o-algebra B of a locally compact space X
is o-regular if the following two conditions hold:

For every F € B,
u(E) = nt{u(V) | E C V, V open}. (+)
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For every open subset E| and for every E € B with u(E) < 400,
pu(E) =sup{u(K) | K C E, K compact}. (*%,)
Condition (x) is called outer regularity, and Condition (x%,) is called o-inner reqularity.

We say that p is locally finite if p(K) is finite for every compact subset K.

The following proposition justifies the terminology o-inner regularity.

M Borel measure

0 - regular

locally finite

Figure 7.3: A Venn diagram classification of Borel measures.

Proposition 7.7. Let X be a locally compact (Hausdorff) space. If a Borel measure p is
o-inner reqular, then

u(E) = sup{u(K) | K C B, K compact} (%)
holds for every o-finite subset £ € B.

Proof. Say E = J;2, E; with E; € B and p(E;) < 400. We may assume that pu(E) = 400,
since if u(FE) < 400 then we already have o-inner regularity by definition. For every M > 0,
there is some n > 1 such that u (J._, E;) > M. Since |J;_, E; has finite measure, o-inner
regularity applies, so there is some compact subset K such that pu(K) > M. This shows that

sup{u(K) | K C E, K compact} = +oo = u(E),
which shows o-inner regularity for E. O]

Definition 7.5. Let X be a locally compact (Hausdorff) space. A Borel measure p is called
a (positive) o-Radon measure if it is o-regular and locally finite. The space of o-Radon
measures is denoted by M (X). See Figure 7.3.
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Theorem 7.6 immediately implies the following correspondence which we illustrate in
Figure 7.4.

Theorem 7.8. (Radon—Riesz Correspondence, 1) Let X be a locally compact (Hausdorff)
space. The maps m: M (X) — MH(X) and p: M} (X) — M*(X) given by

m(®) =me for all ® € MT(X)
p(p) = @ for all p € M3 (X)

are mutual inverses that define a bijection between the space M*(X) of positive Radon func-
tionals and the space ME(X) of (positive) o-Radon measures (recall from Proposition 7.2
that

ould) = [ s
for any f € Kc(X).)

[L Borel measure

locally finite

X locally compact

Tto1

M*(x)
positive Radon
functional

A

Figure 7.4: Radon—Riesz Correspondence, Version 1.

Measurable functions on a locally compact space with a o-regular, locally finite, Borel
measure are very close to being continuous as stated in the following theorem of Lusin.
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Theorem 7.9. (Lusin’s Theorem) Let X be a locally compact space equipped with a o-
reqular, locally finite, Borel measure p, and let f be any measurable function on X. If
f wvanishes outside of a set A of finite measure, for any € > 0, there is some function
g € Kc(X) and a measurable set Z with u(Z) < €, such that f(x) = g(x) for allz € X — Z,

and [|g]l o < [/l

Theorem 7.9 is proven in Rudin [57] (Chapter 2, Theorem 2.24) and Lang [43] (Chapter
IX, Theorem 3.3).

The Vitali-Carathéodory theorem states that every function in L}L(X ,B,C) can be ap-
proximated from below and from above by certain kinds of functions called upper semicon-
tinuous and lower semicontinuous, see Rudin [57] (Chapter 2, Theorem 2.25).

We have the following density result which uses Lusin’s theorem (Theorem 7.9).

Theorem 7.10. Let X be a locally compact space equipped with a o-reqular, locally finite,
Borel measure y1. The space Kc(X) is dense in Lb(X,B,C) forp=1,2.2

Theorem 7.10 is proven in Rudin [57] (Chapter 3, Theorem 3.14) and Lang [43] (Chapter
IX, Theorem 3.1).

The following corollary of Theorem 7.10 will be used in Vol II, Chapter 3.

Theorem 7.11. Let X be a locally compact, metrizable, separable space equipped with a
o-regular, locally finite, Borel measure yi. Then L8 (X, B, C) is separable for p=1,2.

Theorem 7.11 follows immediately from Theorem 7.10 and Theorem 2.16.

The following proposition is needed for proving the uniqueness of the Haar measure up
to a constant.

Proposition 7.12. Let X be a locally compact space equipped with a o-reqular, locally finite,
Borel measure . For any function f € ﬁlﬂ(X, B,C), if

/fgdu =0 forall g e Kc(X),

then f =0 almost everywhere.

Proof. We use Proposition 5.39, recalling the fact that fA fdu = [ fxadu. Let A be any
subset of finite measure. By Theorem 7.10, x4 is the L!-limit of a sequence (g,) of functions
gn € Ke(X) with g,(X) C [0,1]. By Proposition 5.26, there is a subsequence (gn, )r>1
that converges pointwise to x4 a.e., and thus (fg,,) converges pointwise to fxa a.e. By
Proposition 7.2, the functions g,, are integrable, so the functions (fg,,) are also integrable,
and since g,, (X) C [0, 1], by the dominated convergence theorem, we conclude that [, fdu =
[ fxadp =0 for all subsets A of finite measure, and by Proposition 5.39, we have f = 0
a.e. [

2Even for all p with 1 < p < 400.
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In the next section we show that by requiring the locally compact space X to be also
o-compact, then we obtain Borel measures that are not only o-regular, but regular as well,
which means that inner regularity holds for all £ € ‘B.

7.4 Regular Borel Measures

In Theorem 7.6 outer regularity holds, but o-inner regularity holds only for open subsets and
measurable sets of finite measure. It is often desirable for inner regularity to hold for arbitrary
subsets F € B, possibly not o-finite. It turns out that making some mild restrictions on
X, we obtain a bijection between positive linear functionals and these regular measures. On
this subject, Rudin’s exposition seems clearer than Lang’s exposition.

Definition 7.6. A Borel measure p on the Borel o-algebra B of a locally compact space X
is regular if the following two conditions hold for every E € B:

u(E) = inf{u(V) | E C V. V open} (%)

and
pu(E) =sup{u(K) | K C E, K compact}. (xx)

Condition () is called outer regularity, and Condition (xx) is called inner regularity. See
Figure 7.5.

[ Borel measure

0 - regular regular

locally finite

Figure 7.5: Another Venn diagram classification of Borel measures.

Observe that if a Borel measure p is o-finite (on X) and if it is o-regular, then it is
actually regular. Another sufficient condition is given in the next proposition.
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Proposition 7.13. Let X be a locally compact (Hausdorff) space in which every open subset
i1s o-compact. If v is a locally finite Borel measure, then p is a regular measure.

Proposition 7.13 is proven in Rudin [57] (Chapter 2, Theorem 2.18).

Observe that X = R” satisfies the condition of Proposition 7.13. Thus a locally finite
Borel measure on R” is a regular measure.

A way to obtain the Radon—Riesz correspondence between positive Radon functionals
and regular locally finite Borel measures is to require X to be o-compact, which means that
X is the countable union of compact subsets (see Definition A.43).

Theorem 7.14. Let X be a locally compact (Hausdorff), o-compact space. For every positive
linear functional ®: Kc(X) — C, if M and me are the o-algebra and the measure obtained
in Theorem 7.6, then the following properties holds:

(1) For any E € 9 and any € > 0, there is a closed set F' and an open set O such that
FCECO and p(O - F) <e.

(2) The measure mq is a reqular, locally finite Borel measure on the Borel o-algebra B.

Theorem 7.14 is proven in Rudin [57] (Chapter 2, Theorem 2.17). The following theorem
allows us to get a bijective correspondence between positive linear functional and regular
locally finite Borel measures, and to state this theorem it is convenient to introduce the
following definition.

Definition 7.7. Let X be a locally compact (Hausdorff) space. A Borel measure p is called
a (positive) Radon measure if it is regular and locally finite. The space of Radon measures
is denoted by Mt (X)), or simply M*(X). See Figure 7.5.

rad

Theorem 7.15. (Radon—Riesz Correspondence, II) Let X be a locally compact (Hausdorff),
o-compact space. The maps m: MT(X) - MT(X) and o: MT(X) - MT(X) given by

m(®) =me for all ® € MT(X)
p(p) = ¢u  for all p € M*(X)

are mutual inverses that define a bijection between the space M1 (X)) of positive Radon func-
tionals and the space MT(X) of (positive) Radon measures. See Figure 7.6.

An interesting application of Theorem 7.15 is obtained by choosing X = R and ® to be
the Radon functional I induced by the Riemann integral defined in Example 7.1(2). The
Radon measure m; given by Theorem 7.15 turns out to be the Lebesgue measure puy. For
details, see Rudin [57] (Chapter 2).
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[ Borel measure

regular

X locally compact

locally finjte Xis o - compact

1to1
P:% () —C
iNear functional

M(X)
Radon functional

+
M*(X)
positive Radon
functional

Figure 7.6: Radon-Riesz Correspondence, Version 2.

7.5 Complex and Real Measures

By Proposition 7.2, the functionals induced by Borel measures are positive, but there are
Radon functionals that are not positive, so it is natural to ask if such functionals arise from
some generalized measures allowed to take negative values, or even complex values. The
answer is yes. It is even possible to define measures with values in any Banach space. Such
measures are discussed in Lang [43], Schwartz [63] and Marle [48], but for simplicity we will
only consider real and complex measures. In this section we take a small detour to define
complex measures. Then we will show how they relate to functionals on K¢(X) that are not
necessarily positive, but continuous.

Going back to Definition 4.9, a (positive) measure on a measurable set (X, .A4) is a map
1 satisfying the following properties:

(ul) p: A — [0, +00], where A is a o-algebra of subsets of X.

(12) p(0) = 0.

(u3) For any countable sequence (A;);>1 of subsets A; of A such that A, N A; = 0 for all
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i # 7,
7 (U Az) = ().
=1 =1

Such a function may have the value +oo, but in (u3), if A = ;2 A; and if p(A) is
finite, then the series >~ 1(A;) converges, and since it consists of nonnegative numbers, it
converges absolutely, and thus commutatively, which means that for any permutation ¢ of

N, , we have
M<A> =W <U AO’(/L)) - Z/“L(Aa(z))

If we replace [0, +00] by R or C, then a new problem arises, namely that the convergence
of the sum Y 7, u(A;) generally depends on the order of the A;. The solution is to require
commutative convergence of the series arising in (©3). It is known from analysis that for R
or C, a series is commutatively convergent iff it is absolutely convergent, so we require the
latter. We also require p1(A) be an element of R or C, that is, ;(A) must be “finite.” There
is a way to define measures with values in R U {400}, and even in R U {—o00, +00}, but we
have no need for such generality (see Schwartz [63], Chapter V, §9).

Definition 7.8. Let (X,.A) be a measurable space. A complex measure on (X,.A) is a map
p satisfying the following properties:

(ul) p: A— C.

(12) p(0) = 0.

(u3) For any countable family (A;);>1 of subsets A; of A such that A;NA; = 0 for all i # j,

H (U Ai) = ZM(AL')’

where the series on the right-hand side is absolutely convergent.

A real measure (or signed measure) is a complex measure such that pu(A) C R.

Observe that a real measure which is also positive is a positive measure according to Def-
inition 4.9, but since a positive measure may take the value +o00, there are positive measures
that are not real measures in the sense of Definition 7.8. When we use the term positive real
measure, we mean that this measure only takes finite values. By positive measure, we mean
a measure that may take the value +o0.

One might wonder if interesting real or complex measures exist. Indeed, for any arbitrary
measure space (X, A, p), every function f € £,(X, A, C) gives rise to such a measure.
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Proposition 7.16. Let (X, A, 1) be a measure space (here, ju is a positive measure). For
every integrable map f € L,(X,A,C), the function py: A— C given by

pr(A) = / fdu = /fXAd,u forall Ae A
A
18 a complex measure.

What is not obvious is that (3) holds. This follows from Proposition 5.37 (a consequence
of the Lebesgue dominated convergence theorem). A detailed proof is given in Marle [4§]
(Chapter 2, Proposition 2.5.2).

The new twist here is that given a measure y, rather than defining a functional by varying
the function being integrated, we fix a function but we integrate by varying the subset over
which we integrate.

It is trivial to check that the complex measures (and the real measures) form a vector
space.

Remarkably, every complex measure p arises as a measure of the form |u|, for some
suitable positive measure |i| and some well chosen function h € £, (X, A, C); see Theorem
7.21. The measure |u| is defined as follows.

Definition 7.9. Let (X,.A) be a measurable space, and let p be a complex measure on
(X, .A). Define the map |u|: A — [0, +o0] by

1l (A) = Supz (A,

for all A € A and for all countable partitions (A4;);>1 of A with A; € A. The map |y is
called the total variation measure (for short total variation) of p.

Obviously, if i is a real positive measure, then |u| = p. It is easy to see that by definition,
lu(A)| < |u|(A) for all A e A.

In fact, it is minimal with this property. We have the following remarkable theorems.

Theorem 7.17. Let (X, A) be a measurable space, and let pu be a complex measure on (X, A).
The map |p|: A — [0,400] is a positive measure. The positive measure |u| is the minimal
measure such that

(A)] < ul(A) for all A€ A,

in the sense that if X is any positive measure such that
|1(A)| < A(A)  forall A e A,
then |p| < X\ (which means that |p|(A) < A(A) for all A€ A).
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A proof of Theorem 7.17 is given in Rudin [57] (Chapter 6, Theorem 6.2) and Lang [43]
(Chapter VII, Theorem 3.1).

The next theorem is even more surprising.

Theorem 7.18. Let (X, .A) be a measurable space, and let i be a complex measure on (X, A).
The map |u|: A — [0, +00] is a finite positive measure; that is, |pu|(X) < +oo.

A proof of Theorem 7.18 is given in Rudin [57] (Chapter 6, Theorem 6.4) and Lang [43]
(Chapter VII, Theorem 3.2). Theorem 7.18 implies that p(X) is bounded: it is contained in
a closed disk of finite radius. This fact shows that the convergence requirement of Condition
(13) is quite strong.

Theorem 7.18 allows us to make the space of complex measures into a normed vector
space.

Definition 7.10. Let (X,.A) be measurable space. For any complex measure p, define |||
as ||| = |p|(X). The vector space of complex measures equipped with the norm defined
above is denoted CM! (X, A).

It is not hard to show that CM'(X, A) is a Banach space.

Proposition 7.19. Let (X, A) be a measurable space. The normed vector space CM (X, A)
is a Banach space (it is complete).

Another interesting fact is that if p is a positive measure (possibly taking the value +00)
then £} (X, A,C) can be embedded in CM'(X, A).

Proposition 7.20. Let (X, A, i) be a measure space. The map f +— g is a linear embedding
of L,(X, A,C) into CM'(X, A), and

gl = 11f1ly  for all f € Lu(X, A, C).

Proposition 7.20 is proven in Lang [43] (Chapter VII, §3, Theorem 3.3). The proof uses
Proposition 5.18.

The next theorem shows an important fact that we mentioned earlier, namely that every
complex measure p arises as a measure of the form |ul, for some well chosen function h €
L,)(X,A,C). This result is a special case of the Radon-Nikodym theorem, but for now we
prefer not discussing this theorem.

Theorem 7.21. For every complex measure j1 on a measurable space (X, A), there is a
function h € L} (X, A, C) such that |h| =1 and

Il
u(A) = / hdlu|  for all A € A.
A

In other words, p = |p|n (recall that |p| is a positive measure). Furthermore, any two

functions hy, hy € £|1#|(X, A, C) satisfying the conditions of the theorem are equal |p|-a.e.
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For a proof of Theorem 7.21, see Rudin [57] (Chapter 6, Theorem 6.12) and Lang [43]
(Chapter VII, §2 and §4).

Let us now turn our attention to real measures. We will see that any real measure can
be expressed in terms of two positive real measures. This implies that any complex measure
can be expressed in terms of four positive real measures. This will allow us to explain how
to integrate with respect to a complex measure.

7.6 Real Measures and the Hahn—Jordan
Decomposition

We begin by showing that a real measure can be expressed as the difference of two finite
positive measures. If u is a real measure, since |u| is a finite measure, we can define two
finite positive measures p* and g~ such that p = p* — pu=.

Definition 7.11. If y is a real measure, the real measures ™ and p~ are defined by

1 _ 1
wh =Sl ), =Sl = ).
It is immediately checked that u™ and p~ are finite positive measures, and we have
p=pt—p, fpl=pt A

Definition 7.12. Given a real measure y, the positive real measures pu+ and p~ are called
the positive variation and negative variation of . The expression of p as = pu* — p= is
called the Jordan decomposition of p.

The Jordan decomposition has certain minimality properties that we are going to de-
scribe.

Definition 7.13. Let (X, .A) be a measurable space. A complex measure p is concentrated
on (or carried by) a measurable subset A if u(E) = 0 for all E € A such that EN A = ().
Two complex measures 7 and o are mutually singular if there exist two disjoint measurable
subsets A; and Ay such that py is concentrated on A; and ps is concentrated on A;. We
sometimes write (g L po.

Every real measure has a Hahn-Jordan decomposition as described by the following
theorem.

Theorem 7.22. (Hahn—Jordan Decomposition) Let (X, A) be a measurable space. For any
real measure p, there is a partition (X1, X7) of X into two disjoint subsets of X such that

if
po=pt—p
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is the Jordan decomposition of u, then u* is concentrated on X+, and u~ is concentrated on
X ™. Furthermore, for any E € A, we have

p(E) =sup{u(A) |ACE, Ac A}, p (E)=sup{-u(A) | ACE, Ac A}.

For any other partition (YT, Y ™) of X such that u* is concentrated on Y and = is con-
centrated on 'Y ~,

pHENXY) = p (ENYY), p(ENXT)=p (ENY™),

for all E € A.

Let us now consider a complex measure p: A — C.

Definition 7.14. Given a complex measure p: A — C, the function i: A — C called the
conjugate of p is defined by m(A) = p(A) for all A € A. We also define p;: A — R and
to: A — R by

i(A) = Su(A) + HA)), pa(d) = o-(u(4) ~ i(A))

for all A € A. We call p; the real part of o and py the imaginary part of p.

It is immediately checked that 7 is a complex measure, and that pu; and us are real
measures such that

Ho= T+ i
fo= iy — tfia.

Using the Hahn—Jordan decomposition of p; an us, we see that we can write p uniquely
in terms of four positive real measure ", yy, g, flo , as

po= i =y il — )
Definition 7.15. For any complex measure p: A — C, the expression

po= i — gy iy — pg)

is called the Jordan decomposition of p.

Proposition 7.23. For any complex measure pi: A — C, we have |p| < |p|, |pe| < |p|, and
that |p| < |u1| + |p2|. A function f is |u|-integrable iff it is integrable for all four positive
real measures i, py , pg , and j .
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Proof. Tt is easy to check that |u1| < |u|, |pe| < |p|, and that |u| < |u1| + 2| Tt follows
easily that f is |u|-integrable if f is |u|-integrable and |us|-integrable. Since |ui| = pf + py
and |us| = pg + p5, it is also easy to see that f is |ui|-integrable iff f is ui-integrable
and y -integrable, and similarly f is |us|-integrable iff f is uj-integrable and p; -integrable.
Therefore, f is |ul|-integrable iff it is integrable for all four positive measures p;, p;, p4 , and
Hha - O

The Jordan decomposition of the complex measure p suggests defining the integral
[ fdu for any function f € L} (X, A, C); see Dieudonné [20] (Chapter XIII, Section 16,

|l

no. 13.16.2), or Folland [29] (end of Section 3.1 and Section 3.3).

Definition 7.16. Given any complex measure p: A — C, for any function f € L',‘lM (X, A,C),

we define the integral [ fdu as

[ tdn= [ gdwri [ gdwa = [ saui~ [ sau i [ faus i [ i,

By Proposition 7.23, the above expression is well defined since f is |u|-integrable iff it is
integrable for all four positive real measures ), uy, s, and u; .

Remark: Alternatively, if p is a complex measure, [ fdu can be defined using Theorem
7.21 as [ fhd|u|, as in Rudin [57] (Chapter 6, Section 6.18).

The following fact will be needed later.

Proposition 7.24. Given a complex measure i, if fi is the conjugate measure of u, for any
function f € L] (X, A, C) we have

|1
/fdﬁ:/fdu, or equivalently /Td,u:/fdﬁ.

As a consequence, Ti is the unique complex measure such that

/fdﬁ—/fdu, for all f € Co(X;C).

Proof. Write u = pq1+1ipo as above, where pq and piy are real measures. We have @ = g —ipo,
and the measures p; and p, are written as puy = pf —puy and py = pg —py , where pi, ui, s,
and p, , are real positive measures. Now for any function f integrable for all four positive
measures above it is obvious that

[ = [gaz. [ Fa = [ o,
/fdﬂl = W, /7dﬂz = W,

SO
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[ Fin= [ Fdw+i [ T
— [ fawi i [ s
— [ sdm i [ saus
- [ tam.

as claimed. Since Cy(X; C) is obviously contained in E‘lu‘ (X, A, C), the last statement follows
from Theorem 7.30 (Radon-Riesz III), which will be proven in Section 7.8. O]

thus

Since the measures ], 1], ji3 , and p; are positive real measures, they are finite. This im-
mediately implies that the Radon functional ¢, induced by a complex measure p is bounded.
Therefore, complex measures represent only bounded Radon functionals. Actually they rep-
resent all of them, which is the object of Section 7.8.

To show the above fact, we need to decompose a bounded Radon functional in terms
of (four) positive bounded Radon functionals, and for this we introduce the notion of total
variation of a Radon functional.

7.7 Total Variation of a Radon Functional

The notion of total variation of a Radon functional allows the decomposition of a bounded
Radon functional into four positive bounded functionals in a way that is similar to the Jordan
decomposition of a complex measure. This fact is the key to the representation of a bounded
Radon functional by a complex measure.

Recall that for any function g: X — C, we denote by |g| the function |g|: X — R given
by |g|(x) = |g(x)]| for all z € X.

The following result is shown in Dieudonné [20] (Chapter XIII, Section 3).

Theorem 7.25. For any Radon functional ®: Kc(X) — C on a locally compact space X,
there is a smallest positive Radon functional |®|: Kc(X) — C such that

[R(A) < |PI(f])  for all | € Ke(X).

The functional |®| is completely defined by its restriction to positive functions f > 0 in
Kr(X) by
[2|(f) = sup{|®@(9)] | g € Kc(X), [g] < [}
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Proof sketch. We know from the remark just after Proposition 7.4 that a Radon functional
®: Kc(X) — Cis completely determined by its restriction ®g: Kr(X) — C to the space of
real-valued functions in Cg(X). The first step in the proof of Theorem 7.25 is to show that
the formula

|[@[(f) = sup{|®(g)[ | g € Kc(X), |g] < [}

defined on positive functions f > 0 in Kg(X) is yields a finite number. Let K be the support
of f, which is compact. Since |g| < f, the support of g is contained in K, so

which shows that |®|(f) is finite. Next we show that |®| is additive, which is left as an
exercise.

The second step is to extend |®| to arbitrary functions f € Kr(X) by writing f = f'— f”,
where f', f”" € Kr(X) and f’, f” > 0, by setting

[R[(f) = |2|(f) = ®[(f).
This expression does not depend on the decomposition of f because if f = f| — f// =
Fo— f1 then f{+ £ = fI+ fi 5o [BI(F) + [B(F) = [](f}) + [@](f7), which implies
[@1(f1) — [@[(f2) = |2](f) — [®I(f3)-
The last step is to prove that |®[(Af) = A|P®|(f), which is clear A > 0. For A < 0, we
write f = f"— f” with f' f” > 0, and then

[PIAS) = [RI(AS = AS)
= [2[(Af) + |@[(=AS")
= —[P[(=AS) = Al®I(f")
= —(=N[@[(f") = AI®|(f")
= A([(f) = [®[(f")
= Al®[(f).

In summary, |®| is a positive linear functional. By Proposition 7.4, the functional |®| is a
positive Radon functional. O
Definition 7.17. Given any Radon functional ®: K¢(X) — C, the positive Radon func-

tional |®| is called total variation (or absolute value) of ®.

If ® is a positive Radon functional, then
|| = .

Definition 7.18. Given a Radon functional ®: K¢(X) — C, we define the conjugate ® of
® by

(f) =2(f), f€Ke(X).
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If we write f = fi + ify with fi, fo € Kgr(X), then we have

O(f) = D(fi +ifs) = O((fi +if2)) = O(fr —ifs) = (D(f1) —iD(f2)) = P(f1) +iD(f2).
Definition 7.19. We say that a Radon functional ®: K¢(X) — C is real if ® = ®.

Proposition 7.26. A Radon functional ®: Kc(X) — C is real iff its restriction ®g to
Kr(X) is a real-valued function ®g: Kg(X) — R.

Proof. In view of the above computation, a Radon functional ® is real iff

O(f1) +1i®(f2) = (f1) +iD(f2)

for all fi, fo € Kg(X), which by setting fo = 0 or f; = 0 means that ®(f;) € R for all
fi € Kgr(X), for i = 1,2. Equivalently, a Radon functional ®: K¢(X) — C is real iff its
restriction ®g to r(X) is a real-valued function ®g: Kgr(X) — R. O

Since a Radon functional is ® is completely determined by its restriction P to Kg(X),
we often think of a real Radon functional as a linear map ®: Kg(X) — R.

Definition 7.20. Given a Radon functional ®: K¢(X) — C, we define &, and ®; by

1, 1 _
D, = —(BP+ D), &=—(D—d)
5@+ @) 5 )

It is immediately verified that ®, and ®; are real Radon functionals such that
d=0>0, +id;, =0, —id,.

We also have
| <R[, D] <D, [@] < [Dy] + [Py

Definition 7.21. If ®: K¢(X) — R is a real Radon functional, then as in the case of real
measures we can define ®* and &~ by

1 1
O =S(10[+ D), 7= (|- 2).

It is immediately checked that ®* and ®~ are positive Radon functionals, and we have

=0t — 0, |B|=0t+P .

In the end, we have the following decomposition result analogous to the Jordan decom-
position for complex measures.
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Proposition 7.27. Every Radon functional ®: Kc(X) — C can be expressed in terms of
four positive Radon functionals:

O = — O +i(D] — D).

By the Radon—Riesz I theorem (Theorem 7.8), there exist four positive o-Radon measures
mq, Mo, M3, My such that

<I>(f):/fdml—/fdngrz’(/fdmg—/fdm4) for all f € Kc(X).

It is tempting to define the complex measure m by
m=my —mg + i(mg — my),
but there is a problem, which is that the positive measures m; may take the value +oo, so

expressions of the form 400 — (+00) may arise, but they do not make any sense!

We are not aware of a way around this problem in general. If X is compact, then the
Radon—Riesz II theorem yields positive Radon measures m; such that m;(X) is finite for
1 =1,...,4, in which case the expression m is indeed a measure. It is even possible to define
a bijective correspondence by adding disjointness conditions on the subsets over which the
m; are concentrated. Such results are given in Malliavin [47] (Chapter II, Section 5).

Another situation where m is a complex measure is the case where the Radon functional
® is bounded (continuous). This is the object of the next section.

7.8 The Radon—Riesz Theorem and Bounded Radon
Functionals

Let ®: K¢(X) — C be a bounded Radon functional. In this case the operator norm ||®| is
finite. Recall that

1] = sup{[S(N)] | f € Ke(X), [flloc <1} =sup{[S(N)] [ f € Ke(X), [flloc = 1}-
The following result is shown in Dieudonné [20] (Chapter VII, Section 20).

Proposition 7.28. Given a Radon functional ®: Kc(X) — C, the norm ||®|| is finite, that
is, ® is bounded, iff |®| is bounded. In this case, | ®| = |||®|].

We deduce that & = ®, 4 i®P; is bounded iff &, and P, are bounded (see Definition 7.20).
But we also see that a real bounded Radon functional ¥ = W™ — U~ is bounded iff the
positive Radon functionals U and ¥~ are bounded (see Definition 7.21).
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Proposition 7.29. A Radon functional ® is bounded iff the positive Radon functional
Of O, OF D, are bounded.

If my, mg, m3, my are the positive o-Radon measures representing &7, &, & &, given
by the Radon—Riesz I theorem (Theorem 7.8), it turns out that they are all finite measures,
SO M = my — my + i(mg — m4) is a complex measure, and it represents ® on functions in
Co(X). In order to state a suitable version of the Radon—Riesz correspondence, we need the
following definition.

Definition 7.22. Let X be a locally compact (Hausdorff) space. A complex measure p on
the o-algebra B of Borel sets of X is a reqular complex Borel measure if the positive measure
|| is a finite Radon measure, that is, a positive Borel measure that is regular and finite
(lul(X) is finite). We denote the vector space of regular complex Borel measures M}, o(X).
See Figure 7.7.

Since |u|(X) is finite, the measure |u|(K) of every compact subset K of X is also finite
(since X is Hausdorff, every compact subset K of X is closed and thus measurable, and since
K C X, we have |u|(K) < |u|(X)). Thus the positive Borel measure |u| is locally finite.

complex Borel measure

ILL regular complex

" (X

L Borel measure

regular

locally finite

Figure 7.7: A Venn diagram representation of M}, (X).

We have the following beautiful theorem. Theorem 7.30 is also often referred to as the
Riesz representation theorem, which is somewhat confusing.
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Theorem 7.30. (Radon—Riesz Correspondence, III) Let X be a locally compact (Haus-
dorff) space. There are bijections m: MHX) — M, «(X) and ¢: M}, -(X) — M'(X)
between the Banach space M*(X) = Cy(X, C)" of bounded Radon functionals, the dual of the
space Co(X,C) of continuous functions that tend to zero at infinity, and the Banach space
Mreg(C( ) of reqular complex Borel measures. For every regular complexr Borel measure
m € M., c(X), the bounded Radon functionals ¢(m) = @, is given by

som(f)z/fdm, for all f € Cy(X,C).

For every bounded Radon functional ® € MY (X) = Co(X,C)’, the regular complex Borel
measure mg represents P in the sense that

:/fd ma)t /fd M) </fd me)7 /fd mo); ) for all f € Co(X,C).

Furthermore, these bijections are norm preserving, that is, |®| = ||me| = |me|(X). See
Figure 7.8.

Theorem 7.30 is proven in Lang [43] (Chapter IX, §4, Theorem 4.2), Rudin [57] (Chapter 6
Theorem 6.19), Folland [29] (Chapter 7, Theorem 7.17), and Marle [48] (Chapter 9, Section 7,
Proposition 9.7.3). The proof is quite involved. Among other things it uses Lusin’s theorem
(Theorem 7.9). It also uses the corollary of the Radon-Nikodym theorem (Theorem 7.21)
and the fact that ICc(X) is dense in £, (X, B, C) to prove injectivity.

To prove surjectivity, by Proposition 7.27 we express the bounded Radon functional
®: Kc(X) — C in terms of four positive Radon functionals:

O = OF — D +i(BF — D).

1

By Proposition 7.29, these positive Radon functionals are bounded. By the Radon—Riesz
theorem I (Theorem 7.8), there exist four positive o-Radon measures my, ms, ms, my such

that
_ / Fdim, — / fdm2+z'( / Fdms — / fdm4) for all f € Ke(X).

The reason why the o-Radon measure m corresponding to a positive bounded Radon
functional ® is finite is that this measure is inner regular, that is,

me(E) = sup{u(K) | K C E, K compact}
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complex Borel measure

regular complex
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locally finite
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near functional

M(X)
adon functional

@ M(X)

bounded Radon
functional

Figure 7.8: Radon-Riesz Correspondence, Version 3.

for every E' € B. We use this to compute mg(X). For every compact subset K, by Propo-
sition A.39, there is a continuous function f: X — [0,1] of compact support such that
f(z) =1 for all z € K. Then since ® is bounded we have

me(K) < /fdm<1> =o(f) < @[ [/l = 2]
since f has maximum value 1. Therefore,
me(X) =sup{u(K) | K C X, K compact} < ||®||

is indeed finite. Since me(X) is finite, every measurable subset has finite measure and so
the o-regular measure mg is actually regular.

We also need to check that ¢,,(f) = | fdm is finite for every function f € Co(X;C) and
every positive finite Borel measure m. Since Cy(X;C) is the closure of K¢ (X), there is a
sequence (f,,) of functions f, € Kc(X) that converges to f according to the sup norm, and
thus converges pointwise to f. Also f is a bounded function, so there is some M > 0 such
that |f,| < M for all n > 1. Since m(X) is finite, the constant function M is integrable,
and the continuous functions f, are integrable. By the dominated convergence theorem
(Theorem 5.34), f is integrable.
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Theorem 7.30 plays a crucial role in defining the notion of convolutions of two measures

in M}, ¢(X). We will need the following simple fact.

Proposition 7.31. Let X be any locally compact space, and let p be any positive Borel
measure on B. For any function f € L,ﬁ(X, B,C), the functional ®y,: Co(X;C) — C given

by
Brule) = [ Fodu for al g € Co(X:C)

1s a bounded Radon functional.

Proof. Since f € /J}L(X, B,C) and g is continuous, g is measurable, and |g| is bounded by
some M > 0, so by Proposition 5.36(1) fg € £,,(X,B,C). We have

1B7,.(9)] = \ / fng’ < / Foldy = / Fllglde < gl / Fldu,
which shows that ®, is bounded. O

By Theorem 7.30, the bounded Radon functional ®y, corresponds to a unique regular
complex Borel measure m such that

/fgd,u:/gdm for all g € Co(X; C).

The measure m is usually denoted by fdu. Proposition 7.31 gives us an embedding of

L) (X,B,C) into M}, -(X) as stated in the next proposition.

Proposition 7.32. Let X be a locally compact space. For every positive Borel measure
1 oon B, the map f — fdu is a norm-preserving embedding of Ei(X, B,C) into the space

./\/lie&C(X ) of regular complex Borel measures on X, with the property that

/fgdu:/gfd/,b for all g € Co(X;C).

The reason why the embedding is norm-preserving is quite subtle. By Theorem 7.30,
| fdp|| = ||Psull, where @, : Co(X;C) — C is the bounded Radon functional given by

Qru(g) = /fg dp  for all g € Co(X;C).

By an exercise in Folland [29] (Chapter 7, Section 7.2, Exercise 9), the measure fdu associ-
ated with the functional ®; , is equal to the measure py of Proposition 7.16, with

us) = [ fau. e,
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when f is a positive continuous function. In this case, piy = fdu is a positive Radon measure.
By Proposition 7.20,

gl = 1171
SO
1Pl = WSl = Nparll = 11£1ly -

This fact is extended to continuous functions f: X — C by writing f = f1 — fo +i(fs — f1),
where f1, fo, f3, fs are four positive continuous functions. Finally, since K¢(X) is dense in

L1(X, B, C), the fact that || fdul| = ||Ps.ll = |If]l, is extended to functions in £}(X, B, C).

This embedding is technically important because if X is a locally compact group and if
p is a Haar measure, convolution can be defined on both £} (X, B,C) and M|, ~(X), but

there is no identity element for convolution on £},(X, B, C) while there is one for convolution

on M., o(X). Technically M}, ~(X) is a unital normed Banach algebra but £, (X, B,C)

is a nonunital normed Banach algebra. This point will be significant in Chapter 9 and in
Chapter 10.

7.9 Problems

Problem 7.1. Verify that M(X), the set of Radon linear functionals, is a vector space.
Verify that M!(X), the set of continuous Radon functionals, is also a vector space. Explain
why M*(X), the set of positive linear functionals, is not a vector space.

Problem 7.2. Refer to either Rudin [57] (Chapter 2), Lang [43] (Chapter IX), Folland [29]
(Chapter 7, Theorem 7.2), or Schwartz [63] (Chapters 5 and 7) to complete the proof sketch
of the Riesz representation theorem, Theorem 7.6.

Problem 7.3. Prove Theorem 7.9, Lusin’s theorem. Hint: See Rudin [57] (Chapter 2,
Theorem 2.24) or Lang [43] (Chapter IX, Theorem 3.3).

Problem 7.4. Prove Theorem 7.10. Hint: Theorem 7.10 is proven in Rudin [57] (Chapter
3, Theorem 3.14) or Lang [43] (Chapter IX, Theorem 3.1).

Problem 7.5. Prove Proposition 7.13. Hint: See Rudin [57] (Chapter 2, Theorem 2.18).
Problem 7.6. Prove Theorem 7.14. Hint: See Rudin [57] (Chapter 2, Theorem 2.17).
Problem 7.7. Prove Proposition 7.16. Hint: See Marle [48] (Chapter 2, Proposition 2.5.2).

Problem 7.8. Verify that the set of complex measures is a vector space. Verify that the set
of real measures is also a vector space.

Problem 7.9. Prove Theorem 7.17. Hint: See Rudin [57] (Chapter 6, Theorem 6.2) or Lang
[43] (Chapter VII, Theorem 3.1).
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Problem 7.10. Prove Theorem 7.18. Hint: See Rudin [57] (Chapter 6, Theorem 6.4) or
Lang [43] (Chapter VII, Theorem 3.2).
Problem 7.11. Prove that CM!(X, A) is a Banach space.

Problem 7.12. Prove Proposition 7.20. Hint: See Lang [43] (Chapter VII, §3, Theorem
3.3).

Problem 7.13. Prove Theorem 7.21. Hint: See Rudin [57] (Chapter 6, Theorem 6.12) or
Lang [43] (Chapter VII, §2 and §4).

Problem 7.14. Advanced Exercise: Prove Theorem 7.22, the Hahn-Jordan Decomposition.
Problem 7.15. Complete the details of the proof sketch of Theorem 7.25.

Problem 7.16. Prove Proposition 7.28. Hint: See Dieudonné [20] (Chapter VII, Section
20).

Problem 7.17. Advanced Exercise: Complete the details of Radon—Riesz Correspondence,
Theorem 7.30. Hint: See Lang [43] (Chapter IX, §4, Theorem 4.2), Rudin [57] (Chapter 6
Theorem 6.19), Folland [29] (Chapter 7, Theorem 7.17), or Marle [48] (Chapter 9, Section
7, Proposition 9.7.3).



Chapter 8

The Haar Measure and Convolution

Let G be a locally compact group. Haar proved (1933) the remarkable fact that there is a
positive o-regular locally finite Borel measure p on G such that u(U) > 0 for every nonempty
open subset U, and such that p is left-invariant, which means that

pu(A) = u(sA) forall s € G and all A € B,

where B is the o-algebra of Borel sets on GG. Furthermore, such a left-invariant measure is
unique up to a positive scalar.

Actually, Haar proved the existence of a left-invariant measure in a special case. This
result was established in full generality later by André Weil [71]. All proofs we are aware of
(Weil [71], Halmos [36], Bourbaki [6], Dieudonné [20], Lang [43], Folland [28]) make use of
Haar’s original clever idea (1933). Except for Halmos who constructs directly a measure (as
Haar did), all the other proofs are essentially André Weil’s proof (which constructs a Haar
functional) from his famous little book [71] first published in 1940.

In this chapter we sketch the existence of the (left) Haar measure, providing most details,
and we also prove its uniqueness up to a scalar; see Sections 8.2, 8.3, 8.4. Some Examples
are given in Section 8.5.

For any s € G and any measure i on G, let ps(p) be the measure given by
(ps(p))(A) = u(As) for all A € B.

If 1 is a left Haar measure, then it is easy to see that ps(u) is a left Haar measure, so by
uniqueness up to a scalar, there is a unique positive number A(s) such that

ps(p) = Als)p ()

The function A: G — R’ (given by A(s) for every s € G) is called the modular function of
G. We investigate properties of the modular function in Section 8.6. We say that the group
G is unimodular if A(s) =1 for all s € G, equivalently, if and only if a left Haar measure is

261
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also a right Haar measure. If G is abelian, compact, or a connected semisimple Lie group,
then G is unimodular. More examples of Haar measures are given in Section 8.7.

Let G be a locally compact group, and let u: G — G be an automorphism of G. For
every left Haar measure p, define the measure u~!(u) by

(u™ () (A) = pu(u(A)), forall Ac B.

It can be shown that there is a unique positive number mod(u) such that

u” () = mod(u)p

for all left Haar measures . The number mod(u) is called the modulus of the automor-
phism u. Properties of the modulus of an automorphism are discussed Section 8.8. As an
application, we obtain formulae for the measure (volume) of a parallelotope and of a simplex.

Some applications of the Haar measure are discussed in Section 8.9. In particular, we
prove Theorem 8.36, a basic tool in representation theory.

Let G be a locally compact group, let X be a locally compact space, and let -: GXx X — X
be a continuous left action of G on X. A Borel measure p on X is G-invariant if

p(s™t - A) = pu(A) forall s€ G andall A€ B.

Our goal is to find sufficient conditions to ensure that X has some G-invariant measure. We
will consider the case where X = G/H, with the left action of G on G/H given by

a-(bH) = abH, a,bed.

In this case, by Proposition 8.6, the space X is also locally compact (and Hausdorff).

A G-invariant measure on G/H does not always exist. It turns out that there is a
necessary and sufficient condition for a G-invariant o-Radon measure to exist on G/H in
terms of Ag and Ap: Ap must the equal to the restriction of Ag on H. This topic is
discussed in Section 8.10.

One of the main applications of the Haar measure is the definition of the notion of
convolution on a locally compact group. Recall that M%eg,C(G) denotes the Banach space
of complex regular Borel measures on G (see Definition 7.22), and that L} (G, B, C) denotes
the space of integrable functions on the measure space (G, B, \), where B is the o-algebra
of Borel sets of G. To simplify notation, we write M*(G) for M}, -(G), and L}(G) for
L} (G, B,C). The vector space M!(G) is a Banach space with the norm ||u|| = |u|(G), and
L!(@) is a Banach space with the L'-norm. There are three flavors of convolutions but we

will use mostly the first two of them:

1. Convolutions y * v of two measures u,v € M!(G). This makes M!(G) into a Banach
algebra with identity and with an involution.
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2. Convolution f * g of two functions f,g € L'(G), which makes L!'(G) into a Banach
algebra with involution, but without a multiplicative unit element, unless G is discrete.
A closely related concept heavily used in signal processing and computer vision is the
notion of cross-correlation k* f of two functions k and f. The idea is that f is a signal,
say an image, and k is a pattern. Then k x f is a measure of how much the pattern k,
when moved around by all transformations g € G, occurs in f. The cross-correlation

k* f is equal to the convolution f x k (where k is the reflected kernel k).

3. There is also a notion of convolution u * f of a measure u € M!(G) and of a function
f € LY(@), and convolution f * u of a function f € L'(G) and a measure u € M(G).

These notions of convolution (and cross-correlation) are discussed in Sections 8.11, 8.12,
8.13.

Convolution applied to functions and measures can be used as a regularization (or filter-
ing) process; see Section 8.14.

8.1 Topological Groups

Since locally compact groups (and Lie groups) are topological groups, it is useful to gather
a few basic facts about topological groups.

Definition 8.1. A set G is a topological group iff
(a) G is a Hausdorff topological space;
(b) G is a group (with identity 1);
(c) Multiplication -: G x G — @G, and the inverse operation G — G: g — ¢!, are
continuous, where G x G has the product topology.
It is easy to see that the two requirements of Condition (c) are equivalent to
(¢/) The map G x G — G': (g, h) — gh™! is continuous.

Proposition 8.1. If G is a topological group and H 1is any subgroup of G, then the closure H
of H s a subgroup of G. If H is a normal subgroup of G, then H 1is also a normal subgroup
of G.

Proof. We use the fact that if f: X — Y is a continuous map between two topological spaces
X and Y, then f(A) C f(A) for any subset A of X. For any a € A, we need to show that
for any open subset W C Y containing f(a), we have W N f(A) # (). Since f is continuous,
V = f~(W) is an open subset containing a, and since a € A, we have f~*(W) N A # 0,
so there is some x € f~1(W) N A, which implies that f(z) € W N f(A), so W N f(A) # 0,
as desired. The map f: G x G — G given by f(x,y) = xy~! is continuous, and since H is
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a subgroup of G, f(H x H) C H. By the above property, if a € H and if b € H, that is,
(a,b) € H x H, then f(a,b) = ab~' € H, which shows that H is a subgroup of G.

For every g € G, the map C,: G — G given by Cy(z) = gzg~' forall x € G is continuous,
and if H is a normal subgroup of G, then Cy(H) C H. It follows that Cy(H) C H for all
g € G, which means that H is a normal subgroup of G. ]

Given a topological group G, for every a € G we define the left translation L, as the map
L,: G — G such that L,(b) = ab, for all b € G, and the right translation R, as the map
R,: G — G such that R,(b) = ba, for all b € G. Observe that L,-: is the inverse of L, and
similarly, R,-1 is the inverse of R,. As multiplication is continuous, we see that L, and R,
are continuous. Moreover, since they have a continuous inverse, they are homeomorphisms.
As a consequence, if U is an open subset of G, then so is gU = L,(U) (resp. Ug = R,U), for
all g € G. Therefore, the topology of a topological group is determined by the knowledge of
the open subsets containing the identity 1.

Given any subset S C G, let S7' = {s7! | s € S}; let S® = {1}, and S+ = S"S, for
all n > 0. Property (c) of Definition 8.1 has the following useful consequences, which shows
there exists an open set containing 1 which has a special symmetrical structure.

Proposition 8.2. If G is a topological group and U is any open subset containing 1, then
there is some open subset V C U, with 1 €V, so that V =V~ and V2 C U. Furthermore,
VCUu.

Proof. Since multiplication G x G — G is continuous and G x G is given the product
topology, there are open subsets U; and U,, with 1 € U; and 1 € Us, so that UyU, C U. Let
W=UNUyand V=W NW-L Then V is an open set containing 1, and clearly V = V!
and V2 C U,U, C U. If g € V, then gV is an open set containing g (since 1 € V) and
thus, gV NV # (. This means that there are some hy, ho € V so that gh; = hy, but then,
g=hht €eVVI=VV CU. O

Definition 8.2. A subset U containing 1 and such that U = U~! is called symmetric.

Proposition 8.2 is used in the proofs of many the propositions and theorems on the
structure of topological groups. For example, it is key in verifying the following proposition
regarding discrete topological subgroups.

Definition 8.3. A subgroup H of a topological group G is discrete iff the induced topology
on H is discrete; that is, for every h € H, there is some open subset U of G so that
UNH = {h}.

Proposition 8.3. If G is a topological group and H is a discrete subgroup of G, then H 1is
closed.
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Proof. As H is discrete, there is an open subset U of G so that U N H = {1}, and by
Proposition 8.2, we may assume that U = U~!. Our goal is to show H = H. Clearly
H C H. Thus it remains to show H C H. If g € H, as gU is an open set containing g, we
have gU N H # (). Consequently, there is some y € gU N H = gU ' N H, so g € yU with
y € H. We claim that yU N H = {y}. Note that x € yU N H means x = yu; with yu; € H
and u; € U. Since H is a subgroup of G and y € H, y 'yu; =u; € H. Thus u; € UNH,
which implies u; = 1 and = = yu; = y, and we have

geyUNH CyUNH = {y} = {y}

since G is Hausdorff. Therefore, g =y € H. m

Using Proposition 8.2, we can give a very convenient characterization of the Hausdorff
separation property in a topological group.

Proposition 8.4. If GG is a topological group, then the following properties are equivalent:
(1) G is Hausdorff;
(2) The set {1} is closed;
(8) The set {g} is closed, for every g € G.

Proof. The implication (1) — (2) is true in any Hausdorff topological space. We just have
to prove that G — {1} is open, which goes as follows: For any g # 1, since G is Hausdorff,
there exists disjoint open subsets U, and V,, with g € U, and 1 € V,. Thus, |JU, = G—{1},
showing that G — {1} is open. Since L, is a homeomorphism, (2) and (3) are equivalent.
Let us prove that (3) — (1). Let g1, g2 € G with g; # g. Then, g;'gs # 1 and if U and
V are disjoint open subsets such that 1 € U and g; 'g, € V, then g; € ;U and ¢ € ¢,V
where g;U and ¢V are still open and disjoint. Thus, it is enough to separate 1 and g # 1.
Pick any g # 1. If every open subset containing 1 also contained ¢, then 1 would be in the
closure of {g}, which is absurd since {g} is closed and g # 1. Therefore, there is some open
subset U such that 1 € U and g ¢ U. By Proposition 8.2, we can find an open subset V'
containing 1, so that VV C U and V = V~!. We claim that V and gV are disjoint open
sets with 1 € V and g € gV.

Since 1 € V, it is clear that g € gV. If we had V N gV # (), then by the last sentence in
the proof of Proposition 8.2 we would have g € VV ™1 = VIV C U, a contradiction. O

If H is a subgroup of G (not necessarily normal), we can form the set of left cosets G/H,
and we have the projection p: G — G/H, where p(g) = gH = g. If G is a topological group,
then G/H can be given the quotient topology, where a subset U C G/H is open iff p~1(U) is
open in GG. With this topology, p is continuous. The trouble is that G/H is not necessarily
Hausdorff. However, we can neatly characterize when this happens.
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Proposition 8.5. If G is a topological group and H is a subgroup of G, then the following
properties hold:

(1) The map p: G — G/H is an open map, which means that p(V) is open in G/H
whenever V 1is open in G.

(2) The space G/H is Hausdorff iff H is closed in G.

(8) If H is open, then H is closed and G/H has the discrete topology (every subset is open).

(4) The subgroup H is open iff 1 € H (i.e., there is some open subset U so that
1leUCH).

Proof. (1) Observe that if V' is open in G, then VH = (J,., Vh is open, since each V' is
open (as right translation is a homeomorphism). However, it is clear that

p(p(V) =VH,

i.e., p~1(p(V)) is open which, by definition of the quotient topology, means that p(V) is
open.

(2) If G/H is Hausdorff, then by Proposition 8.4, every point of G/H is closed, i.e., each
coset gH is closed, so H is closed. Conversely, assume H is closed. Let T and i be two
distinct point in G/H and let z,y € G be some elements with p(x) = 7 and p(y) = 7. As
T # 7, the elements x and y are not in the same coset, so © ¢ yH. As H is closed, so is
yH, and since x ¢ yH, there is some open containing x which is disjoint from yH, and we
may assume (by translation) that it is of the form Uz, where U is an open containing 1. By
Proposition 8.2, there is some open V containing 1 so that VV C U and V = V~!. Thus,
we have

ViznyH =0

and in fact,
V2xH NyH =0,

since H is a group; if z € V2o H NyH, then z = vivaxh; = yhs for some vy, vy € V, and
some hq,hy € H, but then vjver = yhghl_1 so that V2zx NyH # (), a contradiction. Since
V =V~1 we get
VaHNVyH = (),

and then, since V' is open, both VaH and VyH are disjoint, open, so p(VaH) and p(VyH)
are open sets (by (1)) containing T and 7 respectively and p(VxH) and p(VyH) are disjoint
(because p~'(p(VzH)) = VeHH = VzH, p~'(p(VyH)) = VyHH = VyH, and VzH N
VyH = (). See Figure 8.1.

(3) If H is open, then every coset gH is open, so every point of G/H is open and G/H
is discrete. Also, Ug¢H gH is open, i.e., H is closed.

(4) Say U is an open subset such that 1 € U C H. Then for every h € H, the set hU is
an open subset of H with h € hU, which shows that H is open. The converse is trivial. [J
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Figure 8.1: A schematic illustration of VaH N VyH = (), where G is the pink cylinder, H is
the vertical edge, and G/H is the circular base. Note xH and yH are vertical fibres.

Recall that a topological space X is locally compact iff for every point p € X, there is a
compact neighborhood C of p; that is, there is a compact C' and an open U, with p € U C C.
For example, manifolds are locally compact.

The next two propositions will be needed.

Proposition 8.6. Let G be a topological group and let H be a closed subgroup of G. The
following properties hold.

(1) If G is locally compact, then so is G/H.
(2) If H is a normal subgroup of G, then G/H is a topological group.

Proof. (1) Since H is closed, we already know from Proposition 8.5(2) that G/H is Hausdorft.
Let K be a compact neighborhood of 1 in G, so that there is an open subset U such that
1 € U C K with K compact. By Proposition 8.5(1) the quotient map p: G — G/H is an
open map, and it is continuous, so for any g € GG, we have g € gU C gK with gU open and
gK compact, so p(g) € p(gU) C p(¢gK) with p(gU) open and p(gK’) compact, which shows
that G/H is locally compact.

(2) If H is a closed normal subgroup, then G/H is a group, and we already know from
Proposition 8.5(2) that G/ H is Hausdorff. We have to show that multiplication and inversion
in G/H are continuous. For any two cosets g1 H and goH in G/H, if W is an open subset in
G/H containing p(g192) = p(g1)p(92) = (91 H)(92H) = g1g2H, then because the projection
map p is continuous, there are open subsets U; and U, of G with g; € U; and gy € Us, such
that p(UUy) € W. Since p is an open map, p(U;) is an open subset containing p(g1) = g1 H
and p(Us) is an open subset containing p(g2) = goH, and we have p(U;)p(Us) C W, so
multiplication in G/H is continuous. A similar proof shows that inversion is continuous in
G/H. O
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Proposition 8.7. Let G be a locally compact topological group and let H be a closed subgroup
of G. For any compact subset K' in G/H, there is compact subset K of G such that p(K) =
K.

Proof. Since G is locally compact, there is an open subset U and a compact subset V' such
that 1 € U C V. Since p is an open map, the subsets of the form p(gU) for g € G form an
open cover of K’| and since K’ is compact, there is a finite subcover {p(¢;U),...,p(g.U)}
of K’. Since p is continuous and K’ is compact and thus closed (since G/H is Hausdorff),
p Y(K') is closed and ¢,V U---U g,V is compact; then K =p ' (K')N(:V U---Ug,V) is
compact in G, and we have p(K) = K. O

We next provide a criterion relating the connectivity of G with that of G/H.

Proposition 8.8. Let G be a topological group and H be any subgroup of G. If H and G/H
are connected, then G is connected.

Proof. 1t is a standard fact of topology that a space G is connected iff every continuous
function f from G to the discrete space {0,1} is constant; see Proposition A.17. Pick
any continuous function f from G to {0,1}. As H is connected and left translations are
homeomorphisms, all cosets gH are connected. Thus, f is constant on every coset gH. It
follows that the function f: G — {0,1} induces a continuous function f: G/H — {0,1}
such that f = f op (where p: G — G/H; the continuity of f follows immediately from the
definition of the quotient topology on G/H). As G/H is connected, f is constant, and so
f = fop is constant. O]

The next three propositions describe how to generate a topological group from its sym-
metric neighborhoods of 1.

Proposition 8.9. If G is a connected topological group, then G is generated by any sym-
metric neighborhood V' of 1. In fact,
G=Jvm

n>1

Proof. Since V = V=1, it is immediately checked that H = U,>1 V" is the group generated
by V. As V is a neighborhood of 1, there is some open subset U C V., with 1 € U, and

so 1 € H. From Proposition 8.5(3), the subgroup H is open and closed, and since G is
connected, H = G. n

Proposition 8.10. Let G be a topological group and let V' be any connected symmetric open
subset containing 1. Then if Gq is the connected component of the identity, we have

Go=[JV",
n>1

and Gy is a normal subgroup of G. Moreover, the group G /Gy is discrete.
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Proof. First, as V' is open, every V" is open, so the group Un21 V™ is open, and thus closed,
by Proposition 8.5(3). For every n > 1, we have the continuous map

Vx.ooxV—V": e ) g1 e
‘ , (15 5Gn) = g1 g

n

As V is connected, V' x --- x V is connected, and so V" is connected; this follows from
Proposition A.18 because a finite product of connected spaces is connected. Since 1 € V"
for all n > 1 and every V™ is connected, we use Lemma A.19 to conclude that | J,., V" is
connected. Now, (J,,~, V" is connected, open and closed, so it is the connected component of
1. Finally, for every g € G, the group gGog~" is connected and contains 1, so it is contained
in Gy, which proves that G is normal. Since Gy is open, Proposition 8.5(3) implies that the
group G /G is discrete. O

Proposition 8.11. Let G be a topological group and assume that G is connected and locally
compact. Then G is countable at infinity, which means that G is the union of a countable
family of compact subsets. In fact, if V is any symmetric compact neighborhood of 1, then

G:UV@

n>1

Proof. Since G is locally compact, there is some compact neighborhood K of 1. Then,
V = KN K™ !is also compact and a symmetric neighborhood of 1. By Proposition 8.9, we

have
G=Jv
n>1
An argument similar to the one used in the proof of Proposition 8.10 to show that V" is
connected if V' is connected proves that each V" compact if V' is compact. O

If G is a locally compact group but G is not connected, and if Gy is the connected
component of the identity, then G is the disjoint union of the cosets gGy, and each coset gGg
is homeomorphic to Gy, connected, and countable at infinity (o-compact). This observation
plays a crucial role in the proof of the uniqueness of the Haar measure (Theorem 8.21),
because it guarantees that the use of Fubini’s theorem is legitimate.

The notion of uniform continuity can be generalized to functions defined on a group.

Definition 8.4. Given a topological group G and a subset S of GG, for any normed vector
space F', a function f: G — F'is left uniformly continuous on S' if for any € > 0, there is an
open subset U of G containing 1 such that

If(y) — f(z)]| <e forall z,y €S such that zy~! € U.

The function f: G — F' is right uniformly continuous on S if for any € > 0, there is an open
subset U of G containing 1 such that

If(y) — f(z)]| <€ forall x,y € S such that 7'y € U.
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1

Observe that if zy~! € U, then we can write xy~! = z for some z € U, so y = z ', and

1f(y) = f@)] = f(z" z) = f(z)|| <e

It is customary to introduce a left action A of G on functions f: G — F defined on G by
() () = f(s7x) forall z,s € G.

Observe that

At(F)(@) = f((st)"w) = f(t7s7 ) = M) (57 2) = As(Ne(f)) (),

SO

>\st - >\s o >\t7

Iinstead of s in the definition of \.

which is the reason why we used s~

Then || f(z7'z) — f(x)]| = [[\.(f)(z) — f(x)]], so the condition of the definition is equiv-
alent to
IA.(f)(x) — f(x)|| <e forallz e S andall z€U.

Informally, the above condition can be written as

lim sup [[A.(f)(x) — f(x)]| = 0.

2=l geg

It is also customary to introduce a right action p of G on functions f: G — F' defined
on GG by

(ps(f))(x) = f(ws) forall z,s €G.
Observe that
pal£)@) = Flwst) = pulF)(9) = pulor(£))(2),

SO
Pst = Ps © Pt.

Observe that if 7'y € U, then we can write 271y = 2 for some z € U, so y = zz, and
1 () = f@)l = [lf(z2) = f(@)]] = llp=(f)(x) = f(2)]] <e.

Thus the condition of the definition is equivalent to
lp.(f)(x) — f(z)|| <e forallz €S andall z € U.

Informally, the above condition can be written as

lim sup |[p-(f)(x) = f()[| = 0.

z=1 pcg

Proposition 8.12. Let G be a topological group and let S be a subset of G. For any function
f: S — F, where F is any normed vector space, if f is continuous with compact support K,
then f is left (resp. right) uniformly continuous on K.
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Proof. We prove that f is left uniformly continuous, the proof that f is right uniformly
continuous being similar and left as an exercise. Since f is continuous, for every y € K,
there is some open subset U, with 1 € U, such that

IF) = f@)] < 5 forall z € Uyy.

We can find an open subset V,, containing 1 such that V)V, C U,. The open subsets of the
form Vyy for y € K form an open cover of K, and since K is compact, there is a finite
subcover {V,,y1...,V,,yn} of K with y1,...,y, € K. Let

V:V@hﬂ"'ﬂvyn'

Consider z,y € K such that zy~' € V, that is, € Vy. Then y € V,,y; C U,,y; for some i,
and so

which implies that

€

17 () = F@) < 1) = F)ll + 11 (i) = fo)ll < §+ 5

g 6’
as desired. O

We end this section by combining the various properties of a topological group G to
characterize when G/G, is homeomorphic to X. The reader should review the notion of
group action and the related concepts of stabilizer and orbit; see Appendix C, Sections C.2

and C.3.

First we need two definitions.

Definition 8.5. Let GG be a topological group and let X be a topological space. An action
v: G x X — X is continuous (and G acts continuously on X) if the map ¢ is continuous.

If an action p: GxX — X is continuous, then each map ¢,: X — X is a homeomorphism
of X (recall that p,(z) = g -z, for all x € X). Indeed, the map = + ¢ - x is a continuous
bijection whose inverse z — ¢~! -  is also continuous.

Under some mild assumptions on G and X, the quotient space G /G, is homeomorphic
to X. For example, this happens if X is a Baire space.

Definition 8.6. A Buaire space X is a topological space with the property that if {F'};>4
is any countable family of closed sets F; such that each F; has empty interior, then (J,~, F;
also has empty interior. By complementation, this is equivalent to the fact that for every
countable family of open sets U; such that each U; is dense in X (i.e., U, = X), then (5, U;
is also dense in X. B
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Remark: A subset A C X is rare if its closure A has empty interior. A subset Y C X is
meager if it is a countable union of rare sets. Then it is immediately verified that a space
X is a Baire space iff every nonempty open subset of X is not meager.

The following theorem shows that there are plenty of Baire spaces.

Theorem 8.13. (Baire) (1) Every locally compact topological space is a Baire space.

(2) Every complete metric space is a Baire space.

A proof of Theorem 8.13 can be found in Bourbaki [13], Chapter IX, Section 5, Theorem
1.

Theorem 8.14. Let G be a topological group which is locally compact and countable at
infinity, X a Hausdorff topological space which is a Baire space, and assume that G acts
transitively and continuously on X. Then for any x € X, the map ¢: G/G, — X is a
homeomorphism.

Proof. We follow the proof given in Bourbaki [13], Chapter IX, Section 5, Proposition 6
(essentially the same proof can be found in Mneimné and Testard [52], Chapter 2). First
observe that if a topological group acts continuously and transitively on a Hausdorff topo-
logical space, then for every x € X, the stabilizer G, is a closed subgroup of G. This is
because, as the action is continuous, the projection 7,: G — X : g — ¢-x is continuous, and
G, = 7 '({z}), with {z} closed. Therefore, by Proposition 8.5, the quotient space G/G,
is Hausdorff. As the map 7,: G — X is continuous, the induced map ¢,: G/G, — X
is continuous, and by Proposition C.14, it is a bijection. Therefore, to prove that ¢, is a
homeomorphism, it is enough to prove that ¢, is an open map. For this, it suffices to show
that m, is an open map. Given any open U in G, we will prove that for any g € U, the
element 7,(g) = g - = is contained in the interior of U - z. However, observe that this is
equivalent to proving that x belongs to the interior of (¢~ -U)-z. Therefore, we are reduced
to the following case: if U is any open subset of G containing 1, then x belongs to the interior
of U - x.

Since G is locally compact, using Proposition 8.2, we can find a compact neighborhood
of the form W = V, such that 1 € W, W = W~ and W? C U, where V is open with
1 €V CU. As G is countable at infinity, G = |J,~, K;, where each K; is compact. Since V'
is open, all the cosets gV are open, and as each K; is covered by the gV’s, by compactness
of K;, finitely many cosets gV’ cover each K;, and so

G:UgiVIUgiW7

i>1 i>1

for countably many ¢; € G, where each ¢;WW is compact. As our action is transitive, we
deduce that

X=Jaw -z,

1>1
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where each ¢;W - x is compact, since our action is continuous and the g,/ are compact. As
X is Hausdorff, each ¢;\W - x is closed, and as X is a Baire space expressed as a union of
closed sets, one of the g;W - x must have nonempty interior; that is, there is some w € W,
with g;w - x in the interior of ¢;,WW - x, for some ¢. But then, as the map y — ¢ -y is a
homeomorphism for any given g € G (where y € X)), we see that z is in the interior of

wilg b (gW ) =w W2 CW W2 =W?*.2 CU -,

as desired. O

By Theorem 8.13, we get the following important corollary:

Theorem 8.15. Let G be a topological group which is locally compact and countable at
infinity, X a Hausdorff locally compact topological space, and assume that G acts transitively
and continuously on X. Then for any x € X, the map ¢,: G/G, — X is a homeomorphism.

Readers who wish to learn more about topological groups may consult Sagle and Walde
[59] and Chevalley [16] for an introductory account, and Bourbaki [12], Weil [71] and Pon-
tryagin [55, 56], for a more comprehensive account (especially the last two references).

8.2 Existence of the Haar Measure; Preliminaries

Let GG be a locally compact group. We are going to show there is a positive o-regular locally
finite Borel measure p on G such that p(U) > 0 for every nonempty open subset U, and
such that p is left-invariant, which means that

p(A) = u(sA) forall s € G and all A € B,

where B is the o-algebra of Borel sets on G.

Recall that for any « € G, the maps L,: G — G (left translation) and R,: G — G (right
translation) are defined by

L.(z) =zz, R.(2) = zz, forallz,z € G.
It is obvious that
Lyy=LysoL, and R, = R,oR,,
and that L, and R, commute for all z,y € G.

It is customary to introduce a left action A of G and a right action p of G' on functions
f: G — F. We did this in the previous section, but for the sake of completeness, we repeat
these definitions.



274 CHAPTER 8. THE HAAR MEASURE AND CONVOLUTION

Definition 8.7. Let G be a group, and let F' be any set. The left action A of G on a function
f: G — F is the function \;(f) is given by

() () = f(s7tx) forall m,s € G,
and the right action p of G on a function f: G — F' is the function ps(f) given by

(ps(f))(x) = f(ws) forall z,s €G.

It might help the reader to remember that A, is a left action and that p, is a right action
by noticing that A = lambda begins with an “l” as in left and that p = rho begin with an

[1S%}]

r” as in right.

Observe that

At(F)(@) = f((st)"w) = f(t7s7 ) = M) (57 2) = As(Ne(f)) (),

SO
)\st = )\s o )\ta

which is the reason why we used s~! instead of s in the definition of \,. Observe that

pst(f)(x) = fast) = pi(f)(@s) = ps(pe(f)) (),

SO
Pst = Ps © Pe-

Given a subset A of G , we usually write sA for Li(A) and As for R, (A).

We define a left action of Ay and a right action ps on measures and Radon functionals as
follows.

Definition 8.8. Let G be a locally compact topological group. The left action X of G on a
measure g on (G, B) is the measure A;(i) given by

(As()(A) = pu(s7'A) for all s € G and all A € B,
and the right action p of G on a measure u on (G, B) is the measure p,(u) given by
(ps(u))(A) = u(As) for all s € G and all A € B.

The left action A of G on a Radon functional ®: K¢(G) — C is the Radon functional As(®P)
given by
As(®))(f) = P(N\s-1(f)) for all s € G and all f € K¢(G),

and the right action p of G on a Radon functional ®: K¢(G) — C is the Radon functional
p,(®) given by

(ps(P))(f) = P(ps—1(f)) forall s € Gand all f € K¢(G).
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If mg is the Borel measure corresponding to a positive Radon functional ®, my () is
the Borel measure corresponding to A,(®), and m, () is the Borel measure corresponding
to ps(P), given by Theorem 7.8, then we have

t/jTawdm@@ﬂ==/k&;df»twdnw0ﬂ==©(&dfﬂ
= (@) () = [ F@dlms,w)(a)

and

=%m@ﬁﬁ%=/f@ﬂ@%@mw-

Therefore, we have the change of variable formulae

[ F@dtms@)(@) = [ f(sz)dma(a),

and
[ F@dtm @) = [ S5 dma(a)
for all f € K¢(G) and all s € G. See Figures 8.2 and 8.3.

xtox

S \
f(x) /- f(sx)

[f(x) dm 20 %) Jf(sx) dmg(x)

sTA A

Figure 8.2: A schematic illustration of the change of variable z — s~ !z associated with

[ f(@)d(ma @) (@) = [ f(sz)dme(z).

Definition 8.8 has been designed so that for every measure p on G we have

Ast(p) = As(Nep),  pat(p) = ps(pe(p))  for all st € G.
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¥s' to X

X->XS

A

Figure 8.3: A schematic illustration of the change of variable x — xs associated with

[ f@)d(my,@)(x) = [ flzs™)

For every Radon functional ® and for every function f € K¢ (G), we have

— ®()\t_

dme(x).

n-1(f) = @11 (f))

and a similar computation shows that

(Pst(@))(f) = (ps(pe(®))) (f)-

Therefore, for every Radon functional ®, we have

)\st(q)) = )\s()\t(<b

The left actions A\, and the

))7 pst(q)) = pS(pt((I)))

right actions p, are summarized in the following table.

Left action

\ Right action

On functions

(As(f)) ()

f(s7'2) [ (ps(N))(2) = f(xs)

On measures

(As(1))(A)

= u(s7TA) [ (ps(w)(A) = u(As)

(As(2))(f)

On functionals

(As-1(f)) | (ps(®))(f) = Pps2(f))

Definition 8.9. Let G be a lo

all nonempty open subsets U €

cally compact group. A left Haar measure p is a o-regular,
locally finite, Borel measure on the o-algebra B of Borel sets of G, such that u(U) > 0 for
B and p is left-invariant, which means that

As(p) =p forall s € G.

HAs1 () = (A @)(As=1 () = (As(M(@))) (),

for all s,t € G.
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The above condition means that
p(s™tA) = p(A) forall A€ Bandall s € G,

or equivalently,
p(sA) = p(A) forall A€ BandallseG.

A right Haar measure p is a Borel measure satisfying the same conditions as a left Haar
measure, except that it is right-invariant, which means that

ps(p) =p forall A€ Bandall s € G.
The above condition means that

p(As) = u(A) forall Ae BandallseG.

Note that according to Definition 7.5, a left (resp. right) Haar measure is a o-Radon mea-
sure which is left-invariant (resp. right-invariant), and such that p(U) > 0 for all nonempty
open subsets U € B .

In order to prove that a left (resp. right) Haar measure exists, we will use Theorem 7.8,
which motivates the following definition.

Definition 8.10. Let GG be a locally compact group. A left Haar functional ® is a positive
non-zero Radon functional ®: K¢(G) — C which is left-invariant, which means that

As(®) = forall s € G.

A right Haar functional ® is a positive non-zero Radon functional ®: K¢(G) — C which is
right-invariant, which means that

ps(®) =& forall s € G.

If mg is the Borel measure associated with ®, since

/f(sx)dmcp(l’) = /(As—l(f))(iv)dm@(fc) = ®(A1(f) = (As(@))(f),

then the left-invariance of ® means that
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for all f € K¢(G) and all s € G. Similarly, since

/ Flas)dma(z) = / (per () () () = (.1 () = (0u(®))().

the right-invariance of ® means that

(0:(®))(f) = B(f) = / f(2)dmo ()

so we have the change of variable formula

/f Ydma(x /f:vs Jdma (z)

for all f € K¢(G) and all s € G.

The following operation will allow us to convert a left-invariant measure (resp. functional)
to a right-invariant measure (resp. functional).

Definition 8.11. Let G be any locally compact group and F' be any set. For any function
f: G — F, define the function f: G — F by

f(s)=f(s7') forallscQ@.
For any Borel measure p on (G, B3), define the Borel measure i by
j(A) = u(A™Y) for all A€ B.
For any Radon functional ®: K¢(G) — C, define the Radon functional ®: K¢(G) — C by

O(f) = d(f) forall f e Ke(G).

Observe that

(As(p))” = ps(ft)
Similarly,
(ps (1)) (A) = (ps(W))(A™H) = u(A7"s) = p((s7 A) 1) = (s A) = (As(1))(A),

For any function f: G — F', we have

M) (@) = (@) = fls™hah) = f(ws) ™) = flas) = (ps())(@),
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and similarly
(s () (@) = (ps(N) ™) = fla™ts) = f((s7 ) ™) = f(s7'a) = (A())(2)-

Therefore,

(As(F)) = ps(f), (ps(f)) = As(f) forallseGandall f: G— F.

Using the above equations, for every Radon functional ®: K¢(G) — C, we have

As(@)) () = (As(@)(f) = PAs1(f) = D((ps1(F))) = B(ps1(F) = (ps(D))(f)-
Similarly,
(ps(@))(f) = (ps(@))(f) = P(ps1(f)) = ©((As-1(f))) = P(As-1(f)) = (N(D))(f).

Therefore, we have

As(®)) = ps(®),  (ps(®)) = As(®) forall s € G.

The definition of the cech operation (7) is summarized in the following table.

Qn functions
f(s)=f(s7)
On measures
A(A) = (A

Qn functior}als
o(f) = 2(f)

Proposition 8.16. Let G be a locally compact group, and let p be a o-regular, locally finite,
Borel measure on G (a o-Radon measure). The following properties hold:

(1) We have

(As()) = ps(ft), (ps())” = As(fr)  for all s € G.

Consequently, p is a left-invariant measure iff i is a right-invariant measure. For any
Radon functional ®: Kc(G) — C, we have
As(@) = ps(®),  (ps(®)) = A(®) for all s € G.

Consequently, ® is left-invariant iff ® is right-invariant.

(2) If the Haar measure u is left-invariant then

/As—l(f) dp = /fdu

for all f € Ei(G, B,C) and all s € G. If the Haar measure u is right-invariant then

/psl(f) duz/fdu

forall f € L,(G,B,C) and all s € G.
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(8) We have

/)\s_l(f) dp = /fd)\s(u) forall f € L,(G,B,C) and all s € G.

/As—l(f) dp = /fdu

for all f € Kc(G) and all s € G, then p is left-invariant. We have

If

/psl(f) dp = /fdps(,u) forall f € L(G,B,C) and all s € G.

[oorsydu= [ o

for all f € Kc(G) and all s € G, then p is right-invariant.

If

Proof. We already proved (1).
(2) Let f be any p-step function

f= Z Y X A
k=1

where the A; are measurable Borel sets of finite measure. For all s,z € G, we see that
(As—1f)(2) = f(sz) = yi iff sz € Ay, iff x € s71 Ay, which means that

>\s*1 f = Z Yk Xs—1Ay>

k=1

SO

/()\S1f)d,u = Zykﬂ(s_lAk) = Zyk()‘s(:u))(Ak) = /fd/\s(ﬂ)-
=1

—_

k
See Figure 8.4. If p is left-invariant, then As(p) = p, so

3
—
—
S
F

Do) (Ar) =D pn(Ay) =

Jouwspn= [ sau

and we deduce that
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f(sx) = y1XA1(SX) +%X A2(sx)

is Equivalent to
y1X5-1A1(X) + y2X5-1A2(x)

Figure 8.4: Let G = S'. A step function on S! is represented by the top arcs of the colored
vertical “rectangular” sheets. The step function f(sx) = Zizl YrXa, (s) is equivalent to

At f() = S0y Yk X1, (7).

Every function f € ﬁL(G, B, C) has some approximation sequence (f,,) by p-step functions
that converges to f a.e. and in the L'-norm. It follows that the sequence (A,-1f,) converges
a.e. to A\;—1(f). We check immediately that it is a Cauchy sequence because

JOu g [ s
/Asl(f) duz/fdu-

f= Z Y X Ay
k=1

we have (ps-1f)(z) = f(zs™!) =y iff zs7! € Ay iff x € Ays, which means that

for all n, and it follows that

If f is any p-step function

ps—lf = Z Y X Ay sy

k=1

SO

/ (e P =3 pen(Aes) = 3 vi(pal1) (Ay) = / Fdou(n).

See Figure 8.5.

We finish the argument as in the previous case.
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f(xs™) = v Xn, (xS) + %X A2(xs‘1)

is Equivalent to
y1XA15 (x) + y2XA25(X)

Figure 8.5: Let G = S'. A step function on S! is represented by the top arcs of the colored
vertical “rectangular” sheets. The step function f(zs™') = S o_ yrxa,(zs~1) is equivalent

to pe1 f () = D Yrxas(@).
(3) The proof in (2) actually shows that

[ran= [ san)

and

[ pestrran= [ sap.w

/Asl(f) dp = /fdu
/fdks(u) I/fdu

for all f € K¢(G) and all s € G, and by the uniqueness of the Borel measure corresponding
to the Radon functional f — [ fdu from Theorem 7.8, we see that A\s(u) = p for all s € G,
which means that p is left-invariant. The right-invariant case is similar. O

for all f € £(G,B,C). If

then

The condition

/)\S-l(f)du:/fdu for all s € G

is also written as

/f(s:v)du(x) = /f(:v)du(x) for all s € G.
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The condition

/ps—l(f)du—/fdu for all s € G

is also written as

/f(l‘s_l)dﬁb(ﬁ) = /f(x)du(x) for all s € G.

Since G is a group and s is any arbitrary element of G, the above condition is also equivalent
to

/f(:cs)du(a;) = /f(x)du(a;) for all s € G.

8.3 Existence of the Haar Measure

We are now going to sketch the proof that a left-invariant Haar measure exists on any locally
compact group. All proofs we are aware of (Weil [71], Halmos [36], Bourbaki [6], Dieudonné
[20], Lang [43], Folland [28]) make use of Haar’s original clever idea (1933). Except for
Halmos who constructs directly a measure (as Haar did), all the other proofs are essentially
André Weil’s proof (which constructs a Haar functional) from his famous little book [71] first
published in 1940.

As we noted just after Proposition 7.4, there is a bijection between the space MT(X)
of positive linear functionals ®: K¢(X) — C and the space of positive linear functionals
U: Kr(X) — R, so it is enough to construct a left (or right) real Haar functional on Kg(G).

Theorem 8.17. (Haar) Every locally compact group G possesses a left-invariant Haar mea-
sure.

Proof sketch. Folland [28] (Chapter 2, Section 2.2) is kind enough to provide the intuition
behind the construction. In this method a measure is not constructed directly. Instead, a
left Haar functional is constructed. Then Theorem 7.8 is used to obtain a left-invariant Borel
measure which is a left Haar measure.

Suppose we have positive function ¢ € Kg(G) bounded by 1, equal to 1 on a small open
set U, and whose support is a compact subset slightly larger than U. If f € Kg(G) is any
other function slowly varying so that it is essentially constant on the left translates of U,
then f can be approximated by a linear combination f =~ " c;As; (). If u were a left Haar

measure, then we would have
/fdu% (Zq) /god,u.

J

See Figure 8.6.
This approximation gets better and better as the support of ¢ shrinks to a point, and if
we introduce a normalization to cancel out the factor [ ¢ du, then we obtain [ fdu as the
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z=1 7=1

f

1
TN VLN

(1,0,0) (1,00

Figure 8.6: Let GG be the unit circle T in the xy-plane. The left figure shows the “bump” func-
tion ¢, while the right figure illustrates f as five translates of ¢, namely f = Z?Zl cjAs; ().

limit of the sums 3, ¢;. If G =R, and if ¢ is the characteristic function of a small interval,
this is reminiscent of the approximation of [ fdu by Riemann sums. The issue is to make
this idea precise and formal.

The first step is to pick some positive nonzero function ¢ € Kr(G). This function remains
fixed until Proposition 8.18. Then we claim that for every function f € Kg(G), there exists
a finite set {s1,...,s,} of elements of G’ and a finite sequence (cy,...,c,) of reals ¢; € R,
such that

f S Z Cj)\Sj (90)

This is because f has compact support, so its support can be covered by finitely many
translates of the open subset U given by

1
v ={sG1p6) > 5l

and if we pick ¢; = ||f|| . /a where a = (n/2) |||, then on each translate s;U we have

1
A (9)(@) > 5 el @ €850,

which implies

icj&j(w) = i 21/l ()

> [l
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SO

f S Z Cj)\Sj (90)

Define (f : ¢) as the greatest lower bound of the sums > 7, ¢;, over all sets {si,...,s,}
of elements of G and all finite sequences (¢, ..., ¢c,) of reals ¢; € R such that

f S Z Cj)\sj (90)

Then it is not hard to show that the quantity (f : ¢) has the following properties:

(f o) =s(f) 1) for all s € G
(fit o) <(fii@)+ (fo:) for all f1, fo € Kr(G)
(cf 1) =c(f:¢) forall ¢ >0
(freo) < (f2:9) whenever fi < fo
(f o) = Iflle / el
(f:0)<(f:0)W:) for all positive ¥ € Kg(G)

rp S (i) forall positive f, fo € Ka(G),

We now make a normalization by fixing some positive nonzero fy € Kg(G), and defining

(f 1)

(fo: )

for every positive function f € ICg(G). The above properties show that I, is a functional
which is left-invariant, subadditive, homogeneous of degree 1, and monotone. It also satisfies
the following property:

o
AN

Iw(f) =

1

If I, were additive rather than subadditive, it would be the restriction to the positive func-
tions in Kr(G) of a positive linear functional on Kg(G), and we would be done. To make a
linear functional, we need to shrink to the domain of ¢, and this is the part of the argument
which is the most subtle. Let K (G) denote the set of positive functions in Kg(G).

The following technical proposition whose proof is given in Folland [28] (Chapter 2,
Lemma 2.18) is needed.

Proposition 8.18. If f1 and fy are any two positive functions in Kg (G) and if € > 0, then
there is an open subset V' containing 1 such that 1,(f1) + 1,(f2) < 1,(f1 + f2) + €, whenever

supp() € V.
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To shrink the domain of ¢ we use a compactness argument. For every positive function
[ € Kt (GQ), let X; be the interval

X; = {ﬁ,(f : fo>] -

Let X = J[; X;. More precisely, X is the set of all functions from Kg(G) to (0,+00)
mapping f into Xy. We put the topology of Definition 2.2 on X. Since each Xy is compact,
by Tychonoft’s theorem X is also compact. By (%), we have [,(f) € X for all positive
nonzero ¢ € Kgr(G). For every compact neighborhood V' containing 1, let K (V) be the
closure in X of the subset {I, | supp(¢) € V'}. The family of subsets K (V') has the finite
intersection property since K((;_, V;) € (j_; K(V}). Since X is compact, there is some
I € X which lies in every K (V). This means that every neighborhood of I in X contains
some [, with supp(y) arbitrarily small. In other words, for any open subset V' containing
1, any € > 0, and for any positive functions fi,..., f, € Kr(G), there exist some positive
nonzero ¢ € Kg(G) with supp(¢) € V such that [I(f;) — 1,(f;)| < € for all j. By the
properties of I, listed above and by Proposition 8.18, we conclude that I commutes with
left translation, addition, and multiplication by positive scalars.

We can extend I to arbitrary functions f € Kr(G) as follows. We can write f = f; — fo
with f1, fo positive functions in Kr(G), and we let I(f) = I(f1) — I(f2). If we also have
f=fi— f}, with f{, f} positive functions in Kg(G), then

fitfo=Ff+ 1,

so by linearity of I on positive functions we get

I(f1) + (f2) = 1(f2) + 1(f1),

thus
I(f) = 1(f2) = 1(f1) = 1(f2),
which means that I(f) is well defined. The functional I is a left Haar functional, and we are

done. By Proposition 8.16(3), since the Haar functional I is left-invariant, the corresponding
o-Radon measure is also left-invariant. O]

Remark: The proof in Bourbaki [6] uses an argument involving an ultrafilter instead of
Tychonoft’s theorem, but otherwise it is identical. Dieudonné [20] assumes that the locally
compact group G is separable and metrizable. This allows him to avoid using Tychonoft’s
theorem, but does not make the proof simpler.

Let p be the left Haar measure associated with the left Haar functional I given by
Theorem 8.17. Here is an immediate consequence of Theorem 8.17.

Proposition 8.19. If i is a left Haar measure on G, then for every nonempty open subset
U, we have p(U) > 0. For every positive nonzero function f € Kr(G), we have [ fdu > 0.



8.4. UNIQUENESS OF THE HAAR MEASURE 287

Proof. Assume U is a nonempty open set with u(U) = 0. Then since p is left-invariant
u(gU) = 0 for all g € G, and since any compact subset K can be covered by finitely many
translates of U, we have u(K) = 0. Since p is a o-regular Borel measure, it is o-inner regular,
that is,

w(G) = sup{u(K) | K C G, K compact}

so u(G) = 0, contradicting the fact that p is not the zero measure because it arises from a
non-zero left Haar functional by Radon—Riesz 1.

For any positive nonzero function f € Kr(G), let U ={g € G| f(g9) > 5| fll.}. Then
J fd> LIl w(0) > 0. 0

Remark: If G is a Lie group, there are much simpler methods for obtaining a left Haar
measure on G. Suppose G has dimension n. Pick an n-differential form wy on g, and
transport it on all tangent spaces by left translation, obtaining a left-invariant volume form
w. Then f — [ fw is a left-invariant Haar functional that induces a left Haar measure.

We now turn to the uniqueness of the Haar measure.

8.4 Uniqueness of the Haar Measure

Any two left Haar measures on a locally compact group are proportional up to a positive
factor. All the proofs we are aware of use tricks involving a double integration and Fubini’s
theorem. These proofs are attributed to von Neumann. In our opinion, the proof using the
least devious trick is that of Dieudonné [20] (Chapter XIV, Section 1), also used in Bourbaki
[6] in a slightly more concise form. Since Dieudonné uses a theory of integration based on
Radon functionals rather than on measure theory, some minor adaptations need to be made;
specifically, Proposition 7.12 is needed instead of Proposition 13.15.3 in Dieudonné [20]. The
first step is the following crucial result.

Proposition 8.20. Given a left Haar functional ® and a right Haar functional ¥ on a locally
compact group G, if v is the corresponding right Haar measure, for any function f € Kg(G),
if ©(f) # 0, then the function Dy given by

Dys) = ()" [ 1) vl
for all s € G is continuous.

Proof. 1t suffices to show that the function

sn—>/f(tls) dv(t)
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is continuous. Let K be the compact subset of G which is the support of f. Pick any s¢ € G,
and let Vj by any compact neighborhood of sg. For every € > 0, we have to find an open
subset V' containing sy such that V' C V4, and

‘/ () = (t‘180>)dv(t)‘ <e

for all s € V. In order to have t's,t7 s, € K, since sy, s € V}, it suffices that t € VoK L.
If we let L = VoK', then for sy € Vo and s € V C V,

/ (F(Es) — F(t " s0))dut) = / (F(Es) — £t s0))dw ().

By Proposition 8.12, the function f is right uniformly continuous, so there is some open
subset W containing 1 such that

|f(t_ls) - f(t_150)| < V(L)

for all (t71sq)~'t~'s € W, that is, sy's € W, namely s € Wsp, and all t € G. If we take
V =VyNWsq (see Figure 8.7), then

/L (f(ts) - f(tlso))dV(t)‘ < / F(Es) — F(t s0) du(t) <

as desired. O

support of f

-1
support of integral L= VO K

()

Figure 8.7: A schematic representation of the sets used in the proof of Proposition 8.20.
Observe that V' = V[, N W s is the intersection of the light green ellipse and peach triangle.

We are now ready to prove our uniqueness result.
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Theorem 8.21. (Haar) If p and v are any two left-invariant Haar measures on a locally
compact group G, then there is some ¢ > 0 such that yu = cv.

Proof. Since a Haar functional ¥ is right-invariant iff ¥ is left-invariant, it suffices to prove
that if @ is a left-invariant Haar functional and if W is a right-invariant Haar functional, then
there is some ¢ > 0 such that ® = ¢¥. Let u be the left Haar measure associated with ®
and let v be right Haar measure associated with W.

Let f € Kg(G) be any function such that ®(f) # 0 and let ¢ € Kr(G) be any other
function. The function from G x G to R given by (s,t) — f(s)g(ts) is continuous and has
compact support. Recall that Dy is given by

Dy(s) = (f)* / F(t1s) duft).

For s = 1, we have

Dg(1) = ®(f)7"U(f).
Therefore, if we can show that Dy is independent of f, we are done. We evaluate ®(f)V¥(g)
using Fubini’s theorem.

v(nio) = ([ 1)) ( o avo)
=[5 ( [ atyavte) ) auts
= [ ([ s vt} auts

_ / / F(s)g(ts) dy(t)) dya(s) by right-invariance of v

/f(t_ls)g(s) d,u(s)) dv(t) by left-invariance of

(
( [ sats) du(S)) vt by Pubini
(
(/f(t_ls)g(S) dl/(t)) du(s) by Fubini

_ / 9(s)(F)D;(s) dpals) by definition of D;
= ®(f)®(Ds - 9),

where Dy - g is the function given by (Dy - g)(s) = D¢(s)g(s) for all s € G. Since ®(f) # 0,
we deduce that
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The above equation shows that Dy is independent of f because if f’ is another function
f" € Kr(G) such that ®(f’) # 0, then

B(D;-9) = [ D(o)g(s)duls) = [ Dos)a(s)du(s) = ©(Dyr-g) for all g € K (C).

By Proposition 7.12, we deduce that Dy and Dy are equal a.e. (The version of Proposition
7.12 is stated for complex-valued functions, but it also holds for real-valued functions).
However, Dy and Dy are continuous and the subset N where they differ is open and a null
set, thus empty by Proposition 8.19. Therefore Dy = Dy = D, and by definition of D we
have

O(f)=DA)"(f) forall f € Kp(G) with ®(f) # 0.

Now ® and U are two linear functionals that agree in the complement of the hyperplane H
in Kg(G) of equation ®(f) = 0, so they agree everywhere. To see this, pick a basis of Kg(G)
consisting of a basis (h;)je; of H and a function v not in H. We claim that the family
consisting of (h; +v);e; and v is a basis of Cg(G). This family obviously spans Kg(G) (since
every h; is obtained as h; +v —v), and it is linearly independent because if we have a finite
linear combination

Z/\Z-(hi +v)+ pv = 0.

iel

for any finite subset I of J, then

i€l el

and by linear independence, A; = 0 for all i € I and pu+ ), ; A = 0, which implies p = 0,
and since this holds for any finite subset I of J, the family consisting of (h; + v);es and v
is linearly independent. Since ® and ¥ are linear and they agree on a basis, they must be
identical.

Since ¥ # 0, we must have D(1) # 0, thus, ® = D(1)~'W. Since ® and ¥ are positive
functionals, we must have D(1) > 0.

As we observed earlier, since a locally compact group is the disjoint union of o-compact
cosets, it is legitimate to use Fubini’s theorem. O]

8.5 Examples of Haar Measures
Here are some examples of Haar measures on various locally compact groups. In most cases,

a Haar measure i on a locally compact group G is defined indirectly by a Haar functional
f e [ fdu, for all f € Kc(G). This Haar functional is denoted by dp.
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Example 8.1. The additive group R is a locally compact group, and the Lebesgue measure
pr is a left (and right) Haar measure on it. For a proof see Lang [43] (Chapter VI, Theorem
9.7). An alternative is to use Proposition 8.16(3). By the simple change of variable x = t+s,
for any function f € K¢(R), we have

/: F()dt = /_Z F(t+ s)dt

Example 8.2. The additive group R" is a locally compact group, and the product Lebesgue
measure gy, on it (see Section 5.13) is a left (and right) Haar measure on it. This will be
shown as an application of Proposition 8.37.

Example 8.3. The multiplicative group R is a locally compact group. We claim that
dp = dx/x is a left Haar measure, where dx is the restriction of the Lebesgue measure to
R* . Indeed, using the change of variable ¢ — st, for any function f € K¢(RY), we have

/f /fstsd /fst

establishing left-invariance. One might wonder what is the measure p([a,b]) of a closed
interval, with 0 < a < b. We have

bt . b
p(la, b)) = [ Xpapdp = dp= | — = [logt], =log .
[a,b] a a

For any s > 0, we have s - [a,b] = [sa, sb], and

sb
pls - [0, 8) = ([0, ) = log = = log .
This measure is indeed left invariant.

Example 8.4. Let T = U(1) = {# € C | |z| = 1}, the circle group, that is, the group of
complex numbers of unit length. Let o: T — R be the injection given by

oy =0, —m<6<m.

Define the measure v; on T by
vi(A) = pr(o(A)),

on the o-algebra o~ (B(R)) defined in Proposition 5.2(2) (where p, is the Lebesgue measure
on R). For any f € £,,(T), we have

[ tin = [ s dun0)
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also written as ["_f(e"”)df. Observe that [ .dvy = 2m. It is easy to check that vy is
left-invariant. Indeed, for 6y € [—m, ), if we let p = 6 + 6y, we have

f(ei(0+00)) do = /

77T+90

™

T+60g

fendo= [ fendor [ ) dp

—7m+0g T

T+60g

Using the change of variable ¢ = u 4 27 in the second integral, we get
T+0g ) —m+60y )
[ renae= [ s a,
and so
T ‘ T ' —7m+6g ' T )
| oseemndo— [* peyaps [ femyau= [ e as
- —m+0p - —m

Example 8.5. Let G = GL(n,R), the group of invertible n x n real matrices. It can be
shown that a left (and right) Haar measure on GL(n,R) is given by

dA »
dp = Tdet(A)F | det(A)] @dau

with A = (a;j), where da;; is the Lebesgue measure on R, and dA is the Lebesgue measure
on R™.

In the next section, we explore the relationship between a left Haar measure y and the
left Haar measure ps(p).

8.6 The Modular Function

Let 1 be a left Haar measure on the locally compact group G. For all s,t € G, since \; and
ps commute (on functions, measures, and Radon functionals), since p is a left Haar measure,
Ae(p) = p, so we have

Ae(ps() = ps(Ae(pe)) = ps(p),

which means that ps(u) is also a left Haar measure. By the uniqueness result of Theorem
8.21, there is a constant a > 0 such that

ps(p) = ajp.

If v is another left Haar measure, again by theorem Theorem 8.21, we have v = cu for some
¢ >0, but ps(r)(A) = v(As) = cu(As) = cps(p)(A) for all A € B, that is, ps(v) = cps(u), so

ps(v) = cps(p) = cap = acp = av.

Therefore, the number a such that ps(x) = ap is independent of p. It is customary to denote
this number by A(s).
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f(xs) = y1XA1(XS) + yZXAZ(XS)

is Equivalent to
y1 XA1S'1(X) + yZXA25-1(X)

Figure 8.8: Let G = S'. A step function on S! is represented by the top arcs of the colored
vertical rectangular sheets. The step function f(zs) = Zizl YrXa,(zs) is equivalent to

pef(x) = Yoy YeX s (2)-

Definition 8.12. Let GG be a locally compact group. For every s € (G, there is a unique
positive number A(s) such that

ps(p) = Als)p (%)

for all left Haar measures p. The function A: G — R% (given by A(s) for every s € G) is
called the modular function of G (if necessary, we denote it by Ag to avoid ambiguities).

Observe that (*) can be expressed as

pu(As) = A(s)u(A) for all A€ B and all s € G.

Proposition 8.22. Let G be a locally compact group and let p be a left Haar measure on
G. For any f € L,,(G,B,C), we have

[ oeydn =56 [ san

The function A: G — R is a continuous homomorphism.

Proof sketch. Let f = >""  yixa, be a p-step function. For all z € G, we have ps(f)(z) =
f(zs) =y, iff zs € A; iff x € A;s™1, which shows that

n
= E inAiS_l;
i=1

see Figure 8.8.
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Consequently,

/ pol )= D A ™) = AT Y (4 = As™) / fdu,

by (x). As in the proof of Proposition 8.16, every function f € E}L(G,B, C) has some
approximation sequence (f,) by u-step functions that converges to f a.e. and in the L'-
norm, which allows us to conclude that

[ osrdn =20 [ s

for every f € L}(G,B,C).
By (%) we have

A(st)u(A) = p(Ast) = A(t)u(As) = A(t)A(s)u(A)

for all A € B, and since p(A) > 0if A is open and nonempty (and R is commutative under
multiplication!), we deduce that

A(st) = A(s)A(L).

Thus A is a homomorphism from G to the multiplicative group R’ . Proposition 8.12 implies
that the map s — ps(f) is uniformly continuous, and so it can be shown that the map
s+ [ ps(f) du is continuous, and since

[ o£)dn =56 [ san

we deduce that A is continuous. O]

[ osrin =20 [ s
/f xs)dp(x /f )du(x),
[ s auto) = 6) [ s@iduto)

Since A: G — R* is a group homomorphism, we have A(s™!) = (A(s)) ™.

The equation

is also written as

or equivalently as

Definition 8.13. We write A™! for the function given by A~1(s) = A(s™!) for all s € G.
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Figure 8.9: A schematic representation of Definition 8.14.

Let G and G’ be two locally compact groups. An isomorphism is map ¢: G — G’ which
is a group isomorphism and a homeomorphism. Then it is easy to check that ¢ maps Borel
sets of G to Borel sets of G.

Definition 8.14. Let G and G’ be two locally compact groups, and ¢: G — G’ be an
isomorphism. Given a measure ¢/ on G’, we define the map ¢~ (¢’) with domain B(G) by

(™' (1) (A) = ' (¢(A)) for all A € B(G);

see Figure 8.9.

Proposition 8.23. Let G and G’ be two locally compact groups, and p: G — G’ be an
isomorphism. For any left Haar measure ' on G, the map o' (i') is a left Haar measure

on G. We have
AG = Ag/ o .

Proof sketch. The fact that ¢ '(u') is a measure follows from the fact that ¢ maps Borel
sets to Borel sets and is a bijection, so it preserves union and disjointness. The details are
left as an exercise. Since p’ is a left Haar measure and ¢ is a homomorphism,

P (1)(s4) = i (p(sA)) = p'(p(s)p(A)) = p'(p(A)) = ¢~ (1)(A),
so ¢~ 1(y) is a left Haar measure.

We have
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and

which implies
Agi(p(s)) = Ag(s) forall se G

since we can pick a nonempty open subset A of G, and ¢(A) is a nonempty open subset of
G'. m
Corollary 8.24. If G’ = G, that is, ¢: G — G is an automorphism, then Ao p = A.

Definition 8.15. Let G be a locally compact group. We say that G is unimodular if A(s) =1
for all s € G, equivalently, if and only if a left Haar measure is also a right Haar measure.

Luckily, many familiar groups are unimodular (but unfortunately, not the affine groups
of rigid motions). Obviously, abelian locally compact groups are unimodular.

Given a group G, recall that its commutator subgroup |G, G] is the subgroup generated
by all elements [s,t] = sts~1t~!. The group [G,G] is a normal subgroup of G.

Proposition 8.25. Let G be a locally compact group.

(1) If there is a compact neighborhood V of 1 such that s'Vs =V for all s € G, then
G is unimodular. Consequently, if G is compact, discrete, or commutative, then G is
unimodular.

(2) If K is any compact subgroup of G, then A | K = 1.

(3) If G/|G,G] is compact, then G is unimodular. As a consequence, every connected
semisimple Lie group is unimodular. Recall that semisimple Lie group is a Lie group
G such that the Killing form on its Lie algebra g is nondegenerate.

Proof. (1) Let p be any left Haar measure. Since p is left-invariant
p(V) = u(s™'Vs) = p(Vs) = As)u(V),

but (V') > 0 because V' contains a nonempty open subset, so A(s) =1 for all s € G. The
corollaries are left as an easy exercise.
(2) Since A is continuous, A(K) is a compact subgroup of R* , which implies A(K') = {1}.

(3) Since R¥ is abelian, we have

A([s,t]) = A(sts7 't = A()AR)A(s) TAR) T = A(s)A(s) TTA)A(R) ! =1,
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so A vanishes on [G,G]. It follows that A factors through G/[G,G| as A = 7 o 6 where
9: G/|G,G] — R is a continuous homomorphism. Since G/[G, G| is compact, we have

0(G/[G,G]) = {1}, so A(G) = {1}.

If G is a connected semisimple Lie group, it is known that G = [G, G], so G is unimodular.
]

In order to discuss the behavior of the operator p — i we need the following proposition.

Proposition 8.26. Let p and v be two Radon measures on a locally compact topological
space X . If there is a continuous function g: X — R% such that

/fdu—/fgdu for all f € Kc(X),

and if v is the Radon measure given by

V(E) = /Egdp for all E' € B(X),

thenv =1.

A proof of Proposition 8.26 is given in Folland [28] (Chapter 2, Proposition 2.23).

We propose to denote the Radon measure v by ¢ -, by analogy with the definition of
the Radon functional g - ® in Example 7.1(3). The notation g du is also used.

The following proposition shows the behavior of the operator p — fi.

Proposition 8.27. Let G be a locally compact group. For every left Haar measure i, the
measure i 1S a right Haar measure, and we have

/fdu—/fd/l, fr=A"
[ e dut = [ raeau),
[ 1) = [ #6186 duto) [ FAE duls) = [ Fs)dnts

forall f € L(G,B,C).

equivalently

and
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fix1)= leAW(x")+y2XA2(x4)

Figure 8.10: Let G = S'. A step function on S! is represented by the top arcs of the colored
vertical “rectangular” sheets. The step function f(z™') = S12_ yrxa, (z71) is equivalent to

f@) =0 vkxa—1 ().

Proof sketch. For every pu-step function

f - Z YiXA;»
=1

since f(s) = f(s~!), we immediately obtain

F=> wixar,
=1

(see Figure 8.10) and since ji(4;) = u(A; "), we get

[ Fan= [ s

Then by a familiar argument using approximations sequences, we deduce that

[ Fau= [ s o

for all [ € [,}L(G,B, C).
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Using the fact that A is a group homomorphism, for any f € K¢(G), we have

= A(t7HA(®1) /f(s)A_l(s)d,u(s) by Proposition 8.22
applied to fA~!

which shows that the Radon functional f — [ f(s)A(s™!)du(s) is right-invariant. The
corresponding Haar measure v is a right Haar measure, and since i is a right Haar measure,
there is some a > 0 such that aji = v. Then we have

o [ 1@aits) = [ Hdv= [ 6t dus)

for all f € K¢(G), and since A™! is a positive continuous function, by Proposition 8.26,
v=A"1p, s0

afp = A7!
It remains to show that a = 1.

Assume that a # 1. Since A is continuous, there is a symmetric neighborhod U of 1 such
that |[A(s™) — 1] < 1/2]|a — 1| on U. Since U is symmetric, u(U) = (U), and we have

0 = 1p(0) = Joj0) = )] = | [ (AT = 1aus)] < 3la = (0.

a contradiction.

Therefore,

[ 1)) = [ #6150 o)
[ H©AG duts) = [ Fs)duts)

and by changing f to f, we obtain the desired equation. O]

for all f € L(G,B,C), so

As a corollary, if G is unimodular, then we have

[ svyduto) = [ ssiuta) = [ e duta) = [ f@)duta
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for all f € ﬁi(G,B, C), and

for all A € B.

Remark: If GG is a Lie group, then it can be shown that the modular function A is given by
A(s) = | det Ad(s™1)];

see Gallier and Quaintance [33] (Chapter 6, Proposition 6.25).

8.7 More Examples of Haar Measures

In the examples of Section 8.5, the groups under consideration were unimodular. The groups
of the next examples are not unimodular.

Example 8.6. Let G = GA(n,R), the affine group of R", which consists of pairs (A, u)
with A € GL(n,R) and u € R", acting on R™ by (A, u)(X) = Az + u. It can be shown that
a left Haar measure on GA(n,R) is given by

dpy = | det(A)]™* ® da;; ® ® du;
i i

with A = (a;;), and u = (u;), where da;; and du; is the Lebesgue measure on R. A right
Haar measure is given by

dpg = | det(A)] " X) dai; @ (K) du;,
ij i

and the modular function is given by
A((A, u)) = [det(A)[ .

A proof of these facts can be found in Bourbaki [6] (Chapter VII, Section 2, no. 10, Propo-
sition 14, and Section 3, no. 3, Example 2). In particular, if n = 1, then an affine bijection
is a map z + azx + b with a # 0, and we have du;, = dadb/a®, dur = dadb/|a|, and
A((a,b)) = la|~".

Remark: In view of Proposition 8.27, the value of the modular function is not unexpected.

Example 8.7. Let G = T(n,R), the group of invertible upper triangular matrices. It can
be shown that a left Haar measure on T(n,R) is given by

n

duy = H |ag| "t ® da;;

i=1 i<j
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with A = (a;;), and da;; is the Lebesgue measure on R. A right Haar measure is given by

n

dpg = [ [ lasl™ Q) day;.

i=1 i<j

and the modular function is given by
A(A) _ H |aii|2i_n_1-
i=1
A proof of these facts can be found in Bourbaki [6] (Chapter VII, Section 2, no. 10, Propo-

sition 14, and Section 3, no. 3, Example 4).

Remark: In view of Proposition 8.27, the value of the modular function is not unexpected.

More examples can be found in Bourbaki [6] (Chapter VII, Section 3, no. 3). The group
SL(n,R) is unimodular, but finding a Haar measure for it is nontrivial.

8.8 The Modulus of an Automorphism

We now consider the effect of an automorphism u: G — G on a Haar measure. Recall that
u is a group isomorphism and a homeomorphism.

Definition 8.16. Let G be a locally compact group and let u: G — G be an automorphism
of G. For every function f: G — C, define the function u(f) by

(W(f)(s) = f(u"'(s)), forallseq,

(see Figure 8.11), and for every left Haar measure p, define the measure u=*(p) by
(™ (n)(A) = p(u(A)), forall A€ B;

see Figure 8.12.

It is immediately verified that if u and v are two automorphisms of G, then
(wov)(f) = (u(v(f)), (uov)(n)= (u(v(w).
Also observe that since p is left-invariant and u is an automorphism,
(uH () (sA4) = ulu(sA)) = plu(s)u(A)) = p(u(A)) = u™' (u)(A),

so u~!(u) is left-invariant. By the uniqueness of a left Haar measure up to a constant, there
is a real a > 0 such that u='(u) = ap. For any other left Haar measure v = cyu, we have

(™ ())(A) = v(u(A)) = cu(u(A)) = cu™ (1)(A) = cap(A) = acu(A) = av(A).

Therefore, the constant a is independent of the left Haar measure .
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Figure 8.11: A schematic illustration of the “push forward” function u(f).

>c

2N
define “pullback” measure givenu

Figure 8.12: A schematic illustration of the “pullback” measure u=*(u).
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Definition 8.17. Let GG be a locally compact group. For every automorphism u: G — G,
there is a unique positive number mod(u) such that

u (1) = mod (u)

for all left Haar measures . The number mod(u) is called the modulus of the automorphism
u.

Note that the condition of Definition 8.17 can also be expressed as
p(u(A)) = mod(u)u(A) for all A€ B. (xx)

Proposition 8.28. Let G be a locally compact group and let v be any left Haar measure on
G. For every automorphism u: G — G, we have

[t = [ fau () = wod(w) [ sau

forall f € L(G,B,C).

Proof sketch. For every u-step function

f = Z YiXA;»
=1

since (u(f))(s) = f(u(s)), we have f(u=t(s)) = y; iff u=(s) € A; iff s € u(4;), which
means that

u(f) = YiXua
=1

see Figure 8.13.
Thus

[ uth) =Y w4 = Y ) = [ fau .

Then by a familiar argument using approximations sequences, we deduce that

[t = [

for all f € £,(G,B,C). Since u~' () = mod(u)u, we get the second equation. O

Proposition 8.28 can also be stated as

/ F(u™(5))dpa(s) = mod(u) / £()du(s).
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Figure 8.13: Let G = S*. A step function on S! is represented by the top arcs of the
colored vertical “rectangular” sheets. The step function f(u="(z)) = S2o_, yrxa, (u='(z)) is

equivalent to (u(f))(z) = Zizl Yk Xu(4,) ().

Suppose that u is a right Haar measure. As in the case of a left Haar measure, we define
the measure u~'(u) by

(u™ () (A) = pu(u(A)) for all A € B(G).
The measure v~ '(p) is a right Haar measure because

(u™ (1)) (As) = p(u(As)) = u(u(A)u(s)) = p(u(A)) = (u™ (1)) (A).

As in the left-invariant case, for every automorphism u: G — G, there a constant ¢ > 0
such that u=(u) = cu. Interestingly, ¢ = mod(u), so there is no difference between the left
modulus and the right modulus of an automorphism.

Proposition 8.29. Let G be a locally compact group and let uw: G — G be an automorphism.
Then for all left Haar measures and all right Haar measures i on G, we have

w () = mod(u)p,

where mod(u) is the modulus of u defined for left Haar measures (see Definition 8.17).

1

Proof. We use Corollary 8.24 which implies that Aou~! = A, since u™! is also an automor-

phism when u is an automorphism. As a consequence,
A(sT) =A% (s71) = A((u™(s)) ) = AT uT(s)),

that is,
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Recall that if p is a left Haar measure, then fi is a right Haar measure, and by Proposition
8.27 we have i = A™' - y. Then for every f € Kc(G), since (u(f))(s) = f(u='(s)), we have

/f(s) du ' (AT p)(s) = /(u(f))(s)d(A_1 ) (s) by Proposition 8.28
— [ fa A W w)duts) by (1)

= mod(u) /f(s)A_l(s)d,u(s) by Proposition 8.28

By the uniqueness of the Radon measure associated with a Radon functional, this proves
that

uHA 1) = mod(u) A7 g,
and by Proposition 8.27, we obtain, u(j1) = mod(u)/i. Since every right Haar measure is
of the form i for some left Haar measure p, we proved our result. O]

For every s € G, if C; is the automorphism conjugation by s, namely C,(t) = sts™!, then
we have the following result.

Proposition 8.30. Let G be a locally compact group. For every s € G, we have
mod(Cy) = A(s™).

Proof. We prove that mod(Cy-1) = A(s), which is equivalent to the equation of the Propo-
sition. By Definition 8.16, for any left Haar measure p,

(CH(W)(A) = u(Cy-1(A)) = p(s™  As) = (ps(As(1))) (A).
Since p is left-invariant, A\;(u) = u, and by definition of the modulus p,(p) = A(s)p, so
Ci (1) = ps(Ns(m) = ps(p) = Als)n,
which by Definition 8.17 shows that
m0d(Cyr) = A(s),
as claimed. n

Proposition 8.31. Let G be a locally compact group.
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(1) If G is compact or discrete, then mod(u) = 1 for any automorphism u: G — G.

(2) For any two automorphisms u: G — G and v: G — G, we have

mod(u o v) = mod(u) mod(v).

Proof. (1) Since u is an automorphism u(G) = G and u({1}) = {1}. If G is compact, let
A = G in Equation (*x) to obtain

u(G) = u(u(G)) = mod(u)u(G),
and if G is discrete, let A = {1}, where p is any left Haar measure.
(2) Using Equation (xx), we have
(w0 v)(A)) = plu(v(A))) = mod(u)u(v(A)) = mod(u) mod(v)u(A)),

and we choose A to be any open nonempty subset. O]

If G = R"™ (which is a locally compact group under addition with the topology induced
by any norm), and u a linear automorphism of R", that is, an invertible linear map of R",
then we have the following interesting characterization of mod(u).

Proposition 8.32. Let u: R" — R"™ be an invertible linear map, with R™ as an additive
group with the Lebesque measure. Then

mod(u) = | det(u)].

Sketch of proof. This result makes use of the following fact from linear algebra which is
stated in Gallier and Quaintance [34] Chapter 7, Proposition 7.18, which can be restated as
stating that every real n x n invertible matrix can be expressed as the product of elementary
matrices F; j.3 = I, + BE;; and I, + (oo — 1)E,,,. Then one must check the formula of the
proposition,

/u(f)(xl,...,:L’n)d,u(xl,...,xn) —mod(u)/f(ml,...,xn)du(xl,...,xn),

by integrating the functions of the form

flz,. . 21, axy)
and
flzr, .,z + Bay, ..o xy),

with f € Kr(R"), using a change of variables. Details can be found in Dieudonné [20]
(Chapter XIV, Proposition 14.3.9.1). O



8.8. THE MODULUS OF AN AUTOMORPHISM 307

As an application of Proposition 8.32, we obtain formulae for the measure (volume) of a
parallelotope and of a simplex in R"”.

Let (v1,...,v,) be n linearly independent vectors in R™. Then the set
P={ v+ -+ v, | (A,...; ) R, 0< )\, < 1}
is called a parallelotope; see Figure 8.14. The set
S={Mvi+-F+ v, | (A, ) ERY, N >0, M+ + N\, <1}

is called a simplex; see Figure 8.15.

T 771_7777’]’7**7—‘—-‘ y
1 1.5 )

Figure 8.14: The parallelotope in R? spanned by the vectors v; = (1,0,0), v, = (1,1,0), and
vs = (1,1,1).

Proposition 8.33. Let (vy,...,v,) be n linearly independent vectors in R"™, and let P be the
parallelotope and S be the simplex determined by (vy,...,v,). If p is the Lebesgue measure
on R", then

1
u(P) = |det(vy,...,v,)|, wp(S)= m[ det(vq, ..., v,)]|

Proof sketch. Since (vy, ..., v,) are linearly independent, there is a unique linear map u such
that u(e;) = v;, fori = 1,...,n, where e; is the canonical basis vector of R”. Then P = u(K),
where K is the n-cube determined by (e; ..., e,), and

u(P) = [ xrdi = [utuodn = mod(w) [ xicdy = | det(w) ().
But under the Lebesgue measure, u(K) = 1, and we get
pu(P) = |det(u)| = |det(vy, ..., v,)],
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001

53

(01,0

(1,0,0)

Figure 8.15: The standard simplex Sj is the solid tetrahedron spanned by the basis vectors
e1, e, and es.

/_\ o
0,0,1) 53(0)

(0,1/2)
S3(1/2)

oo\ (0

(0,1,0)

(1,00)

Figure 8.16: The standard simplex S5 with its embedded cross sections S, (), where 0 <
A< 1.

as claimed.

For the simplex, write .S,, for simplex determined by the canonical basis vectors ey, . . ., e,
and write p,, for the Lebesgue measure in R™. Then S = u(S,), so by a similar reasoning

p(S) = | det(u)[n(Sh),

and we are reduced to computing u(S,). We view R" as R"™! x R and we consider the
section S, () of S, consisting of the set of points (z1,..., 2, 1) € R""! such that

xla"'7$n—1207 xl_’_"'—'—xn—lgl_)\a

where 0 < A < 1; see Figure 8.16.
This section is the image of S, (0) under the scaling by 1 — A, so we get

pn=1(Sn(N) = (1= A" 1 (Sna)-
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Then by Fubini we get

fin(Sn) = /0 (1= N)"" n1(Sn1)dX = Eun—l(sn—l)'

By induction

1
n— S?’L* - Y
1 (Sn1) (n—1)!
so we get
1
as claimed. n

As another application of Proposition 8.32, the computation of the measure (volume) of
a closed ball in R™ can be found in Dieudonné [20] (Chapter XIV, Proposition 14.3.11).

More on the modular function and the modulus of an automorphism can be found in
Bourbaki [6], Chapter VII, Section 1.

8.9 Some Properties and Applications of the Haar
Measure

Since the Haar measure is o-regular and locally finite, Theorem 7.11 implies the following
result which will be needed in Vol II, Chapter 3.

Theorem 8.34. Let G be a locally compact, metrizable, separable group equipped with a left
Haar measure. Then LF (G, C) is separable for p=1,2.

The following result is proven in Dieudonné [20] (Chapter XIV, Proposition 14.2.3).

Proposition 8.35. Let G be a locally compact group, and let u be a left Haar measure on G.
Then G is discrete if and only if u({1}) > 0, and G is compact if and only if u(G) < +00.

An interesting and important application of the Haar measure is the construction of a
Hermitian inner product invariant under the representation of a compact group. The idea
of such a construction originates with Hurwitz and was generalized by H. Weyl.

Let K be a topological group, and let H be a (complex) finite-dimensional Hermitian
space (with inner product (—, —) and corresponding norm || ||). A representation of K in H
is a group homomorphism U: K — GL(H), where GL(H) is the group of invertible linear
maps on H.
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Theorem 8.36. Let K be a compact group, let H be a finite-dimensional Hermitian space,
and let U: K — GL(H) be a representation of K which is continuous when GL(H) is
equipped with the operator norm. Then there is a Hermitian inner product ¢ on H such that

o(Us(2),Us(y)) = p(x,y) forallse K and all z,y € H.

In other words, the linear maps U, are unitary transformations with respect to w. Further-
more, the norms || || and © — /¢(x,x) on H are equivalent.

Proof. Let p be a right Haar measure on K (which is also a left Haar measure since K is
compact). By hypothesis the map

s = (Us(x), Us(y))

is continuous for all x,y € H. Define ¢ by

wmwzﬂmmﬂmmww

It is immediately verified that ¢ is a sesquilinear form on H. Since H is finite-dimensional,
the sphere S = {x € H | ||z|| = 1} is compact. Since U is continuous, the map §: K xS — R
given by

0(s, x) = |Us()]]
is continuous, and since K and S are compact, K x S is compact so 6 achieves a minimum
m > 0 and a maximum M > 0 (every map Us is invertible and for x € S, Us(x) # 0 since

x # 0). We deduce that for every x # 0,
. ()| < Ml
[l

m || < [|Us(@)]| < M [l] -

m|z| < [lz]

that is,

As a consequence, we get
m*uw(K) |z < oz, x) < M*p(K) ||,

which shows that ¢ is indeed positive definite, and that || || is equivalent to the norm induced
by ¢. Finally, for every ¢ € K, since p is right-invariant we have

PU),Uw) = [ (UL (U)), U010} i)
_ / (Ust()), Ust ) dpa(s)
_ﬂm@MMWW@

= v(z,y),

as claimed. n
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Theorem 8.36 is a basic tool in representation theory. For example, if G is a Lie group
and if V' is a finite-dimensional vector space, for any representation p: G — GL(V), there
is a G-invariant inner product on V' iff p(G) is compact; see Gallier and Quaintance [32]
(Chapter 21, Theorem 21.5).

Theorem 8.36 will also be used in Vol II, Section 3.2 to show that every linear represen-
tation of a compact group is the sum of irreducible representations.

Regarding the product of Haar measures, we have the following result.

Proposition 8.37. Let G; and G5 be two locally compact groups, and let py be a left Haar
measure on Gy and ue be a left Haar measure on Go. Then the linear functional &7 ®

Oy : Kc(Gh x Gy) — C given by

(P @ ®)(f) = /f(xb T9)dp (1) @ dpg(z9)

15 a left-invariant positive Radon functional. If Gi and Gy are o-compact, then the Radon
measure o, ga, 0N G X Go associated with &1 @ $o given by Theorem 7.8 is a left Haar
measure extending the product measure py Q po. Furthermore, if Gy and Gs are also second-
countable, then pe, o0, = 11 @ U2.

Proof sketch. By Fubini’s Theorem (which applies since f vanishes outside of a compact
subset), we have

(As1,52) (21 ® 2))(f) = (@1 @ P2) (A1 1) (f))

— [ O lan za)din (1) @ duaas)

_ / F(s120, 5922)dp (21) @ dpin(2)

_ / ( / f(slxl,Sng)d,ul(xl)) ()
( / (a1, 507 dul(x1)> Ao ()
( / f(21, 522 d,ug(xg)) dyir (1)
= [ ([ #tor.eduate)) it

_ / ( / f(a;l,xg)dul(xl)) djiz (2)

= /f(ml, T2)dpr (21) ® dpg(x2) = (21 ® a)(f).

Therefore, ®; ® ®, is left-invariant. The other two statements are explained in Folland [28]
(Chapter 2, Section 2.2). m
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Remark: Since ®; ® ®, is a positive linear functional, by Theorem 7.8, the corresponding
Radon measure pg,g0, is a left Haar measure on Gy x Go. But if Gy or G5 is not o-compact
then the product measure pq ® s is not defined, and if G; or G5 is not second-countable, then
the o-algebra associated with p¢,53, has more Borel subsets than the o-algebra associated
with p1 ® pa (see Definition 5.23).

As an application of Proposition 8.37, since the Lebesgue measure py;, on R is both left
and right-invariant, we see that the product measure py, of n copies of juy is a left and
a right Haar measure on R". To simplify notation, we may write p, instead of pr ,, and

L' (pn) instead of £], (R", B(R"),C).

As a Haar measure, p, is both inner and outer regular.

8.10 G-Invariant Measures on Homogeneous Spaces

Let X be a locally compact space and let G be a locally compact group. Suppose we have a
continuous left action ¢: Gx X — X of G on X (which means that the map ¢ is continuous,
see Definition 8.5). As usual, we write g - x instead of ¢(g,z). We would like to generalize
the notion of left-invariance of a measure on G to the notion of G-invariance of a measure
on X. This is easily done by replacing multiplication in G' by the action of G on X.

Definition 8.18. Let G be a locally compact group, let X be a locally compact space, and
let -: Gx X — X be a continuous left action of G on X. For every s € GG, define L;: X — X
by

Lg(x)=s-z forall z € X.

For every subset A of X and every s € G, let
s-A={s-alae€ A}
For every function f: X — C, the function A,(f) is given by
A(f)(@) = f(s'-2) forallz € X and s € G.
For every Borel measure p on (X, B(X)), the measure As(u) given by
As()(A) = (s - A) for all s € G and all A € B(X).
For every Radon functional ®: K¢(X) — C, the Radon functional \s(®) given by

(As(D))(f) = P(A\s=1(f)) forall s € G and all f € Kc(X).

It is immediately verified that

Lst - Ls o Lt7 )‘St(f) = )\S<)\t(f>)7
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and
Ast(1) = As(Ae(), Ast(P) = As(Ae(@))-

The proof of Proposition 8.16 is immediately adapted to show that

[ Otn@dute) = [ s(s-yauta) = [ ) anio)

for every s € G, every f € £,,(X,3,C), and every Borel measure y on X.

Definition 8.19. Let G be a locally compact group, let X be a locally compact space, and
t -: G x X — X be a continuous left action of G on X. A Borel measure p on X is
G-invariant if

As(p) = p for all s € G.
A Radon functional ®: K¢(X) — C on X is G-invariant if

As(®) =@ forall s eG.

If p is G-invariant, then

/fsxdu /f

for every f € EL(X ,B,C) and all s € G. The proof of Proposition 8.16 is immediately
adapted to show that if

Aaw /fsxw /f ) dpu(a

for all f € K¢(X) and all s € G, then p is G-invariant.

Our goal is to find sufficient conditions to ensure that X has some G-invariant measure.
We will consider the case where X = G/H, with the left action of G on G/H given by

a-(bH) = abH, a,b € G;

see Figure 8.17. In this case, by Proposition 8.6, the space X is also locally compact (and
Hausdorft).

A G-invariant measure on G/H does not always exist. For example, if G is the affine
“ax + b” group (with a # 0) and X = R, obviously G acts transitively on R (see Example
8.6 for the definition of the action) and the stabilizer of 0 is H = R. However, the only Borel
measure on R invariant under translation is the Lebesgue measure, but it is not invariant
under scaling transformations x — ax with a # 0, 1.

It turns out that there is a necessary and sufficient condition for a G-invariant o-Radon
measure to exist on G/H in terms of Ag and Ag: Ap must the equal to the restriction of



314 CHAPTER 8. THE HAAR MEASURE AND CONVOLUTION

G/H

fibres collapsed

|

111

Figure 8.17: Let GG be the solid pink “cylindrical” shape; see Figures (a) and (b). The fibres
sH are represented by wavy vertical lines over the circular base; see Figure (c). When these
fibres are identified to the base point, we have effectively “collapsed” G to the circular base

G/H; see Figure (d).

Ag on H. We proceed to explain this following Folland’s exposition [28] (Chapter 2, Section
2.6).

Suppose p is a left Haar measure on G and ¢ is a left Haar measure on H. The group
G is locally compact and o-compact, and H is a closed subgroup of G. Denote the quotient
map by 7: G — G/H. The first step is to define a map P from K¢(G) to Kc(G/H).

Definition 8.20. With (G,pu) and (H,&) as above, let P: K¢(G) — Kc(G/H) be the
function defined as follows: for every f € K¢(G), for every s € G, let

(P(f))(sH) = /H £(sh) dé(h);
see Figure 8.18.

We need to check that the map P is well-defined, that is, if sH = tH, then (P(f))(sH) =
(P(f))(tH), but this follows from the left-invariance of £ since

(P(f)(sH) /fsh ae(h /f ) dé(h /fth ag(h) = (P(f))(tH).
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H with measure ¢ sH

f restricted to sH

f restricted to H
compute integral over s|

to create } oM

fgiven

Figure 8.18: Let G, H, and G/H be as in Figure 8.17. The right figure is a schematic
interpretation of P: K¢(G) — Ke(G/H). For each f € K¢(G), restrict the domain of f to
be over the fibre sH, and then integrate over that fibre using the measure ¢. This integral
is represented as the shaded “area” between the restricted function image and the fibre.

Roughly speaking, P(f)(sH) is obtained by averaging over H. The following properties are
immediately verified.
Proposition 8.38. The function P: Kc(G) — Kc(G/H) satisfies the following properties:

(1) The function P(f) is continuous.
(2) We have supp(P(f)) € m(supp(f)).
(3) For any ¢ € Kc(G/H), we have
P((gom)f) = P

where ¢ P(f) denotes the function defined by pointwise multiplication on G/H.

Our next goal is to show that P is surjective. The following technical result is needed.

Proposition 8.39. For any compact subset F' of G/H, there is a positive function f €
Kc(G) such that P(f) =1 on F.

Proof. Let E be a compact neighborhood of F' in G/H. By Proposition 8.7 there is a
compact subset K of G such that 7(K) = E. Since G and G/H are locally compact, by
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Proposition A.39 we can find a positive function g € Kc(G) such that g is strictly positive
on K and a function ¢ € Kc(G/H) such that ¢ =1 on F and supp(y) C E. Define f by

1(5) = { Pl ¥ HP)((s)) #0
0 if (P(g))(r(s)) = 0.

Since P(g) > 0 on supp(y), the function f is continuous, we have supp(f) C supp(g),
and by Proposition 8.38(3) applied to <F% o 7T) g, we have P(f) = (¢/P(g))P(g) = ¢, as
desired. O]

Using Proposition 8.39, we obtain the surjectivity of P.

Proposition 8.40. For any function ¢ € Kc(G/H), there is some function f € K¢(G) such
that P(f) = ¢. Furthermore, w(supp(f)) = supp(p), and if ¢ > 0, then f > 0.

Proof. If ¢ € Kc(G/H), by Proposition 8.39 there is some function g > 0 in K¢(G) such
that P(g) = 1 on supp(p). Let f = (¢ om)g. Then by Proposition 8.38(3), we have
P(f) = ¢P(g9) = ¢ since P(g) = 1 on supp(y). The other properties are immediately
verified. O

If G is a locally compact group and if H is a closed normal subgroup of G, then by
Proposition 8.6, the group G/H is also a locally compact group. As application of the
surjectivity of the map P: Kc(G) — Kc(G/H), the following proposition shows how to
integrate on G by integrating on H and G/H.

Proposition 8.41. Let G be a locally compact group and let H be a closed normal subgroup
of G. If € is a left Haar measure on H and if v is a left Haar measure on G/H, then the
functional

fos [ P (sH) dy(sH) = / / F(sh) de(h)dy(sH),  f € Kel(G)
G/H G/HJH

s a left Haar functional on G. Consequently, for any left Haar measure p on G, by rescaling

£ or 7y, we have
| r@auts = [ B | ftshydeiyan (s

Proof skech. The verification that the given functional is a positive and left-invariant func-
tional is left as an easy exercise. The fact that the functional is not the zero functional
follows immediately from the surjectivity of P. By Theorem 7.8, there is a left Haar mea-
sure corresponding to this positive Radon functional, and by uniqueness of the left Haar
measure up to a scalar, we can rescale ¢ or v as desired. O

We now come to our main theorem.
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Theorem 8.42. Let G be a locally compact group, and let H be closed subgroup of G.
Suppose v is a left Haar measure on G and & is a left Haar measure on H. There is a
G-invariant o-Radon measure v on G/H if and only if Ay is equal to the restriction of Ag
to H. In this case, 7y is unique up to a scalar, and with a suitable choice of this factor, we
have

/G £(5)dp(s) = /G  PUNGH) da(s) = /G B /H £(sh) d€(h) dy(sH), )

for all f € Kc(G); see Figure 8.19.

l collapse fibre

G/H
T collapse fibre

Jfts) duts)

Volume of the Box

typical fibre sH graph of fover G

first compute fo(sh) déth)
area over fibre sH

then sum up the areas over each fibre

T deb)) st

Figure 8.19: The group G is represented by the green square, the fibres are the vertical
purple lines, and G/ H is represented by the horizontal red line. The graph of the function
f € Kgr(G) is represented by a second green square “floating” above G. The “volume”
below the graph of f is computed by [, f(s)du(s). This volume can also be computed in
an iterative manner by first compute the “area” over a fibre sH, and then “summing” up
the areas by varying the fibre over G/H. Algebraically, this iterative process corresponds to

calculating [, [;; f(sh) d&(h) dy(sH).

Proof. First suppose that a G-invariant o-Radon measure v on G/H exists. The map f —
[ P(f)dv is anonzero left-invariant positive linear functional on K¢ (G), so by the uniqueness
of Haar measure on G there is some ¢ > 0 such that

/ P(f)(sH) dy(sH) = ¢ / £()du(s). (+)
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By Radon-Riesz I (Theorem 7.8), the measure ~ is uniquely determined by the functional
o — [@(sH)dy(sH) (with ¢ € Kc(G/H)). By Proposition 8.40, since P: K¢(G) —
Kc(G/H) is surjective, () determines this functional completely, and thus v is also com-
pletely determined, so v is unique up to the scalar determining a left Haar measure. By
replacing v by ¢ !v, equation (1) holds. Then for any n € H and f € Kc(G), we have

I
[> \Q\\
T
—

pn L(f)(s) du(s) by Proposition 8.22

/f )dp(s

po-1(f)(sh) dE(h) dy(sH) by (1)

f(shn_ Yd&(h) dvy(sH) by definition of p,-1(f)

\_/

/ / f(sh)dé(h)dy(sH) by Proposition 8.22
a/a) H

n) /G £(5) du(s), by (1)

which implies that Ag(n) = Ag(n).

Conversely, assume that Ay is equal to the restriction of Ag to H. We claim that if
f € Kc(G) and if P(f) =0, then [ f(s)du(s) = 0.

By Proposition 8.39 there is a positive function ¢ € K¢(G) such that P(p) = 1 on
m(supp(f)). Therefore we have

0= (P(f))(sH) = /H F(sh)de (h) by definition of P(f)
:/Hf(sh YAE(RY)dE(R) by Proposition 8.27

:/Hf(sh HAq(R1)dE(R), since Ay = Ag | H
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which implies

0= / / )Ac(h™1)de(h) dps)

= [ [ o A6 aus)delh) by Fubin

G

= [ 867 [ els) (st duts) der)
_ / / o(sh) f(s)du(s) dE(h) by Proposition 8.22
/ £(s /H o(sh)de(h) du(s) by Fubini
= [PEHf5)ints) = [ £s)dn(s)  sinee Ple) = 1 on w(supp().

What we just showed implies that if P(f) = P(g), then [ f(s)du(s) = [ g(s) Since
by Proposition 8.40 the map P: K¢(G) — Kc(G/H) is surjective we deﬁne a functlonal %
on K¢c(G/H) as follows: for every p € Kc(G/H), let

= / f(s)du(s) for any f € K¢(G) such that P(f) = .
G

Since P(f) = P(g) implies that [ f(s)du(s) = [ g(s , the functional ® is well-defined,
and it is immediately verified that ® is a G 1nvar1ant posmve linear functional on K¢ (G/H).
By Radon-Riesz I (Theorem 7.8), this functional induces the desired G-invariant o-Radon
measure on G/H. O

If H is compact then by Proposition 8.25(2), we have Ay = Ag | H = 1, so we obtain
the following useful corollary.

Proposition 8.43. If G is a locally compact group, for any compact subgroup H of G,
the space G/H admits a G-invariant o-Radon measure 