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Preface

The question that motivated writing this book is:

What is the Fourier transform?

We were quite surprised by how involved the answer is, and how much mathematics is
needed to answer it, from measure theory, integration theory, some functional analysis, to
some representation theory.

If G is a commutative locally compact group, there is a beautiful and well-understood
theory of the Fourier transform based on results of Gelfand, Pontrjagin, and André Weil.
Aspects of this theory are discussed in Volume I of this series.

If G is not commutative, things are a lot tougher. Characters no longer provide a
good input domain, and instead one has to turn to unitary representations . A unitary
representation is a homomorphism U : G → U(H) satisfying a certain continuity property,

where U(H) is the group of unitary operators on the Hilbert space H. Then Ĝ is the set of
equivalence classes of irreducible unitary representations of G, but it is no longer a group.
Some aspects of noncommutative harmonic analysis and representation theory are presented
in this book.

In the special case of a compact group, there is a deep interplay between analysis and
representation theory which was first discovered by Hermann Weyl and refined by André
Weil. If the group G is compact, an important theorem due to Peter and Weyl gives a nice
decomposition of L2(G) as a Hilbert sum of finite-dimensional matrix algebras corresponding
to the irreducible unitary representations of G (see Theorem 4.2 and Theorem 4.6). As a
consequence, there is a good notion of Fourier transform, such that the Fourier transform
F(f) is a function with domain Ĝ, but its output domain is no longer C. Instead, it is a space
of matrices depending on the irreducible representation given as input (see Section 4.12).
In general, it is very difficult to find the irreducible representations of a compact group, so
in general this Fourier transform is not very useful. However, for certain groups, such as
SO(2),SO(3) and SU(2), the irreducible representations can be determined explicitly, so
for these groups it is practical.

We now outline the contents of this book and along the way point out what we believe
is not found in other books on the subject.
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Chapter 2 discusses the notion of representation of algebras with involution. Complete
separable Hilbert algebras are defined and their structure is described. This result plays a
crucial role in the proof of the Peter–Weyl theorem (Theorem 4.2). The representations of
several algebras of continuous functions are defined. This leads to the important technical
tool of projection-valued measures.

Chapter 3 is devoted to the theory of unitary representations of a locally compact group.
One of the main results is the equivalence of unitary representations of a locally compact
group G and the nondegenerate (algebra) representations of the algebra L1(G). This equiv-
alence plays a major role in the proof of the second version of the Peter–Weyl theorem
(Theorem 4.16). It is also shown that every unitary representation of a locally compact
abelian group is determined by a projection-valued measure. This result is used in Mackey’s
theory of induced representations (see Chapter 7). Functions of positive type are also intro-
duced.

Chapter 4 contains the most important theorems about the structure of the function
space L2(G) when G is a metrizable compact group. We follow Dieudonné [11, 12] and
Folland [22]. It turns out that the irreducible representations of a metrizable compact group
G are finite-dimensional and form a finite or countable family (Mρ)ρ∈R. The space L2(G) is a
complete Hilbert algebra that can be expressed as a Hilbert sum of algebras each isomorphic
to the matrix algebra Mnρ(C). These results constitute Theorem 4.2, a deep and beautiful
theorem due to Peter and Weyl that we refer to as Peter–Weyl I.

The characters of the representations Mρ are defined. The second part of the Peter–Weyl
theorem (Theorem 4.16), referred to as Peter–Weyl II, deals with unitary representations
and is discussed in Section 4.3. This result allows the decomposition of an arbitrary unitary
representation of a compact group G as a Hilbert sum of some of the irreducible represen-
tations Mρ. It plays an unexpected role in Chapter 8 where it is used to construct steerable
families.

In Section 4.4, we discuss tensor products of finite-dimensional representations.

In Section 4.5, we define the notion of contragredient representation (or dual representa-
tion) UD : G → GL(H∗) of a representation U : G → GL(H). In Section 4.6 we define the
notion of conjugate vector space H of a vector space H and of conjugate representation V
of a complex representation V . If G is compact and if V : G→ GL(H) is a complex finite-
dimensional representation, then V and V D are equivalent. Furthermore V is self-conjugate,
which means that V and V are equivalent, iff the character χV of V is real-valued. In Section
4.7 we define the notion of Hom representation Hom(U1, U2) : G→ GL(Hom(H1, H2)) of two
representations U1 : G → GL(H1) and U2 : G → GL(H2). These notions will be needed in
Chapter 8.

It is remarkable that if a complex finite-dimensional representation V : G → GL(H) of
a compact group is self-conjugate, which is equivalent to χV being real-valued, then there
may not exist a basis in which all matrices representing V are real. This is equivalent to the
fact that V is the complexification of some real representation U , and we say that V is of
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real type. The other possibility is that V is the restriction of a quaternionic representation
W , and we say that V is of quaternionic type. Real and complex irreducible represen-
tation are classified into three pairwise disjoint classes in Sections 4.8, 4.9, 4.10, 4.11. If
U : G→ GL(H) is an irreducible real finite-dimensional representation, then HomG(U,U) is
isomorphic to either R, C, or H. Furthermore, if V : G→ GL(H) is an irreducible complex
finite-dimensional representation, then its type is determined by the value (−1, 0, 1) of the
integral

∫
G
χV (g2) dµ(g) (a theorem of Frobenius and Schur).

In Section 4.12, we define a notion of Fourier transform and Fourier cotransform for a
(metrizable) compact group G. We discuss versions of Fourier inversion; see Section 4.14.

Chapter 5 deals with explicit matrix descriptions of the irreducible representations of
the groups SL(2,C), SU(2) and SO(3) (unitary representation in the last two cases). Our
presentation (except for Section 5.7) relies heavily on Vilenkin’s exposition [70], especially
Chapter III. Among other things we derive the famous Wigner d-matrices and D-matrices
and we discuss the Clebsch–Gordan Coefficients , a standard topic in quantum mechanics.

Chapter 6 is devoted to induced representations of locally compact groups. If G is a
locally compact group and if H is a closed subgroup of G, under certain conditions, it is
possible to construct a Hilbert space H and a unitary representation Π: G→ U(H) of G in
H from a unitary representation U : H → U(E) of H in a (separable) Hilbert space E. The
representation Π is called an induced representation. Interestingly, induced representations
play a central role in group equivariant deep learning in convolutional networks; see Chapter
8.

There are two approaches for the construction of the Hilbert space H:

1. The Hilbert space H is a set of functions from X = G/H to E.

2. The Hilbert space H is a set of functions from G to E.

We give a detailed description of these two methods and explain how to pass from one
to the other. This involves picking a suitable section r : G/H → G. When the space
E is a (separable) Hilbert space, there are technical difficulties. The description of induced
representations in terms of certain G-bundles is also discussed. This chapter does not contain
any new material but it pulls together aspects of this theory which appear in different sources.

One of the most important contributions to the theory of unitary representations is a
method due to Mackey for constructing all irreducible representations of a locally compact
group as induced irreducible representations from “small” subgroups H of G. This method is
often referred to as the “Mackey machine.” Chapter 7 presents a simple version of Mackey’s
method.

In its most general form the method is very complicated but in the case where G has an
abelian normal subgroup N it is tractable. Mackey introduced the novel concept of (transi-
tive) system of imprimitivity (see Definition 7.3). The relevance of systems of imprimitivity is
Mackey’s imprimitivity theorem (Theorem 7.3), which implies that a unitary representation
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U is equivalent to a representation obtained by the induction method from some irreducible
representation of some “small” subgroup Gν of G.

Unfortunately, the subgroups Gν may still not be small enough. However, if some
condition on Gν holds (an extension condition), then for every irreducible representation
ρ : Gν/N → U(Hρ) of Gν/N , there is an irreducible representation of Gν in Hρ (see Propo-
sition 7.6). In this case, we can use irreducible representations of the “little groups” Hν =
Gν/N in the inducing process of Theorem 7.4.

The above extension condition is satisfied by semi-direct products G = N oH, where N
is a normal abelian subgroup of G. Then every irreducible representation of G is obtained
in terms of the characters of N andf the irreducible representations of the little groups Hν

associated with the characters ν ∈ N̂ ; see Theorem 7.7. Using this method, we describe
all irreducible representations of SE(n); see Example 7.1. We also determine all irreducible
representations of O(2) (see Example 7.2) and indicate how all irreducible representations
of E(2) and E(3) can be obtained. This chapter contains material that is rarely presented
in simplified form. Folland [22] presents Mackey’s theory but at a rather advanced level.

Chapter 8 is the most original chapter of this book. The general theme is to develop a
theory of equivariant convolutional neural networks (CNNs). The purpose and the need for
such neural networks is very clearly articulated in the preface of the recent book by Weiler,
Forré, Verlinde, and Welling [75] that we highly recommend. Our goal in this chapter is to
show how many of the fairly abstract concepts discussed earlier (representations, analysis on
compact groups, Peter–Weyl theorems, Fourier transform, induced representations) are used
to tackle very practical problems. Most of the material in Chapter 8 is heavily inspired by
the works of Bekkers, Boomsma, Cesa, Cohen, Forré, Geiger, Lang, Verlinder, Weiler, and
Welling.

However, Sections 8.7, 8.9 and 8.10 contain original results.

In Section 8.7, we provide novel decompositions of various function spaces in terms of
steerable functions. In Example 8.9, we consider the space L2(SE(n)) for any n ≥ 2. Example
8.10 deals with a homogeneous space X = H/H0, where H is a compact (metrizable and
separable) group and H0 is any closed subgroup of H. In Example 8.11, we describe a
general method to decompose the space L2(X), given an action of a compact group H on X,
where X is a locally compact, metrizable, separable space equipped with a σ-regular, locally
finite, Borel measure µ. The decomposition involves functions defined on the orbits of the
action of H on X and functions defined on the orbit space Ω = X/H. It can be viewed
as a generalization of the decomposition of functions on L2(SE(2)) in terms of harmonic
functions and radial function.

In Section 8.9, if H is a compact group, the semi-direct product G = Rd o H is not
compact but we can still define the Fourier transform of a function f ∈ L2(Rd o H) as an

indexed family of functions f̂ρ : Rd → Mnρ(C). These families of functions can be made

into a Hilbert space L2(Rd, Ĥ) and we prove a Plancherel-type theorem that shows that the
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Fourier transform is an isometry between the Hilbert spaces L2(RdoH) and L2(Rd, Ĥ); see
Theorem 8.8.

In Section 8.10, we explain how to define directly a notion of correlation on the space
of “Fourier coefficients with variables” L2(Rd, Ĥ); see Formulae (∗Φρ2,ρ1

) and (∗Φ̂ρ2,ρ1
). A

special case of this construction is the case d = 2 and H = SO(2), which is known as the
harmonic nets , and is covered extensively in Section 8.11.

A way to deal with noncommutativity, due to Gelfand, is to work with pairs (G,K),
where K is a compact subgroup of G. Instead of working with functions on G, which is “too
big,” we work with functions on the homogeneous space G/K, the space of left cosets. Then,
under certain assumptions on G and K, which makes (G,K) a Gelfand pair , it is possible
to consider a commutative algebra of functions on the set of double cosets KsK (s ∈ G), so
that some results from the commutative theory can be used (see Chapter 9). The domain of
the Fourier transform is a set of functions called spherical functions , and this set happens
to be homeomorphic to the set of characters on the commutative algebra mentioned above.
There is a very nice theory of the Fourier transform and its inverse (see Section 9.8), but
how useful it is in practice remains to be seen.

Since this book is already quite long, we do not present the machinery of Lie algebras
and semisimple Lie groups developed by Élie Cartan and Hermann Weyl involving weights
and roots. If G is a connected semisimple Lie group, the finite-dimensional irreducible
representations are determined by highest weights. There is a beautiful and extensive theory
of representations of semisimple Lie groups, and many books have been written on the
subject; see the end of Section 3.7 for some classical references.

Acknowledgement : Many thanks to the participants of the “underground” Tuesday meetings,
Christine Allen-Blanchette, Carlos Esteves, Stephen Phillips, and João Sedoc, for catching
mistakes and for many helpful comments. We also thank Kostas Daniilidis for being a source
of inspiration. Our debt to J. Dieudonné, G. Folland, E. Hewitt and K.A. Ross, A. Knapp,
S. Lang, A.A. Kirillov, Laurent Schwartz, E. Stein and R. Shakarchi, and W. Rudin, is
enormous. Every result in this manuscript is found in one form or another in their seminal
books.
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Chapter 1

Introduction

The main two topics of this book are harmonic analysis and representation theory.

In Volume I, we discussed aspects of harmonic analysis on locally compact abelian groups.
There is a beautiful and well-understood theory of the Fourier transform based on results of
Gelfand, Pontrjagin, and André Weil presented in Volume I of this book.

If G is not commutative, things are a lot tougher. Characters no longer provide a good
input domain for the Fourier transform, and instead one has to turn to unitary represen-
tations . A unitary representation is a homomorphism U : G → U(H) satisfying a certain
continuity property, where U(H) is the group of unitary operators on the Hilbert space H.

Then Ĝ is the set of equivalence classes of irreducible unitary representations of G, but it is
no longer a group. Some aspects of representation theory and of noncommutative harmonic
analysis are discussed in this book (Volume II).

Chapters 2 and 3 provide the background material needed in Chapter 4. Chapter 2
discusses representations of algebras and gives an introduction to Hilbert algebras. For
our purposes, the most important examples of complete Hilbert algebras are the Hilbert–
Schmidt operators on a separable Hilbert space and L2(G), where G is a compact (metrizable,
separable) group. One of the main theorems of this chapter is a structure theorem for
complete separable algebras (Theorem 2.33). This theorem is the key result for proving a
major part of the Peter–Weyl theorem in Chapter 4. We follow closely Dieudonné [14].

Chapter 3 gives an introduction to the theory of unitary representations of locally com-
pact groups. We prove that there is a bijection between unitary representations of a locally
compact group G and nondegenerate representations of the algebra L1(G). We define func-
tions and measures of positive type and prove that there is a bijection between the set of
functions of positive type and cyclic unitary representations (Gelfand–Raikov, Godement).
We follow Dieudonné [11, 12] and Folland [22].

Chapter 4 contains the most important theorems about the structure of the function
space L2(G) when G is a metrizable compact group. It turns out that the irreducible rep-
resentations of a metrizable compact group G are finite-dimensional and form a finite or
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14 CHAPTER 1. INTRODUCTION

countable family (Mρ)ρ∈R. The space L2(G) is a complete Hilbert algebra that can be ex-
pressed as a Hilbert sum of topologically simple algebras aρ, which are minimal two-sided
ideals, and each ideal aρ is isomorphic to the matrix algebra Mnρ(C). More precisely, there
is a family of functions (

1
√
nρ
m

(ρ)
ij

)
1≤i,j≤nρ, ρ∈R

,

which is a Hilbert basis of L2(G), where the subfamily corresponding to a fixed ρ ∈ R is an
orthonormal basis of the ideal aρ.

Furthermore, for every s ∈ G, if we define the nρ × nρ matrix Mρ(s) by

Mρ(s) =

(
1

nρ
mij(s)

)
,

then these matrices are invertible and satisfy the equations

Mρ(st) = Mρ(s)Mρ(t) and Mρ(s
−1) = (Mρ(s))

∗.

Thus, the map s 7→ Mρ(s) is a continuous unitary representation in matrix form Mρ : G →
U(nρ) of G in Cnρ . The representations Mρ : G → U(nρ) are irreducible, and every irre-
ducible unitary representation of G is equivalent to some Mρ.

These results constitute Theorem 4.2, a deep and beautiful theorem due to Peter and
Weyl that we refer to as Peter–Weyl I.

Besides characters of groups and characters of algebras, there is one more kind of char-
acters, namely, characters of finite-dimensional representations. For every ρ ∈ R, define the
character χρ of G associated with the ideal aρ as the function given by

χρ(s) = tr(Mρ(s)), for all s ∈ G.

One of the main properties of the characters is that the family of characters (χρ)ρ∈R forms
a Hilbert basis of the center of L2(G); see Proposition 4.10.

The second part of the Peter–Weyl theorem (Theorem 4.16), referred to as Peter–Weyl II,
deals with unitary representations and is discussed in Section 4.3. This theorem asserts the
following facts. Let V : G → U(H) be a unitary representation of G in a separable Hilbert
space H. Then H is a Hilbert sum of subspaces Eρ invariant under V , and each nontrivial
Eρ is the Hilbert sum of invariant subspaces corresponding to irreducible representations of
G. More precisely:

(1) For every ρ ∈ R, there is an orthogonal projection of H onto a closed subspace Eρ
(which may be reduced to (0)), and H is the Hilbert sum of the Eρ 6= (0).

(2) Every subspace Eρ 6= (0) is invariant under V , and the restriction Vρ of V to Eρ is a
finite or countably infinite Hilbert sum of irreducible representations, all equivalent to
Mρ.
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In particular, all the representations Mρ : G → U(nρ) occurring in Peter–Weyl I are irre-
ducible, and since every unitary irreducible representation is equivalent to some representa-
tion of the form Mρ, the index set R corresponds to a complete set of unitary representations
of G.

In Section 4.4, we discuss tensor products of finite-dimensional representations. We begin
with the definition of the tensor product representation U1 ⊗ U2 : G → U(H1 ⊗H2) of two
finite-dimensional unitary representations U1 : G→ U(H1) and U2 : G→ U(H2) of the same
locally compact (metrizable, separable) group G. In general, if U1 and U2 are irreducible,
then the tensor product representation U1 ⊗ U2 is not irreducible. If G is compact, the
representation U1 ⊗ U2 splits as a sum of irreducible representations of G, but finding this
decomposition is generally very difficult. In the special case G = SU(2), this can be done.
This is an important result of quantum physics; see Section 5.17 on the Clebsch–Gordan
coefficients.

Next, we define the tensor product representation U1 ⊗ U2 : G1 × G2 → U(H1 ⊗H2) of
the finite-dimensional unitary representations U1 : G1 → U(H1) and U2 : G2 → U(H2) of
two locally compact groups G1 and G2. This time it turns out that U1⊗U2 is irreducible iff
U1 and U2 are irreducible. We prove this result when G is compact.

In Section 4.5, we define the notion of contragredient representation (also known as dual
representation) UD : G → GL(H∗) of a representation U : G → GL(H). In Section 4.6
we define the notion of conjugate vector space H of a vector space H and of conjugate
representation V of a complex representation V . If G is compact and if V : G → GL(H)
is a complex finite-dimensional representation, then V and V D are equivalent. Furthermore
V is self-conjugate, which means that V and V are equivalent, iff the character χV of V is
real-valued. In Section 4.7 we define the notion of Hom representation Hom(U1, U2) : G →
GL(Hom(H1, H2)) of two representations U1 : G → GL(H1) and U2 : G → GL(H2). These
notions will be needed in Chapter 8. The main result is that if H1 and H2 are finite-
dimensional vector spaces then the representations UD

1 ⊗U2 and Hom(U1, U2) are equivalent;
see Proposition 4.28.

It is remarkable that if a complex finite-dimensional representation V : G → GL(H) of
a compact group is self-conjugate, which is equivalent to χV being real-valued, then there
may not exist a basis in which all matrices representing V are real. This is equivalent to the
fact that V is the complexification of some real representation U , and we say that V is of
real type. The other possibility is that V is the restriction of a quaternionic representation
W , and we say that V is of quaternionic type.

There are two criteria for determining whether a complex representation V : G→ GL(H)
(G compact, H finite-dimensional) is of real type or of quaternionic type. The first criterion
in terms of a semi-linear map J : H → H such that J2 = ±I (called a structure map) is
discussed in Sections 4.8 and 4.9.

The second criterion in terms of the existence of a nondegenerate C-bilinear form B : H×
H → C such that B is symmetric iff V is of real type and B is skew-symmetric iff V is of
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quaternionic type is discussed in Section 4.10. As a consequence we obtain a classification
of the irreducible complex representations into three pairwise disjoint classes: complex type
(when V and V are inequivalent), real type, and quaternionic type. These results are due
to Frobenius and Schur.

Real representations U : G → GL(H) can also be classified into three pairwise disjoint
classes. Remarkably these three classes correspond to the fact that if U : G→ GL(H) is an
irreducible real finite-dimensional representation, then HomG(U,U) is isomorphic to either
R, C, or H. Finally, if V : G → GL(H) is an irreducible complex finite-dimensional repre-
sentation, then its type is determined by the value (−1, 0, 1) of the integral

∫
G
χV (g2) dµ(g)

(another theorem of Frobenius and Schur). These results are discussed in Section 4.11.

In Section 4.12, we define a notion of Fourier transform and Fourier cotransform for a
(metrizable) compact group G. Since for a nonabelian compact group the set of characters is

not a group, the definition of the spaces Lp(Ĝ) is more complicated. The Fourier transform
Ff of a function f ∈ L1(G) is now a function with domain R, a complete set of irreducible
unitary representations of G, such that for every ρ ∈ R,

F(f)(ρ) =

∫
f(t)(Mρ(t))

∗ dλg(t).

The Fourier transform defined above is the natural generalization of the definition of the
Fourier transform, when G is an abelian compact group (Vol. I, Definition 10.3),

F(f)(χ) =

∫
f(s)χ(s) dλ(s) =

∫
f(s)χ(s−1) dλ(s);

the character χ is replaced by the irreducible representation Mρ.

The definition of F(f)(ρ) implies that F(f)(ρ) is a linear map from Cnρ to itself (since
(Mρ(t))

∗ is a matrix). Thus, F(f) ∈
∏

ρ∈R Mnρ(C). Every element F ∈
∏

ρ∈R Mnρ(C) is an
R-indexed sequence F = (F (ρ))ρ∈R of nρ×nρ matrices F (ρ). These sequences can be added
and rescaled componentwise, so we obtain a vector space.

It is natural to define Ĝ as R, but the vector space
∏

ρ∈R Mnρ(C) is too big. Thus, we

define some normed vector spaces Lp(Ĝ), which are subspaces of
∏

ρ∈R Mnρ(C). For this, we
define some norms due to von Neumann; see Section 4.13.

We can also define a notion of Fourier cotransform and there are versions of Fourier
inversion; see Section 4.14. For any F ∈

∏
ρ∈R Mnρ(C), the Fourier cotransform F(F ) of F

is the function on G given by

F(F )(s) =
∑
ρ∈R

nρ tr(F (ρ)Mρ(s)), s ∈ G.

Of course, there are convergence issues. It can be shown (Theorem 4.51) that if F ∈ L1(Ĝ),
then the map

s 7→ (F(F ))(s) =
∑
ρ∈R

nρ tr(F (ρ)Mρ(s))
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converges uniformly to a continuous function f . Furthermore, we have the Fourier inversion
formula

(F(F(f)))(s) =
∑
ρ∈R

nρ tr(F(f)(ρ)Mρ(s)), s ∈ G.

Also, Fourier inversion holds for L2(G) (see Theorem 4.53).

Chapter 5 deals with explicit matrix descriptions of the irreducible representations of
the groups SL(2,C), SU(2) and SO(3) (unitary representation in the last two cases). Our
presentation (except for Section 5.7) relies heavily on Vilenkin’s exposition [70], especially
Chapter III. To the best of our knowledge, Vilenkin contains the most detailed presentation
of this material.

We begin by proving (Section 5.1) that the representations Um : SU(2) → GL(PC
m(2))

and W` : SO(3) → GL(PC
2`(2)), which were shown to be irreducible in Example 3.8 and

Example 3.9, form complete sets of set of irreducible (unitary) representations. Here, PC
m(2)

is the vector space of complex homogeneous polynomials of degree m in two variables (z1

and z2).

In Section 5.2, we give a more pleasant description of the irreducible unitary representa-
tions of SO(3) in terms of the spaces HC

k (3) of complex homogeneous harmonic polynomials
in three variables.

It turns out that to obtain the most explicit matrix descriptions of the representations
of SU(2) and SO(3), it is crucial to factor a unit quaternion q as the product of three
types of unit quaternions rx(ϕ/2), ry(ψ/2), rz(θ/2), which happen to induce the well-known
rotations of R3 associated with the Euler angles. For example, we have the factorizations
q = rx(ϕ/2)rz(θ/2)rx(ψ/2) and q = rx(−ϕ/2)ry(θ/2)rx(−ψ/2). This matter is treated in
great detail in Section 5.3. This is a standard topic in quantum mechanics but it is also a
source of confusion because different formulae are obtained depending on the method chosen
for defining the rotation in SO(3) induced by a unit quaternion q in SU(2). We thoroughly
discuss this issue.

Until now, the representations Um : SU(2)→ GL(PC
m(2)), which are also representations

of SL(2), act on the vector space PC
m(2) of complex homogenous polynomials of degree m

in two variables. In quantum mechanics it is preferable to use the integer or half-integer
index ` = m/2. The space PC

m(2) = PC
2`(2) then has dimension 2` + 1 and the monomials

ckz
`−k
1 z`+k2 of a polynomial P (z1, z2) are indexed by the index k which ranges from −` to

`. It is actually preferable to use the “dehomogenized” polynomial Q(z) = P (z, 1) in the
single variable z. The vector space of such polynomials (of degree 2` + 1) is denoted PC

` ,
and we define the representation T` : SL(2,C) → GL(PC

` ), which yields a representation
T` : SU(2) → GL(PC

` ) when restricted to the subgroup SU(2) of SL(2,C); see Section 5.5,
Definition 5.3.

We will need to define an SU(2)-invariant hermitian inner product on each space PC
` , and

for this it is useful to figure out what is the derivative of the representation T` : SL(2,C)→
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GL(PC
` ) at the identity. This yields a representation t` : sl(2,C) → Hom(PC

` ,PC
` ), which is

a representation of Lie algebras. This topic is discussed in Section 5.6.

In Section 5.7, we determine all the irreducible Lie algebra representations of sl(2,C)
(and again, of su(2)). This section presents key results of representation theory which occur
in every book in representation theory. We follow Serre’s exposition [64].

We return to our goal of finding explicit formulae for the matrix representations of
SL(2,C), SU(2), and SO(3). In Section 5.8, we prove that if we consider the polynomials
ψk(z) given by

ψk(z) =
z`−k√

(`− k)!(`+ k)!
, −` ≤ k ≤ `,

then the hermitian inner product on PC
` making the basis (ψk) orthonormal is SU(2)-

invariant (see Proposition 5.20).

In Section 5.9, we give PC
` the hermitian inner product making (ψk) an orthonormal basis

and we give various expressions for the matrix entries of the matrix t(`)(A) representing T`(A)
in this basis.

In Section 5.10, we restrict our attention to matrices in the group SU(2), in which case
the hermitian inner product on PC

` making the basis (ψk) orthonormal is SU(2)-invariant
(see Proposition 5.20). Using the Euler angles representation of Section 5.3, we prove the
important fact (see Proposition 5.23) that for any matrix q ∈ SU(2) expressed in terms of
the Euler angles as q = u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2), with respect to the orthonormal
basis (ψk) of PC

` , we have

t
(`)
jk (q) = e−i(jϕ+kψ) t

(`)
jk (rz(θ/2)), −` ≤ j, k ≤ `.

Thus, we are left with finding an explicit expression for the matrix t(`)(rz(θ/2)), which we
denote as t(`)(θ) (see Definition 5.11). Such a formula is given in Proposition 5.24.

Since SU(2) is the universal cover of SO(3), we obtain a formula for the matrix w(`)(R) of
the unitary map W`(R) associated with the irreducible representation W` : SO(3)→ U(PC

` ),
where R ∈ SO(3) is expressed in terms of the Euler angles as R = Rx(ϕ)Rz(θ)Rx(ψ). With
respect to the orthonormal basis (ψk) of PC

` , the matrix w(`)(R) is given by

w
(`)
jk (R) = e−i(jϕ+kψ) t

(`)
jk (θ), ` ∈ N.

We also discuss the famous Wigner d-matrices and D-matrices.

There is one more method for computing the matrix elements t
(`)
jk (A) (with A ∈ SL(2,C))

based on integration. The idea is to use another representing space for the representation
T`, namely the vector space F` (of dimension 2`+ 1) of finite Fourier series

Φ(eiϕ) =
∑̀
k=−`

cke
−ikϕ,
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with ck ∈ C. In Section 5.11, we define the (irreducible) representations T` : SL(2,C) →
GL(F`). In Proposition 5.26, we obtain an integral formula for the matrix elements t

(`)
jk (A).

By specializing to the matrices A = rz(θ/2), we obtain an integral formula for computing

the matrix elements t
(`)
jk (θ) (see Proposition 5.27). For small values of `, this equation is

quite practical.

In Section 5.12, we show that the matrix elements t
(`)
jk (θ) can be expressed in terms of

certain polynomials known as the Jacobi polynomials . In the special case where k = 0, in
which case the function

t
(`)
j0 (q) = e−ijϕ P `

j0(cos θ)

is independent of the angle ψ, the function P `
j0(z) is a rescaling of the associated Legendre

function P j
` (z). The function t

(`)
j0 (q) (with q = rx(ϕ/2)rz(θ/2)) can be viewed as a function

on the sphere S2 and is denoted Y`j(ϕ, θ), with 0 ≤ ϕ < 2π and 0 ≤ θ < π. The function
Y`j(ϕ, θ) is called a spherical function. Up to a constant, Y`j(ϕ, θ) is the classical spherical
harmonic (unfortunately) denoted Y j

` (θ, ϕ) and called the Laplace spherical harmonic by
Dieudonné.

In Section 5.14, we derive explicit formulae for the normalized Haar measures on SU(2)
and SO(3) when these groups are parametrized by the Euler angles. Technically, these
parametrizations are injective only on open subsets of SU(2) and SO(3), but the comple-
ments of these open sets have measure zero so from the point of view integration we obtain
formulae for integrating all functions in L2(SU(2)) and all functions in L2(SO(3)) (respec-
tively equipped with these left and right invariant Haar measures).

Combining results from Section 5.14 and the previous sections, in Section 5.15 we obtain
explicit Fourier series expansions for the functions in L2(SU(2)) and L2(SO(3)) in terms of

the matrix elements t
(`)
jk . The reason is that by Peter–Weyl the family of functions(√

2`+ 1 t
(`)
ij

)
−`≤i,j≤`, `∈R

with R = {0, 1/2, 1, 3/2, 2, . . .}, is a Hilbert basis of L2(SU(2)). Actually, we obtain explicit
formulae for the Fourier transform and the Fourier cotransform (discussed in Section 4.12)
on L2(SU(2)). Similarly, the family of functions(√

2`+ 1w
(`)
ij

)
−`≤i,j≤`, `∈N

is a Hilbert basis of L2(SO(3)). This yields another explicit example of the Fourier transform
and the Fourier cotransform on L2(SO(3)). If the functions are expressed in terms of the
Euler angles, then we obtain formulae that are practically computable.

In Section 5.16, following Vilenkin, we show how to decompose not only scalar-valued
but also vector-valued functions on the sphere S2 into Fourier series that behave nicely under
rotations of the sphere.
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The last section of this chapter (Section 5.16) deals with the Clebsch–Gordan coefficients ,
a standard topic in quantum mechanics. In general, the tensor product T`1 ⊗ T`2 of two
irreducible representations T`1 and T`2 of SU(2) is not irreducible, so according to the Peter–
Weyl theorem (Theorem 4.16) it splits as a direct sum of irreducible representations. Since
the character associated with the representation T`1 ⊗ T`2 is equal to the product χT`1χT`2
of the characters χT`1 and χT`2 associated with T`1 and T`2 , it turns out that the following
famous result (known to H. Weyl and E. Wigner) can be obtained (see Proposition 5.46).
For any two irreducible representations T`1 and T`2 of SU(2), we have

χT`1 (q)χT`2 (q) =

`1+`2∑
`=|`1−`2|

χT`(q), q ∈ SU(2).

As a consequence, we also have an isomorphism

P`1 ⊗ P`2 '
`1+`2⊕

`=|`1−`2|

P`.

The space P`1 ⊗ P`2 has dimension (2`1 + 1)(2`2 + 1) and each summand P` has dimension
2`+ 1.

By Proposition 5.16, each vector space P` has an orthonormal basis (ψk) (−` ≤ k ≤ `)
invariant under the action of SU(2). Following Vilenkin [70] (Chapter III, Section 8.2), we
denote the basis of P`1 as (fj) (−`1 ≤ j ≤ `1) and the basis of P`2 as (hk) (−`2 ≤ k ≤ `2).
Then the family of tensor products

fj ⊗ hk, −`1 ≤ j ≤ `1, −`2 ≤ k ≤ `2,

is a basis of P`1⊗P`2 . If we give P`1⊗P`2 the inner product defined in Definition 4.10 induced
by the inner products associated with the bases (fj) and (hk), then the vectors (fj⊗hk) form
an orthonormal basis of P`1 ⊗ P`2 .

Since we have the direct sum

P`1 ⊗ P`2 '
`1+`2⊕

`=|`1−`2|

P`,

we also have a basis of P`1 ⊗P`2 consisting of the union of the bases associated with each of
the summand Pl, which Vilenkin denotes by

a`m, |`1 − `2| ≤ ` ≤ `1 + `2, −` ≤ m ≤ `,

where for ` fixed, (a`m) (−` ≤ m ≤ `) is the basis of P`. Since both bases are orthonormal
bases of P`1 ⊗P`2 , there is a unitary matrix C expressing the basis (fj ⊗ hk) in terms of the
basis (a`m), and the entries of the matrix C are called the Clebsch–Gordan coefficients . More
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precisely, the change of basis matrix C = (C(`m),(jk)) is the unitary matrix defined such that
the (jk)th column of C consists of the coefficients of fj ⊗ hk over the basis (a`m), namely

fj ⊗ hk =

`1+`2∑
`=|`1−`2|

∑̀
m=−`

C(`m),(jk)a
`
m,

with −`1 ≤ j ≤ `1, −`2 ≤ k ≤ `2.

Amazingly, the coefficients C(`m),(jk) can be computed explicitly, but the formulae are
very complicated and the technical details of the computations are quite involved. Complete
details can be found in Vilenkin [70] (Chapter III, Section 8). In this section, we will content
ourselves by providing an outline of these computations.

Chapter 6 is devoted to induced representations. If G is a locally compact group and if
H is a closed subgroup of G, under certain conditions, it is possible to construct a Hilbert
space H and a unitary representation Π: G→ U(H) of G in H from a unitary representation
U : H → U(E) of H in a (separable) Hilbert space E. The representation Π is called an
induced representation. Induced representations are very useful in cases where it is difficult
to construct directly representations of a group. This is the case for SL(2,R). Interestingly,
induced representations play a central role in group equivariant deep learning in convolutional
networks; see Chapter 8.

There are two approaches for the construction of the Hilbert space H:

1. The Hilbert space H is a set of functions from X = G/H to E.

2. The Hilbert space H is a set of functions from G to E.

In the first approach, we will construct unitary representations of G in H using certain
functions α : G×(G/H)→ GL(E) called cocycles . In the second approach, the construction
of the Hilbert space H is more complicated, but the definition of the operator Πs is simpler.

The general construction (in the first approach) consists of seven steps, where the first four
are purely algebraic and do not deal with continuous unitary representations, but instead
linear representations (group homomorphisms U : G → GL(E), where G is a group not
equipped with any topology and E is just a vector space with no additional structure):

(1) Let G be a group acting (on the left) on a set X, and let E be a vector space. In Section
6.1, we define the notion of equilinear action of G on X ×E and cocycle. A cocycle of
G with values in GL(E) is a map α : G×X → GL(E) satisfying the conditions:

(a) For all x ∈ X
α(e, x) = idE.

(b) For all x ∈ X and all s, t ∈ G,

α(st, x) = α(s, t · x) ◦ α(t, x).
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A equilinear action of G on X × E defines a cocycle and an action of G on X, and
conversely. An equilinear action of G on X × E induces a homomorphism Π: G →
GL(EX), where EX is the vector space of all functions from X to E. More precisely,
for every function f : X → E, for every s ∈ G, Πs(f) : X → E is function given by

(Πs(f))(x) = α(s, s−1 · x)(f(s−1 · x)), for every x ∈ X.

(2) In Section 6.2, we specialize the construction to the homogeneous space X = G/H of
left cosets. Then G acts on G/H on the left by

s · (gH) = sgH.

By choosing a set of representatives (rx)x∈G/H in the cosets of X = G/H (with x0 = H
and rx0 = e), a cocycle α : G × X → GL(E) determines a homomorphism σ : H →
GL(E) given by σ(h) = α(h, x0) and a map β : X → GL(E) given by β(x) = α(rx, x0).
Conversely, a homomorphism σ : H → GL(E) and a map β : X → GL(E) determine
a cocycle α : G × X → GL(E). In fact, we may restrict ourselves to the map β
given by β(x) = idE, and if we define u : G × X → H by u(s, x) = r−1

s·xsrx, the
map α : G × X → GL(E) given by α(s, x) = σ(u(s, x)) is a cocycle. The induced
representation is given by

(Πs(f))(x) = σ(u(s, s−1 · x))(f(s−1 · x)), f ∈ EX , x ∈ X.

This step is the most important application of Step 1, and E is an arbitrary vector
space.

(3) For a given homomorphism σ : H → GL(E), the homomorphisms Π: G → GL(EX)
corresponding to cocycles associated with different maps β are equivalent.

(4) In Section 6.3, we show that a cocycle α : G × X → GL(E) determines a bijection
between EX and a subspace Lα of the set EG of maps from G to E defined by

Lα = {f ∈ EG | f(sh) = σ(h−1)(f(s)), s ∈ G, h ∈ H}.

As a consequence, the representation Π: G → GL(EX) corresponding to a cocycle α
is equivalent to the representation ΠLα : G→ GL(Lα) given by

((ΠLα)s(g))(t) = g(s−1t) for all g ∈ Lα and all s, t ∈ G.

Observe that this is simply the left regular representation of Lα. The issue of choosing
between representations in the space EX or representations in the space Lα comes up
in Chapter 8.

This completes the purely algebraic construction. The next steps use topology and
analysis to construct unitary representations.
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(5) In Section 6.4, we assume that G is a locally compact group and H is a closed subgroup
of G, in which case G/H is also locally compact. Let µ be a positive measure on
X = G/H, and assume that E is a separable Hilbert space. We then define a Hilbert
space L2

µ(X;E) consisting of measurable functions from X to E.

(6) In Section 6.5, given a unitary representation U of H in E, we assume that the measure
µ on X = G/H is G-invariant and if the cocycle α satisfies certain conditions, then the
homomorphism s 7→ Πs([f ]) = [Πs(f)] is a unitary representation of G in L2

µ(X;E) =
H.

(7) In Sections 6.6 and 6.7, we generalize the previous construction to certain measure
called quasi-invariant . If the measure µ on G/H is quasi-invariant and another tech-
nical condition is satisfied, then the homomorphism s 7→ Πs([f ]) = [Πs(f)] is a unitary
representation of G in L2

µ(X;E). Quasi-invariant measures on G/H always exist and
can be constructed using rho-functions.

In Section 6.8, we illustrate the method of Section 6.7 by showing how to construct
unitary representations of SL(2,R) using induced representations.

In Section 6.9, we consider a compact (metrizable) group G and a closed subgroup H of
G, and our goal is to determine the canonical (unitary) representation of G in L2

µ(G/H;C)
induced by the trivial representation of H in E = C (see Definition 6.13), where µ is the
G-invariant measure on G/H induced by a Haar measure λ on G. For simplicity of notation,
we write L2

µ(G/H) instead of L2
µ(G/H;C). To do this, it is necessary to understand what is

the restriction of the representation Mρ : G→ U(Cnρ) to H, with ρ ∈ R(G).

In Proposition 6.18, we show that the space L2
µ(G/H) is the Hilbert sum of subspaces

Lρ ⊆ aρ. If the trivial representation σ0 of H is contained d = (ρ : σ0) ≥ 1 times in
the restriction of Mρ to H, then Lρ is the direct sum of the first d columns of the matrix

M
(H)
ρ = P ∗MρP , where P is a suitable change of basis matrix.

Then, we consider the spaceH\G of right cosetsHs ofG (s ∈ G). We show in Proposition

6.19 that the space L2
µ′(H\G) is the Hilbert sum of subspaces Ľρ ⊆ aρ. If the trivial

representation σ0 of H is contained d = (ρ : σ0) ≥ 1 times in the restriction of Mρ to H,

then Ľρ is the direct sum of the first d rows of M
(H)
ρ .

In preparation for Chapter 9, we consider the intersection L2
µ(G/H) ∩ L2

µ′(H\G). This
is a closed involutive subalgebra of L2(G), thus a complete Hilbert algebra. We can view a
function g ∈ L2

µ(G/H) ∩ L2
µ′(H\G) as a function g ∈ L2(G), such that

g(tst′) = g(s) for all t, t′ ∈ H and all s ∈ G. (∗H\G/H)

We denote the algebra of functions in L2(G) satisfying (∗H\G/H) as L2(H\G/H). Then
we show in Proposition 6.20 that the algebra L2(H\G/H) is the Hilbert sum of minimal
two-sided ideals.
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Again, in preparation for Chapter 9 on Gelfand pairs, we show in Proposition 6.21 that
the algebra L2(H\G/H) is commutative if and only if (ρ : σ0) ≤ 1 for all ρ ∈ R(G).

In Section 6.10, we present a nice example of the above situation for G = SO(n + 1)
and H = SO(n). In this case, G/H = SO(n + 1)/SO(n) ' Sn, the sphere in Rn+1. As a
consequence, we obtain a decomposition of L2(Sn) as a Hilbert sum of the classical spaces
HC
k (Sn) of spherical harmonics on Sn.

In Section 6.11, we present a method due to Blattner to deal with the situation where
G/H has no G-invariant measure. This is a modification of the construction of the Hilbert
space H and the inner product described at the end of Section 6.5. This can be done in
two ways. These constructions yield induced unitary representations of G from a unitary
representation U : H → U(E) of H and do not involve cocycles.

In Section 6.12, we explain how the spaces of functions Lα (from Definition 6.8), and the
spaces H0 and H0 from Section 6.11 can be viewed as sections of spaces that are similar to
vector bundles but have less structure. More precisely, such structures have no trivialization
maps.

We begin with the simplest situation where we have a group G without any topology on
it, a subgroup H of G, a vector space Hσ, and a linear representation σ : H → GL(Hσ). As
usual, write X = G/H and π : G → G/H for the quotient map. Let Lσ be the subspace of
(Hσ)G consisting of all functions f : G→ Hσ, such that

f(gh) = σ(h−1)(f(g)), for all g ∈ G and all h ∈ H.

The key point is to construct a space E = G ×H Hσ, together with a surjective map
p : E → X, such that for every x ∈ X = G/H, the fibre Ex = p−1(x) is isomorphic to
the vector space Hσ, and the space of sections from X to E is in bijection with Lσ. This
is a special case of the so-called Borel construction used to construct a vector bundle from
a principal bundle; see Gallier and Quaintance [28] (Chapter 9, Section 9.9). Then the
main point of this section is to define two maps S : Lσ → Γ(E) and L : Γ(E) → Lσ, which
are mutual inverses, where Γ(E) is the space of sections of E, namely the set of functions
s : X → E, such that p ◦ s = idX , where p is the projection p : E → X.

The last important ingredient is that G acts (on the left) on E = G×HHσ in an equilinear
fashion; this is explained in Proposition 6.23.

In Section 6.13, we show how induced representations can be recovered from certain
kinds of vector bundles E over the base space X = G/H (actually a more basic notion
of vector bundle) equipped with an equilinear action of a group G on E. Such bundles,
called G-bundles , are equipped with an equilinear action of the group G and generalize the
notion of bundle introduced in the previous section. If x0 denotes the coset H = eH in G,
then the action of G on the fibre E0 above x0 defines a representation σ : H → GL(E0).
Again, the main point is to define a space of functions Lσ and two maps S : Lσ → Γ(E) and
L : Γ(E) → Lσ, which are mutual inverses, where Γ(E) is the space of sections of E. The
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induced representation of G induced by the representation σ of H can then be recovered
from the action of G on sections of E in terms of L and S.

The sections in Γ(E), called feature fields in group equivariant deep learning in computer
vision, are functions whose domain transforms under the action of G and whose codomain
transforms by representations of H equivalent to σ : H → GL(E0).

The above definitions and constructions are adapted to deal with unitary representations
in Section 6.14. In this case, G is a locally compact group, H is a closed subgroup of G,
and σ : H → U(Hσ) is a unitary representation, where Hσ is a separable Hilbert space.
These bundles are called hermitian G-bundles . We treat the special case where Hσ is finite-
dimensional in detail.

Unfortunately, in general the maps L and S are no longer well-defined. To remedy this
problem, we assume that our G-bundles are locally trivializable, that is, they are (smooth)
vector bundles.

Consequently, in Section 6.15, we review principal H-bundles and hermitian vector bun-
dles. We then define hermitian G-vector bundles , which are simultaneously hermitian vector
bundles and hermitian G-bundles. We discuss the construction of a hermitian vector bundle
from a principal H-bundle obtained by replacing the fibre H by a vector space Hσ, which is
the space of a unitary representation σ : H → U(Hσ); see Theorem 6.27.

The generalization to hermitian G-vector bundles of infinite rank is sketched in Section
6.16.

One of the most important contributions to the theory of unitary representations is a
method due to Mackey for constructing all irreducible representations of a locally compact
group as induced irreducible representations from “small” subgroups Hν of G. This method
is often referred to as the “Mackey machine.” Chapter 7 presents a simple version of Mackey’s
method.

In its most general form the method is very complicated but in the case where G has an
abelian normal subgroup N , it is tractable. The basic reason is that because N is abelian, its
irreducible representations are given by the characters of N . There is also a natural action
· : G × N̂ → N̂ of G on the dual group N̂ (the group of characters of N). The key to the
construction is that because N is an abelian locally compact group, by Theorem 3.20, for
any unitary representation U : G→ U(HU) of G, since the restriction of U to N is a unitary

representation, there is a unique regular projection-valued measure P on the dual group N̂ ,
such that

U(n) =

∫
N̂

χ(n) dP (χ), n ∈ N.

Moreover, the projection-valued measure P on N̂ satisfies two properties (see Proposition
7.1):

(1) We have

U(s)P (E)U(s)−1 = P (s · E), for all Borel subsets E ⊆ N̂ and all s ∈ G. (imp)
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(2) If U is irreducible, then for every G-invariant Borel set E ⊆ N̂ (which means that
{s · χ | χ ∈ E} = s · E = E for every s ∈ G), either P (E) = I or P (E) = 0.

If the action of G on N̂ is nice enough (the space of orbits of this action is countably
separated, see Definition 7.2), then P is identically zero except on a single orbit Oν , so we can
consider P as living on G/Gν (where Gν is the stabilizer of ν), and G acts transitively on this
space. Then the data (G,U,X, P ) consisting of the unitary representation U : G→ U(HU),

of a transitive action of G on the homogeneous space X = G/Gν (for some fixed ν ∈ N̂),
and of a regular projection-valued measure P on G/Gν , such that

U(s)P (E)U(s)−1 = P (s · E), for all Borel sets E ⊆ G/Gν and all s ∈ G,

constitute a transitive system of imprimitivity (see Definition 7.3).

The relevance of systems of imprimitivity is Mackey’s imprimitivity theorem (Theorem
7.3), which implies that U is equivalent to a representation obtained by the induction method
from some irreducible representation of Gν . Technically, Mackey’s imprimitivity theorem
says more, namely that any transitive system of imprimitivity is equivalent to a system of
imprimitivity arising by induction from the subgroup defining the homogeneous space X. If
the action of G on N̂ is regular (see Definition 7.6), then Mackey’s imprimitivity theorem
implies Theorem 7.4, which shows that for every irreducible representation U : G→ U(HU)
of G, there is a unique orbit O, such that for any ν ∈ O (so that O = Oν), there is an
irreducible unitary representation σ : Gν → U(Hσ), such that U is equivalent to IndGGνσ, the
induced representation obtained from σ.

Unfortunately, the subgroups Gν may still not be small enough. However, if some
condition on Gν holds (an extension condition), then for every irreducible representation
ρ : Gν/N → U(Hρ) of Gν/N , there is an irreducible representation of Gν in Hρ (see Propo-
sition 7.6). In this case, we can use irreducible representations of the “little groups” Hν =
Gν/N in the inducing process of Theorem 7.4.

The above extension condition is satisfied by semi-direct products G = N oH, where N
is a normal abelian subgroup of G. Then every irreducible representation of G is obtained
in terms of the characters of N and of the irreducible representations of the little groups
Hν associated with the characters ν ∈ N̂ ; see Theorem 7.7. Using this method, we describe
all irreducible representations of SE(n); see Example 7.1. We also determine all irreducible
representations of O(2) (see Example 7.2) and indicate how all irreducible representations
of E(2) and E(3) can be obtained.

Most of the material in Chapter 8 is heavily inspired by the works of Bekkers, Boomsma,
Cesa, Cohen, Forré, Geiger, Lang, Verlinder, Weiler, and Welling. The general theme is to
develop a theory of equivariant convolutional neural networks (CNNs). The purpose and the
need for such neural networks is very clearly articulated in the preface of the recent book by
Weiler, Forré, Verlinde, and Welling [75] that we highly recommend. Our goal in this chapter
is to show how many of the fairly abstract concepts discussed earlier (representations, analysis
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on compact groups, Peter–Weyl theorems, Fourier transform, induced representations) are
used to tackle very practical problems.

In Section 8.2, motivated by the problem of matching a pattern k (also called a correlation
kernel or template kernel) in an image f , we define the notion of cross-correlation, for short
correlation, given by

(k ? f)(x) =

∫
R2

f(t)k(t− x) dt.

Since images and correlation kernels are viewed as functions from R2 to R, it is natural
to view the action of a group G on images as given by the regular representation R of G on
L2(R2) induced by an action of G in R2, namely

[Rg(f)](x) = λg(f)(x) = f(g−1 · x), g ∈ G, x ∈ R2, f ∈ L2(R2).

If we want to be more precise, we denote this representation by RG→LR2
.

In the special case where G = R2, the group of translations of R2 itself, because the
Lebesgue measure on R2 is translation-invariant, we have the following commutative diagram
expressing that the linear map Φ: L2(R2) → L2(R2) given by Φ(f) = k ? f is translation-
invariant :

L2(R2) Φ //

R
R2→L2(R2)
x

��

L2(R2)

R
R2→L2(R2)
x

��
L2(R2)

Φ
// L2(R2)

commutes for all x ∈ R2.

However, if G is the group SO(2), the rotations in the plane R2, if the image f is rotated
by an angle θ, we have the new image given by

(R
SO(2)→L2(R2)
Rθ

f)(t) = f(R−θ(t)), t ∈ R2, Rθ ∈ SO(2),

but the diagram

L2(R2) Φ //

R
SO(2)→L2(R2)
Rθ ��

L2(R2)

R
SO(2)→L2(R2)
Rθ��

L2(R2)
Φ
// L2(R2)

does not commute. The linear map Φ is not rotation-equivariant.

This is unfortunate, because in general, we would like to know whether the pattern k
occurs in f , translated or rotated. More generally, if G is a group of transformations of R2,
we would like our transform Φ to be G-equivariant , which means that the diagram

L2(R2) Φ //

R
G→L2(R2)
g

��

L2(R2)

R
G→L2(R2)
g

��
L2(R2)

Φ
// L2(R2)
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commutes for all g ∈ G.

As we just explained, equivariance fails beyond translation-equivariance, so what can we
do to remedy this problem?

A solution is to define a lifted correlation. The basic idea presented in Section 8.3 is
that instead of rotating the input image we apply a rotated kernel to the image. We first
illustrate this process in the case of SE(2) = R2 o SO(2), but this method works for semi-
direct products of the form G = Rd oH. We will denote an element of SE(2) as g = (x, θ),
where x ∈ R2 and θ ∈ R (mod 2π). Then we define the lifted correlation k ?̃ f by

(k ?̃ f)(x, θ) =

∫
R2

f(t)(λ(x,θ)k)(t) dt =

∫
R2

f(t)k(R−θ(t− x)) dt.

We are now using the lifted (rotated) kernel λRθk, but observe that our transform now
takes an input function f (image, signal) in L2(R2), but yields an output function Φ(f) =
k ?̃ f in the larger function space L2(SE(2)) of functions defined on the group SE(2). Such
functions are called feature maps .

The major benefit of lifted kernels is that we recover equivariance under the group SO(2).

All this is generalized to semi-direct products of the form G = Rd o H, where H is a
compact group. Correlation on feature maps (functions in L2(G)), called group correlation,
is discussed in Section 8.4. However, for d > 2, it is usually not practically possible to
discretize the group H, so a different approach is needed. A solution is to use steerable
families , which are discussed in Section 8.6. The notion of steerability occurred first in the
seminal paper of Freeman and Adelson [24].

The idea behind steerability is that if a function f is defined on some measure space X
and if there is an action of a group H on X, then it would be nice if f(h−1 · x) could be
expressed in a simple way in terms of f(x). In general this is asking for too much, but if we
consider a family of linearly independent functions (Y1, . . . , YL) in L2(X), then we say that
they form an H-steerable family if there is representation Σ: H → U(L), such that

Y (h−1 · x) = Σ(h)>Y (x), h ∈ H, x ∈ X,

where Y (x) denotes the column vector

Y (x) =

Y1(x)
...

YL(x)

 ∈ CL;

see Definition 8.5. If a correlation kernel k can be expressed as a linear combination of a
steerable family Y , then the lifted convolution k ?̃ f can be computed in a cheap way in
terms of the vector-valued function

fY (x) =

∫
Rd
f(t)Y (t− x) dt.
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We can think of fY (x) as some kinds of Fourier coefficients.

In Section 8.7, we present a method for finding steerable families on a suitable space
X equipped with a continuous action of a compact group H. The trick is to consider the
unitary representation V : H → U(L2(X)) given by

(V (h)f)(x) = f(h−1 · x), h ∈ H, f ∈ L2(X), x ∈ X, (V )

and then use the Peter–Weyl theorem, Version II to express the space L2(X) as the Hilbert
sum of closed subspaces Eρ with ρ ∈ R(H).

In Section 8.8, we introduce the notion of feature field , which as Cesa, Lang and Weiler [8]
say, “is the fundamental design choice underlying steerable CNNs.” Such functions already
arise when steerable kernels are used. Feature fields are vector-valued functions f : Rd → H,
whose domain transforms under the action of a group G = Rd o H and whose codomain
transforms under a representation σ : H → GL(H), in most cases, actually a unitary rep-
resentation. Thus, the space of feature fields transforms under the induced representation
IndGH σ, namely for any feature field f ,

[(IndGH σ)(x,h)f ](t) = σ(h)(f(h−1 · (t− x))), (x, h) ∈ Rd oH, t ∈ Rd.

We know how to transform G-feature maps using group correlation defined in Definition
8.4. This defines a transform Φ on L2(G) (where G = RdoH) given by fout = Φ(fin) = k?fin.
Since it is too expensive to compute Φ(fin) = k ? fin, it would be nice if we could define a

vector space of Fourier coefficients L2(Rd, Ĥ) consisting of matrix-valued functions on Rd, and

a new Fourier transform F τ : L2(G) → L2(Rd, Ĥ) and cotransform F τ : L2(Rd, Ĥ) → L2(G)
that promote the Fourier transform F on H (and are cheap to compute), so that we have
the following diagram

L2(G) Φ //

Fτ

��

L2(G)

Fτ

��

L2(Rd, Ĥ)

Fτ

OO

?
// L2(Rd, Ĥ).

Fτ

OO

The missing map Φ̂, a notion of correlation on feature fields, would allow us to recover
k ? fin by Fourier inversion. We simply define Φ̂ as

Φ̂ = F τ ◦ Φ ◦ F τ ,

using F τ and F τ . The problem is then to define the space L2(Rd, Ĥ) and the Fourier
transform and Fourier cotransform on it. To do this rigorously is nontrivial.

A function f ∈ L2(RdoH) can be viewed as a function fH : Rd → L2(H), and when H is a

compact group, fH corresponds to a family (f̂ρ) of functions defined by the Fourier transforms

of the functions fH(x). Furthermore, the functions f̂ρ are feature fields f̂ρ : Rd → Mnρ(C).
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The original function f ∈ L2(Rd oH) can be recovered pointwise by Fourier inversion from

the family of functions f̂ρ. However, the new twist is that the Fourier coefficients of f

are now tuples (f̂ρ)ρ∈R(H) of functions f̂ρ : Rd → Mnρ(C). This causes new problems to

reconstruct a function from its Fourier coefficients because even if the functions f̂ρ belong to
L2(Rd,Mnρ(C)), there is no guarantee that the function obtained from the inverse Fourier

transform belongs to L2(G). Some additional condition is required on the functions f̂ρ.

We provide a solution to this problem in Section 8.9 by constructing a Hilbert space
L2(Rd, Ĥ), such that the new Fourier transform F τ : L2(G) → L2(Rd, Ĥ) and the Fourier

cotransform F τ : L2(Rd, Ĥ)→ L2(G) are mutual inverses; see Theorem 8.8.

In Section 8.10, we show how to construct explicitly the lifted correlation Φ̂ in terms
of a correlation Φ on L2(G) given by a kernel k. We also show how to compute Φ̂ when
H = SO(d), in terms of a steerable family on L2(SE(d)).

The above construction is performed entirely in Section 8.11 for the group SE(2) =
R2 o SO(2). The corresponding CNNs are known as harmonic nets .

Because the group correlation Φ is equivariant with respect to the left regular repre-
sentation R (on L2(G)), the components Φ̂ρ2,ρ1 of Φ̂ are equivariant with respect to the
representations IndGH σρ1 and IndGH σρ2 , namely the following diagram commutes

L2(Rd, Ĥ)ρ1

(IndGH σρ1 )(x,h)

��

Φ̂ρ2,ρ1 // L2(Rd, Ĥ)ρ2

(IndGH σρ2 )(x,h)

��

L2(Rd, Ĥ)ρ1
Φ̂ρ2,ρ1

// L2(Rd, Ĥ)ρ2 .

Practice shows that it is desirable to design more general group correlations that are
equivariant with respect to other representations besides the left regular representation and
to consider feature fields that transform under representations other than the representations
Hom(Mρ, id).

A first generalization is to have two feature fields spaces FF(Rd, H, σin : H → U(Hin))
and FF(Rd, H, σout : H → U(Hout)) associated with an input representation σin and an
output representation σout, where Hin and Hout are two finite-dimensional vector spaces
equipped with a hermitian inner product, and what we are seeking is a linear G-equivariant
map Φ̂ between these spaces. We assume that feature fields f : Rd → Hin are functions in
L2(Rd,Hin), and similarly for feature fields f : Rd → Hout (see Definition 6.25). To say that

Φ̂ is G-equivariant means that the following diagram commutes

FF(Rd, H, σin) Φ̂ //

(IndGH σin)(x,h)

��

FF(Rd, H, σout)

(IndGH σout)(x,h)

��
FF(Rd, H, σin)

Φ̂

// FF(Rd, H, σout)
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for all (x, h) ∈ G = Rd oH.

A complete solution to this problem was given in a sequence of remarkable papers by
Weiler, Geiger, Weilling, Boomsma and Cohen [76] (for SE(3)), Weiler and Cesa [74] (for
E(2)), Lang and Weiler [46] (for a homogeneous space X induced by a transitive action of a
compact group H), Cesa, Lang and Weiler [8] (for E(3)), and Cohen, Geiger and Weiler [9]
(feature fields on homogeneous spaces).

In the case where H = SO(d), it is shown in Section 8.12 that such a map is given by a
kernel K : Rd → Hom(Hin,Hout) via

Φ̂(f)(t) =

∫
Rd
K(y − t)(f(y)) dy, f : Rd → Hin, t ∈ Rd, (K1)

and the kernel K satisfies the equivariance constraint

K(h · t) = σout(h) ◦K(t) ◦ σin(h)−1, h ∈ SO(d), t ∈ Rd. (EC1)

Functions K : Rd → Hom(Hin,Hout) satisfying the equivariance constraint (EC1) are called
equivariant convolution kernels or G-steerable kernels . The above result is often referred to
by the slogan “correlation is all you need.”

Until now we haveassumed that we are dealing with feature fields defined on X = Rd

and that the group G is a semi-direct product G = Rd o H with H = SO(d), and more
generally a compact group. It is possible to deal with the more general situation where X is
a homogeneous space of the form X = G/H, with G locally compact and unimodular and
H compact equipped with a unitary representation σ : H → U(Hσ). The main problem is
to define the “right” notion of feature field. This issue is addressed in Section 8.13.

Cohen, Geiger and Weiler [9] propose to use the G-bundle E = G ×H Hσ introduced in
Section 6.13; see Definition 6.17. But then we might as well use the hermitian G-bundles of
finite rank of Definition 6.23 (see Section 6.13) and the natural choice for the space of feature
fields is the subspace L2(X;E) of the space of sections of the hermitian G-bundle p : E → X,
with X = G/H (see Definition 6.25).

Inspired by Cohen, Geiger and Weiler [9] we consider the more general situation in which
we have two hermitian G-bundles of finite rank pin : Ein → Xin and pout : Eout → Xout, where
Xin = G/Hin and Xout = G/Hout for the same group G, input and output representations σin

and σout, and determine what are the linear maps Φ: Lσin → Lσout that are equivariant with
respect to the representations IndGHin

σin and IndGHout
σout, which means that the following

diagram commutes

Lσin Φ //

(IndGHin
σin)(g)

��

Lσout

(IndGHout
σout)(g)

��
Lσin

Φ
// Lσout
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for all g ∈ G (for simplicity of notation, we use Φ instead of Φ̂).

Proposition 8.12 generalizes results proven in Cohen, Geiger and Weiler [9] (see Theorem
3.1 and Theorem 3.2) and shows that the equivariant maps Φ as above are determined by
the space of equivariant G-kernels given by

HomHin,Hout(G,Hom(Ein
0 , E

out
0 )) = {K : G→ Hom(Ein

0 , E
out
0 ) |

K(h2gh1) = σout(h2) ◦K(g) ◦ σin(h1), (EC2)

g ∈ G, h1 ∈ Hin, h2 ∈ Hout}.

The above condition is more complicated than (EC1), and these kernels are defined on G,
which makes them rather impractical.

In Section 8.14, we give another characterizations originally due to Cohen, Geiger and
Weiler [9] of the space HomHin,Hout(IndGHin

σin, IndGHout
σout) in terms of kernels defined on

Xin = G/Hin. More precisely, we prove that there is a bijection between the space of equivari-
ant G-kernels HomHin,Hout(G,Hom(Ein

0 , E
out
0 )) and the space HomHout(Xin,Hom(Ein

0 , E
out
0 ))

of equivariant Xin-kernels, which are maps κ : Xin → Hom(Ein
0 , E

out
0 ) satisfying a certain

condition; see Proposition 8.13.

The G-equivariant maps in HomHin,Hout(IndGHin
σin, IndGHout

σout) are functions from Lσin

to Lσout and still require integration over G to be computed using equivariant kernels in the
space HomHin,Hout(G,Hom(Ein

0 , E
out
0 )). It would be nice if we could transform the integration

over G to a more practically computable integration over Xin. This can be achieved by using
the maps Sout : Lσout → L2(Xout, Eout) and Lin : L2(Xin, Ein) → Lσin given by (S ′′3 ) and (L′3)
of Section 6.13. When these maps are well-defined, which is our assumption, they can be
used to define maps from L2(X,Ein) to L2(X,Eout), and from functions from Lσin to Lσout .
This process is explained in Section 8.15.

The issue of finding G-equivariant kernels still remains and is addressed in Section 8.16.

As in Lang and Weiler [46] and Cesa, Lang and Weiler [8] we now assume that Hin =
Hout = H, so Xin = Xout = X = G/H, and we have two Hermitian G-bundles Ein and
Eout. The Hermitian G-bundles define two representations σin : H → U(Hin) and σout : H →
U(Hout). We consider the space of equivariant X-kernels defined as

HomH(X,Hom(Hin,Hout)) = {κ : X → Hom(Hin,Hout) |
κ(h · x) = σout(h) ◦ κ(x) ◦ σin(h)−1, (EC6)

x ∈ X, h ∈ H}.

Remarkably, Lang and Weiler [46] and Cesa, Lang and Weiler [8] completely characterized
the kernels in κ ∈ HomH(X,Hom(Hin,Hout)), when H is a compact group acting on a
topological Hausdorff space X equipped with the σ-algebra of Borel sets and an H-invariant
measure µ.
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A key ingredient is the analog of the left regular representation V : H → U(L2(X)) of
L2(X) induced by the action of H on X already introduced in Section 8.7, and given by

(V (h)f)(x) = f(h−1 · x), h ∈ H, f ∈ L2(X), x ∈ X.

For the sake of consistency of notation, we will also denote the representation V as RH→L2(X).

The other key ingredient is the set of H-maps

HomH(RH→L2(X),Hom(σin, σout)),

which is the space of linear maps K : L2(X) → Hom(Hin,Hout), such that the following
diagram commutes

L2(X) K //

RH→L2(X)(h)

��

Hom(Hin,Hout)

Hom(σin,σout)(h)

��
L2(X)

K
// Hom(Hin,Hout)

for every h ∈ H; see Definition 3.9. Cesa, Lang and Weiler [8] call the maps K kernel
operators .

The main result is that there is a bijection between the space HomH(X,Hom(Hin,Hout))
of equivariant X-kernels and the space HomH(RH→L2(X),Hom(σin, σout)) of kernel operators;
see Theorem 8.14. This isomorphism is a kind of linearization of the first space.

But now Proposition 4.28 tells us that the representations Hom(σin, σout) and σin ⊗ σout

are equivalent, so we obtain an isomorphism

HomH(X,Hom(Hin,Hout)) ≈ HomH(RH→L2(X), σin ⊗ σout). (†15)

Since H is a compact group, we can now use Theorem 8.7 (a direct consequence of
Peter–Weyl II) to express L2(X) as a Hilbert sum of spaces corresponding to irreducible
representations of H and the decomposition of the tensor product representation σin ⊗ σout

as a Hilbert sum of irreducible representations of H (see Proposition 4.18 and Equation (⊗)
in Section 4.4). Such a decomposition is achieved in a theorem referred to as Wigner–Eckart
theorem for steerable kernels by Cesa, Lang and Weiler [8] (Theorem B.5); see Theorem 8.15.
The more general theorem that also applies to real representations is proven in Cesa, Lang
and Weiler [8].

Cesa, Lang and Weiler [8] also prove a version of the above result in which a basis of
HomH(X,Hom(Hin,Hout)) is exhibited. The formulae are a bit messy so we will not give
details here; see Theorem B.6 and Theorem B.7 in Cesa, Lang and Weiler [8]; see Section
8.16.

A way to deal with noncommutativity, due to Gelfand, is to work with pairs (G,K),
where K is a compact subgroup of G. This theory is presented in Chapter 9. Then instead of
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working with functions on G, which is “too big,” we work with functions on the homogeneous
space G/K, the space of left cosets. Under certain assumptions on G and K, which makes
(G,K) a Gelfand pair , it is possible to consider a commutative algebra of functions on the
set of double cosets KsK (s ∈ G), so that some results from the commutative theory can be
used. The domain of the Fourier transform is a set of functions called spherical functions ,
and this set happens to be homeomorphic to the set of characters on the commutative algebra
mentioned above. There is a very nice theory of the Fourier transform and its inverse, but
how useful it is in practice remains to be seen.

Even though the present document is already quite long, it is by no means complete. If
a locally compact group is a Lie group, then the whole machinery of Lie algebras and Lie
groups developed by Élie Cartan and Hermann Weyl involving weights and roots becomes
available. In particular, if G is a connected semisimple Lie group, there is a beautiful and
extensive theory of harmonic analysis due to Harish–Chandra. We lack the expertise to
discuss this difficult theory and refer the ambitious reader to Warner’s monographs [72, 73],
and Helgason’s treatises [35], [34] (especially Chapter IV), and [33] (especially Chapter III,
Section 12).

To keep the length of this book under control, we resigned ourselves to omit many proofs.
This is unfortunate because some beautiful proofs had to be omitted. However, whenever a
proof is omitted, we provide precise pointers to sources where such a proof is given.



Chapter 2

Representations of Algebras and
Hilbert Algebras

In order to generalize harmonic analysis to nonabelian locally compact groups, we need to
introduce group representations. However, it turns out that in order to prove the main
theorem of the subject, the Peter–Weyl theorem, one needs the notion of representation of
algebras, because there is a bijection between the set of unitary representations of a locally
compact group G and the set of nondegenerate representations of the involutive algebra
L1(G). When G is compact, L2(G) is actually a Hilbert algebra, and there is a beautiful
structure theorem for Hilbert algebras which says that such an algebra splits as a Hilbert
sum of minimal left ideals, and this result can be used to prove the Peter–Weyl theorem.

The purpose of this chapter is to define the notion of Hilbert algebra and to develop
the machinery needed to prove three fundamental theorems (Theorem 2.33, Theorem 2.34,
and Theorem 2.36) about complete Hilbert algebras. We also state two important theorems
about commutative Hilbert algebras; the Plancherel–Godement theorem and the Bochner-
Godement theorem. These theorems will be needed later when we discuss Gelfand pairs.
We mostly follow Dieudonné [14] (Chapter XV, Sections 15.5–15.9), occasionally borrowing
from Folland [22] (Chapters 1 and 3). This is a rather technical chapter and we do not give
all proofs, relying on the above references for details.

We begin with the definition of the notion of representation of an involutive algebra in a
Hilbert space. We define the notion of Hilbert sum of a finite or an infinite family of Hilbert
spaces. Then we introduce the crucial concepts of invariant subspace, of a topologically irre-
ducible representation, of a nondegenerate representation, of a totalizing (or cyclic) vector,
and of a topologically cyclic representation.

In Section 2.3, we define positive linear forms and positive Hilbert forms on an involutive
algebra A. Positive Hilbert forms are positive hermitian forms which may fail to be posi-
tive definite but satisfy a kind of adjunction property, namely a positive hermitian form g
satisfying the condition

g(xy, z) = g(y, x∗z), for all x, y, z ∈ A.

35
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They can be used to define topologically cyclic representations. A good method for producing
positive Hilbert forms is to use positive linear forms which satisfy the property f(s∗s) ≥ 0, for
all s ∈ A, a kind of positive semidefinite property. Then the map g given by g(x, y) = f(y∗x)
is a positive Hilbert form.

In Section 2.4, we introduce bitraces and Hilbert algebras. A bitrace is a positive Hilbert
form g : A× A→ C, such that

g(t∗, s∗) = g(s, t), for all s, t ∈ A.

The most important concept of this section is the notion of Hilbert algebra. An involutive
algebra A is a Hilbert algebra if its underlying vector space is a hermitian space whose
hermitian inner product 〈−,−〉 is a bitrace satisfying two extra conditions (U) and (N) (see
Definition 2.14). Specifically, the conditions for being a bitrace hold

〈y∗, x∗〉 = 〈x, y〉 (1)

〈xy, z〉 = 〈y, x∗z〉, (2)

and the following two conditions hold: for every x ∈ A, there is some Mx ≥ 0, such that

〈xy, xy〉 ≤Mx〈y, y〉, for all y ∈ A, (U)

and
the subspace spanned by the set {xy | x, y ∈ A} is dense in A. (N)

In general, the map (x, y) 7→ xy is not continuous, so a Hilbert algebra is not a normed
algebra in the sense of Vol I, Definition 9.4. However, if the Hilbert algebra A is complete,
then it can be shown that the map (x, y) 7→ xy is continuous, and thus that A is a normable
algebra, which is a Banach space (see Proposition 2.16).

An important example of a complete Hilbert algebra is the algebra L2(H) of Hilbert–
Schmidt operators on a separable Hilbert space H. Hilbert–Schmidt operators are discussed
in Section 2.5. In the special case where the separable Hilbert space H is a space L2

µ(X,H) of
L2-integrable functions with values in a finite-dimensional vector space H, Hilbert–Schmidt
operators are represented by integral operators defined by kernel functions. This a classical
(“folklore”) result of functional analysis asserting that a linear map T : L2

µ(X) → L2
µ(X)

is a Hilbert–Schmidt operator iff there is a kernel K : X × X → C, which is a function in
L2
µ⊗µ(X ×X), such that

(T (f))(x) =

∫
X

K(x, y)f(y) dµ(y), f ∈ L2
µ(X), x ∈ X. (HS1)

Our search for a complete proof of this result in standard texts was unsuccessful. This fact
is stated in Dunford and Schwartz [20], Section 6, Chapter XI, but as Exercise 44. With
some help from Lang [47] (Chapter I, Section 3, Theorem 2) and Lang [48] (Chapter XVII,
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Problem 9), we were able to present a fairly complete proof. Such kernels play a key role in
Chapter 8.

Another very important example of a complete Hilbert algebra is L2(G), where G is a
compact, metrizable group.

Section 2.6, which is about complete separable Hilbert algebras, contains the most im-
portant results of this chapter regarding the structure of such algebras. To understand the
structure of complete separable Hilbert algebras, we need to study minimal left ideals and
the irreducible self-adjoint idempotents which generate them. Recall that an element e of
an algebra A is idempotent if e2 = e, and self-adjoint if e = e∗.

Roughly speaking, the master decomposition theorem (Theorem 2.33) states that given
a complete separable Hilbert algebra A, there is an irredundant list (lk)k∈J of the minimal
left ideals of A, and A is the Hilbert sum of two-sided ideals ak,

A =
⊕
k∈J

ak,

where each ak is the Hilbert sum obtained by picking a certain number of copies of the
minimal left ideal lk of A,

ak =
⊕
j∈Ik

l′j,

with l′j isomorphic to lk.

Each two-sided ideal ak contains no closed two-sided ideal other than (0) and ak. They
are said to be topologically simple.

Theorem 2.34 gives the structure of a topologically simple Hilbert algebra. Theorem 2.34
implies that in the Hilbert sum

A =
⊕
k∈J

ak

given by Theorem 2.33, the Hilbert algebra ak, which is a building block of the decomposition,
is either isomorphic to the algebra L2(lk) of Hilbert–Schmidt operators on lk, or to the finite-
dimensional algebra EndC(lk) of all endomorphisms of the vector space lk. If G is a metrizable
compact group and A = L2(G), then every ak in the Hilbert sum for A is isomorphic to the
finite-dimensional algebra EndC(lk).

The master decomposition for a nondegenerate continuous representation V : A→ L(H)
(Theorem 2.36) states that the Hilbert space H is a Hilbert sum H =

⊕
k∈J Hk of subspaces

invariant under V , and that the restriction Vk of V to ak can be considered as a representation
of ak in Hk. Furthermore, each representation Vk is the Hilbert sum of irreducible represen-
tations, each equivalent to a representation Ulk canonically associated with a minimal ideal
lk of ak.

Section 2.9 discusses the Plancherel–Godement theorem and the Bochner–Godement the-
orem without proofs. These theorems apply to a commutative Hilbert algebra (not neces-
sarily complete) arising from the quotient of a commutative Hilbert algebra by a left ideal
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induced by a bitrace satisfying two additional conditions. Therefore, we go back to positive
Hilbert forms to describe the construction of a certain representation.

The idea is that if g is a positive Hilbert form on an involutive (not necessarily commu-
tative) algebra A, it almost defines an inner product, but in general it fails to be positive
definite because there may be nonzero elements s ∈ A, such that g(s, s) = 0. However, if we
take the quotient of A by the set n = {s ∈ A | g(s, s) = 0}, which is a left ideal because g
is a positive Hilbert form, then we can define an inner product on the quotient vector space
A/n. If g is a bitrace, then A/n is an involutive algebra (see Proposition 2.37).

If a positive Hilbert form g satisfies the analog of condition (U) of Definition 2.14, namely,
for every s ∈ A, there is some Ms ≥ 0, such that

g(st, st) ≤Msg(t, t), for all t ∈ A, (U)

and if the hermitian space A/ng is separable, where ng = {s ∈ A | g(s, s) = 0}, then g
defines a unitary representation Ug : A→ L(Hg), where Hg is the Hilbert space which is the
completion of A/ng (see Proposition 2.39).

In general, the representation Ug : A→ L(Hg) given by Proposition 2.39 may be degen-
erate. It is nondegenerate if and only if the following condition holds:

the subspace spanned by the set {πg(st) | s, t ∈ A} is dense in A/ng. (N)

If A is a commutative Hilbert algebra and if property (U) holds, then the representation
Ug : A→ L(Hg) is nondegenerate and the image of A under Ug is a commutative subalgebra of
the C∗-algebra L(Hg). Let Ag be the closure of Ug(A) in L(Hg), so that Ag is a commutative
C∗-algebra.

Roughly speaking, the Plancherel–Godement theorem (Theorem 2.43) states that if A is
a commutative involutive algebra, if g is a bitrace on A satisfying conditions (U) and (N),
and if the hermitian space A/ng and the C∗-algebra Ag ⊆ L(Hg) are separable, then g is
obtained from a positive measure by a process of integration from hermitian characters.

Sections 2.10, 2.11 and 2.12 present results generally called spectral theorems. The
important notion of projection-valued measure is introduced.

Section 2.10 contains a technically crucial characterization of a representation of the
algebra CC(K) of continuous functions on a compact metrizable space K, a result proven
using the theorems from Section 2.9, the Plancherel–Godement theorem and the Bochner–
Godement theorem. This theorem shows that every topologically cyclic representation
U : CC(K) → L(H) of the commutative unital C∗-algebra CC(K) (for K compact) in a
separable Hilbert space H is equivalent to a representation Mµ : CC(K) → L(L2

µ(K;C))
such that for every u ∈ CC(K), Mµ(u) : L2

µ(K;C) → L2
µ(K;C) is the continuous linear map

multiplication by u (µ is some positive Radon measure on K); see Theorem 2.45.

A particularly interesting case for the space K arises if we consider a commutative unital
C∗-subalgebra A of L(H). In this case, by the Gelfand–Naimark theorem (Vol I, Theorem
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9.37), the Gelfand transform G : A → CC(X(A)) is an isometric isomorphism between A
and CC(X(A)). Furthermore, K = X(A) is compact (see Vol I, Theorem 9.19). Thus,
the inverse Gelfand transform G−1 : CC(X(A)) → A is a representation of CC(X(A)) and
Theorem 2.45 can be used to prove Theorem 2.47 (Spectral Theorem I), which can be viewed
as a generalization of the spectral theorem for normal linear maps on a finite-dimensional
hermitian space. This result applies to any commutative unital C∗-subalgebra A of L(H).
An interesting special case is the subalgebra AT of L(H) generated by T, T ∗ and I, where T
is a normal continuous linear map T on a Hilbert space H. We have Theorem 2.48, a first
version of a spectral theorem for normal continuous linear maps. The end of this section
presents a condition for a scalar in the spectrum σ(T ) of T to be an eigenvalue.

The next step taken in Section 2.11 is to realize that a representation U : CC(K)→ L(H)
as above determines certain complex Radon measures µu,v on K, and that conversely these
measures determine U . Indeed, for any two vectors u, v ∈ H, there is a unique complex
Radon measure µu,v on K, such that

〈U(f)(u), v〉 =

∫
K

f dµu,v, f ∈ CC(K).

The measure µu,v is often called a spectral measure.

Then it is possible to extend the representation U of CC(K) to the larger commuta-
tive unital C∗-algebra B(K) of bounded Borel measurable functions on K. We obtain the

representation Ũ : B(K)→ L(H), which is completely determined by the equation

〈Ũ(f)(u), v〉 =

∫
K

f dµu,v for all u, v ∈ H and for all f ∈ B(K). (∗3)

The above equation defines a “weak integral” with respect to the family of measures µu,v
denoted

Ũ(f) =

∫
f dµ.

For simplicity of notation, we denote Ũ as U . Since for any commutative unital C∗-
subalgebra A of L(H) the inverse Gelfand transform G−1 : CC(X(A))→ A is a representation
of CC(X(A)), we obtain a representation U : B(X(A)) → L(H) of G−1 : CC(X(A)) → A.
Consequently, we obtain Theorem 2.53 which states that there is a family of complex Radon
measures (µu,v)(u,v)∈H×H on X(A) and we have

T =

∫
GT dµ, U(f) =

∫
f dµ

for all T ∈ A and all f ∈ B(X(A)). This is another spectral theorem for a commutative
unital C∗-subalgebra A of L(H).

What we gain in doing all this, is the fact that we can apply the extended representation
U to the characteristic functions χE of Borel sets E (on K) (the functions χE are not con-
tinuous), and such operators P (E) = U(χE) turn out to be orthogonal projections in L(H).
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These families of projections have properties that make them projection-valued measures
(also called spectral measures), and such measures can be used to define representations of
B(K) that generalize the notion of integral.

Projection-valued measures are defined and used to prove more spectral theorems in
Section 2.12. The connection between a family P of projection-valued measures and families
of complex Radon measures as above is that if for all u, v ∈ E we define Pu,v by

Pu,v(E) = 〈P (E)(u), v〉,

then the Pu,v are complex Radon measures (with Pu,u a positive measure) with the same
properties as the µu,v. This allows us to define a notion of weak integral with respect to
a projection-valued measure. We obtain the important Theorem 2.56 which states that for
any function f ∈ B(K), the integral

U(f) =

∫
f dP

is defined by the equation

〈U(f)(u), v〉 =

∫
f dPu,v, for all u, v ∈ H and all f ∈ B(K).

Furthermore, the map U : B(K)→ L(H) is a representation.

Theorem 2.56 yields more spectral theorems in terms of projection-valued measures, in
particular another spectral theorem (Spectral Theorem II) for any commutative unital C∗-
subalgebra A of L(H) (see Theorem 2.57).

Remarkably, Theorem 2.57 (Spectral Theorem III) can be generalized to unital commu-
tative Banach algebras. Theorem 2.59 states that for any commutative unital involutive
Banach algebra A, for any representation U : A → L(H) of A in a Hilbert space H, there is
a regular projection-valued measure P on X(A), such that

U(a) =

∫
Ga dP, a ∈ A,

where Ga is the Gelfand transform. In fact, the projection-valued measure P is unique.

There is one more generalization (Spectral Theorem IV) where the involutive Banach
algebra A is not necessarily unital, but the representation U : A → L(H) is nondegenerate;
see Theorem 2.60. This theorem is crucial to the proof of Theorem 3.20 characterizing the
unitary representations of an abelian locally compact group. Intuitively, the characters of G
are glued by a suitable projection-valued measure. In turn, Theorem 3.20 is a key result used
in Mackey’s theory for constructing induced representations; see Chapter 7, Proposition 7.1.

As corollary of Theorem 2.60, we also obtain a spectral theorem for nondegenerate rep-
resentations U : C0(X;C) → L(H) of C0(X;C); see Theorem 2.61. This theorem is used in
Section 7.2 to give an alternate definition of a system of imprimitivity; see Definition 7.4.
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2.1 Representations of Algebras with Involution

Let A be an algebra with an involution (not necessarily a normed algebra, nor a commutative
or a unital algebra). Since representations of algebras involve Hilbert spaces, the reader
may want to review Vol I, Chapter D, especially Sections D.1 and D.2. For the reader’s
convenience, we quickly review some basic notions, including Hilbert bases.

If H is a complex vector space, recall that a map 〈−,−〉 : H × H → C is a hermitian
form if it satisfies the following properties for all x, y, x1, x2, y1, y2 ∈ H and all λ ∈ C: it is
sesquilinear , which means that

〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉
〈x, y1 + y2〉 = 〈x, y1〉+ 〈x, y2〉
〈λx, y〉 = λ〈x, y〉
〈x, λy〉 = λ〈x, y〉,

and satisfies the hermitian property ,

〈y, x〉 = 〈x, y〉.

The hermitian property implies that 〈x, x〉 ∈ R for all x ∈ H.

A hermitian form 〈−,−〉 : H ×H → C is positive if

〈x, x〉 ≥ 0, for all x ∈ H.

A positive hermitian form satisfies the Cauchy–Schwarz inequality :

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉, for all x, y ∈ H.

A positive hermitian form is positive definite if for all x ∈ H,

〈x, x〉 = 0 implies that x = 0,

or equivalently,
〈x, x〉 > 0, for all x 6= 0.

A positive definite hermitian form on H is often called a hermitian inner product on H,
and H is called a hermitian space (sometimes a pre-Hilbert space).

If H is a hermitian space with a hermitian inner product 〈−,−〉, then the map x 7→
‖x‖ =

√
〈x, x〉 is a norm on H. We say that H is a Hilbert space if H is complete for the

norm ‖ ‖ (every Cauchy sequence converges).

Let H be a Hilbert space. An orthonormal family (aα)α∈Λ of vectors aα ∈ H (which
means that 〈aα, aβ〉 = 0 for all α 6= β, and 〈aα, aα〉 = 1, for all α, β ∈ Λ) is a Hilbert basis
of H if the subspace spanned by (aα)α∈Λ (the set of all finite linear combinations of vectors
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in (aα)α∈Λ) is dense in H. Every Hilbert space admits a Hilbert basis, and the cardinality
of the index set Λ is the same for any two Hilbert bases; see Vol I, Section D.2, Rudin [55]
(Chapter 4) and Schwartz [60] (Chapter XXIII).

A Hilbert space is separable if it has a countable Hilbert basis.

Definition 2.1. Given an algebra A with involution and a Hilbert space H, a representation
of A in H1 is an algebra homomorphism U : A → L(H) from A to the involutive algebra
L(H) of continuous linear maps from H to itself, which means that U satisfies the conditions

U(s+ t) = U(s) + U(t)

U(λs) = λU(s)

U(st) = U(s) ◦ U(t)

U(s∗) = (U(s))∗,

for all s, t ∈ A and all λ ∈ C. If A is unital with identity element e, we require that

U(e) = idH .

The Hilbert space H is called the representation space. The representation U is faithful if
the homomorphism s 7→ U(s) is injective, which means that U(s)(x) = 0 for all x ∈ H
implies that U(s) = 0.

Following common practice, the composition U(s) ◦U(t) is abbreviated as U(s)U(t). To
simplify notation, we often write Us instead of U(s).

Remark: Folland [22] uses the terminology ∗-representation for a representation of an in-
volutive algebra. When different representations U : A→ L(H) of the same algebra A arise,
it is sometimes convenient to denote the representation space by HU . Although a represen-
tation of an algebra A consists of a homomorphism U and of a Hilbert space H, by abuse of
language, we often refer to a representation as U .

Example 2.1. Let A = Mn(C) be the algebra of n × n complex matrices with involution
X 7→ X∗ (the conjugate transpose). The map

〈X, Y 〉 7→ 〈X, Y 〉 = tr(Y ∗X)

is a Hermitian inner product on A, which makes A into a Hilbert space of finite dimension
denoted H. The linear maps in Hom(H,H) are automatically continuous, so Hom(H,H) =
L(H). The map U : A→ L(H) given by

U(X)(Y ) = XY, X, Y ∈ Mn(C)

1Technically, we are defining unitary representations, presumably because the definition of equivalence of
representations (Definition 2.2) uses isometries between Hilbert spaces, but since we shall not discuss other
types of representations, we shall suppress the word “unitary.”
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is a representation of A. The only property that is not obvious is the property U(X∗) =
U(X)∗. But by definition, the adjoint V (X) = U(X)∗ of the linear map U(X) is the unique
linear map V (X), such that

〈U(X)(Y ), Z〉 = 〈Y, V (X)(Z)〉, for all Y, Z ∈ Mn(C),

that is,

tr(Z∗XY ) = tr((V (X)(Z))∗Y ), for all Y, Z ∈ Mn(C),

which implies V (X)(Z) = (Z∗X)∗ = X∗Z. Thus U(X)∗(Z) = V (X)(Z) = X∗Z =
U(X∗)(Z), that is,

U(X)∗ = U(X∗),

as desired.

Example 2.2. Let A = Mn(C) be the algebra of n × n complex matrices with involution
X 7→ X∗ (the conjugate transpose), and let H = Cn, with the standard hermitian inner
product given by 〈x, y〉 = y∗x, where x, y ∈ Cn. Since H is finite-dimensional, it is a Hilbert
space, and the linear maps in Hom(H,H) are automatically continuous, so Hom(H,H) =
L(H). The map U1 : A→ L(H) given by

U1(X)(y) = Xy, X ∈ Mn(C), y ∈ Cn

is a representation of A. The only property that is not obvious is the property U1(X∗) =
U1(X)∗. But by definition, the adjoint V (X) = U1(X)∗ of the linear map U1(X) is the
unique linear map V (X), such that

〈U1(X)(y), z〉 = 〈y, V (X)(z)〉, for all y, z ∈ Cn,

that is,

z∗Xy = (V (X)(z))∗y, for all y, z ∈ Cn,

thus U1(X)∗(z) = V (X)(z) = X∗z = U1(X∗)(z), namely

U1(X)∗ = U1(X∗).

Observe that H = Cn is isomorphic to the subspace b of A consisting of all n×n complex
matrices whose last n− 1 columns are zero. The subspace b is a left ideal in A, and in fact
a minimal left ideal. The map U2 : A→ L(b) given by

U2(X)(Y ) = XY, X ∈ Mn(C), Y ∈ b

is also a representation of A. Since Cn and b are isomorphic Hilbert spaces, we say that U1

and U2 are equivalent representations; see Definition 2.2.

A generalization of this example occurs in Proposition 2.20.
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Example 2.3. If G is a metrizable locally compact group, the space A = L1(G) is an algebra
under convolution (denoted ∗) and H = L2(G) is a Hilbert space. It is shown in Section 3.3
that the map Rext : L1(G)→ L(L2(G)) given by

(Rext(f))(g) = f ∗ g, f ∈ L1(G), g ∈ L2(G)

is a representation of L1(G) in L2(G) (called left regular representation).

Definition 2.1 implies that if s is self-adjoint (s∗ = s), then U(s) is self-adjoint. Observe
that U(s) is not necessarily invertible. Also, if A is a normed algebra, then the map U : A→
L(H) is not necessarily continuous. However, if A is a unital Banach algebra with involution,
then by the next proposition the map U : A→ L(H) is continuous.

Proposition 2.1. If A is a unital Banach algebra with involution, then every representation
U : A → L(H) satisfies the condition ‖U(s)‖ ≤ ‖s‖, which implies that U is a continuous
mapping from A to L(H).

Proof. Recall that L(H) is a C∗-algebra, so by Vol I, Proposition 9.31 ρ(T ) = ‖T‖ for all
normal linear maps T ∈ L(H), so if we let T = U(s)∗U(s), which is obviously self-adjoint,
we have

‖U(s)‖2 = ‖U(s)∗U(s)‖ = ρ(U(s)∗U(s)).

By property (5) just after Vol I, Definition 9.6,

σ(U(s∗s)) ⊆ σ(s∗s),

by Vol I, Proposition 9.17,
ρ(U(s∗s)) ≤ ρ(s∗s),

and U(s)∗U(s) = U(s∗s), so we have

ρ(U(s)∗U(s)) = ρ(U(s∗s)) ≤ ρ(s∗s) ≤ ‖s∗s‖ ≤ ‖s∗‖ ‖s‖ = ‖s‖2 ,

which proves our result.

Recall that if (H1, 〈−,−〉1) and (H2, 〈−,−〉2) are two Hilbert spaces, a Hilbert space
isomorphism is a continuous linear map T : H1 → H2, whose inverse is also continuous, and
T is an isometry, which means that

〈T (x), T (y)〉2 = 〈x, y〉1, for all x, y ∈ H.

If H1 = H2, then a Hilbert space automorphism T : H → H is an invertible element in L(H),
such that

TT ∗ = T ∗T = id,

where T ∗ is the adjoint of T (defined by the property that

〈Tx, y〉 = 〈x, T ∗y〉, for all x, y ∈ H).

Such maps are called unitary .
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Definition 2.2. If A is an algebra (as above) and if H1 and H2 are two Hilbert spaces, two
representations U1 : A→ L(H1) and U2 : A→ L(H2) are equivalent if there a Hilbert space
isomorphism T : H1 → H2, such that

U2(s) = TU1(s)T−1 for all s ∈ A,

as illustrated by the following diagram:

H1
U1(s) // H1

T
��

H2

T−1

OO

U2(s)
// H2.

Example 2.4. The representations U1 : A→ L(Cn) and U2 : A→ L(b) of Example 2.2 are
equivalent under the obvious isomorphism from Cn to b.

It is often useful to make a new representation from old ones using the process of con-
structing a Hilbert sum. We begin with the simplest case involving two Hilbert spaces.
Later, we generalize this construction to an arbitrary family of Hilbert spaces.

Let H1 and H2 be two Hilbert spaces, and let U1 : A → L(H1) and U2 : A → L(H2) be
two representations. The Hilbert sum H of H1 and H2 is the direct sum H1 ⊕H2 of H1 and
H2, with the hermitian product given by

〈x1 + x2, y1 + y2〉 = 〈x1, y1〉1 + 〈x2, y2〉2,

for all x1, y1 ∈ H1 and all x2, y2 ∈ H2, We define the representation U : A→ H by

U(s)(x1 + x2) = U1(s)(x1) + U2(s)(x2),

for all x1 ∈ H1 and all x2 ∈ H2. It is immediately verified that U(s) ∈ L(H) for all s ∈ A,
and that U is a representation of A.

Definition 2.3. The representation U constructed from two representations U1 : A→ L(H1)
and U2 : A→ L(H2) as above is called the Hilbert sum of U1 and U2.

We now generalize the construction of Hilbert sum to any arbitrary family of Hilbert
spaces. The generalization to representations will be made in the next section.

Let (Hα, 〈−,−〉α)α∈Λ be a family of Hilbert spaces indexed by some index set Λ. In most
applications, Λ = N, so for simplicity the reader may assume this. We define the set H as
the set of all sequences (xα)α∈Λ with xα ∈ Hα, such that

∑
α∈Λ ‖xα‖

2
Hα

< ∞. Since the

index set Λ may not be countable, what we are asserting is that the family (‖xα‖2
Hα

)α∈Λ is
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summable; see Vol I, Definition D.6 (in particular, this implies that only countably many
elements xα are nonzero). We define a vector space structure on H by defining

(xα) + (yα) = (xα + yα)

λ(xα) = (λxα),

with xα, yα ∈ Hα. It is easy to check that these operations make H into a vector space. We
define the inner product 〈−,−〉 on H by

〈(xα), (yα)〉 =
∑
α∈Λ

〈xα, yα〉α.

It can be verified that 〈−,−〉 is a Hermitian inner product on H. It can also be shown that
H is complete, so it is a Hilbert space. For details, see Dieudonné [17], (Chapter VI, Section
4) and Schwartz [60] (Chapter XXIII, Theorem 1 and Theorem 2).

Definition 2.4. Let (Hα, 〈−,−〉α)α∈Λ be a family of Hilbert spaces indexed by some index
set Λ. The space H constructed as above is called the Hilbert sum of the sequence of Hilbert
spaces (Hα) and is denoted by

H =
⊕
α∈Λ

Hα.

We define continuous injections jα : Hα → H, such that jα(xα) = (0, . . . , 0, xα, 0, . . .),
with the αth term being xα. Each jα is an isomorphism of Hα onto a closed subspace of H
denoted H ′α. By definition of the inner product on H, 〈jα(xα), jβ(xβ)〉 = 0 for all α 6= β, all
xα ∈ Hα, and all xβ ∈ Hβ. A very useful fact is that the direct sum

⊕
α∈ΛH

′
α is dense in H

(recall that
⊕

α∈Λ H
′
α consists of all sequences (xα)α∈Λ, such that xα = 0 for all but finitely

many indices α).

Proposition 2.2. Let H be the Hilbert sum of a family (Hα, 〈−,−〉α)α∈Λ of Hilbert spaces
indexed by some index set Λ. For every x = (xα)α∈Λ ∈ H, the family (jα(xα))α∈Λ of vectors
in the direct sum

⊕
α∈ΛH

′
α is summable in H and we have

x =
∑
α∈Λ

jα(xα)

(the convergence is not necessarily uniform). Consequently,
⊕

α∈ΛH
′
α is dense in H.

Proof. Following Schwartz, first we claim that if
∑

α∈Λ uα a summable series in a Banach
space and if its sum is S, then for every subset Ω ⊆ Λ finite or not, the series

∑
α∈Ω uα is

also summable. This follows from the Cauchy criterion for summable families; see Vol I,
Proposition D.12. Indeed, since

∑
α∈Λ uα is summable, for every ε > 0 there is some finite

subset I ⊆ Λ, such that for every finite subset J ⊆ Λ disjoint from I we have
∥∥∥∑j∈J uj

∥∥∥ < ε,

and this fact also applies if J ⊆ Ω. By Proposition D.12, the series
∑

α∈Ω uα is summable,
and let SΩ denote its sum.
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Let I be a finite subset of Λ, such that ‖SJ‖ ≤ ε for every finite subset J , such that I
and J are disjoint. We claim that ‖SK‖ ≤ ε for any subset K finite or not, such that K and
I are disjoint. This is because since

∑
α∈K uα is summable by the previous fact, its sum SK

belongs to the closure of the set {SJ | J ⊆ K, J finite, I ∩ J = ∅}. Indeed, for every η > 0,
there is some finite subset I0 ⊆ K, such that for every finite subset J ⊆ K with I0 ⊆ J we
have ‖SJ − SK‖ ≤ η, and since K ∩ I = ∅ and J ⊆ K, we automatically have J ∩ I = ∅.

Since
∑

α∈Λ ‖xα‖
2
Hα

<∞, by the Cauchy criterion, for every ε > 0, there is finite subset

I of Λ, such that
∑

j∈J ‖xj‖
2
Hj
≤ ε for any finite subset J disjoint from I. Since Λ − I is

disjoint from I, we have ∑
α∈Λ−I

‖xα‖2
Hα

=
∑
α∈Λ−I

‖jα(xα)‖2
H′α
≤ ε,

where the sums exist by the first fact and their norms are bounded by ε by the second fact.
Then for every subset K (finite or not), such that I ⊆ K ⊆ Λ, the family (jα(xα))α∈K is
summable in H, and if we let

xK =
∑
α∈K

jα(xα),

we have

‖x− xK‖H =

( ∑
α∈Λ−K

‖xα‖2

)1/2

=

( ∑
α∈Λ−K

‖jα(xα)‖2

)1/2

≤

( ∑
α∈Λ−I

‖jα(xα)‖2

)1/2

≤ ε,

which, by Vol I, Definition D.6, proves that (jα(xα))α∈Λ is summable in H and that its sum
is x.

Remark: By picking ε = 1/(n+ 1), we can define a sequence of finite subsets Kn ⊆ Kn+1,
such that

∑
α∈Kn jα(xα) converges to x in H.

We often identify Hα and H ′α. The above construction defines what we might call an
external Hilbert sum.

Unfortunately, the notation

H =
⊕
α∈Λ

Hα

for the Hilbert sum of a family (Hα, 〈−,−〉α)α∈Λ of Hilbert spaces clashes with the notion
of algebraic direct sum ⊕

α∈Λ

Hα

of vector spaces. The second definition refers to the subspace of sequences (xα)α∈Λ, such
that xα = 0 for all but finitely many indices α. If we temporarily denote the Hilbert sum by

H =
H⊕
α∈Λ

Hα,
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then we see that if the index set Λ is finite, then the two notions agree. But if Λ is infinite,
then the algebraic direct sum is a proper subspace of the Hilbert sum, because the Hilbert sum
consists of sequences (xα)α∈Λ, such that

∑
α∈Λ ‖xα‖

2 < ∞, which may contain a countably
infinite number of nonzero xα. The direct sum is a dense subspace of the Hilbert sum. It
is usually clear from the context which sum of spaces is intended (typically, when we refer
to Hilbert spaces, we mean a Hilbert sum), so we will not use the heavier notation

⊕H for
Hilbert sums.

We also have the following proposition proven in Dieudonné [17], (Chapter VI, Section 4)
and Schwartz [60] (Chapter XXIII, Theorem 4 and its corollaries), which gives the definition
of an internal Hilbert sum (in the sense that the Hα are subspaces of an already given space
H).

Proposition 2.3. Let H be a Hilbert space, and let (Hα)α∈Λ be a family of closed subspaces
of H satisfying the following conditions:

(1) For all α 6= β, the subspaces Hα and Hβ are orthogonal.

(2) The direct sum
⊕

α∈ΛHα is dense in H.

If E is the Hilbert sum of the sequence (Hα), then there is a unique isomorphism of H onto
E which, on each Hα, coincides with the injection jα of Hα into E.

If Λ is finite, (2) is equivalent to the fact that H is the direct sum of Hα (because, if E
is any closed subspace of a Hilbert space, then H = E ⊕ E⊥ as a direct sum, so by picking
E = Hα1 , we see that the direct sum

⊕n
j=2Hαj is dense in E⊥, and we finish by induction).

Another convenient characterization of Hilbert sums can be given in terms of orthogonal
projections. Recall fom Vol I, Chapter D, Proposition D.7, that if H is a Hilbert space and
if W is a closed subspace of E, then for any v ∈ H, the orthogonal projection pW (v) of v
onto W is well-defined. It is the unique vector w ∈ W , such that v −w is orthogonal to W .
The following proposition is proven in Schwartz [60] (Chapter XXIII, Theorem 2, Corollary
2).

Proposition 2.4. Let H be a (separable) Hilbert space, and let (H`)`∈Λ be a family of closed
pairwise orthogonal subspaces of H. The following properties are equivalent:

(1) The family (H`)`∈Λ is a Hilbert sum (that is, the algebraic direct sum
⊕

`∈ΛH` is dense
in H).

(2) For every vector v ∈ H, if (v`)`∈Λ is the family of orthogonal projections of v onto the
H`, then the family (v`)`∈Λ is summable and v =

∑
`∈Λ v`.

(3) For every vector v ∈ H, we have the Parseval identity:

‖v‖2 =
∑
`∈Λ

‖v`‖2 .

Two key notions of representation theory are invariant subspaces and (topologically)
irreducible representations.
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2.2 Invariant Subspaces and Irreducible

Representations

Definition 2.5. Let U : A → L(H) be a representation of an algebra A. A subspace E of
H is invariant (or stable) under the representation U if U(s)(x) ∈ E for all s ∈ A and all
x ∈ E. The representation UE : A → L(E) given by UE(s)(x) = U(s)(x) for all x ∈ E, is
called a subrepresentation of A in E.

Example 2.5. In Example 2.2, the subspace b of A = Mn(C) is invariant under the repre-
sentation U : A → L(H) of Example 2.1 and U1 : A → L(b) is a subrepresentation of A in
b.

Observe a small abuse of language: if E is not a closed subspace of H, then E is not
a Hilbert space, and so UE : A → L(E) is not a representation. Thus, the notion of sub-
representation should be defined for closed invariant subspaces of H. However, Proposition
2.5 shows that the closure E of an invariant subspace E is invariant, so we can define the
subrepresentation UE : A→ L(E).

The following facts hold.

Proposition 2.5. Let U : A→ L(H) be a representation of an algebra A.

(1) If the subspace E of H is invariant under U , then its closure E is also invariant under
U .

(2) Let E be a closed subspace of H invariant under U . If E⊥ is the orthogonal complement
of E in H, then E⊥ is invariant under U . If U1(s) and U2(s) are the restrictions of
U(s) to E and E⊥, then the representation U is the Hilbert sum of the representations
U1 and U2.

Proof. Part (1) is easy to prove and follows from the continuity of U(s); see Dieudonné [17],
(Chapter III, Section 11). For part (2), let x ∈ E and y ∈ E⊥. For any s ∈ A, we have

〈x, U(s)(y)〉 = 〈(U(s))∗(x), y〉 = 〈U(s∗)(x), y〉 = 0,

since E is invariant under U , so U(s∗)(x) ∈ E, and since E⊥ is the orthogonal complement
of E and y ∈ E⊥. Then U(s)(y) is orthogonal to all x ∈ E, which means that U(s)(y) ∈ E⊥,
so E⊥ is invariant under U . The last property is obvious because as E is closed, H is the
(algebraic) direct sum H = E ⊕ E⊥.

The notion of Hilbert sum of representations is generalized to arbitrary Hilbert sums as
follows.

Definition 2.6. Assume a Hilbert space H is the Hilbert sum of a sequence (Hα)α∈Λ of
subspaces invariant under a representation U of A. For every s ∈ A, let Uα(s) be the
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restriction of U to Hα, so that the map s 7→ Uα(s) is a representation of A in Hα. By abuse
of language, we say that U is the Hilbert sum of the representations Uα. For each s ∈ A and
each x =

∑
α xα ∈ H, where xα ∈ Hα, we have

U(s)(x) =
∑
α

Uα(s)(xα),

and ∑
α

‖Uα(s)(xα)‖2 = ‖U(s)(x)‖2 .

Recall Vol I, Definition D.2 of the orthogonal projection pV of a Hilbert space E onto
a closed subspace V . Such a map is linear and continuous. It is also called an orthogonal
projector . In this chapter, we denote pV by PV to conform to Dieudonné.

The following result is not hard to prove; see Dieudonné [14], (Chapter XV, Section 5).

Proposition 2.6. Let H be a Hilbert space. A continuous linear P map on H is an orthog-
onal projector iff it is idempotent (P 2 = P ◦ P = P ) and hermitian (P ∗ = P ).

Here is a convenient way to characterize when a closed subspace is invariant.

Proposition 2.7. Let U : A→ L(H) be a representation of an algebra A. A closed subspace
E of H is invariant under U iff PEU(s) = U(s)PE for all s ∈ A, as illustrated in the diagram
below

H
U(s) //

PE
��

H

PE
��

E
U(s)

// E,

where PE : H → E is the orthogonal projection of H onto E.

The proof of Proposition 2.7 is identical to the proof for group representations; see
Proposition 3.7 and its proof. Proposition 2.7 is also proven in Dieudonné [14], (Chapter
XV, Section 5, Proposition 15.5.3).

The notion of a topologically irreducible representation is similar in spirit to the notion
of prime number. Namely, a topologically irreducible representation cannot be decomposed
into simpler representations. It is one of the most important concepts in representation
theory.

Definition 2.7. A representation U : A → L(H) of A in H is topologically irreducible if
H 6= (0) and if there is no closed subspace E of H other than {0} and H, which is invariant
under U .

Example 2.6. The representation U : A → L(H) of Example 2.1 is reducible because the
proper nonzero subspace b of H is invariant under U . On the other hand, by Theorem
2.36, the representation U2 : A → L(b) of Example 2.2 is topologically irreducible (in finite
dimension, a subspace is automatically closed).
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Proposition 2.8. Let U : A→ L(H) be a representation of A in H, let E be the closure of
the subspace spanned by the set

{U(s)(x) | s ∈ A, x ∈ H},

and let E ′ be the set

E ′ = {x ∈ H | U(s)(x) = 0, for all s ∈ A}.

Then E and E ′ are invariant under U , and E ′ is the orthogonal complement of E in H (that
is, E ′ = E⊥ and H = E ⊕ E ′).

Proof. Since U(rs) = U(r)U(s) for all r, s ∈ A, it is clear that E and E ′ are invariant
under U . Let us prove that E⊥ ⊆ E ′, where E⊥ is the orthogonal complement of E in H.
We already know from Proposition 2.5 that E⊥ is invariant under U , so for any x ∈ E⊥

we have U(s)(x) ∈ E⊥ for all s ∈ A. But by definition of E, we have U(s)(x) ∈ E, so
U(s)(x) ∈ E ∩ E⊥ = (0), which means that U(s)(x) = 0 for all s ∈ A, that is, x ∈ E ′.
Therefore, E⊥ ⊆ E ′.

Next we prove that E ′ ⊆ E⊥. If x ∈ E ′, for any s ∈ A and any y ∈ H we have

〈x, U(s)(y)〉 = 〈U(s∗)(x), y〉 = 0,

since x ∈ E ′ means that U(s)(x) = 0 for all s ∈ A, and since s and y are arbitrary, by
definition of E, this means that x is orthogonal to E, that is, x ∈ E⊥, and thus E ′ ⊆ E⊥.
In conclusion, E ′ = E⊥.

Definition 2.8. Let U : A→ L(H) be a representation of A in H. The subspace E defined
in Proposition 2.8 is called the essential subspace for U . If E ′ = (0), then we say that the
representation is nondegenerate.

Although very easy to prove, the following result is important and often used.

Proposition 2.9. A representation U of A in H is nondegenerate iff the subspace spanned
by set {U(s)(x) | s ∈ A, x ∈ H} is dense in H. If A is unital, since U(e) = id, this is always
the case.

Definition 2.9. Let U : A→ L(H) be a representation of A in H. A vector x0 ∈ H is called
a totalizer or totalizing vector (or cyclic vector) for the representation U if the subspace of
H spanned by the set {U(s)(x0) | s ∈ A} is dense in H. Equivalently, if Mx0 denotes the
closure of the set {U(s)(x0) | s ∈ A}, called the cyclic subspace generated by x0, which is
invariant under U , then x0 is a totalizer (a cyclic vector) if Mx0 = H. A representation
which admits a totalizer is said to be topologically cyclic.

The following fact follows immediately from the definitions: a representation U is topolog-
ically irreducible iff every nonzero vector x0 ∈ H is a totalizer. The importance of totalizers
stems from the following result.
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Proposition 2.10. Assume that the algebra A is unital, and let U : A → L(H) be a repre-
sentation of A in H 6= (0) (which must be nondegenerate). Then H is the Hilbert sum of a
sequence (Hα)α∈Λ of closed subspaces Hα 6= (0) of H invariant under U , and such that the
restriction of U to each Hα is topologically cyclic. If H is separable, the family Λ is countable
(possibly finite).

Proof. We prove the proposition in the separable case, following Dieudonné [14] (Chapter
XV, Proposition 15.5.6). The general case uses Zorn’s lemma; see Folland [22] (Chapter 3,
Proposition 3.3). Let (xn) be a dense sequence (finite or countably infinite) in H. We define
the sequence (Hn) by induction as follows. Let H1 be the subspace spanned by the set of
vectors {H(s)(x1) | s ∈ A}. Since A is unital, x1 ∈ H1. Assuming that H1, . . . , Hn have been
defined, either H is the direct sum of the Hi, in which case we are done, or else we proceed as
follows. Let L 6= (0) be the orthogonal complement of the direct sumH1⊕· · ·⊕Hn inH. Then
let p(n+1) be the smallest index, such that if yn+1 is the orthogonal projection of xp(n+1) on L,
then the subspace H ′n+1 of L generated by the subset {U(s)(yn+1) | s ∈ A} is not the trivial
subspace (0). Since A is unital, yn+1 ∈ {U(s)(yn+1) | s ∈ A} because U(1) = id, so such an
index must exist. By definition of p(n + 1), we have x1, . . . , xp(n+1)−1 ∈ H1 ⊕ · · · ⊕Hn. Let
Hn+1 be the closure of H ′n+1 in H. Since Hn+1 ⊆ L and L is the orthogonal complement of the
direct sumH1⊕· · ·⊕Hn inH, the fact that yn+1 ∈ Hn+1 implies that xp(n+1) ∈ H1⊕· · ·⊕Hn+1,
so the direct sum of the Hk contains the dense sequence (xn), and by Proposition 2.3, the
space H is indeed the Hilbert sum of the Hk.

2.3 Positive Linear Forms and Positive Hilbert Forms

The Peter–Weyl theorem can be obtained from a structure theorem about certain kinds of
algebras with a hermitian inner product satisfying special conditions. Such inner products
are bitraces, which are special kinds of positive Hilbert forms. A good method for producing
positive Hilbert forms is to use positive linear forms.

Definition 2.10. Let A be an involutive algebra (not necessarily commutative, unital, and
not necessarily normed). A linear form f : A→ C is positive if

f(s∗s) ≥ 0, for all s ∈ A.

Positive linear forms arise from representations as follows.

Definition 2.11. Let U : A→ L(H) be a representation of A in H. For any x0 ∈ H, define
the map fx0 : A→ C by

fx0(s) = 〈U(s)(x0), x0〉, s ∈ A.

Proposition 2.11. The map fx0 : A→ C is a positive linear form.
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Proof. It is clear that fx0 is a linear form, and since U(s∗s) = U(s∗)U(s) = U(s)∗U(s), we
have

fx0(s
∗s) = 〈U(s∗s)(x0), x0〉 = 〈(U(s)∗U(s))(x0), x0〉

= 〈U(s)(x0), U(s)(x0)〉 = ‖U(s)(x0)‖2 ≥ 0.

A positive linear form also defines a positive hermitian form as follows.

Proposition 2.12. Given any positive linear form f on an involutive algebra A, let
g : A× A→ C be the map given by

g(x, y) = f(y∗x), for all x, y ∈ A.

Then g is a positive hermitian form, and the following properties hold:

(1) For all x, y ∈ A, we have
f(x∗y) = f(y∗x).

(2) For all x, y ∈ A, we have
|f(y∗x)|2 ≤ f(x∗x)f(y∗y).

(3) If A is unital, then

f(x∗) = f(x), |f(x)|2 ≤ f(e)f(x∗x).

Proof. To prove (1), since f is linear, we have

g(x+ y, x+ y) = f((x+ y)∗(x+ y))

= f(x∗x+ x∗y + y∗x+ y∗y)

= f(x∗x) + f(x∗y) + f(y∗x) + f(y∗y)

= g(x, x) + g(y, x) + g(x, y) + g(y, y).

Since g(x+ y, x+ y), g(x, x), and g(y, y) are real (and nonnegative), we must have

=(g(y, x)) = −=(g(x, y)).

If we replace x by ix, this becomes

<(g(y, x)) = <(g(x, y)).

Therefore,
g(y, x) = f(x∗y) = f(y∗x) = g(x, y),

as claimed. Part (2) is the Cauchy–Schwartz inequality, and (3) follows from (1) and (2) by
replacing y by e and the fact that e∗ = e.
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The hermitian form g obtained from the positive linear form f is not arbitrary since it
satisfies the condition

g(xy, z) = f(z∗xy) = f((x∗z)∗y) = g(y, x∗z)

for all x, y, z ∈ A.

This motivates the following definition.

Definition 2.12. A positive Hilbert form on an involutive algebra A is a positive hermitian
form g satisfying the condition

g(xy, z) = g(y, x∗z), for all x, y, z ∈ A.

Proposition 2.13. If A is unital with unit e, then every positive Hilbert form g comes from
the positive linear form f given by f(s) = g(s, e) for all s ∈ A.

Proof. Indeed, the positive Hilbert form g′ induced by f is given by

g′(s, t) = f(t∗s) = g(t∗s, e) = g(s, t),

by setting x = t∗, y = s, and z = e in the equation of Definition 2.12.

Given a representation U : A→ L(H), observe that the positive Hilbert form gx0 associ-
ated with the positive linear form fx0 is given by

gx0(s, t) = fx0(t
∗s) = 〈U(s)(x0), U(t)(x0)〉, s, t ∈ A.

Remarkably, every topologically cyclic representation arises from a positive Hilbert form,
but we won’t need this fact until Section 2.9, so we postpone discussing this matter.

2.4 Traces, Bitraces, Hilbert Algebras

If A is an involutive algebra and if f is a positive linear form on A, in general f(st) 6= f(ts).

Definition 2.13. Let A be an involutive algebra. A trace on A is a positive linear form
f : A→ C, such that

f(st) = f(ts), for all s, t ∈ A.

A bitrace is a positive Hilbert form g : A× A→ C, such that

g(t∗, s∗) = g(s, t), for all s, t ∈ A.
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Example 2.7. If H is a finite-dimensional vector space of dimension n with a hermitian inner
product, and if A = L(H), the algebra of linear maps from H to itself, for any orthonormal
basis (e1, . . . , en) of H, then for any linear map T ∈ L(H), the linear form

Tr(T ) =
n∑
i=1

〈T (ei), ei〉

is a trace. In fact, Tr(T ) =
∑n

i=1 aii, the trace of the matrix (aij) representing T over the
basis (e1, . . . , en). If H is an infinite-dimensional Hilbert space, it can be shown that there
exists no trace on L(H).

Proposition 2.14. Let f : A→ C be a positive linear form on an involutive algebra A. If

f(ss∗) = f(s∗s), for all s ∈ A,

then f is a trace.

Proof. By replacing s by s+ t, using Proposition 2.12(1), we have

f((s+ t)(s+ t)∗) = f(ss∗ + st∗ + ts∗ + tt∗)

= f(ss∗) + f(st∗) + f(ts∗) + f(tt∗)

= f(s∗s) + f(st∗) + f(st∗) + f(t∗t),

and similarly,

f((s+ t)∗(s+ t)) = f(s∗s) + f(t∗s) + f(t∗s) + f(t∗t),

and since f((s+ t)(s+ t)∗) = f((s+ t)∗(s+ t)), we get

f(st∗) + f(st∗) = f(t∗s) + f(t∗s),

that is

<(f(t∗s)) = <(f(st∗)).

If we replace s by is, we get

=(f(t∗s)) = =(f(st∗)),

so that

f(t∗s) = f(st∗),

for all s, t ∈ A, as claimed.

Proposition 2.15. If the positive Hilbert form g on an involutive algebra A arising from a
positive linear form f as g(s, t) = f(t∗s) is a bitrace, then f is a trace. Conversely, if f is
a trace, then g is a bitrace.
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Proof. Expressing that g is a bitrace says that

f(t∗s) = g(s, t) = g(t∗, s∗) = f((s∗)∗t∗) = f(st∗),

namely that f is a trace. The same computation shows that if f is a trace, then g is a
bitrace.

One of the most important examples of a bitrace arises when G is a compact group. In
this case, the inner product on the involutive Banach algebra L2(G) is a bitrace. In fact, this
bitrace satisfies two more properties that makes L2(G) into a Hilbert algebra, defined next.

Definition 2.14. An involutive algebra A is a Hilbert algebra if its underlying vector space
is a hermitian space whose hermitian inner product 〈−,−〉 is a bitrace satisfying two extra
conditions (U) and (N). Specifically, the conditions for being a bitrace hold

〈y∗, x∗〉 = 〈x, y〉 (1)

〈xy, z〉 = 〈y, x∗z〉, (2)

and the following two conditions hold: for every x ∈ A, there is some Mx ≥ 0, such that

〈xy, xy〉 ≤Mx〈y, y〉, for all y ∈ A, (U)

and
the subspace spanned by the set {xy | x, y ∈ A} is dense in A. (N)

From conditions (1) and (2) and the hermitian property, we get

〈yx, z〉 = 〈z∗, x∗y∗〉 = 〈x∗y∗, z∗〉 = 〈y∗, xz∗〉 = 〈xz∗, y∗〉 = 〈y, zx∗〉,

so
〈yx, z〉 = 〈y, zx∗〉. (2’)

By (1) and (U), for every x ∈ A, we also have

〈yx, yx〉 = 〈x∗y∗, x∗y∗〉 ≤Mx∗〈y∗, y∗〉 = Mx∗〈y, y〉,

namely,
〈yx, yx〉 ≤Mx∗〈y, y〉, for all y ∈ A. (U’)

The inequality (U) says that for x fixed, the linear map y 7→ xy is continuous, and the
inequality (U’) says that for y fixed, the linear map x 7→ xy is continuous.

Beware that in general, this does not imply that the map (x, y) 7→ xy is continuous.
Thus, in general, a Hilbert algebra is not a normed algebra in the sense of Vol I, Definition
9.4, because in a normed algebra, the map (x, y) 7→ xy is continuous. However, if the Hilbert
algebra A is complete, then using Baire’s theorem, it can be shown that the map (x, y) 7→ xy
is continuous; see Dieudonné [14] (Chapter XII, Section 16, Problem 8(c)). As a consequence,
we can show that a complete Hilbert algebra is normable, and thus a Banach algebra.
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Proposition 2.16. If A is a complete Hilbert algebra, then there is a norm ‖ ‖b equivalent

to the norm x 7→ ‖x‖ =
√
〈x, x〉 induced by the inner product 〈−,−〉 on A, such that A is a

Banach algebra with the norm ‖ ‖b.

Proof. First, assume that A is not unital. Since A is complete, as we said earlier, the bilinear
map (x, y) 7→ xy is continuous, so there is some constant c > 0 such that ‖xy‖ ≤ c ‖x‖ ‖y‖ for
all x, y ∈ A. Since c ‖xy‖ ≤ c ‖x‖ c ‖y‖, if we let ‖x‖b = c ‖x‖, we obtain a norm equivalent
to ‖ ‖ such that

‖xy‖b ≤ ‖x‖b ‖y‖b ,
and with this norm, A is a Banach algebra.

If A has a multiplicative unit e, then the norm ‖ ‖b also needs to satisfy the condition
‖e‖b = 1, so we need a different construction. For every x ∈ A, let Lx : A→ A be the linear
map given by

Lx(y) = xy, y ∈ A.
Since the bilinear map (x, y) 7→ xy is continuous, the linear map Lx is continuous. We check
immediately that

Lx+y = Lx + Ly

Lαx = αLx

Lxy = Lx ◦ Ly.

Therefore, the map L : A → L(A) given by x 7→ Lx is an algebra homomorphism. The
homomorphism L is injective, because if Lx = 0, then Lx(e) = xe = x = 0. We claim that
there is a constant c > 0, such that ‖Lx‖ ≤ c ‖x‖. Recall that for the operator norm ‖Lx‖,
we have

‖Lx‖ = sup{‖Lx(y)‖ | ‖y‖ = 1} = sup{‖xy‖ | ‖y‖ = 1},
and since the bilinear map (x, y) 7→ xy is continuous

‖Lx‖ = sup{‖xy‖ | ‖y‖ = 1} ≤ sup {c ‖x‖ ‖y‖ | ‖y‖ = 1} = c ‖x‖ .

On the other hand, since ‖Lx‖ is the operator norm,

‖x‖ = ‖xe‖ = ‖Lx(e)‖ ≤ ‖Lx‖ ‖e‖ .

Therefore, if we let ‖x‖b = ‖Lx‖, we obtain a norm on A equivalent to the norm ‖ ‖, and A
is a normed algebra with the norm ‖ ‖b, since ‖Lxy‖ = ‖Lx ◦ Ly‖ ≤ ‖Lx‖ ‖Ly‖.

Remark: The proof of Proposition 2.16 shows that if A is an algebra, whose topology is
defined by a norm ‖ ‖, and if the bilinear map (x, y) 7→ xy is continuous, then there is a
norm ‖ ‖b equivalent to the norm ‖ ‖, such that A is a normed algebra with the norm ‖ ‖b.

The following result will be needed to prove that if A is a Hilbert algebra and if x ∈ A
with x 6= 0, then Ax 6= (0).
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Proposition 2.17. Let A be a Hilbert algebra. For every x ∈ A, if x∗x = 0, then x = 0.

Proof. Since x∗x = 0, from property (2) we have

〈xy, xy〉 = 〈x∗xy, y〉 = 0,

hence xy = 0 for all y ∈ A (since the hermitian product is positive definite). In particular,
xz∗ = 0. By (2’), we get

〈x, yz〉 = 〈xz∗, y〉 = 0

for all y, z ∈ A, and since by (N) the subspace spanned by the set {yz | y, z ∈ A} is dense in
A, we conclude that x = 0 (since the hermitian product is positive definite).

Recall from Vol I, Proposition A.47 that if a topological space is metrizable and compact,
then it is separable (which means that it contains a countable dense subset). Here is our
first important example of a Hilbert algebra.

Proposition 2.18. If G is a compact metrizable group, then the involutive (complex) Banach
algebra L2(G) is a separable Hilbert algebra.

Proof sketch. Proposition 2.18 is proven in Dieudonné [14] (Chapter XXI, Section 2). We
may assume that G is equipped with a Haar measure λ, such that λ(G) = 1. Recall that the

involution f 7→ f ∗ is defined by f ∗ = f̌ . Condition (1) follows from the definition of the inner
product on L2(G). Since G is compact, C0(G;C) = KC(G) ⊆ L2(G). By Vol I, Proposition
8.49, f ∗g ∈ C0(G;C) ⊆ L2(G), and ‖f ∗ g‖∞ ≤ ‖f‖2 ‖g‖2 (where ‖ ‖2 is the L2 semi-norm on
L2(G)). By Vol I, Proposition 5.24(2) and since λ(G) = 1, we also have ‖f ∗ g‖2 ≤ ‖f ∗ g‖∞.
Consequently, ‖f ∗ g‖2 ≤ ‖f‖2 ‖g‖2, so condition (U) follows. Condition (N) is a corollary
of regularization (see Vol I, Section 8.14). Finally, condition (2), namely

〈f ∗ g, h〉 = 〈g, f ∗ ∗ h〉

is easily shown if f is real and continuous. In this case, f ∗ = f̌ . We obtain the formula in
general by continuity and using the fact that KR(G) is dense in L2(G).

The family of Hilbert–Schmidt operator is the second important example of Hilbert
algebras.

2.5 Hilbert–Schmidt Operators

Let H be a separable Hilbert space. Recall that this means H has a countable Hilbert basis,
that is, a countable orthonormal basis (ai)i≥1, such that the subspace spanned by (ai)i≥1 is
dense in H (for every vector x ∈ H, there is some sequence (xn), with xn a linear combination∑

k∈In λkak, where In a finite set, and xn converges to x).

Definition 2.15. Let H be a separable Hilbert space. A continuous linear map u ∈ L(H) is a
Hilbert–Schmidt operator if the series

∑∞
n=1 ‖u(an)‖2 converges, that is,

∑∞
n=1 ‖u(an)‖2 <∞.
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We now state various properties about Hilbert–Schmidt operators whose proofs can be
found in Dieudonné [14] (Chapter XV, Section 4), Dunford and Schwartz [20] (Chapter XI,
Section 6) and Lang [47]. See also Lang [48] (Chapter XVII, Problem 9).

The quantity
∑∞

n=1 ‖u(an)‖2 is independent of the Hilbert basis (an). The set of Hilbert–
Schmidt operators is denoted by L2(H). Then we define the map u 7→ ‖u‖HS on the set
L2(H) by

‖u‖2
HS =

∞∑
n=1

‖u(an)‖2 .

It can be shown (using the Hilbert basis (an) and Parseval) that ‖u‖HS = ‖u∗‖HS. For any
Hilbert–Schmidt operator u ∈ L2(H) and any continuous linear map v ∈ L(H), it can also
be shown that u ◦ v and v ◦ u are also in L2(H), that

‖v ◦ u‖HS ≤ ‖v‖ ‖u‖HS , ‖u ◦ v‖HS ≤ ‖v‖ ‖u‖HS ,

and if u ∈ L2(H) and x ∈ H, then

‖u(x)‖2 ≤ ‖x‖2 ‖u‖2
HS ,

and so

‖u‖ ≤ ‖u‖HS ,

where ‖u‖ denotes the operator norm of u in L(H).

Then it can be shown that with the norm ‖ ‖HS, the space L2(H) of Hilbert–Schmidt
operators is an involutive Banach algebra under composition, with the involution given by
u 7→ u∗ (where u∗ is the adjoint of u). The space L2(H) is a self-adjoint two-sided ideal in
the involutive Banach algebra L(H), but in general, it is not closed in L(H).

The algebra L2(H) is not unital because the identity map is not a Hilbert–Schmidt
operator, and it is not a C∗-algebra.

If E and F are two normed vector spaces, a linear map u : E → F is a compact operator
if the closure of f(B) is compact for every bounded subset B of E. A compact operator
is continuous. Every Hilbert–Schmidt operator is a compact operator, but the converse is
false.

The space L2(H) contains the continuous linear maps of finite rank. In fact, every
Hilbert–Schmidt operator u ∈ L2(H) is the limit of a sequence of continuous linear maps
un of finite rank, in the sense that limn 7→∞ ‖u− un‖HS = 0; see Theorem 6 in Dunford and
Schwartz [20] (Chapter XI, Section 6).

For any two Hilbert–Schmidt operators u, v ∈ L2(H), it can be shown that the quantity

g(u, v) =
∑
n≥1

〈u(an), v(an)〉
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is defined and independent of the Hilbert basis (an). Then it can be shown that g is a
hermitian inner product, which is a bitrace, such that g(u, u) = ‖u‖HS; see Dieudonné [14]
(Chapter XV, Section 7).

If H is a finite-dimensional Hilbert space of dimension n, then for every linear map
u : H → H, for every orthonormal basis (a1, . . . , an), the quantity ‖u‖2

HS =
∑n

i=1 ‖u(an)‖2 is
defined. Since ‖u(ai)‖2 = 〈u(ai), u(ai)〉 = 〈(u∗ ◦ u)(ai), ai〉, we have

‖u‖2
HS =

n∑
i=1

〈(u∗ ◦ u)(ai), ai〉 = tr(u∗ ◦ u) = tr(u ◦ u∗),

which is just the Frobenius norm (also called Hilbert–Schmidt norm). Then

g(u, v) =
n∑
i=1

〈u(an), v(an)〉 =
n∑
i=1

〈(v∗ ◦ u)(an), an〉 = tr(v∗ ◦ u)

is the corresponding inner product, denoted by 〈u, v〉HS.

If L2(H) is the involutive algebra of Hilbert–Schmidt operators, then it can be shown
that the bitrace g satisfies the properties (U) and (N). Consequently, L2(H) is a Hilbert
algebra; see Dieudonné [14] (Chapter XV, Section 7).

In Chapter 8, we need a generalization of the notion of Hilbert–Schmidt operator involving
two separable Hilbert spaces H1 and H2.

Definition 2.16. Let H1 and H2 be two separable Hilbert spaces. A continuous linear map
u ∈ L(H1, H2) is a Hilbert–Schmidt operator if for some Hilbert basis (an) in H1 the series∑∞

n=1 ‖u(an)‖2
H2

converges, that is,
∑∞

n=1 ‖u(an)‖2
H2
<∞.

Proposition 2.19. Let H1 and H2 be two separable Hilbert spaces. For any two orthonormal
Hilbert bases (a1

n) and (a2
n) in H1 and any Hilbert basis (bn) in H2, for any u ∈ L(H1, H2),

if
∑

n ‖u(a1
n)‖2

H2
converges, then we have∑

n

∥∥u(a1
n)
∥∥2

H2
=
∑
n

∥∥u(a2
n)
∥∥2

H2
=
∑
n

‖u∗(bn)‖2
H1
.

Consequently,
∑

n ‖u(a1
n)‖2

H2
is independent of the Hilbert basis chosen in H1 and similarly∑

n ‖u∗(bn)‖2
H1

is independent of the Hilbert basis chosen in H2.

Proof. We can express u(a1
j) over the orthonormal Hilbert basis (bi) of H2 in terms of its

Fourier coefficients 〈u(a1
j), bi〉H2 as

u(a1
j) =

∑
i

〈u(a1
j), bi〉H2 bi,
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and similarly we can express u∗(bi) over the orthonormal Hilbert basis (a1
i ) of H1 in terms

of its Fourier coefficients 〈u∗(bi), a1
j〉H1 as

u∗(bi) =
∑
j

〈u∗(bi), a1
j〉H1 aj.

By Parseval and because the double sum is commutatively convergent, we have∑
j

∥∥u(a1
j)
∥∥2

H2
=
∑
i

∑
j

|〈u(a1
j), bi〉H2|2 =

∑
i

∑
j

|〈a1
j , u
∗(bi)〉H1|2

=
∑
j

∑
i

|〈u∗(bi), a1
j〉H1|2 =

∑
i

‖u∗(bi)‖2
H1
,

and the same computation with the basis (a2
j) instead of the basis (a1

j) shows that∑
j

∥∥u(a1
j)
∥∥2

H2
=
∑
j

∥∥u(a2
j)
∥∥2

H2
=
∑
i

‖u∗(bi)‖2
H1
,

as claimed. Since by Parseval we also have∑
j

∥∥u(a1
j)
∥∥2

H2
=
∑
i

∑
j

|〈u(a1
j), b

1
i 〉H2|2 =

∑
j

∑
i

|〈u∗(b1
i ), a

1
j〉H1|2 =

∑
i

∥∥u∗(b1
i )
∥∥2

H1∑
j

∥∥u(a1
j)
∥∥2

H2
=
∑
i

∑
j

|〈u(a1
j), b

2
i 〉H2|2 =

∑
j

∑
i

|〈u∗(b2
i ), a

1
j〉H1|2 =

∑
i

∥∥u∗(b2
i )
∥∥2

H1
,

for any two Hilbert bases (b1
i ) and (b2

i ) of H2, we conclude that
∑

n ‖u∗(bn)‖2
H1

is independent
of the Hilbert basis chosen in H2.

Proposition 2.19 shows that the set of Hilbert–Schmidt operators u ∈ L(H1, H2), denoted
by L2(H1, H2), is a normed vector space with the norm u 7→ ‖u‖HS given by

‖u‖2
HS =

∞∑
n=1

‖u(an)‖2
H2
.

For any x ∈ H1, if we write x =
∑∞

i=1 ξiai for some ξi ∈ C (where (ai) is an orthonormal
basis of H1), then

‖x‖2
H1

=
∞∑
i=1

|ξi|2,

and if ‖u‖2
HS =

∑∞
i=1 ‖u(ai)‖2

H2
<∞, then because the vectors (|ξi|) and (‖u(ai)‖H2

) belong
to `2(R), by Proposition D.14 in Vol I, the series

∑
i |ξi| ‖u(ai)‖H2

=
∑

i ‖u(ξiai)‖H2
is

summable, so it belongs to `1(R), and since `1(R) ⊆ `2(R), the sum
∑

i ‖u(ξiai)‖2
H2

is finite,
so we have

‖u(x)‖2
H2

= ‖
∑
i

u(ξiai)‖2
H2

=
∑
i

|ξi|2 ‖u(ai)‖2
H2
≤ ‖x‖2

H1

∑
i

‖u(ai)‖2
H2

= ‖x‖2
H1
‖u‖2

HS .
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In summary,
‖u(x)‖H2

≤ ‖x‖H1
‖u‖HS ,

so by the definition of the operator norm in L(H1, H2) as ‖u‖ = sup{‖u(x)‖H2
| ‖x‖H1

= 1},
we conclude that

‖u‖ ≤ ‖u‖HS . (†1)

The previous proof in the case where H1 = H2 can also be adapted to prove that
L2(H1, H2) is a Banach space.

An important special case arises when the Hilbert space H is the space of functions
L2
µ(X) for some measure space (X,µ). For simplicity of notation, we are omitting the σ-

algebra A on which the positive measure µ is defined. Again, we assume that L2
µ(X) is

separable. Then a classical (“folklore”) result of functional analysis states that a linear map
T : L2

µ(X)→ L2
µ(X) is a Hilbert–Schmidt operator iff there is a kernel K : X×X → C, which

is a function in L2
µ⊗µ(X ×X), such that

(T (f))(x) =

∫
X

K(x, y)f(y) dµ(y), f ∈ L2
µ(X), x ∈ X. (HS1)

Recall that to assert K ∈ L2
µ⊗µ(X ×X) means that K is a µ⊗ µ-measurable map and

‖K‖2
2 =

∫
X

∫
X

|K(x, y)|2 dµ(x) dµ(y) <∞. (HS2)

It is worth explaining what is the significance of requiring that K ∈ L2
µ⊗µ(X ×X). We

follow the argument in Lang [47] (Chapter I, Section 3, Theorem 2).

Given any f ∈ L2
µ(X), by Fubini, for every fixed x ∈ X (except for a subset of measure

zero), the function Kx given by Kx(y) = K(x, y) also belongs to L2
µ(X), so the function

y 7→ Kx(y)f(y) belongs to L1
µ(X), but in general not to L2

µ(X); see Lang [48] (Chapter VII,
Theorem 1.1). By Cauchy–Schwarz, we have

|T (f)(x)|2 =

∣∣∣∣∫
X

Kx(y)f(y) dµ(y)

∣∣∣∣2 ≤ (∫
X

|Kx(y)| |f(y)| dµ(y)

)2

≤ ‖f‖2
2

∫
X

|Kx(y)|2 dµ(y),

so by integrating, we obtain

‖T (f)‖2
2 =

∫
X

|T (f)(x)|2 dµ(x) ≤
∫
X

‖f‖2
2

∫
X

|Kx(y)|2 dµ(y) dµ(x)

= ‖f‖2
2

∫
X

∫
X

|K(x, y)|2 dµ(y) dµ(x) = ‖f‖2
2 ‖K‖

2
2 .

Therefore, we have
‖T (f)‖2

2 ≤ ‖f‖
2
2 ‖K‖

2
2 ,



2.5. HILBERT–SCHMIDT OPERATORS 63

which implies that T (f) ∈ L2
µ(X), and if ‖T‖ is the operator norm of T in L(L2

µ(X)), we
have

‖T‖ ≤ ‖K‖2 , (†2)

which shows that T is continuous.

We also sketch the rest of the proof given in Lang [47] (Chapter I, Section 3, Theorem 2).
To prove that T is Hilbert–Schmidt, we express the kernel K in terms of the Hilbert basis
of L2

µ⊗µ(X ×X) given by the family of functions ϕi(x)ϕj(y) where (ϕi) is a Hilbert basis of
L2
µ(X) (which is assumed to be separable). If

K(x, y) =
∑
ij

cijϕi(x)ϕj(y), cij ∈ C,

we consider the approximation kernels

Kn(x, y) =
n∑

i,j=1

cijϕi(x)ϕj(y)

and the corresponding linear maps Tn given by

Tn(f)(x) =

∫
X

Kn(x, y)f(y) dµ(y).

Then as in Lang [47] (Chapter I, Section 3, Theorem 2), we show that the Tn have finite
rank and converge to T because the Kn converge to K in L2

µ⊗µ(X ×X) and because

‖T − Tn‖ ≤ ‖K −Kn‖2 ,

by (†2). This implies that T is Hilbert–Schmidt.

For the converse, if T is Hilbert–Schmidt, we use Lang [48] (Chapter XVII, Problem
9(d)). For each function ϕj in the Hilbert basis of L2

µ(X), each T (ϕj) can be expressed as

T (ϕj) =
∑
j

tijϕi, tij ∈ C.

Then we prove that ∑
ij

|tij|2 <∞

and that the kernel
K(x, y) =

∑
ij

tijϕi(x)ϕj(y) (K1)

works.

By the way, all this is Exercise 44 from Section 6, Chapter XI in Dunford and Schwartz
[20] without any hint!
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In Chapter 8, we will need to consider continuous linear maps T : L2
µ(X,H1)→ L2

µ(X,H2),
where H1 and H2 are two finite-dimensional vector spaces equipped with Hermitian inner
products. This leads us to consider kernels K : X ×X → Hom(H1,H2), which are functions
in L2

µ⊗µ(X ×X,Hom(H1,H2)), such that

(T (f))(x) =

∫
X

K(x, y)(f(y)) dµ(y), f ∈ L2
µ(X,H1), x ∈ X. (HS3)

In this more general case, the inner product 〈−,−〉µ,H1 on L2
µ(X,H1) is given by

〈f, g〉µ,H1 =

∫
X

〈f(x), g(x)〉H1 dµ(x),

where 〈−,−〉H1 is the inner product on H1, and the norm is given by

‖f‖2
2 =

∫
X

〈f(x), f(x)〉H1 dµ(x) =

∫
X

‖f(x)‖2
H1

dµ(x).

The inner product 〈−,−〉µ,H2 on L2
µ(X,H2) is defined similarly.

The norm on the space L2
µ⊗µ(X ×X,Hom(H1,H2)) is given by

‖K‖2
2 =

∫
X

∫
X

‖K(x, y)‖2
Hom(H1,H2) dµ(x) dµ(y), (†3)

where ‖ ‖Hom(H1,H2) is the norm induced by the inner product on Hom(H1,H2), which can
be viewed as the Frobenius inner product; see Definition 4.20 in Section 4.5. As earlier,
for any fixed x ∈ X, we define the function Kx by Kx(y) = K(x, y). Then the function
y 7→ Kx(y)(f(y)) (with y ∈ X) is in L1

µ(X,H2). Since the operator norm on Hom(H1,H2)
has the property that

‖Kx(y)(f(y))‖H2
≤ ‖Kx(y)‖ ‖f(y)‖H1,

(†4)

where ‖Kx(y)‖ is the operator norm in Hom(H1,H2), by (†4) and Cauchy–Schwarz, we have

‖T (f)(x)‖2
H2

=

∥∥∥∥∫
X

Kx(y)(f(y)) dµ(y)

∥∥∥∥2

H2

≤
(∫

X

‖Kx(y)(f(y))‖H2
dµ(y)

)2

≤
(∫

X

‖Kx(y)‖ ‖f(y)‖H1
dµ(y)

)2

≤
∫
X

‖Kx(y)‖2 dµ(y)

∫
X

‖f(y)‖2
H1

dµ(y) = ‖f‖2
2

∫
X

‖Kx(y)‖2 dµ(y).

By integrating, we obtain

‖T (f)‖2
2 =

∫
X

‖T (f)(x)‖2
2 dµ(x) ≤

∫
X

‖f‖2
2

∫
X

‖Kx(y)‖2 dµ(y) dµ(x)

= ‖f‖2
2

∫
X

∫
X

‖K(x, y)‖2 dµ(x) dµ(y).



2.5. HILBERT–SCHMIDT OPERATORS 65

Therefore, if ∫
X

∫
X

‖K(x, y)‖2 dµ(x) dµ(y) <∞,

then we have

‖T (f)‖2
2 ≤ ‖f‖

2
2

∫
X

∫
X

‖K(x, y)‖2 dµ(x) dµ(y).

However, since the inner product on Hom(H1,H2) is the Frobenius inner-product, the cor-
responding norm is the Hilbert–Schmidt norm, so by (†2) we have

‖K(x, y)‖ ≤ ‖K(x, y)‖Hom(H1,H2)

and the fact that K ∈ L2
µ⊗µ(X ×X,Hom(H1,H2)) implies that∫
X

∫
X

‖K(x, y)‖2
Hom(H1,H2) dµ(x) dµ(y) <∞,

so

‖T (f)‖2
2 ≤ ‖f‖

2
2

∫
X

∫
X

‖K(x, y)‖2
Hom(H1,H2) dµ(x) dµ(y) = ‖f‖2

2 ‖K‖
2
2 <∞,

which implies that T (f) ∈ L2
µ(X,H2) and

‖T‖ ≤ ‖K‖2 ,

which shows that T is continuous.

In order to prove that T is a Hilbert–Schmidt operator from L2
µ(X,H1) to L2

µ(X,H2),
we need to express the kernel K over a Hilbert basis of L2

µ⊗µ(X ×X,Hom(H1,H2)). Such a
basis can be obtained using duality.

Recall that there is an isomorphism between the finite-dimensional vector space H1 and
its dual H∗1, the vector space of linear forms on H1 (which are continuous since H1 is finite-
dimensional) defined such that for every u ∈ H1, the linear form [(u) on H1 also denoted u[

is defined by
[(u)(v) = u[(v) = 〈v, u〉H1 , v ∈ H1;

see Gallier and Quaintance [29] (Chapter 13, Section 2). Then given a Hilbert basis (ϕn) in
L2
µ(X,H1) and a Hilbert basis (ψn) in L2

µ(X,H2), consider the family of functions ϕ[jψi from
X ×X to Hom(H1,H2) defined by

[(ϕ[jψj)(x, y)](u) = [(ϕj(x))(u)ψi(y) = 〈u, ϕj(x)〉H1ψi(y), x, y ∈ X, u ∈ H1. (∗ϕ[jψj)

For readers familiar with tensor products, note that we are implicitly using the isomorphism
between Hom(H1,H2) and H∗1 ⊗ H2; see Gallier and Quaintance [28] (Chapter 2, Section
2.5) and Section 4.5.

Using the method described in Lang [47] (Chapter I, Section 3, Theorem 2), it can be
shown that the functions ϕ[jψi form a Hilbert basis of L2

µ⊗µ(X × X,Hom(H1,H2)). The
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details are quite technical and left as an exercise. Next, we express the kernel K in terms of
this Hilbert basis as

K =
∑
ij

cijϕ
[
jψi, cij ∈ C,

and we define the approximation kernels Kn by

Kn =
n∑

ij=1

cijϕ
[
jψi,

and as before, we prove that T defined by (HS3) is Hilbert–Schmidt.

Conversely, given a Hilbert–Schmidt operator from L2
µ(X,H1) to L2

µ(X,H2), write

Tϕj =
∑
i

tijψi, tij ∈ C,

and define the kernel K in L2
µ⊗µ(X ×X,Hom(H1,H2)) as

K(x, y) =
∑
ij

tij(ϕ
[
jψi)(y, x), tij ∈ C. (K2)

The permutation of the variables x and y on the right-hand side is necessary because the
argument to K(x, y) in (HS3) is f(y) and the output function is T (f)(x), a function of x,
but

[(ϕ[jψj)(x, y)](ϕk(y)) = 〈ϕk(y), ϕj(x)〉H1ψi(y),

which is not what we want, since x and y are switched.

We check that K works by proving that
∑

ij |tij|2 <∞ (since T is Hilbert–Schmidt) and
by verifying that the map S given by (HS3) agrees with T on the Hilbert bases. Since (ϕj)
is an orthonormal basis, we have

(S(ϕk))(x) =

∫
X

K(x, y)(ϕk(y)) dµ(y) =

∫
X

∑
ij

tij[(ϕ
[
jψi)(y, x)](ϕk(y)) dµ(y)

=
∑
ij

tij

∫
X

〈ϕk(y), ϕj(y)〉H1ψi(x) dµ(y) =
∑
ij

tijψi(x)

∫
X

〈ϕk(y), ϕj(y)〉H1 dµ(y)

=
∑
ij

tijψi(x) 〈ϕk, ϕj〉µ,H1 =
∑
i

tikψi(x) = (T (ϕk))(x),

as claimed.

The justification of the above computation is left as an exercise.

Note that we can immediately generalize all this to two spaces L2
µX

(X,H1) and L2
µY

(Y,H2)
where X and Y are different spaces and kernels K ∈ L2

µX⊗µY (X ×Y,Hom(H1,H2)) but then
we need to define T (f) as

(T (f))(y) =

∫
X

K(x, y)(f(x)) dµ(x), f ∈ L2
µ(X,H1), y ∈ Y, (HS4)
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with x ∈ X and y ∈ Y , which explains why we had to switch x and y in (K2).

In retrospect, it might have be better to use the formula

(T (f))(y) =

∫
X

K(x, y)(f(x)) dµ(x), f ∈ L2
µ(X,H1), y ∈ Y

instead of the formula

(T (f))(x) =

∫
X

K(x, y)(f(y)) dµ(y), f ∈ L2
µ(X,H1), x ∈ Y

used in (HS3) to define T (f).

Remark: Lang [48] (Chapter XVII, Problem 9) deals with this technical detail by viewing
(HS3) as defining a map from L2

µY
(Y,H2) to L2

µX
(X,H1).

In summary, the fundamental representation of Hilbert–Schmidt operators in terms of
kernels generalizes to operators from L2

µX
(X,H1) to L2

µY
(Y,H2).

In the next sections we consider the special case in which a Hilbert algebra is complete.

2.6 Complete Separable Hilbert Algebras

We now consider the case where the Hilbert algebra A is complete, which means that it is a
Hilbert space. Although this is not obvious, as said in the previous section, it can be shown
that the map (x, y) 7→ xy from A×A to A is continuous. Consequently, by Proposition 2.16,
a complete Hilbert algebra is normable, and thus a Banach algebra.

Our main goal is to show that every separable complete Hilbert algebra is the (countable)
Hilbert sum of two-sided ideals ak, where each ideal ak is the (countable) Hilbert sum of
minimal left ideals all isomorphic to a common left ideal (Theorem 2.33). This is a beautiful
and powerful result which is one of the main steps in proving the Peter–Weyl theorem.

Following Dieudonné, we only deal with the case where the Hilbert algebras A are sep-
arable, because then only countable Hilbert sums are needed. This implies that when we
consider the Hilbert algebra A = L2(G), the group G is metrizable and compact. This is
not a serious restriction, because every Lie group, being a second-countable manifold, is
metrizable. The reader who wishes to see an exposition of the Peter–Weyl theorem in the
general case of an arbitrary compact group is invited to consult Folland [22] (Chapter 5).
Hilbert sums indexed by arbitrary (possibly uncountable) index sets arise.

We are led to the study of minimal left ideals and to irreducible self-adjoint idempotents
which generate them. Recall that an element e of an algebra A is idempotent if e2 = e,
self-adjoint if e = e∗.2

2Here, e does not denote the unit of A if A is unital. To avoid confusion, we denote the unit of A by 1 if
A is unital.



68 CHAPTER 2. REPRESENTATIONS OF ALGEBRAS AND HILBERT ALGEBRAS

Complete proofs are provided in Dieudonné [14] (Chapter XV, Section 8). There are
many tedious technical details so to make it easier on the reader, we decided to only state
most results (except the most important ones) without proof.

First, observe that every closed self-adjoint subalgebra B (which means that B∗ = B) of
a complete Hilbert algebra A is a complete Hilbert algebra. Certain representations play a
crucial role.

Proposition 2.20. Let A be a complete Hilbert algebra. For any closed left ideal b in A, let
Ub be the map from A to L(b) given by

Ub(x)(y) = xy, x ∈ A, y ∈ b.

Observe that Ub(x) is left multiplication by x ∈ A. Then Ub is a representation of A in b.

Proof. For every x ∈ A, the linear map Ub(x) from b to itself is continuous because of
condition (U). The verification that Ub(x1x2) = Ub(x1)◦Ub(x2) is immediate. For all y, z ∈ b,
by ondition (2), we have

〈Ub(x)∗(y), z〉 = 〈y, Ub(x)(z)〉
= 〈y, xz〉
= 〈x∗y, z〉
= 〈Ub(x

∗)(y), z〉,

which implies that Ub(x)∗ = Ub(x
∗). If A has the unit element 1, then Ub(1) is the identity

transformation.

Definition 2.17. Let A be a complete Hilbert algebra. For any closed left ideal b in A, let
Ub : A→ L(b) be the representation given by

Ub(x)(y) = xy, x ∈ A, y ∈ b.

The representation UA : A→ L(A) is called the regular representation of A.

When b = A, we usually write U(x) instead of UA(x). By Proposition 2.17, the represen-
tation UA is faithful. Moreover, since the map (x, y) 7→ xy from A × A to A is continuous,
the map x 7→ UA(x) from A to L(A) is also continuous.

Let A be a complete Hilbert algebra. For each left ideal b of A, the set b∗ = {x∗ | x ∈ b}
is a right ideal in A. We now start a fairly long chain of definitions and results leading to
our main result (Theorem 2.33).

In the sequel A denotes a complete Hilbert algebra. Two key concepts are the notion of
an irreducible self-adjoint idempotent and a minimal left ideal.

Proposition 2.21. For every left ideal l of A, the orthogonal complement l
⊥

of the closure
of l is a left ideal.
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Proposition 2.21 is proven in Dieudonné [14] (Chapter XV, Proposition 15.8.2). The next
proposition gives useful properties of idempotents.

Proposition 2.22. Let e 6= 0 be an idempotent element in A (e2 = e). Then the following
properties hold:

(1) ‖e‖ ≥ 1;

(2) e∗ is idempotent;

(3) The left ideal Ae is equal to the set {x ∈ A | x = xe}, and is closed in A.

Proposition 2.22 is proven in Dieudonné [14] (Chapter XV, Proposition 15.8.3). The next
proposition gives orthogonality properties of self-adjoint idempotents.

Proposition 2.23. If e1 and e2 are self-adjoint idempotents in A, then the following prop-
erties are equivalent:

(a) 〈e1, e2〉 = 0;

(b) e1e2 = 0;

(c) e2e1 = 0.

The proof of Proposition 2.23 makes use of property (2) and property (2’) of Definition
2.14; see Dieudonné [14] (Chapter XV, Proposition 15.8.4).

The following proposition shows that there are plenty nonzero self-adjoint idempotents.
Since Proposition 2.24 establishes a very important fact, we supply a proof.

Proposition 2.24. Every left ideal l 6= (0) in A contains a nonzero self-adjoint idempotent.

Proof. Let x be any nonzero element in l. By Proposition 2.17, we have x∗x 6= 0. Let
z = x∗x. Then z is a self-adjoint element of l, but in general it is not idempotent. Consider
the representation UA. By rescaling z, we may assume that ‖UA(z)‖ = 1. Since z = z∗, the
linear map UA(z) is self-adjoint, and we have UA(z2) = UA(z) ◦UA(z) = (UA(z))2. By Vol I,
Proposition D.11, we have∥∥UA(z2)

∥∥ =
∥∥(UA(z))2

∥∥ = ‖UA(z)‖2 = 1. (∗1)

We claim that the sequence (z2k) is a Cauchy sequence whose limit e is a nonzero self-adjoint
idempotent in l.

We are led to investigate bounds on ‖z2m − z2n‖, with m = n+ p, n, p > 0 and the proof
uses the following steps.

Step 1 . First, we prove that
∥∥UA(zk)

∥∥ = 1 for all k ≥ 1.
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From Equation (∗1), by induction we obtain∥∥UA(z2k)
∥∥ = 1, k ≥ 1. (∗2)

On the other hand, since ‖UA(z)‖ = 1, we have∥∥UA(zk+1)
∥∥ =

∥∥UA(z) ◦ UA(zk)
∥∥ ≤ ‖UA(z)‖

∥∥UA(zk)
∥∥ =

∥∥UA(zk)
∥∥ .

Thus the sequence (
∥∥UA(zk)

∥∥) is nonincreasing, and since it contains infinitely many terms
(of the form ‖UA(z2i)‖) equal to 1, we must indeed have∥∥UA(zk)

∥∥ = 1, for all k ≥ 1. (∗3)

Since we are using the operator norm, we deduce that

1 =
∥∥UA(zk)

∥∥ ≤ ‖UA‖∥∥zk∥∥ ,
which implies that ∥∥zk∥∥ ≥ 1/ ‖UA‖ , k ≥ 1. (∗4)

Here, ‖UA‖ is the operator norm of UA as a continuous linear map from A to L(A).

Step 2 . Next, we show that the sequence (
∥∥z2k

∥∥2
) is nonincreasing, and since it is

bounded from below by 1/ ‖UA‖2, it has a limit a > 0.

Since z is self-adjoint and UA(x)(y) = xy, using property (2) of Definition 2.14, we have
(recall that m = n+ p)

〈z2m, z2n〉 = 〈zpzp+2n, z2n〉 = 〈zp+2n, zp+2n〉 =
∥∥UA(zp)(z2n)

∥∥2

≤ ‖UA(zp)‖2
∥∥z2n

∥∥2
=
∥∥z2n

∥∥2
= 〈z2n, z2n〉,

and

〈z2m, z2m〉 =
∥∥U(zp)(zp+2n)

∥∥2 ≤ ‖U(zp)‖2
∥∥zp+2n

∥∥2
=
∥∥zp+2n

∥∥2

= 〈zp+2n, zp+2n〉 = 〈z2m, z2n〉,

so that for all m > n, we have

1/ ‖UA‖2 ≤ 〈z2m, z2m〉 ≤ 〈z2m, z2n〉 ≤ 〈z2n, z2n〉. (∗5)

Then (∗5) shows that the sequence (
∥∥z2k

∥∥2
) is nonincreasing, and since it is bounded

from below by 1/ ‖UA‖2, it has a limit a > 0.

Step 3 . Using (∗5), we also have∥∥z2m − z2n
∥∥2

= 〈z2m, z2m〉 − 2〈z2m, z2n〉+ 〈z2n, z2n〉
≤ 〈z2n, z2n〉 − 〈z2m, z2n〉

≤
∥∥z2n

∥∥2 − a.
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Since the sequence (
∥∥z2k

∥∥2
) has limit a, the sequence (z2k) is a Cauchy sequence, as asserted

earlier.

Step 4 . Let e be the limit of the Cauchy sequence (z2k). By continuity,

e2 = lim
k 7→∞

z4k = e,

and
e∗ = lim

k 7→∞
(z∗)4k = lim

k 7→∞
z4k = e.

We also have
ez2 = lim

k 7→∞
z2k+2 = e,

and since z ∈ l and l is a left ideal, we see that e ∈ l. Finally, since by (∗4) we have∥∥zk∥∥ ≥ 1/ ‖UA‖ , k ≥ 1,

and we deduce that ‖e‖ > 0, so e 6= 0.

Definition 2.18. A self-adjoint idempotent e 6= 0 is reducible if there exist two orthogonal
nonzero self-adjoint idempotents e1 and e2, such that e = e1 +e2. If a self-adjoint idempotent
e 6= 0 is not reducible, we say that it is irreducible.

By Proposition 2.23, if e = e1 + e2 is reducible, then ee1 = e1e = e1 and ee2 = e2e = e2.

Proposition 2.25 shows that irreducible self-adjoint idempotents are the building blocks
for self-adjoint idempotents.

Proposition 2.25. Every self-adjoint idempotent e 6= 0 is the sum of a finite number of
irreducible self-adjoint idempotents in Ae. Every left ideal l 6= (0) contains an irreducible
self-adjoint idempotent.

Proof. Here is the proof of the first statement.

Let e 6= 0 be a self adjoint idempotent. Since ee = e, obviously e ∈ Ae. We claim that if
‖e‖2 < 2, then e is irreducible. Otherwise, e = e1 +e2 for two orthogonal nonzero self-adjoint
idempotents e1 and e2, so

‖e‖2 = ‖e1‖2 + ‖e2‖2 .

By Proposition 2.22, since e1, e2 6= 0, we have ‖e1‖ , ‖e2‖ ≥ 1, so ‖e‖2 ≥ 2, a contradiction.

If ‖e‖2 ≥ 2, we prove by complete induction on the smallest natural number n, such that
‖e‖2 < n, that e is the sum of a finite number of irreducible self-adjoint idempotents in Ae.

If e is reducible, then e = e1+e2, where e1, e2 6= 0 are orthogonal self-adjoint idempotents.
By Proposition 2.23, we have e1 = e1e and e2 = e2e, which implies that e1, e2 ∈ Ae. Since
‖e‖2 = ‖e1‖2 + ‖e2‖2, we have

‖e1‖2 = ‖e‖2 − ‖e2‖2 ≤ ‖e‖2 − 1 < n− 1,
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and similarly,
‖e2‖2 < n− 1.

Therefore, we can apply the induction hypothesis to e1 and e2, and this finishes the proof.
The second statement follows from Proposition 2.24 and what we just proved.

Definition 2.19. A left ideal l is minimal if l 6= (0) and if there exists no nonzero left ideal
l′ 6= l, such that l′ ⊆ l. A similar definition applies to minimal right ideals.

Here is the first significant result which gives the structure of minimal left ideals in terms
of irreducible self-adjoint idempotents.

Theorem 2.26. A left ideal l in A is minimal if and only if it is of the form l = Ae, where
e 6= 0 and e is an irreducible self-adjoint idempotent.

Proof. First, assume that l is a minimal left ideal. By Proposition 2.25, the ideal l contains
an irreducible self-adjoint idempotent e 6= 0. Since e ∈ l and l is a left ideal, we have Ae ⊆ l
and e = e2 ∈ Ae. This shows that Ae is a nonzero ideal contained in the minimal ideal l,
which implies that l = Ae.

Conversely, let e 6= 0 be an irreducible self-adjoint idempotent. We need to prove that
l = Ae is a minimal ideal.

Suppose by contradiction that l contains a left ideal l′ 6= (0), such that l′ 6= l. By
Proposition 2.24, there is some self-adjoint idempotent e′ 6= 0 that belongs to l′.

If we let e1 = e − ee′, and e2 = ee′, then e = e1 + e2, and we claim that e1 and e2

are orthogonal nonzero self-adjoint idempotents. If so, this contradicts the fact that e is
irreducible, and finishes the proof by contradiction.

Since e′ ∈ Ae and ee = e, we have

e′ = e′e.

Consequently,

e2
2 = ee′ee′ = ee′e′ = ee′ = e2

ee2 = eee′ = ee′ = e2

e2e = ee′e = ee′ = e2,

and thus

e1e2 = (e− e2)e2 = ee2 − e2
2 = e2 − e2 = 0

e2e1 = e2(e− e2) = e2e− e2
2 = e2 − e2 = 0

e2
1 = (e− e2)2 = e2 − ee2 − e2e+ e2

2 = e− e2 − e2 + e2 = e− e2 = e1.

We also have
e∗2 = (ee′e)∗ = e∗(e′)∗e∗ = ee′e = e2,
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and so

e∗1 = (e− e2)∗ = e∗ − e∗2 = e− e2 = e1.

In summary, we proved that e1, e2 are orthogonal self-adjoint idempotents. It remains to
prove that e1 6= 0 and e2 6= 0.

Since e = e1 + e2 = e1 + ee′, if e1 = 0, then e = ee′ ∈ l′ (since e′ ∈ l′), hence l′ = l,
contradicting the hypothesis that l′ 6= l. Since e2 = ee′, we have

e′e2 = e′ee′ = e′e′ = e′ 6= 0,

which implies that e2 6= 0. Finally, we showed that e = e1 + e2 is a reducible decomposition
of e, contradicting the hypothesis that e is irreducible.

Example 2.8. Consider the algebra A = Mn(C) from Example 2.1 consisting of n × n
complex matrices with involution X 7→ X∗ (the conjugate transpose). It is immediately
verified that the map

〈X, Y 〉 7→ 〈X, Y 〉 = tr(Y ∗X)

is a Hermitian inner product on A, which makes A into a complete Hilbert algebra, which
is obviously separable. We immediately check that the n× n matrices Ei defined such that
(Ei)jk = 1 iff j = k = i, else (Ei)jk = 0, are irreducible self-adjoint idempotents in A. Then
the subspaces li = AEi (1 ≤ i ≤ n) are minimal left ideals in A. Observe that li = AEi
consists of those n × n matrices whose columns of index 1, . . . , i − 1, i + 1, . . . , n are zero
columns. Observe that

A =
n⊕
j=1

lj =
n⊕
j=1

AEj.

Also note that

lj =
n⊕
k=1

EkAEj,

where EkAEj is the one-dimensional subspace of A consisting of the n × n matrices whose
only nonzero entry, if any, is the entry of index (k, j). This example is an illustration of
Theorem 2.34.

Theorem 2.26 and Proposition 2.23 immediately imply the following second significant
result which shows that the minimal left ideals are the building blocks of left ideals.

Theorem 2.27. Every left ideal in A contains a minimal left ideal. Every minimal left ideal
is closed.

The next two results are technical lemmas that are needed to prove Theorem 2.30. They
build special kinds of orthogonal systems from self-adjoint idempotents.

Proposition 2.28. The following properties hold.
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(1) If e and e′ are two orthogonal self-adjoint idempotents, then the left ideals Ae and Ae′

are orthogonal.

(2) Let (ei)1≤i≤n be a finite family of pairwise orthogonal, self-adjoint idempotents. Then
for every x ∈ A, the element x−

∑n
i=1 xei is orthogonal to each Aej (1 ≤ j ≤ n).

Proposition 2.28 is proven in Dieudonné [14] (Chapter XV, Proposition 15.8.9). The
proof is quite simple. On the other hand, the proof of Proposition 2.29 makes use of a
fairly complicated inductive construction, which we omit. See Dieudonné [14] (Chapter XV,
Proposition 15.8.10) for complete details.

Proposition 2.29. For every x ∈ A there exists a finite or countably infinite sequence (en)
of pairwise orthogonal irreducible self-adjoint idempotents belonging to the closure l of the
ideal Ax, such that x =

∑
n xen (this series being convergent in A), and ‖x‖2 =

∑
n ‖xen‖

2.

From now on we assume that the complete Hilbert algebra A is separable. We have the
following important result.

Theorem 2.30. Suppose A is separable. Then every closed left ideal b is the Hilbert sum of a
finite or countably infinite sequence of minimal left ideals ln = Aen, where en is an irreducible
self-adjoint idempotent. For every x ∈ b, we have x =

∑
n xen, and for all x, y ∈ b we have

〈x, y〉 =
∑

n〈xen, yen〉.

Proof. We follow Dieudonné’s proof from [14] (Chapter XV, Section 8, Theorem 15.8.11).
By Proposition 2.28 and by the properties of Hilbert sums (see Proposition 2.3), the vector
xen is the orthogonal projection of x onto Aen, so the second and third assertions follow.

To prove the first assertion, let (xn)n≥1 be a dense sequence in b, which exists since A is
separable. We define inductively, for each n, a finite or countably infinite sequence (en,i)i∈In
of irreducible self-adjoint idempotents as follows. For n = 1, by Proposition 2.29 applied to
x1 ∈ b, since Ax1 ⊆ b, there is a finite or countably infinite sequence (e1,i)i∈I1 of pairwise
orthogonal irreducible self-adjoint idempotents belonging to b, such that x1 =

∑
i∈I1 x1e1,i.

Suppose that the em,i have been defined for all m ≤ n in such a way that they are pairwise
orthogonal and belong to b, and are such that the xm with m ≤ n belong to the closure
an ⊆ b of the left ideal, which is the sum of the ideals Aem,i for all m ≤ n and all i ∈ Im,

an =
⊕

m≤n, i∈Im

Aem,i.

Let x′n+1 be the orthogonal projection of xn+1 onto a⊥n ∩ b. Using Proposition 2.29 applied

to x′n+1 ∈ a⊥n ∩ b, since Ax′n+1 ⊆ a⊥n ∩ b, there is a finite or countably infinite sequence
(en+1,i)i∈In+1 of pairwise orthogonal irreducible self-adjoint idempotents which belong to
a⊥n ∩ b and are such that x′n+1 =

∑
i∈In+1

x′n+1en+1,i; see Figure 2.1. Since each family
(en,i)i∈In is countable and since there are countably many of these families, the union of
these families is also countable, so it can be listed as a single sequence. Using Proposition
2.28 and the properties of Hilbert sums, we leave it as an exercise to check that this sequence
has the desired properties.
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Figure 2.1: A schematic illustration of the construction used in the proof of Theorem 2.30.
Let a1 = Ae1,1 ⊕ Ae1,2 be the horizontal purple plane. The vertical red line is a⊥1 ∩ b. Then
a2 = Ae1,1 ⊕ Ae1,2 ⊕ Ae2,1.

Theorem 2.30 applies in particular when b = A. In this case, we get a decomposition
of A as a Hilbert sum of minimal left ideals. However, in general, there are infinitely many
such decompositions. More precisely, we have the following result.

Proposition 2.31. Suppose A is separable, and let l be a minimal left ideal of A. Then
there exists a decomposition of A as a Hilbert sum of minimal left ideals ln, such that l1 = l.

The following technical result is needed in the proof of the main theorem (Theorem 2.33).

Theorem 2.32. Let e and e′ be two irreducible self-adjoint idempotents, and let l = Ae, and
l′ = Ae′ be the corresponding minimal left ideals. The following properties hold.

(1) Every homomorphism of the A-module l into the A-module l′ is a map fa of the form
fa(x) = xa (x ∈ l), for some a ∈ eAe′ = eA ∩ Ae′; it is either zero or bijective, and
the map a 7→ fa is an isomorphism of the complex vector space eAe′ onto HomA(l, l′),
such that fab = fb ◦ fa.

(2) The C-algebra eAe, isomorphic to EndA(l) = HomA(l, l) (the space of endomorphisms
of l), is a field equal to Ce (and therefore isomorphic to C).

(3) If l and l′ are not isomorphic as A-modules, then e and e′ (and consequently l and l′)
are orthogonal, and ll′ = l′l = (0). If l and l′ are isomorphic as A-modules, then eAe′

is a complex vector space of dimension 1, and ll′ = l′.

(4) If x ∈ A, then lx is a left ideal which is either (0) or isomorphic (as A-module) to l.
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Proof. We follow Dieudonné’s proof from [14] (Chapter XV, Section 8, Theorem 15.8.12).
(1) Let g : l → l′ be an A-module homomorphism, and let a = g(e). For every x ∈ l = Ae,
since e2 = e, we have

g(x) = g(xe) = xg(e) = xa,

so g = fa. Since a ∈ g(l) ⊆ l′, l′ = Ae′ and (e′)2 = e′, we have a = ae′. On the other hand,

a = g(e) = g(e2) = eg(e) = ea,

so a = eae′ ∈ eAe′.

By definition of eAe′, we have eAe′ ⊆ eA∩Ae′. Conversely, if y ∈ eA∩Ae′, as e2 = e and
(e′)2 = e′, we have y = ye′ and y = ey, so that y = eye′ ∈ eAe′. Therefore, eAe′ = eA∩Ae′.

The image g(l) of g is a left ideal contained in l′, and since l′ is a minimal left ideal, either
g(l) = (0) or g(l) = l′. Likewise, the kernel Ker g of g is a left ideal contained in l, and since
l is a minimal left ideal, either Ker g = (0) or Ker g = l. If Ker g = l, then g(l) = (0) and g
is the zero map. If Ker g = (0), then g(l) 6= (0), so we must have g(l) = l′, and g is bijective.

If g = fa = 0, then fa(e) = ea = 0; but a ∈ eAe′, so ea = a, and consequently a = 0,
which shows that the map a 7→ fa is an isomorphism.

(2) By Proposition 2.22(3), the C-algebra eAe is a closed subalgebra of A. In (1), we
saw that every element of EndA(l) is either zero or invertible, so EndA(l) is a (possibly
noncommutative) field, and since eAe isomorphic to EndA(l), it is also a field. Clearly, e is a
unit in eAe, and since A is a complete Hilbert algebra, it is a Banach algebra, and since eAe
is closed in A, it is also a Banach algebra. By the Gelfand–Mazur theorem (Vol I, Theorem
9.14), eAe = Ce ∼= C.

(3) If l and l′ are not isomorphic, by (1) we have eAe′ = (0), and in particular, ee′ = 0.
By Proposition 2.23, e and e′ are orthogonal. By Proposition 2.28, the left ideals l and l′

are orthogonal, and ll′ = AeAe′ = A(0) = (0). Similarly, e′Ae = (0), so l′l = (0). If l and
l′ are isomorphic, and if g : l→ l′ is an isomorphism from l to l′, then every homomorphism
h : l → l′ is of the form h = g ◦ u, where u ∈ EndA(l), which means that EndA(l) and
HomA(l, l′) are isomorphic. By (2), the space EndA(l) is one-dimensional, so HomA(l, l′) is
also one-dimensional, and by (1), the space HomA(l, l′) is isomorphic to eAe′, so we deduce
that eAe′ is complex vector space of dimension 1. The ideal ll′ is obviously contained in l′,
and contains eAe′ 6= (0). Since l′ is a minimal left ideal, we must have ll′ = l′.

(4) Since lx is the image of l under the homomorphism ϕ : l→ A given by ϕ(y) = yx, it
is a left ideal isomorphic to l/Kerϕ. But since Kerϕ is a left ideal contained in the minimal
left ideal l, either Kerϕ = (0) or Kerϕ = l, which means that ϕ is either injective or zero,
and so lx is a left ideal, which is either (0) or isomorphic (as A-module) to l.

Finally, we come to the main theorems of this chapter.
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2.7 The Structure of Complete Separable Hilbert

Algebras

Theorem 2.33. (Master decomposition theorem) Let A be a complete, separable Hilbert
algebra. The following properties hold.

(1) There exists a finite or countably infinite sequence (lk)k∈J of minimal left ideals, no
pair of which are isomorphic, such that every minimal left ideal of A is isomorphic (as
an A-module) to some lk.

(2) For each index k ∈ J , the closure of the sum of all the minimal left ideals of A which
are isomorphic to lk is a self-adjoint two-sided ideal ak. Every minimal left ideal of
the Hilbert algebra ak is a minimal left ideal of A, isomorphic to lk, and the algebra ak
contains no closed two-sided ideals other than (0) and ak.

(3) Each of the algebras ak is a Hilbert sum

ak =
⊕
j∈Ik

l′j,

with Ik finite or countably infinite, and where each l′j is a minimal left ideal isomorphic
to lk. The algebra A is the Hilbert sum

A =
⊕
k∈J

ak,

and ahak = (0) for all h 6= k.

Proof. We reproduce Dieudonné’s proof from [14] (Chapter XV, Section 8, Theorem 15.8.13).
By Theorem 2.30, we obtain A as the Hilbert sum

A =
⊕
n∈L

l′n

of minimal left ideals l′n of A, where L is finite or countably infinite. We define inductively
the index set J and the sequence (lk)k∈J of minimal left ideals lk, no pair of which are
isomorphic, as follows. Start with l1 = l′1. Having defined l1, . . . , lk, let lk+1 be the equal
to l′m, where m is the smallest integer, such that l′m is not isomorphic to any of the ideals
l1, . . . , lk. If all the l′n are isomorphic to one of the ideals l1, . . . , lk, then stop. Let J be the
finite or countably infinite sequence of indices k so obtained, and for every k ∈ J , let Ik be
the sequence of integers n, such that l′n is isomorphic to lk. If J is infinite, then each Ik is
finite. Otherwise, I1, . . . , Ik−1 are finite, and Ik is finite or countably infinite. Define ak as
the Hilbert sum

ak =
⊕
j∈Ik

l′j.



78 CHAPTER 2. REPRESENTATIONS OF ALGEBRAS AND HILBERT ALGEBRAS

By construction, it is clear that each ak is a left ideal and that H is the Hilbert sum

A =
⊕
k∈J

ak.

Let l be any minimal left ideal in A. Then l must be isomorphic to one of the lk, for
otherwise by Theorem 2.32(3), it would be orthogonal to all of the l′n, and hence orthogonal
to A itself, a contradiction. The same argument shows that l is orthogonal to all the ah with
h 6= k. Hence, since ak is the orthogonal complement of the Hilbert sum⊕

h∈J−{k}

ah,

we must have l ⊆ ak. This implies that ak is the closure of the sum of all the minimal left
ideals of A, which are isomorphic to lk, and therefore, ak is independent of the decomposition
of A as the Hilbert sum of the l′n from which we started. Moreover, for every x ∈ A, and
every n ∈ Ik, by Theorem 2.32(4), we know that l′nx is a left ideal, which is either (0) or
isomorphic to l′n, hence contained in ak. This proves that ak is a two-sided ideal. If l′n = Ae′n,
where e′n is an irreducible self-adjoint idempotent, then (l′n)∗ = e′nA, hence a∗k = ak.

Let l′′ be a minimal left ideal of the Hilbert algebra ak. By Theorem 2.26, we have
l′′ = ake

′′, where e′′ is a self-adjoint idempotent, and e′ne
′′ cannot vanish for all n ∈ Ik,

otherwise l′′ would be orthogonal to all of the l′n with n ∈ Ik, and therefore to the closure of
their sum, namely to ak, which is impossible because l′′ 6= (0). Hence there exists at least one
index n ∈ Ik, such that l′nl

′′ 6= (0); since l′nl
′′ is a left ideal in ak, we must have l′nl

′′ = l′′. By
Theorem 2.32(3), l′′ is a minimal left ideal of A necessarily isomorphic to l′n, and therefore
to lk.

If b is a nonzero two-sided ideal of the algebra ak, by Theorem 2.27, it contains at least
one minimal left ideal l′′ of this algebra, hence also contains all the l′′l′n (n ∈ Ik). But by
Theorem 2.32(3), we have l′′l′n = l′n, and therefore b contains the sum of all the l′n (with
n ∈ Ik). If b is closed, it follows that b = ak. Finally, ahak ⊆ ah ∩ ak = (0) if h 6= k, because
ah and ak are two-sided ideals.

The proof of the theorem shows that if J is infinite, then all the index sets Ik are finite.
Also, observe that Theorem 2.32(3) plays a crucial role in proving that ahak = (0) for all
h 6= k.

Roughly speaking, Theorem 2.33 says that if A is a complete separable Hilbert algebra,
then there is an irredundant list (lk)k∈J of the minimal left ideals of A, and A is the Hilbert
sum of two-sided ideals ak, where each ak is the Hilbert sum obtained by picking a certain
number of copies of the minimal left ideal lk of A.
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Example 2.9. As an aid to help the reader process the indexing for the master decomposi-
tion of Theorem 2.33, suppose A is a complete separable Hilbert algebra with the following
finite Hilbert sum decomposition:

A = l′1 ⊕ l′2 ⊕ l′3 ⊕ l′4 ⊕ l′5 ⊕ l′6,

where
l′1
∼= l′3

∼= l′4, l′2
∼= l6.

Set
l1 := l′1, l2 := l′2, l3 := l′5.

Then J = (1, 2, 3), and

I1 = (1, 3, 4), I2 = (2, 6), I3 = (5).

Also, note that

a1 :=
⊕
j∈I1

l′j = l′1 ⊕ l′3 ⊕ l′4

a2 :=
⊕
j∈I2

l′j = l′2 ⊕ l′6

a3 :=
⊕
j∈I3

l′j = l′5,

which in turn implies

A = a1 ⊕ a2 ⊕ a3 = (l′1 ⊕ l′3 ⊕ l′4)⊕ (l′2 ⊕ l′6)⊕ l′5.

The ideals ak have properties analogous to those of simple algebras.

Definition 2.20. A complete Hilbert algebra A is topologically simple if it contains no closed
two-sided ideal other than (0) and A.

Theorem 2.33 shows that the complete Hilbert algebras ak are topologically simple. The-
orem 2.33 also shows that the study of complete separable Hilbert algebras reduces to the
study of the topologically simple ones. We have the following theorem that gives us a sharper
image of the structure of topologically simple complete separable Hilbert algebras.

Theorem 2.34. (Structure of a topologically simple Hilbert algebra) Let A be topologically
simple, complete, separable Hilbert algebra. For any minimal left ideal l of A, the represen-
tation Ul : A→ L(l) of A in the Hilbert space l is faithful.

If A is infinite-dimensional, then so is l. The image of A under Ul is the algebra L2(l)
of Hilbert–Schmidt operators on l, and there exists a constant c > 0, such that

c〈x, y〉A = 〈Ul(x), Ul(y)〉HS, for all x, y ∈ A. (∗)
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The inner product on the right-hand side is the inner product defined in Section2.5.

If A is finite-dimensional, then the image of A under Ul is the algebra EndC(l) of all
endomorphisms of the vector space l, and (∗) remains valid (the inner product on the right-
hand side is also the inner product defined in Example 2.5). In fact,

A =
n⊕
j=1

lj, lj = Aej =
n⊕
i=1

eiAej,

where e1, . . . , en are irreducible self-adjoint idempotents in A, the lj = Aej are isomorphic
minimal left ideals, each space eiAej is one-dimensional, and e1 + · · ·+ en is the unit of A.

Proof. We follow Dieudonné’s proof from [14] (Chapter XV, Section 8, Theorem 15.8.14).
By Proposition 2.31 and by Theorem 2.33, we may assume that A is the Hilbert sum of a
finite or countably infinite sequence of minimal left ideals ln = Aen, where l = l1 and all
the ln are isomorphic. We begin by observing that for any x ∈ A such that x 6= 0, we have
Ax 6= (0). Indeed, if x 6= 0 and if Ax = (0), then for x∗ ∈ A we have x∗x = 0, but by
Proposition 2.17 this implies that x = 0, a contradiction.

First, we prove that the representation Ul is faithful. If Ul(x) = 0 for some x 6= 0 in
A, that is, if xl = (0), then we should have (Ax)l = (0). Since the ideal Ax is nonzero,
by Theorem 2.27, the ideal Ax contains a minimal left ideal l′, and by Theorem 2.33, the
left ideal l′ is isomorphic to l; hence l′l = (0), contrary to Theorem 2.32(3). Therefore the
representation Ul is faithful.

Next, we claim that l is the Hilbert sum of the subspaces enAe1,

l =
⊕
n

enAe1,

where the spaces enAe1 are one-dimensional.

Let Pn = Ul(en). By Theorem 2.32(3), since the li are isomorphic, the subspace enAe1

is one-dimensional, and we shall show that Pn is the orthogonal projection of l = Ae1 onto
enAe1. Since en is a self-adjoint idempotent and since an arbitrary element of Ae1 is of the
form xe1 for some x ∈ A, and Ul(en)(xe1) = enxe1, we have

〈xe1 − enxe1, enye1〉 = 〈enxe1 − e2
nxe1, ye1〉 = 〈enxe1 − enxe1, ye1〉 = 0.

Since emen = 0 whenever m 6= n, we have PmPn = 0, and therefore the subspaces enAe1

are orthogonal in pairs. Moreover, l is the Hilbert sum of these subspaces. Here, we use a
standard fact of Hilbert space theory, which is that if (zi) is an orthonormal family in l, and
for every w, if w is orthogonal to all the zi, then w = 0, then (zi) is dense in l. Otherwise,
B =

⊕
iCzi is a closed proper subspace of l, and thus its orthogonal complement B⊥ is

nonempty, so there is a nonzero w ∈ B⊥ orthogonal to all the zi. Since the subspaces eiAe1

are one-dimensional, we can choose zi to be some nonzero vector in eiAe1. Now if xe1 is



2.7. THE STRUCTURE OF COMPLETE SEPARABLE HILBERT ALGEBRAS 81

orthogonal to all the subspaces enAe1 (which are one-dimensional), then Pn(xe1) = 0 for
all n, so that enxe1 = 0 for all n, and thus y = xe1 belongs to the right annihilator of
A. Proposition 2.17 implies that this right annihilator is equal to (0), because y∗ ∈ A, so
y∗y = 0, and by Proposition 2.17 we must have y = xe1 = 0. A similar proof shows that lj
is the Hilbert sum

lj =
⊕
k

ekAej, (†)

where the spaces ekAej are one-dimensional.

Equation (†) shows that the sequence (lk) is finite iff l (and thus each lk) is finite-
dimensional over C, or equivalently iff A is finite-dimensional. If A is finite-dimensional,
then

A =
n⊕
j=1

lj, lj = Aej =
n⊕
i=1

eiAej,

where e1, . . . , en are irreducible self-adjoint idempotents in A, the lj = Aej are isomorphic
minimal left ideals, and each space eiAej is one-dimensional. By Proposition 2.23, since the
subspaces Aej are pairwise orthogonal, eiej = 0 whenever i 6= j, so e1 + · · ·+ en is a unit for
eiAej, and thus for A.

Let (an) be an orthonormal basis of l, such that an ∈ enAe1 for each n. Since the en are
self-adjoint idempotents, we have

ane1 = an, enan = an, ana
∗
n ∈ enAen, a∗nan ∈ e1Ae1,

and by Theorem 2.32(2), we must have ana
∗
n = αnen for some nonzero αn ∈ C. Similarly,

a∗nan ∈ e1Ae1, and we must have a∗nan = α′ne1 for some nonzero α′n ∈ C.

We claim that αn = α′n for all n.

On the one hand,
ana

∗
nana

∗
n = αnenαnen = α2

ne
2
n = α2

nen,

and on the other hand, since ane1 = an, we have

ana
∗
nana

∗
n = anα

′
ne1a

∗
n = α′nane1a

∗
n = α′nana

∗
n = α′nαnen.

Consequently, α2
nen = α′nαnen, and since α′n, αn 6= 0, we conclude that αn = α′n for all n.

We also have
〈en, en〉 = 〈e1, e1〉, for all n ≥ 1.

Indeed, we have

1 = 〈an, an〉 = 〈an, enan〉 = 〈ana∗n, en〉 = αn〈en, en〉,

and
1 = 〈an, an〉 = 〈an, ane1〉 = 〈a∗nan, e1〉 = αn〈e1, e1〉,
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and since αn 6= 0, we obtain 〈en, en〉 = 〈e1, e1〉 for all n ≥ 1.

Let c = 1/〈e1, e1〉 = αn. Then ana
∗
n = cen, and for all x, y ∈ A, we have

〈xan, yan〉 = 〈y∗x, ana∗n〉 = 〈y∗x, cen〉 = c〈xen, yen〉.

By Theorem 2.30, the series with general term 〈xen, yen〉 is absolutely convergent with sum
〈x, y〉, and since 〈xan, yan〉 = c〈xen, yen〉, if A is infinite-dimensional, then

∑
n〈xan, xan〉 =∑

n ‖Ul(x)(an)‖2 converges, so Ul(x) is a Hilbert–Schmidt operator, and Equation (∗) holds.
Since A is a Hilbert space, so is its image under Ul, and to show that this image is the whole
of the Hilbert space L2(l) (see Example 2.5), it suffices to show that Ul(A) is dense in L2(l).

Now for all m,n with m 6= n, by Theorem 2.32(3), we have

(emAen)(enAe1) = em(Aen)(Ae1) = emAe1,

and since enAe1 = Can, an ∈ enAe1, and am ∈ emAe1, it follows that there exists emn ∈
emAen, such that emnan = am (which implies that emn = c−1ama

∗
n, since ana

∗
n = cen and

emn ∈ emAen), and clearly, emnap = 0 if p 6= n. We conclude from this that Emn = Ul(emn) is
the continuous endomorphism of the Hilbert space l, such that Emn(an) = am and Emn(ap) =
0 if p 6= n. Our assertion now follows from the fact that it is not hard to show that the finite
linear combinations of the Emn are dense in L2(l).

We already took care of the case where A is finite-dimensional.

Example 2.10. Let us apply the construction of Theorem 2.34 to a1 of Example 2.9. In
other, words let

A := a1 = l′1 ⊕ l′3 ⊕ l′4 = l1 ⊕ l2 ⊕ l3,

where

l1 := l′1 and l1 = Ae1, l2 := l′3 and l2 = Ae2, l3 := l′4 and l3 = Ae3.

Then

A = Ae1 ⊕ Ae2 ⊕ Ae3.

Now set l := l1 = Ae1 and decompose each of the above lj, where 1 ≤ j ≤ 3, as

l = e1Ae1 ⊕ e2Ae1 ⊕ e3Ae1,

l2 = e1Ae2 ⊕ e2Ae2 ⊕ e3Ae2,

l3 = e1Ae3 ⊕ e2Ae3 ⊕ e3Ae3.

See Figure 2.2. We now scale the directions of e1Ae1, e2Ae1, and e3Ae1 to form the orthonor-
mal basis (ai)1≤i≤3 of l, where

a1 ∈ e1Ae1, a2 ∈ e2Ae1, a3 ∈ e3Ae1.
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Figure 2.2: An illustration of the one-dimensional perpendicular directions within each li;
i.e. the decomposition Aei = e1Aei ⊕ e2Aei ⊕ e3Aei, for 1 ≤ i ≤ 3.

We also define six elements emn ∈ emAen, where m,n ∈ {1, 2, 3} and m 6= n, i.e.

e21 ∈ e2Ae1, e31 ∈ e3Ae1, e12 ∈ e1Ae2,

e32 ∈ e3Ae2, e13 ∈ e1Ae3, e23 ∈ e2Ae3,

such that

e21a1 = a2, e12a1 = a1, e13a3 = a1

e31a1 = a3, e32a2 = a3, e23a3 = a2.

See Figure 2.3.
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Figure 2.3: The orthonormal basis (a1, a2, a3) and the elements emn ∈ emAen whenever
m 6= n.

Theorem 2.34 implies that in the Hilbert sum

A =
⊕
k∈J

ak
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given by Theorem 2.33, the Hilbert algebra ak, which is a building block of the decomposition,
is either isomorphic to the algebra L2(lk) of Hilbert–Schmidt operators on lk, or to the finite-
dimensional algebra EndC(lk) of all endomorphisms of the vector space lk. If G is a metrizable
compact group and A = L2(G), then every ak in the Hilbert sum for A is isomorphic to the
finite-dimensional algebra EndC(lk).

Observe that in all cases, the spaces Ul(ln) consist of endomorphisms of the form U(x)◦Pn
(where the Pn = Ul(en) are the orthogonal projections defined in the proof of Theorem 2.34),
and therefore consist of endomorphisms of rank 1 of l.

The following result gives a sufficient condition for a Hilbert algebra satisfying the hy-
potheses of Theorem 2.34 to be finite. Recall that the center Z(A) of an algebra A is the set
Z(A) = {x ∈ A | xy = yx, for all y ∈ A}.

Proposition 2.35. Let A be topologically simple, complete, separable Hilbert algebra. If
there is an element c 6= 0 in the center of A, then A is finite-dimensional. In that case, the
center of A is C1, where 1 is the identity element of A.

Proof. If c belongs to the center of A, then for any irreducible self-adjoint idempotent e
in A (which exists by Theorem 2.26 and Theorem 2.27), u = Ul(c) is an endomorphism of
the A-module l = Ae, and by Proposition 2.32(1), it is a map of the form x 7→ αx for all
x ∈ l, with α ∈ C. However, such a map cannot be a Hilbert–Schmidt operator on an
infinite-dimensional space unless it is the zero map (

∑∞
n=1 ‖u(an)‖2 can’t be finite, where

(ai) is a countable Hilbert basis of l). Therefore l is finite-dimensional, so by Theorem 2.34,
A is also finite-dimensional. In this case, by Theorem 2.34, the algebra A is isomorphic to
an algebra of n× n matrices, and it is a well-known fact of linear algebra that the matrices
that commute with all n×n matrices are of the form λIn, with λ ∈ C (where In is the n×n
identity matrix).

Theorem 2.33 will be applied to the complete, separable, Hilbert algebra L2(G) (G metriz-
able and compact), which is then a Hilbert sum of two-sided ideals ak. It turns out that
Proposition 2.35 applies to the Hilbert algebras ak, so they are finite-dimensional. This will
yield the first part of the Peter–Weyl theorem.

We conclude with a result about representations of complete Hilbert algebras that makes
use of Theorem 2.33.

Theorem 2.36. (Master decomposition for nondegenerate representations) Let A be a sep-
arable, complete Hilbert algebra and let ak∈J be the topologically simple Hilbert algebras which
are the Hilbert summands as in Theorem 2.33(3). For every k ∈ J , let lk be a minimal left
ideal of ak. Let V : A→ L(H) be a nondegenerate representation of A in a separable Hilbert
space H, such that V : A→ L(H) is continuous. The following properties hold.

(1) The Hilbert space H is the Hilbert sum of subspaces Hk (k ∈ J) invariant under V ,
such that if Vk is the restriction of V to Hk, we have Vk(s) = 0 for all s ∈ ah and for
all h with h 6= k; thus Vk can be considered as a representation of ak in Hk.
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(2) The representation Vk is the Hilbert sum of a finite or countably infinite sequence
of irreducible representations, each equivalent to the representation Ulk of ak as in
Theorem 2.34. If ak is finite-dimensional, then so is Hk.

Proof. We follow Dieudonné’s proof from [14] (Chapter XV, Section 8, Theorem 15.8.16).
Let Hk be the closure of the subspace spanned by the set of vectors

{V (sk)(x) | sk ∈ ak, x ∈ H}.

Since every s ∈ A can be written as s =
∑

k sk for some sk ∈ ak and since V is continuous,
we have

V (s)(x) =
∑
k

V (sk)(x),

which implies that H is the closure of the sum of the Hk. Also, if h 6= k and if sh ∈ ah, sk ∈ ak,
we have

〈V (sh)(x), V (sk)(y)〉 = 〈V ∗(sk)V (sh)(x), y〉 = 〈V (s∗ksh)(x), y〉 = 〈V (0)(x), y〉 = 〈0, y〉 = 0,

because ak is self-adjoint and akah = (0) since h 6= k, so s∗ksh = 0. Thus (1) holds.

Now assume that A is topologically simple and finite-dimensional over C, and thus has a
unit element. This means that A is equal to some ak in the master decomposition theorem
(Theorem 2.33), V is equal to Vk, and H is equal to Hk. Our representation is Vk : ak →
L(Hk), which we also denote by V : A → L(H). The case where A is infinite-dimensional
can also be handled but it is a bit more complicated; see Dieudonné’s [14] (Chapter XV,
Section 8, Problem 1). If A is finite-dimensional, then A =

⊕n
j=1 lj is the sum of a finite

number of isomorphic minimal left ideals lj in A. By Proposition 2.10, the representation
V : A→ L(H) is the Hilbert sum (finite or countable) of topologically cyclic representations
V ′k : A → L(H ′k). Thus, it suffices to prove that each topologically cyclic representation
V ′k : A→ L(H ′k) is a Hilbert sum (finite or countable) of irreducible representations V ′k,j : A→
L(H ′k,j), each equivalent to the representation Ul, where l is some minimal left ideal in A.
Then V : A → L(H) is the Hilbert sum of the family (finite or countable) of irreducible
representations V ′k,j : A→ L(H ′k,j).

For simplicity of notation, we may assume that H = H ′k, and let x0 be a cyclic vector in
H. The subspace of H spanned by the set of vectors {V (s)(x0) | s ∈ A} is finite-dimensional,
and thus closed and dense in H, so it is equal to H. As a consequence, H is finite-dimensional
and we can argue by induction on the dimension of H.

Since A =
⊕n

j=1 lj is the sum of a finite number of isomorphic minimal left ideals lj, there
is at least one minimal ideal, say l, such that the subspace E = V (l)(x0) ⊆ H is nonzero. The
surjection ϕ : l→ E given by ϕ(s) = V (s)(x0) is then an A-module homomorphism, and since
its kernel is a left ideal l′ contained in l and distinct from l, since l is minimal, we must have
l′ = (0). Hence, ϕ : l→ E is a linear isomorphism and E is a subspace of H invariant under
V . By Theorem 2.34, the representation Ul : A → L(l) is faithful and it is an isomorphism
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between A and EndC(l), with l finite-dimensional, so if l′ is a proper linear subspace of l
invariant under Ul, as Ul remains a faithful representation in l′ (because any linear map on
l′ can be extended by zero to a linear map on l), A would be isomorphic to EndC(l′) whose
dimension is strictly smaller than the dimension of EndC(l), a contradiction. Therefore, the
representation Ul : A→ L(l) is irreducible, and ϕ : l→ E establishes an equivalence between
the representations Ul : A→ L(l) and V : A→ L(E) . Since the orthogonal complement E⊥

of E in H is also invariant under V and has dimension strictly smaller than the dimension of
H, we can apply the induction hypothesis to the representation V : A→ L(E⊥) to complete
the proof.

Example 2.11. Let us apply the proof techniques of Theorem 2.36 to A = a1 ⊕ a2 ⊕ a3,
where

a1 = l1 ⊕ l3 ⊕ l4, a2 = l2 ⊕ l6, a3 = l5;

see Example 2.9. Note that we have removed the primes so as to match the notation of the
theorem. We are given a continuous representation V : A→ L(H). Define

H1 := span{V (s1)(x) | s1 ∈ a1, x ∈ H}
H2 := span{V (s2)(x) | s2 ∈ a2, x ∈ H}
H3 := span{V (s3)(x) | s3 ∈ a3, x ∈ H}.

Then H = H1⊕H2⊕H3, and since each Hi, for 1 ≤ i ≤ 3, is invariant under V , we may
define the restricted representations V1 : a1 → L(H1), V2 : a2 → L(H2), and V3 : a3 → L(H3),
such that if s = s1 + s2 + s3 ∈ a, where si ∈ ai for 1 ≤ i ≤ 3, and if h = h1 + h2 + h3 ∈ H,
where hi ∈ Hi, for 1 ≤ i ≤ 3, then

V (s)(h) = V (s1 + s2 + s3)(h1 + h2 + h3)

= V (s1 + s2 + s3)(h1) + V (s1 + s2 + s3)(h2) + V (s1 + s2 + s3)(h3)

= V (s1)(h1) + V (s2)(h2) + V (s3)(h3) = V1(s1)(h1) + V2(s2)(h2) + V3(s3)(h3).

The above decomposition is a schematic example of part 1 of Theorem 2.36.

To illustrate part 2 of Theorem 2.36, we now focus on V1 : a1 → L(H1). We also assume
V1 is a topologically cyclic representation with cyclic vector x0 ∈ H1, i.e.

{V1(s1)(x0) | s1 ∈ a1} = H1.

Since a1 = l1 ⊕ l3 ⊕ l4, we will let l := l1 be a minimal left ideal, such that E := V1(l1)(x0)
is a nonzero subspace of H1 invariant under V1. This means H1 = E ⊕ E⊥ and V1 is the
Hilbert sum of the two restricted representations V1,1 : a1 → L(E) and V1,2 : a1 → L(E⊥). In
other words, given h1 ∈ H1, if h1 = h1,1 + h1,2 with h1,1 ∈ E and h1,2 ∈ E⊥, then

V1(s1)(h1) = V1(s1)(h1,1 + h1,2) = V1(s1)(h1,1) + V1(s1)(h1,2) = V1,1(s1)(h1) + V1,2(s1)(h1,2).

Furthermore, V1,1 is an irreducible representation which is equivalent to Ul1 : a1 → L(l1). The
equivalence is provided by the isomorphism ϕ : l1 → E, where ϕ(s1,1) = V1(s1,1)(x0) with
s1,1 ∈ l1 ⊆ a1.



2.8. POSITIVE HILBERT FORMS AND REPRESENTATIONS 87

Theorem 2.36 will be used to prove another part of the Peter–Weyl theorem. In fact, we
will only use part (2) of Theorem 2.36 when ak is finite-dimensional, and we gave a proof in
this case.

2.8 Positive Hilbert Forms And Representations

Our next goal is to state the Plancherel–Godement theorem, which will be used later in
discussing harmonic analysis on the space induced by a Gelfand pair. A related theorem is
the Bochner–Godement theorem. These theorems apply to a commutative Hilbert algebra
(not necessarily complete) arising from the quotient of a commutative Hilbert algebra by a
left ideal induced by a bitrace satisfying two additional conditions. Therefore, we go back
to positive Hilbert forms (on an involutive algebra which is not necessarily commutative)
to describe the construction of a certain representation. Commutativity is only required for
the Plancherel–Godement theorem and the Bochner–Godement theorem. The first step is
the following proposition.

The idea is that if g is a positive Hilbert form on an involutive (not necessarily commu-
tative) algebra A, it almost defines an inner product, but in general it fails to be positive
definite because there may be nonzero elements s ∈ A, such that g(s, s) = 0. However, if we
take the quotient of A by the set n = {s ∈ A | g(s, s) = 0}, which is a left ideal because g
is a positive Hilbert form, then we can define an inner product on the quotient vector space
A/n. If g is a bitrace, then A/n is an involutive algebra.

Proposition 2.37. Let g be a positive Hilbert form on an involutive algebra A. The set

n = {s ∈ A | g(s, s) = 0}

is a left ideal in A, and

n = {s ∈ A | g(s, t) = 0 for all t ∈ A}.

If π : A → A/n is the quotient map, then there exists a hermitian inner product 〈−,−〉 on
A/n, such that

〈π(s), π(t)〉 = g(s, t), for all s, t ∈ A.

Furthermore, if g is a bitrace, then n is a self-adjoint two-sided ideal, so A/n is an algebra.
The involution s 7→ s∗ on A induces an involution on A/n given by (π(s))∗ = π(s∗), and the
hermitian inner product 〈−,−〉 on A/n is a bitrace on A/n.

Proof. By the Cauchy–Schwarz inequality

|g(s, t)|2 ≤ g(s, s)g(t, t),

we see that
n = {s ∈ A | g(s, t) = 0 for all t ∈ A}. (∗1)
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Since g is a positive Hilbert form, we have

g(xy, z) = g(y, x∗z), for all x, y ∈ A,

so if s ∈ n, that is, g(s, s) = 0, then by (∗1),

g(ts, ts) = g(s, t∗st) = 0,

so n is a left ideal. Since g is hermitian, g(t, s) = g(s, t), and we also have

n = {s ∈ A | g(t, s) = 0, for all t ∈ A}.

Consequently, if s− s′ ∈ n and if t− t′ ∈ n (that is, π(s) = π(s′) and π(t) = π(t′)), since

g(s, t− t′) + g(s− s′, t′) = g(s, t)− g(s, t′) + g(s, t′)− g(s′, t′) = g(s, t)− g(s′, t′)

and since s, t′ ∈ A, t − t′, s − s′ ∈ n, we have g(s, t − t′) = g(s − s′, t′) = 0, and thus
g(s, t)− g(s′, t′) = 0, that is,

g(s, t) = g(s′, t′).

We can now define the function 〈−,−〉 on A/n by

〈π(s), π(t)〉 = g(s, t), for all s, t ∈ A,

and it is well-defined since π(s) = π(s′) and π(t) = π(t′) imply that g(s, t) = g(s′, t′). It is
immediately verified that 〈−,−〉 is a hermitian inner product on A/n.

If g is a bitrace, then

g(y∗, x∗) = g(x, y), for all x, y ∈ A,

so
g(s∗, s∗) = g(s, s), for all s ∈ A,

which shows that n∗ = n. If s ∈ n, then s∗ ∈ n, and since (st)∗ = t∗s∗ and n is a left ideal,

g(st, st) = g((st)∗, (st)∗) = g(t∗s∗, t∗s∗) = 0,

which proves that n is also a right ideal. It follows that A/n is an algebra.

Since n = n∗, the map on A/n given by

π(s) = s+ n 7→ (π(s))∗ = s∗ + n∗ = s∗ + n = π(s∗)

is an involution, and we have (π(s))∗ = π(s∗).

Finally, since by definition
〈π(s), π(t)〉 = g(s, t),

we get
〈(π(t))∗, (π(s))∗〉 = 〈π(t∗), π(s∗)〉 = g(t∗, s∗) = g(s, t) = 〈π(s), π(t)〉,

which shows that 〈−,−〉 is a bitrace on A/n.
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We are now going to show that if we add one more condition to a positive Hilbert form that
insures that certain linear maps on A/n are continuous, then we can define a representation
of A into a Hilbert space, which is the completion of A/n.

However, let us first observe that if g arises from a positive linear form fx0 induced by a
topologically cyclic representation U : A→ L(H) with cyclic vector x0 ∈ H, where

fx0(s) = 〈U(s)(x0), x0〉, s ∈ A,

then the hermitian space H0 = {U(s)(x0) | s ∈ A}, which is dense in H, is determined by
gx0 , and in fact, the representation U is determined by gx0 .

Indeed, since g(s, t) = gx0(s, t) = fx0(t
∗s), we have

gx0(s, t) = 〈U(s)(x0), U(t)(x0)〉, (∗2)

and we see that
gx0(s, s) = ‖U(s)(x0)‖2 .

Hence, n is the kernel of the linear map h : A→ H0 given by

h(s) = U(s)(x0).

Equation (∗2) shows that the quotient map ĥ : A/n→ H0 is a bijective isometry. This shows
that H0, and therefore the Hilbert space H (since H0 is dense in H), is determined by gx0
up to isomorphism.

Since h = ĥ ◦ π, for every s ∈ A, the map U(s) is completely determined by ĥ on H0,
because

U(s)(U(t)(x0)) = U(st)(x0) = h(st) = ĥ(π(st)).

Since H0 is dense in H, the continuous map U(s) extends uniquely to H. Therefore, the
representation U is determined by gx0 .

We also have the following uniqueness result up to equivalence.

Proposition 2.38. If U1 : A→ L(H1) and U2 : A→ L(H2) are two topologically cyclic rep-
resentations with respective cyclic vectors x0 and x′0, and if fx0 = fx′0, that is, 〈U1(s)(x0), x0〉
= 〈U2(s)(x′0), x′0〉 for all s ∈ A, then the representations U1 and U2 are equivalent.

Proof. We follow Dieudonné [14] (Chapter XV, Section 6, Theorem 15.6.7). For all s, t ∈ A
we have

〈U1(s)(x0), U1(t)(x0)〉 = 〈U1(t∗s)(x0), x0〉
= 〈U2(t∗s)(x′0), x′0〉
= 〈U2(s)(x′0), U2(t)(x′0)〉;

that is,
〈U1(s)(x0), U1(t)(x0)〉 = 〈U2(s)(x′0), U2(t)(x′0)〉, for all s, t ∈ A. (∗3)
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Since the vectors U1(t)(x0) (resp. U2(t)(x′0)) form a dense subset H0
1 (resp. H0

2 ) of H1 (resp.
H2) and since the inner product is continuous in each argument, we deduce that U1(s)(x0)
is orthogonal to H1 iff U2(s)(x′0) is orthogonal to H2, so U1(s)(x0) = 0 iff U2(s)(x′0) = 0 for
all s ∈ A. As a consequence, for every z ∈ H0

1 and for all s, t ∈ A, such that U1(s)(x0) =
U1(t)(x0) = z, since U1(s − t)(x0) = 0 iff U2(s − t)(x′0) = 0, we have U2(s)(x′0) = U2(t)(x′0),
which means that the vector U2(s)(x′0) has the same value z′ ∈ H0

2 for all s ∈ A, such that
U1(s)(x0) = z, so we can define the map T : H0

1 → H0
2 by T (z) = z′, or equivalently,

T (U1(s)(x0)) = U2(s)(x′0), s ∈ A.

It is immediately verified that T is a surjective linear map, and by (∗3), it is an isometry of
the hermitian space H0

1 onto the hermitian space H0
2 . But then this isomorphism extends

uniquely to an isomorphism, also denoted T , between the Hilbert spaces H1 and H2. It
remains to show that T induces an equivalence of the representations U1 and U2. Since H0

1

is dense in H1 and H0
2 is dense in H2, it suffices to prove that

T (U1(s)(z)) = U2(s)(T (z))

for all z of the form z = U1(t)(x0) (t ∈ A). Since

U1(s)(U1(t)(x0)) = U1(st)(x0),

by definition of T , we have

T (U1(s)(z)) = T (U1(s)(U1(t)(x0)))

= T (U1(st)(x0))

= U2(st)(x′0)

= U2(s)(U2(t)(x′0)) = U2(s)(T (z)),

as claimed.

We now go back to our positive Hilbert form g, and we assume that it satisfies the analog
of condition (U) of Definition 2.14: for every s ∈ A, there is some Ms ≥ 0 such that

g(st, st) ≤Msg(t, t), for all t ∈ A, (U)

If g arises from a representation U : A→ L(H) as

g(s, t) = 〈U(s)(x0), U(t)(x0)〉, s, t ∈ A,

then it is easy to see that g satisfies property (U).

If the positive Hilbert form g in Proposition 2.37 satisfies condition (U), then we check
immediately that the inner product 〈−,−〉 on A/n given by

〈π(s), π(t)〉 = g(s, t)

also satisfies property (U).

The following proposition shows how to construct a representation of A from g.
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Proposition 2.39. Let g be a positive Hilbert form on an involutive algebra A satisfying
condition (U), let ng be the left ideal given by

ng = {s ∈ A | g(s, s) = 0},

and suppose that the hermitian space A/ng constructed in Proposition 2.37 is separable. If
so, let Hg be the Hilbert space which is the completion of A/ng, so that A/ng can be identified
with a dense subspace H0 of the separable Hilbert space Hg. If πg : A → A/ng denotes the
quotient map, for every s ∈ A, the linear map Ug(s) : A/ng → A/ng given by

Ug(s)(πg(t)) = πg(st)

extends to a continuous linear map Ug(s) : Hg → Hg, and the map s 7→ Ug(s) is a represen-
tation of A in Hg. If g is a bitrace, then A/ng is an involutive algebra, and the inner product
〈−,−〉g on A/ng given by

〈πg(s), πg(t)〉g = g(s, t)

is a bitrace that satisfies property (U).

Proof. If πg(t) = πg(t
′), then πg(st) = πg(st

′) because ng is a left ideal. Hence for any fixed
s ∈ A, the endomorphism of H0 given by πg(t) 7→ πg(st) is well-defined. The definition of
the inner product 〈−,−〉g on A/ng and condition (U) ensure that this map is continuous.
Since H0 is dense in Hg and the map πg(t) 7→ Ug(s)(πg(t)) = πg(st) is continuous, it extends
to a continuous map Ug(s) : Hg → Hg.

Since πg((ss
′)t) = πg(s(s

′t)), we have Ug(ss
′) = Ug(s) ◦ Ug(s′). Since g is a positive

Hilbert form, we have
g(xy, z) = g(y, x∗z) for all x, y, z ∈ A

and since g is hermitian, we have by Proposition 2.37 that

〈Ug(s∗)(πg(t)), πg(t′)〉g = 〈πg(s∗t), πg(t′)〉 = g(s∗t, t′)

= g(t, st′)

= g(st′, t) = 〈πg(st′), πg(t)〉
= 〈Ug(s)(πg(t′)), πg(t)〉g
= 〈πg(t), Ug(s)(πg(t′))〉g,

which shows that Ug(s
∗) = (Ug(s))

∗. If A has a unit element e then Ug(e) = id. Therefore
Ug is a representation of A in Hg.

When g is bitrace, the ideal ng is a two-sided ideal, in which case A/ng is an algebra and
πg(s)πg(t) = πg(st).

In general, the representation Ug : A→ L(Hg) given by Proposition 2.39 may be degen-
erate. It is nondegenerate if and only if the following condition holds:

the subspace spanned by the set {πg(st) | s, t ∈ A} is dense in A/ng. (N)
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Observe that the above condition is the generalization of condition (N) of Definition 2.14
to A/ng. In Definition 2.14, the bitrace g is an inner product so ng = (0). If A has a unit
element, condition (N) holds trivially.

If the positive Hilbert form g in Proposition 2.37 satisfies condition (N), then we check
immediately that the inner product 〈−,−〉 on A/n given by

〈π(s), π(t)〉 = g(s, t)

also satisfies property (N).

It can be shown that if A is a unital Banach algebra with involution, then of course
condition (N) is automatically satisfied, but condition (U) also holds. This follows from the
following result proven in Dieudonné [14] (Chapter XV, Section 7, Theorem 15.6.11).

Proposition 2.40. Let A be a unital Banach algebra with involution and unit element e 6= 0.
For any positive linear form f , the following properties hold.

(1) f is continuous and ‖f‖ = f(e).

(2) |f(y∗xy)| ≤ ‖x‖ f(y∗y), for all x, y ∈ A.

Recall that since A is unital, every positive Hilbert form g arises from the positive linear
form f given by f(s) = g(s, e). Then for every s ∈ A,

g(st, st) = f((st)∗st) = f(t∗s∗st) ≤ ‖s∗s‖ f(t∗t) = ‖s∗s‖ g(t, t),

which is condition (U) with Ms = ‖s∗s‖.

The proof of Proposition 2.40 makes use of the following result of independent interest
also proven in Dieudonné [14] (Chapter XV, Section 7, Theorem 15.6.11.1).

Proposition 2.41. Let A be a unital Banach algebra with involution and unit element e 6= 0.
If x ∈ A is self-adjoint and ‖x‖ < 1, then there exists a self-adjoint element y ∈ A such that
y2 = e+ x.

Here is a fairly general situation where a positive Hilbert form satisfies conditions (U)
and (N).

Proposition 2.42. Let A be a unital separable Banach algebra with involution and unit
element e 6= 0. For any positive linear form f on A, let g be the corresponding positive
Hilbert form given by g(x, y) = f(y∗x) for all x, y ∈ A. Let Ag be the unital Banach algebra
which is the closure of Ug(A) in L(Hg). Then g satisfies property (U), and the hermitian
space A/ng and the unital Banach algebra Ag ⊆ L(Hg) are separable.
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Proof. By Proposition 2.40, the positive Hilbert form g induced by the positive linear form
f satisfies property (U). By Proposition 2.39, we have

‖πg(x)‖2 = 〈πg(x), πg(x)〉g = g(x, x) = f(x∗x).

By Proposition 2.40, since f is continuous we get

‖πg(x)‖2 = f(x∗x) ≤ ‖f‖ ‖x∗x‖ ≤ ‖f‖ ‖x‖2 ,

which shows that πg is continuous. Since πg is also surjective, it is easy to show that the
image under πg of a countable dense set in A is dense in A/ng, so A/ng is separable. Since
by Proposition 2.1, the map Ug is continuous, it sends a countable dense set into a countable
dense set in Ag, so Ag is also separable.

2.9 The Plancherel–Godement Theorem ~

After these preliminaries, we assume that A is a commutative (but not necessarily com-
plete) involutive algebra equipped with a bitrace g satisfying conditions (U) and (N). We
also assume that the hermitian space A/ng is separable, as in Proposition 2.39. Then by
Proposition 2.39, the bitrace g induces a representation Ug : A→ L(Hg), where the separable
Hilbert space Hg is the completion of A/ng, so that A/ng is dense in the Hilbert space Hg.
Since property (N) holds, the representation Ug is nondegenerate. The image of A under Ug
is a commutative subalgebra of the C∗-algebra L(Hg). Let Ag be the closure of Ug(A) in
L(Hg), so that Ag is a commutative C∗-algebra (and thus, consists of normal operators). In
general, Ag is not separable, but we assume it is separable.

A particular example of a trace f on A, which gives rise to a bitrace g (such that
g(x, y) = f(y∗x)) is provided by the hermitian characters of A. These are the characters
χ ∈ X(A), such that

χ(x∗) = χ(x), for all x ∈ A.
We have χ(x∗x) = χ(x∗)χ(x) = |χ(x)|2, and

g(x, y) = χ(y∗x) = χ(y∗)χ(x) = χ(y)χ(x).

condition (U) holds because

g(st, st) = χ(st)χ(st) = χ(s)χ(t)χ(s)χ(t) = |χ(s)|2|χ(t)|2 = |χ(s)|2g(t, t).

The ideal ng is the kernel of χ, so by Vol I, Proposition 9.12(1) it is a hyperplane in A, thus
A/ng is isomorphic to C, and condition (N) follows immediately from the fact that χ(x) 6= 0
implies that χ(x2) = (χ(x))2 6= 0. It can be shown that the corresponding representation is
irreducible.

Let H(A) denote the set of hermitian characters in X(A). The set H(A) is a subset of
the product space CA and is closed under the product topology. We give H(A) the topology
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induced by the product topology (the topology of pointwise convergence). When A is a
unital commutative Banach algebra with involution, the space H(A) is a compact subspace
of X(A), since X(A) is compact, by Vol I, Theorem 9.19. If A is also separable, then it can
be shown that X(A) is metrizable; see Dieudonné [14] (Chapter XV, Section 3, Theorem
15.3.2). In general, H(A) 6= X(A), but if A is a unital C∗-algebra, then H(A) = X(A), by
Vol I, Proposition 9.34.

The following theorem shows that the bitraces discussed in this section and the previous
one all arise from a positive measure by a process of integration involving the hermitian
characters.

Theorem 2.43. (Plancherel–Godement theorem) Let A be a commutative involutive algebra,
and let g be a bitrace on A satisfying conditions (U) and (N), such that the hermitian space
A/ng and the C∗-algebra Ag ⊆ L(Hg) are separable.

(I) We can define canonically: (1) a subspace Sg of H(A) whose closure in CA is either
Sg or Sg ∪ {0} and is metrizable and compact (so that Sg is locally compact, metrizable, and
separable); (2) a (positive) Radon measure mg on Sg, with the following properties:

(i) For each x ∈ A, define the function x̂ : Sg → C by x̂(χ) = χ(x). Then x̂ ∈ L2
mg(Sg),

and we have

g(x, y) =

∫
Sg

χ(xy∗) dmg(χ) =

∫
Sg

x̂(χ)ŷ(χ) dmg(χ), for all x, y ∈ A. (†)

(ii) As x runs through A, the set of functions x̂ is contained in C0(Sg;C) and is dense in
this Banach space.

(iii) The map x 7→ x̂ factors as T0 ◦ πg as illustrated below,

A
πg //

̂
''

A/ng

T0
��

// Hg

T
��

L2
mg(Sg) ∩ C0(Sg,C) // L2

mg(Sg),

where the map T0 : A/ng → L2
mg(Sg) ∩ C0(Sg;C) extends to an isomorphism T : Hg →

L2
mg(Sg), such that for all x ∈ A, we have Ug(x) = T−1M(x̂)T , where M(x̂) is multi-

plication by the class of x̂ in L2
mg(Sg), where Ug is the representation Ug : A→ L(Hg).

(iv) We have ∥∥λidHg + Ug(x)
∥∥ =

∥∥λidSg + x̂
∥∥

for all λ ∈ C and all x ∈ A.
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(II) Conversely, let S be a subspace of H(A) such that S∪{0} is compact and metrizable,
and let m be a positive measure on S, such that for all x ∈ A, the function x̂ : S → C given
by x̂(χ) = χ(x) belongs to

L2
m(S) ∩ C0(S;C).

Then the map g′ given by

g′(x, y) =

∫
S

x̂(χ)ŷ(χ) dm(χ), for all x, y ∈ A

is a bitrace on A satisfying conditions (U) and (N), such that A/ng′ and Ag′ are separable,
and we have Sg′ = S and mg′ = m.

Note that for any x ∈ A, the map x̂ is the restriction of the Gelfand transform to either
Sg or S.

Theorem 2.43 is proven in Dieudonné [14] (Chapter XV, Section 9, Theorem 15.9.2). The
proof is long and very technical. Among other results, it uses the Gelfand–Naimark theorem
(Vol I, Theorem 9.37). We simply describe the construction of Sg since it will be used in
Theorem 9.21.

Let A′g = Ag ⊕ CidHg . This is a closed subalgebra of L(Hg), so it is a commutative
C∗ algebra with a unit element. By Vol I, Proposition 9.34, every character ξ′ ∈ X(A′g)
is hermitian, and since Ug(a

∗) = (Ug(a))∗, the map ξ′ ◦ Ug is either the zero map or a
hermitian character of A. This means that we have a map ω : X(A′g) → H(A) ∪ {0} given
by ω(ξ′) = ξ′ ◦ Ug.

The map ω is injective because ξ′(idHg) = 1 for all ξ′ ∈ X(A′g), and since ξ′ is continuous
on A′g and Ug(A) is dense in Ag, the restriction of ξ′ to Ug(A) has a unique extension to Ag,
so the character ξ′ is uniquely determined. The map ω is also continuous with respect to
the weak topologies on X(A′g) and CA. Since X(A′g) is metrizable and compact, the same is
true of its image S ′g, with

S ′g = ω(X(A′g)) ⊆ H(A) ∪ {0},

and ω is a homeomorphism of X(A′g) onto S ′g. Then the space Sg is defined as follows.

(1) If idHg ∈ Ag, then A′g = Ag and S ′g does not contain the element 0 ∈ CA. We set

Sg = S ′g.

(2) If idHg /∈ Ag, then Ag is a closed hyperplane and an ideal in A′g, hence it is a maximal
ideal. In fact, there is a nonzero character ξ′0 of A′g, whose kernel is Ag, so ω(ξ′0) = 0 ∈
CA. We set

Sg = S ′g − {0}.
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In both cases, Sg is separable, metrizable, locally compact, and the complements in Sg ∪{0}
of the compact subsets of Sg are the open sets in Sg ∪ {0} that contain 0. The Gelfand–
Naimark theorem (Vol I, Theorem 9.37) also shows that the Gelfand transform is an isometry
between A′g and C0(X(A′g);C). Then (ii) follows quite easily.

The construction of the measure mg is far more involved.

We should mention that Dieudonné uses a theory of integration in which positive Radon
functionals are used instead of Borel measures. However, the version in Dieudonné also
states that the support of the Radon functional is the whole of Sg, and by Vol I, Proposition
A.49, since Sg is locally compact, metrizable and separable, it is σ-compact, so there is no
problem in obtaining the theorem for Radon measures measures by using Radon–Riesz II
(Vol I, Theorem 7.15).

If the bitrace g arises from a positive linear form f , which is a trace since A is commu-
tative, the formula (†) leads us to ask whether we also have

f(x) =

∫
Sg

x̂(χ) dmg(χ).

The Bochner–Godement theorem provides a partial answer to this question.

Theorem 2.44. (Bochner–Godement theorem) Let A be a commutative involutive algebra
A.

(1) Let f be a positive linear form such that the bitrace g given by g(x, y) = f(y∗x) satis-
fies the hypotheses of the Plancherel–Godement theorem (Theorem 2.43). Then if the
formula

f(x) =

∫
Sg

x̂(χ) dmg(χ) (BG)

holds and if the (positive) Radon measure mg is bounded, then f satisfies the following
condition:

There is some M > 0, such that |f(x)|2 ≤Mf(xx∗) for all x ∈ A. (B)

(2) Conversely, let f be positive linear form on A which satisfies condition (B), and suppose
that the induced bitrace g given by g(x, y) = f(y∗x) satisfies condition (U), and is such
that the hermitian space A/ng and the C∗-algebra Ag are separable. Then g also satisfies
condition (N), the (positive) Radon measure mg is bounded, and formula (BG) holds.

Theorem 2.44 is proven in Dieudonné [14] (Chapter XV, Section 9, Theorem 15.9.4).
The proof is shorter than the proof of the Plancherel–Godement theorem and also uses the
Gelfand–Naimark theorem.

If A is unital, then by Proposition 2.12(3), condition (B) is satisfied with M = f(e).
Also, by Proposition 2.42, if A is a unital separable Banach algebra with involution, then the
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hermitian space A/ng and the C∗-algebra Ag are separable. Therefore, if A is commutative
unital separable Banach algebra with involution, then the Bochner–Godement theorem part
2 applies to any positive linear form on A.

Here is another situation in which the Bochner–Godement theorem part 2 applies. Let
U : A → L(H) be a representation of a commutative involutive algebra A into a separable
Hilbert space H. For any x0 ∈ H, let fx0 be the positive linear form given by

fx0(s) = 〈U(s)(x0), x0〉.

We claim that fx0 satisfies condition (B). Indeed, by Cauchy–Schwarz, we have

|fx0(s)|2 ≤ ‖U(s)(x0)‖2 ‖x0‖2 = ‖x0‖2 fx0(s
∗s).

We know that the bitrace g induced by fx0 (given by g(x, y) = fx0(y
∗x)) satisfies condition

(U), and because H is separable, the hermitian space A/ng and the C∗-algebra Ag are
separable. Therefore the Bochner–Godement theorem applies to the positive linear form fx0,
and Equation (BG) shows that fx0 is determined by the hermitian characters of X(A).

As shown just after Proposition 2.37, if the topologically cyclic representation U : A →
L(H) has x0 ∈ H as cyclic vector, then it is completely determined by fx0 . Also, by
Proposition 2.10, if A is unital, then every (nondegenerate) representation of A in a separable
Hilbert space is the countable Hilbert sum of topologically cyclic representations. Therefore,
if A is commutative unital algebra, then every representation U : A → L(H) of A in a
separable Hilbert space H is completely determined by the hermitian characters of X(A).

As a nice application of both the Plancherel–Godement theorem and the Bochner–
Godement theorem we obtain a characterization of the nondegenerate representation of the
algebra C(K) of continuous functions on a compact metrizable space K.

2.10 Representations of Algebras of Continuous

Functions

Let K be a compact metrizable space. Then CC(K) is a commutative unital C∗-algebra under
pointwise multiplication, see Vol I, Example 9.1(2) and Example 9.6(2). By Vol I, Proposition
9.22, the space K is homeomorphic to the space X(CC(K)) of characters of CC(K) (which
are Dirac measures on K), and the Gelfand transform from CC(K) to CC(X(CC(K)) can be
viewed as the identity. Furthermore, by Vol I, Proposition 9.34, the characters in X(CC(K))
are hermitian (so H(CC(K)) = X(CC(K))). Write A = CC(K), and let U : A → L(H) be a
topologically cyclic representation of the commutative C∗-algebra A into a separable Hilbert
space H. As discussed at the end of Section 2.9, for any cyclic vector x0 ∈ H, we have the
positive linear form fx0 given by

fx0(u) = 〈U(u)(x0), x0〉, u ∈ A,
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and by Bochner–Godement the positive linear form fx0 is completely determined by the
space X(A) of hermitian characters, the representation U is completely determined by fx0 ,
and thus by X(A) ≈ K. If g is the bitrace associated with fx0 , it can be shown (exercise
left to the reader) that the subspace Sg ⊆ H(A) introduced in the Plancherel–Godement
theorem (Theorem 2.43) is actually equal to H(A) = X(A) ≈ K. Therefore we can apply
Theorem 2.43(iii) to obtain the following remarkable result.

Theorem 2.45. Let K be a compact metrizable space. Every topologically cyclic rep-
resentation U : CC(K) → L(H) of the commutative unital C∗-algebra CC(K) in a sepa-
rable Hilbert space H is equivalent to a representation Mµ : CC(K) → L(L2

µ(K;C)) ob-
tained as follows: for some positive Radon measure µ on K, for every u ∈ CC(K), let
Mµ(u) : L2

µ(K;C) → L2
µ(K;C) be the continuous linear map induced by multiplication by

u; that is, for every f ∈ L2
µ(K;C), define Mµ(u)(f) as the equivalence class uf of uf in

L2
µ(K;C). More precisely, there is some unitary map W : H → L2

µ(K;C), such that

WU(u)W−1 = Mµ(u), for all u ∈ CC(K).

It can be shown that
‖Mµ(u)‖ = ‖u‖∞ .

If the representation U : CC(K) → L(H) is not topologically cyclic (it is nondegenerate
since CC(K) is unital), then by Proposition 2.10, the separable Hilbert space H (H 6= (0))
is the Hilbert sum of a sequence (Hn)n≥1 of closed subspaces Hn 6= (0) of H invariant under
U , and such that the restriction Un of U to each Hn is topologically cyclic. But then we
can apply Theorem 2.45 to each topologically cyclic representation Un, so there is a positive
measure µn associated with Hn, such that Hn is isomorphic to L2

µn(K;C) and Un is equivalent
to Mµn .

A particularly interesting case for the space K arises if we consider a commutative unital
C∗-subalgebra A of L(H). In this case, by the Gelfand–Naimark theorem (Vol I, Theorem
9.37), the Gelfand transform G : A → CC(X(A)) is an isometric isomorphism between A
and CC(X(A)). Furthermore, K = X(A) is compact (see Vol I, Theorem 9.19). But the
inverse Gelfand transform G−1 : CC(X(A))→ A is a representation of CC(X(A)) as continuous
operators in L(H), so the results obtained above apply to the representation U = G−1. We
obtain Theorem 2.47 which can be viewed as a generalization of the spectral theorem for
normal linear maps. Note that since A is a unital C∗-subalgebra of L(H), the continuous
linear maps in A are indeed normal. First, we need a technical result from the theory of
Hilbert spaces.

Proposition 2.46. Let E and F be two Hilbert spaces, where E is the Hilbert sum of a
countable family (En)n∈I of closed subspaces of E and F is the Hilbert sum of a countable
family (Fn)n∈I of closed subspaces of F (with the same index family I). For each n, let
Tn : En → Fn be a continuous linear map, and assume that there is a uniform bound b > 0,
such that ‖Tn‖ ≤ b for all n. Then there is a unique continuous linear map T : E → F ,
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whose restriction to En is equal to Tn. Furthermore, the restriction of T ∗ to En is equal to
T ∗n . So if the Tn are normal, so is T , and if the Tn are unitary, so is T .

A proof of Proposition 2.46 can be found in Dieudonné [14] (Chapter XV, Section 10,
Theorem 15.10.8.1).

Theorem 2.47. (Spectral Theorem, I) Let A be a commutative unital C∗-subalgebra of
L(H), with H a separable Hilbert space. There is a measure space (Ω,M, µ), a unitary map
W : H → L2

µ(Ω,M;C), and an isometric algebra homomorphism ϕ : A → L∞µ (Ω,M;C),
such that

WTW−1 = Mµ(ϕ(T )), for all T ∈ A .

Recall that Mµ(ϕ(T ))(f) is the class of ϕ(T )f in L2
µ(Ω,M;C) for every f ∈ L2

µ(Ω,M;C).
Furthermore, Ω can be taken as a finite or countably infinite disjoint union of copies of X(A),
in such a way that µ is a positive Radon measure µn on each copy and ϕ(T ) = GT on each
copy (where GT is the Gelfand transform of T ).

Proof. First, consider the case where G−1 is topologically cyclic. This means that there is
some x0 ∈ H, such that {G−1(u)(x0) | u ∈ CC(X(A))} is dense in H, and since G is a bijection
between A and CC(X(A)), this is equivalent to saying that {Tx0 | T ∈ A} is dense in H.
In this case Theorem 2.45 applies, so there is a positive Radon measure µ on X(A) and a
unitary map W : H → L2

µ(X(A);C), such that

WG−1(u)W−1 = Mµ(u), for all u ∈ CC(X(A)). (†1)

Since G is a bijection between A and CC(X(A)), every u ∈ CC(X(A)) is of the form u = GT
for a unique T ∈ A, so (†1) is equivalent to

WTW−1 = Mµ(GT ), for all T ∈ A. (†2)

If G−1 is not topologically cyclic (it is nondegenerate since CC(X(A)) is unital), then by
Proposition 2.10, the separable Hilbert space H (H 6= (0)) is the Hilbert sum of a finite or
countably infinite sequence (Hn)n∈I of closed subspaces Hn 6= (0) of H invariant under G−1,
and such that the restriction Un of G−1 to each Hn is topologically cyclic. The representation
Un is given by Un(u)(x) = G−1(u)(x) for every u ∈ CC(X(A)) and every x ∈ Hn, but since
G−1(u) = T for a unique T ∈ A, we see that Un(u)(x) = T (x) ∈ Hn for all x ∈ Hn so the
restriction of T to Hn is a continuous linear map Tn : Hn → Hn. But then we can apply
our previous result to the topologically cyclic representation Un, so there is a positive Radon
measure µn associated with Hn and a unitary map Wn : Hn → L2

µn(X(A);C), such that

WnTnW
−1
n = Mµn(GT ), for all T ∈ A, (†3)

where Tn : Hn → Hn is the restriction of T to Hn. Let Ω =
∐

n∈I X(A) be the disjoint union
of copies of X(A), one for each index n ∈ I, and let us denote the nth copy as X(A)n. We
can combine the measures µn and the unitary maps Wn to construct a measure µ and a
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unitary map W as follows. Let M be the σ-algebra consisting of all sets E ⊆ Ω, such that
E ∩ X(A)n is a Borel set in X(A)n, and define the measure µ on (Ω,M) by

µ(E) =
∑
n∈I

µn(E ∩ X(A)n).

It is easily verified that µ is a measure on Ω, and obviously it is finite on each copy X(A)n.
It is easy to see that the Hilbert sum of the L2

µn(X(A)n;C) is isomorphic to the Hilbert space
L2
µ(Ω,M;C). Using Proposition 2.46, since ‖Wn‖ = 1 because Wn is a unitary map, there

is a unique unitary map W

W =
⊕
n∈I

Wn : H → L2
µ(Ω,M;C),

whose restriction to X(A)n is equal to Wn. The maps GT : X(A) → C yield a joint map∐
n∈I GT : Ω→ C, defined such that the restriction of

∐
i∈I GT to X(A)i is equal to GT , so we

obtain a map ϕ : A → L∞µ (Ω,M;C), given by ϕ(T ) =
∐

n∈I GT . By construction, for every
f ∈ L2

µ(Ω,M;C), we have Mµ(ϕ(T ))f = ϕ(T )f , where on each copy X(A)n, the function
ϕ(T )f is equal to the pointwise product of GT and f . It remains to verify that the map ϕ is
an isometric algebra homomorphism. This technical fact is proven in Folland [22] (Section
1.4, Lemma 1.46).

In the special case where the commutative unital C∗-algebra is generated by T, T ∗ and
I, where T is a continuous normal linear map on a separable Hilbert space H, we can be
more precise.

Let T be a normal continuous linear map on a Hilbert space H and let AT be the
subalgebra of L(H) generated by T, T ∗ and I. Since T and T ∗ commute, AT is a commutative
unital C∗-algebra. Volume I, Theorem 9.38 asserts that there is an isometric isomorphism
G : AT → CC(σ(T )), such that

G(T ) = idσ(T ).

As observed in the discussion following Vol I, Theorem 9.38, the inverseG−1 : CC(σ(T ))→ AT
of the isomorphism G : AT → CC(σ(T )) is a representation of CC(σ(T )) in H. Here we should
remind the reader that σ(T ) is the spectrum of T viewed as an element of the unital C∗-
algebra L(H). As we noted just before stating Vol I, Theorem 9.38, this spectrum is equal
to the spectrum of T viewed as an element of the unital C∗-algebra AT .

Remark: The representation G−1 : CC(σ(T ))→ AT is often denoted f 7→ f(T ); Dieudonné,
Folland, Lang and Rudin use this notation.

The proof of Theorem 2.47 can be adapted to yield the following result (see Taylor [66],
Appendix B, for a proof using a different method).

Theorem 2.48. (Spectral Theorem for Normal Bounded Operators, I) Let T be a normal
continuous linear map on a separable Hilbert space H.
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(1) If the representation G−1 : CC(σ(T ))→ AT is topologically cyclic, then there is a unitary
map W : H → L2

µ(σ(T );C), such that

WTW−1 = Mµ(idσ(T )).

(2) If G−1 is not topologically cyclic, then H is the Hilbert sum of a family (Hn)n∈I of closed
subspaces of H for some finite or countably infinite index set I, and if Tn : Hn → Hn

is the restriction of T to Hn, then for each n ∈ I there is a positive Radon measure µn
on σ(Tn) and a unitary map Wn : Hn → L2

µn(σ(Tn);C), such that

WnTnW
−1
n = Mµn(idσ(Tn)).

If we let Ω =
∐

n∈I σ(Tn) be the disjoint union of the σ(Tn), then we can define a
σ-algebra M on Ω, a measure µ on Ω whose restriction to each σ(Tn) is equal to µn,
and a unitary map W : H → L2

µ(Ω,M;C), such that

WTW−1 = Mµ(idΩ).

We simply indicate how to prove part (1) of Theorem 2.48, leaving the proof of part
(2) as an exercise. Since we are assuming that the representation G−1 : CC(σ(T )) → AT is
topologically cyclic, Theorem 2.45 applies. Therefore, there is a positive Radon measure µ
on σ(T ) and a unitary map W : H → L2

µ(σ(T );C), such that

WG−1(u)W−1 = Mµ(u), for all u ∈ CC(σ(T )).

Since G is a bijection between AT and CC(σ(T )), such that G(T ) = idσ(T ), for u = G(T ), we
obtain

WTW−1 = Mµ(idσ(T )).

The following fact is proven in Dieudonné [14] (Chapter XV, Section 11, Proposition
15.11.5).

Proposition 2.49. The spectrum σ(T ) of the normal continuous linear map T as above is
the closure in C of the union

⋃
n∈I σ(Tn).

The measures µn also determine which scalars λ ∈ σ(T ) are eigenvalues of T . Recall that
a scalar λ ∈ C is an eigenvalue of T iff Ker (λid− T ) is nontrivial, equivalently iff λid− T is
not injective. If λ is an eigenvalue of T , then E(T, λ) = Ker (λid−T ) is called the eigenspace
associated with λ, and the nonzero vectors in E(T, λ) are the eigenvectors of T associated
with λ. On the other hand, the spectrum of T consists of those λ ∈ C, such that λid− T is
not invertible,

If H is finite-dimensional, a linear map is not invertible iff it is not injective, so in this
case eigenvalues and spectral values coincide. But if H is infinite-dimensional, a linear map
may be injective and yet not invertible because it is not surjective. As a consequence, if
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λ ∈ σ(T ), the set of eigenvectors associated with λ may be empty. There are continuous
linear maps that have no eigenvalues. See Vol I, Example 9.2.

The following result proven in Dieudonné [14] (Chapter XV, Section 11, Proposition
15.11.6) gives a necessary and sufficient condition for a spectral value to be an eigenvalue. A
similar result is proven in Rudin [56] (Theorem 12.29) in the framework of projection-valued
measures, which will be discussed in Section 2.12.

In what follows, we use the notation of Theorem 2.48. First, it is easy to see that
λ ∈ σ(T ) is an eigenvalue of T if there is a nonempty subset J ⊆ I, such that λ ∈ σ(Tn) is
an eigenvalue of Tn for all n ∈ J .

Proposition 2.50. Let T be a normal continuous linear map on a separable Hilbert space
H. Using the notation of Theorem 2.48, a scalar λ ∈ σ(Tn) is an eigenvalue of Tn iff
µn({λ}) 6= 0. The space spanned by the eigenvectors of Tn associated with λ is a one-
dimensional space Dn,which is an orthogonal projection of Hn.

As a corollary of Proposition 2.50, if λ ∈ σ(T ) is an eigenvalue of T , then there is a finite
or countably infinite index set J , such that the eigenspace E(T, λ) is the Hilbert sum of the
one-dimensional spaces Dn (with n ∈ J). Each Dn is spanned by the eigenvectors of Tn
associated with λ. If λ and µ are two distinct eigenvalues of T , then E(T, λ) and E(T, µ)
are orthogonal.

We state a few more facts whose proof is left as an exercise. A normal continuous linear
map is hermitian iff σ(T ) ⊆ R, unitary iff σ(T ) ⊆ U(1).

Finally, a stronger result is obtained if T is a normal (continuous) linear map which is also
compact. Recall that this means that the closure of T (B) is compact if B is bounded. It can
be shown that the spectrum σ(T ) of a compact operator is finite or countably infinite, and
that the nonzero spectral values are eigenvalues of T . If H is infinite-dimensional, then 0 ∈
σ(T ); see Lang [48] (Chapter XVII, Section 3). The spaces E(T, λn), with λn ∈ σ(T )− {0}
are finite-dimensional, and together with KerT form a Hilbert sum in H. These subspaces
are all pairwise orthogonal; see Dieudonné [14] (Chapter XV, Section 11, no 15.11.14) and
Folland [22] (Section 1.4, Theorem 1.52).

2.11 Extending Representations from CC(K) to B(K)

The next crucial step is to realize that a representation U : CC(K) → L(H) as above de-
termines certain complex Radon measures µu,v on K, and that conversely these measures
determine U . Then it is possible to extend the representation U of CC(K) to the larger
commutative unital C∗-algebra B(K) of bounded Borel measurable functions on K. What
we gain in doing so is the fact that we can apply the extended representation U to the
characteristic functions χE of Borel sets E (on K) (the functions χE are not continuous),
and such operators U(χE) turn out to be orthogonal projections in L(H). These families of
projections have properties that make them projection-valued measures (also called spectral
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measures), and such measures can be used to define representations of B(K) that generalize
the notion of integral.

For any fixed u, v ∈ H, consider the functional Φu,v on CC(K) given by

Φu,v(f) = 〈U(f)(u), v〉, f ∈ CC(K).

Recall that from Proposition 2.1, we have ‖U(f)‖ ≤ ‖f‖∞, so by Cauchy–Schwarz, we have

|〈U(f)(u), v〉| ≤ ‖U(f)(u)‖ ‖v‖ ≤ ‖U(f)‖ ‖u‖ ‖v‖ ≤ ‖f‖∞ ‖u‖ ‖v‖ ,

so the functional Φu,v is bounded (continuous). By Radon–Riesz III, there is a unique
complex Radon measure µu,v on K, such that

〈U(f)(u), v〉 =

∫
K

f dµu,v, f ∈ CC(K). (∗1)

The measure µu,v is often called a spectral measure; see Lang [48] (Chapter XX, Section
1). From the definition, we have

‖µu,v‖ ≤ ‖u‖ ‖v‖ .

The following properties are easy to prove; see Folland [22] (Section 1.4, Proposition 1.34).

Proposition 2.51. The map from H × H to C given by (u, v) 7→ µu,v is sesquilinear.
Moreover, µv,u = µu,v, and µu,u is a positive measure.

The next step is to extend U to the commutative unital C∗-algebra B(K) of bounded
Borel measurable functions on K. This can be done in two ways.

(1) By using Theorem 2.45 for a topologically cyclic representation and the decomposition
of H as a Hilbert sum for an arbitrary representation, as explained above. This is the
approach followed by Dieudonné [14] (Chapter XV, Section 10).

(2) A faster way is to use the fact that every function f ∈ B(K) is limit of a sequence
of continuous functions fn converging to f pointwise almost everywhere with respect
to the measure |µu,v|, such that ‖fn‖ ≤ ‖f‖∞; see Lang [48] (Chapter XX, Section 1),
and then to use the dominated convergence theorem (Vol I, Theorem 5.34).

Using the second approach, we see that∣∣∣∣∫
K

f dµu,v

∣∣∣∣ ≤ ‖f‖∞ ‖u‖ ‖v‖ , (∗2)

so for any fixed f ∈ B(K) and any fixed u the map v 7→
∫
K
f dµu,v is a continuous semi-linear

form on H, and by the Riesz representation theorem, there is a unique vector Ũ(f)(u) ∈ H,
such that

〈Ũ(f)(u), v〉 =

∫
K

f dµu,v for all v ∈ H.
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However, (∗2) shows that the map u 7→ Ũ(f)(u) is continuous, so indeed Ũ(f) ∈ L(H).

Therefore, Ũ(f) ∈ L(H) is completely determined by the equation

〈Ũ(f)(u), v〉 =

∫
K

f dµu,v for all u, v ∈ H and for all f ∈ B(K). (∗3)

We also have ∥∥∥Ũ(f)
∥∥∥ ≤ ‖f‖∞ .

It remains to prove that Ũ is a representation of B(K). The proof of Theorem 1.36 in
Folland [22] applies immediately because all is needed is Proposition 2.51 and Equation (∗3).

Proposition 2.52. The map Ũ : B(K)→ L(H) is a representation. Furthermore, if (fn) is
a uniformly bounded sequence of functions in B(K) which converge pointwise to f ∈ B(K),
then

lim
n7→∞
〈Ũ(fn)(u), v〉 = 〈Ũ(f)(u), v〉 for all u, v ∈ H.

We say that Ũ(fn) converges to Ũ(f) in the weak operator topology.

For the sake of completeness, we define three notions of convergence on L(H), where H
is a Hilbert space.

Definition 2.21. Let H be a Hilbert space with inner product 〈−,−〉 and corresponding
norm ‖u‖ =

√
〈u, u〉 (u ∈ H). As usual, we have the operator norm on L(H) defined such

that for any f ∈ L(H),

‖f‖ = sup{‖f(u)‖ | ‖u‖ = 1, u ∈ H}.

We have three notions of convergence corresponding to the following topologies on L(H):

(1) The norm topology on L(H) is the topology associated with the operator norm. A
sequence (fn) of continuous linear maps fn ∈ L(H) converges to a continuous linear
map f ∈ L(H) if limn7→∞ ‖f − fn‖ = 0.

(2) The topology of pointwise convergence or strong operator topology , defined by the family
of semi-norms pu(f) = ‖f(u)‖, for all u ∈ H, f ∈ L(H). A sequence (fn) of maps
fn ∈ L(H) converges to a map f ∈ L(H) if

lim
n7→∞

‖f(u)− fn(u)‖ = 0 for all u ∈ H.

This is pointwise convergence.

(3) The weak operator topology , defined by the family of semi-norms pu,v(f) = |〈f(u), v〉|,
for all u, v ∈ H, f ∈ L(H). A sequence (fn) of maps fn ∈ L(H) converges to a map
f ∈ L(H) if

lim
n7→∞
〈f(u)− fn(u), v〉 = 0 for all u, v ∈ H.
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This is weak pointwise convergence.

From now on, to simplify notation we usually write U instead of Ũ . If we denote by µ
the family of complex Radon measures (µu,v)(u,v)∈H×H , the usual convention is to write

U(f) =

∫
f dµ.

Such integrals are often called weak integrals .

As we said just before Theorem 2.47, if A is a commutative unital C∗-subalgebra of L(H),
then the inverse Gelfand transform G−1 : CC(X(A)) → A is a representation of CC(X(A)) as
continuous operators in L(H), and K = X(A) is compact. Thus, the results obtained
above apply to the representation U = G−1. Since the Gelfand transform GT belongs to
CC(X(A)) ⊆ B(X(A)) for every T ∈ A, and since U(GT ) = G−1(GT ) = T , Equation (∗1) says
that

〈T (u), v〉 =

∫
X(A)

GT dµu,v for all u, v ∈ H and for all T ∈ A, (∗4)

which is also written as

T =

∫
GT dµ.

As a consequence, we obtain a preliminary version of another spectral theorem for a
commutative unital C∗-subalgebra A of L(H).

Theorem 2.53. Let A be a commutative unital C∗-subalgebra of L(H). The extension
U : B(X(A)) → L(H) of G−1 : CC(X(A)) → A is a representation. There is a family of
complex Radon measures (µu,v)(u,v)∈H×H on X(A) satisfying the properties of Proposition
2.51, such that the following properties hold:

〈T (u), v〉 =

∫
X(A)

GT dµu,v for all u, v ∈ H and for all T ∈ A,

and

〈U(f)(u), v〉 =

∫
X(A)

f dµu,v for all u, v ∈ H and for all f ∈ B(X(A))),

where U is the extension of G−1 to B(X(A)). In short, we write

T =

∫
GT dµ, U(f) =

∫
f dµ.

Remark: For the sake of simplicity, we omitted to state another property that should be
included in Theorem 2.53. This is the fact that for any S ∈ L(H), if S commutes with every
T ∈ A, then S commutes with U(f) for every f ∈ B(X(A)); see Folland [22] (Proposition
1.36). This property is used to prove Schur’s Lemma for irreducible unitary representations.

Remarkably, the families (µu,v)(u,v)∈H×H of measures arise from families of projection-
valued measures. Such projection-valued measures are defined by the operators U(χE),
which are orthogonal projections in L(H), where E is a Borel set on K.
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Proposition 2.54. Consider the representation Ũ : B(K) → L(H) that extends the repre-

sentation U : CC(K)→ L(H). The map P defined by P (E) = Ũ(χE), where E is any Borel
set in K, has the following properties:

(1) Each P (E) is an orthogonal projection in L(H).

(2) P (∅) = 0 and P (K) = I.

(3) P (E ∩ F ) = P (E) ◦ P (F ).

(4) For any family (Ei)i≥1 of pairwise disjoint Borel sets, we have

P

(⋃
i≥1

Ei

)
=
∑
i≥1

P (Ei),

which means that if we define Fn and F as Fn =
⋃n
i=1Ei and F =

⋃
i≥1Ei, then

limn7→∞ ‖P (F )(u)− P (Fn)(u)‖ = 0 for all u ∈ H (convergence in the strong operator
topology).

Proof. Since χ2
E = χE = χE, we have P (E)2 = P (E) = P (E)∗. The equation P (E)2 =

P (E) says that P (E) is a projection, and since it is well-known from linear algebra that
Ker(P (E))⊥ = Im(P (E)∗), we have Ker(P (E))⊥ = Im(P (E)), which means that Ker(P (E))
is the orthogonal complement of Im(P (E)). Property (2) is obvious, and (3) follows from
the fact that χE∩F = χEχF .

For a finite family (Ei)
n
i=1 of pairwise disjoint subsets, since

χ⋃n
i=1 Ei

=
n∑
i=1

χEi ,

we have

P

(
n⋃
i=1

Ei

)
=

n∑
i=1

P (Ei).

Otherwise, if we write Fn =
⋃n
i=1 Ei and F =

⋃
i≥1Ei as above, since the sequence (χFn) is

uniformly bounded and converges pointwise to χF , by Proposition 2.52,

n∑
i=1

P (Ei) = P (Fn) converges weakly to P (F ).

In particular, limn7→∞〈(P (F )− P (Fn))(u), u〉 = 0 for all u ∈ H. But F is the disjoint union
F = Fn ∪ (F − Fn), so P (F ) = P (Fn) + P (F − Fn). Since P (F − Fn) is an orthogonal
projection, for every u ∈ H, we have

‖(P (F )− P (Fn))(u)‖2 = ‖(P (F − Fn)(u)‖2

= 〈P (F − Fn)(u), P (F − Fn)(u)〉
= 〈P (F − Fn)(u), u〉 = 〈(P (F )− P (Fn))(u), u〉,
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so weak convergence, which means that limn7→∞〈(P (F ) − P (Fn))(u), u〉 = 0, implies strong
convergence, namely limn7→∞ ‖(P (F )− P (Fn))(u)‖ = 0.

Proposition 2.55. If E and F are two disjoint Borel sets, then the ranges of P (E) and
P (F ) are orthogonal.

Proof. Since P (E) and P (F ) are orthogonal projection, for any u, v ∈ H, we have

〈P (E)(u), P (F )(v)〉 = 〈P (F )P (E)(u), v〉
= 〈P (E ∩ F )(u), v〉
= 〈P (∅)(u), v〉 = 〈0, v〉 = 0,

as claimed.

We can use families of projections on a Hilbert space satisfying the properties of Propo-
sition 2.54 to define families of measures similar to the µu,v introduced earlier, and using
these measures, to also define representations.

2.12 Projection-Valued Measures and

Representations

Let (Ω,M) be a measure space, where M is a σ-algebra on the set Ω (since we use the
notation A to denote an algebra, to avoid a clash of notation we denote a σ-algebra by M,
departing from our earlier notation).

Definition 2.22. Given a measure space (Ω,M) and a Hilbert space H, a projection-valued
measure is a map P : M→ L(H) assigning an orthogonal projection P (E) in L(H) to every
set E ∈M, such that the properties of Proposition 2.54 hold, namely:

(1) Each P (E) is an orthogonal projection in L(H) (which means that P (E)2 = P (E) =
P (E)∗).

(2) P (∅) = 0 and P (Ω) = I.

(3) P (E ∩ F ) = P (E) ◦ P (F ).

(4) For any family (Ei)i≥1 of pairwise disjoint sets in M, we have

P

(⋃
i≥1

Ei

)
=
∑
i≥1

P (Ei),

which means that if we define Fn and F as Fn =
⋃n
i=1 Ei and F =

⋃
i≥1Ei, then

limn7→∞ ‖P (F )(u)− P (Fn)(u)‖ = 0 for all u ∈ H (convergence in the strong operator
topology).
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We can now define analogs of the measures µu,v.

Definition 2.23. Let P be a projection-valued measure of a measure space (Ω,M) in a
Hilbert space H. For all u, v ∈ H, define Pu,v(E) as

Pu,v(E) = 〈P (E)(u), v〉

for all E ∈M.

Properties (2) and (4) of Definition 2.22 imply that each Pu,v is a complex measure on
Ω. The map (u, v) 7→ Pu,v is obviously sesquilinear. Since P (E)∗ = P (E), we have

Pv,u(E) = 〈P (E)(v), u〉 = 〈v, P (E)(u)〉 = 〈P (E)(u), v〉 = Pu,v(E),

so Pv,u = Pu,v. Since P (E)∗ = P (E) = P (E)2, we also have

Pu,u(E) = 〈P (E)(u), u〉 = 〈P (E)2(u), u〉 = 〈P (E)(u), P (E)∗(u)〉 = 〈P (E)(u), P (E)(u)〉 ≥ 0,

so each Pu,u is a positive measure. Furthermore,

‖Pu,u‖ = Pu,u(Ω) = 〈P (Ω)(u), u〉 = 〈u, u〉 = ‖u‖2 .

Finally, if B(Ω,M) denotes the space of bounded measurable functions on Ω, we will
show that for all u, v ∈ H and every f ∈ B(Ω,M), there is a unique continuous operator
U(f) ∈ L(H), such that

〈U(f)(u), v〉 =

∫
Ω

f dPu,v, for all u, v ∈ H and for all f ∈ B(Ω,M).

Without any other assumptions, B(Ω,M) is simply a commutative unital algebra (under
pointwise multiplication). We can think of U(f) as a generalized integral,

U(f) =

∫
f dP.

Since ‖Pu,u‖ = ‖u‖2, for any f ∈ B(Ω,M), we have∣∣∣∣∫ f dPu,u

∣∣∣∣ ≤ ‖f‖∞ ‖Pu,u‖ = ‖f‖∞ ‖u‖
2 .

By linear algebra, we have the polarization identity

〈P (E)(u), v〉 = 〈P (E)(u), P (E)(v)〉 =
1

4
(‖P (E)(u+ v)‖2 − ‖P (E)(u− v)‖2

+ i(‖P (E)(u+ iv)‖2 − ‖P (E)(u− iv)‖2)),



2.12. PROJECTION-VALUED MEASURES AND REPRESENTATIONS 109

so

Pu,v(E) =
1

4
(Pu+v,u+v(E)− Pu−v,u−v(E) + i(Pu+iv,u+iv(E)− Pu−iv,u−iv(E))).

Note that all measures on the right-hand side are positive real measures. As a consequence,∫
f dPu,v =

1

4

(∫
f dPu+v,u+v −

∫
f dPu−v,u−v + i

(∫
f dPu+iv,u+iv −

∫
f dPu−iv,u−iv

))
,

and so, for all u, v ∈ H, such that ‖u‖ = ‖v‖ = 1, we have∣∣∣∣∫ f dPu,v

∣∣∣∣ ≤ 1

4
‖f‖∞ (‖u+ v‖2 + ‖u− v‖2 + ‖u− iv‖2 + ‖u− iv‖2) ≤ 4 ‖f‖∞ .

Replacing u by u/ ‖u‖ and v by v/ ‖v‖ (u, v 6= 0), we obtain∣∣∣∣∫ f dPu,v

∣∣∣∣ ≤ 4 ‖f‖∞ ‖u‖ ‖v‖ . (∗5)

As a consequence, for f and u fixed we obtain a continuous semi-linear form on H, so by
the Riesz representation theorem there is a unique U(f)(u) ∈ H, such that

〈U(f)(u), v〉 =

∫
f dPu,v, for all u ∈ H,

but the map u 7→ U(f)(u) is also continuous, so we have a unique linear map U(f) ∈ L(H),
such that

〈U(f)(u), v〉 =

∫
f dPu,v, for all u, v ∈ H and all f ∈ B(Ω,M). (∗6)

It is customary to write

U(f) =

∫
f dP.

Remark: If f is a step function f =
∑n

i=1 cjχEi (with cj ∈ C), then∫
f dPu,v =

n∑
i=1

ciPu,v(Ei) =
n∑
i=1

ci〈P (Ei)(u), v〉 =

〈
n∑
i=1

ciP (Ei)(u), v

〉
,

so in this case, we have ∫
f dP =

n∑
i=1

ciP (Ei),

which is reassuring! Using the above fact and the definition of the integral using limits of
step functions, the following result proven in Folland [22] (Theorem 1.43) shows that the
map f 7→ U(f) as defined by (∗6) is a representation of algebras. The preceding discussion
and this last fact are combined in the following important theorem.



110 CHAPTER 2. REPRESENTATIONS OF ALGEBRAS AND HILBERT ALGEBRAS

Theorem 2.56. Let P be a projection-valued measure on a Hilbert space H. For every
f ∈ B(Ω,M), there is a unique linear map U(f) ∈ L(H), such that

〈U(f)(u), v〉 =

∫
f dPu,v, for all u, v ∈ H and all f ∈ B(Ω,M).

For short, we write

U(f) =

∫
f dP.

The map U : B(Ω,M)→ L(H) is an isometric representation of algebras (it is linear and a
multiplicative homomorphism). Moreover,

‖U(f)(u)‖2 =

∫
|f |2 dPu,u for all u ∈ H and all f ∈ B(Ω,M).

Remark: Rudin [56] defines the notion of resolution of the identity , which is different from
the notion of projection-valued measure, but essentially equivalent. A resolution of the
identity need not satisfy condition (4) of Definition 2.22, but it is required that the Pu,v as
defined in Definition 2.23 are complex measures. Rudin also proves Theorem 2.56 in terms
of resolutions of the identity; see Rudin [56], Theorem 12.21.

Let us now return to the case of a representation U : CC(K) → L(H) and its extension

Ũ : B(K)→ L(H) where K is compact, and let Ω = K and letM be the σ-algebra generated

by the open sets in K. Since in this case P (E) = Ũ(χE), we have

Pu,v(E) = 〈P (E)(u), v〉 = 〈Ũ(χE)(u), v〉 =

∫
K

χE dµu,v = µu,v(E),

for all E, so we deduce that
Pu,v = µu,v.

In particular, these are Radon measures, so they are regular. What this shows is that any
representation Ũ : B(K) → L(H) where K is compact arises from some regular projection-
valued measure on a Hilbert space H.

As an application, if A is a commutative unital C∗-subalgebra of L(H), we showed that
the inverse Gelfand transform G−1 : C(X(A);C) → A is a representation of C(X(A);C) as
continuous operators in L(H). Here we have K = X(A). Thus we obtain a version of the
spectral theorem for a commutative unital C∗-subalgebra of L(H).

Theorem 2.57. (Spectral Theorem, II) Let A be a commutative unital C∗-subalgebra of
L(H). There is a regular projection-valued measure P on X(A), such that the following
properties hold:

〈T (u), v〉 =

∫
X(A)

GT dPu,v, for all u, v ∈ H and for all T ∈ A,



2.12. PROJECTION-VALUED MEASURES AND REPRESENTATIONS 111

and

〈U(f)(u), v〉 =

∫
X(A)

f dPu,v, for all u, v ∈ H and for all f ∈ B(X(A)),

where U is the extension of G−1 to B(X(A)). In short, we write

T =

∫
GT dP, U(f) =

∫
f dP.

In fact, it can be shown that the projection-valued measure P as above is unique; see
Folland [22] (Theorem 1.44). Theorem 2.57 is also proven by Rudin in terms of resolutions
of the identity; see Rudin [56], Theorem 12.22.

As an application of Theorem 2.57, we obtain another version of the spectral theorem
for normal continuous linear maps on a Hilbert space H.

Let T be a normal continuous linear map on a Hilbert space H and let AT be the
commutative unital C∗-algebra generated by T, T ∗ and I (which is a subalgebra of L(H)).
Recall that Vol I, Theorem 9.38 asserts that there is an isometric isomorphism G : AT →
CC(σ(T )), such that

G(T ) = idσ(T )

and that the inverse G−1 : CC(σ(T )) → AT of G is a representation of CC(σ(T )) in H. By
applying Theorem 2.57 to the representation G−1, we obtain the following result.

Theorem 2.58. (Spectral Theorem for Normal Bounded Operators, II) Let T be a contin-
uous normal linear map on a Hilbert space H. There is a unique regular projection-valued
measure P on σ(T ), such that

〈T (u), v〉 =

∫
σ(T )

id dPu,v, for all u, v ∈ H.

In short, we write

T =

∫
id dP.

Furthermore, for every f ∈ B(σ(T )), we have

U(f) =

∫
f dP,

where U is the extension of G−1 : CC(σ(T ))→ AT to B(σ(T )).

It is customary to denote the continuous linear operator U(f) ∈ L(H) given by U(f) =∫
f dP as f(T ); see Folland [22] (Chapter I, Equation 1.49). Some authors (Rudin [56], Lax

[49]) call the above result a spectral decomposition (or resolution) of T . Theorem 2.58 is
proven by Rudin in terms of resolutions of the identity; see Rudin [56], Theorem 12.23.
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For the sake of simplicity, we omitted another property that should be included in The-
orem 2.58. This property is used to prove Schur’s Lemma for irreducible unitary represen-
tations.

Complement to Theorem 2.58. Let T ∈ L(H) be a continuous normal linear map.
If S ∈ L(H) commutes with T and T ∗, then S commutes with f(T ) for every f ∈ B(σ(T )).

The above fact is proven in Folland [22]; see Theorem 1.51(c). The proof uses the
additional fact stated in the Remark after Theorem 2.53, which is also property (a) of
Theorem 1.36 in Folland [22].

Theorems 2.48 and 2.58 constitute two ways of generalizing the spectral theorem for
normal linear maps on a finite-dimensional Hilbert space. The careful reader will notice
that Theorem 2.58 holds even if the Hilbert space is not separable. Theorem 2.48 can be
generalized to nonseparable Hilbert spaces at the expense of using uncountable Hilbert sums.
Also observe that the projection-valued measure P in Theorem 2.58 is uniquely determined
by T , whereas the measure space (Ω,M, µ) and the unitary map W of Theorem 2.48 are
not.

The usefulness of projection-valued measures becomes more apparent when we generalize
Theorem 2.57 to representations of arbitrary commutative unital involutive Banach algebras.

Theorem 2.59. (Spectral Theorem, III) Let A be any commutative unital involutive Banach
algebra. For any representation U : A → L(H) of A in a Hilbert space H, there is a regular
projection-valued measure P on X(A), such that

〈U(a)(u), v〉 =

∫
X(A)

Ga dPu,v, for all u, v ∈ H and for all a ∈ A,

which is abbreviated as

U(a) =

∫
Ga dP, a ∈ A.

Sketch of proof. A more complete proof is given in Folland [22] (Section 1.5, Theorem 1.53).
The key idea is to consider the closure B of U(A) in L(H), because it is a commutative unital
C∗-subalgebra of L(H), and so Theorem 2.57 applies to B. Then there is a projection-valued
measure P0 on X(B) and we need to pull it back to X(A). Let us provide some details.

The map U : A → B induces a continuous map U∗ : X(B)→ X(A) given by

U∗(h) = h ◦ U, for all h ∈ X(B).

Recall that for any a ∈ A, we have U(a) ∈ U(A) ⊆ B ⊆ L(H) and h : B → C, so we have
h ◦ U : A → C. We claim that U∗ is injective. Indeed, if U∗(h1) = U∗(h2), then h1 and h2

(both in X(B)) agree on U(A) ⊆ B, and since B is the closure of U(A) in L(H), we must
have h1 = h2. But X(B) is compact, so the injective continuous map U∗ is a homeomorphism
onto its image, which is compact in X(A).
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As we said before, B is a commutative unital C∗-subalgebra of L(H), and so Theorem
2.57 applies to B. By Theorem 2.57, there is a regular projection-valued measure P0 on
X(B), such that

T =

∫
GT dP0, for all T ∈ B. (†1)

We use U∗ to define a regular projection-valued measure P on X(A) as follows: for every
Borel set E on X(A), let

P (E) = P0((U∗)−1(E)),

where, P0((U∗)−1(E)) is really P0((U∗)−1(E∩U∗(X(B))). We leave it as an exercise to check
that P is indeed a regular projection-valued measure on X(A).

Finally, observe that the Gelfand transforms of B and A are related as follows:

GU(a)(h) = Ga(U∗(h)), for all a ∈ A and all h ∈ X(B),

since
GU(a)(h) = h(U(a)) = U∗(h)(a) = Ga(U∗(h)).

Then, since U(a) ∈ B, by (†1), we have

U(a) =

∫
GU(a)(h) dP0(h) =

∫
Ga(U∗(h)) dP0(h) =

∫
Ga dP,

where the last equation is obtained by going back to the definitions of
∫
Ga(U∗(h)) dP0(h)

and
∫
Ga dP in terms of the inner product on H and using the definition of P in terms of

P0.

The projection-valued mesure in Theorem 2.59 is unique; see Folland [22] (Section 1.5).
Theorem 2.59 can be promoted to nonunital commutative involutive Banach algebras as long
as the representation U is nondegenerate; see Folland [22] (Section 1.5, Theorem 1.54).

Theorem 2.60. (Spectral Theorem, IV) Let A be any commutative involutive Banach
algebra. For any nondegenerate representation U : A → L(H) of A in a Hilbert space H,
there is a unique regular projection-valued measure P on X(A), such that

〈U(a)(u), v〉 =

∫
X(A)

Ga dPu,v, for all u, v ∈ H and for all a ∈ A,

which is abbreviated as

U(a) =

∫
Ga dP, a ∈ A.

The above theorem is crucial to the proof of Theorem 3.20 characterizing the unitary
representations of an abelian locally compact group. Intuitively, the characters of G are
glued by a suitable projection-valued measure. In turn, Theorem 3.20 is a key result used in
Mackey’s theory for constructing induced representations; see Chapter 7, Proposition 7.1.
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For any locally compact space X, C0(X;C) is a nonunital C∗-algebra, and since by Vol
I, Proposition 9.22, X(C0(X;C)) is homeomorphism to X itself, we can view the isometric
isomorphism from C0(X;C) to C0(X(C0(X;C));C) provided by the Gelfand transform (by
Gelfand–Naimark) as the identity. In other words, we can view the Gelfand transform on
C0(X;C) as the identity. Then we have the following corollary of Theorem 2.60.

Theorem 2.61. Let X be a locally compact space, and let U : C0(X;C) → L(H) be a
nondegenerate representation of C0(X;C) in a Hilbert space H. There is a unique regular
projection-valued measure P on X, such that

〈U(f)(u), v〉 =

∫
X

f dPu,v, for all u, v ∈ H and for all f ∈ C0(X;C),

which is abbreviated as

U(f) =

∫
f dP, f ∈ C0(X;C).

The above theorem is used in Section 7.2 to give an alternate definition of a system of
imprimitivity; see Definition 7.4.

2.13 Problems

Problem 2.1. Let A = Mn(C) be the algebra of n × n complex matrices with involution
X 7→ X∗ (the conjugate transpose); see Example 2.2. Define b to be the subspace of A
consisting of all n× n complex matrices whose last n− 1 columns are zero.

(1) Show that b is a minimal left ideal in A.

(2) Show that the subspace b of A = Mn(C) is invariant under the representation U : A→
L(H) of Example 2.1, and U1 : A→ L(b) is a subrepresentation of A in b.

Problem 2.2. Prove that the representations U1 : A→ L(Cn) and U2 : A→ L(b) of Exam-
ple 2.2 are equivalent.

Problem 2.3. Let (Hα, 〈−,−〉α)α∈Λ be a family of Hilbert spaces indexed by some index
set Λ. Define the set H as the set of all sequences (xα)α∈Λ with xα ∈ Hα, such that∑

α∈Λ ‖xα‖
2
Hα

<∞. Define a vector space structure on H by defining

(xα) + (yα) = (xα + yα)

λ(xα) = (λxα),

with xα, yα ∈ Hα.

(1) Show that H, with the above operations, is a vector space.

Define the inner product 〈−,−〉 on H by

〈(xα), (yα)〉 =
∑
α∈Λ

〈xα, yα〉α.
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(2) Show that 〈−,−〉 is a Hermitian inner product on H.

(3) Show that H is complete, so it is a Hilbert space.

Hint . See Dieudonné [17] (Chapter VI, Section 4) and Schwartz [60] (Chapter XXIII, The-
orem 1 and Theorem 2).

Problem 2.4. Prove Proposition 2.3.

Hint . See Dieudonné [17] (Chapter VI, Section 4) and Schwartz [60] (Chapter XXIII, The-
orem 4 and its corollaries).

Problem 2.5. Prove Proposition 2.4.

Hint . See Schwartz [60] (Chapter XXIII, Theorem 2, Corollary 2).

Problem 2.6. Prove part (1) of Proposition 2.5.

Hint . Use the continuity of U(s); see Dieudonné [17] (Chapter III, Section 11).

Problem 2.7. Prove Proposition 2.6.

Hint . See Dieudonné [14] (Chapter XV, Section 5).

Problem 2.8. Prove Proposition 2.9.

Problem 2.9. Let H be a separable Hilbert space. Recall this means that H has a countable
Hilbert basis, that is, a countable orthonormal basis (ai)i≥1, such that the subspace spanned
by (ai)i≥1 is dense in H. A linear map u ∈ L(H) is a Hilbert–Schmidt operator if the
series

∑∞
n=1 ‖u(an)‖2 converges, that is,

∑∞
n=1 ‖u(an)‖2 < ∞. The set of Hilbert–Schmidt

operators is denoted by L2(H). Then we define the map u 7→ ‖u‖HS on the set L2(H) by

‖u‖2
HS =

∞∑
n=1

‖u(an)‖2 .

(1) Show that
∑∞

n=1 ‖u(an)‖2 is independent of the Hilbert basis (an).

(2) Show that ‖u‖HS = ‖u∗‖HS.

(3) For any two Hilbert–Schmidt operators u, v ∈ L2(H), show that

‖u ◦ v‖HS ≤ ‖u‖∞ ‖v‖HS ,

and if u ∈ L2(H), then
‖u‖∞ ≤ ‖u‖HS .

Problem 2.10. Using the norm ‖ ‖HS, show that the space L2(H) of Hilbert–Schmidt opera-
tors is an involutive Banach algebra under composition, with the involution given by u 7→ u∗

(where u∗ is the adjoint of u).
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Problem 2.11. Show that L2(H) is a self-adjoint two-sided ideal in the involutive Banach
algebra L(H).

Problem 2.12. If E and F are two normed vector spaces, a linear map u : E → F is a
compact operator if the closure of f(B) is compact for every bounded subset B of E. A
compact operator is continuous. Prove that every Hilbert–Schmidt operator is a compact
operator.

Hint . See Dieudonné [14] (Chapter XV, Section 4).

Problem 2.13. Let u, v ∈ L2(H).

(1) Show that

g(u, v) =
∑
n≥1

〈u(an), v(an)〉

is well-defined and independent of the Hilbert basis (an).

(2) Show that g is a hermitian inner product which is a bitrace, such that g(u, u) = ‖u‖HS;
see Dieudonné [14] (Chapter XV, Section 7).

(3) Show that g satisfies the properties (U) and (N).

Hint . See Dieudonné [14] (Chapter XV, Section 7).

Problem 2.14. Complete the proof of Proposition 2.18.

Hint . See Dieudonné [14] (Chapter XXI, Section 2).

Problem 2.15. Prove Proposition 2.21.

Hint . see Dieudonné [14] (Chapter XV, Proposition 15.8.2).

Problem 2.16. Prove Proposition 2.22.

Hint . See Dieudonné [14] (Chapter XV, Proposition 15.8.3).

Problem 2.17. Prove Proposition 2.28.

Hint . See Dieudonné [14] (Chapter XV, Proposition 15.8.9).

Problem 2.18. (Advanced Exercise) Prove Proposition 2.29.

Hint . See Dieudonné [14] (Chapter XV, Proposition 15.8.10).

Problem 2.19. Prove Proposition 2.40.

Hint . See Dieudonné [14] (Chapter XV, Section 7, Theorem 15.6.11).

Problem 2.20. Prove Proposition 2.41.

Hint . See Dieudonné [14] (Chapter XV, Section 7, Theorem 15.6.11.1).
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Problem 2.21. Study the proof of the Plancherel–Godement theorem, Theorem 2.43, pro-
vided by Dieudonné [14] (Chapter XV, Section 9, Theorem 15.9.2).

Problem 2.22. (Advanced Exercise) Prove the Bochner–Godement theorem, Theorem 2.44.

Hint . See Dieudonné [14] (Chapter XV, Section 9, Theorem 15.9.4).

Problem 2.23. Prove Proposition 2.46.

Hint . See Dieudonné [14] (Chapter XV, Section 10, Theorem 15.10.8.1).

Problem 2.24. Prove part (2) of Proposition 2.48.

Hint . Adapt the proof of Theorem 2.47 or see Taylor [66], Appendix B.

Problem 2.25. Prove Proposition 2.49.

Hint . See Dieudonné [14] (Chapter XV, Section 11, Proposition 15.11.5).

Problem 2.26. Prove Proposition 2.50.

Hint . See Dieudonné [14] (Chapter XV, Section 11, Proposition 15.11.6), or see Rudin [56]
(Theorem 12.29).

Problem 2.27. Prove Proposition 2.51.

Hint . See Folland [22] (Section 1.4, Proposition 1.34).

Problem 2.28. Prove Theorem 2.56.

Hint . See Folland [22] (Theorem 1.43) or see Rudin [56], Theorem 12.21.

Problem 2.29. Prove that the projection-valued measure of Theorem 2.57 is unique.

Hint . See Folland [22] (Theorem 1.44).

Problem 2.30. Let T ∈ L(H) be a continuous normal linear map. If S ∈ L(H) commutes
with T and T ∗, then S commutes with f(T ) for every f ∈ B(σ(T )).

Hint . See Folland [22] (Theorem 1.51(c)).

Problem 2.31. Prove that the projection-valued measure in Theorem 2.59 is unique.

Hint . See Folland [22] (Section 1.5).

Problem 2.32. (Advanced Exercise) Prove Theorem 2.60.

Hint . See Folland [22] (Section 1.5, Theorem 1.54).
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Chapter 3

Unitary Representations of Locally
Compact Groups

In this chapter, we discuss representations of locally compact groups. For simplicity, we
begin with finite-dimensional representations, which are continuous group homomorphisms
ρ : G→ GL(V ), where V is a finite-dimensional complex vector space (see Section 3.1). Next
we consider unitary representations, which are certain kinds of continuous homomorphisms
U : G → U(H), where H is a Hilbert space (typically separable), and U(H) is the group
of unitary operators on H, that is, the continuous linear maps f : H → H that have a
continuous inverse, and preserve the inner product; that is,

〈f(x), f(y)〉 = 〈x, y〉, for all x, y ∈ H.

Then a unitary operator is a continuous linear map f : H → H, such that f−1 = f ∗, where
f ∗ is the adjoint of f , the unique continuous linear map determined by the equation

〈f ∗(x), y〉 = 〈x, f(y)〉, for all x, y ∈ H.

The basic theory of unitary representations is discussed in Section 3.2.

There are three main results in this chapter.

The first main result (first shown by Naimark) is that every unitary representation
U : G→ U(H) of a locally compact groupG defines a nondegenerate representation Uext : L1(G)→
L(H) of the involutive Banach algebra L1(G), and that conversely, for every nondegener-
ate representation V : L1(G) → L(H) of L1(G), there is a unique unitary representation
U : G → U(H) of the group G, such that V = Uext (see Section 3.3, Theorem 3.17 and
Theorem 3.18).

The bijection U 7→ Uext between unitary representations of a locally compact group G and
nondegenerate representations of the algebra L1(G) is a basic tool that allows the transfer
of results about representations of algebras to representations of groups, and vice-versa. It
will play a crucial role in the proof of the Peter–Weyl theorem.

119



120 CHAPTER 3. REPRESENTATIONS OF LOCALLY COMPACT GROUPS

The second main result (Theorem 3.20) is a characterization of the unitary representations
U : G→ U(H) of a locally compact abelian group G in terms of projection-valued measures
(as discussed in Section 2.12). This theorem plays a key role in the construction of induced
representations using a method due to Mackey (the “Mackey machine”); see Chapter 7.

The third main result (Gelfand and Raikov, Godement) is that there is one-to-one corre-
spondence between unitary cyclic representations of a locally compact group G and certain
bounded continuous functions on G called functions of positive type.

Let U : G → U(H) be a unitary representation of the locally compact group G in a
Hilbert space H, let x0 be any vector in H, and define the map p = ψU,x0 by

p(s) = ψU,x0(s) = 〈U(s)(x0), x0〉, s ∈ G.

It turns out that the function p is continuous and bounded and that it satisfies the following
property: ∫

(f ∗ ∗ f)(s)p(s) dλ(s) ≥ 0, for all f ∈ KC(G),

where λ is a left Haar measure on G. Such functions are called functions of positive type.
Remarkably, every continuous function p of positive type determines a unitary topologically
cyclic representation U with a cyclic vector x0, such that p = ψU,x0 (see Theorem 3.22). The
connection between cyclic unitary representations and functions of positive type is discussed
in Section 3.5.

In Section 3.6, we present the Gelfand–Raikov theorem without proof (see Theorem 3.26).
Informally, this theorem says that there is vast supply of irreducible unitary representations
for any locally compact group. This is far from obvious a priori. For example, SL(2,R) does
not have finite-dimensional unitary representations, and it is not that easy to find irreducible
unitary representations.

Section 3.7 is devoted to measures of positive type, which generalize functions of positive
type. A complex or σ-Radon measure µ is of positive type if∫

(f ∗ ∗ f)(s) dµ(s) =

∫ ∫
f(t)f(ts) dλ(t) dµ(s) ≥ 0, for all f ∈ KC(G).

The Dirac measure δe is a measure of positive type, and more generally, if ν is a complex
measure, then the measure ν̌ ∗ ν is of positive type. The main point is that a measure µ
of positive type defines a unitary representation Uµ of G in a separable Hilbert space H
(see Theorem 3.30). This construction will be used in Section 9.9 to define the Plancherel
transform.

Basically, all the material of this chapter is presented in a more condensed form in
Dixmier’s classical book Dixmier [18] (see also the English translation published by the
AMS).
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3.1 Finite-Dimensional Group Representations

For simplicity, we begin with finite-dimensional representations.

Definition 3.1. Given a locally compact group G and a normed vector space V of dimension
n, a continuous linear representation of G in V of dimension (or degree) n is a group
homomorphism ρ : G → GL(V ), where GL(V ) denotes the group of invertible linear maps
from V to itself, such that the following condition holds:

(C) The map g 7→ ρ(g)(u) is continuous for every u ∈ V .

The space V , called the representation space, may be a real or a complex vector space.
If V has a Hermitian (resp. Euclidean) inner product 〈−,−〉, we say that ρ : G→ GL(V ) is
a continuous unitary representation if

(U) Every linear map ρ(g) is an isometry , that is,

〈ρ(g)(u), ρ(g)(v)〉 = 〈u, v〉, for all g ∈ G and all u, v ∈ V.

A unitary representation is denoted ρ : G→ U(V ).

Thus, a continuous linear representation of G is a map ρ : G→ GL(V ) satisfying condi-
tion (C) as well as the properties:

ρ(gh) = ρ(g)ρ(h)

ρ(g−1) = ρ(g)−1

ρ(1) = idV

for all g, h ∈ G. If ρ is a unitary representation, then we also have

(ρ(g))−1 = (ρ(g))∗.

If G is a finite group, the continuity requirement is omitted.

To avoid confusion when representations involving different groups arise we denote the
space of the representation ρ by Vρ, and so we denote a representation as ρ : G → GL(Vρ).
To reduce the amount of parentheses, we often write ρg(u) instead of ρ(g)(u).

Note that a major difference with the notion of representation of an algebra, is that for
a group representation ρ : G → GL(V ), the linear map ρ(g) must be invertible for every
g ∈ G. For an algebra representation U : A→ L(H) (where H is a Hilbert space), the linear
maps U(s) are generally not invertible.

For simplicity of language, we usually abbreviate continuous linear (or unitary) repre-
sentation as (unitary) representation. The representation space V is also called a G-module,
since the representation ρ : G→ GL(V ) is equivalent to the left action · : G× V → V , with
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g · v = ρ(g)(v). The representation such that ρ(g) = idV for all g ∈ G is called the trivial
representation.

It should be noted that because V is finite-dimensional, the condition that for every
u ∈ V , the map g 7→ ρ(g)(u) is continuous, is actually equivalent to the fact that the map
g 7→ ρ(g) from G to L(V ) equipped with the operator norm induced by any norm on V is
continuous.

Indeed, for any basis of V , the fact that the map g 7→ ρ(g)(u) is continuous implies that
the matrix (ρij(g)) representing ρ(g) consists of continuous functions on G.

Since the space V of a representation ρ : G → GL(V ) is finite-dimensional, say n, it
is often convenient to pick a basis (e1, . . . , en) of V , and then every invertible linear map
ρ(g) ∈ GL(V ) is represented by an n × n matrix that we denote Mρ(g) = (ρij(g)).1 We
obtain a continuous map Mρ : G→ GL(n,C) assigning an invertible n× n complex matrix
Mρ(g) = (ρij(g)) to g ∈ G satisfying the properties

Mρ(gh) = Mρ(g)Mρ(h)

Mρ(g
−1) = (Mρ(g))−1

Mρ(1) = In

for all g, h ∈ G. The continuity ofMρ is equivalent to the fact that the n2 functions g 7→ ρij(g)
are continuous. If ρ is a unitary representation, then we also have

(Mρ(g))−1 = (Mρ(g))∗.

If G is finite, we drop the continuity requirement. Conversely we have the notion of repre-
sentation in matrix form.

Definition 3.2. Given a locally compact group G a continuous linear representation of G
of dimension (or degree) n in matrix form is a mapping Mρ : G → GL(n,C) assigning an
invertible n× n complex matrix Mρ(g) = (ρij(g)) to g ∈ G satisfying the properties

Mρ(gh) = Mρ(g)Mρ(h)

Mρ(g
−1) = (Mρ(g))−1

Mρ(1) = In

for all g, h ∈ G, and such that the n2 functions g 7→ ρij(g) are continuous. If Mρ is a unitary
representation, then we also have

(Mρ(g))−1 = (Mρ(g))∗.

In this case, Mρ is a homomorphism Mρ : G → U(n). If G is finite, we drop the continuity
requirement.

1To be perfectly rigorous, the matrix Mρ should be indexed by the basis E = (e1, . . . , en), say as MEρ , but
this is just too much decoration.
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A representation in matrix form Mρ : G→ GL(n,C) (resp. Mρ : G→ U(n)) defines the
representation ρ : G→ GL(Cn) (resp. ρ : G→ U(Cn)) given by

(ρ(g))(z) = Mρ(g)z, z ∈ Cn, g ∈ G.

Since the notation Mρ(g) is quite heavy, we often write M(g) instead of Mρ(g). This is
an abuse of notation since M(g) is a linear map and Mρ(g) is a matrix representing it in
some basis, and thus depends on this basis. We also often identify a matrix representation
with the representation associated with it. The same issue arises in linear algebra and we
hope that the reader is already familiar with it and will not be confused.

Given any basis (e1, . . . , en) of V , we may think of the scalar functions g 7→ ρij(g) as
special functions on G. As explained in Dieudonné [10] (see also Vilenkin [70]), essentially all
special functions (Legendre polynomials, ultraspherical polynomials, Bessel functions, etc.)
arise in this way by choosing some suitable G and V .

Remark: In Chapter 6, we will consider the situation where G is a group not equipped with
any topology, and V is a vector space, possibly infinite-dimensional, not equipped with any
norm. Then a linear representation of G in V is simply a homomorphism ρ : G → GL(V ),
which amounts to dropping condition (C) from Definition 3.1. However, in this chapter and
the next, all representations satisfy condition (C).

Example 3.1. Consider the group S3 of permutations on the set {1, 2, 3}. There are 3! = 6
permutations

π1 = (1, 2, 3), π2 = (1, 3, 2), π3 = (2, 1, 3), π4 = (2, 3, 1), π5 = (3, 1, 2), π6 = (3, 2, 1).

The first permutation π1 = (1, 2, 3) is the identity; the permutations

π2 = (1, 3, 2), π3 = (2, 1, 3), π6 = (3, 2, 1)

are transpositions and thus have negative signature, and the permutations

π4 = (2, 3, 1), π5 = (3, 1, 2)

are cyclic permutations and thus have positive signature. We obtain a representation
ρ1 : S3 → GL(C3) as follows. If (e1, e2, e3) is the canonical basis of C3, then ρ1(πi) is
the linear map given by

ρ1(πi)(ej) = eπi(j), 1 ≤ i, j ≤ 3.

In the basis (e1, e2, e3), the linear maps ρ1(πi) are represented by the 3× 3 matrices M1, . . .,
M6 given by1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 0 1
1 0 0
0 1 0

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
0 1 0
1 0 0

 .

This is an example of a permutation representation.
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Here is another representation of the group S3 in C6.

Example 3.2. This time we define the representation ρR : S3 → GL(C6) as follows. Let
(eπ1 , . . . , eπ6) be the canonical basis of C6 indexed by the permutations πi (1 ≤ i ≤ 6), and
set

ρR(πi)(eπj) = eπi◦πj , 1 ≤ i, j ≤ 6.

Note that the 6 × 6 matrix representing ρR(πi) in the basis (eπ1 , . . . , eπ6) consists of the
permutation of the columns of the identity matrix I6, whose indices are given by the ith row
of the multiplication table of the group S3. This multiplication table is given by

1 2 3 4 5 6
2 1 5 6 3 4
3 4 1 2 6 5
4 3 6 5 1 2
5 6 2 1 4 3
6 5 4 3 2 1

 ,

where we denote πi simply by i and where the (i, j) entry represents πi ◦ πj. We obtain the
following 6 matrices:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

 ,


0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 ,


0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

 ,


0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0

 ,


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 .

The representation ρR is called the regular representation of S3.

Example 3.3. For an example involving an infinite group, we describe a class of represen-
tations of G = SL(2,C), the group of complex matrices with determinant +1,(

a b
c d

)
, ad− bc = 1.

Recall that PC
m(2) denotes the vector space of complex homogeneous polynomials of degree m

in two variables (z1, z2). A complex homogeneous polynomials of degree m in two variables
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(z1, z2) is an expression of the form P (z1, z2) =
∑m

i=0 ciz
i
1z
m−i
2 , with ci ∈ C. For every matrix

A ∈ SL(2,C), with

A =

(
a b
c d

)
,

for every homogeneous polynomial P ∈ PC
m(2), we define Um(A)(P (z1, z2)) by

Um(A)(P (z1, z2)) = P (dz1 − bz2,−cz1 + az2).

The reader may be puzzled by the fact that we departed from our implicit notational con-
vention of using ρ for finite-dimensional representations. The reason is that Um is also a
representation of SU(2), and by defining a suitable inner product on SU(2), it become uni-
tary. If we think of the homogeneous polynomial Q(z1, z2) as a function P

(
z1
z2

)
of the vector(

z1
z2

)
, then

Um(A)

(
P

(
z1

z2

))
= PA−1

(
z1

z2

)
= P

(
d −b
−c a

)(
z1

z2

)
.

The expression above makes it clear that

Um(AB) = Um(A)Um(B)

for any two matrices A,B ∈ SL(2,C), so Um is indeed a representation of SL(2,C) into
PC
m(2). This is a left regular representation, as discussed later in Definition 3.6.

The representations Um also yield representations of the subgroup SU(2) of SL(2,C).
Recall that the group SU(2) consists of all 2× 2 complex matrices

S =

(
α β

−β α

)
, αα + ββ = 1.

As above, the representation Um : SU(2)→ GL(PC
m(2)) is given by

Um(S)(P (z1, z2)) = P (αz1 − βz2, βz1 + αz2).

It can be shown that SL(2,C) has no nontrivial unitary finite-dimensional representa-
tions! This is because SL(2,C) is a connected simple noncompact Lie group with finite
center; see Dieudonné [11] (Section 21.6, Problem 5).

Example 3.4. We define the representation ρ9 : SO(3) → GL(M3(C)) as follows: for any
3× 3 complex matrix A ∈ M3(C), for any Q ∈ SO(3),

ρ9(Q)(A) = QAQ>.

This is a representation in the vector space M3(C), which has dimension 9. To obtain a
version of ρ9 as a matrix representation Mρ9 , we need to pick a basis of M3(C). Let us
choose the canonical basis of nine matrices E11, E12, E13, E21, E22, E23, E31, E32, E33, where
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Eij contains 1 as the (i, j) entry and 0 otherwise. A matrix M ∈ M3(C) is then written as
the column vector

vec(A) = (a11, a12, a13, a21, a22, a23, a31, a32, a33).

It follows that over this basis, the matrix Mρ9(Q) representing the linear map ρ9(Q) is given
by

Mρ9(Q)(vec(A)) = vec(QAQ>).

However, it is a fact of linear algebra that for any m ×m matrix A, any n × n matrix B,
and m× n matrix Z, we have the identity

vec(AZB) = (B> ⊗ A)vec(Z),

where ⊗ denotes the Kronecker product of matrices. Therefore, we deduce that

Mρ9(Q)(vec(A)) = vec(QAQ>) = (Q⊗Q)vec(A),

that is,
Mρ9(Q) = Q⊗Q,

a 9× 9-matrix. The definition of the representation ρ9 as acting on the vector space M3(C)
is a lot more economical than its matrix version Mρ9 acting on C9.

The representation ρ9 is reducible (see Definition 3.4). Indeed, observe that both the
subspace of symmetric matrices and the subspace of skew-symmetric matrices are invariant
since (QAQ>)> = QA>Q>. The subspace of symmetric matrices A with tr(A) = 0 is also
invariant.

There is a natural and useful notion of equivalence of representations.

Definition 3.3. Given any two representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2), a
G-map (or morphism of representations) ϕ : ρ1 → ρ2 is a linear map ϕ : V1 → V2, which is
equivariant , which means that the following diagram commutes for every g ∈ G:

V1
ρ1(g) //

ϕ

��

V1

ϕ

��
V2

ρ2(g)
// V2,

i.e.
ϕ ◦ ρ1(g) = ρ2(g) ◦ ϕ, g ∈ G.

The space of all G-maps between two representations as above is denoted HomG(ρ1, ρ2).
Two representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2) are equivalent iff ϕ : V1 → V2

is an invertible linear map (which implies that dimV1 = dimV2). In matrix form, the
representations ρ1 : G → GL(n,C) and ρ2 : G → GL(n,C) are equivalent iff there is some
invertible n× n matrix P , so that

ρ2(g) = Pρ1(g)P−1, g ∈ G.
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If W ⊆ V is a subspace of V , then in some cases, a representation ρ : G→ GL(V ) yields
a representation ρ : G → GL(W ). This is interesting because under certain conditions on
G (e.g., G compact) every representation may be decomposed into a “sum” of so-called
irreducible representations (defined below), and thus the study of all representations of G
boils down to the study of irreducible representations of G; for instance, see Knapp [44]
(Chapter 4, Corollary 4.7), or Bröcker and tom Dieck [6] (Chapter 2, Proposition 1.9).

Definition 3.4. Let ρ : G → GL(V ) be a representation of G. If W ⊆ V is a subspace of
V , then we say that W is invariant (or stable) under ρ iff ρ(g)(w) ∈ W , for all g ∈ G and all
w ∈ W . If W is invariant under ρ, then we have a homomorphism, ρ : G→ GL(W ), called
a subrepresentation of G. A representation ρ : G→ GL(V ) with V 6= (0) is irreducible iff it
only has the two subrepresentations ρ : G→ GL(W ) corresponding to W = (0) or W = V .

Example 3.5. The representation ρ1 : S3 → GL(C3) of Example 3.1 is reducible. Indeed,
the one-dimensional subspace V1 spanned by e1+e2+e3 is invariant under ρ1 since each ρ1(πi)
permutes the indices 1, 2, 3. The corresponding subrepresentation of S3 in V1 is equivalent to
the irreducible trivial representation in C, given by ρtriv(πi) = 1 (1 ≤ i ≤ 6). The orthogonal
complement V2 of V1 is the plane of equation

x1 + x2 + x3 = 0,

which has (e1− e2, e2− e3) as a basis. It is easy to see that the subspace V2 is also invariant
under ρ1. It is instructive to find an equivalent representation of ρ1 in the basis (v1, v2, v3)
given by

v1 = (1/3)(e1 + e2 + e3)

v2 = (1/3)(e1 − e2)

v3 = (1/3)(e2 − e3).

The change of basis matrix P from the basis (e1, e2, e3) to the basis (v1, v2, v3) is

P =

1/3 1/3 0
1/3 −1/3 1/3
1/3 0 −1/3

 ,

whose inverse is

P−1 =

1 1 1
2 −1 −1
1 1 −2

 .

Using the linear map ϕ from C3 to itself given by P−1 (which transforms the coordinates
of a vector in C3 over the basis (e1, e2, e3) to the coordinates of this vector over the basis
(v1, v2, v3)), we obtain the equivalent representation ρ′1 given by

ρ′1(πi) = ϕρ1(πi)ϕ
−1,
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and over the basis (v1, v2, v3), the matrices representing the linear maps ρ′1(πi) are the ma-
trices P−1MiP shown below:1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 1 −1

 ,

1 0 0
0 −1 1
0 0 1

 ,

1 0 0
0 0 −1
0 1 −1

 ,

1 0 0
0 −1 1
0 −1 0

 ,

1 0 0
0 0 −1
0 −1 0

 .

Some of the above matrices are not unitary. We can fix this by choosing an orthonormal
basis (w1, w2, w3) with w1 = (1/

√
3)v1, a basis of V1, and (w2, w3), a basis of V2. For example,

we can pick

w1 = (1/
√

3)(e1 + e2 + e3)

w2 = (1/
√

2)(e1 − e2)

w3 = (1/
√

6)(e1 + e2 − 2e3).

The change of basis matrix Q from the basis (e1, e2, e3) to the basis (w1, w2, w3) is

Q =

1/
√

3 1/
√

2 1/
√

6

1/
√

3 −1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

 ,

andQ−1 = Q>. We obtain an equivalent representation ρ′′1(πi) and over the basis (w1, w2, w3),
the unitary matrices representing the linear maps ρ′′1(πi) are the matrices Q−1MiQ shown
below: 1 0 0

0 1 0
0 0 1

 ,

1 0 0

0 1/2
√

3/2

0
√

3/2 −1/2

 ,

1 0 0
0 −1 0
0 0 1

 ,

1 0 0

0 −1/2 −
√

3/2

0
√

3/2 −1/2

 ,

1 0 0

0 −1/2
√

3/2

0 −
√

3/2 −1/2

 ,

1 0 0

0 1/2 −
√

3/2

0 −
√

3/2 −1/2

 .

It is now clear that the subspace V1 spanned by w1 and the subspace V2 spanned by
w2 and w3 are invariant. It is not hard to show that the subrepresentation of ρ′′1 in V2

is irreducible. This representation is usually called the standard representation of S3; see
Fulton and Harris [25], Section 1.3. Thus, we have two irreducible representations of S3,
the second one being two-dimensional. It turns out that S3 only has one more irreducible
representation. How do we find it? The answer is, as a subrepresentation of the regular
representation.
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Recall the regular representation ρR : S3 → GL(C6) of S3 from Example 3.2. The notion
of regular representation can be defined for any finite group.

Definition 3.5. Let G be a finite group with g = |G| elements. We define the regular
representation ρR : G → GL(Cg) as follows. Let (es1 , . . . , esg) be the canonical basis of Cg

indexed by the g elements of G and set

ρR(si)(esj) = esisj , 1 ≤ i, j ≤ g.

The following facts about irreducible finite-dimensional representations of a finite group
G can be shown.

(1) Every irreducible finite-dimensional representation ρi : G → GL(Cni) of the finite
group G is equivalent to a subrepresentation of the regular representation ρR : G →
GL(Cg) of G in Cg (where g = |G|).

(2) Every irreducible representation ρi : G → GL(Cni) occurs ni times in the regular
representation; see Proposition 4.17.

(3) If there are h irreducible representations ρi : G→ GL(Cni) (up to equivalence), then

n2
1 + · · ·+ n2

h = g;

see Section 4.2, Example 4.2.

(4) The number h of irreducible representations of G (up to equivalence) is equal to the
number of conjugacy classes of G; see Section 4.2, Example 4.2.

The proof of these standard facts of representation theory can be found in Serre [62],
Fulton and Harris [25], Simon [65], Hall [32], or any book on representation theory. We also
prove these facts in Section 4.2 (Example 4.2) and in Section 4.3 (Proposition 4.17) as a
special case of results applying to compact groups.

If G is finite of order g = |G|, if we write G = {s1, . . . , sg} and denote the canonical basis
vectors of Cg as (es1 , . . . , esg), then there is an isomorphism between Cg and the vector space
CG of functions from G to C defined such that to every vector x = zs1es1 + · · · + zsgesg in
Cg, we assign the function fx : G→ C given by

fx(si) = zsi , 1 ≤ i ≤ g.

Now by the definition of the regular representation ρR of G, we have

ρR(si)(x) = ρR(si)

(
g∑
j=1

zsjesj

)
=

g∑
j=1

zsjesisj , 1 ≤ i ≤ g. (∗1)
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If we let sisj = sk, then sj = s−1
i sk, zsjesisj = zs−1

i sk
esk , and the vector yi = ρR(si)(x) =∑g

k=1 zs−1
i sk

esk corresponds the function fyi given by

fyi(sk) = zs−1
i sk

= fyi(s
−1
i sk), 1 ≤ k ≤ g.

Therefore, (∗1) induces the representation R : G→ GL(CG) given by

(Rsi(f))(sk) = f(s−1
i sk), f ∈ CG, 1 ≤ i, k ≤ g.

Definition 3.6. Let G be a finite group with g = |G| elements. The representation R given
by

(Rsi(f))(sk) = f(s−1
i sk), f ∈ CG, 1 ≤ i, k ≤ g, (∗2)

is also called the regular representation of G in CG.

The representation of Definition 3.6 is a special case of the notion of regular representation
defined in Definition 3.14 for locally compact groups. To be very precise, it is the left regular
representation of G because it acts on the left on functions in CG (recall that for two sets X
and Y , the set of all functions f : X → Y is denoted Y X). At first glance, the term s−1

i sk
may seem wrong, but it is necessary to use s−1

i instead of si to insure that R is a left action
on functions in CG. We already noticed this fact in Vol. I, Section 8.2, Definition 8.7. There
is also a right regular representation defined by

(Rr
si

(f))(sk) = f(sksi), f ∈ CG, 1 ≤ i, k ≤ g. (∗3)

Representations as given by (∗2) are said to be representations by left shifts , and represen-
tations as given by (∗3) are said to be representations by right shifts .

Obviously, the notion of left regular representation (and right regular representation)
makes sense for any group G, finite or infinite, and any subspace F of the vector space all
functions in CG, namely it is the representation R : G→ GL(F) given by

(Rs(f))(t) = f(s−1t), f ∈ F , s, t ∈ G. (∗4)

If G is an infinite locally compact groups, it is necessary to replace the vector space CG

of the representation by a space of functions defined on G, namely L2
λ(G;C) (where λ is a

left Haar measure on G).

If V has a hermitian inner product, then we can prove that any irreducible linear repre-
sentation ρ : G → GL(V ) of a group G, finite or infinite, where ρ is not assumed to satisfy
condition (C), is equivalent to some (irreducible) subrepresentation ρ̂ : G → GL(F) of the
left regular representation R : G → GL(CG). The key to the construction is the mapping
ϕ : V → CG converting a vector u ∈ V to a function fu ∈ CG. This mapping is defined as
follow.
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Definition 3.7. Let V be a vector space with a hermitian inner product and let ρ : G →
GL(V ) be a linear representation of a group G, finite or infinite, where ρ is not assumed to
satisfy condition (C). Pick any nonzero vector a ∈ V and define ϕ(u) = fu ∈ CG by

fu(s) = 〈ρ(s−1)(u), a〉, u ∈ V, s ∈ G. (∗5)

The reason for using ρ(s−1) is that we want the left regular representation. If we use
ρ(s), then we obtain the right regular representation, as in Vilenkin [70] (Chapter I, Section
2.4). Since ρ(s−1) is a linear map and the inner product is linear in its first argument, the
function ϕ is linear. The trick is to see what is fρ(s)(u)(t) (s, t ∈ G). By definition,

fρ(s)(u)(t) = 〈ρ(t−1)(ρ(s)(u)), a〉
= 〈ρ(t−1s)(u), a〉
= 〈ρ((s−1t)−1)(u), a〉
= fu(s

−1t),

which we record as the equation

fρ(s)(u)(t) = fu(s
−1t). (∗6)

Also observe that
fa(e) = 〈ρ(e−1)(a), a〉 = 〈ρ(e)(a), a〉 = 〈a, a〉,

so fa(e) 6= 0 since a 6= 0. Using the above considerations we can prove the following result.

Proposition 3.1. If V has a hermitian inner product, then any irreducible linear represen-
tation ρ : G → GL(V ) of a finite or infinite group G (where ρ is not assumed to satisfy
condition (C)) is equivalent to some (irreducible) subrepresentation ρ̂ : G → GL(F) of the
left regular representation R : G → GL(CG). The linear map ϕ : V → CG defined above is
injective, F = ϕ(V ), and ϕ : V → F provides the equivalence between ρ and ρ̂.

Proof. Since ρ̂ : G→ GL(F) is a subrepresentation of the regular representation of G, it is
given by

(ρ̂(s)(f))(t) = f(s−1t), f ∈ F , s, t ∈ G.

Let us first verify that the diagram

V
ρ(s) //

ϕ

��

V

ϕ

��
F

ρ̂(s)
// F ,

commutes, that is,
ϕ(ρ(s)(u)) = ρ̂(s)(ϕ(u)), s ∈ G, u ∈ V,
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which means that

ϕ(ρ(s)(u))(t) = ρ̂(s)(ϕ(u))(t), s, t ∈ G, u ∈ V.

By definition of ϕ and (∗6),

ϕ(ρ(s)(u))(t) = fρ(s)(u)(t) = fu(s
−1t),

and
ρ̂(s)(ϕ(u))(t) = (ρ̂(s)(fu))(t) = fu(s

−1t),

which verifies the commutativity of the diagram. Consequently, as ϕ is surjective on F by
definition, it suffices to prove that ϕ is injective to conclude that ϕ is an equivalence between
ρ and ρ̂. Let K be the kernel of ϕ. We prove that K is invariant under ρ. For any u ∈ V ,
we have u ∈ K iff fu = 0 iff fu(t) = 0 for all t ∈ G iff fu(s

−1t) = 0 for all t ∈ G and all
s ∈ G (since for fixed s, the map t 7→ s−1t is a bijection of G), which by (∗6) is equivalent
to fρ(s)(u)(t) = 0 for all t ∈ G iff ρ(s)(u) ∈ K for all s ∈ G. So K is indeed invariant. Since
ρ is irreducible, either K = (0) of K = V . But we observed earlier that fa(e) 6= 0 so K = V
is impossible since it means that fu(t) = 0 for all u ∈ V and all t ∈ G. Therefore, K = (0)
and the map ϕ in injective.

If V is a Hilbert space, ρ is a unitary representation, all functions fu belong to L2(G),
and the map ϕ : V → L2(G) is well-behaved, then ρ̂ is a unitary subrepresentation of the
regular representation of G in L2(G). This is the case for compact groups; see Proposition
4.17. Proposition 3.1 implies that if G is finite, since CG is isomorphic to C|G|, then the
dimension of the vector space V involved in an irreducible representation of G is at most the
cardinality of G.

We now return to the regular representation of Example 3.2.

Example 3.6. It is easy to see that the symmetric group has three conjugacy classes,
{π1}, {π2, π3, π6} and {π4, π5}, so it has three irreducible representations. Going back to
the regular representation ρR : S3 → GL(C6), we see that the one-dimensional subspace V1

spanned by e1 + e2 + e3 + e4 + e5 + e6 is invariant so the representation ρR is reducible. The
subrepresentation of ρR in V1 is equivalent to the trivial representation, which is irreducible.
Although this is not obvious, there is another one-dimensional irreducible representation,
which is the representation induced by the signature function ε on permutations. Recall that
for any permutation π, its signature ε(π) is +1 if π is the composition of an even number
of transpositions, −1 if it is the composition of an odd number of transpositions. The map
ε : Sn → C is a homomorphism and it yields the irreducible representation ρε : Sn → U(1)
given by

(ρε(π))(z) = ε(π)z, z ∈ C.

Then we see that the subspace V2 spanned by the vector e1 − e2 − e3 + e4 + e5 − e6 (which
corresponds to the signatures +1,−1,−1,+1,+1,−1 of the permutations π1, . . . , π6) is in-
variant under ρR, and the subrepresentation of ρR to V2 is equivalent to the irreducible
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representation ρε. The orthogonal complement V3 of V1 ⊕ V2 is the intersection of the two
hyperplanes in C6 given by the equations

x1 + x2 + x3 + x4 + x5 + x6 = 0

x1 − x2 − x3 + x4 + x5 − x6 = 0,

a subspace of dimension 4. By adding and subtracting these equations, we see that the
subspace V3 is also defined by the equations

x1 + x4 + x5 = 0

x2 + x3 + x6 = 0.

We can prove directly that V3 is invariant under ρR, but since the representation ρR is
actually unitary, we prefer using results from the next section.

An easy but crucial lemma about irreducible representations is “Schur’s Lemma.”

Lemma 3.2. (Schur’s Lemma) Let ρ1 : G→ GL(V ) and ρ2 : G→ GL(W ) be any two real
or complex finite-dimensional representations of a group G. If ρ1 and ρ2 are irreducible, then
the following properties hold:

(i) Every G-map ϕ : ρ1 → ρ2 in HomG(ρ1, ρ2) is either the zero map or an isomorphism.

(ii) If ρ1 is a complex representation, then every G-map ϕ : ρ1 → ρ1 in HomG(ρ1, ρ1) is of
the form ϕ = λid, for some λ ∈ C.

(iii) If ρ1 : G → GL(V ) and ρ2 : G → GL(W ) are real or complex irreducible representa-
tions, then ρ1 and ρ2 are equivalent iff HomG(ρ1, ρ2) 6= (0). If ρ1 and ρ2 are complex
representations, then ρ1 and ρ2 are equivalent iff dim HomG(ρ1, ρ2) = 1.

Proof. (i) Observe that the kernel Ker ϕ ⊆ V of ϕ is invariant under ρ1. Indeed, for every
v ∈ Ker ϕ and every g ∈ G, we have

ϕ(ρ1(g)(v)) = ρ2(g)(ϕ(v)) = ρ2(g)(0) = 0,

so ρ1(g)(v) ∈ Ker ϕ. Thus, ρ1 : G → GL(Ker ϕ) is a subrepresentation of ρ1, and as ρ1 is
irreducible, either Ker ϕ = (0) or Ker ϕ = V . In the second case, ϕ = 0. If Ker ϕ = (0),
then ϕ is injective. However, ϕ(V ) ⊆ W is invariant under ρ2, since for every v ∈ V and
every g ∈ G,

ρ2(g)(ϕ(v)) = ϕ(ρ1(g)(v)) ∈ ϕ(V ),

and as ϕ(V ) 6= (0) (as V 6= (0) since ρ1 is irreducible) and ρ2 is irreducible, we must have
ϕ(V ) = W ; that is, ϕ is an isomorphism. The proof also works for infinite-dimensional
spaces.
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(ii) Since V is a complex vector space of finite dimension, the linear map ϕ has some
eigenvalue λ ∈ C. Let Eλ ⊆ V be the eigenspace associated with λ. The subspace Eλ is
invariant under ρ1, since for every u ∈ Eλ and every g ∈ G, we have

ϕ(ρ1(g)(u)) = ρ1(g)(ϕ(u)) = ρ1(g)(λu) = λρ1(g)(u),

so ρ1 : G → GL(Eλ) is a subrepresentation of ρ1, and as ρ1 is irreducible and Eλ 6= (0), we
must have Eλ = V .

(iii) If HomG(ρ1, ρ2) = (0), then ρ1 and ρ2 are inequivalent, since otherwise HomG(ρ1, ρ2)
would contain an isomorphism. Conversely, if HomG(ρ1, ρ2) 6= (0), then by (i), there is
some isomorphism in HomG(ρ1, ρ2), so ρ1 and ρ2 are equivalent. Therefore, ρ1 and ρ2 are
inequivalent iff HomG(ρ1, ρ2) = (0), and ρ1 and ρ2 are equivalent iff HomG(ρ1, ρ2) 6= (0).

Suppose that ρ1 and ρ2 are complex equivalent representations and let ϕ1 and ϕ2 be
two nonzero maps in HomG(ρ1, ρ2) 6= (0), which by (i), must be isomorphisms. It is imme-
diately verified that ϕ−1

2 ◦ ϕ1 ∈ HomG(ρ1, ρ1) and ϕ−1
2 ◦ ϕ1 is an isomorphism, so by (ii),

we have ϕ−1
2 ◦ ϕ1 = λid for some nonzero λ ∈ C, which means that ϕ1 = λϕ2. Therefore,

dim HomG(ρ1, ρ2) = 1. Conversely, if dim HomG(ρ1, ρ2) = 1, by the first part, ρ1 and ρ2 are
equivalent.

Part (i) of Schur’s Lemma also holds for infinite-dimensional representations as we noted
in the proof.

An interesting corollary of Schur’s Lemma is the following fact:

Proposition 3.3. A complex irreducible finite-dimensional representation ρ : G → GL(V )
of a commutative group G is one-dimensional.

Proof. Since G is abelian, we claim that for every g ∈ G, the map τg : V → V given by
τg(v) = ρ(g)(v) for all v ∈ V is a G-map. This amounts to checking that the following
diagram commutes

V
ρ(g1) //

τg

��

V

τg

��
V

ρ(g1)
// V

for all g, g1 ∈ G. This is equivalent to checking that

τg(ρ(g1)(v)) = ρ(g)(ρ(g1)(v)) = ρ(gg1)(v) = ρ(g1)(τg(v)) = ρ(g1)(ρ(g)(v)) = ρ(g1g)(v)

for all v ∈ V , that is, ρ(gg1)(v) = ρ(g1g)(v), which holds since G is commutative (so
gg1 = g1g).

By Schur’s Lemma (Lemma 3.2(ii)), τg = λgid for some λg ∈ C. It follows that any
subspace of V is invariant. If the representation is irreducible, we must have dim(V ) = 1
since otherwise V would contain a one-dimensional invariant subspace, contradicting the
assumption that ρ is irreducible.
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3.2 Unitary Group Representations

We now generalize representations to allow the representing space to be a complex Hilbert
space (typically separable).

Definition 3.8. Given a locally compact group G and a complex Hilbert space H, a unitary
representation of G in H is a group homomorphism U : G → U(H), where U(H) is the
group of unitary operators on H, such that:

(C) The map g 7→ U(g)(u) is continuous for every u ∈ H.

(U) Every linear map U(g) is an isometry; that is,

〈U(g)(u), U(g)(v)〉 = 〈u, v〉, for all g ∈ G and all u, v ∈ H.

In particular, U(g) is continuous and

(U(g))−1 = (U(g))∗, for all g ∈ G.

As in Definition 3.1, to avoid confusion when representations involving different groups
arise we denote the space of the representation U by HU , and so we denote a representation
as U : G→ U(HU).

Remark: Sometimes, a unitary representation as in Definition 3.8 is called a continuous
unitary representation. Note that if H is infinite-dimensional, the map g 7→ U(g) is not
necessarily continuous . For a counter-example involving the regular representation of an
infinite compact group G in L2(G), see Dieudonné [11] (Chapter XXI, Section 1, Problem
3). However, the left action Ua : G×H → H associated with U given by

Ua(s, x) = U(s)(x), for all s ∈ G and all x ∈ H

is continuous . Indeed, since U(s) is a unitary map, we have ‖U(s)(w)‖ = ‖w‖ for all w ∈ H,
so for all s, t ∈ G and all x, y ∈ H, we have

‖Ua(s, x)− Ua(t, y)‖ ≤ ‖U(s)(x)− U(s)(y)‖+ ‖U(s)(y)− U(t)(y)‖
= ‖U(s)(x− y)‖+ ‖U(s)(y)− U(t)(y)‖
= ‖x− y‖+ ‖U(s)(y)− U(t)(y)‖ ,

and since by hypothesis, for any fixed y ∈ H, the map s 7→ U(s)(y) is continuous, we see
that the action Ua is continuous. Conversely, if the action Ua : G ×H → H is continuous,
then obviously the map s 7→ U(s)(y) is continuous, so U is a unitary representation.

The notion of morphism of unitary representations and of equivalence is adapted as
follows.
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Definition 3.9. Given any two unitary representations U1 : G → U(H1) and U2 : G →
U(H2), a G-map (or morphism of representations) ϕ : U1 → U2 is a continuous linear map
which is equivariant , which means that the following diagram commutes for every g ∈ G:

H1
U1(g) //

ϕ

��

H1

ϕ

��
H2

U2(g)
// H2,

i.e.
ϕ ◦ U1(g) = U2(g) ◦ ϕ, g ∈ G.

The space of all G-maps between two representations as above is denoted HomG(U1, U2). A
G-map is also called an intertwining operator . Two unitary representations U1 : G→ U(H1)
and U2 : G → U(H2) are equivalent iff ϕ : H1 → H2 is an invertible linear isometry whose
inverse is also continuous; thus U2(g) = ϕ ◦ U1(g) ◦ ϕ−1, for all g ∈ G.

When U1 = U2, the space of G-maps HomG(U,U) is a unital subalgebra of L(H) denoted
by C(U) and is called the commutant or centralizer of U . Observe that

C(U) = {ϕ ∈ L(H) | ϕ ◦ U(g) = U(g) ◦ ϕ for all g ∈ G}.

It is easy to show that the unital subalgebra C(U) of L(H) is actually a C∗-algebra and
that it is closed in L(H) under weak limits (see Definition 2.21(3)). By the von Neumann
density theorem, it is also closed in L(H) under strong limits (Definition 2.21(2)); see Folland
[22], Section 1.6. Such a C∗-algebra is a von Neumann algebra.

Given a unitary representation U : G → U(H), the definition of an invariant subspace
W ⊆ H is the same as in Definition 3.4. If W ⊆ H is invariant under U , we say that the
subrepresentation U : G → U(W ) is closed if W is closed in H. As in the case of unitary
representations of algebras, the notion of subrepresentation is only well-defined for closed
invariant subspaces of H. However, by Proposition 3.5, since the closure W of an invariant
subspace W is closed, the notion of subrepresentation of G in W is well-defined.

In the definition of an irreducible unitary representation U : G → U(H) (H 6= (0)),
we require that the only closed subrepresentations U : G → U(W ) of the representation
U : G→ U(H) correspond to W = (0) or W = H.

As for representations of algebras, we can define topologically cyclic representations and
cyclic vectors.

Definition 3.10. Let U : G → U(H) be a unitary representation of G in H. A vector
x0 ∈ H is called a totalizer , or totalizing vector , or cyclic vector for the representation U
if the subspace of H spanned by the set {U(s)(x0) | s ∈ G} is dense in H. Equivalently, if
Mx0 denotes the closure of the set {U(s)(x0) | s ∈ G}, called the cyclic subspace generated
by x0, which is invariant under U , then x0 is a totalizer (a cyclic vector) if Mx0 = H. A
representation which admits a totalizer is said to be topologically cyclic.
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The importance of totalizers stems from the following result which is the analog of Propo-
sition 2.10 for group representations. In fact, the proof is essentially the same.

Proposition 3.4. Let U : G → U(H) be a unitary representation of G in H. Then H is
the Hilbert sum of a sequence (Hα)α∈Λ of closed subspaces Hα 6= (0) of H invariant under
U , and such that the restriction of U to each Hα is topologically cyclic. If H is separable,
the family Λ is countable (possibly finite).

Proposition 3.4 is proven in the separable case in Dieudonné [14] (Chapter XV, Section
5), and in general, using Zorn’s Lemma; see Folland [22] (Chapter 3, Proposition 3.3).

Hilbert sums of unitary representations of a locally compact group are defined just as in
the case of an algebra; see Definition 2.6. We also have the following version of Proposition
2.5 for group representations.

Proposition 3.5. Let U : G→ U(H) be a unitary representation of G in H.

(1) If the subspace E of H is invariant under U , then its closure E is also invariant under
U .

(2) Let E be a closed subspace of H invariant under U . If E⊥ is the orthogonal complement
of E in H, then E⊥ is invariant under U . If U1(s) and U2(s) are the restrictions of
U(s) to E and E⊥, then H = E⊕E⊥ (the algebraic direct sum), and the representation
U is the Hilbert sum of the representations U1 and U2.

Proof. Part (1) is easy to prove and follows from the continuity of U(s); see Dieudonné [17],
(Chapter III, Section 11). For part (2), let x ∈ E and y ∈ E⊥. For any s ∈ G we have

〈x, U(s)(y)〉 = 〈(U(s))∗(x), y〉 = 〈(U(s))−1(x), y〉 = 〈U(s−1)(x), y〉 = 0,

since E is invariant under U , so U(s−1)(x) ∈ E, and since E⊥ is the orthogonal complement
of E and y ∈ E⊥. Then U(s)(y) is orthogonal to all x ∈ E, which means that U(s)(y) ∈ E⊥,
so E⊥ is invariant under U . The last property is obvious.

One should realize that property (2) of Proposition 3.5 fails for nonunitary representa-
tions. For example, the map

U : x 7→
(

1 x
0 1

)
is a representation of R in C2, but the only nontrivial invariant subspace is the subspace
spanned by (1, 0), which is one-dimensional. The problem is that because R is not compact,
there is no way to define an inner product on C2 invariant under U .

However, using the Haar measure, Vol. I, Theorem 8.36 shows that if H is a finite-
dimensional hermitian space, then there is an inner-product on H for which the linear maps
U(s) are unitary.
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Theorem 3.6. (Complete Reducibility) Let U : G → GL(H) be a linear representation of
a compact group G in a complex space H of dimension n ≥ 1. There is a hermitian inner
product 〈−,−〉 on H, such that U : G → U(H) is a unitary representation of G in the
hermitian space (H, 〈−,−〉). The representation U is the direct sum of a finite number of
irreducible unitary representations.

Proof. As we noted in the discussion following Definition 3.1, the representation U : G →
GL(H) is a continuous linear map g 7→ U(g) from G to L(H) equipped with any norm. Since
H is finite-dimensional we can define a hermitian inner product on it, for example by picking
a basis and considering the hermitian inner product for which this basis is orthonormal. Since
G is compact and H is a finite-dimensional hermitian space, Vol. I, Theorem 8.36 yields an
inner product on H which is invariant under U .

We proceed by complete induction on the dimension n ≥ 1 of H. When n = 1, the
representation is automatically irreducible. If n > 1 and the representation is not irreducible,
then it has some invariant subspace H1 of dimension n1 with 1 ≤ n1 < n. By Proposition
3.5, the orthogonal complement H2 = H⊥1 of H1 is also invariant under U , and its dimension
n2 satisfies n2 ≥ 1 and n1 + n2 = n, with n > 1 and 1 ≤ n1 < n, so we also have 1 ≤ n2 <
n. We can apply the induction hypothesis to the subrepresentations U : G → U(H1) and
U : G→ U(H2), with H = H1⊕H2, and we obtain a collection of irreducible representations
of G whose direct sum is U .

Theorem 3.6 is very significant because it shows that the study of arbitrary finite-
dimensional representations of a compact group G reduces to the study of the irreducible
unitary (finite-dimensional) representations of G.

Example 3.7. The regular representation ρR : S3 → GL(C6) of S3 from Example 3.2 is
obviously unitary. Theorem 3.6 tells us that ρR is the direct sum of irreducible represen-
tations, and in Example 3.6 we already found two irreducible representations which are
one-dimensional. The discussion before Example 3.6 also shows that the standard represen-
tation (see Example 3.5) must occur in the representation ρR, and if there are h irreducible
representations, the equation n2

1 + · · ·+n2
h = g = 6 implies that 1 + 1 + 22 + · · ·+n2

h = 6, so
h = 3 and the standard representation occurs twice. Therefore, the orthogonal complement
V3 of the direct sum V1 ⊕ V2 given by the equations

x1 + x4 + x5 = 0

x2 + x3 + x6 = 0

must be the direct sum of 2 two-dimensional invariant subspaces. With a little help from
Matlab, we find that the subspace V 3

1 spanned by the vectors

e1 + e2 − e3 − e4, e3 + e4 − e5 − e6

is invariant under ρR, the subspace V 3
2 spanned by the vectors

e1 − e3 − e4 + e6, e2 + e4 − e5 − e6,
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is also invariant under ρR, both V 3
1 and V 3

2 are orthogonal to V1 ⊕ V2, and

C6 = V1 ⊕ V2 ⊕ V 3
1 ⊕ V 3

2 .

To show that V 3
1 is invariant, we observe that V 3

1 is also spanned by

e1 + e2 − e3 − e4, e3 + e4 − e5 − e6, e1 + e2 − e5 − e6,

and the action of ρR(πi) is to permute these vectors, possibly flipping signs, and similarly
V 3

2 is also spanned by

e1 − e3 − e4 + e6, e2 + e4 − e5 − e6, e1 + e2 − e3 − e5,

and the action of ρR(πi) is also to permute these vectors, possibly flipping signs. According
to our previous discussion, these two sub-representations of S3 in V 3

1 and V 3
2 are equivalent

to the standard representation given in Example 3.5. Thus, we identified explicitly the three
irreducible representations of S3 as subrepresentations of the regular representation.

The analog of Proposition 2.7 holds for unitary group representations.

Proposition 3.7. Let U : G → U(H) be a unitary representation of G in H. A closed
subspace E of H is invariant under U iff PEU(g) = U(g)PE for all g ∈ G, in other words,
PE ∈ C(U) = HomG(U,U), where PE : H → E is the orthogonal projection of H onto E.

Proof. Assume that PE ∈ HomG(U,U), so that the following diagram commutes:

H
U(g) //

PE
��

H

PE
��

H
U(g)

// H.

For any x ∈ E, since PE is the orthogonal projection of H onto E, we have PE(x) = x, so

PE(U(g)(x)) = U(g)(PE(x)) = U(g)(x),

which shows that U(g)(x) ∈ E, and thus E is invariant under U .

Conversely, assume that E is invariant under U . Since E is closed, by a well-known result
of Hilbert space theory, we have H = E⊕E⊥, an algebraic direct sum. For any x ∈ E, since
E is invariant under U , we have U(g)(x) ∈ E for all g ∈ G, and since PE is a projection onto
E, we have

U(g)(PE(x)) = U(g)(x) = PE(U(g)(x)), for all x ∈ E.
By Proposition 3.5, the subspace E⊥ is also invariant under U . For any x ∈ E⊥, we have
U(g)(x) ∈ E⊥, so PE(x) = PE(U(g)(x)) = 0, and we have

U(g)(PE(x)) = 0 = PE(U(g)(x)), for all x ∈ E⊥.
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Since U = E ⊕ E⊥, we have

U(g)(PE(x)) = PE(U(g)(x)), for all x ∈ H,

namely, PE ∈ HomG(U,U).

Proposition 3.7 yields a method for proving that a unitary representation U : G→ U(H)
is irreducible. Indeed, if U is reducible, then there is some nonzero G-map ϕ ∈ HomG(U,U),
which is not invertible. Thus, if every nonzero G-map in HomG(U,U) is invertible, then U
must be irreducible. This technique is illustrated in the next example.

Example 3.8. Recall the representations Um : SU(2) → GL(PC
m(2)) from Example 3.3,

where PC
m(2) denotes the vector space of complex homogeneous polynomials P (z1, z2) =∑m

k=0 ckz
k
1z

m−k
2 of degree m (ci ∈ C). The m+ 1 monomials Pk = zk1z

m−k
2 (0 ≤ k ≤ m) form

a basis of PC
m(2). In the physics literature, it is customary to index homogeneous polynomials

in terms of ` = m/2, which is an integer when m is even but a half integer when m is odd.
In this context, the number ` = m/2 is the spin of a particle. In terms of ` = m/2, a
homogeneous polynomial is written as

P (z1, z2) =
∑̀
k=−`

ckz
`−k
1 z`+k2 ,

where it is assumed that `+ k = j, where j takes the integral values j = 0, 1, . . . , 2` = m, so
that `−k = 2`−(`+k) = 2`−j takes the values 2`, 2`−1, . . . , 0. Note that k = j−` = j−m/2
with j = 0, 1, . . . , 2` = m, so k is an integer only if m is even. The physics notation makes
it easier to make the connection between the matrix expression of the representations Um
(renamed as U`) and the special functions expressed in terms of Jacobi polynomials; see
Vilenkin [70] (Chapter III, Sections 2 and 3).

For every matrix S ∈ SU(2), with

S =

(
α β

−β α

)
, αα + ββ = 1,

for every homogeneous polynomial P ∈ PC
m(2), Um(S)(P (z1, z2)) is defined by

Um(S)(P (z1, z2)) = P (αz1 − βz2, βz1 + αz2). (Um)

As defined, the representations Um are not unitary, but since SU(2) is compact, we can
apply Theorem 3.6 to find an invariant inner product on PC

m(2). This can actually be done
quite explicitly; we will come back to this point later.

Proposition 3.8. The representations Um : SU(2)→ GL(PC
m(2)) are irreducible.
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Proof. To prove that the representations Um are irreducible, it suffices to prove that every
nonzero equivariant map A in HomSU(2)(Um, Um) is invertible. Actually, we will prove that
A = λid, with λ ∈ C, λ 6= 0. A nice and rather short proof is given in Bröcker and tom Dieck
[6], Chapter 2, Proposition 5.1. The trick is to consider the matrices

rx(ϕ) =

(
eiϕ 0
0 e−iϕ

)
, 0 < ϕ < π.

Plugging the matrix rx(ϕ) and P = Pk = zk1z
m−k
2 in Equation (Um) yields

Um(rx(ϕ))(Pk) = (e−iϕz1)k(eiϕz2)m−k = ei(m−2k)ϕzk1z
m−k
2 = ei(m−2k)ϕPk.

Therefore, (P0, . . . , Pm) is a basis (in fact, orthogonal) of eigenvectors of Um(rx(ϕ)) for
the eigenvalues (eimϕ, ei(m−2)ϕ, . . . , e−imϕ). We can pick ϕ such that these eigenvalues are
all distinct, for example ϕ = 2π/m. Now if A ∈ HomSU(2)(Um, Um) is equivariant, then
Um(rx(ϕ))A = AUm(rx(ϕ)), so for k = 0, . . . ,m we have

Um(rx(ϕ))APk = AUm(rx(ϕ))Pk = Aei(m−2k)ϕPk = ei(m−2k)ϕAPk.

The above implies that either APk = 0 or APk is an eigenvector of Um(rx(ϕ)) for the eigen-
value ei(m−2k)ϕ. Since ϕ was chosen so that the eigenvalues (eimϕ, . . . , ei(m−2)ϕ, . . . , e−imϕ)
are all distinct, each eigenspace is one-dimensional, so APk = ckPk for some ck ∈ C, ck 6= 0.
In either case,

APk = ckPk

for some ck ∈ C. We will now prove that c0 = c1 = · · · = cm. This shows that A = c0idm+1,
and since A is not the zero map, c0 6= 0, so A is invertible, as desired.

To prove that the ck have the same value, we use the matrices

ry(t) =

(
cos t − sin t
sin t cos t

)
, t ∈ R.

Since A is equivariant, AUm(ry(t)) = Um(ry(t))A, so we need to compute AUm(ry(t))Pm and
Um(ry(t))APm. Since Pm = zm1 and APk = ckPk, using Equation (Um) we have

AUm(ry(t))Pm = A(z1 cos t+ z2 sin t)m

= A
m∑
k=1

(
m

k

)
(cos t)k(sin t)m−kzk1z

m−k
2

=
m∑
k=1

(
m

k

)
(cos t)k(sin t)m−kAPk

=
m∑
k=1

(
m

k

)
(cos t)k(sin t)m−kckPk.



142 CHAPTER 3. REPRESENTATIONS OF LOCALLY COMPACT GROUPS

We also have

Um(ry(t))APm = Um(ry(t))cmPm = cmUm(ry(t))Pm = cm(z1 cos t+ z2 sin t)m

=
m∑
k=1

(
m

k

)
(cos t)k(sin t)m−kcmPk.

Since AUm(ry(t))Pm = Um(ry(t))APm, comparing coefficients (since these equations hold for
all t ∈ R) we obtain

ck = cm, 0 ≤ k ≤ m.

Therefore, on the basis (P0, . . . , Pm) we have APk = c0Pk, which means that A = c0idm+1,
as claimed.

Therefore, the representations Um : SU(2) → GL(PC
m(2)) are irreducible unitary repre-

sentations of SU(2). In fact, they constitute all of them up to equivalence, but this is harder
to prove. A good strategy is to use properties of the characters of compact groups; see
Section 4.2.

The groups SU(2) and SO(3) are intimately related by the adjoint representation that
we review next. Details can be found in Gallier and Quaintance [28] (Chapter 15) and Gallier
[26] (Chapter 9). The group SU(2) turns out to be the group of unit quaternions but all we
need here is Theorem 3.9.

The group SU(2) is the group of 2× 2 complex matrices q of the form

q =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1.

If we get rid of the condition a2 + b2 + c2 + d2 = 1, the set of all matrices X of the form

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R

is a real vector space, which turns out to be closed under multiplication and in which every
nonzero element has a multiplicative inverse. It is the skew-field of quaternions , denoted H.

If we write α = a+ ib and β = c+ id, then a matrix q ∈ SU(2) can be written as

q =

(
α β

−β α

)
, with |α|2 + |β|2 = 1.

Since the matrices in SU(2) are unitary, the inverse of q is q∗, given by

q∗ =

(
α −β
β α

)
.

The group SU(2) is a Lie group, whose Lie algebra su(2) is defined as follows.
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Definition 3.11. The (real) vector space su(2) of 2× 2 skew Hermitian matrices with zero
trace is given by

su(2) =

{(
ix y + iz

−y + iz −ix

) ∣∣∣∣ (x, y, z) ∈ R3

}
.

Observe that for every matrix A ∈ su(2), we have A∗ = −A, that is, A is skew Hermitian,
and that tr(A) = 0. Also note that su(2) ⊆ H. The quaternions in su(2) are also called pure
quaternions (they have no “real part” a).

Definition 3.12. The adjoint representation of the group SU(2) is the group homomorphism
Ad: SU(2)→ GL(su(2)) defined such that for every q ∈ SU(2), with

q =

(
α β

−β α

)
∈ SU(2),

we have

Adq(A) = qAq∗, A ∈ su(2),

where q∗ is the inverse of q.

One needs to verify that the map Adq is an invertible linear map from su(2) to itself, and
that Ad is a group homomorphism, which is easy to do.

In order to associate a rotation ρq (in SO(3)) to q, we need to embed R3 into su(2) ⊆ H
as the pure quaternions, by

su(x, y, z) =

(
ix y + iz

−y + iz −ix

)
, (x, y, z) ∈ R3.

Then q defines the rotation ρq ∈ SO(3) given by

ρq(x, y, z) = su−1(q su(x, y, z)q∗).

Therefore, modulo the isomorphism su, the linear map ρq is the linear isomorphism Adq.
The reason why this is interesting is summarized in the following result proven in Gallier
[26] (Chapter 9).

Theorem 3.9. Let ρ : SU(2)→ SO(3) be the map given by

ρq(x, y, z) = su−1(q su(x, y, z)q∗), q ∈ SU(2), (x, y, z) ∈ R3.

The map ρ : SU(2)→ SO(3) is a surjective homomorphism whose kernel is {I,−I}. If

q =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1,
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let u = (b, c, d). We have ρq = I3 iff u = (b, c, d) = 0 iff |a| = 1. If u 6= 0, then either a = 0
and ρq is a rotation by π around the axis of rotation determined by the vector u = (b, c, d),
or 0 < |a| < 1 and ρq is the rotation around the axis of rotation determined by the vector
u = (b, c, d) and the angle of rotation θ 6= π with 0 < θ < 2π, is given by

tan(θ/2) =
‖u‖
a
.

Here we are assuming that a basis (w1, w2) has been chosen in the plane orthogonal to
u = (b, c, d), such that (w1, w2, u) is positively oriented, that is, det(w1, w2, u) > 0 (where
w1, w2, u are expressed over the canonical basis (e1, e2, e3), which is chosen to define positive
orientation).

Remark: Under the orientation defined above, we have

cos(θ/2) = a, 0 < θ < 2π.

Note that the condition 0 < θ < 2π implies that θ is uniquely determined by the above
equation. This is not the case if we choose π such that −π < θ < π since both θ and −θ
satisfy the equation, and this shows why the condition 0 < θ < 2π is preferable. If 0 < a < 1,
then 0 < θ < π, and if −1 < a < 0, then π < θ < 2π. In the second case, ρq is also the
rotation of axis −u and of angle −(2π− θ) = θ− 2π with 0 < 2π− θ < π, but this time the
orientation of the plane orthogonal to −u = (b, c, d) is the opposite orientation from before.
This orientation is given by (w2, w1), so that (w2, w1,−u) has positive orientation. Since the
quaternions q and −q define the same rotation, we may assume that a > 0, in which case
0 < θ < π, but we have to remember that if a < 0 and if we pick −q instead of q, the vector
defining the axis of rotation becomes −u, which amounts to flipping the orientation of the
plane orthogonal to the axis of rotation.

Because there is a surjective homomorphism ρ : SU(2)→ SO(3) whose kernel is {−I, I},
the irreducible representations of SO(3) can also be determined (up to equivalence).

Example 3.9. If U : SO(3) → U(H) is an irreducible unitary representation of SO(3),
then V = U ◦ ρ is a unitary representation V : SU(2) → U(H) of SU(2) which must be
irreducible, and V (−I) is the identity. Conversely, an irreducible unitary representation
V : SU(2)→ U(H) of SU(2) descends to an irreducible unitary representation U : SO(3)→
U(H) iff V (−I) = id. Now by definition of Um,

Um(−I)(Pk) = (−z1)k(−z2)m−k = (−1)mzk1z
m−k
2 = (−1)mPk.

Therefore, Um(−I) = idm+1 iff (−1)m = 1 iff m is even. In summary, we obtained the
following result.

Proposition 3.10. The unitary representations W` : SO(3)→ GL(PC
2`(2)) given by

W`(ρq) = U2`(q) q ∈ SU(2), ` ≥ 0

are irreducible. Observe that PC
2`(2) has odd dimension 2`+ 1.
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We will prove later that every irreducible unitary representation of SU(2) is equivalent
to some representation Um, and that every irreducible unitary representation of SO(3) is
equivalent to some representation W`; see Proposition 5.1. We will also present a more
pleasant description of the irreducible unitary representation of SO(3) in terms of spaces of
harmonic polynomials.

Remark: The representations Um : SL(2,C) → GL(PC
m(2)) are not unitary, but they are

irreducible. If some nontrivial proper subspace F of PC
m(2) was invariant under Us for all

s ∈ SL(2,C), then F would also be invariant under Us for all s ∈ SU(2), contradicting the
irreducibility of Um : SU(2) → GL(PC

m(2)). The group SL(2,C) is the complexification of
the group SU(2).

There is a generalization of Schur’s Lemma to (complex) unitary representations, which
says that if a unitary representation U : G → U(H) is irreducible, then every G-map in
HomG(U,U) is of the form α idH , for some α ∈ C.

The proof requires much more machinery because a linear map on an infinite-dimensional
vector space may not have eigenvectors! It uses some results from the spectral theory of
algebras, in particular, the complement to Theorem 2.58.

Theorem 3.11. (Schur’s Lemma for unitary representations) The following properties hold.

(1) A (complex) unitary representation U : G → U(H) is irreducible iff every G-map in
C(U) = HomG(U,U) is of the form α idH , for some α ∈ C.

(2) Let U1 : G→ U(H1) and U2 : G→ U(H2) be two complex irreducible unitary represen-
tations. If U1 and U2 are equivalent, then HomG(U1, U2) is one-dimensional; otherwise
we have HomG(U1, U2) = (0).

Proof. We follow Folland’s proof; see Chapter 3, Proposition 3.5.

(a) If U is reducible, then by Proposition 3.7, C(U) contains a nontrivial projection.

Conversely, assume that there is some T ∈ C(U), such that T is not a scalar multiple of
the identity. We also have T ∗ ∈ C(U) because for all s ∈ G, we have

T ∗ ◦ U(s) = (U(s−1) ◦ T )∗ = (T ◦ U(s−1))∗ = U(s) ◦ T ∗.

Then A1 = (1/2)(T + T ∗) and A2 = (1/2)(T − T ∗) belong to C(U), and they can’t be
both scalar multiples of the identity, because if A1 = (1/2)(T + T ∗) = λ1id and A2 =
(1/2)(T − T ∗) = λ2id, then T = A1 + A2 = (λ1 + λ2)id. By definition, A∗1 = A1 and
A∗2 = −A2. We may assume that A1 is not a scalar multiple of the identity since the case
where A2 is not a scalar multiple of the identity is similar. By Theorem 2.58, since A1 is a
normal (continuous) operator on H, there is a projection-valued measure P on σ(A1), such
that

A1 =

∫
id dP,
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and for every f ∈ B(σ(A1)) we define f(A1) as the linear bounded operator on H given by

f(A1) =

∫
f dP.

Now by the complement to Theorem 2.58, any S ∈ L(H) which commutes with A1 also
commutes with A∗1 = A1 (if we use A2, then if S commutes with A2, it also commutes with
A∗2 = −A2), so S commutes with f(A1) for all f ∈ B(σ(A1)). In particular, for f = χE with
E ⊆ σ(A1), we have the projections χE(A1). If follows that every S ∈ L(H) of the form
U(s) commutes with all the projections χE(A1), thus C(U) contains nontrivial projections,
and by Proposition 3.7, U is reducible.

(b) If T ∈ HomG(U1, U2) and T 6= 0, then we also have T ∗ ∈ HomG(U2, U1), because

T ∗ ◦ U2(s) = (U2(s−1) ◦ T )∗ = (T ◦ U1(s−1))∗ = U1(s) ◦ T ∗.

It follows that T ∗ ◦ T ∈ C(U1) and T ◦ T ∗ ∈ C(U2), and since U1 and U2 are irreducible, by
part (a), we have T ∗ ◦ T = λ1id and T ◦ T ∗ = λ2id for some λ1, λ2 ∈ C. Then

λ1T = T ◦ T ∗ ◦ T = λ2T.

Since T 6= 0, we must have λ1 = λ2 = λ. Actually, λ is real and positive because T ∗ ◦ T is
positive semi-definite. Indeed, for all x ∈ H, we have

〈(T ∗ ◦ T )(x), x〉 = 〈T (x), T (x)〉 ≥ 0,

so for x 6= 0, we have

〈(T ∗ ◦ T )(x), x〉 = 〈λx, x〉 = λ〈x, x〉 = 〈T (x), T (x)〉,

which implies that λ > 0. Since λ > 0, the map λ−1/2T is unitary, so U1 and U2 are
equivalent. Consequently, HomG(U1, U2) = {0} iff U1 and U2 are not equivalent. If U1

and U2 are equivalent and T1, T2 are nonzero G-maps in HomG(U1, U2), then T1 and T2 are
unitary, so

T−1
2 ◦ T1 = T ∗2 ◦ T1 ∈ C(U1),

so by part (a), T−1
2 ◦ T1 = λI for some λ ∈ C, namely T1 = λT2, which implies that

HomG(U1, U2) is one-dimensional.

As in the case of representations in finite dimensional vector spaces, an important corol-
lary of Theorem 3.11 is the following result.

Proposition 3.12. Every complex irreducible unitary representation U : G → U(H) of a
locally compact abelian group G in a Hilbert space H is one-dimensional.

Proof. If G is abelian, then U(s) ◦ U(t) = U(t) ◦ U(s) for all s, t ∈ G, which implies that
U(s) ∈ C(U) for all s ∈ G. If U is irreducible, then by part (1) of Schur’s Lemma, we
have U(s) = αsid for some αs ∈ C. It follows that every one-dimensional subspace of H is
invariant, so H itself is one-dimensional.
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If the locally compact group G is abelian, then the following result shows that every
irreducible unitary representation of G is uniquely defined by a character of G, as introduced
in Vol. I, Definition 10.1.

Proposition 3.13. Let G be a locally compact abelian group. Every irreducible unitary
representation U : G→ U(1) of G is of the form

U(s)(z) = χ(s)z, for all s ∈ G and all z ∈ C

for a unique character χ ∈ Ĝ.

Proof. If U : G → U(1) is a unitary representation of G, then U(s) is a unitary map of C
for every s ∈ G, which means that there is a complex number of unit length, say χ(s) ∈ T,
such that

U(s)(z) = χ(s)z, for all z ∈ C,

and for all s1, s2 ∈ G, we have

χ(s1s2)z = U(s1s2)(z) = U(s1)(U(s2)(z)) = χ(s1)χ(s2)z for all z ∈ C,

which implies that
χ(s1s2) = χ(s1)χ(s2).

But then χ : G → T is a character of G, and so every unitary representation U : G → U(1)
of G is of the form

U(s)(z) = χ(s)z, for all s ∈ G and all z ∈ C

for a unique character χ ∈ Ĝ.

As an application of Theorem 3.6, Proposition 3.12 and Proposition 3.13, we describe all
finite-dimensional unitary representations of SO(2) ' U(1). Here we use the isomorphism
between SO(2) and U(1) given by(

cos θ − sin θ
sin θ cos θ

)
7→ eiθ, θ ∈ [0, 2π).

Proposition 3.14. Every finite-dimensional unitary representation U : SO(2) → U(n) of
SO(2) ' U(1) (n ≥ 1) is of the form

U(eiθ)(z) =


eik1θ 0 . . . 0

0 eik2θ . . . 0
...

...
. . .

...
0 . . . . . . eiknθ



z1

z2
...
zn

 , z ∈ Cn, 0 ≤ θ < 2π,

for some k1, . . . , kn ∈ Z.
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Proof. Since SO(2) ' U(1) is compact and abelian, by Proposition 3.12, every irreducible
unitary representation of SO(2) ' U(1) is one-dimensional. By Proposition 3.13, the ir-
reducible unitary representations of SO(2) ' U(1) are determined by the characters of
U(1) = T. By Vol. I, Proposition 10.9(2), the characters of U(1) = T are of the form

χk(e
iθ) = eikθ,

for some k ∈ Z. Since SO(2) ' U(1) is compact, by Theorem 3.6, every finite-dimensional
unitary representation U : SO(2) → U(n) of SO(2) is the direct sum of n one-dimensional
unitary representations Uj : SO(2) → U(1). But each representation Uj : SO(2) → U(1)
arises from a character of U(1), and so is of the form

Uj(e
iθ)(y) = eikjθy, y ∈ C,

for some kj ∈ Z. The direct sum U of the representation Uj : SO(2) → U(1) acts on Cn as
multiplication by a unitary matrix, namely

U(eiθ) =


eik1θ 0 . . . 0

0 eik2θ . . . 0
...

...
. . .

...
0 . . . . . . eiknθ

 ,

as claimed.

Remark: Let Q be the n× n matrix given by

Q =


ik1 0 . . . 0
0 ik2 . . . 0
...

...
. . .

...
0 . . . . . . ikn

 .

Observe that Q is skew-symmetric, so that Q ∈ u(n), and we have

U(eiθ) = eθQ.

3.3 Unitary Representations of G and L1(G)

In this section, we discuss the crucial fact that every unitary representation U : G→ U(H) of
a locally compact group G defines a nondegenerate representation Uext : L1(G)→ L(H) of the
involutive Banach algebra L1(G), and that conversely, for every nondegenerate representation
V : L1(G)→ L(H) of L1(G), there is a unique unitary representation U : G→ U(H) of the
group G, such that V = Uext. These results hold for any Hilbert space H, but when dealing
with Hilbert sums H is assumed to be separable.



3.3. UNITARY REPRESENTATIONS OF G AND L1(G) 149

Dieudonné [11] (Chapter XXI, Section 1) proves the above results under the simplifying
assumption that G is metrizable, separable, and unimodular (and of course locally compact).
One of the reasons is that Dieudonné only shows the existence of the Haar measure for a
metrizable, separable, locally compact group. We prove it for metrizable locally compact
groups.

The bijection holds for any locally compact group, not necessarily unimodular, and is
proven in Folland [22] (Chapter 3). Since the technical details are not particularly illuminat-
ing, we will give an outline of the constructions and proofs, using the simplifying assumption
that G is metrizable. This includes the case of Lie groups. The involution f 7→ f ∗ in L1(G)
is given by f ∗(s) = ∆(s−1)f(s−1), but not much simplification is afforded if we assume that
G is unimodular.

First, we show that representations of L1(G) are continuous.

Proposition 3.15. Let G be a locally compact group and let V : L1(G)→ L(H) be a repre-
sentation. We have

‖V (f)‖ ≤ ‖f‖1 , for all f ∈ L1(G), (∗)
and thus V is continuous.

Proof. If G is discrete, this follows by Proposition 2.1. Otherwise, we can extend V to a
representation of the unital subalgebra L1(G) ⊕ Cδe of M1(G) by setting V (f dλ + αδe) =
V (f) + α idH , and then we apply Proposition 2.1 to this representation.

Our goal is to construct a nondegenerate representation of the algebra L1(G) in H from a
continuous unitary representation U : G→ U(H) of G. Technically, it is more advantageous
to construct a nondegenerate representation of the algebraM1(G) of complex regular Borel
measures (see Vol. I, Definition 7.22) from a continuous unitary representation U : G →
U(H) of G but to motivate the construction let us stick with L1(G). We need to define a

map Ũ : L1(G)→ L(H), which is an algebra homomorphism. For every function f ∈ L1(G),

an obvious candidate Ũ(f) for a continuous linear map from H to itself is

Ũ(f)(x) =

∫
f(s)U(s)(x) dλ(s), f ∈ L1(G), x ∈ H, (1)

where λ is a left Haar measure on G. However, the right-hand side is an integral over the
vector-valued function s 7→ f(s)U(s)(x) from G to H (in general, an infinite-dimensional
vector space) so the theory of integration that we have presented does not apply. We will
see how to circumvent this difficulty using weak integrals a little later, but since this method
works if G is a finite group, let us assume temporarily that G is a finite group.

Let G be a finite group of order |G|. In this case, the algebras L1(G) and L2(G) are the
same and equal to the space [G→ C] of functions from G to C. Convolution of two functions
f, h : G→ C is given by

(f ∗ h)(s) =
1

|G|
∑
s1s2=s

f(s1)h(s2) =
1

|G|
∑
t∈G

f(t)h(t−1s). (2)



150 CHAPTER 3. REPRESENTATIONS OF LOCALLY COMPACT GROUPS

Recall that for every s ∈ G, the function δs : G→ C is given by

δs(t) =

{
1 if t = s

0 if t 6= s.

We define an involution f 7→ f ∗ on L1(G) by f ∗(s) = f(s−1). Then L1(G) = [G → C] is a
unital involutive algebra under convolution with unit δe (where e is the identity element of
G).

Using the discrete analog of (1) where the integral is replaced by a sum, given a unitary

representation U : G→ U(H) of G where H is finite-dimensional, define Ũ(f)(x) by

Ũ(f)(x) =
1

|G|
∑
s∈G

f(s)U(s)(x), x ∈ H, f ∈ L1(G). (3)

It is not hard to prove that Ũ : L1(G) → L(H) is an algebra representation; for details, see
Simon [65] (Chapter II, Section 3). For instance, it is instructive to verify that

Ũ(f ∗ h) = Ũ(f) ◦ Ũ(h).

This result for finite groups is generalized to locally compact metrizable groups in Theorem
3.17.

Conversely, let V : L1(G)→ L(H) be an algebra representation. Then we can construct

a unitary group representation U : G→ U(H) from V , such that Ũ = V .

If we define U : G→ U(H) by

U(s) = V (δs), s ∈ G, (4)

we can verify that U is a unitary representation, such that Ũ = V ; for details, see Simon
[65] (Chapter II, Section 3). This result for finite groups is generalized to locally compact
metrizable groups in Theorem 3.18.

As an application of the first construction going from a representation of G to a repre-
sentation of L1(G), consider the left regular representation of G. The space L2(G) = L1(G)
has the hermitian inner product given by

〈f, g〉 =
1

|G|
∑
s∈G

f(s)g(s), f, g ∈ L2(G). (5)

For any s ∈ G, define Rs : L2(G)→ L2(G) by

(Rs(f))(t) = f(s−1t), s, t ∈ G, L2(G). (6)

It is easily verified that the map s 7→ Rs is a linear representation of G in L2(G), and
since the inner product is left and right invariant under G, each Rs is unitary, so the map
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R : G → U(L2(G)) is a unitary representation of G called the left regular representation of
G. The left regular representation is generalized to locally compact metrizable groups in
Definition 3.14.

We leave it as an exercise to prove that if we apply (3) to define R̃(f) we find that

(R̃(f))(g) = f ∗ g, f, g ∈ L2(G). (7)

The algebra representation R̃ : L1(G)→ L(L2(G)) is generalized to locally compact metriz-
able groups in Definition 3.15. If G is a finite group, then L1(G) = L2(G), but for infinite
groups this is generally false.

We now return to the situation when G is a locally compact metrizable group and H is
Hilbert space (for simplicity, we may assume that H is separable). Recall that if λ is a left
Haar measure on G, then we have an embedding of L1(G) into M1(G) given by f 7→ f dλ.

As we stated earlier, given a unitary representation U : G→ U(H) we need to construct
an algebra representation of L1(G) but technically it is preferable to construct an algebra

representation (an algebra homomorphism) Ũ : M1(G) → L(H) of the measure algebra
M1(G).

Pick any complex regular Borel measure µ ∈ M1(G). We need to define Ũ(µ) as a
continuous linear map from H to itself. An obvious candidate is

Ũ(µ)(x) =

∫
U(s)(x) dµ(s), x ∈ H

but the right-hand side is an integral over the vector-valued function s 7→ U(s)(x) from G
to H, and µ is generally not a positive measure, so the theory of integration that we have
presented does not apply. The theory does extend to complex measures (see Schwartz [61]),
but we do not know whether this type of integral has the properties needed to obtain the
desired results, so instead we will resort to a so-called weak integral. The idea is to use the
duality between the Hilbert space H and its dual H ′, the space of continuous linear forms.
Technically, we use the Riesz representation theorem for Hilbert spaces (see Vol. I, Theorem
D.9). For the reader’s convenience, we briefly review the Riesz representation theorem.

If H is a Hilbert space, its dual H ′ is the vector space of continuous linear forms ϕ : H →
C. We also define H

′
as the space of continuous semilinear forms ϕ : H → C, which are the

continuous functions such that for all x, y ∈ H and all λ ∈ C, we have

ϕ(x+ y) = ϕ(x) + ϕ(y)

ϕ(λx) = λϕ(x).

Theorem 3.16. (Riesz representation theorem) Let H be a Hilbert space.

(1) The mapping [ : H → H ′ defined such that for every x ∈ H, the linear form [(x) is
given by

[(x)(y) = 〈y, x〉, y ∈ H,
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is a semilinear continuous bijection. Thus for every continuous linear form ϕ ∈ H ′,
there is a unique x ∈ H, such that

ϕ(y) = [(x)(y) = 〈y, x〉, y ∈ H.

(2) The mapping [l : H → H
′

defined such that for every x ∈ H, the semilinear form [l(x)
is given by

[l(x)(y) = 〈x, y〉, y ∈ H,

is a continuous bijection. Thus for every continuous semilinear linear form ϕ ∈ H ′,
there is a unique x ∈ H, such that

ϕ(y) = [l(x)(y) = 〈x, y〉, y ∈ H.

Returning to our unitary representation U : G → U(H), for x ∈ H fixed, we define the
semilinear form Φµ,x : H → C given by

Φµ,x(y) =

∫
〈U(s)(x), y〉 dµ(s), y ∈ H;

this form is semilinear because Φµ,x(y1 + y2) = Φµ,x(y1) + Φµ,x(y2), but Φµ,x(λy) = λΦµ,x(y).
The function s 7→ 〈U(s)(x), y〉 is continuous and bounded because ‖U(s)(x)‖ = ‖x‖ since
U(s) is unitary, so it is µ-integrable (recall that |µ|(X) is finite). Using the Cauchy–Schwarz
inequality we also have

|Φµ,x(y)| =
∣∣∣∣∫ 〈U(s)(x), y〉 dµ(s)

∣∣∣∣ ≤ ‖µ‖ ‖x‖ ‖y‖ ,
so the semilinear form Φµ,x is continuous. By the Riesz representation theorem (Theorem

3.16(2)), there is a unique vector Ũ(µ)(x) ∈ H, such that

〈Ũ(µ)(x), y〉 = Φµ,x(y), for all y ∈ H.

If we let y = Ũ(µ)(x) in the inequality

|〈Ũ(µ)(x), y〉| ≤ ‖µ‖ ‖x‖ ‖y‖ ,

we get ∥∥∥Ũ(µ)(x)
∥∥∥ ≤ ‖µ‖ ‖x‖ ,

and so ∥∥∥Ũ(µ)
∥∥∥ ≤ ‖µ‖ . (C)

This shows that Ũ(µ) is a continuous linear map (in L(H), we use the operator norm induced
by the Hermitian norm on H).
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Definition 3.13. Given any complex regular Borel measure µ ∈ M1(G), for every x ∈ H,
let Φµ,x : H → C be the continuous semilinear form given by

Φµ,x(y) =

∫
〈U(s)(x), y〉 dµ(s), y ∈ H.

The unique vector Ũ(µ)(x) ∈ H, such that

〈Ũ(µ)(x), y〉 = Φµ,x(y) =

∫
〈U(s)(x), y〉 dµ(s), for all y ∈ H

is called the weak integral of the function s 7→ U(s)(x) from G to H with respect to µ, and
is denoted by ∫

U(s)(x) dµ(s) = Ũ(µ)(x).

Observe that
Ũ(δs) = U(s), for all s ∈ G, (Ũ(δs))

where δs is the Dirac measure at s. Also, when µ = f dλ with f ∈ L1(G), we have

〈Ũ(f dλ)(x), y〉 =

∫
f(s)〈U(s)(x), y〉 dλ(s) for all y ∈ H.

For simplicity of notation, we also write Ũ(f) instead of Ũ(f dλ) and we write

Ũ(f)(x) =

∫
f(s)U(s)(x) dλ(s).

The next step is to show that the map µ 7→ Ũ(µ) is a representation of the unital
involutive Banach algebra M1(G).

Theorem 3.17. Let G be a metrizable locally compact group, and let U : G → U(H) be

a unitary representation of G in H. The map Ũ : M1(G) → L(H) defined above is a
representation of the unital involutive Banach algebraM1(G). The restriction Uext : L1(G)→
L(H) of Ũ to the involutive Banach algebra L1(G) is nondegenerate. The theorem also holds
for any arbitrary locally compact group G.

Proof. Theorem 3.17 is proven in Dieudonné [11] (Chapter XXI, Section 1, Theorem 21.1.6).

We leave the verification that Ũ(µ) is linear as exercise. Let us verify that Ũ(µ ∗ ν) =

Ũ(µ) ◦ Ũ(ν). Recall the definition of the convolution of measures, Vol. I, Definition 8.21.
For all x, y ∈ H and all s ∈ G, we have

〈Ũ(µ ∗ ν)(x), y〉 =

∫
〈U(s)(x), y〉 d(µ ∗ ν) =

∫ ∫
〈U(st)(x), y〉 dµ(s) dν(t)

=

∫ ∫
〈U(t)(x), U(s)∗(y)〉 dν(t) dµ(s) =

∫
〈Ũ(ν)(x), U(s)∗(y)〉 dµ(s)

=

∫
〈U(s)(Ũ(ν)(x)), y〉 dµ(s)

= 〈Ũ(µ)(Ũ(ν)(x)), y〉,
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which proves that Ũ(µ ∗ ν) = Ũ(µ) ◦ Ũ(ν).

Next, recall that ∫
ϕ(s)dµ(s) =

∫
ϕ(s) dµ(s),

and ∫
ϕ(s)dµ̌(s) =

∫
ϕ(s−1) dµ(s),

see Vol. I, Proposition 7.24 and Proposition 8.45. Then using the fact that since U is a
unitary representation, we have (U(s))∗ = U(s−1), and we have

〈(Ũ(µ))∗(x), y〉 = 〈x, Ũ(µ)(y)〉 = 〈Ũ(µ)(y), x〉

=

∫
〈U(s)(y), x〉 dµ(s)

=

∫
〈U(s)(y), x〉 dµ(s) =

∫
〈x, U(s)(y)〉 dµ(s)

=

∫
〈(U(s))∗(x), y〉 dµ(s) =

∫
〈U(s−1)(x), y〉 dµ(s)

=

∫
〈U(s)(x), y〉 dµ̌(s) = 〈Ũ(µ̌)(x), y〉,

which proves that (Ũ(µ))∗ = Ũ(µ̌).

Recall from Definition 2.8 that the algebra representation Ũ is nondegenerate iff
Ũ(f dλ)(x) = 0 for all f ∈ L1(G) implies that x = 0. To prove that the restriction of Ũ to
L1(G) is nondegenerate, since G is metrizable, we can find a neighborhood base of e (the
identity element of G) consisting of a sequence (Vn) of open neighborhoods of e, such that
Vn+1 ⊂ Vn for all n.2 Fix s ∈ G. Using Vol. I, Proposition A.39, for every n ≥ 1 we
can define a positive function un ∈ KR(G) of compact support contained in sVn, such that∫
un dλ = 1. Since for any fixed x ∈ H the map s 7→ U(s)(x) is continuous (condition (2) of

Definition 3.8), for every x ∈ H and every ε > 0, there is some n > 0, such that

‖U(t)(x)− U(s)(x)‖ ≤ ε, for all t ∈ sVn.

For all y ∈ H, since
∫
un dλ = 1, we have

〈Ũ(un dλ)(x)− U(s)(x), y〉 =

∫
〈U(t)(x)− U(s)(x), y〉un(t) dλ(t),

so if we choose y = Ũ(un dλ)(x)− U(s)(x), we get∥∥∥Ũ(un dλ)(x)− U(s)(x)
∥∥∥2

=

∫
〈U(t)(x)− U(s)(x), Ũ(un dλ)(x)− U(s)(x)〉un(t) dλ(t).

2This is where the assumption that G is metrizable is used. Otherwise, we may have to use an uncountable
family.
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Using the Cauchy–Schwarz inequality, we have∥∥∥Ũ(un dλ)(x)− U(s)(x)
∥∥∥2

=

∫
〈U(t)(x)− U(s)(x), Ũ(un dλ)(x)− U(s)(x)〉un(t) dλ(t)

≤
∫ ∣∣∣〈U(t)(x)− U(s)(x), Ũ(un dλ)(x)− U(s)(x)〉un(t)

∣∣∣ dλ(t)

≤
∫
‖U(t)(x)− U(s)(x)‖ ‖Ũ(un dλ)(x)− U(s)(x)‖un(t) dλ(t)

≤ ‖Ũ(un dλ)(x)− U(s)(x)‖ε
∫
un(t) dλ(t) = ‖Ũ(un dλ)(x)− U(s)(x)‖ε,

so we deduce that ∥∥∥Ũ(un dλ)(x)− U(s)(x)
∥∥∥ ≤ ε.

If there was some x 6= 0, such that Ũ(f dλ)(x) = 0 for all f ∈ L1(G), then for f = un we
would have U(s)(x) = 0 for all s ∈ G, which is absurd for s = e (since U(e) = id). Therefore,

the restriction of Ũ to L1(G) is nondegenerate.

If G is not metrizable, we have to use a more general neighborhood base and a filter
argument

For simplicity of notation, we write Uext(f) instead of Uext(f dλ). The following converse
holds.

Theorem 3.18. Let G be a metrizable and locally compact group. For every nondegener-
ate representation V : L1(G) → L(H) of L1(G), there is a unique unitary representation
U : G→ U(H) of the group G, such that V = Uext. Consequently, the map U 7→ Uext is a bi-
jection between the set of unitary representations of the group G and the set of nondegenerate
representations of the involutive Banach algebra L1(G). Furthermore, a closed subspace E of
H is invariant under the linear map U(s) for every s ∈ G if and only if it is invariant under
the linear map V (f) for every f ∈ L1(G) (in fact, since KR(G) is dense in L1(G), for every
f ∈ KR(G)). Consequently, the map U 7→ Uext is a bijection between the set of irreducible
unitary representations of G and the set of nondegenerate topologically irreducible represen-
tations of L1(G). If H =

⊕
nHn is a Hilbert sum, then there is a bijection between the

Hilbert sum U =
⊕

n Un of the unitary representations Un : G→ U(Hn) and the Hilbert sum
Uext =

⊕
n(Un)ext of the unitary nondegenerate representations (Un)ext : L1(G) → L(Hn).

The theorem also holds for any arbitrary locally compact group G.

Proof. Theorem 3.18 is proven in Dieudonné [11] (Chapter XXI, Section 1, Theorem 21.1.7).
Folland [22] (Chapter, Theorem 3.11) gives a different proof that applies to any locally
compact group.

The proof of Theorem 3.17 shows that U(s)(x) is the limit of a sequence Ũ(un dλ)(x),
with un ∈ KR(G), which shows that the map U 7→ Uext is injective. It also shows that if the
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closed subspace E is invariant under the Ũ(f) with f ∈ KR(G), then it is invariant under

the maps U(s) for all s ∈ G. Conversely, by definition of Ũ(µ), it is immediate that if the
closed subspace E is invariant under the maps U(s) for all s ∈ G, then it is invariant under

the Ũ(f) with f ∈ KR(G),

Given a nondegenerate representation V : L1(G)→ L(H) of L1(G), we need to construct
a unitary representation U : G→ U(H) of the group G such that V = Uext. If G is a finite
group, then we can use (4) to define U by U(s) = V (δs). Unfortunately, if G is infinite then
δs /∈ L1(G), so we have to proceed differently.

The idea is that U(s)(y) is the limit of a sequence V (un)(y) for a sequence (un) of
functions that tends to the Dirac delta function at s. To make this rigorous, we proceed as
follows.

Consider the subspace E of H spanned by the set

{V (f)(x) | f ∈ L1(G), x ∈ H}.

Since V is nondegenerate, by Proposition 2.9, E is dense in H. Pick s ∈ G and define
a neighborhood base of e consisting of a sequence (Vn) of open neighborhoods of e, such
that Vn+1 ⊂ Vn for all n and a sequence (un) of functions un ∈ KR(G) of compact support
contained in sVn, as in the proof of Theorem 3.17, so that

∫
un dλ = 1. Since the Haar

measure is left-invariant,
∫

(δs−1 ∗ un) dλ =
∫
un dλ, and since the function un has support

contained in sVn, the function δs−1 ∗ un has support contained in Vn. For any open subset
W containing e, since the Vn a form a neighborhood base of e, we have Vn ⊆ W for n large
enough, so G −W ⊆ G − Vn and as a result, since δs−1 ∗ un has support contained in Vn,∫
G−W (δs−1 ∗ un) dλ = 0 as n tends to infinity. Then Vol. I, Proposition 8.50 shows that

limn 7→∞ ‖δs−1 ∗ un ∗ f − f‖1 = 0, and since

‖un ∗ f − δs ∗ f‖1 = ‖δs ∗ δs−1 ∗ un ∗ f − δs ∗ f‖1 ≤ ‖δs‖ ‖δs−1 ∗ un ∗ f − f‖1 ,

we deduce that limn7→∞ ‖un ∗ f − δs ∗ f‖1 = 0. Alternatively, we can prove this by going
back to the proof of Vol. I, Proposition 8.50.

Remark: In [22] (Theorem 3.11), Folland defines functions ψVn with compact support con-
tained in Vn, so that limn7→∞ ‖ψVn ∗ f − f‖1 = 0. The connection with our un is that
un = δs ∗ ψVn and limn7→∞ ‖(δs ∗ ψVn) ∗ f − δs ∗ f‖1 = 0.

By Proposition 3.15, we have

‖V (f)‖ ≤ ‖f‖1 , for all f ∈ L1(G). (∗1)

Applying V to un ∗ f − δs ∗ f , using the above inequality, we get

lim
n7→∞

‖V (un) ◦ V (f)− V (δs ∗ f)‖ = 0.
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The above proves that for every linear combination y =
∑

k V (fk)(xk) ∈ E, with fk ∈ L1(G)
and xk ∈ H, the sequence (V (un)(y)) has a limit in H equal to

∑
k V (δs ∗ fk)(xk), because∥∥∥∥∥V (un)

(∑
k

V (fk)(xk)

)
−
∑
k

V (δs ∗ fk)(xk)

∥∥∥∥∥ ≤∑
k

‖V (un)(V (fk)(xk))− V (δs ∗ fk)(xk)‖

≤
∑
k

‖V (un) ◦ V (fk)− V (δs ∗ fk)‖ ‖xk‖ ,

and since
lim
n7→∞

‖V (un) ◦ V (fk)− V (δs ∗ fk)‖ = 0,

we also have

lim
n7→∞

∥∥∥∥∥V (un)

(∑
k

V (fk)(xk)

)
−
∑
k

V (δs ∗ fk)(xk)

∥∥∥∥∥ = 0. (∗2)

Therefore, for y =
∑

k V (fk)(xk), we define U(s)(y) by

U(s)(y) = U(s)

(∑
k

V (fk)(xk)

)
=
∑
k

V (δs ∗ fk)(xk). (∗3)

We obtain a linear map U(s) from E to H, such that

U(s) ◦ V (f) = V (δs ∗ f), for all f ∈ L1(G), (†)

which shows that U(s) maps E into itself. Note that (∗2) says that

lim
n7→∞

‖V (un)(y)− U(s)(y)‖ = 0, for all y ∈ E, (∗4)

which means that V (un) converges strongly to U(s) on E. By (∗1), we have ‖V (un)‖ ≤
‖un‖1 = 1, so by (∗4)

‖U(s)(y)‖ ≤ ‖y‖ , for all y ∈ E and all s ∈ G,

and U(s) extends uniquely to a continuous map on H, also denoted U(s). What we just did
also shows that

‖U(s)‖ ≤ 1, for all s ∈ G. (††)

It remains to prove that the map s 7→ U(s) is a unitary representation of G and that
V = Uext.

By definition, for any y =
∑

k V (fk)(xk) ∈ E,

U(s)(y) =
∑
k

V (δs ∗ fk)(xk),
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and the above expression is continuous in s.

For all s, t ∈ G and all f ∈ L1(G), using (†) we have

U(st) ◦ V (f) = V (δst ∗ f)

= V (δs ∗ (δt ∗ f))

= U(s) ◦ V (δt ∗ f)

= U(s) ◦ U(t) ◦ V (f),

which implies that U(st)(y) = U(s)(U(t)(y)) for all y ∈ E, and then by continuity U(st) =
U(s) ◦ U(t) in L(H). By (†), we also have U(e) = idH .

By (††), we have ‖U(s)(x)‖ ≤ ‖x‖ for all s ∈ G and all x ∈ H, so ‖U(s−1)(x)‖ ≤ ‖x‖,
and then ‖x‖ = ‖U(s−1s)(x)‖ = ‖U(s−1)(U(s)(x))‖ ≤ ‖U(s)(x)‖, so ‖U(s)(x)‖ = ‖x‖, and
since U(s) is linear, by the polarization identity for a hermitian inner product, U(s) is a
continuous isometry. Therefore, U is a unitary representation of G in H.

To prove that V = Uext, we use the fact that by Vol. I, Theorem 5.51, the dual L1(G)′

of L1(G) is isomorphic to L∞(G). This means that for every continuous form Φ ∈ L1(G)′,
there is a unique function h ∈ L∞(G), such that

Φ(f) =

∫
f(s)h(s) dλ(s), for all f ∈ L1(G).

With some abuse of notation, we write Φ(f) = (h, f) =
∫
f(s)h(s) dλ(s).

We use the following trick (see Dieudonné [11] (Chapter XXI, Section 1, Theorem 21.1.7).
For all f, g ∈ L1(G) and all h ∈ L∞(G),

(h, f ∗ g) =

∫
f(s)(h, δs ∗ g) dλ(s). (∗∗)

Indeed, using the fact that (δs ∗ g)(t) = g(s−1t) and Fubini’s theorem, we have

(h, f ∗ g) =

∫
(f ∗ g)(t)h(t) dλ(t)

=

∫ (∫
f(s)g(s−1t) dλ(s)

)
h(t) dλ(t)

=

∫ (∫
f(s)(δs ∗ g)(t) dλ(s)

)
h(t) dλ(t)

=

∫
f(s)

(∫
(δs ∗ g)(t)h(t) dλ(t)

)
dλ(s)

=

∫
f(s)(h, δs ∗ g) dλ(s).
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For any fixed pair x, y ∈ H, the map f 7→ 〈V (f)(x), y〉 is a continuous linear form on
L1(G), so there is a unique h ∈ L∞(G), such that (h, f) = 〈V (f)(x), y〉, for all f ∈ L1(G),
and we get

〈V (f)(V (g)(x)), y〉 = 〈V (f ∗ g)(x), y〉 V is an algebra homomorphism

= (h, f ∗ g) =

∫
f(s)(h, δs ∗ g) dλ(s) by (∗∗)

=

∫
f(s)〈V (δs ∗ g)(s), y〉 dλ(s)

=

∫
〈U(s)(V (g)(x)), y〉f(s) dλ(s) by (†)

= 〈Ũ(f)(V (g)(x)), y〉 by definition of Ũ(f).

This proves that 〈Ũ(f)(z), y〉 = 〈V (f)(z), y〉 for all z ∈ E and all y ∈ H, and since E is

dense in H, since Uext is the restriction of Ũ to L1(G), we conclude that Uext(f) = V (f).

If G is not metrizable, we have to use a more general neighborhood base and a filter
argument.

Since the preceding proof involves many technical details, a summary of the proof focusing
on the main points should be helpful.

First, pick a neighborhood base of e (the identity element of G) consisting of a sequence
(Vn) of open neighborhoods of e, such that Vn+1 ⊂ Vn for all n. Second, for every s ∈ G,
for every n ≥ 1 define a positive function un ∈ KR(G) of support contained in sVn, such
that

∫
un dλ = 1. Then we proved that V (un)(V (f)(x)) converges to V (δs ∗ f)(x), for any

f ∈ L1(G) and any x ∈ H, and since by definition U(s)(V (f)(x)) = V (δs ∗ f)(x), actually
V (un)(V (f)(x)) converges to U(s)(V (f)(x)). But the set of linear combinations of terms of
the form V (f)(x) is dense in H, so we proved that V (un)(y) converges to U(s)(y) for all
y ∈ H, which is strong convergence of V (un) to U(s).

As an application of Theorem 3.17, we obtain an injective representation of L1(G) into
L2(G), which will be needed in the proof of the Peter–Weyl theorem. It is shown in Dieudonné
[14] (Chapter XIV, Section 9, Theorem 14.9.2) that for every s ∈ G, for any f ∈ L2(G),
we have δs ∗ f = λs(f) ∈ L2(G). By left-invariance of the (left) Haar measure, we have
‖δs ∗ f‖2 = ‖f‖2. Consequently, the map f 7→ δs ∗ f = λs(f), denoted R(s), is a unitary
operator on L2(G). Furthermore, if G is unimodular, by Theorem 14.10.6.3 of Dieudonné
[14] (Chapter XIV, Section 10), the map s 7→ R(s) is continuous and so it is a unitary
representation of G in L2(G). If G is not unimodular, then the continuity follows from the
argument in Proposition 2.41 of Folland [22].

Definition 3.14. The representation R : G→ U(L2(G)) given by

(R(s)(f))(t) = λs(f)(t) = f(s−1t), f ∈ L2(G), s, t ∈ G,

is called the left regular representation of G in L2(G).
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By Theorem 3.17, we obtain a representation Rext of L1(G) in L2(G) (a homomorphism
from L1(G) to L(L2(G))). Going back to Definition 3.13 of a weak integral,

〈Ũ(f)(x), y〉 =

∫
f(s)〈U(s)(x), y〉 dλ(s), for all y ∈ H,

it is not hard to prove that

Rext(f)(g) = f ∗ g,

with f ∈ L1(G) and g ∈ L2(G) (in the equation defining Ũ(f) = Rext(f), x is the function g
and y is a function h). Using Vol. I, Proposition 8.50, it can be shown that Rext is injective,
because if f ∗ g is zero almost everywhere for all g ∈ L2(G), then f = 0 almost everywhere.

Definition 3.15. The representation Rext : L1(G)→ L(L2(G)) given by

(Rext(f))(g) = f ∗ g, f ∈ L1(G), g ∈ L2(G),

is called the left regular representation of L1(G) in L2(G).

3.4 Unitary Representations of LCA Groups

We know from Proposition 3.12 that every irreducible unitary representation U : G→ U(H)
of a locally compact abelian group G is one-dimensional, and by Proposition 3.13, every
irreducible unitary representation of G is uniquely defined by a character of G, as introduced
in Vol. I, Definition 10.1.

It is remarkable that any unitary representation U : G → U(H) of a locally compact
abelian group G can be expressed in terms of a projection-valued measure, as discussed
in Section 2.12. Intuitively, the projection-valued measure glues the characters in the dual
group Ĝ.

In order to state our theorem, we need to recall the fundamental fact that for a locally
compact abelian group G, the dual group Ĝ and the space X(L1(G)) of algebra characters

of L1(G) are homeomorphic; see Vol. I, Theorem 10.6. More precisely, the map j : Ĝ →
X(L1(G)) given by

j(χ)(f) =

∫
G

χ(a)f(a) dλ(a), χ ∈ Ĝ, f ∈ L1(G),

is a homeomorphism (where λ is a Haar measure on G). As a matter of notation, we denote

the group characters in Ĝ by χ and the algebra characters in X(L1(G)) by ζ. Then our map
is also expressed by χ 7→ ζχ = j(χ), with

ζχ(f) =

∫
G

χ(a)f(a) dλ(a).
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Also recall that the Gelfand map from L1(G) to X(L1(G)) is given by Gf (ζ) = ζ(f) and that

ζχ(f) = Gf (ζχ) = F(f)(χ),

where F(f) is the Fourier co-transform of f .

The other fact that we need to recall is that every unitary representation U : G→ U(H)
of G induces a nondegenerate representation Uext : L1(G)→ L(H) of the involutive Banach
algebra L1(G); see Theorem 3.17. Before stating our next theorem, we need to address a
notational issue, which is to make sense of the “integrals”

∫
Ĝ
χ(s) dP (χ) and

∫
Ĝ
ζχ(f) dP (χ),

for s ∈ G and f ∈ L1(G).

Recall that
∫
Ĝ
χ(s) dP (χ) is the unique continuous linear map T in L(H), such that

〈T (u), v〉 =

∫
Ĝ

χ(s) dPu,v(χ), for all u, v ∈ H,

where for any Borel set E on Ĝ, the finite Radon measure Pu,v is defined by

Pu,v(E) = 〈P (E)(u), v〉.

We are actually a bit sloppy because the integrand should be the function χ 7→ χ(s), eval-
uation at s. It would be more rigorous to introduce for every s ∈ G the evaluation map

evalĜs : Ĝ→ C given by

evalĜs (χ) = χ(s), χ ∈ Ĝ.
Then, the integral

∫
Ĝ
χ(s) dPu,v(χ) is really∫

Ĝ

evalĜs dPu,v.

Similarly,
∫
Ĝ
ζχ(f) dP (χ) is the unique continuous linear map S in L(H) such that

〈S(u), v〉 =

∫
Ĝ

ζχ(f) dPu,v(χ), for all u, v ∈ H.

This time, for every f ∈ X(L1(G)), we have the evaluation map eval
X(L1(G))
f : X(L1(G))→ C

given by

eval
X(L1(G))
f (ζ) = ζ(f), f ∈ X(L1(G)).

But note that eval
X(L1(G))
f = Gf , where G is the Gelfand map from L1(G) to X(L1(G))! Then

ζχ(f) = Gf (ζχ) = Gf (j(χ)) = (Gf ◦ j)(χ),

so the second integral
∫
Ĝ
ζχ(f) dPu,v(χ) is really∫

Ĝ

(Gf ◦ j) dPu,v.

Another technical point comes up in the proof of Theorem 3.20, which is the fact that
we use the notion of direct image of a measure.
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Definition 3.16. Let (X,A) and (Y,B) be two measure spaces, and let ϕ : X → Y be a
map such that ϕ−1(B) ∈ A for all B ∈ B (ϕ is a measurable map; see Vol. I, Definition 5.1).
If µ is a (positive) measure on (X,A), we define the direct image ϕ∗µ of µ as the measure
on (Y,B) given by

ϕ∗µ(B) = µ(ϕ−1(B)), B ∈ B.

We leave it as an exercise to prove that ϕ∗µ is a measure. Then we have the following
result.

Proposition 3.19. With the notations of Definition 3.16, if g ∈ L1
ϕ∗µ(Y,B,C), then g ◦ϕ ∈

L1
µ(X,A,C) and ∫

X

(g ◦ ϕ) dµ =

∫
Y

g d(ϕ∗µ).

The proof is not difficult but if you get stuck, see Folland [22] (Proposition 10.1) or Lang
[48] (Chapter VI, Exercise 8). Proposition 3.19 can be extended to complex Radon measures
on locally compact spaces, where A and B are the Borel σ-algebras on X and Y , respectively.

Now that we have given a precise meaning to our generalized integrals, we can state the
following important result.

Theorem 3.20. Let G be a locally compact abelian group with Haar measure λ. For ev-
ery unitary representation U : G → U(H) of G there is a unique regular projection-valued

measure P on the dual group Ĝ such that

U(s) =

∫
Ĝ

χ(s) dP (χ), s ∈ G

Uext(f) =

∫
Ĝ

ζχ(f) dP (χ), f ∈ L1(G).

According to the preceding remarks, a more rigorous statement of the above equations is

U(s) =

∫
Ĝ

evalĜs dP, s ∈ G

Uext(f) =

∫
Ĝ

(Gf ◦ j) dP, f ∈ L1(G),

where j is the homeomorphism j : Ĝ → X(L1(G)). Moreover, a continuous linear map T ∈
L(H) belongs to C(U) iff T commutes with P (E) for every Borel set E ⊆ Ĝ.

Proof sketch. The statement about commuting operators is proven in Folland [22]; see The-
orem 1.54 and Theorem 3.12(b). The second equation in Theorem 3.20 follows from The-
orem 2.60 (Spectral Theorem IV). Indeed, this theorem says that there is a unique regular
projection-valued measure PL on X(L1(G)), such that

Uext(f) =

∫
X(L1(G))

Gf dPL =

∫
X(L1(G))

Gf (ζ) dPL(ζ), f ∈ L1(G).
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Using the homeomorphism j : Ĝ→ X(L1(G)), we define the projection-valued measure P on

Ĝ given by

P (E) = PL(j(E))

for every Borel set E on Ĝ. Because j is a homeomorphism, P is the direct image of the
measure PL by j−1 and PL is the direct image of the measure P by j, so by Proposition
3.19, we have ∫

Ĝ

(Gf ◦ j) dP =

∫
X(L1(G))

Gf dPL.

Thus, we proved that

Uext(f) =

∫
Ĝ

(Gf ◦ j) dP =

∫
Ĝ

ζχ(f) dP (χ), f ∈ L1(G),

as claimed.

The first equation follows from the second equation but the proof is more involved. The
argument uses the technique from the proof of Theorem 3.18. To simplify notation, write
V = Uext. We need to recover U from V . The idea is that U(s)(y) (s ∈ G, y ∈ H)
is the limit of the sequence V (un)(y) for a sequence (un) of functions that tends to the
Dirac delta function at s. If G is metrizable, we can use the proof method of Theorem
3.18. In this case, we introduced a neighborhood base of e consisting of a sequence (Vn)
of open neighborhoods of e, such that Vn+1 ⊂ Vn for all n and a sequence of positive
functions un ∈ KR(G) of support contained in sVn, such that

∫
un dλ = 1. We proved

that V (un)(V (f)(x)) converges to V (δs ∗ f)(x), for any f ∈ L1(G) and any x ∈ H, and
since by definition U(s)(V (f)(x)) = V (δs ∗ f)(x), actually V (un)(V (f)(x)) converges to
U(s)(V (f)(x)). But the set of linear combinations of terms of the form V (f)(x) is dense
in H, so we proved that V (un)(y) converges to U(s)(y) for all y ∈ H, which is strong
convergence of V (un) to U(s). Let us take a closer look at

V (un) =

∫
Ĝ

ζχ(un) dP (χ).

The un have support in sVn, where the Vn are neighborhoods of e, so the functions δs−1 ∗ un
have support in Vn, and

∫
(δs−1 ∗ un) dλ = 1. But since ζ is an algebra homomorphism with

respect to convolution, and since by Vol. I, Proposition 10.19,

ζχ(δs) = F(δs)(χ) = χ(s),
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we obtain

V (un) =

∫
Ĝ

ζχ(un) dP (χ)

=

∫
Ĝ

ζχ(δs ∗ (δs−1 ∗ un)) dP (χ)

=

∫
Ĝ

ζχ(δs)ζχ(δs−1 ∗ un) dP (χ)

=

∫
Ĝ

χ(s)ζχ(δs−1 ∗ un) dP (χ).

For every ε > 0, for every compact subset K of Ĝ, consider the set

WK,ε = {a ∈ G | |χ(a)− 1| < ε, for all χ ∈ K}.

It is easily checked that WK,ε is a neighborhood of e. For Vn ⊆ WK,ε, for all χ ∈ K, since∫
(δs−1 ∗ un) dλ = 1, we have

|ζχ(δs−1 ∗ un)− 1| =

∣∣∣∣∣
∫
WK,ε

(χ(a)− 1)(δs−1 ∗ un) dλ

∣∣∣∣∣ < ε. (∗1)

For every ε > 0, since Pu,v is a finite Radon measure, there is a compact K ⊆ Ĝ such that

|µu,v|(Ĝ−K) < ε. Since

V (un) =

∫
Ĝ

χ(s)ζχ(δs−1 ∗ un) dP (χ),

we also have〈(
V (un)−

∫
Ĝ

χ(s) dP (χ)

)
(u), v)

〉
=

∫
Ĝ

χ(s)(ζχ(δs−1 ∗ un)− 1) dPu,v.

The integral on the right can be written as∫
K

χ(s)(ζχ(δs−1 ∗ un)− 1) dPu,v +

∫
Ĝ−K

χ(s)(ζχ(δs−1 ∗ un)− 1) dPu,v.

For all n, such that Vn ⊆ WK,ε, by (∗1) the first integral is bounded by ε. Since |χ(a)| = 1,

we have |χ(a)− 1| ≤ 2, so for all χ ∈ Ĝ−K, since
∫
|δs−1 ∗ un| dλ = 1, we have

|ζχ(δs−1 ∗ un)− 1| =
∣∣∣∣∫
Ĝ−K

(χ(a)− 1)(δs−1 ∗ un) dλ

∣∣∣∣ ≤ 2, (∗2)

and since |µu,v|(Ĝ−K) < ε and |χ(a)| = 1, the second integral∫
Ĝ−K

χ(s)(ζχ(δs−1 ∗ un)− 1) dPu,v
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is bounded by 2ε. Finally, the above argument shows that

〈U(s)(u), v〉 = lim
n7→∞
〈V (un)(u), v〉 =

∫
Ĝ

χ(s) dPu,v(χ),

as claimed.

Otherwise, we need to use a more general neighborhood base and a filter (or net) ar-
gument. Technically, this is achieved by Theorem 3.11 of Folland [22], which relies on
Proposition 2.42. Then another limit argument very similar to the one we gave above shows
that the equation

U(s) =

∫
Ĝ

χ(s) dP (χ), s ∈ G

follows from the equation

Uext(f) =

∫
Ĝ

ζχ(f) dP (χ), f ∈ L1(G).

The details of this proof are worked out in Folland [22] after Lemma 4.46.

Theorem 3.20 plays a crucial role in Mackey’s theory for constructing induced represen-
tations; see Chapter 7, Proposition 7.1.

As a corollary of Theorem 3.20, since by Vol. I, Corollary 10.93 the characters of Rn are
the homomorphisms

x 7→ eiy·x, x, y ∈ Rn,

where y · x is the Euclidean product in Rn, we obtain the following result due to Stone.

Theorem 3.21. (Stone) For every unitary representation U : Rn → U(H) of Rn, there is a
unique projection measure P on Rn, such that

U(x) =

∫
Rn
eiy·x dP (y), x ∈ Rn.

3.5 Functions of Positive Type and Unitary

Representations

There is a deep and fruitful connection between topologically cyclic unitary representations
U : G → U(H) and certain kinds of continuous functions p ∈ C(G;C) called functions of
positive type.

Let U : G → U(H) be a unitary representation of the locally compact group G in a
Hilbert space H, let x0 be any vector in H, and define the map p = ψU,x0 by

p(s) = ψU,x0(s) = 〈U(s)(x0), x0〉, s ∈ G.
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Note that this definition is analogous to Definition 2.11, which involves representations of
algebras, but here we are dealing with a group representation. By its very definition, the
function ψU,x0 is continuous, but it is also bounded, because U(s) is unitary for every s ∈ G,
so ‖U(s)(x0)‖ = ‖x0‖, which implies by Cauchy–Schwarz that

|ψU,x0(s)| = |〈U(s)(x0), x0〉| ≤ ‖U(s)(x0)‖ ‖x0‖ = ‖x0‖2 = ψU,x0(e),

for all s ∈ G. Consequently,

‖p‖∞ = p(e),

and p = ψU,x0 ∈ L∞(G;C), so we obtain a continuous linear form ω : L1(G;C)→ C given by

ω(f) =

∫
f(s)p(s) dλ(s) =

∫
f(s)〈U(s)(x0), x0〉 dλ(s), for all f ∈ L1(G;C).

We recognize above the weak integral Uext(f), so we have

ω(f) =

∫
f(s)〈U(s)(x0), x0〉 dλ(s) = 〈Uext(f)(x0), x0〉.

The term on the right-hand side is exactly the term of Definition 2.11, so by Proposition
2.11, ω is a positive linear form, which means that ω(f ∗ ∗ f) ≥ 0 for all f ∈ L1(G;C), that
is, ∫

(f ∗ ∗ f)(s)p(s) dλ(s) ≥ 0, for all f ∈ L1(G;C).

But f ∗(s) = ∆(s−1)f(s−1), so by changing t to t−1, by Fubini, the left invariance of the Haar
measure, and Vol. I, Proposition 8.27,∫

(f ∗ ∗ f)(s)p(s) dλ(s) =

∫ ∫
∆(t−1)f(t−1)f(t−1s)p(s) dλ(t) dλ(s)

=

∫ ∫
f(t)f(ts)p(s) dλ(t) dλ(s)

=

∫ ∫
f(t)f(ts)p(s) dλ(s) dλ(t)

=

∫ ∫
p(t−1s)f(t)f(s) dλ(s) dλ(t).

Observe that we also have

ψU,x0(s
−1) = ψU,x0(s),

because

ψU,x0(s
−1) = 〈U(s−1)(x0), x0〉 = 〈(U(s))∗(x0), x0〉 = 〈x0, U(s)(x0)〉 = ψU,x0(s).
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Definition 3.17. If G is a locally compact group, then a continuous function p ∈ C(G;C)
is of positive type, if ∫

(f ∗ ∗ f)(s)p(s) dλ(s) ≥ 0, for all f ∈ KC(G),

or equivalently, if∫ ∫
p(t−1s)f(t)f(s) dλ(s) dλ(t) ≥ 0, for all f ∈ KC(G).

The set of functions of positive type is denoted by P .

We have P ⊆ C(G;C) ∩ L1(G;C) and ‖p‖∞ = p(e) for all p ∈ P .

Remark: If p is of positive type, then
∫

(f ∗ ∗ f)(s)p(s) dλ(s) ≥ 0 for all f ∈ L1(G). Indeed,
KC(G) is dense in L1(G), and for any sequence (fn) with fn ∈ KC(G) converging to f in
L1(G), the sequence f ∗n ∗ fn converges to f ∗ ∗ f in L1(G), and this implies that the sequence∫

(f ∗n ∗ fn)(s)p(s) dλ(s) ≥ 0 converges to
∫

(f ∗ ∗ f)(s)p(s) dλ(s) ≥ 0.

Every constant function with a nonnegative value is of positive type. We see this using
the fact that the Haar measure is a positive measure and by applying Vol. I, Proposition
7.24 to the integral

∫ ∫
f(t)f(s) dλ(s) dλ(t). For every f ∈ L2(G;C), we have the left regular

representation of G in L2(G) with (R(s))(f) = λsf (see Definition 3.14), and we have

〈(R(s))(f), f〉 =

∫
f(s−1t)f(t) dλ(t) =

∫
f̌(t−1s)f(t) dλ(t) = (f ∗ f̌)(s),

so as a special case of a function p of the form ψU,x0 , f ∗ f̌ = ψR,f is of positive type.

We showed that the functions of the form ψU,x0 are of positive type. Remarkably, every
continuous function p of positive type determines a unitary topologically cyclic representation
U with a cyclic vector x0, such that p = ψU,x0 . Before stating our next theorem, we need to
recall that by Vol. I, Theorem 8.34, if G is a metrizable, separable, locally compact group,
then L1(G) is separable.

Theorem 3.22. Let G be a metrizable, separable, locally compact group. For any continuous
function p ∈ C(G;C), the following properties are equivalent:

(a) There is a unitary representation U : G → U(H) of G in a separable Hilbert space H
and a vector x0 ∈ H, such that p = ψU,x0.

(b) The function p is of positive type, that is,∫ ∫
p(t−1s)f(t)f(s) dλ(s) dλ(t) ≥ 0, for all f ∈ KC(G).
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(c) The function p is bounded by p(e) ≥ 0, p̌ = p, and for every complex measure µ ∈
M1(G), we have ∫

p(s) d(µ̌ ∗ µ)(s) =

∫ ∫
p(t−1s) dµ(t) dµ(s) ≥ 0.

If p satisfies the above conditions, then there exists a topologically cyclic unitary represen-
tation V1 of G in a separable Hilbert space H1 and a cyclic vector x1, such that p = ψV1,x1.
The topologically cyclic representation is unique up to equivalence, in the sense that if V2

is another topologically cyclic representation in a separable Hilbert H2 and if x2 is a cyclic
vector for V2, such that p = ψV2,x2, then there is an isomorphism T : H1 → H2, such that
T (x1) = x2 and V2 = TV1T

−1.

Proof. We follow Dieudonné [12] (Chapter XXII, Section 1, Theorem 22.1.3). We already
proved that (a) implies (b). Let us prove that (b) implies (c).

By Vol. I, Proposition 8.45, we have
∫
ϕ(t)dµ̌(t) =

∫
ϕ(t−1) dµ(t). By the definition of

the convolution of measures, we obtain∫
p(z) d(µ̌ ∗ µ)(z) =

∫ ∫
p(ts) dµ̌(t) dµ(s) =

∫ ∫
p(t−1s) dµ(t) dµ(s). (∗1)

For every complex measure µ, the union of all the open sets A of measure zero (that is,
µ(A) = 0) has measure zero, so there is a largest open set of measure zero.

Definition 3.18. The support supp(µ) of the measure µ is the complement of the largest
open set of measure zero.

The support of the measure µ has the property that for every x ∈ supp(µ), for every
neighborhood V of x, there is a continuous function f with compact support contained in
V , such that

∫
f(s) dµ(s) 6= 0; see Dieudonné [14] (Chapter XIII, Section 19).

Let us first assume that µ has compact support. In this case, for any f ∈ KC(G), we
have µ ∗ f ∈ KC(G) (see Dieudonné [14] (Chapter XIV, Sections 14, 14.5.4 and 14.9.2), and
it follows that

0 ≤
∫ ∫

p(t−1s)(µ ∗ f)(t)(µ ∗ f)(s) dλ(s) dλ(t),

and since by Vol. I, Definition 8.25,

(µ ∗ f)(t) =

∫
f(x−1t) dµ(x),
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using Proposition 7.24 and Proposition 8.45, we have∫ ∫
p(t−1s)(µ ∗ f)(t)(µ ∗ f)(s) dλ(s) dλ(t)

=

∫ ∫
p(t−1s)

(∫
f(x−1t) dµ(x)

)(∫
f(y−1s) dµ(y)

)
dλ(s) dλ(t)

=

∫ ∫
p(t−1s)

(∫
f(x−1t) dµ(x)

)(∫
f(y−1s) dµ(y)

)
dλ(s) dλ(t)

=

∫ ∫
p(t−1s)

(∫
f(xt) dµ̌(x)

)(∫
f(ys) dµ̌(y)

)
dλ(s) dλ(t)

=

∫ ∫ (∫ ∫
p(t−1xy−1s)f(t) dλ(t)f(s) dλ(s)

)
dµ̌(x) dµ̌(y)

=

∫ ∫ (∫ ∫
f(t)f(s)p(t−1x(s−1y)−1) dλ(t) dλ(s)

)
dµ̌(x) dµ̌(y).

Define the group G×G as the Cartesian product G×G with the multiplication

(s1, t1)(s2, t2) = (s1s2, t1t2).

Then the convolution of the functions (t, s) 7→ F (t, s) = f(t)f(s) and (x, y) 7→ Π(x, y) =
p(xy−1) is given by

(x, y) 7→
∫ ∫

F (t, s)Π((t−1, s−1)(x, y)) dλ(t) dλ(s) =

∫ ∫
F (t, s)Π(t−1x, s−1y) dλ(t) dλ(s)

=

∫ ∫
f(t)f(s)p(t−1xy−1s) dλ(t) dλ(s).

This suggests using the regularization method (Vol. I, Proposition 8.50). Let (Vn) be a
fundamental system of compact neighborhoods of e, such that Vn+1 ⊆ Vn for all n, and let
fn be a continuous function fn ≥ 0 with compact support contained in Vn and such that∫
fn dλ = 1. Since fn is real, fn = fn. Then if we let Fn(t, s) = fn(t)fn(s) = fn(t)fn(s), we

have
∫∫

Fn(t, s) dλ(t) dλ(s) =
∫∫

fn(t)fn(s) dλ(t) dλ(s) = 1, and by Vol. I, Proposition 8.50,
the sequence of functions

(Fn ∗ Π)(x, y)

converges uniformly to the function (x, y) 7→ p(xy−1) on every compact subset. By passing
to the limit, using Proposition 13.19.3 of Dieudonné [14] (Chapter XIII, Section 19) which
says that on a compact subset we can interchange the integral and the limit and (∗1), we
obtain the inequality∫ ∫

p(xy−1) dµ̌(x) dµ̌(y) =

∫ ∫
p(xy) dµ̌(x) dµ(y) =

∫
p(s)d(µ̌ ∗ µ)(s) ≥ 0.
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Now we show that p is bounded by p(e). For any finite subset {s1, . . . , sn} of G and for
any complex numbers ξ1, . . . , ξn, the linear functional α on KC(G) given by

α(f) =
n∑
j=1

ξjf(sj)

is continuous, so by Radon–Riesz III (Vol. I, Theorem 7.30), there is a unique complex
measure µ corresponding to α, called an atomic measure. For the measure µ, the inequality
in (c) becomes ∑

j,k

p(s−1
j sk)ξjξk ≥ 0.

This means that the sesquilinear form Φ defined by Φ(x, y) =
∑n

i,j=1 p(s
−1
i sj)xiyj must

satisfy the property Φ(x, x) ≥ 0 for all x ∈ Cn. Since

Φ(x+ y, x+ y) = Φ(x, x) + Φ(x, y) + Φ(y, x) + Φ(y, y),

we see that Φ(x, y)+Φ(y, x) must be real. By replacing x by ix, we see that iΦ(x, y)−iΦ(y, x)
must be real, so we must have

Φ(y, x) = Φ(x, y).

Therefore, the matrix (p(s−1
j sk)) is hermitian positive semidefinite. In particular, when n = 2

and with the set {e, s}, the matrix (
p(e) p(s)
p(s−1) p(e)

)
must be hermitian positive semidefinite, which implies that p(e) ≥ 0,

p(s−1) = p(s),

so p̌ = p, and
p(e)2 − p(s)p(s−1) = p(e)2 − p(s)p(s) ≥ 0,

and thus
|p(s)| ≤ p(e), for all s ∈ G,

namely, p is bounded (by (p(e)).

Let us now consider an arbitrary complex measure µ. By Vol. I, Proposition A.49, since
G is locally compact and metrizable, there is a sequence (Kn) of compact subsets of G, such
that Kn ⊆ Kn+1 and G =

⋃
nKn. Then it can be shown that limn7→∞ |µ|(G − Kn) = 0

(see Dieudonné [14], Chapter XIII, Section 8, Proposition 13.8.7). By Radon–Riesz III, the
continuous linear functional f 7→

∫
χKnf dµ (with f ∈ KC(G)) corresponds to a measure

µn of compact support Kn. Then it can be shown that limn7→∞ ‖µ− µn‖ = 0, and also
limn 7→∞

∥∥µ̌ ∗ µ− µ̌n ∗ µn∥∥ = 0 (see Dieudonné [14], Chapter XIV, Section 6, Proposition
14.6.2). Since µn has compact support, by our previous result

∫
p(s)d(µ̌n ∗ µn)(s) ≥ 0,
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but p is bounded and by the dominated convergence theorem,
∫
p(s)d(µ̌n ∗ µn)(s) tends to∫

p(s)d(µ̌ ∗ µ)(s), and thus
∫
p(s)d(µ̌ ∗ µ)(s) ≥ 0.

Finally, we prove that (c) implies (a). Consider the linear form ϕp defined on the unital
involutive Banach algebra M1(G) given by

ϕp(µ) =

∫
p(s) dµ(s), µ ∈M1(G),

where p is a bounded continuous function satisfying (c), and with the involution of M1(G)
being given by µ∗ = µ̌. Observe that ϕp(µ̌ ∗ µ) =

∫
p(s) d(µ̌ ∗ µ)(s) ≥ 0, by (c). Therefore,

ϕp is a positive linear form onM1(G), according to Definition 2.10. Recall that L1(G)⊕Cδe
is also a unital involutive Banach algebra, and the restriction of ϕp to L1(G)⊕Cδe is also a
positive linear form. By Proposition 2.40(1), the linear form ϕp is continuous.

Recall from Proposition 2.12 that ϕp induces a positive Hilbert form γ given by γ(µ, ν) =
ϕp(ν

∗ ∗ µ). Then we are almost in the position of applying Proposition 2.39 to obtain a
representation of the algebra L1(G)⊕ Cδe, but it is not clear that condition (U) is satisfied
so we proceed directly.

Proposition 2.37 applies to the positive Hilbert form γ. To simplify notation, write
A = L1(G)⊕ Cδe. If

n = {µ ∈ A | γ(µ, µ) = ϕp(µ
∗ ∗ µ) = 0},

then n is a left ideal in A and A/n = H0 is a hermitian space with the inner product given
by

〈π(µ), π(ν)〉 = γ(µ, ν) = ϕp(ν
∗ ∗ µ),

where π : A → A/n = H0 is the quotient map. Observe that by Proposition 2.40, ϕp is a
continuous linear form, such that ‖ϕp‖ = ϕp(e), so we have

‖π(µ)‖2 = γ(µ, µ) = ϕp(µ
∗ ∗ µ) ≤ ϕp(e) ‖µ∗ ∗ µ‖ ≤ ϕp(e) ‖µ‖2 ,

so π is continuous. Since A is separable, so is H0. The completion H of H0 is a separable
Hilbert space. As in the proof of Proposition 2.39, the endomorphism V (µ) given by

V (µ)(π(ν)) = π(µ ∗ ν)

extends to a continuous map V (µ) : H → H, which is a representation of A (left multiplica-
tion). Since A has a unit element δe, we see that

V (µ)(π(δe)) = π(µ ∗ δe) = π(µ),

so x0 = π(δe) is a cyclic vector for V . Since

V (µ)(x0) = π(µ),

we have
〈V (µ)(x0), x0〉 = 〈π(µ), π(δe)〉 = γ(µ, δe) = ϕp(δ

∗
e ∗ µ) = ϕp(µ).
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We also claim that the representation V is nondegenerate. It suffices to prove that the
set of elements of the form f ∗ g with f, g ∈ L1(G) is dense in L1(G) (property (N)). But
this follows immediately by regularization (Vol. I, Proposition 8.50).

We can now apply Theorem 3.18, to obtain a unitary representation U : G → U(H),
topologically cyclic, and such that Uext = V . We know from (†) in the proof of Theorem
3.18 that U is given by

U(s) ◦ V (ν) = V (δs ∗ ν),

and since V (µ)(x0) = π(µ), this means that

U(s)(π(ν)) = π(δs ∗ ν).

In particular, U(s)(x0) = π(δs). Since HU = {U(s)(x0) | s ∈ G} is invariant under U(s)
for every s ∈ G, by Theorem 3.18, the closed subset HU is also invariant under V (µ) for
all µ ∈ A, but H0 = {V (µ)(x0) | µ ∈ A} and x0 ∈ HU , so we must have HU = H0, and
{U(s)(x0) | s ∈ G} is dense in H. Therefore, x0 is a cyclic vector for U , which means that
the set {π(δs) | s ∈ G} is dense in H.

We have

〈U(s)(x0), x0〉 = 〈π(δs), π(δe)〉 = γ(δs, δe) = ϕp(δ
∗
e ∗ δs) = ϕp(δs) =

∫
p(t) dδs(t) = p(s),

so p = ψU,x0 , as desired. The uniqueness of U up to equivalence follows from Proposition
2.38.

In the next section, we present the Gelfand–Raikov theorem.

3.6 The Gelfand–Raikov Theorem

We will not prove the Gelfand–Raikov theorem but we will prove several technical proposi-
tions needed for its proof that are of independent interest.

Proposition 3.23. Let p be a function of positive type on G. For all s, t ∈ G, we have

|p(s)− p(t)|2 ≤ 2p(e)(p(e)−<(p(s−1t))).

Proof. By Theorem 3.22, we may assume that there is cyclic unitary representation U and
a cyclic vector x0, such that

p(s) = 〈U(s)(x0), x0〉.
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This immediately implies that p(e) = 〈U(e)(x0), x0〉 = 〈x0, x0〉 = ‖x0‖2. By Cauchy–Schwarz
and the fact that p(s−1) = p(s), we have

|p(s)− p(t)|2 = |〈(U(s)− U(t))(x0), x0〉|2

≤ ‖x0‖2 ‖(U(s)− U(t))(x0)‖2

= p(e)(‖U(s)(x0)‖2 + ‖U(t)(x0)‖2 − 2<(〈U(s)(x0), U(t)(x0)〉))
= p(e)(2 ‖x0‖2 − 2<(〈U(t−1s)(x0), x0〉))
= 2p(e)(p(e)−<(p(t−1s))) = 2p(e)(p(e)−<(p(s−1t)))

= 2p(e)(p(e)−<(p(s−1t))),

as claimed.

Let p = ψU,x0 be a function of positive type given by a cyclic unitary representation
U : G→ U(H) with cyclic vector x0. If (an) is a Hilbert basis of H (recall that the Hilbert
space H is separable), then we can write

U(s)(x0) =
∑
n

pn(s)an,

where each function pn is continuous, and we have∑
n

|pn(s)|2 = ‖x0‖2 , for all s ∈ G.

We deduce that
p(s−1t) = 〈U(t)(x0), U(s)(x0)〉 =

∑
n

pn(s)pn(t), (∗2)

with
∑

n |pn(s)pn(t)| ≤ ‖x0‖2.

Proposition 3.24. The product pq of two functions p and q of positive type on G is a
function of positive type.

Proof. Using a Hilbert basis as above, (∗2), and a corollary of the dominated convergence
theorem (Vol. I, Proposition 5.37), for every f ∈ KC(G), we have∫ ∫

p(s−1t)q(s−1t)f(s)f(t) dλ(s) dλ(t) =
∑
n

∫ ∫
q(s−1t)pn(s)f(s)pn(t)f(t) dλ(s) dλ(t),

but since q is also of positive type, we have∫ ∫
q(s−1t)pn(s)f(s)pn(t)f(t) dλ(s) dλ(t) ≥ 0, for all n,

so ∫ ∫
p(s−1t)q(s−1t)f(s)f(t) dλ(s) dλ(t) ≥ 0,

that is, pq is of positive type.
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Two subsets of the set P of continuous functions of positive type on G come up in the
proof of the Gelfand–Raikov theorem and are of particular interest:

P1 = {f ∈ P | f(e) = 1} = {f ∈ P | ‖f‖∞ = 1}
P0 = {f ∈ P | 0 ≤ f(e) ≤ 1} = {f ∈ P | ‖f‖∞ ≤ 1}.

Since P ⊆ C(G;C)∩L1(G;C), the space P can be given several topologies. The subspace
P1 is particularly important because of its role in the proof of the Gelfand–Raikov theorem
and remarkably, three natural topologies on P1 coincide.

Remark: The above notation is from Folland [22] (Chapter 3). Unfortunately, Dieudonné
denotes P1 as P0.

The sets P0 and P1 are convex and bounded (P itself is a convex cone). Recall the
definition of an extreme point . Given a nonempty convex set S, a point a of the boundary
of S is extreme (or extremal) if S − {a} is still convex. Equivalently, there does not exist
two distinct points x, y ∈ S, such that a = (1− λ)x+ λy, with 0 < λ < 1.

Let E(P0) (resp. E(P1)) be the set of extreme points of P0 (resp. P1). The following
results are shown in Folland [22] (Chapter 3, Theorem 3.25 and Lemma 3.26).

Theorem 3.25. If p ∈ P1, then the cyclic unitary representation U associated with p given
by Theorem 3.22 is irreducible iff p ∈ E(P1). We have E(P0) = E(P1) ∪ {0}.

In order to state the next results, we need to define the weak ∗-topology on L∞(G). Recall
from Vol. I, Theorem 5.51 that L∞(G) is isomorphic to the dual (L1(G))′ of L1(G) under
the pairing (−,−) : L1(G)× L∞(G)→ C given by

(f, g) =

∫
f(s)g(s) dλ(s).

Every function g ∈ L∞(G) defines the continuous linear form in (L1(G))′ given by f 7→ (f, g),
for every f ∈ L1(G), and every linear form in (L1(G))′ arises in this fashion for a unique
function g ∈ L∞(G).

Definition 3.19. The weak ∗-topology on L∞(G) is the topology of pointwise convergence on
(L1(G))′. This topology is defined directly on L∞(G) by the family (pf )f∈L1(G) of semi-norms
indexed by the set of functions L1(G), such that for every f ∈ L1(G),

pf (g) = |(f, g)|, for every g ∈ L∞(G).

(See Vol. I, Section 2.7 and Dieudonné [14] (Chapter XII, Section 15).)

It is proven in Folland [22] (Chapter 3, Theorem 3.31) that the topology induced on
P1 ⊆ L∞(G) by the weak ∗-topology of L∞(G) coincides with the topology induced on P1 by
the topology of compact convergence in CG (see Vol. I, Definition 2.9). This result is one of
the key facts in the proof of the Gelfand–Raikov theorem.
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In Dieudonné [12] (Chapter XXII, Section 1, Theorem 2.1.11), it is shown that the
topology induced on P1 ⊆ C(G;C) by the topology of Fréchet space of C(G;C) (see Vol. I,
Section 2.7) and the topology induced on P1 by the weak ∗-topology of L∞(G) coincide.

An important theorem due to Gelfand and Raikov shows that there is vast supply of
irreducible unitary representations for any locally compact group. This is far from obvious a
priori. For example, SL(2,R) does not have finite-dimensional unitary representations, and
it is not that easy to find irreducible unitary representations.

Theorem 3.26. (Gelfand–Raikov) If G is a locally compact group, then the irreducible uni-
tary representations of G separate points. This means that for any s, t ∈ G, if s 6= t, then
there is an irreducible representation U , such that U(s) 6= U(t).

Theorem 3.26 is proven in Folland [22] (Chapter 3, Theorem 3.34).

The notion of function of positive type is closely related to the notion of positive semidef-
inite function defined below, which came up during the proof of Theorem 3.22.

Definition 3.20. A function p : G→ C (not necessarily continuous) is positive semidefinite
if for all s1, . . . , sn ∈ G and all ξ1, . . . , ξn ∈ C, we have

n∑
j,k=1

p(s−1
j sk)ξkξj ≥ 0.

As we showed during the proof of Theorem 3.22, the matrix (p(s−1
j sk)) is hermitian

positive semidefinite. We also have p(s−1) = p(s) and |p(s)| ≤ p(e), so p is bounded,
but examples of discontinuous or even nonmeasurable positive semidefinite p can be given.
However, if p is continuous, then p is actually a function of positive type. The following
result is shown in Folland [22] (Chapter 3, Proposition 3.35).

Proposition 3.27. Let G be a locally compact group. For any bounded continuous function
p : G→ C, the following are equivalent:

(1) The function p is of positive type.

(2) The function p is positive semidefinite.

(3) We have
∫

(f ∗ ∗ f)(s)p(s) dλ(s) ≥ 0 for all f ∈ KC(G).

In Section 9.9, we will need the notion of measure of positive type, a natural generalization
of the notion of function of positive type.



176 CHAPTER 3. REPRESENTATIONS OF LOCALLY COMPACT GROUPS

3.7 Measures of Positive Type and Unitary

Representations

As in the previous section, we assume that G is a separable, metrizable, locally compact
group.

For any complex or σ-Radon measure µ, and any function f ∈ KC(G), we have∫
(f ∗ ∗ f)(s) dµ(s) =

∫ ∫
∆(t−1)f(t−1)f(t−1s) dλ(t) dµ(s)

=

∫ ∫
f(t)f(ts) dλ(t) dµ(s).

This suggests defining a measure of positive type as follows.

Definition 3.21. A complex or σ-Radon measure µ is of positive type if∫
(f ∗ ∗ f)(s) dµ(s) =

∫ ∫
f(t)f(ts) dλ(t) dµ(s) ≥ 0, for all f ∈ KC(G).

Observe that if µ = p dλ for some p ∈ L1(G), then∫
(f ∗ ∗ f)(s) dµ(s) =

∫ ∫
f(t)f(ts)p(s) dλ(t) dλ(s) =

∫ ∫
f(t)f(s)p(t−1s) dλ(t) dλ(s),

which is exactly the expression defining a function of positive type in Definition 3.17. But
here p ∈ L1(G) is not necessarily continuous, so Definition 3.21 yields a generalization of the
notion of function of positive type.

Proposition 3.28. For every complex measure ν ∈ M1(G), the measure µ = ν̌ ∗ ν is of
positive type on G.

Proof. For every function f ∈ KC(G), we have∫
(f ∗ ∗ f)(s)d(ν̌ ∗ ν)(s) =

∫ (∫
f(t)f(ts) dλ(t)

)
d(ν̌ ∗ ν)(s)

=

∫ ∫ ∫
f(t)f(tyz) dλ(t) dν̌(y) dν(z)

=

∫ ∫ ∫
f(t)f(ty−1z) dλ(t) dν(y) dν(z)

=

∫ ∫ ∫
∆(t−1)f(t−1)f(t−1y−1z) dλ(t) dν(y) dν(z)

=

∫ ∫ ∫
∆(t−1y)f(t−1y)f(t−1z) dν(y) dν(z) dλ(t)

=

∫
∆(t−1y)

∣∣∣∣∫ f(t−1x) dν(x)

∣∣∣∣2 dλ(t) ≥ 0,

since the modular function ∆ is strictly positive.
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As a corollary of Proposition 3.28, since δe = δ̌e = δ̌e ∗ δe, we see that the Dirac measure
δe is of positive type.

In the special case where ν = f dλ, with f ∈ L1(G), we see that f ∗ ∗f is of positive type.
It should be noted that if f ∈ L1(G), the function of positive type f ∗ ∗ f ∈ L1(G) may not
be bounded.

Example 3.10. For example, if G = R and if f(x) = x−1/2 for 0 < x < 1 and f(x) = 0
otherwise, then f ∗ ∗ f is not bounded.

Observe that f ∗(x) = f(x−1) =
√
x if x > 1 and f ∗(x) = 0 otherwise. See Figure 3.1.

Figure 3.1: The left figure is the graph of f(x) = x,−1/2 for 0 < x < 1, while the right figure
is the graph of f ∗(x) = f(x−1) =

√
x if x > 1.

We have

g(x) = (f ∗ ∗ f)(x) =

∫
R
f ∗(t)f(x− t) dt,

and this integral is not zero if

t > 1, x− 1 < t < x.

If x ≤ 1, then g(x) = 0. If 1 < x ≤ 2, then

g(x) = (f ∗ ∗ f)(x) =

∫ x

1

√
t√

x− t
dt,

and if x > 2, then

g(x) = (f ∗ ∗ f)(x) =

∫ x

x−1

√
t√

x− t
dt.
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Let us compute the integral ∫ x

x−1

√
t√

x− t
dt =

∫ x

x−1

1√
x
t
− 1

dt.

If we do the change of variable

u =
x

t
− 1,

we get

t =
x

u+ 1
, dt = − xdu

(u+ 1)2
,

so ∫ x

x−1

dt√
x
t
− 1

=

∫ 1
x−1

0

xdu√
u(u+ 1)2

.

Next, we make the change of variable

u = w2,

so we have
w =

√
u, du = 2wdw,

and we get ∫ 1
x−1

0

xdu√
u(u+ 1)2

= 2x

∫ 1√
x−1

0

dw

(w2 + 1)2
.

But∫
dw

(w2 + 1)2
=

∫
w2 + 1− w2

(w2 + 1)2
dw =

∫
dw

(w2 + 1)
−
∫

w2dw

(w2 + 1)2
= arctanw−

∫
w

wdw

(w2 + 1)2
,

and by integrating the second term by parts, we get∫
dw

(w2 + 1)2
=

w

2(w2 + 1)
+

1

2
arctanw.

We finally obtain

g(x) = 2x

[
w

2(w2 + 1)
+

1

2
arctanw

] 1√
x−1

0

=
√
x− 1 + x arctan

(
1√
x− 1

)
, x > 2.

When x > 2 goes to infinity, the second term remains positive (in fact, goes to infinity, as
we can see by using the power series for arctan y with |y| < 1), and the first term goes to
infinity.
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For the sake of completeness, if 1 < x ≤ 2, we have∫ x

1

dt√
x
t
− 1

=

∫ x−1

0

xdu√
u(u+ 1)2

,

and ∫ x−1

0

xdu√
u(u+ 1)2

= 2x

∫ √x−1

0

dw

(w2 + 1)2
.

It follows that for 1 < x ≤ 2, we have

g(x) = 2x

[
w

2(w2 + 1)
+

1

2
arctanw

]√x−1

0

=
√
x− 1 + x arctan

(√
x− 1

)
.

Therefore, the function g = f ∗ ∗ f is given by

g(x) =


0 if x ≤ 1√
x− 1 + x arctan

(√
x− 1

)
if 1 < x ≤ 2

√
x− 1 + x arctan

(
1√
x−1

)
if x > 2.

See Figure 3.2.

Figure 3.2: The graph of g = f ∗ ∗ f .

We showed that a continuous function p of positive type satisfies the property p(s−1) =
p(s), equivalently, p̌ = p. This property generalizes to measures of positive type.

Proposition 3.29. For every measure µ of positive type on G, we have µ̌ = µ.
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Proof. Observe that if we can prove for all f, g ∈ KC(G) that∫
(f ∗ ∗ g)(s) dµ(s) =

∫
(f ∗ ∗ g)(s) dµ̌(s), (∗3)

then by regularization (Vol. I, Proposition 8.50), we will have∫
h(s) dµ(s) =

∫
h(s) dµ̌(s), for all h ∈ KC(G),

which proves that µ̌ = µ. By polarization, to prove (∗3), it suffices to prove it for g = f ,
since

4g∗ ∗ f = (f + g)∗ ∗ (f + g)− (f − g)∗ ∗ (f − g) + i(f + ig)∗ ∗ (f + ig)− i(f − ig)∗ ∗ (f − ig).

If f ∈ KC(G), with ν = f dλ, by Proposition 3.28, we see that f ∗ ∗ f ∈ KC(G) is of positive
type, so by Theorem 3.22(c),

(f ∗ ∗ f)(s−1) = (f ∗ ∗ f)(s),

and since µ is of positive type, we have
∫

(f ∗ ∗ f)(s) dµ(s) ≥ 0. By (∗) just before Vol. I,
Proposition 8.46, ∫

g(s) dµ̌(s) =

∫
ǧ(s) dµ(s),

and we obtain ∫
(f ∗ ∗ f)(s) dµ̌(s) =

∫
(f ∗ ∗ f)(s−1) dµ(s)

=

∫
(f ∗ ∗ f)(s) dµ(s)

=

∫
(f ∗ ∗ f)(s) dµ(s),

as claimed.

We conclude this section by showing that a measure µ of positive type defines a unitary
representation Uµ of G. This construction will be used in Section 9.9 to define the Plancherel
transform.

The vector space KC(G) is a nonunital algebra under convolution with involution f 7→ f ∗,

with f ∗(s) = ∆(s−1)f̌(s). Because µ is of positive type, the linear form ϕµ : KC(G) → C
given by

ϕµ(f) =

∫
f(s) dµ(s)
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is a positive linear form in the sense of Definition 2.10. As in Section 3.5, the set

n = {f ∈ KC(G) | ϕµ(f ∗ ∗ f) = 0}

is a left ideal in KC(G), and H0 = KC(G)/n is a hermitian space with the hermitian inner
product

〈π(f), π(g)〉µ = ϕµ(g∗ ∗ f) =

∫
(g∗ ∗ f)(s) dµ(s), (†1)

where π : KC(G)→ KC(G)/n is the quotient map. Since∫
(g∗ ∗ f)(s) dµ(s) =

∫ ∫
∆(t−1)g(t−1)f(t−1s) dλ(t) dµ(s)

=

∫ ∫
g(t)f(ts) dλ(t) dµ(s),

we have

〈π(f), π(g)〉µ = ϕµ(g∗ ∗ f) =

∫ ∫
g(t)f(ts) dλ(t) dµ(s). (†2)

We claim that H0 = KC(G)/n is separable. Recall from Vol. I, Proposition 2.16 that
since G is a locally compact separable metric space, the space KC(G) is separable. If (fn)
is a sequence of functions in KC(G) converging uniformly to a function f ∈ KC(G), with
the supports of the fn remaining within some fixed compact subset, then f ∗n ∗ fn converges
uniformly to f ∗ ∗ f , the supports of the f ∗n ∗ fn remaining with some fixed compact set, thus
‖π(fn)− π(f)‖µ tends to zero as n tends to infinity. This shows that H0 is separable, and
we let H (or Hµ) denote the separable Hilbert space which is its completion.

Instead of first defining a nondegenerate representation V of the algebra KC(G) and then
the unitary representation U of G, such that Uext = V , we define Uµ : G → GL(H0) as
follows:

Uµ(s)(π(f)) = π(δs ∗ f), for all s ∈ G and all f ∈ KC(G). (∗Uµ)

Recall (δs ∗ f)(t) = f(s−1t), and that if f ∈ KC(G), then δs ∗ f ∈ KC(G).

Theorem 3.30. For any measure µ of positive type, with the notation as above, if Uµ : G→
GL(H0) is the map defined by

Uµ(s)(π(f)) = π(δs ∗ f), for all s ∈ G and all f ∈ KC(G),

then each linear map Uµ(s) from H0 to itself is continuous and unitary, thus the map Uµ(s)
extends to a unitary map of H, and we obtain a homomorphism Uµ : G → U(H). For
each x ∈ H, the map s 7→ Uµ(s)(x) is continuous, therefore, Uµ : G → U(H) is a unitary
representation of G in H.
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Proof. By (†2), we have

‖Uµ(s)(π(f))‖2
µ = 〈Uµ(s)(π(f)), Uµ(s)(π(f))〉µ = 〈π(δs ∗ f), π(δs ∗ f)〉µ

=

∫ ∫
f(s−1t)f(s−1tu) dλ(t) dµ(u)

=

∫ ∫
f(t)f(tu) dλ(t) dµ(u)

= 〈π(f), π(f)〉µ = ‖π(f)‖2
µ .

Thus, Uµ(s) is unitary and continuous.

For any f ∈ KC(G), and s ∈ G, and any sequence (sn) in G converging to s ∈ G, the
sequence (λsnf) converges uniformly to λsf (recall that (λsf)(t) = f(s−1t)), the support of
each λsf remaining in a fixed compact set, so as before, the sequence (δsn ∗ f) converges to
δs ∗f , and since Uµ(sn)(π(f)) = π(δsn ∗f) = π(λsnf), the sequence (Uµ(sn)(π(f))) converges
to Uµ(s)(π(f)) ∈ H. Since H0 is dense in H, and since the set of maps {Uµ(s) | s ∈ G} from
H to itself is equicontinuous (see Vol. I, Proposition 2.13 or Dieudonné [14], Chapter XII,
Section 15, Theorem 12.15.7.1), as a consequence, each map s 7→ Uµ(s)(x) is continuous (see
Vol. I, Proposition 2.12 or Dieudonné [17], Chapter VII, Section 5, Theorem 7.5.5).

Remark: According to Definition 3.13, the algebra representation (Uµ)ext : L1(G) → L(H)
is defined such that for all f ∈ L1(G) and all g ∈ KC(G), the vector (Uµ)ext(f)(π(g)) is
uniquely determined by the equation

〈(Uµ)ext(f)(π(g)), π(h)〉µ =

∫
f(s)〈Uµ(s)(π(g)), π(h)〉µ dλ(s) for all h ∈ KC(G),

and since
Uµ(s)(π(g)) = π(δs ∗ g),

and by (†2),

〈Uµ(s)(π(g)), π(h)〉µ = 〈π(δs ∗ g), π(h)〉µ =

∫ ∫
h(u)(δs ∗ g)(ut) dλ(u) dµ(t)

=

∫ ∫
g(s−1ut)h(u) dλ(u) dµ(t),

we obtain

〈(Uµ)ext(f)(π(g)), π(h)〉µ =

∫ ∫ ∫
f(s)g(s−1ut)h(u) dλ(u) dµ(t) dλ(s)

=

∫ ∫ ∫
f(s)g(s−1ut)h(u) dλ(s) dλ(u) dµ(t),

as in Dieudonné [12] (Chapter XXII, Section 7, no. 22.7.2.1), except that in Dieudonné [12],
u−1 occurs instead of u. But Dieudonné assumes that G is unimodular, so this does not
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make any difference. To deal with the case where G is not unimodular, we need to replace

f̌ by f ∗ = ∆−1f̌ , as we did, following Folland [22].

If f ∈ KC(G), then for all g ∈ KC(G), we have the simpler expression

(Uµ)ext(f)(π(g)) = π(f ∗ g),

as in Proposition 2.39.

Representation theory is a vast area of mathematics and we will only give a few references.
A classic on the general theory is Kirillov [40]. Kirillov’s survey [41] gives an excellent
panorama of the field. Another encyclopedic source that covers a lot of the general theory
is Hewitt and Ross [36]. A good source for the general theory is Folland [22]. Bröcker and
tom Dieck [6], Dieudonné [11], and Knapp [44] cover the representation theory of compact
groups in great depth. Fulton and Harris [25], Humphreys [38], Knapp [43], Taylor [66],
Varadarajan [67, 68], and Vilenkin [70] cover the representation theory of Lie groups.

We are now ready to prove the famous Peter–Weyl theorem.

3.8 Problems

Problem 3.1. Define the representation ρ9 : SO(3)→ GL(M3(C)) as follows: for any 3× 3
complex matrix A ∈ M3(C), for any Q ∈ SO(3),

ρ9(Q)(A) = QAQ>.

To obtain a version of ρ9 as a matrix representation Mρ9 , we choose the canonical basis
of nine matrices E11, E12, E13, E21, E22, E23, E31, E32, E33, where Eij contains 1 as the (i, j)
entry and 0 otherwise. A matrix M ∈ M3(C) is then written as the column vector

vec(A) = (a11, a12, a13, a21, a22, a23, a31, a32, a33).

(1) Show that over this basis, the matrix Mρ9(Q) representing the linear map ρ9(Q) is
given by

Mρ9(Q)(vec(A)) = vec(QAQ>).

(2) Prove the identity
vec(AZB) = (B> ⊗ A)vec(Z),

where ⊗ denotes the Kronecker product of matrices.

(3) Prove that
Mρ9(Q)(vec(A)) = vec(QAQ>) = (Q⊗Q)vec(A).

(4) Prove that the subspace of symmetric matrices and the subspace of skew-symmetric
matrices are invariant under ρ9 : SO(3)→ GL(M3(C)).
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(5) Prove that the subspace of symmetric matrices A with tr(A) = 0 is also invariant.

Problem 3.2. Let G be a finite group with g = |G| elements. Recall that the regular
representation of G, ρR : G→ GL(Cg), is defined as

ρR(si)(esj) = esisj , 1 ≤ i, j ≤ g,

where (es1 , . . . , esg) is the canonical basis of Cg indexed by the g elements of G. Prove the
following facts about irreducible finite-dimensional representations of a finite group G.

(1) Every irreducible finite-dimensional representation ρi : G → GL(Cni) of the finite
group G is equivalent to a subrepresentation of the regular representation ρR : G →
GL(Cg) of G in Cg (where g = |G|).

(2) Every irreducible representation ρi : G → GL(Cni) occurs ni times in the regular
representation.

(3) If there are h irreducible representations ρi : G→ GL(Cni) (up to equivalence), then

n2
1 + · · ·+ n2

h = g;

(4) The number h of irreducible representations of G (up to equivalence) is equal to the
number of conjugacy classes of G.

Hint . See Section 4.2 (Example 4.2), Proposition 4.17, and Serre [62].

Problem 3.3. Recall that

C(U) = {ϕ ∈ L(H) | ϕ ◦ U(g) = U(g) ◦ ϕ for all g ∈ G}.

Show that C(U) is a unital C∗-algebra that is closed in L(H) under weak limits (see Definition
2.21(3)).

Hint . See Folland [22], Section 1.6.

Problem 3.4. Prove Proposition 3.4.

Hint . See Dieudonné [14] (Chapter XV, Section 5) or Folland [22] (Chapter 3, Proposition
3.3).

Problem 3.5. Let α = a+ ib and β = c+ id. A matrix q ∈ SU(2) can be written as

q =

(
α β

−β α

)
, with |α|2 + |β|2 = 1.

The group SU(2) is a Lie group, whose (real) Lie algebra su(2) is defined as

su(2) =

{(
ix y + iz

−y + iz −ix

) ∣∣∣∣ (x, y, z) ∈ R3

}
.
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The adjoint representation SU(2) Ad: SU(2) → GL(su(2)) is defined such that for every
q ∈ SU(2), we have

Adq(A) = qAq∗, A ∈ su(2),

where q∗ is the inverse of q. Prove that Adq is an invertible linear map from su(2) to itself,
and that Ad is a group homomorphism.

Problem 3.6. Prove Theorem 3.9.

Hint . See Gallier [26] (Chapter 9).

Problem 3.7. Let G be a finite group of order |G|. The algebras L1(G) and L2(G) are the
same and equal to the space [G→ C] of functions from G to C. Convolution of two functions
f, h : G→ C is given by

(f ∗ h)(s) =
1

|G|
∑
s1s2=s

f(s1)h(s2) =
1

|G|
∑
t∈G

f(t)h(t−1s).

Recall that for every s ∈ G, the function δs : G→ C is given by

δs(t) =

{
1 if t = s

0 if t 6= s.

We define an involution f 7→ f ∗ on L1(G) by f ∗(s) = f(s−1). Then L1(G) = [G → C] is a
unital involutive algebra under convolution with unit δe (where e is the identity element of
G).

(1) Given a unitary representation U : G → U(H) of G, where H is finite-dimensional,

define Ũ(f)(x) by

Ũ(f)(x) =
1

|G|
∑
s∈G

f(s)U(s)(x), x ∈ H, f ∈ L1(G). ((1))

Prove that Ũ : L1(G)→ L(H) is an algebra representation.

Hint . See Simon [65] (Chapter II, Section 3).

(2) Conversely, let V : L1(G)→ L(H) be an algebra representation. Define U : G→ U(H)
by

U(s) = V (δs), s ∈ G.

Verify that U is a unitary representation, such that Ũ = V .

Hint . See Simon [65] (Chapter II, Section 3).
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Problem 3.8. (A continuation of Problem 3.7. Note that G is still a finite group). Consider
the left regular representation of G. The space L2(G) = L1(G) has the hermitian inner
product given by

〈f, g〉 =
1

|G|
∑
s∈G

f(s)g(s), f, g ∈ L2(G).

For any s ∈ G, define Rs : L2(G)→ L2(G) by

(Rs(f))(t) = f(s−1t), s, t ∈ G, L2(G).

Prove that if we apply (1) to define R̃(f), we find that

(R̃(f))(g) = f ∗ g, f, g ∈ L2(G).

Problem 3.9. Let G be a locally compact group. Recall that the representation R : G →
U(L2(G)) given by

(R(s)(f))(t) = λs(f)(t) = f(s−1t), f ∈ L2(G), s, t ∈ G,

is the left regular representation of G in L2(G). By Theorem 3.17, we obtain Rext of L1(G)
in L2(G).

(1) Prove that

Rext(f)(g) = f ∗ g,

with f ∈ L1(G) and g ∈ L2(G) (in the equation defining Ũ(f) = Rext(f), x is the
function g and y is a function h).

(2) Using Vol. I, Proposition 8.50, prove that Rext is injective.

Problem 3.10. Let (X,A) and (Y,B) be two measure spaces, and let ϕ : X → Y be a
measurable map. Let µ be a (positive) measure on (X,A) and recall that ϕ∗µ of µ is defined
as

ϕ∗µ(B) = µ(ϕ−1(B)), B ∈ B.

(1) Prove that ϕ∗µ is a measure on (Y,B).

(2) Prove Proposition 3.19.

Hint . See Folland [22] (Proposition 10.1) or Lang [48] (Chapter VI, Exercise 8).

Problem 3.11. Prove that the support of a measure µ satisfies the following property: For
every x ∈ supp(µ), for every neighborhood V of x, there is a continuous function f with
compact support contained in V , such that

∫
f(s) dµ(s) 6= 0.

Hint . See Dieudonné [14] (Chapter XIII, Section 19).
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Problem 3.12. (Advanced Exercise for Theorem 3.22) Complete the proof of (b) implies
(c) when µ is an arbitrary complex measure.

Hint . See Dieudonné [14] Chapter XIII, Section 8, Proposition 13.8.7).

Problem 3.13. (Advanced Exercise) Prove Theorem 3.25.

Hint . See Folland [22] (Chapter 3, Theorem 3.25 and Lemma 3.26).

Problem 3.14. Prove Proposition 3.27.

Hint . See Folland [22] (Chapter 3, Proposition 3.35).
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Chapter 4

Analysis on Compact Groups and
Representations

Volume I, Chapter 10 is devoted to harmonic analysis on abelian locally compact (not nec-
essarily compact) groups. In this chapter, we consider the case of a compact not necessarily
abelian group G. Noncommutativity causes trouble. In particular, the characters no longer
form a group. Irreducible representations of the group G become a substitute for the group
characters of abelian groups. Fortunately, compactness also has a positive influence.

The structure of the algebra L2(G) is described by a Hilbert sum of finite-dimensional
matrix algebras, which determine irreducible unitary representations of G (in fact, up to
equivalence, all of them). These results constitute a deep and beautiful theorem due to Peter
and Weyl, and most of this chapter is devoted to its proof. To avoid technical complications
(namely to avoid uncountable Hilbert sums and not use filters to deal with convergence
issues), in this chapter we assume that all locally compact groups are metrizable and separable
and that all compact groups are metrizable. This is not really a restriction since most groups
that we will consider are Lie groups, which are metrizable and separable. As observed just
before Proposition 2.18, if a topological space is metrizable and compact, then it is separable,
so a metrizable compact group is also separable.

If the (metrizable) group G is compact, then some remarkable things happen:

(1) The involutive algebra (under convolution) L2(G) is a complete Hilbert algebra, and
as a consequence of Theorem 2.33, the algebra L2(G) is a finite or countably infinite
Hilbert sum

⊕
ρ∈R aρ of topologically simple algebras, but because G is compact, each

aρ is isomorphic to a finite-dimensional matrix algebra Mnρ(C). The elements of aρ are
continuous functions on G. This is the first half of the first part of a theorem due to
Peter and Weyl (1927); see Theorem 4.2.

Since each minimal two-sided ideal aρ is finite-dimensional, it can be expressed as a
finite direct sum

aρ =
⊕

1≤j≤nρ

aρ ∗mj,

189
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of orthogonal minimal left ideals, where the mj are self-adjoint irreducible idempotents.
We can pick a Hilbert basis (aj)1≤j≤nρ in l1 = aρ ∗m1, such that aj ∈ mj ∗ aρ ∗m1, and
then it turns out that there is some γ > 0, such that

aj ∗ ǎj = γmj, ǎj ∗ aj = γm1, 1 ≤ j ≤ nρ.

In fact, we will show that γ = n−1
ρ . Finally, for all j, k with 1 ≤ j, k ≤ nρ, let

mjk = γ−1aj ∗ ǎk,

which we also denote by m
(ρ)
jk . We have mjj = mj.

Then the family (
1
√
nρ
m

(ρ)
ij

)
1≤i,j≤nρ, ρ∈R

is a Hilbert basis of L2(G), and for ρ fixed, it is an orthonormal basis of aρ.

Furthermore, for every s ∈ G, if we define the nρ × nρ matrix Mρ(s) by

Mρ(s) =

(
1

nρ
mij(s)

)
,

then these matrices are invertible and satisfy the equations

Mρ(st) = Mρ(s)Mρ(t) and Mρ(s
−1) = (Mρ(s))

∗.

Thus, the map s 7→ Mρ(s) is a continuous unitary representation in matrix form
Mρ : G→ U(nρ) of G in Cnρ .

The above results are parts of Theorem 4.6, which constitutes the second half of the
part of the Peter–Weyl theorem dealing with the structure of L2(G) as Hilbert sum of
finite-dimensional matrix algebras. But already, representations show their nose.

The unit of every two-sided ideal aρ is uρ =
∑nρ

j=1mjj, and we show that the center of
the Hilbert algebra L2(G) is the Hilbert sum of the one-dimensional spaces Cuρ. The
above results are shown in Section 4.1.

(2) Besides characters of groups and characters of algebras, there is one more kind of
characters, namely, characters of finite-dimensional representations. For every ρ ∈ R,
define the character χρ of G associated with the ideal aρ as the function given by

χρ(s) =
1

nρ
uρ(s) = tr(Mρ(s)), for all s ∈ G.

The character χρ0 associated with aρ0 is the constant function χρ0(s) = 1 for all s ∈ G,
called the trivial character of G. One of the main properties of the characters is that the
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family of characters (χρ)ρ∈R forms a Hilbert basis of the center of L2(G); see Proposition
4.10. Other properties of the characters χρ are shown in Section 4.2. In particular, if
G is compact and abelian, then the characters are continuous homomorphisms of G to
U(1), and they form a Hilbert basis for L2(G).

(3) The second part of the Peter–Weyl theorem (Theorem 4.16) deals with unitary rep-
resentations and is discussed in Section 4.3. This theorem asserts the following facts.
Let V : G → U(H) be a unitary representation of G in a separable Hilbert space H.
Then H is a Hilbert sum of subspaces Eρ invariant under V , and each nontrivial Eρ is
the Hilbert sum of invariant subspaces corresponding to irreducible representations of
G. More precisely:

(1) For every ρ ∈ R, there is an orthogonal projection of H onto a closed subspace
Eρ (which may be reduced to (0)), and H is the Hilbert sum of the Eρ 6= (0).

(2) Every subspace Eρ 6= (0) is invariant under V , and the restriction Vρ of V to
Eρ is a finite or countably infinite Hilbert sum of irreducible representations, all
equivalent to Mρ.

In particular, all the representations Mρ : G → U(nρ) occurring in Peter–Weyl I are
irreducible, and since every unitary irreducible representation is equivalent to some
representation of the form Mρ, the index set R corresponds to a complete set of unitary
representations of G. Now because G is compact, there is a normalized Haar measure
λG on G, such that λG(G) = 1, and it can be shown that for any finite-dimensional
representation V : G→ GL(H), there is an inner product on H, such that V becomes
a unitary representation. Then we define the character χV of the representation V by

χV (s) = tr(V (s)), s ∈ G.

Theorem 4.19 shows that two finite-dimensional unitary representations V1 : G →
U(H2) and V2 : G → U(H2) of G are equivalent if and only if χV1 = χV2 . This
confirms the importance of the characters; they determine the equivalence classes of
finite-dimensional representations of a (metrizable) compact group.

In Section 4.4, we discuss tensor products of finite-dimensional representations. We begin
with the definition of the tensor product representation U1 ⊗ U2 : G → U(H1 ⊗H2) of two
finite-dimensional unitary representations U1 : G→ U(H1) and U2 : G→ U(H2) of the same
locally compact (metrizable, separable) group G. In general, if U1 and U2 are irreducible,
then the tensor product representation U1 ⊗ U2 is not irreducible. If G is compact, the
representation U1 ⊗ U2 splits as a sum of irreducible representations of G, but finding this
decomposition is generally very difficult. In the special case G = SU(2) this can be done.
This is an important result of quantum physics; see Section 5.17 on the Clebsch–Gordan
coefficients.

Next, we define the tensor product representation U1 ⊗ U2 : G1 × G2 → U(H1 ⊗H2) of
the finite-dimensional unitary representations U1 : G1 → U(H1) and U2 : G2 → U(H2) of



192 CHAPTER 4. ANALYSIS ON COMPACT GROUPS AND REPRESENTATIONS

two locally compact groups G1 and G2. This time it turns out that U1 ⊗ U2 is irreducible
iff U1 and U2 are irreducible. We prove this result when G is compact. Furthermore, if
G1 and G2 are compact, then every finite-dimensional irreducible unitary representation
U : G1 × G2 → U(H) is equivalent to the tensor product U1 ⊗ U2 of two finite-dimensional
irreducible unitary representations U1 : G1 → U(H1) and U2 : G2 → U(H2). This fact can
be used to determine the irreducible representations of the compact groups O(2m+ 1) and
U(2). The case of O(2m) is more difficult because O(2m) is not isomorphic to the direct
product of SO(2m) with some other subgroup, but instead a semi-direct product (see Section
7.4). For m = 1, the group SO(2) is abelian so the method of Section 7.4 involving Mackey’s
little group method can be used to determine the irreducible representations of O(2).

In Section 4.5, we define the notion of contragredient representation (also known as dual
representation) UD : G → GL(H∗) of a representation U : G → GL(H). In Section 4.6
we define the notion of conjugate vector space H of a vector space H and of conjugate
representation V of a complex representation V . If G is compact and if V : G → GL(H)
is a complex finite-dimensional representation, then V and V D are equivalent. Furthermore
V is self-conjugate, which means that V and V are equivalent, iff the character χV of V is
real-valued. In Section 4.7 we define the notion of Hom representation Hom(U1, U2) : G →
GL(Hom(H1, H2)) of two representations U1 : G → GL(H1) and U2 : G → GL(H2). These
notions will be needed in Chapter 8. The main result is that if H1 and H2 are finite-
dimensional vector spaces then the representations UD

1 ⊗U2 and Hom(U1, U2) are equivalent;
see Proposition 4.28.

It is remarkable that if a complex finite-dimensional representation V : G → GL(H) of
a compact group is self-conjugate, which is equivalent to χV being real-valued, then there
may not exist a basis in which all matrices representing V are real. This is equivalent to the
fact that V is the complexification of some real representation U , and we say that V is of
real type. The other possibility is that V is the restriction of a quaternionic representation
W , and we say that V is of quaternionic type.

There are two criteria for determining whether a complex representation V : G→ GL(H)
(G compact, H finite-dimensional) is of real type or of quaternionic type. The first criterion
is in terms of a semi-linear map J : H → H (called a structure map) that commutes with all
the Vg, and such that J2 = I iff V is of real type and J2 = −I iff V is of quaternionic type.
This is the object of Sections 4.8 and 4.9.

The second criterion is in terms of the existence of a nondegenerate C-bilinear form
B : H×H → C invariant under all the Vg, and such that B is symmetric iff V is of real type
and B is skew-symmetric iff V is of quaternionic type. Section 4.10 is devoted to a proof
of this fact and also yields a classification of the irreducible complex representations into
three pairwise disjoint classes: complex type (when V and V are inequivalent), real type,
and quaternionic type. These results are due to Frobenius and Schur.

Real representations U : G → GL(H) can also be classified into three pairwise disjoint
classes. Remarkably these three classes correspond to the fact that if U : G→ GL(H) is an
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irreducible real finite-dimensional representation, then HomG(U,U) is isomorphic to either
R, C, or H. Finally, if V : G → GL(H) is an irreducible complex finite-dimensional repre-
sentation, then its type is determined by the value (−1, 0, 1) of the integral

∫
G
χV (g2) dµ(g)

(another theorem of Frobenius and Schur). These results are discussed in Section 4.11.

The Fourier transform and Fourier cotransform can also be generalized, but they involve
the unitary irreducible representations of G, which are usually very difficult to determine,
so they are generally not so useful in practice. The groups SO(2),SO(3),SU(2) are an
exception, their irreducible representations are determined explicitly; see Chapter 5.

In Section 4.12, we define a notion of Fourier transform and Fourier cotransform for a
(metrizable) compact group G. Since for a nonabelian compact group the set of characters is

not a group, the definition of the spaces Lp(Ĝ) is more complicated. The Fourier transform
Ff of a function f ∈ L1(G) is now a function with domain R, a complete set of irreducible
unitary representations of G, such that for every ρ ∈ R,

F(f)(ρ) =

∫
f(t)(Mρ(t))

∗ dλg(t).

The Fourier transform defined above is the natural generalization of the definition of the
Fourier transform when G is an abelian compact group (Vol I, Definition 10.3),

F(f)(χ) =

∫
f(s)χ(s) dλ(s) =

∫
f(s)χ(s−1) dλ(s);

the character χ is replaced by the irreducible representation Mρ.

The definition of F(f)(ρ) implies that F(f)(ρ) is a linear map from Cnρ to itself (since
(Mρ(t))

∗ is a matrix). Thus, F(f) ∈
∏

ρ∈R Mnρ(C). Every element F ∈
∏

ρ∈R Mnρ(C) is an
R-indexed sequence F = (F (ρ))ρ∈R of nρ×nρ matrices F (ρ). These sequences can be added
and rescaled componentwise, so we obtain a vector space.

It is natural to define Ĝ as R, but the vector space
∏

ρ∈R Mnρ(C) is too big. Thus, we

define some normed vector spaces Lp(Ĝ), which are subspaces of
∏

ρ∈R Mnρ(C). For this, we
need to define some norms due to von Neumann; see Section 4.13.

We obtain some Banach spaces L1(Ĝ), L2(Ĝ), and L∞(Ĝ); the space L2(Ĝ) is a Hilbert
space. The following result is obtained (Theorem 4.47). Let G be a compact group.

(1) The map f 7→ F(f) is a non norm-increasing injective involutive algebra homomor-

phism from L1(G) into L∞(Ĝ). In particular, for all f, g ∈ L1(G), for all ρ ∈ R, we
have

(F(f ∗ g))(ρ) = F(g)(ρ) ◦ F(f)(ρ).

(2) For every ρ ∈ R, the map f 7→ F(f)(ρ) is an algebra representation of L1(G) in Cnρ .
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We also have a version of Plancherel’s theorem (see Theorem 4.50). If G is a compact
group, then the map f 7→ F(f) is an isometric isomorphism between the Hilbert space L2(G)

and the Hilbert space L2(Ĝ).

We can also define a notion of Fourier cotransform and there are versions of Fourier
inversion; see Section 4.14. For any F ∈

∏
ρ∈R Mnρ(C), the Fourier cotransform F(F ) of F

is the function on G given by

F(F )(s) =
∑
ρ∈R

nρ tr(F (ρ)Mρ(s)), s ∈ G.

Of course, there are convergence issues. It can be shown (Theorem 4.51) that if F ∈ L1(Ĝ),
then the map

s 7→ (F(F ))(s) =
∑
ρ∈R

nρ tr(F (ρ)Mρ(s))

converges uniformly to a continuous function f . Furthermore, we have the Fourier inversion
formula

(F(F(f)))(s) =
∑
ρ∈R

nρ tr(F(f)(ρ)Mρ(s)), s ∈ G.

Also, Fourier inversion holds for L2(G) (see Theorem 4.53). The Fourier cotransform F(F ) ∈
L2(G) of any F ∈ L2(Ĝ) converges in the L2-norm, and for every f ∈ L2(G), we have

f(s) = (F(F(f)))(s) =
∑
ρ∈R

nρ tr (F(f)(ρ)Mρ(s)) , s ∈ G,

in the L2-norm.

4.1 The Peter–Weyl Theorem, Part I

The theorem below is the first of several theorems describing the structure of the involutive
Banach algebra L2(G), where G is a (metrizable) compact group. By Proposition 2.18, the
Banach algebra L2(G) is a complete separable Hilbert algebra, so Theorem 2.33 is applicable
and yields most of a deep theorem first proved by Peter and Weyl (1927); see Theorem 4.2.

No matter how it is approached, the proof of the Peter–Weyl theorem (Theorem 4.2) is
hard. We follow Dieudonné’s exposition [11] (Sections 1–4). The disadvantage in doing so
is that it requires some material on Hilbert algebras from Chapter 2, in particular, Theorem
2.33, whose proof is long. The advantage is that we obtain a sharper and more informative
version of the Peter–Weyl theorem.

Since G is compact, it is unimodular, and so it has a Haar measure λ which is both left
and right invariant. We also assume that λ is normalized so that λ(G) = 1.

When we describe operations on elements of L2(G), such as f∗g for the convolution [f ]∗[g]
of [f ] and [g] in L2(G), we mean the equivalence class [f ∗ g] of f ∗ g, where f, g ∈ L2(G) are
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representatives in the equivalence classes [f ], [g] ∈ L2(G) (where two functions are equivalent
iff they are equal almost everywhere). To be perfectly rigorous, we should check that these
constructions do not depend on the representatives chosen in these equivalence classes, but
we will not inflict such verifications on the reader.

Recall that by VoI. I, Proposition 8.49, if f, g ∈ L2(G), then f ∗ g ∈ C0(G;C). In
particular, f ∗ g is continuous.

Definition 4.1. A function h ∈ L2(G) is central if its class in L2(G) belongs to the center
of L2(G). This means that for every f ∈ L2(G), we have f ∗ h = h ∗ f almost everywhere.

The following auxiliary result is needed.

Proposition 4.1. Let G be a compact group. A continuous function h ∈ L2(G) is central
if and only if h(sts−1) = h(t) for all s, t ∈ G. The class of every central function f ∈ L2(G)
belongs to the center of M1(G).

Proof. If f ∗h = h∗ f almost everywhere, since f ∗h and h∗ f are continuous, we must have
f ∗ h = h ∗ f everywhere. Since G is compact, it is unimodular, so have

f ∗ h(s) =

∫
f(t)h(t−1s) dλ(t) =

∫
f(t−1)h(ts) dλ(t),

and

h ∗ f(s) =

∫
h(t)f(t−1s) dλ(t) =

∫
h(st)f(t−1) dλ(t).

Thus, for every s ∈ G, we have∫
G

f(t−1)(h(st)− h(ts)) dλ(t) = 0.

The above implies that h(st) = h(ts) for all t in the complement of a set of measure zero
(depending on s), but since h is continuous, this subset must be empty. It follows that
h(st) = h(ts) for all s, t ∈ G, and if we replace t by ts−1, we obtain h(sts−1) = h(t) for all
s, t ∈ G.

By the formula

(µ ∗ f)(s) =

∫
f(t−1s) dµ(t)

in Vol. I, Definition 8.25, and the formula

(f ∗ µ)(s) =

∫
f(st−1)∆(t−1) dµ(t)

in Vol I, Definition 8.26, since G is compact, it is unimodular, so ∆(t−1) = 1, and if f is a
central function, then it is easy to show that µ ∗ (fdλ) = (fdλ) ∗ µ, which shows that fdλ
is in the center of M1(G). Recall that L1(G) is embedded in M1(G) by mapping f to the
measure fdλ and we usually identify f and fdλ.
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Theorem 4.2. (Peter–Weyl theorem, I) Let G be a (metrizable) compact group. The com-
plete Hilbert algebra L2(G) is the Hilbert sum

L2(G) =
⊕
ρ∈R

aρ

of a finite or countably infinite family (aρ)ρ∈R of topologically simple Hilbert algebras aρ of
finite dimension n2

ρ, where each aρ is a minimal two-sided ideal of L2(G) isomorphic to the
matrix algebra Mnρ(C), and ahak = (0) for all h 6= k (h, k ∈ R). What this means is that each

ideal aρ has an orthogonal basis of functions
(
m

(ρ)
ij

)
1≤i,j≤nρ

satisfying certain properties stated

in Theorem 4.6, so that the map from aρ to Mnρ(C) given by
∑

i,j λijm
(ρ)
ij 7→ (λij)1≤i,j≤nρ

is an algebra isomorphism. The elements of aρ are classes of continuous functions on G;
the unit element of aρ is the class of a continuous function uρ, such that ǔρ = uρ, and the
orthogonal projection of L2(G) onto aρ is the map f 7→ f ∗ uρ = uρ ∗ f , for every f ∈ L2(G).
Furthermore, for every f ∈ L2(G), we have

f =
∑
ρ∈R

f ∗ uρ,

where the series on the right-hand side is commutatively convergent.

Proof. We follow Dieudonné’s proof [11] (Chapter XXI, Section 2, Theorem 21.2.3). Since
by Proposition 2.18, the Banach algebra A = L2(G) is a complete separable Hilbert algebra,
Theorem 2.33 shows that L2(G) is the Hilbert sum of a finite or countably infinite family
(aρ)ρ∈R of two-sided ideals, which are topologically simple Hilbert algebras, and ahak = (0)
for all h 6= k. If we can prove that every aρ is finite-dimensional, we will be done because then,
by Theorem 2.34, each aρ will be a finite Hilbert sum of isomorphic minimal left ideals lj,
each generated by a self-adjoint irreducible idempotent ej, and the sum of these idempotents
will be the unit 1ρ of the algebra aρ. If uρ is a function whose class is 1ρ, every element of
aρ will be the class of a function of the form f ∗ uρ, with f ∈ L2(G), which is a continuous
function by Vol I, Proposition 8.49. The other assertions of the theorem follow from Theorem
2.30, since the orthogonal projection of f onto aρ is of the form

∑nρ
j=1 f ∗ ej = f ∗ uρ, since

uρ =
∑nρ

j=1 ej.

By Proposition 2.35, if we can prove that there is a nonzero element in the center of aρ,
then aρ will be finite-dimensional. This is a consequence of the following proposition.

Proposition 4.3. For every closed two-sided ideal b 6= (0) in L2(G), there is some nonzero
element c ∈ b in the center of L2(G).

Proof. The proof of Proposition 4.3 makes use of the following result.

Proposition 4.4. Let b be a closed subspace (as a vector space) of L2(G). Then the following
conditions are equivalent.

(1) b is a left ideal in L2(G).
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(2) b is invariant under the regular representation Rext of L1(G) in L2(G) (see Definition
3.15).

(3) For every function f whose class is in b and for all s ∈ G, the class of δs ∗ f = λs(f)
is in b.

Proof. The equivalence of (2) and (3) follows from Theorem 3.18 applied to the regular
representation Rext. It is clear that (2) implies (1). On the other hand, Vol I, Theorem 7.10
implies that L2(G) is dense in L1(G), and by Vol. I, Proposition 8.48, the map f 7→ f ∗ g
from L1(G) to L2(G) is continuous for every g ∈ L2(G), so (1) implies (2).

Proposition 4.4 also applies to right ideals in (1) and to f ∗ δs = ρs−1(f) in (3).

We can now prove Proposition 4.3. First, let us prove that b contains the class of a
continuous function f , such that f is not the zero function (we need a continuous function,
because we want to construct a central function, and to apply Proposition 4.1, such a function
must be continuous). Indeed, let g ∈ b be a function not zero almost everywhere. Then the
class of the function g ∗ ǧ also belongs to b. But g ∗ ǧ is continuous (by Vol I, Proposition
8.49), and since the definition of the convolution of functions implies that

(g ∗ ǧ)(e) =

∫
g(s)ǧ(s−1) dλ(s) =

∫
g(s)g(s) dλ(s) = ‖g‖2

2 > 0,

we can pick f = g ∗ ǧ in b. Consider the function h given by

h(t) =

∫
G

f(sts−1) dλ(s).

Since the function (x, y, z) 7→ f(xyz) is uniformly continuous on G× G× G, we see that h
is continuous, and since h(e) = f(e) 6= 0, it is not the zero function. For all s ∈ G, we have

h(xtx−1) =

∫
G

f((sx)t(sx)−1) dλ(s) = h(t),

since the Haar measure on a compact group is left and right invariant. By Proposition 4.1,
the function h belongs to the center of L2(G). It remains to show that the class of h belongs
to b. Since L2(G) = b⊕b⊥ as a Hilbert sum, and b⊥ is also a two-sided ideal by Proposition
2.21, it suffices to prove that 〈h,w〉 = 0 for all w ∈ b⊥ (we are abusing notation, h and
w should be equivalence classes). Using the fact that the Haar measure is left and right
invariant, and Fubini’s theorem, we have

〈h,w〉 =

∫
w(t)

∫
f(sts−1) dλ(s) dλ(t)

=

∫ (∫
w(t)f(sts−1) dλ(t)

)
dλ(s)

=

∫ (∫
w(s−1ts)f(t) dλ(t)

)
dλ(s).
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Since w ∈ b⊥, by Proposition 4.4 and its version for right ideals, the class of δs ∗w ∗ δs−1 also
belongs to b⊥. Since G is unimodular (see after Vol I, Definition 8.25 and Definition 8.26),
we have

(δs ∗ w ∗ δs−1)(t) = w(s−1ts),

and since f ∈ b and δs ∗ w ∗ δs−1 ∈ b⊥,∫
w(s−1ts)f(t) dλ(t) = 0,

which concludes the proof of Proposition 4.3.

This also concludes the proof of Theorem 4.2.

We will identify every element of aρ with the unique continuous function belonging to this
class .

Our next goal is to get a better understanding of the structure of the algebras aρ by
decomposing them as finite Hilbert sums of minimal left ideals, and by choosing some Hilbert
bases in these ideals.

For every ρ ∈ R, we assume that we have chosen a decomposition of aρ as a finite Hilbert
sum of nρ minimal left ideals lj = aρ ∗mj,

aρ =

nρ⊕
j=1

lj =
⊕

1≤j≤nρ

aρ ∗mj,

where the aρ ∗mj, also denoted l
(ρ)
j , are pairwise isomorphic and orthogonal, and where mj

is a self-adjoint irreducible idempotent (1 ≤ j ≤ nρ), so that the unit of aρ is

uρ =

nρ∑
j=1

mj; (uρ)

see Theorem 2.34.1 By Proposition 2.23, since mj and mj are orthogonal when i 6= j, we
have mi ∗ mj = 0 if i 6= j. Let (aj)1≤j≤nρ be a Hilbert basis of l1 = aρ ∗ m1, such that
aj ∈ mj ∗ aρ ∗m1.

Since aj ∈ mj ∗ aρ ∗m1, we have

aj ∗m1 = aj, mj ∗ aj = aj, 1 ≤ j ≤ nρ.

We have the following proposition, which is in fact part of the proof of Theorem 2.34.
To simplify notation, write a∗ = ǎ.

1Note that the mj are the ej used in the proof of Theorem 2.34.
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Proposition 4.5. The inner products 〈mj,mj〉 have the same value γ > 0, and we have

aj ∗ a∗j = γmj, a∗j ∗ aj = γm1, 1 ≤ j ≤ nρ.

Proof. Since each aρ is a Hilbert algebra, aρ = a∗ρ and aρaρ = aρ. Since the mj are self-adjoint
idempotent (mj ∗mj = mj and m∗j = mj) and (a ∗ b)∗ = b∗ ∗ a∗, as aj ∈ mj ∗ aρ ∗m1, we
have aj ∗ a∗j ∈ mj ∗ aρ ∗mj. By Theorem 2.32(2), we must have aj ∗ a∗j = λjmj, for some
λj ∈ C, with λj 6= 0. Similarly, a∗j ∗ aj ∈ m1 ∗ aρ ∗m1, so a∗j ∗ aj = λ′jm1 for some λ′j ∈ C,
with λ′j 6= 0. We claim that λj = λ′j.

First, we have

aj ∗ a∗j ∗ aj ∗ a∗j = λjmj ∗ λjmj = λ2
jmj ∗mj = λ2

jmj,

and second

aj ∗ a∗j ∗ aj ∗ a∗j = aj ∗ λ′jm1 ∗ a∗j = λ′jaj ∗m1 ∗ a∗j = λ′jaj ∗ a∗j = λ′jλjmj,

since aj ∗m1 = aj. Therefore, λ2
j = λ′jλj, and since λj and λ′j are nonzero, we deduce that

λj = λ′j, for j = 1, . . . , nρ.

We also have

1 = 〈aj, aj〉 = 〈aj,mj ∗ aj〉 = 〈aj ∗ a∗j ,mj〉 = λj〈mj,mj〉,

and
1 = 〈aj, aj〉 = 〈aj, aj ∗m1〉 = 〈a∗j ∗ aj,m1〉 = λj〈m1,m1〉.

Since λj 6= 0, we deduce that

〈mj,mj〉 = 〈m1,m1〉, 1 ≤ j ≤ nρ,

and so
λj = 〈m1,m1〉−1 = γ, 1 ≤ j ≤ nρ.

Thus, there is some γ > 0 such that

aj ∗ ǎj = γmj, ǎj ∗ aj = γm1, 1 ≤ j ≤ nρ.

Since ai ∈ mi ∗ aρ ∗ m1 and ǎj ∈ m1 ∗ aρ ∗ mj, we have ai ∗ ǎj ∈ mi ∗ aρ ∗ mj and since
lj = aρ ∗mj is a left ideal, ai ∗ ǎj ∈ lj.

Definition 4.2. For all j, k with 1 ≤ j, k ≤ nρ, let

mjk = γ−1aj ∗ ǎk ∈ lk.

In particular, mjj = mj.
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Since ah ∈ mh ∗ aρ ∗m1, ǎk ∈ m1 ∗ aρ ∗mk, and mk ∗mh = 0 whenever h 6= k, we have
ǎk ∗ ah = 0 whenever h 6= k, so

mjk ∗ ah = δkhaj. (∗)

Remark: Observe that the mij are the emn introduced during the proof of Theorem 2.34.

We will also write m
(ρ)
ij instead of mij. The following result reveals that some represen-

tations are hidden in the Hilbert sum of the aρ.

Theorem 4.6. With the above notation, the following properties hold.

(1) For every j with 1 ≤ j ≤ nρ, the (mij)1≤i≤nρ form an orthogonal basis of lj, and the
(mij)1≤i,j≤nρ form an orthogonal basis of aρ =

⊕nρ
j=1 lj.

(2) We have mji = m̌ij and mij ∗mhk = δjhmik.

(3) We have 〈mij,mij〉 = nρ, mij(e) = nρ δij, for all i, j with 1 ≤ i, j ≤ nρ (in other words,
γ = (nρ)

−1), and uρ =
∑nρ

j=1mjj. Thus the family of functions(
1
√
nρ
m

(ρ)
ij

)
1≤i,j≤nρ, ρ∈R

is a Hilbert basis of L2(G).

(4) For every s ∈ G, if we define the nρ × nρ matrix Mρ(s) by

Mρ(s) =

(
1

nρ
m

(ρ)
ij (s)

)
,

then these matrices are invertible and satisfy the equations

Mρ(st) = Mρ(s)Mρ(t) and Mρ(s
−1) = (Mρ(s))

∗.

Thus, the map s 7→ Mρ(s) is a continuous unitary representation in matrix form
Mρ : G→ U(nρ) of G in Cnρ, for the standard hermitian inner product

∑nρ
j=1 αjβj.

Proof. (1) Since mij = γ−1ai ∗ ǎj = γ−1ai ∗ a∗j , it suffices to prove that for any fixed j,

〈ai ∗ a∗j , ak ∗ a∗j〉 = 0, for all i 6= k.

Since a∗j ∗ aj = γm1 (by Proposition 4.5), m∗1 = m1, and ai ∗m1 = ai, we have

〈ai ∗ a∗j , ak ∗ a∗j〉 = 〈ai ∗ a∗j ∗ aj, ak〉
= 〈ai ∗ γm1, a

∗
k〉

= γ〈ai, ak〉 = 0,
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since the ai are pairwise orthogonal.

(2) We have

mji(s) = γ−1(aj ∗ ǎi)(s)

= γ−1

∫
aj(t)ǎi(t

−1s) dλ(t)

= γ−1

∫
aj(t)ai(s−1t) dλ(t)

= γ−1

∫
ai(t)aj(st) dλ(t)

= γ−1

∫
ai(t)ǎj(t−1s−1) dλ(t)

= γ−1(ai ∗ ǎj)(s−1)

= mij(s
−1) = m̌ij(s),

where Vol I, Proposition 7.24 was used to derive the third equation. Since ai ∈ mi ∗ aρ ∗m1,
we have a∗i ∗ aj ∈ m1 ∗ aρ ∗mi ∗mj ∗ aρ ∗m1 = 0 whenever i 6= j, since the mi are pairwise
orthogonal self-adjoint irreducible idempotents, and thus mi ∗ mj = 0 whenever i 6= j.
Consequently

a∗j ∗ ah = δjhγm1,

and thus

mij ∗mhk = γ−1ai ∗ a∗j ∗ γ−1ah ∗ a∗k = γ−2ai ∗ δjhγm1 ∗ a∗k = δjhγ
−1ai ∗ a∗k = δjhmik.

(3) Since aρ is a Hilbert algebra, by (2) and (2’) (see Definition 2.14), we have

〈mij,mij〉 = γ−2〈ai ∗ ǎj, ai ∗ ǎj〉 = γ−2〈ǎi ∗ ai, ǎj ∗ aj〉 = 〈m1,m1〉. (∗1)

To compute this value, observe that for every k, by Proposition 4.4, the function t 7→ mik(st)
belongs to lk for all s ∈ G. Thus we can write

mik(st) =

nρ∑
j=1

cij(s)mjk(t). (∗2)

On the other hand, using the fact that m1k = m̌k1 and (2), we have

mjk(t) = (mj1 ∗m1k)(t) =

∫
G

mj1(tx)m1k(x
−1) dλ(x) =

∫
G

mj1(tx)mk1(x) dλ(x),

which yields
mjk(e) = 〈mj1,mk1〉, (∗3)
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and if we let t = e in (∗2), using the orthogonality properties of the mij and the fact that
mjj = mj and 〈mj,mj〉 = 〈m1,m1〉, we get

mik(s) = 〈m1,m1〉cik(s). (∗4)

If we let s = t−1 and i = k = 1 in (∗2) and j = k = 1 in mjk(e) = 〈mj1,mk1〉, we get

〈m1,m1〉 = m1(e) =

nρ∑
j=1

c1j(s)mj1(s−1) =

nρ∑
j=1

c1j(s)m1j(s),

and using (∗4),

c1j =
1

〈m1,m1〉
m1j,

we obtain
nρ∑
j=1

m1j(s)m1j(s) = 〈m1,m1〉2. (∗5)

Since by (∗1) we have

〈m1,m1〉 = 〈m1j,m1j〉 =

∫
m1j(s)m1j(s) dλ(s), (∗6)

and since 〈m1,m1〉2 is a constant and λ is the normalized Haar measure, if we integrate both
sides of (∗5), we obtain

nρ∑
j=1

∫
G

m1j(s)m1j(s) dλ(s) =

∫
G

〈m1,m1〉2 dλ(s) = 〈m1,m1〉2
∫
G

dλ(s) = 〈m1,m1〉2,

and by (∗6) we have
nρ∑
j=1

〈m1,m1〉 = nρ〈m1,m1〉 = 〈m1,m1〉2,

so 〈mij,mij〉 = 〈m1,m1〉 = nρ, which proves (3). The equations in (4) follow immediately
from (2), (∗2), and (∗4).

As in Definition 3.2, the unitary matrix representation Mρ : G → U(nρ) defines (with a
small abuse of notation) the representation Mρ : G→ U(Cnρ) given by

(Mρ(s))(z) = Mρ(s)z, z ∈ Cnρ , s ∈ G.

We usually identify these two variants. We will see later that the representations Mρ are
irreducible. The center of L2(G) is characterized as follows.

Proposition 4.7. Let G be a (metrizable) compact group. The center of the Hilbert algebra
L2(G) is the Hilbert sum of the one-dimensional spaces Cuρ (with ρ ∈ R). In particular, if
G is commutative, then every ideal aρ is one-dimensional (nρ = 1).
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Proof. Since uρ is the unit element of aρ and since aρ ∗aρ′ = (0) whenever ρ 6= ρ′, we see that
uρ belongs to the center of L2(G). If the class of a function f ∈ L2(G) belongs to the center
of L2(G), since uρ also belongs to this center, we deduce that the class of f ∗uρ ∈ aρ belongs
to the center L2(G), but since aρ is topologically simple, complete, separable algebra, by
Proposition 2.35, the center of aρ is one-dimensional, so f ∗uρ = cρuρ for some cρ ∈ C. Since
by Theorem 4.2, we have

f =
∑
ρ∈R

f ∗ uρ

for every f ∈ L2(G), we must have f =
∑

ρ∈R cρuρ, as claimed.

Since the group G is compact, for every f ∈ L2(G) and every constant function α, we
have

f ∗ α = α ∗ f = α

(∫
G

f(s) dλ(s)

)
.

Therefore the (complex) constant functions form a two-sided ideal in L2(G), and thus must
be an ideal of the form aρ0 .

Definition 4.3. The ideal aρ0 is called the trivial ideal .

The corresponding representation Mρ0 is one-dimensional, and Mρ0(s) = 1 for all s ∈ G.
In other words, Mρ0 is the trivial representation of G. For all ρ 6= ρ0, since the spaces aρ
and aρ0 are orthogonal, we have∫

G

m
(ρ)
ij (s) dλ(s) =

∫
G

m
(ρ)
ij (s)1 dλ(s) = 0.

Therefore, for every ρ 6= ρ0, we have∫
G

m
(ρ)
ij (s) dλ(s) = 0. (∗ρ6=ρ0)

We also have the following results.

Proposition 4.8. Let G be a (metrizable) compact group. With the notation as above, the
following properties hold.

(1) If f and g are two continuous functions in C(G;C), then we have

f ∗ g =
∑
ρ∈R

 ∑
1≤i,j≤nρ

1

nρ
〈g,m(ρ)

ij 〉(f ∗m
(ρ)
ij )

 ,

where the family on the right-hand side converges for the topology of uniform conver-
gence.
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(2) The family of continuous functions {m(ρ)
ij | ρ ∈ R, 1 ≤ i, j ≤ nρ} is an orthogonal

system that is dense in C(G;C) for the topology of uniform convergence.

Proof. (1) From Theorem 4.6, which says that the family of functions(
1
√
nρ
m

(ρ)
ij

)
1≤i,j≤nρ, ρ∈R

is a Hilbert basis of L2(G), we have

g =
∑
ρ∈R

∑
1≤i,j≤nρ

1

nρ
〈g,m(ρ)

ij 〉m
(ρ)
ij .

Since the map h 7→ f ∗ h is a continuous map from L2(G) to C(G;C), (since by Vol I,
Proposition 8.49, ‖f ∗ h‖∞ ≤ ‖f‖2 ‖h‖2), we can apply convolution to both sides, and we
get the equation in (1).

(2) By Vol I, Proposition 8.50, for every continuous function g ∈ C(G;C), there is some
continuous function f , such that ‖f ∗ g − g‖∞ can be made arbitrarily small. But, for every

ρ ∈ R, the functions f ∗ m(ρ)
ij belong to the two-sided ideal aρ, and so they are (complex)

linear combinations of the m
(ρ)
hk with 1 ≤ h, k ≤ nρ. Therefore, the formula of (1) for f ∗ g

shows that f ∗ g can be expressed in terms of the m
(ρ)
hk , which proves (2).

In Section 6.9, we will need the following result.

Proposition 4.9. For any unitary nρ×nρ matrix P , for every s ∈ G, let Qρ(s) = P ∗Mρ(s)P .
The matrices Qρ(s) = (qij(s)) define n2

ρ functions qij ∈ aρ which are linear combinations of
the functions mij, where mij(s) ∈Mρ(s), and satisfy the following properties:

(1) The (qij)1≤i,j≤nρ form an orthogonal basis of aρ.

(2) We have qji = q̌ij and qij ∗ qhk = δjh qik.

(3) We have 〈qij, qij〉 = nρ and qij(e) = nρ δij, for all i, j with 1 ≤ i, j ≤ nρ.

(4) The map s 7→ Qρ(s) is unitary representation in matrix form Qρ : G→ U(nρ) of G in
Cnρ, equivalent to the unitary representation Mρ : G→ U(nρ).

(5) If lj is the minimal left ideal of aρ spanned by the jth column M j
ρ of Mρ,

lj =

nρ⊕
i=1

Cm(ρ)
ij ,

then the jth column of Qρ = P ∗MρP spans a minimal ideal lQj of aρ (of dimension nρ)
given by

lQj =

{
nρ∑
h=1

phj

(
nρ∑
k=1

µkmkh

) ∣∣∣∣∣ µ = (µ1, . . . , µnρ) ∈ Cnρ

}
,
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where every
∑nρ

k=1 µkmkh ∈ lh is a linear combination of the entries of the hth column
of Mρ involving the same scalars (µ1, . . . , µnρ) for all h = 1, . . . , nρ.

Proof. The (i, h) entry of the matrix P ∗Mρ(s) is

nρ∑
k=1

pkimkh(s),

and qij(s) (the (i, j) entry in Qρ(s) = P ∗Mρ(s)P ) is given by

qij(s) =

nρ∑
h,k=1

pki phjmkh(s). (qij)

The qij(s) are indeed linear combinations of the mij(s). Let us compute the inner product

〈qi1j1 , qi2j2〉 =

∫
G

qi1j1(s)qi2j2(s) dλ(s).

We have

qi1j1qi2j2 =

nρ∑
h,k=1

nρ∑
h′,k′=1

pki1 phj1mkh(s)pk′i2ph′j2 mk′h′(s),

and so

〈qi1j1 , qi2j2〉 =

∫
G

qi1j1(s)qi2j2(s) dλ(s)

=

nρ∑
h,k=1

nρ∑
h′,k′=1

pki1 phj1pk′i2ph′j2

∫
G

mkh(s)mk′h′(s) dλ(s)

=

nρ∑
h,k=1

nρ∑
h′,k′=1

pk′i2pki1 phj1ph′j2 〈mkh, mk′h′〉.

Since the mij form an orthogonal family and 〈mkh, mkh〉 = nρ, we obtain

〈qi1j1 , qi2j2〉 =

nρ∑
h,k=1

pki2pki1 phj1phj2 nρ = nρ

nρ∑
k=1

pki2pki1

nρ∑
h=1

phj1phj2 .

If i1 6= i2, since P is a unitary matrix the columns of index i1 and i2 are orthogonal and so∑nρ
k=1 pki2pki1 = 0, and similarly, if j1 6= j2, the columns of index j1 and j2 are orthogonal

and
∑nρ

h=1 phj1phj2 = 0. Thus qi1j1 and qi2j2 are orthogonal if (i1, j1) 6= (i2, j2).

If i1 = i2 and j1 = j2, since P is unitary, its columns are unit vectors, so
∑nρ

k=1 pki1pki1 = 1
and

∑nρ
h=1 phj1phj1 = 1, and thus

〈qi1j1 , qi1j1〉 = nρ.
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This concludes the proof of (1) and part of (3).

For s = e, since mkh(e) = nρ δkh, we have

qij(e) =

nρ∑
h,k=1

pki phjmkh(e) = nρ

nρ∑
h,k=1

pkjpki δkh = nρ

nρ∑
k=1

pkjpki.

Since P is a unitary matrix, if i 6= j, then
∑nρ

k=1 pkjpki = 0, and if i = j, then
∑nρ

k=1 pkipki = 1,
so we have

qij(e) = nρδij.

This finishes the proof of (3).

Since mkh(s) = mhk(s−1), using (qij) twice, we have

qji(s) =

nρ∑
h,k=1

pkj phimkh(s)

=

nρ∑
h,k=1

phi pkj mhk(s−1)

= qij(s−1).

Since mkh ∗mk′h′ = δhk′mkh′ , we have

qi1j1 ∗ qi2j2 =

nρ∑
h,k=1

nρ∑
h′,k′=1

pki1 phj1pk′i2 ph′j2 mkh ∗mk′h′

=

nρ∑
h,k=1

nρ∑
h′,k′=1

pki1 phj1pk′i2 ph′j2 δhk′mkh′

=

nρ∑
h=1

phj1phi2

nρ∑
k,h′=1

pki1 ph′j2mkh′ .

If j1 6= i2, since P is unitary we have
∑nρ

h=1 phj1phi2 = 0 and then qi1j1 ∗ qi2j2 = 0. If j1 = i2,
since P is unitary we have

∑nρ
h=1 phj1phj1 = 1, in which case, using (qij),

qi1j1 ∗ qj1j2 =

nρ∑
k,h′=1

pki1 ph′j2 mkh′ = qi1j2 ,

which concludes the proof of (2).

Since Qρ(s) = P ∗Mρ(s)P , part (4) is trivial.

Since the (i, j) entry qij of Qρ = P ∗MρP is given by

qij(s) =

nρ∑
h,k=1

pki phjmkh(s),



4.2. CHARACTERS OF COMPACT GROUPS 207

any linear combination of the entries of the jth column of Qρ is of the form

nρ∑
i=1

λi

nρ∑
h,k=1

pki phjmkh(s) =

nρ∑
h=1

phj

(
nρ∑
k=1

nρ∑
i=1

pki λimkh

)

=

nρ∑
h=1

phj

(
nρ∑
k=1

(P ∗λ)kmkh

)
,

with λ = (λ1, . . . , λnρ) ∈ Cnρ and where (P ∗λ)k is the kth component of the vector P ∗λ, and

since P ∗ is invertible, we deduce that the subspace lQj of all linear combinations of entries in
the jth column of Qρ is given by

lQj =

{
nρ∑
h=1

phj

(
nρ∑
k=1

µkmkh

) ∣∣∣∣∣ µ = (µ1, . . . , µnρ) ∈ Cnρ

}
.

To check that lQj is a left ideal, we need to check that mij′ ∗ lQj ⊆ lQj for all mij′ ∈ aρ.
Since mij′ ∗mkh = δj′kmih, we have

mij′ ∗ lQj =

{
nρ∑
h=1

phj

(
nρ∑
k=1

µkmij′ ∗mkh

) ∣∣∣∣∣ µ = (µ1, . . . , µnρ) ∈ Cnρ

}

=

{
nρ∑
h=1

phj

(
nρ∑
k=1

µkδj′kmih

) ∣∣∣∣∣ µ = (µ1, . . . , µnρ) ∈ Cnρ

}

=

{
nρ∑
h=1

phj(µj′mih)

∣∣∣∣∣ µj′ ∈ C

}
⊆ lQj .

Thus lQj is indeed a left ideal. This left ideal has dimension nρ since (q1j, . . . , qnρj) is a basis
for it, so it is a minimal ideal because all minimal ideals of aρ are isomorphic to l1, which
has dimension nρ.

In summary, the functions qij in the matrix Qρ = P ∗MρP provide another isomorphism
of the minimal two-sided ideal aρ of L2(G) with the matrix algebra Mnρ(C) and the family
of functions (

1
√
nρ
qij

)
1≤i,j≤nρ

is an orthonormal basis of aρ.

4.2 Characters of Compact Groups

Besides characters of groups and characters of algebras, there is one more kind of characters,
namely, characters of finite-dimensional representations. As in the previous section, we work
with metrizable compact groups. Since we have the Peter–Weyl theorem and Theorem 4.6
at our disposal, it will be fairly easy to prove the properties of characters of these groups.
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Definition 4.4. Let G be a( metrizable) compact group. With the notations of Section 4.2,
for every ρ ∈ R, define the character χρ of G associated with the ideal aρ as the function
given by

χρ(s) =
1

nρ
uρ(s) =

1

nρ

nρ∑
j=1

m
(ρ)
jj (s) = tr(Mρ(s)), for all s ∈ G.

The character χρ0 associated with aρ0 is the constant function χρ0(s) = 1 for all s ∈ G, called
the trivial character of G.

The properties stated in the following proposition are immediate consequences of Theo-
rem 4.2 and Theorem 4.6.

Proposition 4.10. The following properties hold.

(1) Every character χρ is a continuous central function, which means that

χρ(sts
−1) = χρ(t), for all s, t ∈ G.

(2) We have

χρ(s
−1) = χρ(s), for all s ∈ G.

(3) We have

χρ ∗ χρ′ = 0 whenever ρ 6= ρ′, and χρ ∗ χρ =
1

nρ
χρ.

(4) The family of characters (χρ)ρ∈R forms a Hilbert basis of the center of L2(G), which
means that:

(a) We have

〈χρ, χρ′〉 =

∫
χρ(s)χρ′(s) dλ(s) = 0, whenever ρ 6= ρ′

〈χρ, χρ〉 =

∫
|χρ(s)|2 dλ(s) = 1.

(b) For every function f ∈ L2(G), we have

f =
∑
ρ∈R

nρ (f ∗ χρ),

and for every central function f ∈ L2(G), we have

f =
∑
ρ∈R

〈f, χρ〉χρ.
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(c) We have ∫
χρ(s) dλ(s) = 0, for all ρ 6= ρ0.

(d) For all s ∈ G, we have

χρ(s) = tr(Mρ(s)),

and

χρ(e) = nρ.

The only nontrivial proof is the proof of property (b). By Theorem 4.2 and the fact that
uρ(s) = nρχρ(s), we have

f =
∑
ρ∈R

f ∗ uρ =
∑
ρ∈R

nρ(f ∗ χρ).

By Proposition 4.7, the center of the Hilbert algebra L2(G) is the Hilbert sum of the one-
dimensional spaces Cuρ (with ρ ∈ R). Since uρ = nρχρ, by (1) and (3), the family of
characters (χρ)ρ∈R forms a Hilbert basis of the center of L2(G). It follows that for every
central function f ∈ L2(G), we have

f =
∑
ρ∈R

〈f, χρ〉χρ,

Observe that unlike the characters of a locally compact abelian group G, which take their
values in U(1) ∼= T, the characters χρ of a compact not necessarily abelian group G take
their values in C. For instance χρ(e) = nρ, and in general, nρ > 1. Also, the characters χρ
are not homomorphisms. In general, χρ(st) 6= χρ(s)χρ(t).

The next proposition is needed to prove Theorem 4.12.

Proposition 4.11. For any two continuous central functions f, g in C(G;C), we have

f ∗ g =
∑
ρ∈R

〈g, χρ〉(f ∗ χρ),

where the family on the right-hand side converges in the topology of uniform convergence.

Proof. This follows from the fact shown in Proposition 4.10(4) that the family of characters
(χρ)ρ∈R is a Hilbert basis of the center of L2(G), and the fact that ‖f ∗ g‖∞ ≤ ‖f‖2 ‖g‖2.

The next theorem will require an auxiliary proposition.

Theorem 4.12. The family of continuous central functions (χρ)ρ∈R constitutes an orthonor-
mal system, which is dense in the space of continuous central functions in C(G;C) for the
topology of uniform convergence.
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Proof. For every continuous central function f , since χρ = 1
nρ
uρ, by Proposition 4.7, the

function f ∗ χρ is a scalar multiple of χρ. In view of the formula of Proposition 4.11,
it suffices to show that for every continuous central function g, there exists a continuous
central function f , such that ‖f ∗ g − g‖∞ is arbitrarily small. Recall that for any element
t ∈ G the inner automorphism Ct is defined by Ct(s) = tst−1, for all s ∈ G. The following
result is needed.

Proposition 4.13. The following properties hold.

(1) Let G be a (metrizable) topological group, and let K be a compact subset of G. For
every neighborhood U of the identity element e of G, there is a neighborhood V ⊆ U of
e, such that, tV t−1 ⊆ U for all t ∈ K.

(2) In a (metrizable) compact group G, there exists a neighborhood base of neighborhoods
of e invariant under all inner automorphisms of G. For such a neighborhood T ,
there exists a continuous central function h ≥ 0, of support contained in T , such
that

∫
G
h(s) dλ(s) = 1.

Proof. (1) Using the technique used to prove Vol I, Proposition 8.2 applied to the continuous
map (g1, g2, g3) 7→ g1g2g3, we can find a neighborhood U0 of e, such that U3

0 ⊆ U . Using
this technique again, for every s ∈ G, by continuity of the map g 7→ sgs−1, there is a
neighborhood Vs of e in G, such that V −1

s = Vs and sVss
−1 ⊆ U0. Note that

sV 3
s s
−1 = sVss

−1sVss
−1sVss

−1 ⊆ U3
0 ⊆ U.

Since
tVst

−1 = ss−1tVst
−1ss−1,

for any t ∈ G, if s−1t ∈ Vs, which implies that t−1s ∈ V −1
s = Vs, then s−1tVst

−1s ∈ V 3
s , so

tVst
−1 = ss−1tVst

−1ss−1 ∈ sV 3
s s
−1 ⊆ U.

Therefore if we let Ws = sVs, then for all t ∈ Ws = sVs, we have s−1t ∈ Vs and so
tVst

−1 ⊆ U . Since K is compact, there exists a finite number of m elements sj ∈ K, such
that Ws1 ∪ · · · ∪Wsm covers K. If we let V =

⋂m
j=1 Vsj , we have tV t−1 ⊆ U for all t ∈ K.

(2) Apply (1) with K = G. Then

T =
⋃
t∈G

tV t−1

is a neighborhood of e contained in U , obviously invariant under the inner automorphisms
of G. To define h, start with a continuous function f ≥ 0 of support contained in T , such
that f(e) > 0. Let

h(t) = c

∫
G

f(sts−1) dλ(s),

where the constant c > 0 is chosen in a suitable way, and then the proof that h works is the
same as in the proof of Theorem 4.2. This finishes the proof of Proposition 4.13.
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In view of Proposition 4.13(2), Vol I, Proposition 8.50(i) shows that for every continuous
central function g, there is some continuous central function h, such that ‖g ∗ h− g‖∞ can
be made arbitrarily small, which finishes the proof of Theorem 4.12.

The following result shows certain independence results.

Theorem 4.14. The following properties hold.

(1) For every s ∈ G, if s 6= e, then there is some ρ ∈ R, such that χρ(s) 6= χρ(e).

(2) We have ⋂
ρ∈R

Nρ = {e},

where Nρ is the kernel of the (group) homomorphism s 7→Mρ(s).

Proof. (1) If there is some s 6= e such that χρ(s) = χρ(e) for all ρ ∈ R, then by Theorem
4.12, we would have f(s) = f(e) for all continuous central functions, but this contradicts
Proposition 4.13(2), since we can find a continuous central function h with h(e) 6= 0, whose
support T does not contain s 6= 0.

(2) If s ∈ Nρ, then Mρ(s) = Inρ , and since χρ(s) = tr(Mρ(s)) = tr(Inρ) = nρ, by
Proposition 4.10(4)(d), we have χρ(s) = χρ(e) = nρ and (1) implies that⋂

ρ∈R

Nρ = {e},

as claimed.

The following is a product formula for the characters.

Proposition 4.15. For every character χ of G, we have

χ(s)χ(t) = χ(e)

∫
G

χ(usu−1t) dλ(u).

Proof. By definition and since Mρ(st) = Mρ(s)Mρ(t) for all s, t ∈ G, we have

χρ(usu
−1t) =

1

nρ

∑
i

m
(ρ)
ii (usu−1t) =

1

n4
ρ

∑
i,j,h,k

mij(u)mjh(s)mhk(u
−1)mki(t).
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Using Theorem 4.6 (2) and (3) (convolution evaluated at e) , it follows that∫
G

χρ(usu
−1t) dλ(u) =

1

n4
ρ

∑
i,j,h,k

mjh(s)mki(t)

∫
mij(u)mhk(u

−1) dλ(u)

=
1

n3
ρ

∑
i,j,h,k

δjhδikmjh(s)mki(t)

=
1

n3
ρ

∑
i,j

mjj(s)mii(t)

=
1

nρ
χρ(s)χρ(t),

as claimed.

Since by Vol I, Proposition 8.47, f ∗ g = f ∗ g, the function which maps the class of a
function f ∈ L2(G) to the class of its complex conjugate f is a semilinear bijection of L2(G),
and an automorphism of its ring structure (under convolution).

Definition 4.5. The above automorphism of L2(G) maps every ideal aρ into the minimal
two-sided ideal aρ = {f | f ∈ aρ} that we denote by aρ.

The map aρ 7→ aρ permutes the indices of R but leaves the Hilbert sum unchanged,
namely L2(G) is the Hilbert sum of both families (aρ)ρ∈R and (aρ)ρ∈R = (aρ)ρ∈R.

If (as usual), given a complex matrix X = (xij), we denote by X the matrix (xij), then
we have

Mρ(s) = Mρ(s), for all s ∈ G,

and as a consequence, since uρ(s) = nρtr(Mρ(s)) = nρχρ(s), we have

uρ = uρ and χρ = χρ.

Thus, the equation aρ = aρ is equivalent to saying that the character χρ only takes real
values .

Let us now consider the special cases where either G is compact and abelian or G is finite.

Example 4.1. We will consider the case where G is a compact (metrizable) abelian group,
but before doing this, let G be a not necessarily abelian compact group. Let f ∈ L2(G) be
a function not zero everywhere, such that for every s ∈ G,

f(st) = f(s)f(t), for almost all t ∈ G.

Then

f(s−1t) = f(s−1)f(t),
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so the subgroup Cf of L2(G) is invariant under the map g 7→ λs(g) for every s ∈ G, and
by Proposition 4.4, this subgroup is a closed minimal left ideal of dimension 1. This is only
possible if this left ideal is one of the aρ for which nρ = 1, and then f is equal to the character
χρ almost everywhere. Such characters are called abelian characters . The above reasoning
shows that these are the only continuous homomorphisms of G into C∗. Since the image of
G by such a character χρ is a compact subgroup of C∗, it must be contained in U(1).

If G is compact and abelian, then every character is obviously abelian, since the algebras
aρ are commutative. Then by Theorem 4.6(3), the characters of G form a Hilbert basis of
L2(G), and every continuous function is a uniform limit of linear combinations of characters
(by Theorem 4.12). We have determined the characters of several compact abelian groups,
such as Z/nZ and Tn, in vol I, Proposition 10.9 and Corollary 10.11.

Example 4.2. Let G be a finite (not necessarily abelian) group of order |G| = g. In this case,
the algebras L1(G) and L2(G) are the same and equal to the group algebra C[G] = [G→ C]
of formal linear combinations

∑
s∈G xs s with xs ∈ C, with the convolution

1

g

(∑
s1∈G

xs1 s1

)
∗

(∑
s2∈G

ys2 s2

)
=

1

g

∑
s∈G

( ∑
s1s2=s

xs1ys2

)
s =

1

g

∑
s∈G

(∑
t∈G

xtyt−1s

)
s.

Recall that two elements a, b ∈ G are conjugate if b = sas−1 for some s ∈ G. Conjugation is
an equivalence relation in G, and its classes, called the conjugacy classes of G, are the sets

Ca = {sas−1 | s ∈ G}.

Since G is finite, it has finite number r of conjugacy classes C1, . . . , Cr, and we assume that
C1 = {e}.

The central functions (also called class functions) are constant on the conjugacy classes.
Also, since G is finite, by Theorem 4.12, every central function is a linear combination of
characters, and since they are linearly independent, the number r of conjugacy classes is
equal to the number of characters, and to the dimension of the center of the algebra Z(C[G])
of C[G].

Let R = {ρ1, . . . , ρr}, and write χij for the value of the character χi on the conjugacy
class Cj (1 ≤ i, j ≤ r). If g is the order of the group G and hj is the number of elements in
the conjugacy class Cj, then the orthogonality relations in Proposition 4.10(4) become

1

g

r∑
k=1

hkχikχjk = δij, (1 ≤ i, j ≤ r).

In other words, the matrix (
hk
g
χik

)
1≤i,k≤r
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is unitary. We get more identities by expressing that the transpose of the above matrix is
unitary, namely:

r∑
i=1

χikχil = 0, if k 6= l

and
r∑
i=1

|χik|2 =
g

hk
.

These formulae can also be written as∑
ρ∈R

χρ(s)χρ(t
−1) = 0 (†1)

if s and t are not conjugate in G, and∑
ρ∈R

|χρ(s)|2 =
g

hk
, if s ∈ Ck. (†2)

Since e is not conjugate to any other element in G, if we let t = e in (†1), using the fact
that χρ(e) = nρ, we obtain ∑

ρ∈R

nρχρ(s) = 0, if s 6= e.

If we let s = e in (†2), we obtain the relation∑
ρ∈R

n2
ρ = g. (†3)

The above equation confirms that L2(G) is the direct sum of the aρ.

4.3 The Peter–Weyl Theorem, Part II

In this section, we prove the second part of the Peter–Weyl theorem which has to do with
unitary representations. In particular, we prove the important result that the unitary rep-
resentations s 7→ Mρ(s) of G discussed in Theorem 4.6 are irreducible (in fact, all of them,
up to equivalence).

Given a unitary representation V : G → U(H), recall from Definition 3.13 specialized
to measures of the form f dλ, where f ∈ L1(G), that for every x ∈ H, the unique vector

Ṽ (f dλ)(x) ∈ H, such that

〈Ṽ (f dλ)(x), y〉 =

∫
f(s)〈V (s)(x), y〉 dλ(s), for all y ∈ H,
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is called the weak integral of the function s 7→ V (s)(x) from G to H with respect to fdλ,
and we write

Ṽ (f dλ)(x) =

∫
G

f(s)V (s)(x) dλ(s).

We also denote Ṽ (f dλ) by Vext(f). We know from by Proposition 3.15 that ‖Vext(f)‖ ≤ ‖f‖1.
Recall fom Definition 4.4 that uρ(s) = nρχρ(s).

Theorem 4.16. (Peter–Weyl theorem, II) Let G be a (metrizable) compact group, and let
V : G→ U(H) be a unitary representation of G in a separable Hilbert space H.

(1) For every ρ ∈ R, the map Vext(uρ) given by

Vext(uρ)(x) =

∫
G

uρ(s)V (s)(x) dλ(s) = nρ

∫
G

χρ(s)V (s)(x) dλ(s), x ∈ H, (proj)

is an orthogonal projection of H onto a closed subspace Eρ (which may be reduced to
(0)), and H is the Hilbert sum

H =
⊕

ρ∈R,Eρ 6=(0)

Eρ

of the Eρ 6= (0).

(2) Every subspace Eρ 6= (0) is invariant under V , and the restriction Vρ of V to Eρ is a
finite or countably infinite Hilbert sum of irreducible representations, all equivalent to
Mρ, viewed as a representation Mρ : G → U(Cnρ). Thus Eρ is a finite or countably

infinite Hilbert sum of dρ finite-dimensional subspaces E
kρ
ρ (where dρ =∞ is possible),

Eρ =

dρ⊕
kρ=1

Ekρ
ρ ,

and each E
kρ
ρ is isomorphic to Cnρ. More precisely, each subrepresentation V

kρ
ρ : G→

U(E
kρ
ρ ) is equivalent to the irreducible representation Mρ : G→ U(Cnρ).

Proof. To help the reader navigate through the flow of this proof, we provide the following
proof outline. By Theorem 4.2, we have the Hilbert sum

L2(G) =
⊕
ρ∈R

aρ =
⊕
ρ∈R

aρ,

with
aρ = l1 ⊕ · · · ⊕ lnρ .

We are given a unitary representation V : G → U(H) of G, and we use Theorem 3.17 to
form the algebra representation Vext : L1(G)→ L(H) of L1(G). For part 1, we define

Eρ = {Vext(uρ)(x) | x ∈ H},
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and we show that H is the Hilbert sum

H =
⊕
ρ∈R

Eρ.

In part (2), step 1, we prove that Eρ is invariant under V . For step 2 we consider the
restriction Vρ : G → U(Eρ) of V to Eρ and its extension (Vρ)ext : L1(G) → L(Eρ) to L1(G).
Since G is compact, L2(G) ⊆ L1(G), and we can show that (Vρ)ext is zero on every aρ′ with
ρ′ 6= ρ. Consequently, the restriction of (Vρ)ext to L2(G) can be viewed as a nondegenerate
representation

(Vρ)ext : aρ → L(Eρ)

of the topologically simple algebra aρ in Eρ. This allows us to use Theorem 2.36(2) to obtain
a finite or countably infinite Hilbert sum

Eρ =
⊕
k

E(k)
ρ ,

such that every representation (Vρ)
(k)
ext : aρ → L(E

(k)
ρ ) is equivalent to the irreducible repre-

sentation Ul1
: aρ → L(l1).

In step 3, we observe that Ul1
is the restriction of Rext : L1(G)→ L(L2(G)) to aρ, where

R : G → U(L2(G)) is the left regular representation of G in L2(G). Thus we can view Ul1

as the nondegenerate topologically irreducible representation Ũl1
: L1(G) → L(l1) obtained

by extending the nondegenerate representation Ul1
: aρ → L(l1) to L1(G) (we set Ũl1

to zero
on the orthogonal complement of aρ), which is equal to Rext on aρ. The corresponding
representation of G is an irreducible unitary representation of G in l1 that agrees with R,
so we compute the matrix of R(s) in the basis of l1 consisting of the vectors ( 1

nρ
mi1)1≤i≤nρ ,

and we find Mρ.

And now comes the detailed proof. (1) By the Peter–Weyl theorem (Theorem 4.2), L2(G)
is the Hilbert sum of both families (aρ)ρ∈R and (aρ)ρ∈R = (aρ)ρ∈R, but to obtain the matrix
representations Mρ we need to use the Hilbert sum (aρ)ρ∈R. We observed just after Definition
4.5 that

Mρ(s) = Mρ(s), uρ = uρ, χρ = χρ.

The first equation implies that if m
(ρ)
ij (s) are the elements of the matrix Mρ(s), then the

elements m
(ρ)
ij (s) of the matrix Mρ(s) are given by m

(ρ)
ij (s) = m

(ρ)
i,j . The uρ are self-adjoint

idempotents, that is, uρ ∗ uρ = uρ and u∗ρ = ǔρ = uρ, and since Vext : L1(G) → L(H) is an
algebra homomorphism, we have

Vext(uρ) = Vext(uρ ∗ uρ)
= Vext(uρ) ◦ Vext(uρ),
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and

Vext(uρ) = Vext(u
∗
ρ)

= (Vext(uρ))
∗,

so the continuous linear map Vext(uρ) is idempotent and hermitian, and by Proposition 2.6,
it is an orthogonal projection. Since uρ ∗ uρ′ = 0 if ρ 6= ρ′, we have Vext(uρ) ◦ Vext(uρ′) = 0,
which implies that the images Eρ of the projections Vext(uρ) are closed subspaces that are
pairwise orthogonal. To prove that H is the Hilbert sum of the family (Eρ)ρ∈R, we need
to show that the algebraic direct sum

⊕
ρ∈REρ is dense in H. We know from the proof of

Theorem 3.18 that the linear span E of the set {Vext(f)(x) | f ∈ C(G;C), x ∈ H} is dense
in H, and by Proposition 3.15, we have ‖Vext(f)‖ ≤ ‖f‖1. By Proposition 4.8(2), if f is

continuous, then for every ε > 0, there is a (finite) linear combination
∑

i,j,ρ c
(ρ)
ij m

(ρ)
ij such

that ∥∥∥∥∥f −∑
i,j,ρ

c
(ρ)
ij m

(ρ)
ij

∥∥∥∥∥
∞

≤ ε,

and since ‖Vext(f)‖ ≤ ‖f‖1, G is compact, and λ(G) = 1, we have ‖g‖1 ≤ ‖g‖∞ for any
g ∈ L1(G), and this implies that∥∥∥∥∥Vext(f)−

∑
i,j,ρ

c
(ρ)
ij Vext(m

(ρ)
ij )

∥∥∥∥∥ ≤
∥∥∥∥∥f −∑

i,j,ρ

c
(ρ)
ij m

(ρ)
ij

∥∥∥∥∥
1

≤

∥∥∥∥∥f −∑
i,j,ρ

c
(ρ)
ij m

(ρ)
ij

∥∥∥∥∥
∞

≤ ε.

Since m
(ρ)
ij = uρ ∗m(ρ)

ij , we have Vext(m
(ρ)
ij ) = Vext(uρ) ◦ Vext(m

(ρ)
ij ), thus the vector(∑

i,j,ρ c
(ρ)
ij Vext(m

(ρ)
ij )
)

(x) belongs to the sum of the Eρ, which proves that E is dense in H.

We delete the summands Eρ, such that Eρ = (0).

(2) Step 1 . We prove that the subspaces Eρ which are invariant under Vext are also
invariant under V . Since by Proposition 4.7, the uρ belong to the center of L2(G), by
Proposition 4.1, the uρ belong to the center of M1(G). Recall that Theorem 3.17 actually

yields an algebra representation Ṽ : M1(G)→ L(H) of the unital involutive Banach algebra

M1(G) and that Vext is the restriction of Ṽ to L1(G). In particular, even though δs /∈ L1(G)

(unless G is discrete), Ṽ (δs) makes sense, and

Ṽ (δs) = V (s),

as stated in (Ũ(δs)) just after Definition 3.13. Also recall (†) from the proof of Theorem
3.18,

V (s)(Vext(f)(x)) = Vext(δs ∗ f)(x), for all f ∈ L1(G), and all x ∈ H. (†)
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Then as any Eρ 6= (0) is the image of Vext(uρ), we have

V (s)(Vext(uρ)(x)) = Vext(δs ∗ uρ)(x)

= Ṽ (δs ∗ uρ)(x)

= Ṽ (uρ ∗ δs)(x)

= Ṽ (uρ)(Ṽ (δs)(x))

= Vext(uρ)(V (s)(x)),

we conclude that the Eρ are invariant under V .

Step 2 . We want to prove that if Vρ is the restriction of the representation V of G to Eρ
we obtain a Hilbert sum decomposition into irreducible representations for the restriction of
the nondegenerate representation (Vρ)ext to aρ in Eρ.

If Vρ is the restriction of the representation V of G to Eρ, then (Vρ)ext(uρ′) = 0 for all
ρ′ 6= ρ, since uρ ∗ uρ′ = 0. The representation (Vρ)ext is a representation of L1(G) in Eρ, and
since L2(G) ⊆ L1(G) is the Hilbert sum L2(G) =

⊕
ρ∈R aρ, and the projection of L2(G) onto

aρ is the map f 7→ f ∗uρ, we have (Vρ)ext(f ∗uρ′) = (Vρ)ext(f)◦ (Vρ)ext(uρ′) = 0, which means
that (Vρ)ext is zero on every aρ′ with ρ′ 6= ρ. Consequently, the restriction of (Vρ)ext to L2(G)
can be viewed as a nondegenerate representation of the topologically simple algebra aρ in
Eρ. Since by Proposition 3.15, the representation (Vρ)ext is continuous, by Theorem 2.36(2),
the nondegenerate representation (Vρ)ext of aρ in Eρ is a finite or countably infinite (if Eρ is
infinite dimensional) Hilbert sum of topologically irreducible representations all equivalent
to the representation Ul1

: aρ → L(l1).

Step 3 . We observe that Ul1
is the restriction of Rext : L1(G) → L(L2(G)) to aρ, where

R : G→ U(L2(G)) is the left regular representation of G in L2(G) given by

(R(s)(f))(t) = λs(f)(t) = f(s−1t), f ∈ L2(G), s, t ∈ G;

see Definition 3.14. This is because by definition of Ul1
in Proposition 2.20,

Ul1
(f)(g) = f ∗ g, f ∈ aρ, g ∈ l1,

and Definition 3.15 of the left regular representation Rext of L1(G) in L2(G),

(Rext(f))(g) = f ∗ g, f ∈ L1(G), g ∈ L2(G),

so Ul1
is the restriction of Rext to aρ. Thus, we can view Ul1

as the nondegenerate topologically

irreducible representation Ũl1
: L1(G) → L(l1) obtained by extending the nondegenerate

representation Ul1
: aρ → L(l1) to L1(G) (we set Ũl1

to zero on the orthogonal complement
of aρ), which is equal to Rext on aρ. The corresponding representation of G is an irreducible
unitary representation of G in l1 that agrees with R, so we compute the matrix of R(s) in
the basis of l1 consisting of the vectors ( 1

nρ
mi1)1≤i≤nρ .
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Using Theorem 4.6(4), we have

R(s)(mj1) = mj1(s−1t) =
1

nρ

nρ∑
i=1

mji(s
−1)mi1(t),

and since by Theorem 4.6(2), mji(s
−1) = mij(s), we recognize that the matrix of R(s) is

Mρ(s), as claimed.

The above proof is an adaptation of Dieudonné’s proof [11] (Section 4, Theorem 21.4.1).
Dieudonné’s proof uses the projection Vext(uρ) instead of the projection Vext(uρ). The second
option is the projection used by Serre in his short section on the representation of compact
groups and also in Hewitt and Ross; see Serre [62] (Section 4.3) and Hewitt and Ross [36]
(Chapter VII, Theorem 27.44). The advantage of Dieudonné’s choice is that we avoid a
plethora of indices ρ, but the disadvantage is that the irreducible representations that occur
in a given representation are the Mρ = Mρ. With the second option (as in Serre and
Hewitt and Ross), the irreducible representations that occur are the Mρ; no conjugation
needed. Even though using the second option causes an additional notational burden in the
proof (most indices are ρ instead of ρ), in the long-term this simplifies matters because the
representations that occur are the Mρs.

Let us emphasize that Theorem 4.16 proves that every representation Mρ is irreducible,
which is not at all obvious from their definition. Theorem 4.16 also shows that every irre-
ducible unitary representation of G is equivalent to some representation of the form Mρ, and
Mρ is not equivalent to Mρ′ for ρ 6= ρ′.

Definition 4.6. Let G be a locally compact (metrizable, separable) group. A sequence of
unitary representations (Uρ : G → U(Hρ))ρ∈R of G, where R is some index set (possibly
infinite) is called a complete set of irreducible unitary representations of G if

(1) Each unitary representation Uρ : G→ U(Hρ) is irreducible.

(2) Any two representations Uρ and Uρ′ with ρ 6= ρ′ are inequivalent.

(3) Every irreducible unitary representation V : G → U(H) of G is equivalent to some
representation Uρ (necessarily unique).

Consequently, (Mρ)ρ∈R is a complete set of unitary irreducible representations of G in
a separable Hilbert space. When we deal with more than one group G (say also a closed
subgroup of G), we use the notation R(G) instead of R.

Remark: It would be tempting to say that each ρ corresponds to an equivalence class of
unitary representations (under equivalence) but there is a set-theoretic difficulty since the
collection of unitary representations is not a set. This sticky point appears to be ignored by
most authors, who do not hesitate to refer to the “set of equivalence classes” of irreducible
representations of a group G, and even to the set of all representations of G. Some authors
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are more careful and avoid the term “equivalence classes of irreducible representations.”
The only source we are aware of that brings up this issue is Hewitt and Ross [36] (Chapter
VII, second footnote on page 2). They suggest that a way to circumvent this set-theoretic
difficulty is to observe that for a given group G, the cardinality of the vector spaces involved
in irreducible representations of G is bounded. In fact, by Proposition 3.1, it is bounded by
ℵ|G|1 , where |G| denotes the cardinality of G. Then by Riesz–Fischer (Vol I, Theorem D.19),

we can pick representatives for the Hilbert spaces of cardinality at most ℵ|G|1 among `p(K)-

spaces with K of cardinality bounded by ℵ|G|1 . For compact groups, we just showed that the
irreducible unitary representations are finite-dimensional so we can pick these vector spaces
as the spaces Cn (countably many). Hewitt and Ross’s footnote ends with the sentence:
“The exact details are of little interest for the purposes of the present book.” We tend to
agree! Definition 4.6 is designed to avoid set-theoretic difficulties. With a small abuse of
language, we may still say that the unitary representations equivalent to the representation
Mρ are of class ρ.

If the compact group G is abelian, then every algebra aρ is abelian, and since it is
simple, it must be one-dimensional. Therefore, every unitary representation of a (metrizable)
compact abelian group is a finite or a countably infinite Hilbert sum of one-dimensional
representations.

It is customary to introduce the following terminology.

Definition 4.7. With the notations of Theorem 4.16, if V : G → U(H) is a unitary repre-
sentation of G in a separable Hilbert space H, and if H =

⊕
ρ∈R,Eρ 6=(0)Eρ is the Hilbert sum

induced by the projections πVρ = Vext(uρ), with

πVρ (x) = nρ

∫
G

χρ(s)V (s)(x) dλ(s), x ∈ H,

whenever Eρ 6= (0) and Vρ : G→ U(Eρ) is the corresponding representation, we say that the
irreducible representation Mρ is contained in the representation V . If

Eρ =

dρ⊕
kρ=1

Ekρ
ρ

is finite-dimensional of dimension dρnρ > 0 (recall that each subspace E
kρ
ρ is isomorphic to

Cnρ), we say that Mρ is contained dρ times in V (or infinitely many times if Eρ is infinite-
dimensional). We also call dρ the multiplicity of Mρ in Vρ. The representations Mρ such that
dρ > 0 are called the irreducible components of the representation V .

If we consider the left regular representation R of G in L2(G), then the projection πR
ρ is

given by

πR
ρ (f) =

∫
uρ(s)Rs(f) dλ(s) =

∫
uρ(s)λs(f) dλ(s) = uρ ∗ f = uρ ∗ f,
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so Eρ = aρ = aρ for all ρ ∈ R, and Theorem 4.16 says that on aρ, the representation R splits
into nρ irreducible representations all equivalent to Mρ. We can view these representation

as acting on the columns of Mρ = Mρ, which span nρ minimal left ideals l
(ρ)
j of aρ; that is,

aρ =

nρ⊕
j=1

l
(ρ)
j and l

(ρ)
j =

nρ⊕
k=1

Cm(ρ)
kj .

Remark: The statement Eρ = aρ = aρ may seem wrong, but it is correct. It is a consequence
of the definition of the projection πVρ . The exact same fact is noted in Hewitt and Ross [36]
(Chapter VII, Section 27.49).

The above fact is worth recording as a proposition.

Proposition 4.17. The left regular representation R : G→ U(L2(G)) of a compact (metriz-
able) group G in L2(G) contains every irreducible unitary representation Mρ of G, and each
one is contained nρ times, where nρ is the dimension of the space of the representation.

Proposition 4.17 is a generalization to compact groups of a property holding for finite
groups for which the proof is much easier; see Serre [62] (Section 2.4).

If V is a finite-dimensional unitary representation, then the trace of the linear map V (s)
plays a crucial role. In fact, it determines this representation up to equivalence.

Proposition 4.18. Let G be a (metrizable) compact group. For any unitary representation
V : G→ U(H) of G in a finite-dimensional hermitian space H of dimension d, assume that
for every ρ ∈ R, the irreducible representation Mρ is contained dρ times in V , so that

d =
∑
ρ∈R

dρnρ,

where dρ 6= 0 for only finitely many ρ ∈ R. Then we have

tr(V (s)) =
∑
ρ∈R

dρχρ(s), for all s ∈ G.

Proof. We can write H as the direct sum of finite-dimensional spaces, and by picking bases,
we can express V (s) as a sum of matrices similar to some of the Mρ(s). Then the above
formula follows from the fact that χρ(s) = tr(Mρ(s)) and the fact that the trace is invariant
under conjugation, tr(PV P−1) = tr(V ).

Theorem 4.19. Let G be a (metrizable) compact group. Two unitary representations
V1 : G → U(H2) and V2 : G → U(H2) of G in finite-dimensional hermitian spaces H1 and
H2 of dimensions d1 and d2 are equivalent if and only if

tr(V1(s)) = tr(V2(s)), for all s ∈ G.



222 CHAPTER 4. ANALYSIS ON COMPACT GROUPS AND REPRESENTATIONS

In particular, if V1 and V2 are equivalent, then d1 = d2. Moreover, if V1 and V2 are any two
equivalent irreducible unitary representations, then

tr(V1(s)) = tr(V2(s)) = χρ(s), s ∈ G,

where Mρ is the irreducible representation from Theorem 4.16 to which V2 and V2 are equiv-
alent.

Proof. Clearly, if V1 and V2 are equivalent, the formula of the theorem holds. Conversely, by
Proposition 4.18, since

tr(V1(s)) =
∑
ρ∈R1

dρχρ(s) and tr(V2(s)) =
∑
ρ∈R2

dρχρ(s)

for some finite subsets R1 and R2 of R, and since by Theorem 4.6(3) the characters are
linearly independent, we must have R1 = R2 and d1 = d2.

Theorem 4.19 suggests the following (standard) definition.

Definition 4.8. Let G be a (metrizable) compact group. For any unitary representation
V : G→ U(H) of G in a finite-dimensional hermitian space H of dimension d, we define the
character χV of the representation V as the map χV : G→ C given by

χV (s) = tr(V (s)), for all s ∈ G.

The characters of a finite-dimensional unitary representation are central functions, and
in view of Proposition 4.18, they have many of the properties of the characters χρ.

By definition, the character χρ of the compact group G is identical to the character χMρ of
the special representation Mρ, which is irreducible by Peter–Weyl II, and by Theorem 4.19,
it is also the character of all equivalent irreducible unitary representations of G equivalent
to Mρ. Thus the set (χρ)ρ∈R is the set of characters of all irreducible unitary representations
of G. If we have some complete set of irreducible unitary representations for G, we can
determine the characters of G. If the groupG is finite, then there are finitely many irreducible
representations up to equivalence, so this method can be used practically.

Example 4.3. Let G be a finite group and assume that {ρ1, . . . , ρr} is a complete set of
irreducible unitary representations ρi : G→ U(Wi) of G (where r is the number of conjugacy
classes of G) so that R = {ρ1, . . . , ρr}, write ni = dim(Wi), and let χ1, . . . , χr be the
characters of G (which are equal to the characters of the ρi). If U : G→ U(E) is any unitary
representation of G (where E is finite-dimensional), then by Peter–Weyl II, we have a direct
sum

E = Ei1 ⊕ · · · ⊕ Eih (†1)

for some subset {ρi1 , . . . , ρih} of R (h ≤ r), and each Eij (1 ≤ j ≤ h) is a direct sum

Eij = E1
ij
⊕ · · · ⊕ Edj

ij
(dj ≥ 1), (†2)
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such that for k = 1, . . . , dj, each representation U : G → U(Ek
ij

) is equivalent to the irre-
ducible representation ρij : G → U(Wij). Each subspace Eij is the projection of E by the
projection πUij given by

πUij (x) =
nij
|G|

∑
s∈G

χij(s)U(s)(x) x ∈ E. (†3)

The Eij in (†1) are uniquely determined by U (in terms of the projections πUij ), but the
splitting of Eij as a direct sum as above in (†2) is not.

The decomposition of U : G→ U(E) into the h unitary representations U : G→ U(Eij)
(1 ≤ j ≤ h) is called the canonical decomposition of U . For finite groups, these results
can be obtained more directly; see Serre [62] (Section 2.6, in particular, Theorem 8). Each
representation U : G→ U(Eij) (1 ≤ j ≤ h) contains the irreducible representation ρij : G→
U(Wij) dj times, so it is not irreducible unless dj = 1. It is actually possible to obtain a
specific decomposition of each Eij into some subspaces Ek

ij
as in (†2) given by projections

expressed in terms of matrix representations for the irreducible representations ρij : G →
U(Wij); see Serre [62] (Section 2.7).

Example 4.4. Recall from Example 3.1 that the group S3 consists of the permutations on
the set {1, 2, 3}. There are 3! = 6 permutations

σ1 = (1, 2, 3), σ2 = (1, 3, 2), σ3 = (2, 1, 3), σ4 = (2, 3, 1), σ5 = (3, 1, 2), σ6 = (3, 2, 1),

three conjugacy classes, C1 = {σ1}, C2 = {σ2, σ3, σ6}, C3 = {σ4, σ5}, and three irreducible
representations (up to equivalence). The two one-dimensional irreducible representations are
the trivial representation ρ1 : S3 → U(1) with

ρ1(σi) = 1, i = 1, . . . , 6,

and the signature representation ρ2 : S3 → U(1) from Example 3.6, with

ρ2(σi) =


+1, σi ∈ C1

−1, σi ∈ C2

+1, σi ∈ C3.

The third irreducible representation ρ3 is two-dimensional and is obtained from Example 3.5.
We obtained the matrix representation of ρ3 : S3 → U(2) by 3× 3 matrices with respect to
the basis (w1, w2, w3) and we just have to consider the 2 × 2 matrices obtained by deleting
the first row and the first column since w1 is invariant. We get(

1 0
0 1

)
,

(
1/2

√
3/2√

3/2 −1/2

)
,

(
−1 0
0 1

)
,

(
−1/2 −

√
3/2√

3/2 −1/2

)
,(

−1/2
√

3/2

−
√

3/2 −1/2

)
,

(
1/2 −

√
3/2

−
√

3/2 −1/2

)
.
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In Example 3.7, we found the canonical decomposition of the regular representation
ρR : S3 → GL(C6) of S3 from Example 3.2. We have

C6 = V1 ⊕ V2 ⊕ V3 = V1 ⊕ V2 ⊕ V 3
1 ⊕ V 3

2 ,

where V1 is spanned by the vector e1 + e2 + e3 + e4 + e5 + e6, V2 is spanned by the vector
e1− e2− e3 + e4 + e5− e6, V 3

1 is spanned by the vectors e1 + e2− e3− e4, e3 + e4− e5− e6, and
V 3

2 is spanned by the vectors e1−e3−e4 +e6, e2 +e4−e5−e6. The representation ρR : S3 →
GL(V1) is equivalent to the irreducible representation ρ1 : S3 → U(1), the representation
ρR : S3 → GL(V2) is equivalent to the irreducible representation ρ2 : S3 → U(1), and both
representations ρR : S3 → GL(V 3

k ), k = 1, 2, are equivalent to the irreducible representation
ρ3 : S3 → U(2).

Theorem 4.19 shows that two finite-dimensional unitary representations V1 : G→ U(H2)
and V2 : G → U(H2) of G are equivalent if and only if χV1 = χV2 . This confirms the
importance of the characters; they determine the equivalence classes of finite-dimensional
unitary representations of a (metrizable) compact group.

Observe that the definition of the character of a representation makes sense even if the
representation is not unitary (it only needs to be finite-dimensional). In view of Theorem 3.6
and the discussion following it, every finite-dimensional representation of G (not necessarily
unitary) can be viewed as a unitary representation for some suitable hermitian inner product,
so Proposition 4.18 and Theorem 4.19 also apply to such representations. Consequently, the
characters also determine the equivalence classes of all finite-dimensional, not necessarily
unitary, representations of a (metrizable) compact group.

If G is finite, it may be possible to build a character table for G by determining a complete
set of irreducible representations of G (in view of the above remarks, not necessarily unitary).
In general, this is difficult. It should be noted that for finite groups, using Peter–Weyl II
to introduce characters and obtain some of their properties is a very heavy-handed method.
A more gentle (and standard) approach is to define the characters of finite-dimensional
representations and to derive their properties directly, singling out the role played by the
characters of irreducible representations. Such an approach is presented in the excellent
texts of Serre [62] and Simon [65]. Here is an example of the computation of the character
table of the symmetric group S3. Since we determined the irreducible representations of the
symmetric group S3 in Section 3.1, we can build its table of characters.

Example 4.5. In Example 4.4, we found the three irreducible unitary representations (up
to equivalence) of the group S3 consisting of the permutations on the set {1, 2, 3}. Recall
that there are 3! = 6 permutations

σ1 = (1, 2, 3), σ2 = (1, 3, 2), σ3 = (2, 1, 3), σ4 = (2, 3, 1), σ5 = (3, 1, 2), σ6 = (3, 2, 1),

and three conjugacy classes, C1 = {σ1}, C2 = {σ2, σ3, σ6}, C3 = {σ4, σ5}. The two one-
dimensional irreducible unitary representations are the trivial representation ρ1 with

ρ1(σi) = 1, i = 1, . . . , 6,
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and the signature representation ρ2 from Example 3.6, with

ρ2(σi) =


+1, σi ∈ C1

−1, σi ∈ C2

+1, σi ∈ C3.

The corresponding characters χ1, χ2 are the central functions obtained by taking traces, in
this scalar case the identity, so we get

χ1(σi) =


1, σi ∈ C1

1, σi ∈ C2

1, σi ∈ C3

χ2(σi) =


+1, σi ∈ C1

−1, σi ∈ C2

+1, σi ∈ C3.

The third irreducible unitary representation ρ3 : S3 → U(2) is given by the matrices(
1 0
0 1

)
,

(
1/2

√
3/2√

3/2 −1/2

)
,

(
−1 0
0 1

)
,

(
−1/2 −

√
3/2√

3/2 −1/2

)
,(

−1/2
√

3/2

−
√

3/2 −1/2

)
,

(
1/2 −

√
3/2

−
√

3/2 −1/2

)
.

By taking traces, we obtain

χ3(σi) =


2, σi ∈ C1

0, σi ∈ C2

−1, σi ∈ C3.

Thus we obtain the following character table for S3.

C1 C2 C3

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

For much more about the representation of finite groups, see Serre [62], Simon [65] and
Fulton and Harris [25]. The conjugacy classes and the characters of the symmetric group
are discussed in Fulton and Harris [25] and Simon [65]. This beautiful theory makes use of
Young tableaux.

Operations on (finite-dimensional) vector space induce operations on finite-dimensional,
not necessarily unitary, representations, which in turn induce operations on their characters.

Given two finite-dimensional representations U1 : G→ U(H2) and U2 : G→ U(H2), with
d1 = dim(H1) and d2 = dim(H2), we already defined their direct sum as the representation
U1 ⊕ U2 of G in H1 ⊕H2 given by

(U1 ⊕ U2)(s)(x1 + x2) = U1(s)(x1) + U2(s)(x2), s ∈ G, x1 ∈ H1, x2 ∈ H2.

The tensor product of representations is also useful because it can be used to characterize
the irreducible finite-dimensional representations of products of compact groups.
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4.4 Tensor Products of Finite-Dimensional

Representations

If H1 and H2 are two finite-dimensional vector spaces, following Serre, the tensor product
of H1 and H2 can be defined in a way that avoids the rather abstract universal mapping
property.

Definition 4.9. If H1 and H2 are two finite-dimensional (real or complex) vector spaces, a
tensor product H1 ⊗ H2 of H1 and H2 is a (real or complex) vector space together with a
map ι⊗ : H1 ×H1 → H1 ⊗H2, such that the following two conditions hold:

(1) The map ι⊗ : H1 × H1 → H1 ⊗ H2 is bilinear. For any u ∈ H1 and any v ∈ H2, we
denote ι⊗(u, v) by u⊗ v.

(2) For any basis (u1, . . . , um) of H1 and any basis (v1, . . . , vn) of H2, the m × n vectors
ui ⊗ vj form a basis of H1 ⊗H2.

By standard methods of linear algebra, it can shown that such a space H1⊗H2 exists and
is unique up to isomorphism; for example, see Gallier and Quaintance [28] (Chapter 2). The
tensor product H1⊗H2 has the following universal mapping property : for every vector space
F and every bilinear map f : H1×H2 → F , there is a unique linear map f⊗ : H1⊗H2 → F ,
such that

f = f⊗ ◦ ι⊗,

as illustrated in the following diagram:

H1 ×H2

f ''

ι⊗ // H1 ⊗H2

f⊗
��
F.

Given two linear maps f : E → E ′ and g : F → F ′, there is a unique linear map

f ⊗ g : E ⊗ F → E ′ ⊗ F ′,

such that
(f ⊗ g)(u⊗ v) = f(u)⊗ g(v), for all u ∈ E and all v ∈ F . (f ⊗ g)

This is because we can define h : E × F → E ′ ⊗ F ′ by

h(u, v) = f(u)⊗ g(v).

It is immediately verified that h is bilinear, and thus by the universal mapping property it
induces a unique linear map

f ⊗ g : E ⊗ F → E ′ ⊗ F ′
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making the following diagram commute

E × F

h &&

ι⊗ // E ⊗ F
f⊗g
��

E ′ ⊗ F ′,

such that (f ⊗ g)(u⊗ v) = f(u)⊗ g(v), for all u ∈ E and all v ∈ F . For proofs of the above
facts (in a more general framework) see Gallier and Quaintance [28] (Chapter 2).

In terms of matrices, given a basis (u1, . . . , ud1) of H1 and a basis (v1, . . . , vd2) of H2,
assume f1 is represented by the matrix A1 and f2 is represented by the matrix A2. Then with
respect to the basis (ui⊗vj)1≤i≤d1,1≤j≤d2 , the linear map f1⊗f2 is defined by a (d1d2)×(d1d2)
matrix; as a block matrix, it is the d1 × d1 matrix of d2 × d2 blocks where the (i, j) block is
the matrix (A1)ijA2 (1 ≤ i, j ≤ d1). This matrix is called the Kronecker product of A1 and
A2.

Given a complex vector space H, recall that H is the complex vector space with the same
additive operation + but with multiplication by a scalar defined by

(λ, u) 7→ λu, u ∈ H,λ ∈ C.

Then a map f : H → C is semilinear iff f : H → C is linear, which means that

f(u+ v) = f(u) + f(v)

f(λu) = λu,

for all u, v ∈ H and all λ ∈ C. Observe that a map ϕ : H × H → C is sesquilinear , which
means linear in its first argument and semilinear in its second argument, iff ϕ : H ×H → C
is bilinear.

We define a hermitian inner product on the tensor product H1 ⊗ H2 of two finite-
dimensional complex vector spaces H1 and H2 each equipped with a hermitian inner product
〈−,−〉i (i = 1, 2) following Bourbaki [5] (Chapter 9, Section 1.9), which considers a more
general situation. The map 〈−,−〉 : (H1 × H2) × (H1 × H2) → C is defined as follows: for
all u1, u2 ∈ H1 and all v1, v2 ∈ H2,

〈(u1, v1), (u2, v2)〉 = 〈u1, u2〉1〈v1, v2〉2. (〈 〉)

It is immediately verified that this map is linear in each of its arguments. By the universal
mapping property, the above map extends to a unique bilinear map 〈−,−〉⊗ : (H1 ⊗H2) ×
(H1 ⊗H2)→ C, such that

〈u1 ⊗ v1, u2 ⊗ v2〉⊗ = 〈u1, u2〉1〈v1, v2〉2
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for all u1, u2 ∈ H1 and all v1, v2 ∈ H2. However, H1 ⊗ H2 is isomorphic to H1 ⊗H2, so we
obtain a sesquilinear map 〈−,−〉 : (H1 ⊗H2)× (H1 ⊗H2)→ C. Since

〈u2 ⊗ v2, u1 ⊗ v1〉⊗ = 〈u2, u1〉1〈v2, v1〉2 = 〈u1, u2〉1 〈v1, v2〉2
= 〈u1 ⊗ v1, u2 ⊗ v2〉⊗,

the sesquilinear form 〈−,−〉 : (H1⊗H2)× (H1⊗H2)→ C is hermitian. Finally, observe that

〈u1 ⊗ v1, u1 ⊗ v1〉⊗ = 〈u1, u1〉1〈v1, v1〉2,

and 〈u1, u1〉1〈v1, v1〉2 > 0 iff 〈u1, u1〉1 > 0 and 〈v1, v1〉2 > 0 iff u1 6= 0 and v1 6= 0, which
means that our inner product is positive definite. Therefore the map 〈−,−〉 : (H1 ⊗H2) ×
(H1 ⊗H2)→ C uniquely defined by

〈u1 ⊗ v1, u2 ⊗ v2〉⊗ = 〈u1, u2〉1〈v1, v2〉2

for all u1, u2 ∈ H1 and all v1, v2 ∈ H2, is a hermitian inner product on H1 ⊗H2.

Definition 4.10. If (H1, 〈−,−〉1) and (H2, 〈−,−〉2) are two finite-dimensional complex vec-
tor spaces each equipped with a hermitian inner product 〈−,−〉i (i = 1, 2), there is a unique
hermitian inner product 〈−,−〉⊗ : (H1 ⊗ H2) × (H1 ⊗ H2) → C on H1 ⊗ H2 satisfying the
equation

〈u1 ⊗ v1, u2 ⊗ v2〉⊗ = 〈u1, u2〉1〈v1, v2〉2 (〈 〉⊗)

for all u1, u2 ∈ H1 and all v1, v2 ∈ H2.

Observe that if (u1, . . . , ud1) is an orthonormal basis of H1 and (v1, . . . , vd2) is an or-
thonormal basis of H2, then (ui ⊗ vj)1≤i≤d1,1≤j≤d2 is an orthonormal basis of H1 ⊗H2 with
respect to the inner product 〈−,−〉⊗.

If f1 : H1 → H1 and f2 : H2 → H2 are unitary linear maps, then for all u1, u2 ∈ H1 and
all v1, v2 ∈ H2, we have

〈(f1 ⊗ f2)(u1 ⊗ v1), (f1 ⊗ f2)(u2 ⊗ v2)〉⊗ = 〈f1(u1)⊗ f2(v1), f1(u2)⊗ f2(v2)〉
= 〈f1(u1), f1(u2)〉1〈f2(v1), f2(v2)〉2
= 〈u1, u2〉1〈v1, v2〉2
= 〈u1 ⊗ v1, u2 ⊗ v2〉⊗,

which proves that f1 ⊗ f2 : H1 ⊗H2 → H1 ⊗H2 is unitary for the hermitian inner product
〈−,−〉⊗ on H1 ⊗H2. As a consequence of all this, we can make the following definition.

Definition 4.11. Given two finite-dimensional unitary representations U1 : G→ U(H1) and
U2 : G→ U(H2) of the locally compact (metrizable, separable) group G, we define the tensor
product U1⊗U2 of U1 and U2 as the unitary representation U1⊗U2 : G→ U(H1⊗H2) of G
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in H1 ⊗H2 (with the hermitian inner product 〈−,−〉⊗ on H1 ⊗H2 defined in (〈 〉⊗)) given
by

(U1 ⊗ U2)(s) = U1(s)⊗ U2(s), s ∈ G,

where U1(s)⊗ U2(s) is the tensor product linear map given by

(U1(s)⊗ U2(s))(x1 ⊗ x2) = U(s)(x1)⊗ U(s)(x2), for all x1 ∈ H1, x2 ∈ H2.

In terms of matrices, the linear map U1(s) ⊗ U2(s) is defined by a (d1d2) × (d1d2) matrix,
namely the Kronecker product of U1(s) and U2(s). As a block matrix, it is the d1×d1 matrix
of d2 × d2 blocks where the (i, j) block is the matrix U1(s)ijU2(s) (1 ≤ i, j ≤ d1).

It is well-known that

tr(U1(s)⊕ U2(s)) = tr(U1(s)) + tr(U2(s))

tr(U1(s)⊗ U2(s)) = tr(U1(s))tr(U2(s)).

Let us now assume that G is compact until Definition 4.12. If U1 = Mρ′ and U2 = Mρ′′

are two irreducible representations of G, then since χρ′χρ′′ = tr(Mρ′ ⊗Mρ′′) and Mρ′ ⊗Mρ′′

is finite-dimensional, Proposition 4.18 implies that

χρ′χρ′′ =
∑
ρ∈R

cρρ′,ρ′′χρ, (⊗)

where cρρ′,ρ′′ ≥ 0 is an integer, the number of times that the representations Mρ is contained
in Mρ′ ⊗Mρ′′ (this is dρ). The integers cρρ′,ρ′′ are often called Clebsch–Gordan coefficients .

The determination of the cρρ′,ρ′′ is usually very difficult. When G = SU(2), the irreducible
representations can be completely determined and the cρρ′,ρ′′ turn out to be either 1 or 0; see
Chapter 5, Section 5.17. They play an important role in physics.

Since the characters are linearly independent, we see that they form a subring of C(G;C)
spanned by the characters, which is a Z-algebra having the trivial character as identity,
where the characters form a basis over Z, and whose multiplication table is given as above.

Remark: For every ρ ∈ R, the trivial representation is contained in Mρ ⊗Mρ = Mρ ⊗Mρ.
Otherwise, by Proposition 4.10(4)(a,c) and by (⊗), we would have

0 =
∑
ρ′

cρ
′

ρ,ρ

∫
G

χρ′ dλ(s) =

∫
χρ(s)χρ(s) dλ(s) =

∫
|χρ(s)|2 dλ(s),

which is absurd.

Since any irreducible representation V of G is equivalent to a unique representation Mρ,
we call ρ the class of V and we write ρ = cl(V ). Any finite-dimensional representation V of
G corresponds uniquely to the formal linear combinations cl(V ) =

∑
ρ∈R dρρ, over those ρ
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for which Mρ occurs dρ times. The Z-module Z(R) of formal linear combinations
∑

ρ∈R1
mρρ,

with mρ ∈ Z and R1 a finite subset of R, is isomorphic to the subring of C(G;C) spanned by
the characters, and we can give it a multiplication operation using formula (⊗). With this
multiplication, we have

cl(U1 ⊗ U2) = cl(U1)cl(U2).

This ring is the ring of linear representations of G. It is a substitute for the group of
characters Ĝ, when G is abelian.

Definition 4.11 is a special case of the notion of the tensor product of finite-dimensional
unitary representations of two locally compact groups.

Definition 4.12. Given two finite-dimensional unitary representations U1 : G1 → U(H1)
and U2 : G2 → U(H2) of the locally compact (metrizable, separable) groups G1 and G2, we
define the tensor product U1 ⊗U2 of U1 and U2 as the unitary representation U1 ⊗U2 : G1 ×
G2 → U(H1 ⊗ H2) of G1 × G2 in H1 ⊗ H2 (with the hermitian inner product 〈−,−〉⊗ on
H1 ⊗H2 defined in (〈 〉⊗)) given by

(U1 ⊗ U2)(s1, s2) = U1(s1)⊗ U2(s2), s1 ∈ G1, s2 ∈ G2,

where U1(s1)⊗ U2(s2) is the tensor product linear map given by

(U1(s1)⊗ U2(s2))(x1 ⊗ x2) = U(s1)(x1)⊗ U(s2)(x2), for all x1 ∈ H1, x2 ∈ H2.

As earlier, in terms of matrices, the linear map U1(s1)⊗U2(s2) is defined by a (d1d2)× (d1d2)
matrix, namely the Kronecker product of U1(s1) and U2(s2). As a block matrix, it is the
d1×d1 matrix of d2×d2 blocks where the (i, j) block is the matrix U1(s1)ijU2(s2) (1 ≤ i, j ≤
d1).

This time, if U1 : G1 → U(H1) and U2 : G2 → U(H2) are irreducible, then the represen-
tation U1 ⊗ U2 : G1 ×G2 → U(H1 ⊗H2) is also irreducible. If G1 and G2 are compact, this
can be easily proven using the characters.

Proposition 4.20. If G1 and G2 are two compact groups and if U1 : G1 → U(H1) and
U2 : G2 → U(H2) are irreducible unitary representations, then the unitary representation
U1 ⊗ U2 : G1 ×G2 → U(H1 ⊗H2) is also irreducible.

Proof. First, observe that G1 ×G2 is compact since G1 and G2 are compact, and that since
H1 and H2 must be finite-dimensional (since U1 and U2 are irreducible and G1 and G2

are compact), then H1 ⊗ H2 is finite-dimensional. Recall that if V is a finite-dimensional
representation of a compact group G, by Proposition 4.18 and Definition 4.8,

χV (s) = tr(V (s)) =
∑
ρ∈R

dρχρ(s), for all s ∈ G.

If V is irreducible, then V is equivalent to one of the irreducible representations Mρ, so by
Proposition 4.10(4)(a), we have 〈χV , χV 〉 = 〈χρ, χρ〉 = 1. Conversely, if 〈χV , χV 〉 = 1, the
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representation V must be irreducible. Indeed, since the characters of a compact group form
an orthogonal system, we have

〈χV , χV 〉 = 〈
∑
ρ∈R

dρχρ,
∑
ρ∈R

dρχρ〉 =
∑
ρ∈R

d2
ρ.

If 〈χV , χV 〉 = 1, then V must be equivalent to one of the irreducible representations Mρ.
We now apply the above criterion to the representation V = U1 ⊗ U2 of the compact group
G = G1 ×G2. Let us compute 〈χV , χV 〉. We have

〈χV , χV 〉 =

∫
G1×G2

χU1⊗U2χU1⊗U2 dλG1×G2

=

∫
G1×G2

χU1(s1)χU2(s2)χU1(s1)χU2(s2) dλG1(s1) dλG2(s2)

=

∫
G1

χU1(s1)χU1(s1) dλG1(s1)

∫
G2

χU2(s2)χU2(s2) dλG2(s2)

= 1 · 1 = 1.

Therefore, V = U1 ⊗ U2 is indeed irreducible.

In the above derivation, λG1×G2 is the product of the Radon measures λG1 on G1 and
λG2 on G2; see Folland [23] (Chapter 7, Section 7.4). Since λG1 and G1 and λG2 are Haar
measures, so is λG1×G2 ; see [22] (Chapter 2, Section 2.2). If G1 and G2 are second-countable,
which is the case if they are compact, then λG1×G2 agrees with the product measure λG1⊗λG2

(see Vol I, Section 5.12), as shown in Folland [23] (Chapter 7, Section 7.4). We are also using
Fubini’s theorem; see Folland [23] (Chapter 7, Theorem 7.27).

Remark: Observe that if U1 : G → U(H1) and U2 : G → U(H2) are two unitary finite-
dimensional representation of G, we actually have two versions of tensor products, namely
the first version which is a representation U1 ⊗ U2 : G→ U(H1 ⊗H2) of G, and the second
version U1 ⊗ U2 : G×G→ U(H1 ⊗H2) which is a representation of G×G. This confusion
could be avoided by using a different notation for the two kinds of tensor products, but in
most cases it is clear which one is used. This also explains the apparent contradiction that
if U1 and U2 are irreducible, then U1 ⊗ U2 : G→ U(H1 ⊗H2) is not necessarily irreducible,
while U1 ⊗ U2 : G×G→ U(H1 ⊗H2) is irreducible.

Actually, the converse of Proposition 4.20 holds.

Theorem 4.21. Let G1 and G2 be two compact groups. The finite-dimensional unitary
representations U1 : G1 → U(H1) and U2 : G2 → U(H2) are irreducible iff the the finite-
dimensional unitary representation U1 ⊗ U2 : G1 ×G2 → U(H1 ⊗H2) is irreducible.

Proof. Half of the theorem was proven in Proposition 4.20. For the converse, we need to
prove that if U1 ⊗ U2 : G1 ×G2 → U(H1 ⊗H2) is irreducible, then so are U1 : G1 → U(H1)
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and U2 : G2 → U(H2). Equivalently, we need to prove that if U1 : G1 → U(H1) or U2 : G2 →
U(H2) is reducible, then U1 ⊗ U2 : G1 × G2 → U(H1 ⊗ H2) is reducible. But it is easy to
see that if M2 is an invariant subspace of H2 for U2, then H1 ⊗M2 is invariant for U1 ⊗ U2.
Similarly, it is easy to see that if M1 is an invariant subspace of H1 for U1, then M1 ⊗H2 is
invariant for U1 ⊗ U2.

Observe that the converse of Proposition 4.20 actually holds for any locally compact
groups. In fact, Theorem 4.21 holds for any locally compact (metrizable) groups. This
stronger version of Theorem 4.21 is proven in Folland [22] (Chapter 7, Theorem 7.20). Folland
also defines tensor products of Hilbert spaces and proves a version of Theorem 4.21 for unitary
representations in Hilbert spaces.

If G1 and G2 are compact, then we have another very useful result.

Proposition 4.22. If G1 and G2 are compact, then every finite-dimensional irreducible
unitary representation U : G1 × G2 → U(H) is equivalent to the tensor product U1 ⊗ U2 of
two finite-dimensional irreducible unitary representations U1 : G1 → U(H1) and U2 : G2 →
U(H2).

Proposition 4.22 is proven in Bröcker and tom Dieck [6] (Chapter 2, Section 4, Proposition
4.14) and Folland [22] (Chapter 7, Theorem 7.25). The proof in Bröcker and tom Dieck
uses the fact that if G is a compact group and if U : G → U(H) is a finite-dimensional
representation, then there is an isomorphism

d :
⊕
W

HomG(W,U)⊗C HW → H,

where HomG(W,U) is the set of G-maps between W and U (see Definition 3.3) and W : G→
U(HW ) ranges over all irreducible representations of G; only finitely many summands
HomG(W,U) are not reduced to (0). The map d is the direct sum of the maps

dW : HomG(W,U)⊗C HW → H

given by
dW (ϕ⊗ w) = ϕ(w), ϕ ∈ HomG(W,U), w ∈ HW .

See Bröcker and tom Dieck [6] (Chapter 2, Section 1, Proposition 1.14).

Folland’s result is more general because it applies to locally compact groups that are not
necessarily compact, but of type I. The definition of a group of type I is given in Folland
[22], Chapter 7, Section 7.2, page 206, and involves the notion of primary representations. A
representation U is primary if the center of C(U) consists of scalar multiples of the identity
(see Definition 3.9 for the definition of C(U)). A locally compact group G is of type I if every
primary representation of G is a direct sum of copies of some irreducible representation of
G. Note that locally compact abelian groups and compact groups are of type I ; see Folland
[22], Chapter 7, Section 7.2, page 206. Folland proves that Proposition 4.22 holds if either
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G1 or G2 is of type I. For a further discussion regarding the characterization of groups of
type I, see Folland [22], Chapter 7.

Folland’s proof ([22], Chapter 7, Theorem 7.25) makes use of the following observation.
For every finite-dimensional irreducible unitary representation U : G1 × G2 → U(H), by
definition of the product operation in a direct product of groups, we have

(s1, s2) = (s1, e)(e, s2) = (e, s2)(s1, e), s1 ∈ G1, s2 ∈ G2.

We can then define the finite-dimensional unitary representation U1 : G1 → U(H) given by
U1(s1) = U(s1, e) and the finite-dimensional unitary representation U2 : G2 → U(H) given
by U2(s2) = U(e, s2). The next step is to prove that U1 is primary, which is not difficult.
Since we are assuming that G1 is of type I, it can be shown that H is isomorphic to a
tensor product H1⊗H2 and that U1 = U1⊗ IH2 , for some irreducible unitary representation
U1 : G1 → U(H1) (here, IH2 denotes the trivial representation of G2 in H2, namely IH2(s2) =
IdH2 for all s2 ∈ G2). Using Schur’s Lemma, it can be shown that U2(s2) = IH1 ⊗ U2(s2)
for some U2(s2) ∈ L(H2), and that U2 : G2 → U(H2) is a unitary representation of G2,
necessarily irreducible. Finally, it is easy to show that U is equivalent to U1 ⊗ U2.

Example 4.6. Theorem 4.21 and Proposition 4.22 can be used to determine the irreducible
representations of O(2m+1) in terms of the irreducible representations of SO(2m+1). This
is because if Q ∈ O(2m + 1) and det(Q) = −1, since det(−I2m+1) = (−1)2m+1 = −1, then
Q(−I) ∈ SO(2m+1), and so the direct product SO(2m+1)×{I2m+1,−I2m+1} is isomorphic
to O(2m+ 1) under the isomorphism

(Q,X) 7→ QX, Q ∈ SO(2m+ 1), X ∈ {I2m+1,−I2m+1}.

The reason why the above map is a homomorphism is that Q and −I2m+1 commute for all
Q ∈ SO(2m+ 1). It follows that the irreducible representations of O(2m+ 1) are the tensor
product representations of irreducible representations of SO(2m+ 1) and irreducible repre-
sentations of the finite abelian group {I2m+1,−I2m+1} ' Z/2Z, which are determined by their
group of characters. These are the trivial character ρ0 given by ρ0(I2m+1) = ρ0(−I2m+1) = 1
and the character ρ1 given by ρ1(I2m+1) = 1 and ρ1(−I2m+1) = −1. Observe that ρ1 is the
determinant map. When m = 1, the irreducible representations of SO(3) can be described
in terms of harmonic polynomials (see Section 5.2, Proposition 5.3), so we have a complete
description of the irreducible representation of O(3). The irreducible representations of O(3)
are of the form Rn ⊗ ρk, with k ∈ {0, 1} and n ∈ N, or more explicitly

(Rn ⊗ ρk)(Q,X) = ρk(X)Rn(Q), Q ∈ SO(3), X ∈ {I2m+1,−I2m+1}, k ∈ {0, 1}, n ∈ N.

The case of O(2m) is more delicate. The problem is that −I2m is no longer a reflection
since det(−I2m) = (−1)2m = +1. We need to use a hyperplane reflection, such as the
(2m) × (2m)-matrix J = diag(−1, 1, . . . , 1). If Q ∈ O(2m), then QJ ∈ SO(2m). However,
J does not commute with all matrices in SO(2m), so this time we have an isomorphism
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between the semi-direct product SO(2m) o {I2m, J} and O(2m); see Section 7.4 (note that
J2 = I2m). Unfortunately, the normal subgroup SO(2m) of O(2m) is not abelian for m > 1,
which complicates matters. For m = 1, the group SO(2) is abelian, so Mackey’s little group
method can be used to determine the irreducible representations of O(2); see Section 7.4.

The irreducible representations of U(2) can also be determined using the following trick.
The trick is that U(2) is isomorphic to the quotient (U(1) × SU(2))/({(1, I2),−(1, I2)}).
But U(1) ' T is a locally compact abelian group and its irreducible representations are
determined by its characters χm, which are given by

eiθ 7→ eimθ, m ∈ Z, θ ∈ R/2π.

The irreducible representations of SU(2) are determined in Chapter 5; in particular, we have
the irreducible representations Un, with n ∈ N; see Section 5.1. The fact that we need to
mod out by the subgroup {(1, I2),−(1, I2)} implies that the irreducible representations of
U(2) are of the form χm ⊗ Un, with m+ n even. More explicitly,

(χm ⊗ Un)(eiθT ) = eimθUn(T ), θ ∈ R/2π, T ∈ SU(2),

with m ∈ Z, n ∈ N, and m + n even. Details can be found in Bröcker and tom Dieck [6]
(Chapter 2, Section 5, page 87) and Folland [22] (Chapter 5, Section 5.4).

4.5 Contragredient (or Dual) Representations

Later on in Chapter 8, we will need to consider the Hom representation defined by two
representations U1 : G→ U(H1) and U2 : G→ U(H2). In order to promote the isomorphism
between the tensor product E∗1 ⊗ E2 and the space of linear maps Hom(E1, E2) (where E1

and E2 are finite-dimensional) to representations, given a representation U : G→ U(H), we
first need to define a representation UD : G→ U(H∗) defined on the dual of H∗, namely the
space of linear forms on H.

We begin by reviewing the duality between a finite-dimensional hermitian vector space
E and its dual E∗; for a complete exposition see Gallier and Quaintance [29] (Chapter 13,
Section 2). For any u ∈ E, define the linear form ϕu ∈ E∗ by

ϕu(v) = 〈v, u〉, v ∈ E.

Then the map [ from E to E∗ given by [(u) = ϕu is a semi-linear isomorphism (semi-linear
means that [(λu) = λ [(u), for λ ∈ C).

Definition 4.13. Given a finite-dimensional hermitian space E, we give E∗ the hermitian
inner product induced by [−1 : E∗ → E, namely

〈ϕ1, ϕ2〉E∗ = 〈[−1(ϕ1), [−1(ϕ2)〉, ϕ1, ϕ2 ∈ E∗.
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Definition 4.13 is a special case of a definition given in Bourbaki [5] (Chapter 9, Section
1.7, Definition 9) which considers a more general situation. As observed in Bourbaki, without
conjugation we obtain a left-sesquilinear form. The conjugation on the right-hand side is
necessary to make 〈−,−〉E∗ a right-sesquilinear form, which means that it is linear in the
first argument and semi-linear in the second argument since [−1 is only semi-linear. Observe
that for all u, v ∈ E, we have

〈[(u), [(v)〉E∗ = 〈[−1([(u)), [−1([(v))〉 = 〈u, v〉,

so if [(u) = ϕ1 and [(v) = ϕ2, then

〈ϕ1, ϕ2〉E∗ = ϕ1([−1(ϕ2)) = ϕ2([−1(ϕ1)),

since
ϕ2([−1(ϕ1)) = 〈u, v〉 = 〈v, u〉 = ϕ1([−1(ϕ2)).

Also observe that if f : E → E is a linear map, then

(ϕu ◦ f)(v) = ϕu(f(v)) = 〈f(v), u〉 = 〈v, f ∗(u)〉,

where f ∗ is the adjoint of f , which shows that

ϕu ◦ f = ϕf∗(u). (†4)

If (u1, . . . , un) is an orthonormal basis of E, then the definition of the hermitian inner
product on E∗ immediately implies that (ϕu1 , . . . , ϕun) is an orthonormal basis of E∗. Also,
we have

ϕui(uj) = 〈uj, ui〉 = δi j,

which shows that ϕui is the ith coordinate function over the basis (u1, . . . , un).

Definition 4.14. Given any complex representation U : G→ GL(H) in a finite-dimensional
vector spaceH, the contragredient representation (or dual representation) UD : G→ GL(H∗)
of U : G→ GL(H) is given by

UD
g (ψ) = ψ ◦ Ug−1 , ψ ∈ H∗, g ∈ G.

Observe that UD
g = (Ug−1)>, the transpose of the linear map Ug−1 .

If H a finite-dimensional vector space with a hermitian inner product and U is a unitary
representation U : G→ U(H), in terms of matrices, since Ug is a unitary matrix, UD

g is the
conjugate of the matrix Ug. We need to check that UD

g is a unitary map on H∗. For any
ψ1, ψ2 ∈ H∗, since [ : H → H∗ is a bijection there are unique vectors u1, u2 ∈ H, such that
ψ1 = ϕu1 and ψ2 = ϕu2 , and by definition of UD and of the inner product on H∗, by (†4)
and since Ug is unitary, we have

〈UD
g (ψ1), UD

g (ψ2)〉E∗ = 〈ψ1 ◦ Ug−1 , ψ2 ◦ Ug−1〉E∗ = 〈ϕu1 ◦ Ug−1 , ϕu2 ◦ Ug−1〉E∗
= 〈ϕU∗

g−1 (u1), ϕU∗
g−1 (u2)〉E∗ = 〈U∗g−1(u1), U∗g−1(u2)〉

= 〈Ug(u1), Ug(u2)〉 = 〈u1, u2〉 = 〈ϕu1 , ϕu2〉E∗ = 〈ψ1, ψ2〉E∗ .

Therefore, UD : G→ U(H∗) is indeed a unitary representation.
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Remarks:

(1) Other authors, including Bröcker and tom Dieck [6] (Chapter 3, Section 3), denote
the dual representation by U∗. We find this slightly confusing since this notation is
also used for the adjoint of a linear map. Folland [22] (Chapter 3, Section 3.1) uses
the notation U . This is also confusing because it is also used for the notation for the
conjugate of the representation U on the vector space H with scalar multiplication
λ · u = λu. Duistermaat and Kolk [19] (Chapter 4, Section 4.0) use the notation U∨.
Fulton and Harris [25] (Chapter 8 Section 8.1) use the notation U ′. We use the less
overloaded notation UD.

(2) If H is a Hilbert space (of infinite dimension), then the dual of H is the space H ′ of
continuous linear forms on H, and by the Riesz representation theorem, [ : H → H ′ is
a bijection, so the above calculations go through and Definition 4.14 yields a unitary
representation UD : G→ U(H ′).

4.6 Conjugate Vector Space and Conjugate

Representation

The dual representation is equivalent to a slightly simpler representation called the conjugate
representation.

Definition 4.15. If V is a complex vector space, the complex vector space V is the vector
space with the same underlying set V , which for clarity we denote by Vset, with the addition
operation being as defined on Vset, but with the scalar product defined by

λ · u = λu, λ ∈ C, u ∈ Vset.

With this definition, if V is a finite-dimensional complex vector space with a Hermitan
inner product, we see that the semi-linear bijection [ : V → V ∗ (already defined earlier)
given by

[(u)(v) = 〈v, u〉, u, v ∈ Vset,

is a linear isomorphism [ : V → V ∗. Technically, this is not the same map as [ : V → V ∗.
since V and V are different vector spaces, but in the interest of simplicity, we will commit
this abuse of notation.

If (e1, . . . , en) is a basis of V , it remains a basis of V , since for any vector v ∈ Vset, we
have

v = λ1e1 + · · ·+ λnen = λ1 · e1 + · · ·+ λn · en
for some λ1, . . . , λn ∈ C, which shows that (e1, . . . , en) spans V , and

λ1 · e1 + · · ·+ λn · en = 0 iff λ1e1 + · · ·+ λnen = 0

iff λ1 = · · · = λn = 0,
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which means that (e1, . . . , en) are linearly independent over V .

If 〈−,−〉 is a Hermitian inner product on V , then 〈−,−〉 is also a left-sesquilinear inner
product on V (which means that it is semi-linear in the first argument and linear in the
second argument), because

〈λ · u, v〉 = 〈λu, v〉 = λ〈u, v〉

and

〈u, λ · v〉 = 〈u, λv〉 = λ〈u, v〉.

To obtain a hermitian inner product, we define 〈−,−〉V on V by

〈u, v〉V = 〈u, v〉, u, v ∈ V .

Proposition 4.23. A linear map f : V → V is also a linear with respect to the scalar
multiplication (u 7→ λ · u = λu) on V .

Proof. Indeed, for all u, v ∈ Vset, since addition in V is the same as addition in V , the
function f is additive on V , and for every λ ∈ C and every v ∈ Vset,

f(λ · v) = f(λv) by definition of ·
= λf(v) by linearity of f on V

= λ · f(v), by definition of ·

so f : V → V is indeed linear.

However, it is important to note that f as a linear map on V is technically not equal to f
as a linear map on V , because V and V are different vector spaces (their scalar multiplication
is different). To avoid confusion, we introduce the following notation.

Definition 4.16. Given a vector space V , for any linear map f : V → V , the set-function f
viewed as a linear map on V is denoted by f : V → V and is called it the conjugate of f .

So f and f are identical as functions on sets , but they are different as linear maps . The
fact that f and f are different as linear maps is exemplified by the fact that they are not
represented by the same matrix with respect to a basis (e1, . . . , en) (which is a basis in both
V and V ).

Proposition 4.24. Suppose that A is the matrix representing f : V → V over the basis
(e1, . . . , en), which means that

f(ej) =
n∑
i=1

aijei, 1 ≤ j ≤ n.

Then the matrix representing f : V → V over the basis (e1, . . . , en) is A.
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Proof. For any v = λ1 · e1 + · · ·+ λn · en ∈ V , we have

f(v) = f(λ1 · e1 + · · ·+ λn · en) = f(λ1e1 + · · ·+ λnen)

=
n∑
j=1

λjf(ej) =
n∑
j=1

λj

( n∑
i=1

aijei

)
=

n∑
j=1

n∑
i=1

λjaijei

=
n∑
i=1

( n∑
j=1

aijλj

)
ei =

n∑
i=1

( n∑
j=1

aijλj

)
ei =

n∑
i=1

( n∑
j=1

aijλj

)
· ei,

which shows that the ith coordinate of f(v) over the basis (e1, . . . , en) is
∑n

j=1 aijλi, and

thus that the matrix representing f : V → V as a linear map on V over the basis (e1, . . . , en)
is A = (aij).

In Section 4.8, we will use semi-linear maps so we gather a number of results that will
be needed later.

Definition 4.17. Recall that a semi-linear map is a function f : E → F , where E and F
are complex vector spaces, satisfying the following properties for all u, v ∈ E and all λ ∈ C:

f(u+ v) = f(u) + f(v)

f(λu) = λf(u).

A semi-linear map f : E → F induces a map from E to F , a map from E to F , and a
map E to F . The following proposition tells us what kind of maps they are.

Proposition 4.25. Let f : E → F be a semi-linear map where E and F are complex vector
spaces.

(1) The set-function f is a linear map from E to F and a linear map from E to F .

(2) The set-function f is a is semi-linear map from E to F .

(3) Let (e1, . . . , en) be a basis of E (which is also a basis of E). If f : E → E is semi-linear
and if f(ej) =

∑n
i=1 aijei for some complex matrix A = (aij), then

(a) The matrix representing f as a linear map from E to E (over the basis (e1, . . . , en))
is the matrix A = (aij).

(b) The matrix representing f as a linear map from E to E (over the basis (e1, . . . , en))
is the matrix A = (aij).

Proof. (1) These maps are obviously additive. Recall that the scalar product E (resp. F ) is
given by λ · u = λu, with u ∈ E and λ ∈ C. For all u ∈ E and all λ ∈ C, we have

f(λ · u) = f(λu) by definition of ·
= λf(u) since f is semi-linear,
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so f is linear as map from E to F . We also have

f(λu) = λf(u) since f is semi-linear

= λ · f(u) by definition of ·,

so f is linear as a map from from E to F .

(2) For all u ∈ E and all λ ∈ C, we have

f(λ · u) = f(λu) by definition of ·
= λf(u) since f is semi-linear

= λ · f(u) by definition of ·,

so f is semi-linear as a map from E to F .

(3)(a) Since f is semi-linear, we have

f

( n∑
j=1

λj · ej
)

= f

( n∑
j=1

λjej

)
=

n∑
j=1

λjf(ej) =
n∑
j=1

λj

n∑
i=1

aijei

=
n∑
i=1

( n∑
j=1

aijλj

)
ei,

which shows that f as a linear map from E to E, is represented by the matrix A.

(3)(b) Since f is semi-linear, we have

f

( n∑
j=1

λjej

)
=

n∑
j=1

λjf(ej) =
n∑
j=1

λj

n∑
i=1

aijei

=
n∑
i=1

( n∑
j=1

aijλj

)
ei =

n∑
i=1

( n∑
j=1

aijλj

)
· ei,

which shows that f as a linear map from E to E, is represented by the matrix A.

Technically the four maps, f as a semi-linear map from E to F , f as a linear map from
E to F , f as a linear map from E to F , and f as a semi-linear map from E to F , are all
distinct, so we should use different notations.

Definition 4.18. Given a semi-linear map f : E → F , we use the notation f
l
: E → F for

f as a linear map from E to F and f
r
: E → F for f as a linear map from E to F .

We do not assign a notation to f as map from E to F since we will never use it.

An interesting consequence of Proposition 4.25 is that if f : E → E is a semi-linear
map such that f 2 = id, then if f is represented by the matrix A = (aij), in the sense that
f(ej) =

∑n
i=1 aijei, then we have

AA = I.
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Indeed, f
r
: E → E and f

l
: E → E are linear maps represented by A and A respectively,

and

E
f
r

// E
f
l

// E = E
id // E,

which implies that AA = I.

Since the notations f
l
and f

r
are quite heavy, we may abuse notation and use the simpler

notation f , hoping that the context makes it clear which map is being used.

We conclude this section by defining the conjugate representation and showing that it is
equivalent to the dual representation.

Definition 4.19. Let H be a complex finite-dimensional vector space with a hermitian inner
product and let G be locally compact group. Given a representation V : G → GL(H), the
conjugate representation V : G → GL(H) of V is the representation such that V g is the
conjugate of Vg (as in Definition 4.16) for all g ∈ G.

If V is unitary, then V is also unitary, which means that

〈f(u), f(v)〉H = 〈u, v〉H , u, v ∈ H,

for the hermitian inner product 〈−,−〉H on H induced by the hermitian inner product on
H (see just before Proposition 4.23).

So V is essentially the same as V , in the sense that for every g ∈ G, the linear maps
V g and Vg are the same as functions on Hset, but they act on vector spaces with different
structures. As real representations (that is, by restricting scalar multiplication to R), they
are equivalent, but as complex representations, they may not be equivalent. Here is a nice
criterion for the equivalence of a representation and its conjugate.

Proposition 4.26. If V : G→ GL(H) is a representation of a compact group G in a finite-
dimentional complex vector space H, then V is equivalent to its conjugate V iff the character
χV of the representation V is real-valued.

Proof. By Theorem 3.6, since H is finite-dimensional and G is compact, we may assume
that the representation V is unitary (and then so is V , except that the inner product on
H is 〈−,−〉H). By Theorem 4.19 and Definition 4.8, the representation V is equivalent to
the representation V iff χV = χV . If we pick a basis in H, then if Vg is represented by the
matrix Ag, then by Proposition 4.24 the map Vg is represented by Ag, and since

χV (g) = tr(Ag)

χV (g) = tr(Ag)

for all g ∈ G, we see that indeed, χV = χV iff Ag = Ag for all g ∈ G iff χV is real-valued.
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There are many finite groups whose characters are not real-valued; for example, the cyclic
group Cn and the alternating group A4; see Serre [62] (Chapter 5). On the other hand, the
irreducible representations of SU(2) and SO(3) have real-valued characters.

The following result shows the intimate relationship between the dual representation and
the conjugate representation.

Proposition 4.27. Let H be a finite-dimensional complex vector space and let G be a com-
pact group. For every representation V : G → GL(H), the dual representation V D : G →
GL(H∗) and the conjugate representation V : G → GL(H) are equivalent. In fact, the
following diagram commutes for all g ∈ G:

H
V g //

[
��

H

[
��

H∗
V Dg

// H∗.

Proof. Since H is finite-dimensional, by Theorem 3.6, we may assume that V : G → U(H)
is unitary, so the linear maps Vg are unitary with respect to some invariant inner product
〈−,−〉. For all u ∈ H and all v ∈ H, we have

[(V g(u))(v) = 〈v, V g(u)〉 = 〈v, Vg(u)〉 by the definitions of [ and V .

We also have

V D
g ([(u))(v) = [(u)(Vg−1(v)) by definition of V D

= 〈Vg−1(v), u〉 by definition of [

= 〈V ∗g (v), u〉 since Vg is unitary

= 〈v, Vg(u)〉, by definition of the adjoint

which shows that the above diagram commutes.

We will return to the question of characterizing which complex representations are self-
conjugate (V is equivalent to V ), but first we discuss Hom-representations.

4.7 Hom Representations

We begin by reviewing the relationship between E∗ ⊗ F and Hom(E,F ). For a complete
exposition, see Gallier and Quaintance [28] (Chapter 2, Section 2.5).

Let E and F be two vector spaces and let Ψ: E∗×F → Hom(E,F ) be the map defined,
such that

Ψ(u∗, f)(x) = u∗(x)f,
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for all u∗ ∈ E∗, f ∈ F , and x ∈ E. This map is clearly bilinear, and thus it induces a linear
map Ψ⊗ : E∗ ⊗ F → Hom(E,F ), making the following diagram commute

E∗ × F

Ψ ''

ι⊗ // E∗ ⊗ F
Ψ⊗
��

Hom(E,F ),

such that
Ψ⊗(u∗ ⊗ f)(x) = u∗(x)f. (†5)

Then Proposition 2.7 in Gallier and Quaintance [28] tells us that

(1) The linear map Ψ⊗ : E∗ ⊗ F → Hom(E,F ) is injective.

(2) If E or if F is finite-dimensional, then Ψ⊗ : E∗ ⊗ F → Hom(E,F ) is an isomorphism.

If E and F are finite-dimensional and if each of them has a hermitian inner product,
the isomorphism Ψ⊗ can be made more concrete by picking bases. If (u1, . . . , un) is an
orthonormal basis of E and (v1, . . . , vm) is an orthonormal basis of F , then (ϕu1 , . . . , ϕnn)
is an orthonormal basis of E∗ (with the inner product on E∗ induced by the inner product
on E of Definition 4.13)). Then the m × n tensors ϕuj ⊗ vi form a basis of E∗ ⊗ F , so any
tensor T ∈ E∗ ⊗ F can be expressed in terms of an m× n matrix A = (aij) (aij ∈ C) as

T =
m∑
i=1

n∑
j=1

aij ϕuj ⊗ vi.

If we denote the linear map Ψ⊗(ϕuj ⊗ vi) from E to F as ϕujvi, (this is the linear map such
that (ϕujvi)(x) = ϕuj(x)vi for all x ∈ E), then the linear map Ψ⊗(T ) is expressed as

Ψ⊗(T ) =
m∑
i=1

n∑
j=1

aij ϕujvi.

Because Ψ⊗ is an isomorphism, the linear maps ϕujvi are linearly independent and form
a basis of Hom(E,F ). The matrix representing the linear map Ψ⊗(T ) with respect to the
bases (u1, . . . , un) and (v1, . . . , vm) has for its j-column the coordinates of the vector

Ψ⊗(T )(uj) =
m∑
i=1

n∑
k=1

aik ϕuk(uj)vi =
m∑
i=1

n∑
k=1

aik δk jvi =
m∑
i=1

aijvi,

and so it is also the matrix A.

We can use the isomorphism Ψ⊗ to transfer the hermitian inner product on E∗ ⊗ F (see
Definition 4.10 and Definition 4.13) to a hermitian inner product on Hom(E,F ) so that Ψ⊗
becomes unitary.
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Definition 4.20. Given two finite-dimensional hermitian spaces E and F , the inner product
〈−,−〉Hom on Hom(E,F ) is given by

〈h1, h2〉Hom = 〈Ψ−1
⊗ (h1),Ψ−1

⊗ (h2)〉E∗⊗F , h1, h2 ∈ Hom(E,F ).

Observe that

〈Ψ⊗(u∗1 ⊗ f1),Ψ⊗(u∗2 ⊗ f2)〉Hom = 〈Ψ−1
⊗ (Ψ⊗(u∗1 ⊗ f1)),Ψ−1

⊗ (Ψ⊗(u∗2 ⊗ f2))〉E∗⊗F
= 〈u∗1 ⊗ f1, u

∗
2 ⊗ f2〉E∗⊗F = 〈u∗1, u∗2〉E∗〈f1, f2〉F ,

so the inner product 〈−,−〉Hom on Hom(E,F ) is the inner product that makes the linear
map Ψ⊗ : E∗ ⊗ F → Hom(E,F ) an isometry.

In terms of the orthonormal bases, the tensors ϕuj ⊗ vi form an orthonormal basis of
E∗ ⊗ F , so the hermitian inner product on Hom(E,F ) is the one that makes the basis
(ϕujvi)1≤i≤m,1≤j≤n orthonormal in Hom(E,F ). Then if h1 : E → F and h2 : E → F are
two linear maps given by the matrices A and B with respect to the bases (u1, . . . , un) and
(v1, . . . , vm), a simple computation shows that the inner product of h1 and h2 is given by

〈h1, h2〉Hom = tr(B∗A) = tr(A∗B),

the Frobenius inner product of complex matrices!

We now define the Hom-representation, first for arbitrary vector spaces not necessarily
equipped with an inner product.

Definition 4.21. Let U1 : G→ GL(H1) and U2 : G→ GL(H2) be two representations. The
representation Hom(U1, U2) : G→ GL(Hom(H1, H2)) is given by

[Hom(U1, U2)(g)](f) = U2(g) ◦ f ◦ U1(g−1), f ∈ Hom(H1, H2), g ∈ G.

Working through the definitions, we prove the following result.

Proposition 4.28. If U1 : G → GL(H1) and U2 : G → GL(H2) are two finite-dimensional
representations, then the linear map Ψ⊗ : H∗1⊗H2 → Hom(H1, H2) is an equivalence between
the representations UD

1 ⊗ U2 and Hom(U1, U2); that is, the diagram

H∗1 ⊗H2

(UD1 ⊗U2)(g)
//

Ψ⊗

��

H∗1 ⊗H2

Ψ⊗

��
Hom(H1, H2)

Hom(U1,U2)(g)
// Hom(H1, H2)

commutes for all g ∈ G.
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Proof. It suffices to prove that the maps Ψ⊗ ◦ (UD
1 ⊗U2)(g) and Hom(U1, U2)(g) ◦Ψ⊗ agree

on generators. For any h∗1 ∈ H∗1 , any x ∈ H1 and any h2 ∈ H2, using (†5), we have

Ψ⊗
(
(UD

1 ⊗ U2)(g)(h∗1 ⊗ h2)
)

(x) = Ψ⊗
(
UD

1 (g)(h∗1)⊗ U2(g)(h2)
)

(x)

= Ψ⊗
(
(h∗1 ◦ U1(g−1))⊗ U2(g)(h2)

)
(x)

= (h∗1 ◦ U1(g−1))(x)[U2(g)(h2)]

= (h∗1(U1(g−1)(x))[U2(g)(h2)].

We also have

[Hom(U1, U2)(g) (Ψ⊗(h∗1 ⊗ h2))](x) = [U2(g) ◦Ψ⊗(h∗1 ⊗ h2) ◦ U1(g−1)](x)

= U2(g)[Ψ⊗(h∗1 ⊗ h2)(U1(g−1)(x))]

= U2(g)[h∗1(U1(g−1)(x))h2]

= h∗1(U1(g−1)(x))[U2(g)(h2)],

since h∗1(U1(g−1)(x)) ∈ C and U2(g) is linear. Thus

Ψ⊗
(
(UD

1 ⊗ U2)(g)(h∗1 ⊗ h2)
)

(x) = [Hom(U1, U2)(g) (Ψ⊗(h∗1 ⊗ h2))](x),

as claimed.

If H1 and H2 are finite-dimensional and each one has a hermitian inner product so that
U1 : G → U(H1) and U2 : G → U(H2) are unitary representations, then the representation
of Definition 4.21 becomes a unitary representation Hom(U1, U2) : G→ U(Hom(H1, H2)) for
the hermitian inner product on Hom(H1, H2) given in Definition 4.20 making Ψ⊗ unitary.

4.8 Extension and Restriction, Case I: (R,C)
As we said earlier, a complex representation V : G→ GL(H) is not always equivalent to its
conjugate V (and thus not always equivalent to its dual representation V D).

Definition 4.22. Let V : G→ GL(H) be a complex representation. If V and and its con-
jugate V are equivalent (iff the character χV is real-valued), we say that V is self-conjugate.

If an irreducible complex finite-dimensional representation is self-conjugate, it is remark-
able that V is either the complexification of some real irreducible representation V or the
restriction of some quaternionic representation W . Thus, as a preliminary step we need to
discuss these concepts.

Our exposition relies heavily on Bröcker and tom Dieck [6] (Chapter II, Section 6), which
contains a very complete and excellent presentation. However, Bröcker and tom Dieck’s
exposition is sometimes rather terse, so we have supplied more details when we felt that it
would be helpful to the reader. Other expositions can be found in Duistermaat and Kolk
[19], Simon [65], and Fulton and Harris [25].

Recall the following definition.
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Definition 4.23. If H is a real vector space, then its complexification HC, also denoted
eCRH, is the complex vector space isomorphic to the direct sum H ⊕ iH, where H and iH
are real subspaces. Every vector w ∈ HC can be uniquely written as w = u + iv for some
vectors u, v ∈ H, and for any complex number z = a+ ib, scalar multiplication is given by

(a+ ib) · (u+ iv) = au− bv + i(bu+ av), a, b ∈ R.

If we want to be more precise, HC = H × H, with componentwise addition and scalar
multiplication given by

(a+ ib) · (u, v) = (au− bv, bu+ av).

It follows that
i · (u, v) = (−v, u),

so i · (v, 0) = (0, v), which allows us to write (u, v) as u+ i · v. For simplicity of notation, we
write u+ iv.

We see immediately that a basis (e1, . . . , en) of H is also a basis of HC.

Definition 4.24. If H has an inner product 〈−,−〉, then its complexification HC has the
hermitian inner product 〈−,−〉C given by

〈u1 + iv1, u2 + iv2〉 = 〈u1, u2〉+ 〈v1, v2〉+ i(〈u2, v1〉 − 〈u1, v2〉).

Definition 4.25. The complexification fC : HC → HC of a linear map f : H → H is defined
by

fC(u+ iv) = f(u) + if(v), u, v ∈ H.

All three definitions above apply to infinite-dimensional vector spaces.

If H is finite-dimensional and if (e1, . . . , en) is a basis of H, then for any vector w =
(λ1 + iµ1)e1 + · · ·+ (λn + iµn)en ∈ HC (with λi, µj ∈ R), we have

fC(w) = f((λ1 + iµ1)e1 + · · ·+ (λn + iµn)en) = fC(λ1e1 + · · ·+ λnen + i(µ1e1 + · · ·+ µnen))

= f(λ1e1 + · · ·+ λnen) + if(µ1e1 + · · ·+ µnen)

= λ1f(e1) + · · ·+ λnf(en) + i(µ1f(e1) + · · ·+ µnf(en))

= (λ1 + iµ1)f(e1) + · · ·+ (λn + iµn)f(en),

which shows that if A is the real matrix representing f over the basis (e1, . . . , en), then A
also represents fC over the basis (e1, . . . , en). This shows that a linear map over HC is the
complexification of a real linear map over H iff it is represented by a real matrix.

Definition 4.26. Given a real representation U : G → GL(H), its complexification or ex-
tension UC : G → GL(HC), also denoted eCRU : G → GL(HC), is given by UC(g) = (Ug)C,
for all g ∈ C, where (Ug)C is the complexification of Ug, as in Definition 4.25. The com-
plexification of a real orthogonal representation U : G→ O(H) is the unitary representation
eCRU : G→ U(HC) defined the same way.
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Definition 4.27. Given a complex vector space H, its restriction to R, denoted by H|R or
rCRH, is the vector space H viewed as a real vector space, that is, with its scalar multiplication
restricted to R. Given a linear map f : H → H, the restriction rCRf or f |C of f to H|R(=
rCRH), is the real linear map rCRf : H|R → H|R, where H|R is the vector space H viewed as
a real vector space. Similarly, given a representation U : G → GL(H), where H is a finite-
dimensional vector space, its restriction rCRU is the representation rCRU : G → GL(rCRH)
defined by (rCRU)g = rCRUg for all g ∈G.

Since we will be considering quite a few extension and restriction operations on different
types of representations, it is useful to introduce notation to keep track of them.

Definition 4.28. Let G be a compact group. We denote by Rep(G,R) the class of all real
finite-dimensional representations of G, and by Rep(G,C) the class of all complex finite-
dimensional representations of G. We also denote by RepO(G,R) the class of all real finite-
dimensional orthogonal representations of G, and by RepU(G,C) the class of all complex
finite-dimensional unitary representations of G.

Note that eCR is a map eCR : Rep(G,R) → Rep(G,C) and rCR is a map rCR : Rep(G,C) →
Rep(G,R). Similarly, we have a map eCR : RepO(G,R) → RepU(G,C). However, there is a
problem defining a map rCR : RepU(G,C) → RepO(G,R), because in general, the hermitian
inner product is not real-valued.

What happens if we take a complex (finite-dimensional) representation V , construct its
restriction, and then its complexification? Do we get V back? The answer is no! Similarly,
take a real representation U , take its complexification, and then its restriction. Do we get
U back? Again the answer is no! The answer is given by the following proposition.

Proposition 4.29. Extension, restriction and conjugation, satisfy the following properties.
For all complex finite-dimensional representation V ∈ Rep(G,C) and all finite-dimensional
real representations U ∈ Rep(G,R), we have

rCRe
C
RU ≈ U ⊕ U, eCRU = eCRU,

eCRr
C
RV ≈ V ⊕ V , rCRV = rCRV.

Proof. We prove the second equation in the first column, leaving the others as an exercise.
Let V : G → GL(H) be a complex representation. Consider the map α : H ⊕H → eCRr

C
RH

given by

α(v, w) =

(
v + w

2
,
i(w − v)

2

)
, v, w ∈ H.

The reader may be puzzled to see the appearance of the vector (1/2)i(w − v), since rCRH is
the vector space obtained by restricting scalar multiplication to R, but the underlying set
remains the same so this vector is indeed in rCRH. The above map is obviously additive and
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R-linear. Let us compute α(iv,−iw) = α(i · (v, w)), where we use the scalar multiplication
on H ⊕H given by λ · (v, w) = (λv, λw). We have

α(iv,−iw) =

(
iv − iw

2
,
i(−iw − iv)

2

)
=

(
−i(w − v)

2
,
v + w

2

)
iα(v, w) = i

(
v + w

2
,
i(w − v)

2

)
=

(
−i(w − v)

2
,
v + w

2

)
,

which shows that α is linear on H ⊕ H, since scalar multiplication on H ⊕ H is given by
λ · (v, w) = (λv, λw). It is immediately verified that the map β : eCRr

C
RH → H ⊕H given by

β(x, y) = (x+ iy, x− iy), (x, y) ∈ eCRrCRH,

is the inverse of α. In particular,

β(i(x, y)) = β(−y, x) = (−y + ix,−y − ix) = (i(x+ iy),−i(x− iy)) = i · (x+ iy, x− iy),

which confirms that β is linear. The isomorphisms between the representing spaces eCRr
C
RH

and H ⊕H immediately imply the equivalence of the representations, we leave the details
as an exercise.

If we consider the extension eCRU : G→ GL(HC) of a real representation U : G→ GL(H),
there is a special map J ∈ C(eCRU) = HomG(eCRU, e

C
RU) that is semi-linear and satisfies

the identity J2 = I. As we will see shortly, the existence of such a map on a complex
representation V implies that V is the extension of some real representation U .

Definition 4.29. Given a real vector space H, the map J : HC → HC is given by conjugation
on HC, namely

J(u+ iv) = u− iv, u, v ∈ H.

Observe that J is additive, the identity on H, R-linear, and we have

J(i(u+ iv)) = J(−v + iu) = −v − iu
−iJ(u+ iv) = −i(u− iv) = −v − iu,

so J(i(u+ iv)) = −iJ(u+ iv), which shows that J is semi-linear. Given a real representation
U : G→ GL(H), we have

J((eCRU)g(u+ iv)) = J(Ug(u) + iUg(v)) = Ug(u)− iUg(v)

= eCRUg(u− iv) = eCRUg(J(u+ iv)),

which shows that J ∈ HomG(eCRU, e
C
RU). Actually, since G-maps are linear but J is semi-

linear, technically J
l ∈ HomG(eCRU, e

C
RU). We rectify this minor abuse in the next definition.
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Definition 4.30. Let Rep+(G,C) be the class consisting of pairs (V, J), where V : G →
GL(H) is a complex finite-dimensional representation and J is a map J : H → H, called a
structure map, such that the following properties hold.

(1) J is semi-linear.

(2) J
l ∈ HomG(V , V ).

(3) J2 = I.

The extension operation eCR,+ : Rep(G,R) → Rep+(G,C) is defined such that for any real
representation U ∈ Rep(G,R), eCR,+U = (eCRU, J), where J is the conjugation map J : HC →
HC of Definition 4.29.

Similarly RepU
+ (G,C) is the class consisting of pairs (V, J), where V : G → U(H) is a

unitary representation, J is a structure map as above, and the restriction of the hermitian
inner product on H to the real subspace H+ = {w ∈ H | J(w) = w} is real. We say that such
a hermitian inner product is of real type. We have a map eCR,+ : RepO(G,R)→ RepU

+ (G,C),
where the hermitian inner product on HC is the complexification of the inner product on H.

The following kind of converse also holds.

Proposition 4.30. Let (V, J) be a pair in Rep+(G,C) (where V : G → GL(H) is a finite-
dimensional complex representation and J is a structure map). Then there is a real repre-
sentation rCR,+V : G → GL(H+), such that V and eCRr

C
R,+V are equivalent, with H+ the real

subspace of H given by H+ = {w ∈ H | J(w) = w} and H = H+⊕ iH+, the complexification
of H+.

Proof. Define the eigenspaces H+ and H− of J viewed as a linear map on H by

H+ = {w ∈ H | J(w) = w}
H− = {w ∈ H | J(w) = −w}.

Since J is semi-linear, it is R-linear, so H+ and H− are real subspaces of H|R. Since

w =
w + J(w)

2
+
w − J(w)

2
,

and since J2 = I, we have (w + J(w))/2 ∈ H+ and (w − J(w))/2 ∈ H−, so we deduce that

H = H+ ⊕H−,

where H+ and H− are real subspaces of H. Observe that the maps α+,− : H+ → H−
and α−,+ : H− → H+ given by α+,−(u) = iu and α−,+(v) = −iv are mutual inverse since
i(−i) = +1. Also if u ∈ H+, since J is semi-linear we have

J(α+,−(u)) = J(iu) = −iJ(u) = −iu = −α+,−(u),
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so α+,−(u) ∈ H−, and if v ∈ H−, since J is semi-linear we have

J(α−,+(v)) = J(−iv) = iJ(v) = −iv = α−,+(v),

so α−,+(v) ∈ H+. Therefore, α+,− : H+ → H− is a semi-linear isomorphism, so H− = iH+

and thus
H = H+ ⊕ iH+,

with H+ and iH+ as real subspaces of H. But then H is indeed the complexification of the

real vector space H+. Because J
l ∈ HomG(V , V ), the real subspace H+ is invariant under

V viewed as a real representation, so we obtain a real representation rCR,+V : G→ GL(H+),
and by construction V and eCRr

C
R,+V are equivalent.

Observe that rCR,+ is a map rCR,+ : Rep+(G,C) → Rep(G,R). If (V, J) ∈ RepU
+ (G,C),

then it is easy to verify that rCR,+ : RepU
+ (G,C) → RepO(G,R) and eCR,+ : RepO(G,R) →

RepU
+ (G,C).

Beware that the restrictions rCR,+ : Rep+(G,C) → Rep(G,R) and rCR : Rep(G,C) →
Rep(G,R) behave very differently. The operation rCR views the C-linear maps Vg : H → H
as the real linear map (Vg)|R : H|R → H|R, where H|R is the vector space H viewed as a real
vector space, but the operation rCR,+ makes use of the structure map J , and yields the real
linear map rCR,+Vg : H+ → H+, and in this case, H = H+ ⊕ iH+.

The above discussion also shows that a complex representation V is equivalent to the
complexification of some real representation U iff there is a basis with respect to which
all the matrices associated with V are real. Note the important consequence that V is
self-conjugate.

If a complex representation V is self-conjugate, the surprise is that there is another
possibility besides being the complexification of a real representation, which is that V is the
restriction of a quaternionic representation! For example, if we consider the finite subgroup
of the unit quaternions (SU(2)) consisting of the eight elements {±1,±i,±j,±k} acting
on C2 ≈ H by multiplication (where H denotes the vector space of quaternions), then
the corresponding representation is self-conjugate, but it can be shown that it is not the
complexification of a real representation; see Fulton and Harris [25] (Section 3.5). The
irreducible representation of SU(2) in C2 is also quaternionic. It is known that an irreducible
complex representation of SU(2) is of real type if has dimension 2` + 1 and of quaternonic
type if has dimension 2(`+ 1) (` ≥ 0); see Itzkowitz, Rothman and Strassberg [30].

4.9 Extension and Restriction, Case II: (C,H)

We now discuss quaternionic representations. The reader may want to take a look at Section
9.5 to review properties of the quaternions. Since every quaternion α ∈ H can be written as
α = a+ bi+ cj + dk, with a, b, c, d ∈ R, in view of the identity k = ij, we can also write

α = a+ bi+ (c+ id)j,
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and if we view x = a+ bi and y = c+ id as complex numbers, then

α = x+ yj, with x, y ∈ C.

We find that
jx = xj, x ∈ C, (quat1)

and since the conjugate of the quaternion α = a+bi+cj+dk = x+yj is α = a−bi−cj−dk,
we have

α = x− yj. (quat2)

Obviously conjugation is an involution, which means that α = α, but beware that conjuga-
tion is an anti-isomorphism, which means that

αβ = βα, α, β ∈ H. (quat2)

Observe that if α = x+ yj, then α = α iff x = x and y = −y, that is, x ∈ R and y = 0, and
so α ∈ R.

Since j2 = −1, the multiplication of two quaternions α = x1 + y1j and β = x2 + y2j is
given by

(x1 + y1j)(x2 + y2j) = x1x2 − y1y2 + (x1y2 + y1x2)j. (quat4)

The formula for multiplication implies that

αα = (x+ yj)(x− yj) = xx+ yy + (−xy + yx)j = xx+ yy. (quat5)

This is the square norm N(α) of the quaternion α = x + yj. This means that α = x + yj
is invertible iff α 6= 0 and the inverse of α is α/(xx + yy) = α/N(α), which is similar to
the formula for the inverse of a complex number. Under addition and multiplication, the
quaternions H form a noncommutative field or skew field.

Definition 4.31. A quaternionic vector space E or H-module is a left H-module, which
means that E is an additive abelian group and that there is a left action · : H × E → E
which satisfies the axioms of vector spaces. An H-linear map f : E → E is an additive map
(f(u+ v) = f(u) + f(v) for all u, v ∈ E) such that

f(αu) = αf(u), α ∈ H, u ∈ E. (quat6)

The space of invertible H-linear maps is denoted by GL(E,H).

A typical example of an H-module is Hn with componentwise addition of n-tuples and
with left multiplication by a quaternion. We chose to use left H-modules as opposed to right
H-modules (which is the choice made by Fulton and Harris [25]). The small drawback with
this choice is that due to the noncommutativity of multiplication in H, the representation
of a H-linear map f : E → E with respect to a basis is given by the transpose of the matrix
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representing a C-linear map. Indeed going over an earlier computation, if (e1, . . . , en) is a
basis of E and if we assume that

f(ej) =
n∑
i=1

aijei, aij ∈ H,

then for any v = α1e1 + · · ·+ αnen ∈ E, with α1, . . . , αn ∈ H, we have

f(v) = f(α1e1 + · · ·+ αnen) =
n∑
j=1

αjf(ej) =
n∑
j=1

αj

( n∑
i=1

aijei

)
=

n∑
i=1

(
αj

n∑
j=1

aij

)
ei.

Thus the ith coordinate βi of f(v) is given by

βi =
n∑
j=1

αjaij,

which is the ith component of the row vector (α1 . . . αn)A>, the product of the row vector

(α1 . . . αn)

by the transpose A> of the matrix A = (aij). Another consequence of our choice is that if
f is represented by A and if g is represented by B, then g ◦ f is represented by AB (input
vectors are “eaten” on the left). If f and g are C-linear maps, we can commute αj and aij,
so input vectors are “eaten” on the right, and g ◦ f is represented by BA.

Definition 4.32. An H-module E can be viewed as a complex vector space by restricting
scalar multiplication to the complex numbers, that is to the quaternions α = x+yj (x, y ∈ C)
with y = 0. The resulting complex vector space is denoted by E|C or rHCE. An H-linear map
f : E → E becomes a C-linear map f |C : E|C → E|C (or rHCf : E|C → E|C). We also have
the map J : E → E given by

J(u) = ju, u ∈ E.

Obvioulsy J is additive, and since

J(xu) = j(xu) = (jx)u = (xj)u = x(ju) = xJ(u), x ∈ C,

J is C-semi-linear on the complex vector space E|C. The map J is anti-involutive, which
means that J2 = −I (because j2 = −1).

We also need the notion of inner product on an H-space. The standard example on Hn

is

〈(α1, . . . , αn), (β1, . . . , βn)〉 =
n∑
i=1

αiβi.

The following properties are immediately verified.
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(1) For all ξ1, ξ2, η,η2 ∈ Hn, we have

〈ξ1 + ξ2, η1〉 = 〈ξ1, η1〉+ 〈ξ2, η1〉
〈ξ1, η1 + η2〉 = 〈ξ1, η1〉+ 〈ξ1, η2〉.

(2) For all ξ1, η1 ∈ Hn and for all α ∈ H, we have

〈αξ1, η1〉 = α〈ξ1, η1〉
〈ξ1, αη1〉 = 〈ξ1, η1〉α.

(3) For all ξ1, η1 ∈ Hn, we have
〈η1, ξ1〉 = 〈ξ1, η1〉.

(4) This inner product is positive definite, which means that

〈ξ1, ξ1〉 ≥ 0 and 〈ξ1, ξ1〉 = 0 iff ξ1 = 0

for all ξ1 ∈ Hn.

Remark: These properties are not independent.

The above properties motivates the following definition.

Definition 4.33. Given an H-module E, a symplectic inner (or scalar) product 〈−,−〉 on E
is a map 〈−,−〉 : E ×E → H satisfying properties (1), (2), (3), (4) above (with Hn replaced
by E). A symplectic map is an H-linear map f : E → E such that

〈f(u), f(v)〉 = 〈u, v〉, u, v ∈ E.

The symplectic group U(E,H) is the group of symplectic maps f : E → E.

We will have the occasion to consider hermitian inner products 〈−,−〉 : E|C ×E|C → C.

Definition 4.34. Given a finite-dimensional H-space E, a quaternionic representation of
a compact group G is a representation W : G → GL(E,H). The class of quaternionic
representations is denoted by Rep(G,H). A symplectic representation of a compact group
G is a representation W : G → U(E,H), where E has a symplectic inner product. The
class of symplectic representations is denoted by RepSp(G,H) and the class of symplectic
representations W : G → U(E,H) with a hermitian inner product on E|C is denoted by
RepSp

− (G,H).

Definition 4.35. If W : G→ GL(E,H) is a quaternionic representation, then we obtain the
complex representation rHCW : G → GL(E|C,C) such that each H-linear map Wg is viewed
as a C-linear map Wg|C on E|C. The restriction operation rHC is a map rHC : Rep(G,H) →
Rep(G,C). The map J : E|C → E|C is defined by J(u) = ju (u ∈ E). It is semi-linear (on
E|C) and satisfies the property J2 = −I.
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It is immediately verified that J is equivariant with respect to rHC,W , namely J ◦Wg|C =
Wg|C ◦ J for all g ∈ G.

Remark: There is also an extension map eHC : Rep(G,C)→ Rep(G,H) (“quaternification”?)
but we do not need it. This operation is analogous to the complexifiction of a real vector
space and can be achieved by the tensor product H ⊗C H, where H is viewed as a right
C-module (by multiplication on the right). It should not be confused with the extension
operation eHC,−H defined in Proposition 4.31, which assumes that the complex vector space
H is equipped with a structure map J . There are also restriction and extension maps
rHR : Rep(G,H) → Rep(G,R) and eHR : Rep(G,R) → Rep(G,H), but again, we do not need
them. The curious reader should look at Chapter 6, Section 6, in Bröcker and tom Dieck [6].

Definition 4.36. The operation rHC,− sends a quaternionic representationW : G→ GL(E,H)
to the pair (rHCW,J), where J is the map of Definition 4.35.

If E|C has a hermitian inner product 〈−,−〉, given a symplectic representation W : G→
U(E,H), the representation rHCW : G→ U(E|C,C) is unitary.

Definition 4.37. The class Rep−(G,C) consists of the pairs (V, J), where V ∈ Rep(G,C)
is a complex representation V : G→ GL(H) and J is a map J : H → H, called a structure
map, satisfying the following properties.

(1) J is semi-linear.

(2) J
l ∈ HomG(V , V ).

(3) J2 = −I.

The class RepU
− (G,C) consists of the pairs (V, J), where V ∈ RepU(G,C) is a unitary

representation V : G→ U(H) and J is a structure map.

Observe that rHC,− is a map rHC,− : Rep(G,H)→ Rep−(G,C).

We also have the following converse.

Proposition 4.31. Let (V, J) be a pair in Rep−(G,C) (where V : G → GL(H) is a finite-
dimensional complex representation and J is a structure map). Then there is a quaternionic
representation eHC.−V : G→ GL(eHC,−H,H) such that V is equivalent to rHCe

H
C,−V . Here eHC,−H

is the H-module in which scalar multiplication is extended to H by setting ju = J(u) for all
u ∈ H; for details see the proof below. The operation eHC,− is a map eHC,− : Rep−(G,C) →
Rep(G,H).

If V : G→ U(H,C) is a unitary representation, then eHC.−V : G→ U(eHC,−H,H) is a sym-
plectic representation with respect to the hermitian inner product on H, and V is equivalent
to rHCe

H
C,−V . The operation eHC,− is a map eHC,− : RepU

− (G,C)→ RepSp
− (G,H).
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Proof. To give H a structure of H-module, it suffices to define the action of j on H. We set

ju = J(u).

Since J is addtive, it is easy to see that the only axiom that needs to be verified is

(αβ)u = α(βu), α, β ∈ H, u ∈ H.

We saw earlier that if α = x1 + y1j and β = x2 + y2j, then

αβ = x1x2 − y1y2 + (x1y2 + y1x2)j,

so

(αβ)u = ((x1 + y1j)(x2 + y2j))u = (x1x2 − y1y2 + (x1y2 + y1x2)j)u

= (x1x2 − y1y2)u+ (x1y2 + y1x2)J(u).

On the other hand, since j is semi-linear and J2 = −I, we have

α(βu) = (x1 + y1j)((x2 + y2j)u) = (x1 + y1j)(x2u+ y2J(u))

= x1(x2u+ y2J(u)) + y1J(x2u+ y2J(u))

= x1x2u+ x1y2J(u) + y1x2J(u) + y1y2J
2(u)

= x1x2u− y1y2u+ x1y2J(u) + y1x2J(u),

which confirms that (αβ)u = α(βu). Let us denote the H-module obtained this way by
eHC,−H or HH.

Since every C-linear map Vg : H → H commutes with J (Condition (2) of Definition
4.37), we have

Vg(ju) = Vg(J(u)) = J(Vg(u)) = jVg(u), u ∈ H,
which shows that the maps Vg are H-linear. Thus we obtain the quaternionic representation
eHC.−V : G→ GL(eHC,−H,H), with (eHC.−V )g = Vg as an H-linear map (as in Definition 4.31).
We immediately check that V is equivalent to rHCe

H
C,−V .

It will be convenient to assign names to the representations in Rep+(G,C) and Rep−(G,C).

Definition 4.38. The complex representations in Rep+(G,C) (and RepU
+ (G,C)) are said to

be of real type and the complex representations in Rep−(G,C) (and RepU
− (G,C)) are said

to be of quaternionic type. A complex representation V ∈ Rep(G,C) is of complex type if V
is not equivalent to V (equivalently, χV is not real-valued).

Proposition 4.30 and Proposition 4.31 give the technical justifications for the terminology.
A complex representation V of real type is equivalent to the extension eCRU of some real
representation U , and complex representation V of quaternionic type is equivalent to the
restriction rCRW of some quaternionic representation W . One of the important properties of
complex representations of real or quaternionic type is that they are self-conjugate.
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Proposition 4.32. For any finite-dimensional complex representation V of a compact group
G, if V is of real type or of quaternionc type, then V is equivalent to its conjugate V (we
say that V is self-conjugate).

Proof. Suppose V : G → GL(H) is of real type and let J be its structure map. Because

J is semi-linear, by Proposition 4.25(1) it defines a linear map J
l
: H → H and a linear

map J
r
: H → H. By Proposition 4.23, each map Vg : H → H also defines a linear map

Vg : H → H, and J2 = I implies that (J
l
)−1 = J

r
. The fact that J

l ∈ HomG(V , V ) implies
that the diagram

H

J
l

��

Vg // H

J
l

��
H

Vg
// H

commutes, which shows that V and V are equivalent, since J
l

is invertible.

Let us now asume that V : G→ GL(H) is of quaternionic type and let J be its structure

map. This time J2 = −I, which implies that (J
l
)−1 = −Jr, and the commutativity of the

above diagram implies that the diagram

H

iJ
l

��

Vg // H

iJ
l

��
H

Vg
// H

commutes, where iJ
l
is still linear. Furthermore, (iJ

r
)(iJ

l
) = i2J

r
J
l
= −(−(J

l
)−1)J

l
= idH ,

so iJ
l

is invertible, and thus V and V are equivalent.

Itzkowitz, Rothman and Strassberg [30] (Proposition 3) compute explicitly a structure
map for the irreducible complex representation Um of SU(2) defined in Example 3.3 and prove
that Um is of real type if m is even (PC

m(2) has odd dimension m+ 1)), and of quaternionic
type if m is odd (PC

m(2) has even dimension m+ 1)).

Remarkably, if an irreducible complex representation is self-conjugate, then it is either
or real type or of quaternionic type, but not of both. This is harder to prove and requires
a criterion in terms of certain non-singular bilinear forms on H that are either symmetric
(real type) or skew-symmetric (quaternionic type).

4.10 Classification of Irreducible Representations Case

I: C
Our ultimate goal is to prove that the class Irr(G,C) of complex irreducble representations of
a compact group in a finite-dimensional vector space is the disjoint union of three (possibly
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empty) subclasses: irrreducible representations of real type, irreducible representations of
quaternionic type, and irreducible representations of complex type, which means that the
representation is not equivalent to its dual representation. Again, our exposition relies
heavily on Bröcker and tom Dieck [6] (Chapter II, Section 6). The following theorem is a
key technical tool.

As usual, we restrict our attention to representations from a (metrizable) compact group
in a finite-dimensional vector space.

Theorem 4.33. A complex representation V : G→ GL(H) is of real type or of quaternionic
type iff there is a non-degenerate C-bilinear form B : H ×H → C invariant under V , which
means that

B(Vg(u), Vg(v)) = B(u, v), u, v ∈ H, g ∈ G,

and either

(1) V is of real type and B is symmetric, which means that B(v, u) = B(u, v) for all
u, v ∈ H; or

(2) V is of quaternionic type and B is skew-symmetric, which means that B(v, u) =
−B(u, v) for all u, v ∈ H.

Proof. First, assume that such a bilinear form B : H × H → C exists. For short, we write
B(v, u) = εB(u, v), with ε = ±1. We need to define a structure map J , and this map will
satisfy the equation J2 = εI. Since G is compact, by the averaging method using integration
used in Theorem 3.6, we can find a hermitian inner product 〈−,−〉 on H, which is invariant
under V . Thus, V becomes unitary. For every v ∈ H, the linear form θv : H → C is given
by

θv(u) = B(u, v), for all u ∈ H. (†7)

Since 〈−,−〉 is an inner product, by duality, there is a unique vector f(v) ∈ H such that

θv(u) = 〈u, f(v)〉 = B(u, v), for all u ∈ H, (†8)

so we obtain a function f : H → H. Since B is bilinear, f is additive. Since

〈u, λf(v)〉 = λ〈u, f(v)〉 = λB(u, v),

and
〈u, f(λv)〉 = B(u, λv) = λB(u, v)

for all u, we deduce that
f(λv) = λf(u),

so f is semi-linear. The map f is injective, because if f(v1) = f(v2), this means that

B(u, v1) = 〈u, f(v1)〉 = 〈u, f(v2)〉 = B(u, v2), for all u ∈ H,
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and since B is non-degenerate, v1 = v2. But then the linear map f : H → H is also injective.
Since H is finite-dimensional, the injective linear map f : H → H is bijective, and so the
semi-linear map f : H → H is also bijective.

The map f commutes with V , because since Vg is unitary and B is invariant under V ,

〈u, f(Vg(v))〉 = B(u, Vg(v)) = B(V ∗g (u), V ∗g (Vg(v))) = B(V ∗g (u), v)

= 〈V ∗g (u), f(v)〉 = 〈u, Vg(f(u))〉

for all u, so f(Vg(v)) = Vg(f(v)). Thus, f is a semi-linear isomorphism invariant under V .
Next, we will prove that εf 2 is hermitian positive definite.

First, note that f 2 = f ◦f is linear, because since f is semi-linear, f(f(λu)) = f(λf(u)) =
λf(f(u)). Observe that for all u, v ∈ H, we have

〈u, f(v)〉 = B(u, v) = εB(v, u) = ε〈v, f(u)〉 = ε〈f(u), v〉,

so if we substitute f(v) for v we obtain

〈u, f 2(v)〉 = ε〈f(u), f(v)〉.

By substituting f(u) for u we obtain

〈f(u), f(v)〉 = ε〈f 2(u), v〉,

so
〈f 2(u), v〉 = ε〈f(u), f(v)〉,

and thus
〈u, f 2(v)〉 = ε〈f(u), f(v)〉 = 〈f 2(u), v〉,

and finally
〈u, εf 2(v)〉 = 〈f(u), f(v)〉 = 〈εf 2(u), v〉.

It follows that that εf 2 is hermitian and positive definite, since 〈u, εf 2(u)〉 = 〈f(u), f(u)〉 ≥ 0.

Now, it is well-known by linear algebra that a hermitian positive definite linear map has
positive eigenvalues and is diagonalizable.

If v ∈ Hλ, where Hλ is the eigenspace of εf 2 associated with the eigenvalue λ > 0, since
f and Vg commute, we have

εf 2(Vg(v)) = εf(f(Vg(v))) = εf(Vg(f(v))) = εVg(f
2(v))

= Vg(εf
2(v))) = Vg(λv) = λVg(v),

so the eigenspace Hλ is invariant under V . Since f is semi-linear and λ, ε are real, if u ∈ Hλ,
from εf 2(u) = λu, we obtain

εf 2(f(u)) = εf(f 2(u)) = λf(u),
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so f(u) ∈ Hλ. Thus, the eigenspace Hλ is also invariant under f .

The map εf 2 has a square root h : H → H obtained by defining h on the eigenspace Hλ

associated with λ > 0 as
√
λid, and by construction,

εf 2 = h2. (†9)

Since Hλ is invariant under Vg, for any v ∈ Hλ, we have

h(Vg(v)) =
√
λVg(v) = Vg(

√
λv) = Vg(h(v)),

so h is invariant under V .

Since the eigenspaces of εf 2 are invariant under f , by the definition of h,

h ◦ f = f ◦ h.

Since f is invertible, by composing with f−1 on both sides we obtain

f−1 ◦ h = h ◦ f−1. (†10)

From the two equations (†9) and †10, we have

(h ◦ f−1)2 = h ◦ f−1 ◦ h ◦ f−1 = h2 ◦ (f 2)−1 = εid.

Finally, if we set J = h ◦ f−1, we have a semi-linear map such that J2 = εI, and it is easy
to check that J is invariant under V (because f and h are), so it is a structure map.

Conversely, first assume that we have a structure map J such that J2 = I. By Proposition
4.30, we have H = H+⊕iH+, where H+ = {u ∈ H | J(u) = u} is a real subspace of H. Using
the averaging technique, we can construct a real inner product 〈−,−〉 on H+ invariant under
V , which can be extended to a non-degenerate symmetric bilinear form B on H invariant
under V by setting

B(u1 + iv1, u2 + iv2) = 〈u1, u2〉 − 〈v1, v2〉+ i(〈u1, v2〉+ 〈u2, v1〉).

The bilinear form B is clearly symmetric. If B(u1 + iv1, u2 + iv2) = 0 for all u1, v1, for v1 = 0
we obtain

〈u1, u2〉 = 0 and 〈u1, v2〉 = 0 for all u1,

so u2 = v2 = 0 since 〈−,−〉 is an inner product, which shows that B is non-degenerate. We
easily check that B is invariant under V .

Now assume that we have a structure map J such that J2 = −I. This time, H is
extended to an H-module HH by letting j act as J . Again using the averaging technique
we can construct a symplectic inner product 〈−,−〉 on HH which is invariant under V (first
we can pick a basis in H and use the standard symplectic inner product defined just after
Definition 4.32). We can write

〈u, v〉 = S(u, v) +B(u, v)j, u, v ∈ H, (†11)
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where S and B are complex-valued. We claim that B is C-bilinear, skew-symmetric, non-
singular, and invariant under V , and that S is a hermitian inner product.

Since 〈−,−〉 is bi-additive, we have

〈u1 + u2, v〉 = 〈u1, v〉+ 〈u2, v〉,

which means that

S(u1 + u2, v) +B(u1 + u2, v)j = S(u1, v) +B(u1, v)j + S(u2, v) +B(u2, v)j,

which implies that

S(u1 + u2, v) = S(u1, v) + S(u2, v)

B(u1 + u2, v) = B(u1, v) +B(u2, v).

The same reasoning applies to the argument v, and thus both S and B are bi-additive. For
λ ∈ C (in fact, λ ∈ H), we have

〈λu, v〉 = λ〈u, v〉
which means that

S(λu, v) +B(λu, v)j = λS(u, v) + λB(u, v)j,

which implies that

S(λu, v) = λS(u, v)

B(λu, v) = λB(u, v).

For λ ∈ C, we have
〈u, λv〉 = 〈u, v〉λ,

and since S(u, v), B(u, v), λ ∈ C, we have

S(u, λv) +B(u, λv)j = S(u, v)λ+B(u, v)jλ = λS(u, v) +B(u, v)λj

= λS(u, v) + λB(u, v)j,

which implies that

S(u, λv) = λS(u, v)

B(u, λv) = λB(u, v).

We conclude that S is sesqui-linear and that B is C-bilinear.

Since 〈u, v〉 = 〈v, u〉, conjugation in H is an anti-homomorphism, j = −j, and jx = xj,
we have

S(u, v) +B(u, v)j = S(v, u) +B(v, u)j = S(v, u)− jB(v, u)

= S(v, u)−B(v, u)j,



260 CHAPTER 4. ANALYSIS ON COMPACT GROUPS AND REPRESENTATIONS

which implies that

S(u, v) = S(v, u)

B(u, v) = −B(v, u).

Thus, S is hermitian and B is skew-symmetric.

To prove that B is non-singular, assume that there is some v ∈ H such that B(u, v) = 0
for all u ∈ H. Since 〈u, v〉 = S(u, v) + B(u, v)j with S(u, v) and B(u, v) in C, we have
〈u, v〉 ∈ C for all u ∈ H, but

〈ju, v〉 = j〈u, v〉

with 〈u, v〉 ∈ C, and j〈u, v〉 6∈ C unless 〈u, v〉 = 0 for all u, which implies that v = 0, since
〈−,−〉 being a symplectic inner product is non-degenerate.

Similarly, S is non-degenerate. Suppose that there is some v ∈ H such that S(u, v) = 0
for all u ∈ H. Since 〈u, v〉 = S(u, v)+B(u, v)j and B(u, v) ∈ C, this implies that 〈u, v〉 ∈ Cj
for all u ∈ H. But if 〈u, v〉 = zj 6= 0 for some u ∈ H and some z ∈ C such that z 6= 0, then

〈ju, v〉 = j〈u, v〉 = jzj = zj2 = −z ∈ C,

and the only way −z can belong to Cj is that z = 0, a contradiction. Thus 〈u, v〉 = 0 for all
u ∈ H, which implies that v = 0.

Finally, since 〈−,−〉 is invariant under V , we have

〈Vg(u), Vg(v)〉 = 〈u, v〉, u, v ∈ H, g ∈ G,

and so

S(Vg(u), Vg(v)) +B(Vg(u), Vg(v))j = S(u, v) +B(u, v)j, u, v ∈ H, g ∈ G

which implies that

S(Vg(u), Vg(v)) = S(u, v)

B(Vg(u), Vg(v)) = B(u, v)

for all u, v ∈ H and all g ∈ G.

Remark: The forms S and B are not independent. In fact,

B(u, v) = S(u, jv), u, v ∈ H.

We are now in a position to prove the converse of Proposition 4.32, which yields a com-
plete classification of the irreducible finite-dimensional complex representations of a compact
group.
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Theorem 4.34. Let V : G → GL(H) be an irreducible finite-dimensional complex repre-
sentation of a compact group G. If V is self-conjugate, then either V is of real type or of
quaternionic type but not of both.

Proof. The key idea is to make use of Schur’s Lemma, Proposition 3.2(iii). Thus, we will be
using the fact that if V1 : G → GL(H1) and V2 : G → GL(H2) are two equivalent complex
irreducible representations, then HomG(V1, V2) is one-dimensional.

Let V : G→ GL(H) be a finite-dimensional complex representation of a compact group
G. By Proposition 4.27, the conjugate representation V is equivalent to the dual represen-
tation V D. Consequently, if V and V are equivalent, so are V and V D. Then there is an
isomorphism ϕ : H → H∗ which is equivariant with respect to V , which means that the
diagram

H

ϕ

��

Vg // H

ϕ

��
H∗

V Dg

// H∗

commutes for all g ∈ G. Going back to Definition 4.14, this means that

[V D
g (ϕ(u))](v) = ϕ(u)(Vg−1(v)) = ϕ(Vg(u))(v), u, v ∈ H, g ∈ G. (†6)

What we need to do is to convert the isomorphism ϕ : H → H∗ into a nondegenerate
equivariant bilinear form B : H ×H → C.

It is a well-known fact of linear algebra that the vector space of complex bilinear forms
Hom(H ×H,C) is isomorphic to the vector space of complex linear maps Hom(H,H∗). We
have the map α : Hom(H,H∗)→ Hom(H ×H,C) defined such that

α(θ)(u, v) = (θ(u))(v), θ ∈ Hom(H,H∗), u, v ∈ H,

and the map β : Hom(H ×H,C)→ Hom(H,H∗) defined such that

[β(B)(u)](v) = B(u, v), B ∈ Hom(H ×H,C), u, v ∈ H.

Then we have

([β(α(θ))](u))(v) = α(θ)(u, v) = (θ(u))(v)

[α(β(B))](u, v) = [β(B)(u)](v) = B(u, v),

so β(α(θ)) = θ and α(β(B)) = B, which shows that α and β are mutual inverses, and thus,
α : Hom(H,H∗)→ Hom(H ×H,C) is an isomorphism.

We actually need an isomorphism defined on the space HomG(V, V D) of equivariant maps
between V and V D. This leads us to consider the subspace HomG(H × H,C) of bilinear
forms B : H ×H → C that are equivariant with respect to V , which means that

B(Vg(u), Vg(v)) = B(u, v), u, v ∈ H, g ∈ G.
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Fortunately the isomorphism α : Hom(H,H∗) → Hom(H × H,C) induces an isomorphism
α : HomG(V, V D) → HomG(H × H,C). Indeed, if ϕ ∈ HomG(V, V D), since α(ϕ) is the
bilinear form B given by

B(u, v) = ϕ(u)(v), u, v ∈ H,

we have

B(Vg(u), Vg(v)) = [ϕ(Vg(u))](Vg(v)),

but we proved earlier in (†6) that

ϕ(u)(Vg−1(v)) = ϕ(Vg(u))(v),

so by substituting Vg(v) for v we obtain

ϕ(Vg(u))(Vg(v)) = ϕ(u)(Vg−1(Vg(v))) = ϕ(u)(v) = B(u, v),

which confirms that B(Vg(u), Vg(v)) = B(u, v).

Now, since V is irreducible and V and V D are equivalent, V D is irreducible, so by Schur’s
Lemma HomG(V, V D) has dimension one, and in fact contains all (complex) scalar multiples
of some isomorphism ϕ : V → V D. The isomorphism α : HomG(V, V D)→ HomG(H ×H,C)
implies that HomG(H ×H,C) also has dimension one. But the equation

B(u, v) =
B(u, v) +B(v, u)

2
+
B(u, v)−B(v, u)

2

implies that HomG(H ×H,C) is the direct sum

HomG(H ×H,C) = SymG(H ×H,C)⊕ AltG(H ×H,C),

where SymG(H × H,C) denotes the space of equivariant symmetric bilinear forms and
AltG(H × H,C) denotes the space of equivariant skew-symmetric bilinear forms. To help
the reader keep track of these spaces, we make the following definition.

Definition 4.39. Given a representation V : G→ GL(H) (H is a complex finite-dimensional
vector space), the space of V -invariant bilinear forms on H is denoted HomG(H × H,C),
the space of V -invariant symmetric bilinear forms on H is denoted SymG(H × H,C), and
the space of V -invariant skew-symmetric bilinear forms on H is denoted AltG(H × H,C).
A bilinear form B : H ×H → C is V -invariant if

B(Vg(u), Vg(v)) = B(u, v), u, v ∈ H, g ∈ G.

Since HomG(H ×H,C) has dimension one, either AltG(H ×H,C) = (0) and SymG(H ×
H,C) has dimension one, or AltG(H×H,C) has dimension one and SymG(H×H,C) = (0).
In the first case there is some symmetric equivariant bilinear form B ∈ SymG(H ×H,C). In
the second case there is some skew-symmetric equivariant bilinear form B ∈ AltG(H×H,C).
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It remains to show that B is non-degenerate. This is because HomG(V, V D) contains all
(complex) scalar multiples of some isomorphism in HomG(V, V D), so B = α(ϕ) for some
isomorphism ϕ ∈ HomG(V, V D). If for some u ∈ H we have B(u, v) = 0 for all v ∈ H, then

B(u, v) = α(ϕ)(u, v) = (ϕ(u))(v) = 0 for all v ∈ H,

so ϕ(u) = 0 (the zero linear form), and since ϕ is an isomorphism. we must have u = 0.
Therefore B is non-degenerate on the right. Since B is either symmetric or skew-symmetric,
it is also non-degenerate on the left. Finally, by Theorem 4.33, V is of real type or of
quaternionic type.

Putting Proposition 4.32 and Theorem 4.34 together we obtain the following important
result.

Theorem 4.35. If V : G → GL(H) is an irreducible finite-dimensional complex repre-
sentation of a compact group G, then V is self-conjugate iff either it is of real type or of
quaternionic type but not of both.

Therefore we obtained a complete classification of the complex irreducible representation
of a compact group. We will also be able to classify the real irreducible representations.

4.11 Classification of Irreducible Representations Case

II: R,C
In order to classify both the real and the complex irreducible representations of a compact
group, it is convenient to make the following definitions.

Definition 4.40. Let G be a compact group. The class of real irreducible finite-dimensional
representations of G is denoted by Irr(G,R). Similarly the class of complex irreducible finite-
dimensional representations of G is denoted by Irr(G,C). We also define six subclasses of
irreducible representations. To do so we use the following notational convention: U denotes
a real irreducible representation and V denotes a complex irreducible representation. Then
we define the following classes:

Irr(G,R)R = {U ∈ Irr(G,R), eCRU = V, V ∈ Irr(G,C), V is of real type}
Irr(G,R)C = {U ∈ Irr(G,R), U ≈ rCRV, V ∈ Irr(G,C), V not equivalent to V }
Irr(G,R)H = {U ∈ Irr(G,R), U ≈ rCRV, V ∈ Irr(G,C), V is of quaternionic type}
Irr(G,C)R = {V ∈ Irr(G,C), V is of real type}
Irr(G,C)C = {V ∈ Irr(G,C), V not equivalent to V }
Irr(G,C)H = {V ∈ Irr(G,C), V is of quaternionic type}.

Theorem 4.36. Let G be a compact group.
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(1) The class Irr(G,R) is the disjoint union of the (possibly empty) classes Irr(G,R)R,
Irr(G,R)C and Irr(G,R)H.

(2) If U ∈ Irr(G,R)R, then eCRU = V is also irreducible. If U ∈ Irr(G,R)C, then eCRU
is equivalent to V1 ⊕ V1 for some irreducible representation V1 ∈ Irr(G,C)C. If U ∈
Irr(G,R)H, then eCRU is equivalent to V1 ⊕ V1 for some irreducible representation V1 ∈
Irr(G,C)H.

(3) The class Irr(G,C) is the disjoint union of the (possibly empty) classes Irr(G,C)R,
Irr(G,C)C and Irr(G,C)H.

Proof. The result for Irr(G,C) follows immediately from Theorem 4.35. This proves (3). Let
us now consider a real representation U ∈ Irr(G,R).

First, assume that V = eCRU is irreducible. In this case, since V has the structure map J
of Definition 4.29, it is of real type, and since V irreducible, by definition U ∈ Irr(G,R)R.

Let us now assume that V = eCRU is reducible. Then by Peter–Weyl II, V splits as a
dirct sum of m ≥ 2 irreducible representations

eCRU = V ≈ V1 ⊕ · · · ⊕ Vm.

By Proposition 4.29, since
rCRe

C
RU ≈ U ⊕ U,

we get
U ⊕ U ≈ rCRe

C
RU ≈ rCRV1 ⊕ · · · ⊕ rCRVm.

By uniqueness of the decomposition into irreducible factors, we must have m = 2 and

U ≈ rCRV1 ≈ rCRV2.

But Proposition 4.29 also says that

eCRU ≈ eCRr
C
RV1 ≈ V1 ⊕ V1,

so eCRU ≈ V1 ⊕ V2 implies that
V2 ≈ V1.

There are now two possibilities.

(a) If V1 is not equivalent to its conjugate V1, then by definition U ≈ rCRV1 is of complex
type, and by definition U ∈ Irr(G,R)C.

(b) If V1 is equivalent to its conjugate V1, then we claim that V1 is not of real type. If it
were, then we would have a direct sum decomposition

U ≈ rCRV1 ≈ (V1)+ ⊕ (V1)−,

where (V1)+ is the restriction of the representation V1 : G → GL(H1) to (H1)+ and
(V1)− is the restriction of V1 to (H1)−, where (H1)+ and (H1)− are defined in Proposi-
tion 4.30, but since U is irreducible, this is not possible. Therefore V1 is of quaternionic
type, and by definition, U ∈ Irr(G,R)H.
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This proves (1). In Case (a) we have eCRU ≈ V1 ⊕ V1, with V1 ∈ Irr(G,C)C, and in Case (b)
eCRU ≈ V1 ⊕ V1, with V1 ∈ Irr(G,C)H, which proves (2).

Itzkowitz, Rothman and Strassberg [30] (Theorem 13) prove that an irreducible real
representation of SU(2) in a (real) vector space of dimension m is of real type if m = 2`+ 1
or m = 4(`+ 1) and of quaternionic type if m = 2(2`+ 1) (` ≥ 0).

In order to prove Theorem 4.38 below it is necessary to have a classification of the class
Irr(G,H) of irreducible quaternionic representations.

Definition 4.41. The quaternionic classes Irr(G,H)R, Irr(G,H)C and Irr(G,H)H are defined
as follows:

Irr(G,H)R = {W ∈ Irr(G,H), W ≈ eHCV, V ∈ Irr(G,C), V is of real type}
Irr(G,H)C = {W ∈ Irr(G,H), W ≈ eHCV, V ∈ Irr(G,C), V not equivalent to V }
Irr(G,H)H = {W ∈ Irr(G,H), rHCW = V, V ∈ Irr(G,C), V is of quaternionic type}.

We use the notational convention that irreducible quaternionic representations are denoted
by the letter W .

Theorem 4.36 can be extended to irreducible quaternionic representations. Indeed the
class Irr(G,H) is the disjoint union of the (possibly empty) classes Irr(G,H)R, Irr(G,H)C
and Irr(G,H)H.

We will not present the proof here, and instead, we refer the reader to Bröcker and tom
Dieck [6] (Chapter II, Section 6). The following facts also proven in Bröcker and tom Dieck
[6] will also be needed.

Proposition 4.37. Let If W ∈ Irr(G,H) be an irreducible quaternionic representation.

If W ∈ Irr(G,H)R, then

rHCW ≈ V ⊕ V, V ∈ Irr(G,C)R.

If W ∈ Irr(G,H)C, then

rHCW ≈ V ⊕ V , V ∈ Irr(G,C)C.

If W ∈ Irr(G,H)H, then

rHCW ≈ V, V ∈ Irr(G,C)H.

The subclasses Irr(G,R)K for K = R,C,H are also determined by the structure of the
commutant C(U) = HomG(U,U) of an irreducible representation U ∈ Irr(G,R).

Theorem 4.38. Let G be compact group. The commutant C(U) = HomG(U,U) of any
irreducible real finite-dimensional representation U ∈ Irr(G,R) is isomorphic to K iff U ∈
Irr(G,R)K, with K = R,C,H.
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Proof. Since U ∈ Irr(G,R), where U : G → GL(H) (H is a real vector space), by Schur’s
Lemma 3.2(i), every map in C(U) = HomG(U,U) is an isomorphism. It follows that C(U) is a
finite-dimensional real algebra in which every nonzero map has a multiplicative inverse. Such
algebras are called division algebras , and by a theorem of Frobenius, every finite-dimensional
real division algebra is isomorphic to one of the fields (noncommutatve in the third case)
K = R,C,H; see Jacobson [39], Chapter 7, Section 7.7. We consider the following three
cases.

(1) Suppose that C(U) ≈ C. Then, C has a basis (id, I), where I is an isomorphism such

that I2 = −id, so we can make H into a complex vector space Ĥ by defining the action
of i on H as

iu = I(u), u ∈ H.

So Ĥ and H are identical as sets, but Ĥ is a complex vector space, and obviously,
H = rCRĤ. This is very similar to what we did in the proof of Proposition 4.31 using J .

Beware that Ĥ is not the complexification of H, which would yield H⊕ iH. This way,
because I is equivariant, the linear maps Ug : H → H become C-linear maps Ûg : Ĥ →
Ĥ, so we obtain a complex representation V : G→ GL(Ĥ). This representation must
be irreducible, since otherwise, U : G → GL(H) would be reducible. Thus U = rCRV
for some V ∈ Irr(G,C). If V were of real type, then by Proposition 4.30, we would have
U = rCRV = V+ ⊕ V−, as a real representations, but then, U would not be irreducible,
and if V were of quaternionic type, then it is not hard to show that a copy of H would
be contained in C(U). Thus V ∈ Irr(G,C)C and U ∈ Irr(G,R)C.

(2) Suppose that C(U) ≈ H. In this case, C contains a basis, (id, I,J ,K), where I,J ,K
satisfy the equations satisfied by the quaternions i, j, k. Then, we can make H into an
H-module Ĥ by defining the action of i, j, k as

iu = I(u), ju = J (u), ku = K(u), u ∈ H.

Again, H and Ĥ are identical as sets, but beware that Ĥ is not the extension eHRH =
H ⊗R H of H. Since I,J ,K are equivariant, the linear maps Ug : H → H become

H-linear map Ûg : Ĥ → Ĥ, so we obtain an irreducible quaternionic representation

W : G → GL(Ĥ) such that U = rHRW . The representation V = rHCW must also be
irreducible, so by Proposition 4.37, W must in the class Irr(G,H)H, and V must in the
class Irr(G,C)H. By definition, this implies that U ∈ Irr(G,R)H.

(3) Finally suppose that C(U) ≈ R. But if U = rCRV for an irreducible representation
V of complex or quaternionic type, an argument similar to the argument used in (1)
and (2) shows that a copy of C would be contained in C(U), which is impossible. By
Theorem 4.36, since there are exactly three mutually exclusive cases, we must have
U ∈ Irr(G,R)R.

Since all cases have been covered the proof is complete.
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Remark: Duistermaat and Kolk [19] prove a version of Theorem 4.38 without using Frobe-
nius theorem.

There is one more remarkable criterion for determining the type of an irreducible complex
representation in terms of characters due Frobenius and Schur (1906) for finite groups and
to Schur (1924) for compact groups.

Theorem 4.39. Let V ∈ Irr(G,C) be an irreducible complex finite-dimensional representa-
tion of a compact group G.Then

∫
G

χV (g2) dµ(g) =


1, iff V is of real type,

0, iff V is of complex type,

−1, iff V is of quaternionic type.

The number
∫
G
χV (g2) dµ(g) is called the Frobenius–Schur indicator of the character χV .

The proof of Theorem 4.39 requires some results about characters.

Definition 4.42. Let V : G → G(H) be a complex finite dimensional representation of a
compact group G. The fixed point set HG is defined2 as

HG = {v ∈ H | Vg(v) = v for all g ∈ G}.

The map p : H → HG is defined by

p(v) =

∫
G

Vg(v) dµ(g), v ∈ H.

Obviously p is a linear map. Let us check first that its image is contained in HG. Since
linear maps commute with integration and since the Haar measure on a compact group is
left (and right) invariant, for every g1 ∈ G and every v ∈ H, we have

Vg1(p(v)) = Vg1

(∫
G

Vg(v) dµ(g)

)
=

∫
G

Vg1Vg(v) dµ(g)

=

∫
G

Vg1g(v) dµ(g) =

∫
G

Vg(v) dµ(g) = p(v),

which shows that p(v) ∈ HG, and so Im p ⊆ HG. Actually, p is the identity on HG, so
Im p = HG and p2 = p, because if v ∈ HG, since by definition Vg(v) = v for all g ∈ G, then

p(v) =

∫
G

Vg(v) dµ(g) =

∫
G

v dµ(g) = v,

because µ is the nomalized Haar measure on G (
∫
G
dµ(g) = 1). Therefore, HG = Im p and

p is a projection onto HG.

The following proposition gives us a way of finding the dimension of HG.

2Although HG is the customary notation, it lacks precision since it does not indicate what is the action
of G on H, namely V . Duistermaat and Kolk [19] use the notation HV , but when the representation V has
a long name it becomes cumbersome. We will stick to the customary ambiguous notation HG.
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Proposition 4.40. Let V : G → G(H) be a complex finite dimensional representation of a
compact group G. We have

dimHG =

∫
G

χV (g) dµ(g).

Proof. By linear algebra, we know that a projection q : H → H has eigenvalues 0 and 1 and
that the eigenspaces E0 and E1 are given by E0 = Ker q and E1 = Im q. It follows that

dim Im q = tr(q).

Let us apply this equation to the projection p : H → HG. Since the trace map is linear, it
commutes with integration, so we have

dimHG = tr(p) = tr

(∫
G

Vg dµ(g)

)
=

∫
G

tr(Vg) dµ(g) =

∫
G

χV (g) dµ(g),

as claimed.

If V : G → G(H1) and W : G → G(H2) and are two complex finite dimensional repre-
sentations, Definition 4.21 yields the representation Hom(V,W ) : G → GL(Hom(H1, H2))
given by

[Hom(V,W )(g)](f) = W (g) ◦ f ◦ V (g−1), f ∈ Hom(H1, H2), g ∈ G.

We see immediately that the fixed point set Hom(H1, H2)G with respect to the representation
Hom(V,W ) is equal to the space HomG(V,W ) of equivariant maps (G-maps) with respect to
V and W . We also have the projection map from Hom(H1, H2) onto HomG(V,W ) specified
by Definition 4.42.

If we apply Proposition 4.40 to the representation Hom(V,W ) we obtain the following
interesting result: ∫

G

χHom(V,W ) dµ(g) = dim HomG(V,W ).

But by Proposition 4.28, the representation Hom(V,W ) is equivalent to the representation
V D ⊗W , and by Proposition 4.27, V D is equivalent to V , so Hom(V,W ) is equivalent to
V ⊗ V . Furthermore, since tr(V g ⊗Wg) = tr(V g)tr(Wg), we have

χHom(V,W ) = χV χW = χV χW ,

so we obtain ∫
G

χV (g)χW (g) dµ(g) = dim HomG(V,W ).

In particular, if V and W are irreducible,∫
G

χV (g)χW (g) dµ(g) =

{
1, if V and W are equivalent

0, otherwise.
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The next step is to find a relationship between χV (g2) and the characters of two represen-
tations related to the spaces SymG(H ×H,C) and AltG(H ×H,C). Taking inspiration from
Serre [62] (Chapter 2, Section 2.1), we consider the space of bilinear forms Hom(H ×H,C)
and its subspaces of symmetric linear forms and skew-symmetric linear forms (but Serre uses
subspaces of the tensor product H ⊗H).

The space of bilinear forms Hom(H×H,C) is the direct sum of the space Sym(H×H,C)
of symmetric bilinear forms and the space Alt(H ×H,C) of skew symmetric bilinear forms.
Using some linear algebra, it is not hard to see that if (e1, . . . , en) is a basis of H, then the
bilinear forms (e∗i e

∗
j +e∗je

∗
i )1≤i,j≤n constitute a basis of Sym(H×H,C), and the bilinear forms

(e∗i e
∗
j − e∗je∗i )1≤i<j≤n constitute a basis of Alt(H ×H,C), with

(e∗i e
∗
j)(u, v) = e∗i (u)e∗j(v), u, v ∈ H,

where (e∗1, . . . , e
∗
n) is the dual basis of H∗. We define the following representations.

Definition 4.43. Given a representation V : G→ GL(H), the representations Sym(V ) : G→
GL(Sym(H ×H,C)) and Alt(V ) : G→ GL(Alt(H ×H,C)) are defined by

[Sym(V )g(B)](u, v) = B(Vg(u), Vg(v)), B ∈ Sym(H ×H,C), u, v ∈ H, g ∈ G
[Alt(V )g(B)](u, v) = B(Vg(u), Vg(v)), B ∈ Alt(H ×H,C), u, v ∈ H, g ∈ G.

Observe that the fixed point set Sym(V ×V,C)G is equal to SymG(H×H,C) and the fixed
point set (V ×V,C)G is equal to AltG(H×H,C), where SymG(H×H,C) and AltG(H×H,C)
are the spaces in Definition 4.39.

Using the usual argument, we can give H a hermitian inner product invariant under V ,
so that V becomes unitary. But then the maps Vg are diagonalizable. Given any g ∈ G, we
may assume that (e1, . . . , en) is a basis of eigenvectors of Vg for the eigenvalues (λ1, . . . , λn).
Then for i ≤ j we have

[Sym(V )g(e
∗
i e
∗
j + e∗je

∗
i )](ek, e`) = (e∗i e

∗
j + e∗je

∗
i )(Vg(ek), Vg(e`)) = (e∗i e

∗
j + e∗je

∗
i )(λkek, λ`e`)

= λkλ`(e
∗
i (ek)e

∗
j(e`) + e∗j(ek)e

∗
i (e`))

= λkλ`(δikδj` + δjkδi`) = λiλj(e
∗
i e
∗
j + e∗je

∗
i )(ek, e`),

since δikδj` + δjkδi` 6= 0 iff k = i and ` = j, or k = j and ` = i, and for i < j, we have

[Alt(V )g(e
∗
i e
∗
j − e∗je∗i )](ek, e`) = (e∗i e

∗
j − e∗je∗i )(Vg(ek), Vg(e`)) = (e∗i e

∗
j − e∗je∗i )(λkek, λ`e`)

= λkλ`(e
∗
i (ek)e

∗
j(e`)− e∗j(ek)e∗i (e`))

= λkλ`(δikδj` − δjkδi`) = λiλj(e
∗
i e
∗
j − e∗je∗i )(ek, e`),

since δikδj`−δjkδi` 6= 0 if k = i and ` = j, or k = j and ` = i, but not both since i < j, which
shows that the bilinear forms e∗i e

∗
j + e∗je

∗
i are the eigenvectors of the linear map Sym(V )g for

the eigenvalues λiλj (i ≤ j), and the bilinear forms e∗i e
∗
j − e∗je∗i are the eigenvectors of the
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linear map Alt(V )g for the eigenvalues λiλj (i < j). As a consequence, by definition of the
characters χSym(V ) and χAlt(V ), we have

χSym(V )(g) = tr(Sym(V )g) =
∑
i≤j

λiλj

χAlt(V )(g) = tr(Sym(V )g) =
∑
i<j

λiλj.

But

χSym(V )(g)− χAlt(V )(g) =
∑
i≤j

λiλj −
∑
i<j

λiλj =
∑
i

λ2
i = tr(V 2

g ) = tr(Vg2) = χV (g2).

Compare Serre [62] (Chapter 2, Section 2.1, Proposition 3). Now if we apply Proposition
4.40 we obtain the folowing result.

Proposition 4.41. Let V : G → G(H) be a complex finite dimensional representation of a
compact group G. The following equations hold:

χV (g2) = χSym(V )(g)− χAlt(V )(g), g ∈ G.∫
G

χV (g2) dµ(g) = dim SymG(H ×H,C)− dim AltG(H ×H,C).

With all this preparation we can now prove Theorem 4.39.

Proof of Theorem 4.39. Going back to the proof of Theorem 4.34, we know that we have an
isomorphism α : HomG(V, V D)→ HomG(H ×H,C), and HomG(H ×H,C) is the direct sum

HomG(H ×H,C) = SymG(H ×H,C)⊕ AltG(H ×H,C).

Since V D is equivalent to V , if V and V are inequivalent, then V and V D are inequivalent.
If V is irreducible, then so is V D, so by Schur’s Lemma HomG(V, V D) = (0). It follows
that HomG(H × H,C) = SymG(H × H,C) = AltG(H × H,C) = (0), which implies that
dim SymG(H ×H,C)− dim AltG(H ×H,C) = 0− 0 = 0.

If V is equivalent to V , then V is equivalent to V D. By Schur’s Lemma dim HomG(V, V D)
= 1, so dim HomG(H ×H,C) = 1, and since

1 = dim HomG(H ×H,C) = dim SymG(H ×H,C) + dim AltG(H ×H,C),

either dim SymG(H × H,C) = 1 and dim AltG(H × H,C),= 0, so dim SymG(H × H,C) −
dim AltG(H ×H,C) = 1− 0 = 1, or dim SymG(H ×H,C) = 0 and dim AltG(H ×H,C) = 1,
so we get dim SymG(H × H,C) − dim AltG(H × H,C) = 0 − 1 = −1. By Theorem 4.33,
the case where dim SymG(H × H,C) = 1 means that V is or real type and the case where
dim AltG(H×H,C) = 1 means that V is of quaternionic type, which completes the proof.

Altough very elegant, Theorem 4.39 is hard to use in practice, because computing the
integral is usually difficult. The machinery of weights from Lie group theory yields a rather
refined classification of complex representations (in the case of compact groups) but this
goes beyond the scope of this book. The reader is referred to Bröcker and tom Dieck [6]
Duistermaat and Kolk [19], Simon [65], and Fulton and Harris [25].
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4.12 The Fourier Transform for Compact Groups

First, we need to discuss the notion of weak integral a bit more. The reasoning used in
Section 3.3 can be immediately adapted to show the following fact. Let G be a locally
compact group equipped with a Haar measure λ and let A : G→ U(H) be a map such that
s 7→ A(s)(x) is continuous for any fixed x ∈ H, where H is a Hilbert space. For any function
f ∈ L1(G), for all x, y ∈ H, the function s 7→ f(s)〈A(s)(x), y〉dλ(s) is integrable and the
functional Φx given by

Φx(y) =

∫
f(s)〈A(s)(x), y〉dλ(s)

is a bounded linear functional on H, so by the Riesz representation theorem, there is a unique
vector in H, called a weak integral and denoted

∫
f(s)A(s)(x)dλ(s) (or even A(f)(x)), such

that 〈∫
f(s)A(s)(x)dλ(s), y

〉
=

∫
f(s)〈A(s)(x), y〉dλ(s), for all x, y ∈ H.

Note that here, A is not necessarily a representation of G.

In the special case where H is a finite-dimensional space of dimensional n, we can pick
an orthonormal basis in H and we can view A(s) as an n× n matrix whose entry a(s)ij is a
function on G. In this case, x and y are vectors of dimension n, so we have∫

f(s)〈A(s)(x), y〉dλ(s) =

∫ n∑
i,j

f(s)a(s)ijxjyidλ(s)

=
n∑
i,j

∫
f(s)a(s)ijdλ(s)xjyi〈(∫

f(s)a(s)ijdλ(s)

)
x, y

〉
.

The above shows that the weak integral
∫
f(s)A(s)(x)dλ(s) is equal to the product by x

of the n × n matrix
(∫

f(s)a(s)ijdλ(s)
)

obtained by integrating every entry in the matrix
f(s)A(s). We also denote the matrix

(∫
f(s)a(s)ijdλ(s)

)
by
∫
f(s)A(s)dλ(s), or even A(f).

Remark: More generally, let µ ∈ M1(G) be a complex regular Borel measure and let
h : G→ H be a function from G to a Hilbert space H, such that:

(1) For every y ∈ H, the map s 7→ 〈h(s), y〉 belongs to L1(G).

(2) The map s 7→ ‖h(s)‖ belongs to L1(G).

Then there is a unique vector in H, denoted
∫
h(s)dµ, such that〈∫

h(s)dµ, y

〉
=

∫
〈h(s), y〉dµ, for all y ∈ H;
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see Dieudonné [14] (Chapter XIII, Section 10). The quantity
∫
h(s)dµ is called the weak

integral of h. If we have a map A : G → U(H) as before, for every fixed x ∈ H, if we let
h(s) = A(s)(x) and µ = fdλ, we obtain the weak integral

∫
f(s)A(s)(x)dλ(s) as a special

case. Even more general notions of weak integrals are discussed in Folland [22] (Appendix
3).

We now return to the case where G is a compact group. Recall that

Mρ(s) =

(
1

nρ
mij(s)

)
,

We now apply the above discussion to the matrix

A(t) = Mρ(t
−1s).

Note that due to the presence of t−1, for s fixed, the map t 7→Mρ(t
−1s) is not a representation.

Using the notations introduced just after Theorem 4.2, the formula

f =
∑
ρ∈R

f ∗ uρ, f ∈ L2(G),

given by this theorem can be written as

f =
∑
ρ∈R

(
nρ∑
j=1

(f ∗m(ρ)
jj )

)
. (∗1)

But by definition,

(f ∗m(ρ)
jj )(s) =

∫
f(t)m

(ρ)
jj (t−1s) dλ(t),

so we get
nρ∑
j=1

(f ∗m(ρ)
jj )(s) = nρ tr

(∫
f(t)Mρ(t

−1s) dλ(t)

)
,

and so

f(s) =
∑
ρ∈R

nρtr

(∫
f(t)Mρ(t

−1s) dλ(t)

)
. (∗2)

However, we also have

Mρ(f̌) =

∫
f(t)Mρ(t

−1) dλ(t),

(where again we integrate term by term), because for every x ∈ Cng , by definition the vector
Mρ(f̌)(x) is the unique vector Φ(x) ∈ Cnρ , such that

〈Φ(x), y〉 =

∫
f(t−1)〈Mρ(t)(x), y〉 dλ(t), for all y ∈ Cnρ ,
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and since G is unimodular,

〈Φ(x), y〉 =

∫
f(t−1)〈Mρ(t)(x), y〉 dλ(t) =

∫
f(t)〈Mρ(t

−1)(x), y〉 dλ(t),

so by definition of the weak integral,

Φ(x) =

∫
f(t)Mρ(t

−1)(x) dλ(t).

Recall that we also have
Mρ(t

−1s) = Mρ(t
−1)Mρ(s).

Therefore,

tr

(∫
f(t)Mρ(t

−1s) dλ(t)

)
= tr

(∫
f(t)Mρ(t

−1)Mρ(s) dλ(t)

)
= tr

((∫
f(t)Mρ(t

−1) dλ(t)

)
Mρ(s)

)
= tr

(
Mρ(f̌)Mρ(s)

)
,

and by substituting this result in (∗2), we obtain

f(s) =
∑
ρ∈R

nρ tr
(
Mρ(f̌)Mρ(s)

)
, f ∈ L2(G), s ∈ G. (FI1)

The above suggests the following definition for the generalization of the Fourier transform
to compact groups.

Definition 4.44. Let G be a compact group. For any function f ∈ L1(G), the Fourier
transform F(f) of f is the map with domain R given by

F(f)(ρ) = Mρ(f̌) =

∫
f(t)Mρ(t

−1) dλ(t) =

∫
f(t)(Mρ(t))

∗ dλ(t), ρ ∈ R.

We can view F(f)(ρ) as being defined as a weak integral, or in view of the discussion at the
beginning of this section as the result of integrating term by term the matrix f(t)(Mρ(t))

∗.

Observe that F(f)(ρ) ∈ Mnρ(C) ∼= HomC(Cnρ ,Cnρ). The Fourier transform of Definition
4.44 is the natural generalization of the definition of the Fourier transform when G is an
abelian compact group (Vol I, Definition 10.3),

F(f)(χ) =

∫
f(s)χ(s) dλ(s) =

∫
f(s)χ(s−1) dλ(s);

the character χ is replaced by the irreducible representation Mρ.
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Remark: The Fourier transform of Definition 4.44 is related to the Fourier transform F2

defined by Hewitt and Ross [36] (Chapter VII, Definition 28.34) as the map

F2(f)(ρ) =

∫
f(t)Mρ(t) dλ(t) = Mρ(f), f ∈ L1(G), ρ ∈ R.

Let Dρ : Cnρ → Cnρ be the semilinear map given by

Dρ

(
nρ∑
k=1

αkek

)
=

nρ∑
k=1

αk ek, αk ∈ C,

where (e1, . . . , enρ) is the canonical basis of Cnρ . It is immediately verified that

〈Dρx,Dρy〉 = 〈y, x〉 = 〈x, y〉,

and
D2
ρ = id.

Then it is not hard to show (see Hewitt and Ross [36], Chapter IX, Lemma 34.1) that

F(f)(ρ) = Dρ ◦ (F2(f)(ρ))∗ ◦Dρ.

The definition of the Fourier transform F given in Definition 4.44 is identical to the
definition given by Kirillov; see [41] (Section 2.3) and by Folland [22] (Chapter 5, Section
5.3). It has the advantage that the Fourier cotransform has a simpler formulation, and since

for p with 1 ≤ p ≤ ∞, the spaces Lp(Ĝ) are closed under adjunction and conjugation, all the
results proved for the Fourier transform F2 in Hewitt and Ross [36] also hold for the Fourier
transform F .

Equation (FI1) can also be written as

f(s) =
∑
ρ∈R

nρ tr (F(f)(ρ)Mρ(s)) , f ∈ L2(G), s ∈ G. (FI)

The Fourier transform F(f) is a function with domain R, the set of “equivalence classes”

of irreducible representations of G, which plays the analog of Ĝ, to the space
∏

ρ∈R Mnρ(C),
where Mnρ(C) is the algebra of nρ×nρ complex matrices. Every element F ∈

∏
ρ∈R Mnρ(C) is

an R-indexed sequence F = (F (ρ))ρ∈R of nρ×nρ matrices F (ρ). Sequences in
∏

ρ∈R Mnρ(C)
are added, multiplied, and multiplied by a scalar, componentwise. Thus

∏
ρ∈R Mnρ(C) is a

(complex) algebra. Given F ∈
∏

ρ∈R Mnρ(C), the adjoint F ∗ of F is defined componentwise
by F ∗ = (F ∗ρ )ρ∈R.

Definition 4.45. We define Ĝ as R(G) the set of indices of a complete set of unitary
irreducible representations of G (see the comment just after Theorem 4.16).
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Note the analogy to the situation where G = T and Ĝ = T̂ = Z, except that, L1(T̂) =
l1(Z) consists of Z-indexed sequences of complex numbers, but the F (ρ) are matrices. By

analogy with the case G = T and T̂ = Z, where the numbers F(f)(m) = f̂(m) are the Fourier
coefficients of f ∈ L1(T), the endomorphisms F(f)(ρ) ∈ HomC(Cnρ ,Cnρ), represented by
matrices in Mnρ(C), can be viewed as generalized Fourier coefficients of f ∈ L1(G), where
G is a compact group.

Equation (FI) is a kind of Fourier inversion formula. Explicit examples of the Fourier
transform and Fourier inversion formula (FI) will be given in Section 5.15 for the groups
SU(2) and SO(3).

We can define the Fourier cotransform F , defined on
∏

ρ∈R Mnρ(C), with input in G, by

F(F )(s) =
∑
ρ∈R

nρ tr(F (ρ)Mρ(s)), F ∈
∏
ρ∈R

Mnρ(C), s ∈ G. (FC)

Of course, there is an issue of convergence with (FC). The space
∏

ρ∈R Mnρ(C) is just
too big, so following Hewitt and Ross [36] (Chapter VII, Section 28.24), we define normed

subspaces Lp(Ĝ) as follows.

First, we need to define some norms on n× n matrices introduced by von Neumann.

4.13 von Neumann Norms and the Algebras Lp(Ĝ)

Definition 4.46. Let A ∈ Mn(C) be any complex n × n matrix, and let (σ1, . . . , σn) be
the sequence of nonnegative square roots of the eigenvalues of A∗A listed in any order (the
positive square roots are the singular values of A). For any p, 1 ≤ p < ∞, define the von
Neumann norm ‖A‖ϕp of A by

‖A‖ϕp =

(
n∑
k=1

σpk

)1/p

,

and ‖A‖ϕ∞ by

‖A‖ϕ∞ = max
1≤k≤n

σk.

It is not obvious that the functions defined in Definition 4.46 are matrix norms, but this
is proven in Hewitt and Ross, see [36] (Appendix D, Theorem D40).

Since (σ2
1, . . . , σ

2
n) are the eigenvalues of A∗A, we see that

‖A‖2
ϕ2

=
n∑
k=1

σ2
k = tr(A∗A) = ‖A‖2

HS ,
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where ‖A‖HS is a Hilbert–Schmidt norm, also known as Frobenius norm, of A (see Definition
Vol I, B.6). We also have

‖A‖ϕ1
=

n∑
k=1

σk,

and
‖A‖ϕ∞ = max

1≤k≤n
σk = ‖A‖2 ,

where ‖A‖2 is the operator norm induced by the 2-norm; see Vol I, Definition B.7 and
Proposition B.8.

Next, we use the norms of Definition 4.46 to define norms on
∏

ρ∈R Mnρ(C).

Definition 4.47. For any fixed sequence (aρ)ρ∈R of reals aρ ≥ 1, for any F ∈
∏

ρ∈R Mnρ(C),
if 1 ≤ p <∞, define ‖F‖p by

‖F‖p =

(∑
ρ∈R

aρ ‖F (ρ)‖pϕp

)1/p

,

and for p =∞, let
‖F‖∞ = sup

ρ∈R
‖F (ρ)‖ϕ∞ ,

where ‖F (ρ)‖ϕp is the von Neumann p-norm of the matrix F (ρ). Observe that for p = 2, we
have

‖F‖2 =

(∑
ρ∈R

aρ ‖F (ρ)‖2
HS

)1/2

=

(∑
ρ∈R

aρ tr
(
F (ρ)∗F (ρ)

))1/2

.

Following Hewitt and Ross [36] (Chapter VII, Section 28.24), we make the following
definitions.

Definition 4.48. Denote
∏

ρ∈R Mnρ(C) by E(Ĝ). Pick a fixed sequence (aρ)ρ∈R of reals

aρ ≥ 1. Let E(Ĝ)0,0 be the subspace of E(Ĝ) consisting of all sequences F = (F (ρ))ρ∈R, such

that the set {ρ ∈ R | F (ρ) 6= 0} is finite, and let E(Ĝ)0 be the subspace of E(Ĝ) consisting
of all sequences F = (F (ρ))ρ∈R, such that the set {ρ ∈ R | ‖F (ρ)‖ϕ∞ ≥ ε} is finite for all
ε > 0.

For any p with 1 ≤ p ≤ ∞, we define Lp(R) = Lp(Ĝ) as

Lp(Ĝ) =

{
F ∈

∏
ρ∈R

Mnρ(C) | ‖F‖p <∞

}
=
{
F ∈ E(Ĝ) | ‖F‖p <∞

}
.

The following results are shown in Hewitt and Ross [36] (Theorem 28.25 and Theorem
28.26).
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Proposition 4.42. Let G be a compact group. For any fixed sequence (aρ)ρ∈R of reals aρ ≥ 1,

for any p, such that 1 ≤ p ≤ ∞, the space Lp(Ĝ) is a Banach space. For any F ∈ Lp(Ĝ),

we have F ∗ ∈ Lp(Ĝ) and ‖F ∗‖p = ‖F‖p. The space L∞(Ĝ) is a Banach algebra under

componentwise multiplication, and ‖FF ∗‖∞ = ‖F‖2
∞ for any F ∈ L∞(Ĝ).

The following result is also shown in Hewitt and Ross [36] (Theorem 28.27).

Proposition 4.43. Let G be a compact group, and let (aρ)ρ∈R be any fixed sequence of reals

aρ ≥ 1. With the norm ‖ ‖∞, the space E(Ĝ)0 is a closed two-sided ideal of L∞(Ĝ). For any

p, such that 1 ≤ p <∞, the space E(Ĝ)0,0 is a dense two-sided ideal of E(Ĝ)0, and a dense

two-sided ideal of Lp(Ĝ). Both E(Ĝ)0,0 and E(Ĝ)0 are closed under adjunction (F 7→ F ∗).

It is also possible to define an inner product on Lp(Ĝ) based on the following proposition
shown in Hewitt and Ross [36] (Lemma 28.28).

Proposition 4.44. Let G be a compact group, and let (aρ)ρ∈R be any fixed sequence of reals

aρ ≥ 1. For any p, 1 ≤ p ≤ ∞, if q is defined such that 1
p

+ 1
q

= 1, then for all E ∈ Lp(Ĝ)

and all F ∈ Lq(Ĝ), the following facts hold:

(1) The number

〈E,F 〉 =
∑
ρ∈R

aρtr(F
∗
ρEρ)

is well-defined (the series converges absolutely).

(2) We have
〈F,E〉 = 〈E,F 〉.

(3) (Hölder’s inequality)
|〈E,F 〉| ≤ ‖E‖p ‖F‖q .

Then we have the following theorem shown in Hewitt and Ross [36] (Theorem 28.30).

Theorem 4.45. Let G be a compact group, and let (aρ)ρ∈R be any fixed sequence of reals

aρ ≥ 1. The space L2(Ĝ) is a Hilbert space with the inner product

〈E,F 〉 =
∑
ρ∈R

aρtr(F
∗
ρEρ),

and we have
‖E‖2

2 = 〈E,E〉.

We also have the following result shown in Hewitt and Ross [36] (Theorem 28.32).

Proposition 4.46. Let G be a compact group, and let (aρ)ρ∈R be any fixed sequence of reals
aρ ≥ 1.
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(1) For any p, such that 1 ≤ p ≤ ∞, if q is such that 1
p

+ 1
q

= 1, for any E ∈ Lp(Ĝ) and

F ∈ Lq(Ĝ), we have EF ∈ L1(Ĝ), and

‖EF‖1 ≤ ‖E‖p ‖F‖q .

(2) For any p, q, such that 1 ≤ p < q ≤ ∞, we have

Lp(Ĝ) ⊆ Lq(Ĝ),

and for every E ∈ Lp(Ĝ),
‖E‖q ≤ ‖E‖p .

(3) For any p, such that 1 ≤ p ≤ ∞, for all E,F ∈ Lp(Ĝ), we have EF ∈ Lp(Ĝ), and

‖EF‖p ≤ ‖E‖p ‖F‖p .

We now have the following results about the Fourier transform on a compact group,
generalizing similar results about the Fourier transform on T. From now on, we assume that
the sequence (aρ)ρ∈R of reals aρ ≥ 1 is the sequence of positive integers (nρ)ρ∈R.

Theorem 4.47. Let G be a compact group.

(1) If we define the multiplication on L∞(Ĝ) as (F1 · F2)(ρ) = F2(ρ)F1(ρ), then the map
f 7→ F(f) is a non norm-increasing injective involutive algebra homomorphism from

L1(G) into L∞(Ĝ). In particular, for all f, g ∈ L1(G), for all ρ ∈ R, we have

(F(f ∗ g))(ρ) = F(g)(ρ) ◦ F(f)(ρ).

(2) For every ρ ∈ R, the map f 7→ F(f)(ρ) is an algebra representation of L1(G) in Cnρ.

Proof sketch. Theorem 4.47 is proven in Hewitt and Ross [36] (Theorem 28.36); see also
Folland [22] (Section 5.3, Equations 5.17, 5.18). It is instructive to prove that

(F(f ∗ g))(ρ) = F(g)(ρ) ◦ F(f)(ρ).

By definition as a weak integral, (F(f ∗ g)(ρ))(x) is the unique vector, such that

〈(F(f ∗ g)(ρ))(x), y〉 =

∫
〈M∗

ρ (s)(x), y〉(f ∗ g)(s) dλ(s), for all x, y ∈ Cnρ ,

and using the fact (F(g)(ρ))(z) is the unique vector, such that

〈(F(g)(ρ))(z), y〉 =

∫
〈M∗

ρ (s)(z), y〉g(s) dλ(s), for all y, z ∈ Cnρ ,
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and (F(f)(ρ))(x) is the unique vector, such that

〈(F(f)(ρ))(x), y〉 =

∫
〈M∗

ρ (s)(x), y〉f(s) dλ(s), for all x, y ∈ Cnρ ,

we have ∫
〈M∗

ρ (s)(x), y〉(f ∗ g)(s) dλ(s)

=

∫
〈M∗

ρ (s)(x), y〉
∫
f(t)g(t−1s) dλ(t) dλ(s)

=

∫
〈M∗

ρ (t−1s)M∗
ρ (t)(x), y〉

∫
f(t)g(t−1s) dλ(t) dλ(s)

=

∫ (∫
〈M∗

ρ (t−1s)M∗
ρ (t)(x), y〉g(t−1s) dλ(s)

)
f(t) dλ(t)

=

∫ (∫
〈M∗

ρ (s)M∗
ρ (t)(x), y〉g(s) dλ(s)

)
f(t) dλ(t)

=

∫
〈(F(g)(ρ))(M∗

ρ (t)(x)), y〉f(t) dλ(t)

=

∫
〈M∗

ρ (t)(x), (F(g)(ρ))∗(y)〉f(t) dλ(t)

= 〈(F(f)(ρ))(x), (F(g)(ρ))∗(y)〉
= 〈(F(g)(ρ))((F(f)(ρ))(x)), y〉,

which proves that
(F(f ∗ g))(ρ) = F(g)(ρ) ◦ F(f)(ρ),

as claimed.

Observe that part (1) of Theorem 4.47 implies that the map f 7→ F(f) is continuous
since the operator norm of this map is bounded by 1.

Remark: Notice that the order of f and g is switched on the right-hand side. This is the
reason why, if we want F to be a homomorphism, that we have to switch the order of the
arguments in the multiplication on L∞(Ĝ). If we use the Fourier transform F2 instead of
the Fourier transform F , then we get

(F2(f ∗ g))(ρ) = F2(f)(ρ) ◦ F2(g)(ρ),

as in Hewitt and Ross [36].

Definition 4.49. Let G be a compact group. For any ρ ∈ R, let Tρ be the space of functions
from G to C spanned by the set of functions

s 7→ 〈Mρ(s)(x), y〉, x, y ∈ Cnρ ,
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called matrix coefficients . Let T (G) be the space of functions spanned by the set⋃
ρ∈R

Tρ(G).

Since the Mρ are representations, we have T (G) ⊆ C(G;C).

Theorem 4.48. Let G be a compact group.

(1) For every ρ ∈ R, we have

{F(f)(ρ) | f ∈ Tρ(G)} = HomC(Cnρ ,Cnρ).

(2) We have

{F(f) | f ∈ T (G)} = E0,0(Ĝ).

Theorem 4.48 is proven in Hewitt and Ross [36] (Theorem 28.39).

Theorem 4.49. Let G be a compact group. The map f 7→ F(f) is a non norm-increasing

involutive isomorphism of L1(G) onto a dense subalgebra of E0(Ĝ) ⊆ L∞(Ĝ). In particular,
the map f 7→ F(f) is continuous.

Theorem 4.49 is proven in Hewitt and Ross [36] (Theorem 28.40). It is a version of the

Riemann–Lebesgue lemma for compact groups; indeed, since Ĝ = R is discrete, by definition
of E0(Ĝ), we can view the vectors in E0(Ĝ) as functions of ρ ∈ R that tend to zero at infinity.
See Vol I, Proposition 10.18 in the case of abelian locally compact groups.

Finally, we have the following version of Plancherel’s theorem.

Theorem 4.50. (Plancherel) Let G be a compact group. The map f 7→ F(f) is an isometric

isomorphism between the Hilbert space L2(G) and the Hilbert space L2(Ĝ). In particular, the
map f 7→ F(f) is continuous. If we pick any orthonormal basis (eρ1, . . . , e

ρ
nρ) in Cnρ, then

for every f ∈ L2(G), we have

f =
∑
ρ∈R

nρ

nρ∑
j,k=1

〈(F(f)(ρ))(eρk), e
ρ
j 〉u

ρ
jk,

where uρjk is the function on G given by

uρjk(s) = 〈Mρ(s)(e
ρ
k), e

ρ
j 〉, s ∈ G, 1 ≤ j, k ≤ nρ.

The functions uρjk are called the coordinate functions for Mρ and the basis (eρ1, . . . , e
ρ
nρ).

Theorem 4.50 is proven in Hewitt and Ross [36] (Theorem 28.43).

We now return to the Fourier cotransform.
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4.14 Fourier Inversion for Compact Groups

Definition 4.50. Let G be a compact group. For any F ∈ E(Ĝ) =
∏

ρ∈R Mnρ(C), the

Fourier cotransform F(F ) of F is the function on G given by

F(F )(s) =
∑
ρ∈R

nρ tr(F (ρ)Mρ(s)), s ∈ G.

In the above definition the infinite sum should be viewed as a formal expression. We will
give below sufficient conditions that guarantee convergence.

Remark: Since Hewitt and Ross use the Fourier transform F2, related to the Fourier trans-
form F by the equation

F(f)(ρ) = Dρ ◦ (F2(f)(ρ))∗ ◦Dρ,

the definition of the Fourier cotransform (called inverse Fourier transform) given by Hewitt
and Ross (Chapter IX, Section 34.47) is

F2(F )(s) =
∑
ρ∈R

nρ tr(DρF (ρ)∗DρMρ(s)), s ∈ G.

Following Hewitt and Ross, it is natural to make the following definition (see [36], Defi-
nition 34.4).

Definition 4.51. Let G be a compact group. The subspace R(G) of L1(G) is defined by

R(G) = {f ∈ L1(G) | ‖F(f)‖1 <∞} =

{
f ∈ L1(G)

∣∣∣∣∣∑
ρ∈R

nρ ‖F(f)(ρ)‖ϕ1
<∞

}
.

The subspace R(G) is called the space of absolutely convergent Fourier series . We define
‖f‖ϕ1

by
‖f‖ϕ1

= ‖F(f)‖1 .

For any function f ∈ L1(G), the formal expression

(F(F(f)))(s) =
∑
ρ∈R

nρ tr(F(f)(ρ)Mρ(s))

is called the Fourier series of f .

Observe that Definition 4.51 is the generalization of the case G = T and T̂ = Z, where
for every f ∈ L1(T) we define the Fourier series of f as the map

θ 7→
∑
m∈Z

f̂(m)eimθ = (F(f̂))(θ).

Here the character θ 7→ eimθ is replaced by the irreducible representation Mρ, and the trace
function is needed to convert the matrix F(f)(ρ)Mρ(s) to a number (and the dimensions nρ
must be accounted for).

The following results are shown in Hewitt and Ross [36] (Theorem 34.5).
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Theorem 4.51. Let G be a compact group.

(1) If F ∈ L1(Ĝ), then the map

s 7→
∑
ρ∈R

nρ |tr(F (ρ)Mρ(s))|

is uniformly convergent.

(2) The map

s 7→ (F(F ))(s) =
∑
ρ∈R

nρ tr(F (ρ)Mρ(s))

converges uniformly to a continuous function f . Furthermore, we have the Fourier
inversion formula

(F(F(f)))(s) =
∑
ρ∈R

nρ tr(F(f)(ρ)Mρ(s)), s ∈ G,

where (F(F(f)))(s) is the Fourier series of f , so f ∈ R(G).

(3) We have

‖f‖∞ ≤ ‖f‖ϕ1
= ‖F(f)‖1 ,

where ‖f‖∞ is the sup norm on C(G;C).

The Fourier series of f is not necessarily convergent, but we have the following results;
see Hewitt and Ross [36] (Corollary 34.6 and Corollary 34.7).

Theorem 4.52. Let G be a compact group.

(1) For any function f ∈ R(G), the Fourier series of f converges uniformly and

f = (F(F(f)))(s) =
∑
ρ∈R

nρ tr(F(f)(ρ)Mρ(s)),

for almost all s ∈ G. We have

‖f‖∞ ≤ ‖f‖ϕ1
.

(2) The map f 7→ F(f) is a norm-preserving linear isomorphism from R(G) onto L1(Ĝ),
so R(G) is a Banach space.

For the record, in view of Theorem 4.50 and (FI), we have the following result (see also
Hewitt and Ross [36], Chapter IX, Section 34.47(a)).
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Theorem 4.53. (Fourier inversion for L2(G)) Let G be a compact group. The Fourier

cotransform F(F ) ∈ L2(G) of any F ∈ L2(Ĝ) converges as a series in the L2-norm, and for
every f ∈ L2(G), we have

f(s) = (F(F(f)))(s) =
∑
ρ∈R

nρ tr (F(f)(ρ)Mρ(s)) , s ∈ G,

where the series converges in the L2-norm.

Remark: There is another way to reprove Proposition 4.10(4)(b). Indeed, we have

tr

(∫
f(t)Mρ(t

−1s) dλ(t)

)
=

∫
f(t)tr

(
Mρ(t

−1s)
)
dλ(t) = (f ∗ χρ)(s).

Therefore, by (∗2), we have

f =
∑
ρ∈R

nρ f ∗ χρ, f ∈ L2(G). (FI’)

See also Hewitt and Ross [36] (Chapter XII, Theorem 27.41).

Example 4.7. If G is a finite group, then Ĝ = {ρ1, . . . , ρr}, where r is the number of
conjugacy classes of G. If we give G the counting measure normalized so that G has measure
1, then the Fourier transform of any function f ∈ L2(G) is given by

F(f)(ρ) =
1

|G|
∑
s∈G

f(s)(Mρ(s))
∗,

where Mρ1 , . . . ,Mρr are the irreducible representations of G (up to equivalence). For every

F ∈ L2(Ĝ), the Fourier cotransform of F is given by

F(F )(s) =
r∑

k=1

nρktr(F (ρk)Mρk(s)), s ∈ G,

and the Fourier inversion formula is given by

f =
r∑

k=1

nρktr((F(f))(ρk)Mρk(s)).

The fact that F is an isometry is expressed by the equation

〈f1, f2〉 =
1

|G|
∑
s∈G

f1(s)f2(s) = 〈F(f1),F(f2)〉 =
r∑

k=1

nρktr((F(f2))∗F(f1)),

for all f1, f2 ∈ L2(G).
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For all f, g ∈ L2(G), the convolution f ∗ g is given by

(f ∗ g)(s) =
1

|G|
∑
s1s2=s

f(s1)g(s2) =
1

|G|
∑
t∈G

f(t)g(t−1s),

and we can write explicitly the equation

(F(f ∗ g))(ρ) = (F(g))(ρ) ◦ (F(f))(ρ).

We leave it to the diligence of the reader to check that it holds.

4.15 Problems

Problem 4.1. Prove Proposition 4.10.

Hint . Use Theorem 4.2 and Theorem 4.6.

Problem 4.2. Show that the function which maps the class of a function f ∈ L2(G) to the
class of its complex conjugate f is a semilinear bijection of L2(G) and an automorphism of
its ring structure (under convolution).

Hint . Use the fact that f ∗ g = f ∗ g.

Problem 4.3. Given two linear maps f : E → E ′ and g : F → F ′, recall that f⊗g : E⊗F →
E ′ ⊗ F ′ is the unique linear map, such that

(f ⊗ g)(u⊗ v) = f(u)⊗ g(v), for all u ∈ E and all v ∈ F . (f ⊗ g)

Given a basis (u1, . . . , ud1) of H1 and a basis (v1, . . . , vd2) of H2, assume f1 is represented by
the matrix A1 and f2 is represented by the matrix A2. Show that with respect to the basis
(ui⊗vj)1≤i≤d1,1≤j≤d2 , the linear map f1⊗f2 is defined by a (d1d2)× (d1d2) matrix; as a block
matrix, it is the d1×d1 matrix of d2×d2 blocks where the (i, j) block is the matrix (A1)ijA2

(1 ≤ i, j ≤ d1).

Problem 4.4. Let (u1, . . . , ud1) be an orthonormal basis of H1, and let (v1, . . . , vd2) be an
orthonormal basis of H2. Show that (ui⊗vj)1≤i≤d1,1≤j≤d2 is an orthonormal basis of H1⊗H2

with respect to the inner product 〈−,−〉⊗.

Problem 4.5.

(1) Show that the linear map U1(s)⊗ U2(s) is given by the (d1d2)× (d1d2) matrix, which
is the Kronecker product of U1(s) and U2(s).

(2) Prove the following two identities:

tr(U1(s)⊕ U2(s)) = tr(U1(s)) + tr(U2(s))

tr(U1(s)⊗ U2(s)) = tr(U1(s))tr(U2(s)).
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Problem 4.6. Let R be a complete set of irreducible representations of a compact group G.
Show that the Z-module Z(R) of formal linear combinations

∑
ρ∈R1

mρρ, with mρ ∈ Z and
R1 a finite subset of R, is isomorphic to the subring of C(G;C) spanned by the characters.

Hint . To define a multiplication structure on Z(R) see formula (⊗).

Problem 4.7. (Advanced Exercise) Prove Proposition 4.22.

Hint . See Bröcker and tom Dieck [6](Chapter 2, Section 4, Proposition 4.14) or Folland [22]
(Chapter 7, Theorem 7.25).

Problem 4.8. If (u1, . . . , un) is an orthonormal basis of E, use Definition 4.13 to show that
(ϕu1 , . . . , ϕun) is an orthonormal basis of E∗.

Problem 4.9. If h1 : E → F and h2 : E → F are two linear maps given by the matrices A
and B with respect to the bases (u1, . . . , un) and (v1, . . . , vm), show that the inner product
of h1 and h2 is given by

〈h1, h2〉Hom = tr(B∗A) = tr(A∗B).

Problem 4.10. Let H1 and H2 be finite-dimensional vector spaces and each one has a
hermitian inner product so that U1 : G→ U(H1) and U2 : G→ U(H2) are unitary represen-
tations. show that the representation of Definition 4.21 becomes a unitary representation
Hom(U1, U2) : G→ U(Hom(H1, H2)).

Hint . Use the hermitian inner product on Hom(H1, H2) given in Definition 4.20.

Problem 4.11. The Fourier transform of Definition 4.44 is related to the Fourier transform
F2 defined by

F2(f)(ρ) =

∫
f(t)Mρ(t) dλ(t) = Mρ(f), f ∈ L1(G), ρ ∈ R.

Let Dρ : Cnρ → Cnρ be the semilinear map given by

Dρ

(
nρ∑
k=1

αkek

)
=

nρ∑
k=1

αk ek, αk ∈ C,

where (e1, . . . , enρ) is the canonical basis of Cnρ .

(1) Show that
〈Dρx,Dρy〉 = 〈y, x〉 = 〈x, y〉,

and that
D2
ρ = id.

(2) Show that
F(f)(ρ) = Dρ ◦ (F2(f)(ρ))∗ ◦Dρ.
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Hint . See Hewitt and Ross [36], Chapter IX, Lemma 34.1.

Problem 4.12. Let A ∈ Mn(C) be any complex n × n matrix, and let (σ1, . . . , σn) be the
sequence of nonnegative square roots of the eigenvalues of A∗A.

(1) For any p, 1 ≤ p <∞, show that

‖A‖ϕp =

(
n∑
k=1

σpk

)1/p

is a matrix norm.

(2) Show that
‖A‖ϕ∞ = max

1≤k≤n
σk

is a matrix norm.

Hint . See Hewitt and Ross [36] (Appendix D, Theorem D40).

Problem 4.13. For any fixed sequence (aρ)ρ∈R of reals aρ ≥ 1, for any F ∈
∏

ρ∈R Mnρ(C),
if 1 ≤ p <∞, show that

‖F‖p =

(∑
ρ∈R

aρ ‖F (ρ)‖pϕp

)1/p

is a norm on
∏

ρ∈R Mnρ(C). Also show that

‖F‖∞ = sup
ρ∈R
‖F (ρ)‖ϕ∞

is a norm on
∏

ρ∈R Mnρ(C).

Problem 4.14. (Advanced Exercise) Prove Proposition 4.42.

Hint . See Hewitt and Ross [36], Theorem 28.25 and Theorem 28.26.

Problem 4.15. (Advanced Exercise) Prove Proposition 4.43.

Hint . See Hewitt and Ross [36], Theorem 28.27.

Problem 4.16. Prove Proposition 4.44.

Hint . See Hewitt and Ross [36], Lemma 28.28.

Problem 4.17. Prove Theorem 4.45.

Hint . See Hewitt and Ross [36], Theorem 28.30.

Problem 4.18. Prove Proposition 4.46.

Hint . See Hewitt and Ross [36], Theorem 28.32.
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Problem 4.19. (Advanced Exercise) Complete the proof of Theorem 4.47.

Hint . See Hewitt and Ross, Theorem 28.36 or Folland, Section 5.3, Equations 5.17, 5.18.

Problem 4.20. Prove Theorem 4.48.

Hint . See Hewitt and Ross [36], Theorem 28.39.

Problem 4.21. (Advanced Exercise) Prove Theorem 4.49.

Hint . See Hewitt and Ross [36], Theorem 28.40.

Problem 4.22. (Advanced Exercise) Prove Theorem 4.51.

Hint . See Hewitt and Ross [36], Theorem 34.5.

Problem 4.23. Prove Theorem 4.52.

Hint . See Hewitt and Ross [36], Corollary 34.6 and Corollary 34.7.

Problem 4.24. Prove via direct computation that

(F(f ∗ g))(ρ) = (F(g))(ρ) ◦ (F(f))(ρ)

is true when G is a finite group; see Example 4.7.
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Chapter 5

Matrix Representations of SL(2,C),
SU(2) and SO(3)

This chapter deals with explicit matrix descriptions of the irreducible representations of
the groups SL(2,C), SU(2) and SO(3) (unitary representation in the last two cases). Our
presentation (except for Section 5.7) relies heavily on Vilenkin’s exposition [70], especially
Chapter III. To the best of our knowledge, Vilenkin contains the most detailed presentation
of this type material.

We begin by proving (Section 5.1) that the representations Um : SU(2) → GL(PC
m(2))

and W` : SO(3) → GL(PC
2`(2)), which were shown to be irreducible in Example 3.8 and

Example 3.9, form complete sets of set of irreducible (unitary) representations. The proof
involves computing the value of the character χUm on the matrices rx(ϕ) given by

rx(ϕ) =

(
eiϕ 0
0 e−iϕ

)
.

Namely, we have

χUm(rx(ϕ)) = tr(Um(rx(ϕ))) =
sin((m+ 1)ϕ)

sinϕ
.

Here, PC
m(2) is the vector space of complex homogeneous polynomials of degree m in two

variables (z1 and z2).

In Section 5.2, we give a more pleasant description of the irreducible unitary representa-
tions of SO(3) in terms of the spaces HC

k (3) of complex homogeneous harmonic polynomials
in three variables. In fact, we show that the regular representation Rk : SO(3)→ U(HC

k (3))
and the representations Wk : SO(3)→ U(PC

2k(2)) are equivalent, where

((Rk)Q(P ))(x) = P (Q−1x), Q ∈ SO(3), P ∈ PC
k (3), x ∈ R3.

It turns out that to obtain the most explicit matrix descriptions of the representations
of SU(2) and SO(3), it is crucial to factor a unit quaternion q as the product of three

289
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types of unit quaternions rx(ϕ/2), ry(ψ/2), rz(θ/2), which happen to induce the well-known
rotations of R3 associated with the Euler angles. For example, we have the factorizations
q = rx(ϕ/2)rz(θ/2)rx(ψ/2) and q = rx(−ϕ/2)ry(θ/2)rx(−ψ/2). This matter is treated in
great detail in Section 5.3. This is a standard topic in quantum mechanics, but it is also a
source of confusion because different formulae are obtained depending on the method chosen
for defining the rotation in SO(3) induced by a unit quaternion q in SU(2). The main
difference has to do with the way R3 is represented; mathematicians tend to use 2× 2 skew-
hermitian matrices, but physicists seem to prefer 2 × 2 hermitian matrices. So Dieudonné,
Vilenkin and Wigner obtain different fomulae! We thoroughly discuss this issue.

Until now, the representations Um : SU(2)→ GL(PC
m(2)), which are also representations

of SL(2), act on the vector space PC
m(2) of complex homogeneous polynomials of degree m in

two variables. In quantum mechanics it is preferable to use the integer or half-integer index
` = m/2. The space PC

m(2) = PC
2`(2) then has dimension 2`+1 and the monomials ckz

`−k
1 z`+k2

of a polynomial P (z1, z2) are indexed by the index k which ranges from −` to `. It is actually
preferable to use the “dehomogenized” polynomial Q(z) = P (z, 1) in the single variable z.
The vector space of such polynomials (of degree 2`+1) is denoted PC

` , and we define the rep-
resentation T` : SL(2,C) → GL(PC

` ), which yields a representation T` : SU(2) → GL(PC
` )

when restricted to the subgroup SU(2) of SL(2,C); see Section 5.5, Definition 5.3. We
caution the reader that the formula for T`(A) (A ∈ SL(2)) is not what we would obtain
directly from the representation U`. We are using Vilenkin’s formula to facilitate compar-
ison with his exposition; see Vilenkin [70] (Chapter III, Section 2.1). The representation
U2` : SL(2,C) → GL(PC

2`(2)) is equivalent to the representation T` : SL(2,C) → GL(PC
` )

and similarly, the representation U2` : SU(2)→ GL(PC
2`(2)) is equivalent to the representa-

tion T` : SU(2) → GL(PC
` ). In particular, the representations T` : SU(2) → GL(PC

` ) form
a complete set of irreducible representations of SU(2).

We will need to define an SU(2)-invariant hermitian inner product on each space PC
` , and

for this, it is useful to figure out what is the derivative of the representation T` : SL(2,C)→
GL(PC

` ) at the identity. This yields a representation t` : sl(2,C) → Hom(PC
` ,PC

` ), which is
a representation of Lie algebras. This topic is discussed in Section 5.6. In particular, we
need to obtain formulae for the action of t` on a specific basis (ξ1, ξ2, ξ3) of the Lie algebra
sl(2,C) (which is also a basis of su(2) over R; see Definition 5.4).

In Section 5.7, we determine all the irreducible Lie algebra representations of sl(2,C)
(and again, of su(2)). The Lie algebra sl(2,C) is a (complex) simple Lie algebra, which
means that it is not abelian and that its only ideals are {0} and sl(2,C) itself. One of
the most beautiful results of Lie theory is that the complex simple(!) Lie algebras fall into
four infinite families plus five exceptional simple Lie algebras. Furthermore, the irreducible
representations of the complex simple Lie algebras can be completely determined. These
results are presented in Fulton and Harris [25] and Knapp [44], among other sources. The
determination of the irreducible Lie algebra representations of sl(2,C) is a “miniature” case.
We also state H. Weyl’s famous complete reducibility result for the finite-dimensional unitary
representations of sl(2,C). This section presents key results of representation theory which
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occur in every book in representation theory. We follow Serre’s exposition [64].

We return to our goal of finding explicit fomulae for the matrix representations of
SL(2,C), SU(2), and SO(3). In Section 5.8, we prove that if we consider the polynomials
ψk(z) given by

ψk(z) =
z`−k√

(`− k)!(`+ k)!
, −` ≤ k ≤ `,

then the hermitian inner product on PC
` making the basis (ψk) orthonormal is SU(2)-

invariant (see Proposition 5.20). A key technical result used in this section is the fact
that in the basis (z`−k)−`≤k≤`, the matrix of T`(rx(ϕ/2)) is the diagonal matrix

ei`ϕ

ei(`−1)ϕ

. . .

e−i(`−1)ϕ

e−i`ϕ

 .

This result already appears in Wigner [77] (Formula 15.6, page 155, with −α instead of ϕ).

In Section 5.9, we give PC
` the hermitian inner product making (ψk) an orthonormal basis

and we give various expressions for the matrix entries of the matrix t(`)(A) representing T`(A)
in this basis.

In Section 5.10, we restrict our attention to matrices in the group SU(2), in which case
the hermitian inner product on PC

` making the basis (ψk) orthonormal is SU(2)-invariant
(see Proposition 5.20). Using the Euler angles representation of Section 5.3, we prove the
important fact (see Proposition 5.23) that for any matrix q ∈ SU(2) expressed in terms of
the Euler angles as q = u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2), with respect to the orthonormal
basis (ψk) of PC

` , we have

t
(`)
jk (q) = e−i(jϕ+kψ) t

(`)
jk (rz(θ/2)), −` ≤ j, k ≤ `,

Thus, we are left with finding an explicit expression for the matrix t(`)(rz(θ/2)), which we
denote as t(`)(θ) (see Definition 5.11). Such a formula is given in Proposition 5.24.

Since SU(2) is the universal cover of SO(3), we obtain a formula for the matrix w(`)(R) of
the unitary map W`(R) associated with the irreducible representation W` : SO(3)→ U(PC

` ),
where R ∈ SO(3) is expressed in terms of the Euler angles as R = Rx(ϕ)Rz(θ)Rx(ψ). With
respect to the orthonormal basis (ψk) of PC

` , the matrix w(`)(R) is given by

w
(`)
jk (R) = e−i(jϕ+kψ) t

(`)
jk (θ), ` ∈ N.

We also discuss the famous Wigner d-matrices and D-matrices.
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There is one more method for computing the matrix elements t
(`)
jk (A) (with A ∈ SL(2,C))

based on integration. The idea is to use another representing space for the representation
T`, namely the vector space F` (of dimension 2`+ 1) of finite Fourier series

Φ(eiϕ) =
∑̀
k=−`

cke
−ikϕ,

with ck ∈ C. In Section 5.11, we define the (irreducible) representations T` : SL(2,C) →
GL(F`). In Proposition 5.26, we obtain an integral formula for the matrix elements t

(`)
jk (A).

By specializing to the matrices A = rz(θ/2), we obtain an integral formula for computing

the matrix elements t
(`)
jk (θ) (see Proposition 5.27). For small values of `, this equation is

quite practical.

In Section 5.12, we show that the matrix elements t
(`)
jk (θ) can be expressed in terms of

certain polynomials known as the Jacobi polynomials . Indeed, if the unit quaternion q is
expressed in terms of the Euler angles, there is a function P `

jk(z), such that

t
(`)
jk (θ) = P `

jk(cos θ), 0 ≤ θ < π.

Various formulae for the functions P `
jk(z) are obtained. The Jacobi polynomials P λ,µ

h (z) are

defined in Definition 5.14, and the relationship between the functions P `
jk(z) and the Jacobi

polynomials P λ,µ
h (z) is shown in Proposition 5.30.

In the special case where k = 0, in which case the function

t
(`)
j0 (q) = e−ijϕ P `

j0(cos θ)

is independent of the angle ψ, the function P `
j0(z) is a rescaling of the associated Legendre

function P j
` (z). The function t

(`)
j0 (q) (with q = rx(ϕ/2)rz(θ/2)) can be viewed as a function

on the sphere S2 and is denoted Y`j(ϕ, θ), with 0 ≤ ϕ < 2π and 0 ≤ θ < π. The function
Y`j(ϕ, θ) is called a spherical function. Up to a constant, Y`j(ϕ, θ) is the classical spherical
harmonic (unfortunately) denoted Y j

` (θ, ϕ) and called the Laplace spherical harmonic by
Dieudonné.

In Section 5.14, we derive explicit formulae for the normalized Haar measures on SU(2)
and SO(3) when these groups are parametrized by the Euler angles. Technically, these
parametrizations are injective only on open subsets of SU(2) and SO(3), but the comple-
ments of these open sets have measure zero so from the point of view integration we obtain
formulae for integrating all functions in L2(SU(2)) and all functions in L2(SO(3)) (respec-
tively equipped with these left and right invariant Haar measures).

As a first step, we will need to derive a formula for an SU(2)-invariant volume form on
SU(2) as a pull-back of the SO(4)-invariant volume form ωS3 on S3. We define the bijection
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Σ: H → R4 from the space H of quaternions to R4 as follows: for every quaternion A ∈ H,
with

A =

(
a+ ib c+ id
−c+ id a− ib

)
, a, b, c, d ∈ R,

we have

Σ(A) = (a, b, c, d),

where, as usual, we view (a, b, c, d) as a column vector. The bijection Σ restricts to a
bijection Σ: SU(2) → S3 from SU(2) to the sphere S3 (in R4). The volume form ω on
SU(2) is defined as the pull-back ω = Σ∗(ωS3), where ωS3 is the standard SO(4)-invariant
volume form on S3; that is, for all A ∈ SU(2) and all Y ∈ TASU(2), we have

ωA(Y ) = (ωS3)Σ(A)(Σ(Y )).

Then, we prove that the volume form ω is left and right invariant; see Proposition 5.35. The
proof uses an old fact about the quaternions, namely that if

A =

(
a+ ib c+ id
−c+ id a− ib

)
,

is a unit quaternion (resp. A′ is a unit quaternion), then

M(LA) =


a −b −c −d
b a −d c
c d a −b
d −c b a

 , M(RA′) =


a′ −b′ −c′ −d′
b′ a′ d′ −c′
c′ −d′ a′ b′

d′ c′ −b′ a′

 ,

belong to SO(4).

Let Ω ⊆ R3 be the open subset

Ω = (0, 2π)× (0, π)× (−2π, 2π).

By Proposition 5.4, the map u : Ω→ SU(2) given by u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2) is
a diffeomorphism, and let Φ: Ω→ S3 be the composed map Φ = Σ ◦ u from Ω onto an open
subset of S3. Let ωΩ be the pull-back form ωΩ = Φ∗ωS3 . Then we can prove that the volume
form ωΩ is given by

ωΩ =
1

8
sin θ dθ ∧ dϕ ∧ dψ.

See Proposition 5.36.

Similarly, let Ω0 ⊆ R3 be the open subset

Ω = (0, 2π)× (0, π)× (0, 2π),
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let u0 : Ω0 → SU(2) be the restriction of u to Ω0, and let Φ0 : Ω0 → S3 be the composed map
Φ0 = Σ ◦u0 from Ω0 onto an open subset of S3. Let ωΩ0 be the pull-back form ωΩ0 = Φ∗0ωS3 .
Then we can prove that the volume form ωΩ0 is also given by

ωΩ0 =
1

8
sin θ dθ ∧ dϕ ∧ dψ.

See Proposition 5.40. Together with the injection R0 : Ω0 → SO(3) given by

R0(ϕ, θ, ψ) = Rx(ϕ)Rz(θ)Rx(ψ),

we obtain a formula for integrating functions in L2(SO(3)); see Proposition 5.40.

Combining results from Section 5.14 and the previous sections, in Section 5.15, we obtain
explicit Fourier series expansions for the functions in L2(SU(2)) and L2(SO(3)) in terms of

the matrix elements t
(`)
jk . The reason is that by Peter–Weyl the family of functions(√

2`+ 1 t
(`)
ij

)
−`≤i,j≤`, `∈R

,

with R = {0, 1/2, 1, 3/2, 2, . . .}, is a Hilbert basis of L2(SU(2)). Actually, we obtain explicit
formulae for the Fourier transform and the Fourier cotransform (discussed in Section 4.12)
on L2(SU(2)). Similarly, the family of functions(√

2`+ 1w
(`)
ij

)
−`≤i,j≤`, `∈N

is a Hilbert basis of L2(SO(3)). This yields another explicit example of the Fourier transform
and Fourier cotransform on L2(SO(3)). If the functions are expressed in terms of the Euler
angles, then we obtain formulae that are practically computable.

We also provide Fourier series expansions for two subspaces L2
k and jL

2 of L2(SU(2))
defined by Vilenkin. A special case of L2

k yields another derivation of the well-known series
expansion of functions in L2(S2) in terms of spherical harmonics.

In Section 5.16, following Vilenkin, we show how to decompose not only scalar-valued
but also vector-valued functions on the sphere S2 into Fourier series that behave nicely under
rotations of the sphere.

To simplify notation, we will write P` instead of PC
` . Let T` : SU(2) → U(P`) be the

irreducible representation of SU(2) associated with ` ∈ R = {0, 1/2, 1, 3/2, 2, 5/2, 3, . . .}. We
wish to consider the Hilbert space FS` of functions f : S2 → P` defined by the isomorphism

FS` '
⊕̀
j=−`

L2(S2)ψj,

where the ψj constitute an orthonormal basis of P` for an SU(2)-invariant hermitian inner
product defined in Section 5.8 (P` is a complex vector space of dimension 2`+ 1). Vilenkin



295

calls the functions in FS` fields of quantities on the sphere transforming according to the
irreducible representation T`. For example, for ` = 1, since 2` + 1 = 3, we get a vector
field on the sphere. We show how to decompose the functions in FS` in terms of certain
representations V` : SU(2)→ GL(FS` ) defined in terms of the representations T`.

The last section of this chapter (Section 5.16) deals with the Clebsch–Gordan coefficients ,
a standard topic in quantum mechanics. In general, the tensor product T`1 ⊗ T`2 of two
irreducible representations T`1 and T`2 of SU(2) is not irreducible, so according to the Peter–
Weyl theorem (Theorem 4.16) it splits as a direct sum of irreducible representations. Since
the character associated with the representation T`1 ⊗ T`2 is equal to the product χT`1χT`2
of the characters χT`1 and χT`2 associated with T`1 and T`2 , it turns out that the following
famous result (known to H. Weyl and E. Wigner) can be obtained (see Proposition 5.46).
For any two irreducible representations T`1 and T`2 of SU(2), we have

χT`1 (q)χT`2 (q) =

`1+`2∑
`=|`1−`2|

χT`(q), q ∈ SU(2).

As a consequence, we also have an isomorphism

P`1 ⊗ P`2 '
`1+`2⊕

`=|`1−`2|

P`.

The space P`1 ⊗ P`2 has dimension (2`1 + 1)(2`2 + 1) and each summand P` has dimension
2`+ 1.

By Proposition 5.16, each vector space P` has an orthonormal basis (ψk) (−` ≤ k ≤ `)
invariant under the action of SU(2). Following Vilenkin [70] (Chapter III, Section 8.2), we
denote the basis of P`1 as (fj) (−`1 ≤ j ≤ `1) and the basis of P`2 as (hk) (−`2 ≤ k ≤ `2).
Then the family of tensor products

fj ⊗ hk, −`1 ≤ j ≤ `1, −`2 ≤ k ≤ `2,

is a basis of P`1⊗P`2 . If we give P`1⊗P`2 the inner product defined in Definition 4.10 induced
by the inner products associated with the bases (fj) and (hk), then the vectors (fj⊗hk) form
an orthonormal basis of P`1 ⊗ P`2 .

Since we have the direct sum

P`1 ⊗ P`2 '
`1+`2⊕

`=|`1−`2|

P`,

we also have a basis of P`1 ⊗P`2 consisting of the union of the bases associated with each of
the summand Pl, which Vilenkin denotes by

a`m, |`1 − `2| ≤ ` ≤ `1 + `2, −` ≤ m ≤ `,
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where for ` fixed, (a`m) (−` ≤ m ≤ `) is the basis of P`. Since both bases are orthonormal
bases of P`1 ⊗P`2 , there is a unitary matrix C expressing the basis (fj ⊗ hk) in terms of the
basis (a`m), and the entries of the matrix C are called the Clebsch–Gordan coefficients . More
precisely, the change of basis matrix C = (C(`m),(jk)) is the unitary matrix defined such that
the (jk)th column of C consists of the coefficients of fj ⊗ hk over the basis (a`m), namely

fj ⊗ hk =

`1+`2∑
`=|`1−`2|

∑̀
m=−`

C(`m),(jk)a
`
m,

with −`1 ≤ j ≤ `1, −`2 ≤ k ≤ `2.

Amazingly, the coefficients C(`m),(jk) can be computed explicitly, but the formulae are
very complicated and the technical details of the computations are quite involved. Complete
details can be found in Vilenkin [70] (Chapter III, Section 8). In this section, we will content
ourselves by providing an outline of these computations.

5.1 Irreducible Representations of SU(2) and SO(3)

In Example 3.8, it was proven that the representations Um : SU(2) → GL(PC
m(2)) are irre-

ducible. In Example 3.9, it was proven that the representations W` : SO(3) → GL(PC
2`(2))

are irreducible. Recall that since SU(2) is compact and PC
m(2) is finite-dimensional, there

is an invariant inner product on PC
m(2) so we may assume that these representations are

unitary.

Let us now prove that the representations Um form a complete set of irreducible unitary
representations.

Proposition 5.1. Every irreducible unitary representation of SU(2) is equivalent to one
of the irreducible unitary representations Um : SU(2) → U(PC

m(2)). Furthermore, every
irreducible unitary representation of SO(3) is equivalent to one of the irreducible unitary
representations Wm : SO(3)→ U(PC

2m(2)).

Proof. The key point is to figure out what are the characters χUm of the irreducible unitary
representations Um. Every unitary matrix q ∈ SU(2) is diagonalizable as

q = Rrx(ϕ)R∗

for some unitary matrix R ∈ U(2), where

rx(ϕ) =

(
eiϕ 0
0 e−iϕ

)
.

If det(R) = eiω 6= 1, we replace R by e−iω/2R, which is unitary ((e−iω/2R)(e−iω/2R)∗ =
e−iω/2Reiω/2R∗ = I2), so that det(e−iω/2R) = (e−iω/2)2 det(R) = e−iωeiω = +1, and then

(e−iω/2R)rx(ϕ)(e−iω/2R)∗ = e−iω/2Rrx(ϕ)eiω/2R∗ = Rrx(ϕ)R∗ = q.
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Therefore, we may assume that R ∈ SU(2). Here −π ≤ ϕ ≤ π, but if −π ≤ ϕ < 0, we can
replace R by

R

(
0 eiπ/2

eiπ/2 0

)
∈ SU(2),

because then(
0 eiπ/2

eiπ/2 0

)(
eiϕ 0
0 e−iϕ

)(
0 e−iπ/2

e−π/2 0

)
=

(
0 e−i(ϕ−π/2)

ei(ϕ+π/2) 0

)(
0 e−iπ/2

e−iπ/2 0

)
=

(
e−iϕ 0

0 eiϕ

)
.

Thus, we may assume that 0 ≤ ϕ ≤ π. Therefore we proved that every matrix in SU(2) is
conjugate to a unique matrix rx(ϕ), with 0 ≤ ϕ ≤ π.

Since the characters are central functions (Proposition 4.10(1)), it suffices to compute the
value of the character χUm on rx(ϕ). Also observe that rx(ϕ) and rx(θ) are conjugate iff they
have the same eigenvalues iff ϕ = ±θ (mod 2π). But then we obtain a bijection between
the space of central functions of L2(SU(2)) and the space of even continuous 2π-periodic
functions from R to C given by f 7→ S(f), with

S(f)(ϕ) = f(rx(ϕ)).

We will compute the values χUm(rx(ϕ)) and prove that the characters χUm are dense in
the space of central functions of L2(SU(2)).

We proved that the eigenvalues of Um(rx(ϕ)) are (eimϕ, ei(m−2)ϕ, . . . , e−imϕ) in Example
3.8. Therefore,

χUm(rx(ϕ)) = tr(Um(rx(ϕ))) =
m∑
k=0

ei(m−2k)ϕ.

We have

m∑
k=0

ei(m−2k)ϕ = eimϕ
m∑
k=0

(e−i2ϕ)k = eimϕ
(1− (e−i2ϕ)m+1)

1− e−i2ϕ

= eimϕ
eiϕ(1− (e−i2ϕ)m+1)

eiϕ(1− e−i2ϕ)
= ei(m+1)ϕ (1− e−i2(m+1)ϕ)

eiϕ − e−iϕ

=
(ei(m+1)ϕ − e−i(m+1)ϕ)

eiϕ − e−iϕ
=

sin((m+ 1)ϕ)

sinϕ
.

We also easily check that

χUm(rx(kπ)) = eimkπ(m+ 1) = (−1)mk(m+ 1).

In summary, we obtained the following result.
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For every q ∈ SU(2), if rx(ϕ) is the unique diagonal matrix conjugate to q with 0 ≤ ϕ ≤
π, then χUm(q) is given by

χUm(q) = χUm(rx(ϕ)) =
sin((m+ 1)ϕ)

sinϕ
.

If we write

κm(ϕ) = χUm(rx(ϕ)) =
sin((m+ 1)ϕ)

sinϕ
,

then for m ≥ 1, we get

κm(ϕ) =
sin((m+ 1)ϕ)

sinϕ
=

sin(mϕ) cosϕ+ cos(mϕ) sinϕ

sinϕ

= cos(mϕ) + κm−1(ϕ) cosϕ.

Note that κ0(ϕ) = 1. The formula for κm(ϕ) still holds for ϕ = kπ. In summary,

κm(ϕ) = cos(mϕ) + κm−1(ϕ) cosϕ, m ≥ 1, κ0(ϕ) = 1. (κ)

The above equation shows that κ0(ϕ), κ1(ϕ), . . . , κm(ϕ) generates the same vector space as
1, cosϕ, . . . , cosmϕ.

It is known from Fourier analysis that the space generated by the family of functions
(cosmϕ))m≥0 is dense in the space of even 2π-periodic continuous functions from R to C; for
example, see Folland [23, 21]. Consequently, the family (κm)m≥0 is also dense in the space of
even continuous 2π-periodic functions from R to C. Since the map f 7→ S(f) is a bijection
between the space of central functions of L2(SU(2)) and the space of even continuous 2π-
periodic functions from R to C, we conclude that the family of characters (χUm)m≥0 is dense
in the the space of central functions of L2(SU(2)).

To finish the proof, we use Proposition 4.10(4) which says that the characters χm of
SU(2) form a Hilbert basis of the space of central functions of L2(SU(2)). Since the χUm are
characters of irreducible unitary representations, they are equal to some of the characters χρ
of SU(2), and they are not equivalent since the dimensions m+ 1 of the representing spaces
are different. If some character χρ is not equivalent to one of the χUm , then by Proposition
4.10(4)(a),

〈χUm , χρ〉 = 0, for all m ≥ 0,

but since the χUm are dense in the space of central functions of L2(SU(2)), this implies that
χρ = 0, a contradiction.

The second statement follows from the fact that the unitary representationsW` : SO(3)→
U(PC

2`(2)) are given by

W`(ρq) = U2`(q) q ∈ SU(2), ` ≥ 0.

We now give a more pleasant description of the irreducible representations of SO(3) in
terms of harmonic polynomials.
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5.2 Irreducible Representations of SO(3); Harmonics

Recall that the Laplacian in Rn is given by

∆f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · ·+ ∂2f

∂x2
n

,

where f : Rn → C is twice differentiable. The n-sphere Sn ⊆ Rn+1 is given by

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1}.

Definition 5.1. Let PC
k (n + 1) denote the space of homogeneous polynomials of degree k

in n + 1 ≥ 2 variables with complex coefficients, and let PC
k (Sn) denote the restrictions of

homogeneous polynomials in PC
k (n + 1) to Sn. Let HC

k (n + 1) denote the space of complex
harmonic polynomials , with

HC
k (n+ 1) = {P ∈ PC

k (n+ 1) | ∆P = 0};

in the above equation, we view P as a function on Rn+1. Harmonic polynomials are sometimes
called solid harmonics . Finally, let HC

k (Sn) denote the space of complex spherical harmonics
as the set of restrictions of harmonic polynomials in HC

k (n+ 1) to Sn.

It is not hard to prove that the restriction map from HC
k (n+ 1) to HC

k (Sn) is a bijection,
and thus a linear isomorphism; see Gallier and Quaintance [28] (Section 7.5). The functions
in HC

k (Sn), the spherical harmonics, have been studied extensively. They are the eigenspaces
of the Laplacian on the sphere Sn; see Gallier and Quaintance [28] (Chapter 7). We will
return to these functions later.

The group SO(n+ 1) acts on PC
k (n+ 1) by the (left regular) action

(RQ(P ))(x) = P (Q−1x), Q ∈ SO(n+ 1), P ∈ PC
k (n+ 1), x ∈ Rn+1.

Note that the above formula shows that R is also an action of SO(n+1) on smooth functions
on Rn+1.

The action R on PC
k (n+ 1) is reducible for k ≥ 2. For example, we easily check that the

subspace of PC
2 (n + 1) generated by the polynomial x2

1 + · · · + x2
n+1 is invariant. However,

this action turns out to be irreducible on HC
k (n + 1). This will be shown in Section 6.10.

But first we need to prove that the action of the Laplacian on smooth functions on Rn+1

commutes with the action R. Recall that λQf is the function given by (λQf)(x) = f(Q−1x).

Proposition 5.2. The action of the Laplacian on smooth functions on Rn+1 commutes with
the action R; that is, for every smooth function f on Rn+1, for every Q ∈ SO(n + 1), for
all u ∈ Rn+1, we have

∆(λQf)(u) = (∆f)(Q−1u).
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Proof. For simplicity of notation, write A = Q−1 = Q>. The proof makes heavy use of
the chain rule. If we let h be the function given by h(x) = Ax and view f as a function
y 7→ f(y) of the variable y, if we write g = f ◦ h so that g(x) = f(Ax), then we need to
compute (∂g/∂xj)(u) (x, u ∈ Rn+1), which by the chain rule is given by

∂g

∂xj
(u) = dfh(u)

(
∂h

∂xj
(u)

)
.

Since

h(x) = Ax =

(
n+1∑
j=1

a1jxj, . . . ,

n+1∑
j=1

an+1jxj

)
,

we have
∂h

∂xj
(u) = (a1j, . . . , an+1j)

(independently of u), and since

dfAu(w) =
n+1∑
i=1

wi
∂f

∂yi
(Au),

we obtain
∂g

∂xj
(u) =

n+1∑
i=1

aij
∂f

∂yi
(Au).

To compute ∂2g
∂x2j

(u), we view the function y 7→ ∂f
∂yi

(y) as the function f , so we obtain

∂2g

∂x2
j

(u) =
n+1∑
i=1

aij

n+1∑
k=1

akj
∂2f

∂yi∂yk
(Au),

and thus the Laplacian is given by

∆g(u) =
n+1∑
i=1

n+1∑
j=1

n+1∑
k=1

aijakj
∂2f

∂yi∂yk
(Au).

The right-hand side can be rewritten as

∆g(u) =
n+1∑
i=1

n+1∑
j=1

n+1∑
k=1

aijakj
∂2f

∂yi∂yk
(Au)

=
n+1∑
i=1

(
n+1∑
j=1

a2
ij

)
∂2f

∂y2
i

(Au) + 2
n+1∑
i<k

(
n+1∑
j=1

aijakj

)
∂2f

∂yi∂yk
(Au),
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and since A is an orthogonal matrix, its rows have unit length and are pairwise orthogonal,
which means that

n+1∑
j=1

a2
ij = 1, 1 ≤ i ≤ n+ 1

n+1∑
j=1

aijakj = 0, i < k,

so we obtain

∆g(u) = (∆f)(Au),

which means that ∆(λA−1f)(u) = (∆f)(Au), as claimed.

As a corollary of Proposition 5.2, the vector space HC
k (n + 1) is invariant under R, and

so R : SO(n + 1) → GL(HC
k (n + 1)) is a representation. Since SO(n + 1) is compact and

HC
k (n+ 1) is finite-dimensional, we may assume that R is unitary.

It is shown in Gallier and Quaintance [28] (Section 7.5) that HC
k (n+ 1) has dimension

ak,n+1 =

(
n+ k

k

)
−
(
n+ k − 2

k − 2

)
if n ≥ 1, k ≥ 2, with a0,n+1 = 1 and a1,n+1 = n, For n = 2, we get ak,3 = 2k + 1. Here is a
list of bases of the homogeneous harmonic polynomials of degree k in three variables up to
k = 4.

k = 0 1

k = 1 x, y, z

k = 2 x2 − y2, x2 − z2, xy, xz, yz

k = 3 x3 − 3xy2, 3x2y − y3, x3 − 3xz2, 3x2z − z3,

y3 − 3yz2, 3y2z − z3, xyz

k = 4 x4 − 6x2y2 + y4, x4 − 6x2z2 + z4, y4 − 6y2z2 + z4,

x3y − xy3, x3z − xz3, y3z − yz3,

3x2yz − yz3, 3xy2z − xz3, 3xyz2 − x3y.

To prove that the representations R : SO(n + 1) → U(HC
k (n + 1)) are irreducible we

restrict ourselves to the case where n = 2. In order to deal with the case where n > 2,
we need results from the next chapter. Since these regular representations map to different
spaces, for clarity we index them by k, that is, we write Rk : SO(n+ 1)→ U(HC

k (n+ 1)).

Proposition 5.3. The representations Rk : SO(3)→ U(HC
k (3)) are irreducible. In fact, the

representations Rk : SO(3)→ U(HC
k (3)) and Wk : SO(3)→ U(PC

2k(2)) are equivalent.
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Proof. By Peter–Weyl II (Theorem 4.16), the representation Rk : SO(3) → U(HC
k (3)) is

equivalent to the direct sum of a finite number of irreducible representations W`j : SO(3)→
U(PC

2`j
(2)), so that we have an isomorphism

Rk ≈
p⊕
j=1

W`j , `j ≤ `j+1.

Since dim(HC
k (3)) = 2k+1 and dim(U(PC

2`j
(2)) = 2`j+1, if we can prove that `j ≥ k for some

j, then 2k+1 =
∑p

j=1(2`j+1) implies that p = 1 and k = `1, and so Rk : SO(3)→ U(HC
k (3))

is equivalent to Wk : SO(3)→ U(PC
2k(2)).

The key point is to figure out what is the value of the character χW`
on the rotation of

angle ϕ and axis Ox given by

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 .

The trick is that Rx(ϕ) is the rotation in SO(3) corresponding to the (familiar) quaternion

rx(ϕ/2) =

(
eiϕ/2 0

0 e−iϕ/2

)
.

This fact is easily verified by direct computation. But remember that W` is given by

W`(ρq) = U2`(q) q ∈ SU(2), ` ≥ 0,

which proves that
χW`

(ρq) = tr(W`(ρq)) = tr(U2`(q)) = χU2`
(q).

If we apply the above equation to q = rx(ϕ/2) and Rx(ϕ), we obtain

χW`
(Rx(ϕ)) = χU2`

(rx(ϕ/2)) =
2∑̀
j=0

ei(2`−2j)ϕ/2 =
2∑̀
j=0

ei(`−j)ϕ.

Since Rk : SO(3) → U(HC
k (3)) is equivalent to a finite direct sum of p irreducible repre-

sentations W`j : SO(3) → U(PC
2`j

(2)), by Proposition 4.18, the value of the character χRk

on Rx(ϕ) is the sum of the values of the characters χW`j
on Rx(ϕ), and by the above

equation, it is an integral combination of terms of the form eijϕ, with |j| ≤ `p. Conse-
quently, if we find an eigenvector of Rk(Rx(ϕ)) for the eigenvalue e−ikϕ, the representation
Wk : SO(3) → U(PC

2k(2)) must occur. Consider P (x) = P (x1, x2, x3) = (x2 + ix3)k. We
immediately check that ∆P = 0, and since

Rx(ϕ)−1 = Rx(−ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 ,
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we obtain

(Rk(Rx(ϕ)))(P ) = P (Rx(−ϕ))

= P ((cosϕ)x2 + (sinϕ)x3,−(sinϕ)x2 + (cos θ)x3)

= ((cosϕ)x2 + (sinϕ)x3 + i(−(sinϕ)x2 + (cos θ)x3))k

= (cosϕ− i sinϕ)x2 + i(cosϕ− i sinϕ)x3)k

= e−ikϕ(x2 + ix3)k = e−ikϕP (x),

as desired.

Proposition 5.3 also shows that the representations Rk : SO(3) → U(HC
k (3)) form a

complete set of irreducible representations of SO(3).

5.3 Factorization of the Unit Quaternions Using

Euler Angles

In order to obtain formulae for the matrix elements of the representations of SU(2) in terms
of special functions, the Jacobi polynomials, it is necessary to understand how to express the
unit quaternions in terms of Euler angles. The key fact is that there are three types of unit
quaternions, rx(ϕ), ry(ψ), rz(θ) that define rotations around the x-axis, y-axis, and z-axis,
respectively, namely

rx(ϕ/2) =

(
e
iϕ
2 0

0 e−
iϕ
2

)
, ry(ψ/2) =

(
cos ψ

2
− sin ψ

2

sin ψ
2

cos ψ
2

)
, rz(θ/2) =

(
cos θ

2
i sin θ

2

i sin θ
2

cos θ
2

)
.

We immediately check that the rotations corresponding to rx(ϕ/2), ry(ψ/2), rz(θ/2) under
the homomorphism ρ : SU(2)→ SO(3) (see Theorem 3.9) are given by the matrices

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 , Ry(ψ) =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 ,

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

So Rx(ϕ) is a rotation by ϕ around the x-axis (with the plane orthogonal to the x-axis ori-
ented by (e2, e3, e1)), Ry(ψ) is a rotation by ψ around the −y-axis (with the plane orthogonal
to the −y-axis oriented by (e1, e3,−e2), or equivalently a rotation by −ψ around the y-axis
with the plane orthogonal to the y-axis oriented by (e3, e1, e2)), and Rz(θ) is a rotation by θ
around the z-axis (with the plane orthogonal to the z-axis oriented by (e1, e2, e3)).
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Remark: Beware that a number of authors switch the roles of x and z, in particular Vilenkin
[70], and most books on quantum mechanics. As a consequence, the orientation of the plane
normal to the y-axis is flipped. In this case, Rx(ϕ) and Rz(ϕ) are swapped, but Ry(ψ)
becomes Ry(−ψ), which is a rotation by ψ around the y-axis (with the plane orthogonal to
the y-axis oriented by (e3, e1, e2)). Vilenkin denotes our matrices rx, ry, rz as ω3, ω2, ω1.

The issue of deciding exactly how a quaternion acts on R3 as a rotation is quite confusing,
and we feel that some clarifications are in order. First, we need to decide whether a vector
(x, y, z) ∈ R3 is represented as a skew-hermitian matrix (a matrix in su(2)) or as a hermitian
matrix. The first option seems to be followed by most mathematicians and by the computer
graphics community. On the other hand, physicists seem to prefer hermitian matrices to
skew-hermitian matrices. Of course, if S is a skew-hermitian matrix, then iS is a hermitian
matrix, and this is the method used to make the conversion, although sometimes (−i)S is
used instead.

In the first method, we embed R3 into su(2) ⊆ H using the map

su(x, y, z) =

(
ix y + iz

−y + iz −ix

)
, (x, y, z) ∈ R3.

Then q ∈ SU(2) defines the map ρq (on R3) given by

ρq(x, y, z) = su−1(q su(x, y, z)q∗).

This is the method used in this book and in Gallier and Quaintance [28] (Chapter 15). It is
possible to derive an explicit orthogonal matrix corresponding to ρq; see Proposition 15.5.

The representation of R3 as the space of hermitian matrices has several variations, and
this is the source of the confusion. One option is to represent (x, y, z) ∈ R3 by the hermitian
matrix

(−i)su(x, y, z) =

(
x z − iy

z + iy −x

)
.

A nice feature of this representation is that(
x z − iy

z + iy −x

)
= xσ3 + yσ2 + zσ1,

where σ1, σ2, σ3 are the Pauli spin matrices , where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

This representation is equivalent to the representation using su and yields the exact same
rotation ρq. See Gallier and Quaintance [28] (Chapter 15).
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The second option, apparently adopted in most of the quantum mechanics literature is
to use a version of isu, except that x and z are swapped and y becomes −y. Vilenkin [70]
(Chapter II, Section 1) uses the map

(x1, y1, z1) 7→
(

z1 x1 + iy1

x1 − iy1 −z1

)
,

so in terms of our embedding,

z1 = x, x1 = z, y1 = −y.

We can check that the unit quaternions rx(ϕ/2), ry(ψ/2), rz(θ/2) induce the rotations Rz(ϕ),
Ry(−ψ), and Rx(θ), namely

Rz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , Ry(−ψ) =

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

 ,

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

These are the rotation matrices used in most books on quantum mechanics, including Sakurai
and Napolitano [57]. Using our notation, Vilenkin factors a unit quaternion as

q = rx(ϕ/2)rz(θ/2)rx(ψ/2);

see page 99 of Vilenkin [70]. This quaternion induces the rotation Rz(ϕ)Rx(θ)Rz(ψ).

Wigner [77] (page 158) uses the map

(x1, y1, z1) 7→
(
−z1 x1 + iy1

x1 − iy1 z1

)
,

so in terms of our embedding,

z1 = −x, x1 = z, y1 = −y.

With Wigner’s map, we have(
−z1 x1 + iy1

x1 − iy1 z1

)
= x1σ1 − y1σ2 − z1σ3,

and Wigner calls σ1,−iσ2,−iσ3 the Pauli matrices! These days, most books on quantum
mechanics seem to be using the definition of the Pauli matrices σ1, σ2, σ3 that we gave
above. For instance, this is the definition given in Sakurai and Napolitano [57] (see page
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160). We can check that the unit quaternions rx(ϕ/2), ry(ψ/2), rz(θ/2) induce the rotations
Rz(ϕ), Ry(ψ), and Rx(−θ), namely

Rz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , Ry(ψ) =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 ,

Rx(−θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 .

Using our notation, Wigner [77] factors a unit quaternion q as

q = rx(−ϕ/2)ry(θ/2)rx(−ψ/2);

see Formula (15.15) with ϕ, θ, ψ replaced by α, β, γ. This quaternion induces the rotation
Rz(−ϕ)Ry(θ)Rz(−ψ).

One final word of caution. In quantum mechanics, it is customary to express rx(−ϕ/2),
ry(ψ/2), rz(−θ/2) in terms of the Pauli spin matrices as

rx(−ϕ/2) = e−i
ϕσ3
2 , ry(ψ/2) = e−i

ψσ2
2 , rz(−θ/2) = e−i

θσ1
2 ;

beware of the different sign in ry(ψ/2). See Formula 3.91 on page 168 of Sakurai and Napoli-
tano [57], and remember that x and z are swapped.

Analogously to the factorization of rotation matrices in terms of the Euler angles, we will
prove that every unit quaternion q can be written in the form

q = u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2).

Multiplying out the above matrices, we get

u(ϕ, θ, ψ) =

(
e
iϕ
2 0

0 e−
iϕ
2

)(
cos θ

2
i sin θ

2

i sin θ
2

cos θ
2

)(
e
iψ
2 0

0 e−
iψ
2

)

=

 cos θ
2
e
i(ϕ+ψ)

2 i sin θ
2
e
i(ϕ−ψ)

2

i sin θ
2
e−

i(ϕ−ψ)
2 cos θ

2
e−

i(ϕ+ψ)
2

 .

The reader can reconfirm by inspection that u(ϕ, θ, ψ)−1 = u(ϕ, θ, ψ)∗.

Proposition 5.4. Every unit quaternion

q =

(
α β

−β α

)
, α, β ∈ C, |α|2 + |β|2 = 1
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can be expressed as

q = u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2) =

(
e
iϕ
2 0

0 e−
iϕ
2

)(
cos θ

2
i sin θ

2

i sin θ
2

cos θ
2

)(
e
iψ
2 0

0 e−
iψ
2

)
.

If β = 0, we can pick θ = 0 and ϕ and ψ, such that

α = ei
(ϕ+ψ)

2 ,

and in particular, ψ = 0. If α = 0, we can pick θ = π and ϕ and ψ, such that

β = ei
(ϕ−ψ+π)

2 ,

and in particular, ψ = π. If αβ 6= 0 and if we require that

0 ≤ ϕ < 2π, 0 < θ < π, −2π ≤ ψ < 2π,

then ϕ and ψ are unique. In this case,

cos θ = 2|α|2 − 1, eiϕ = − αβi

|α||β|
, e

iψ
2 =

α

|α|
e−

iϕ
2 .

Proof. Since |α|2 + |β|2 = 1, we can write α = reiω and β =
√

1− r2eiσ, with 0 ≤ r ≤ 1 and
where ω and σ are defined modulo 2π. We will see shortly that it is convenient to assume
that 0 ≤ ω < 2π and π

2
≤ σ < 5π

2
. The equation q = u(ϕ, θ, ψ) is equivalent to the two

equations

reiω = cos
θ

2
e
i(ϕ+ψ)

2

√
1− r2eiσ = i sin

θ

2
e
i(ϕ−ψ)

2 = sin
θ

2
e
i(ϕ−ψ+π)

2 ,

since i = e
iπ
2 . If r = 1, we pick θ = 0 and then eiω = e

i(ϕ+ψ)
2 , so we choose ϕ, ψ so that

2ω = ϕ + ψ. If r = 0, we pick θ = π and then eiσ = e
i(ϕ−ψ+π)

2 , so we choose ϕ, ψ so that
2σ = ϕ−ψ+ π. If 0 < r < 1, namely αβ 6= 0, then there is a unique θ, such that 0 < θ < π
and r = cos θ

2
,
√

1− r2 = sin θ
2
. The angles ϕ and ψ must satisfy the equations

ω + k12π =
(ϕ+ ψ)

2

σ + k22π =
(ϕ− ψ + π)

2
,

with k1, k2 ∈ Z, and these are equivalent to the equations

ϕ = ω + σ − π

2
+ (k1 + k2)2π

ψ = ω − σ +
π

2
+ (k1 − k2)2π,
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with k1, k2 ∈ Z. These equations always have solutions, but we would like to show that if
we require that 0 ≤ ϕ < 2π and −2π ≤ ψ < 2π, then ϕ and ψ are unique.

First, since −σ + π
2

= −(σ − π
2
), we let δ = σ − π

2
so that the above equations become

ϕ = ω + δ + (k1 + k2)2π

ψ = ω − δ + (k1 − k2)2π,

with k1, k2 ∈ Z, and we may assume that 0 ≤ ω < 2π, 0 ≤ δ < 2π. Since 0 ≤ ω, δ < 2π, we
have 0 ≤ ω + δ < 4π.

If ω + δ < 2π, since ω, δ ≥ 0, we have −2π < ω − δ < 2π, so we must pick k1 = 0 and
k2 = 0 to make sure that 0 ≤ ϕ < 2π and −2π ≤ ψ < 2π.

Let us now assume that 2π ≤ ω + δ < 4π. Since 0 ≤ ω < 2π, 0 ≤ δ < 2π, we have
−2π < ω − δ < 2π.

Case 1 . ω−δ ≥ 0. Since 2π ≤ ω+δ < 4π, by subtracting 2π we get 0 ≤ ω+δ−2π < 2π.
This can be achieved by setting k1 = −1, k2 = 0. Then, since ω − δ ≥ 0, we have

ω − δ − 2π = ω − δ − 2π ≥ −2π.

Consequently,

ϕ = ω + δ − 2π

ψ = ω − δ − 2π

satisfy the required conditions 0 ≤ ϕ < 2π and −2π ≤ ψ < 2π.

Case 2 . ω−δ < 0. Since 2π ≤ ω+δ < 4π, by subtracting 2π we get 0 ≤ ω+δ−2π < 2π.
This can be achieved by setting k1 = 0, k2 = −1. Then, since ω − δ < 0, we have

ω − δ + 2π = ω − δ + 2π < 2π.

Consequently,

ϕ = ω + δ − 2π

ψ = ω − δ + 2π

satisfy the required conditions 0 ≤ ϕ < 2π and −2π ≤ ψ < 2π.

The last part is immediately verified.

An interesting corollary of Proposition 5.4 is the fact that every rotation matrix Q ∈
SO(3) can be written in the terms of the Euler angles as a product

Q = Rx(ϕ)Rz(θ)Rx(ψ),



5.4. MULTIPLICATION OF QUATERNIONS IN TERMS OF EULER ANGLES 309

namely

Q =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 .

But in this case, we may assume that 0 ≤ ψ < 2π. This is because both q and −q define
the same rotation ρq, but since eiπ = e−iπ = −1, we have −rx(ψ/2) = rx(

ψ+2π
2

), so if
−2π ≤ ψ < 0, then 0 ≤ ψ + 2π < 2π and Q = Rx(ϕ)Rz(θ)Rx(ψ + 2π).

One might wonder what happens if we make the bold move of replacing the real angle
parameters ϕ, θ, ψ by arbitrary complex numbers? This certainly makes sense since the
complex power series z 7→ ez, z 7→ cos z, 7→ sin z are perfectly well-defined. We see immedi-
ately that det(u(ϕ, θ, ψ)) = 1, so these complex matrices belong to SL(2,C). Remarkably,
every matrix A ∈ SL(2,C) can be expressed as A = u(ϕ, θ, ψ) for some choice of complex
numbers ϕ, θ, ψ. We also have uniqueness of the representation if ϕ, θ, ψ ∈ C satisfy the
conditions

0 < <(θ) < π, 0 ≤ <(ϕ) < 2π, −2π ≤ <(ψ) < 2π.

See Vilenkin [70] (Chapter III, Section 1.4). In some sense, the above fact illustrates the fact
that SL(2,C) is the complexification of SU(2).

5.4 Multiplication of Quaternions in Terms of Euler

Angles

Let q1 and q2 be two unit quaternions (q1, q2 ∈ SU(2)) expressed in terms of Euler angles as
q1 = rx(ϕ1/2)rz(θ1/2)rx(ψ1/2) and q2 = rx(ϕ2/2)rz(θ2/2)rx(ψ2/2). It is possible, although
somewhat complicated, to express the product q = q1q2 as q = rx(ϕ/2)rz(θ/2)rx(ψ/2) for
some Euler angles ϕ, θ, ψ which can be computed from ϕ1, θ1, ψ1, ϕ2, θ2, ψ2. Details of this
computation are given in Vilenkin [70] (Chapter III, Section 1.2).

The key point is that

q = q1q2 = rx(ϕ1/2)rz(θ1/2)rx(ψ1/2)rx(ϕ2/2)rz(θ2/2)rx(ψ2/2)

= rx(ϕ1/2)rz(θ1/2)rx((ϕ2 + ψ1)/2)rz(θ2/2)rx(ψ2/2),

so if we can find α, β, γ, such that

rx(α/2)rz(β/2)rx(γ/2) = rz(θ1/2)rx((ϕ2 + ψ1)/2)rz(θ2/2),

then

q = rx(ϕ1/2)rx(α/2)rz(β/2)rx(γ/2)rx(ψ2/2)

= rx((ϕ1 + α)/2)rz(β/2)rx((ψ2 + γ)/2),
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and so

q = q1q2 = rx(ϕ/2)rz(θ/2)rx(ψ/2), with ϕ = ϕ1 + α, θ = β, ψ = ψ2 + γ.

The problem reduces to finding some Euler angles α, β, γ, such that

rx(α/2)rz(β/2)rx(γ/2) = q = rz(θ1/2)rx(ϕ2/2)rz(θ2/2),

where for simplicity of notation we use the variable ϕ2 instead of ϕ2 +ψ1. From Section 5.3,
we have

rx(ϕ2/2)rz(θ2/2) =

 cos θ2
2
e
iϕ2
2 i sin θ2

2
e
iϕ2
2

i sin θ2
2
e−

iϕ2
2 cos θ2

2
e−

iϕ2
2

 ,

so

q =

(
cos θ1

2
i sin θ1

2

i sin θ1
2

cos θ1
2

) cos θ2
2
e
iϕ2
2 i sin θ2

2
e
iϕ2
2

i sin θ2
2
e−

iϕ2
2 cos θ2

2
e−

iϕ2
2

 .

Multiplying out and using Proposition 5.4, we find that α, β, γ must satisfy the equations

cos β = cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2

eiα =
sin θ1 cos θ2 + cos θ1 sin θ2 cosϕ2 + i sin θ2 sinϕ2

sin β

e
i(α+γ)

2 =
cos θ1

2
cos θ2

2
e
iϕ2
2 − sin θ1

2
sin θ2

2
e
−iϕ2

2

cos β
2

.

It is shown in Vilenkin that we obtain

tanα =
sin θ2 sinϕ2

cos θ1 sin θ2 cosϕ2 + sin θ1 cos θ2

tan γ =
sin θ1 sinϕ2

sin θ1 cos θ2 cosϕ2 + cos θ1 sin θ2

,

and β is determined by the equation

cos β = cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2,

where 0 ≤ θ ≤ π. Then ϕ2 is replaced by ϕ2 + ψ1 in the equations above and we have

ϕ = ϕ1 + α, θ = β, ψ = ψ2 + γ.

It should be noted that the equations for α and γ do not determine these angles uniquely
when α ∈ [0, 2π) and γ ∈ [−2π, 2π).

Since the rotation matrix R = Rx(ϕ)Rz(θ)Rx(ψ) corresponds to the quaternion q =
rx(ϕ/2)rz(θ/2)rx(ψ/2) under the homomorphism ρ : SU(2) → SO(3), with R = ρq (see
Theorem 3.9), exactly the same formulae as above can be used to determine ϕ, θ, ψ, so that

Rx(ϕ)Rz(θ)Rx(ψ) = Rx(ϕ1)Rz(θ1)Rx(ψ1)Rx(ϕ2)Rz(θ2)Rx(ψ2),

except that here γ ∈ [0, 2π).
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5.5 Dehomogenized Representations of SL(2,C)
and SU(2)

In Example 3.8, we defined the irreducible representations Um : SU(2) → GL(PC
m(2)) of

SU(2), whose representing spaces are the vector spaces PC
m(2) of homogeneous polynomials

in two variables. We also said that it is customary, especially in the physics literature, to
index homogeneous polynomials in terms of ` = m/2, which is an integer when m is even
but a half integer when m is odd. In this context, in terms of ` = m/2, a homogeneous
polynomial is written as

P (z1, z2) =
∑̀
k=−`

ckz
`−k
1 z`+k2 ,

where it is assumed that `+ k = j, where j takes the integral values j = 0, 1, . . . , 2` = m, so
that `−k = 2`−(`+k) = 2`−j takes the values 2`, 2`−1, . . . , 0. Note that k = j−` = j−m/2
with j = 0, 1, . . . , 2` = m, so k is an integer only if m is even. If m is odd, say m = 2h+ 1,
then ` = h+ 1

2
and k takes the 2`+ 1 = m+ 1 values

−h− 1

2
, −(h− 1)− 1

2
, . . . ,−1

2
,

1

2
, 1 +

1

2
, . . . , h+

1

2
,

and so k 6= 0. If m is even, say m = 2h, then ` = h and k takes the 2`+ 1 = m+ 1 values

−h, −(h− 1), . . . ,−1, 0, 1, . . . , h− 1, h.

For example, if ` = 3
2
, then k takes the four values

−3

2
, −1

2
,

1

2
,

3

2
,

and if ` = 2, then k takes the five values

−2, −1, 0, 1, 2.

The representing space is then PC
2`(2) and it has dimension 2` + 1. Using the standard

technique of “dehomogenizing” and “homogenizing,” we can use the space of complex poly-
nomials of degree 2` + 1 in one variable z instead of the space PC

2`(2) of homogeneous
polynomials in two variables z1, z2. Given a homogeneous polynomial P (z1, z2) of degree
m = 2`, by dehomogenizing we obtain the polynomial Q(z) of degree m = 2` given by

Q(z) = P (z, 1). (dehomog)

So given

P (z1, z2) =
∑̀
k=−`

ckz
`−k
1 z`+k2 ,
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we obtain

Q(z) =
∑̀
k=−`

ckz
`−k. (Q)

Observe that due to our indexing scheme, the coefficients of Q have “funny” indices. For
example, for ` = 2, so that m = 2` = 4,

Q(z) = c−2z
4 + c−1z

3 + c0z
2 + c1z + c2,

and when ` = 5/2, so that m = 2` = 5, we have

Q(z) = c−5/2z
5 + c−3/2z

4 + c−1/2z
3 + c1/2z

2 + c3/2z + c5/2.

Conversely, given a polynomial Q(z) of degree m = 2`, by homogenizing we obtain the
homogeneous polynomial P (z1, z2) of degree m = 2` given by

P (z1, z2) = z2`
2 Q

(
z1

z2

)
. (homog)

Definition 5.2. Following Vilenkin, we denote the space of polynomials of degree m = 2`
with complex coefficients in one variable by PC

` .

Note that the “funny” index ` is a half integer when m is odd. We can convert our
representations Um : SU(2) → GL(PC

m(2)) to representations in the spaces PC
` . Actually,

until we use the fact that SU(2) is compact, we consider representations of SL(2,C).

Definition 5.3. Given any matrix

A =

(
a b
c d

)
, a, b, c, d ∈ C, ad− bc = 1,

in SL(2,C), for any polynomial Q ∈ PC
` , define T`(A)(Q(z)) by

T`(A)(Q(z)) = (bz + d)2`Q

(
az + c

bz + d

)
. (T`)

It is immediately verified that the above formula yields a representation T` : SL(2,C)→
GL(PC

` ), which yields a representation T` : SU(2) → GL(PC
` ) when restricted to the sub-

group SU(2) of SL(2,C).

Note that the above formula for T`(A)(Q(z)) is not what we would obtain directly from
the representation U`. We are using Vilenkin’s formula to facilitate comparison with his
exposition; see Vilenkin [70] (Chapter III, Section 2.1) and Kosmann-Schwarzbach [45]. With
our version, we define the representations T` as

T`(A)(Q(z)) = (−cz + a)2`Q

(
dz − b
−cz + a

)
.



5.6. THE LIE ALGEBRA REPRESENTATION ASSOCIATED WITH T` 313

In its homogeneous form, Vilenkin’s version of the representation U` is

U v
` (A)(Q(z1, z2)) = Q(az1 + cz2, bz1 + dz2).

Observe that (
az1 + cz2

bz1 + dz2

)
=

(
a c
b d

)(
z1

z2

)
= A>

(
z1

z2

)
,

but in our case (
dz1 − bz2

−cz1 + az2

)
=

(
d −b
−c a

)(
z1

z2

)
= A−1

(
z1

z2

)
.

We immediately check that if

Y =

(
b d
−a −c

)
,

then

Y A> = A−1Y,

and det(Y ) = ad−bc = 1. Then Y defines a linear isomorphism of PC
2`(2) given byQ(z1, z2) 7→

Q(bz1 + dz2,−az1 − cz2), and this map is an equivalence between the representations U`
and U v

` (we leave the details as an exercise). We also leave it as an exercise (using the
dehomogenization and the homogenization maps, which are linear isomorphisms) to check
that the representation U2` : SL(2,C) → GL(PC

2`(2)) is equivalent to the representation
T` : SL(2,C) → GL(PC

` ) and similarly, the representation U2` : SU(2) → GL(PC
2`(2)) is

equivalent to the representation T` : SU(2) → GL(PC
` ). In particular, the representations

T` : SU(2)→ GL(PC
` ) form a complete set of irreducible representations of SU(2).

5.6 The Lie Algebra Representation Associated with

T`

We will need to define an SU(2)-invariant hermitian inner product on each space PC
` , and

for this, it is useful to figure out what is the derivative of the representation T` : SL(2,C)→
GL(PC

` ) at the identity. This yields a representation t` : sl(2,C) → Hom(PC
` ,PC

` ), which is
a representation of Lie algebras! Following Kosmann-Schwarzbach [45] (Problem 9), we use
the standard technique of “passing a curve” though the identity whose tangent vector for
t = 0 is a vector in the tangent space. So for any tangent vector X ∈ sl(2,C),

X =

(
α β
γ δ

)
, α + δ = 0,

we consider the curve

C(t) = etX =

(
a(t) b(t)
c(t) d(t)

)
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through I2, such that C ′(0) = X, and by the chain rule, we have

(t`(X))(Q(z)) = (d(T`)I(X))(Q(z)) =
d

dt

(
T`(C(t))(Q(z))

)∣∣∣
t=0

=
d

dt

(
(b(t)z + d(t))2`Q

(
a(t)z + c(t)

b(t)z + d(t)

))∣∣∣∣
t=0

.

We have

d

dt

(
a(t)z + c(t)

b(t)z + d(t)

)
=

(a′(t)z + c′(t))(b(t)z + d(t))− (a(t)z + c(t))(b′(t)z + d′(t))

(b(t)z + d(t))2
,

and since a(0) = d(0) = 1, b(0) = c(0) = 0, a′(0) = α, b′(0) = β, c′(0) = γ, d′(0) = δ,

d

dt

(
a(t)z + c(t)

b(t)z + d(t)

)∣∣∣∣
t=0

= αz + γ − z(βz + δ) = −βz2 + (α− δ)z + γ,

so we obtain

(t`(X))(Q(z)) = 2`(βz + δ)Q(z) + (−βz2 + (α− δ)z + γ)
d

dz
(Q(z)),

which can be written as

t`(X) = 2`(βz + δ) + (−βz2 + (α− δ)z + γ)
d

dz
,

viewed as a differential operator on polynomials Q(z) in z. In summary, we obtained the
following result.

Proposition 5.5. For any representation T` : SL(2,C) → GL(PC
` ), the derivative t` =

d(T`)I of T` at the identity is the representation t` : sl(2,C)→ Hom(PC
` ,PC

` ) given by

t`(X) = 2`(βz + δ) + (−βz2 + (α− δ)z + γ)
d

dz
(t`)

viewed as a differential operator on polynomials Q(z) in z, for any

X =

(
α β
γ δ

)
∈ sl(2,C).

Now su(2) is the real vector space consisting of skew-hermitian matrices with zero trace,
which are of the form

X =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
, u1, u2, u3 ∈ R,

and a basis (of course, over R) is given by the matrices(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)
.
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Observe that these are the matrices iσ3, iσ2, iσ1, where σ1, σ2, σ3 are the Pauli spin matrices.
The exponential map exp: su(2)→ SU(2) is very nicely expressed. For any X ∈ su(2) given
by

X =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,

if we write θ =
√
u2

1 + u2
2 + u2

3, then

eX = cos θI +
sin θ

θ
X, θ 6= 0,

and e0 = I. It is not hard to prove that the map exp: su(2) → SU(2) is surjective. See
Gallier and Quaintance [29] (Section 15.5).

The Lie algebra sl(2,C) is the complex vector space consisting of all complex 2×2 matrices
with zero trace, and since the above three matrices are linearly independent over C, they also
form a basis of sl(2,C). However, for the sake of consistency with other sources, especially
Kosmann-Schwarzbach and Vilenkin, it is preferable to use the basis denoted (ξ1, ξ2, ξ3) in
Kosmann-Schwarzbach [45] (Chapter 5, Section 1).

Definition 5.4. The basis (ξ1, ξ2, ξ3) of sl(2,C) (over C), which is also a basis of su(2) (over
R), is given by

ξ1 =
1

2

(
0 i
i 0

)
, ξ2 =

1

2

(
0 −1
1 0

)
, ξ3 =

1

2

(
i 0
0 −i

)
.

It is denoted (a1, a2, a3) in Vilenkin [70] (Chapter III, Section 1.3). Note that these are the
matrices (i/2)σ1, (−i/2)σ2, (i/2)σ3, where σ1, σ2, σ3 are the Pauli spin matrices.

It is easily verified that we have the following nice cyclic equations regarding Lie brackets:

[ξ1, ξ2] = ξ3, [ξ2, ξ3] = ξ1, [ξ3, ξ1] = ξ2.

The basis (ξ1, ξ2, ξ3) also has the advantage that

eϕξ3 = rx(ϕ/2), eθξ2 = ry(θ/2), eψξ1 = rz(ψ/2).

If we pick the following basis for so(3),

E1 =

0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

0 −1 0
1 0 0
0 0 0

 ,

then we easily check that

eϕE1 = Rx(ϕ), e−θE2 = Ry(θ), eψE3 = Rz(ψ).
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The basis (E1, E2, E3) also satisfies the cyclic equations regarding Lie brackets:

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.

Observe that the derivative dρI : su(2) → so(3) of the group homomorphism ρ : SU(2) →
SO(3) is a Lie algebra isomorphism given by

dρI(ξ1) = E3, dρI(ξ2) = −E2, dρI(ξ3) = E1.

The fact that E1 and E3 are permuted is compensated by the fact that ξ2 is mapped to −E2.

Remark: The swap between ξ1 and ξ3 has to do with fact that Vilenkin and Kosmann-
Schwarzbach swap x and z.

Definition 5.5. In quantum physics, it is customary to define the hermitian matrices
Jx, Jy, Jz given by

Jx = iE1, Jy = iE2, Jz = iE3,

and under the conventions used by physicists the rotations Rx(α), Ry(−β), Rz(γ) are ex-
pressed as

Rx(α) = e−iαJx , Ry(−β) = e−iβJy , Rz(γ) = e−iγJz .

Observe that according to the quantum physics notation, e−iβJy = Ry(−β) using our
definition of Ry(β), namely

Ry(−β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 .

See the discussion before Proposition 5.4.

It is useful to obtain formulae for the action of t` on the basis (ξ1, ξ2, ξ3) of sl(2,C). Using
Formula (t`), we obtain

t`(ξ1) = i`z +
i

2
(1− z2)

d

dz
(t1)

t`(ξ2) = −`z +
1

2
(1 + z2)

d

dz
(t2)

t`(ξ3) = i

(
z
d

dz
− `
)
. (t3)

It is instructive to see what is the action of the above operators on the basis of PC
` consisting

of the 2`+ 1 polynomials z`−k, k = −`,−`+ 1, . . . ,+`. We obtain

t`(ξ1)z`−k =
i

2
(`− k)z`−k−1 +

i

2
(`+ k)z`−k+1 (t4)

t`(ξ2)z`−k =
1

2
(`− k)z`−k−1 − 1

2
(`+ k)z`−k+1 (t5)

t`(ξ3)z`−k = −ikz`−k. (t6)
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These formulae can be made more revealing by introducing the linear maps H+, H−, H3 on
sl(2,C) given by

H+ = it`(ξ1)− t`(ξ2) = − d

dz
(t7)

H− = it`(ξ1) + t`(ξ2) = −2`z + z2 d

dz
(t8)

H3 = it`(ξ3) = `− z d
dz
. (t9)

Remark: Kosmann-Schwarzbach defines J+, J−, J3 as

J+ = iξ1 − ξ2 =

(
0 0
−1 0

)
, J− = iξ1 + ξ2 =

(
0 −1
0 0

)
, J3 = iξ3 =

1

2

(
−1 0
0 1

)
,

and so H+ = t`(J+), H− = t`(J−), H3 = t`(J3). In quantum physics, the linear operator H3

on sl(2,C) is an observable. Another notation found in the literature, for example Dieudonné
[11] (Chapter XXI, Section 9) is X+ = −J−, X− = −J+, H = −2J3, that is,

X− =

(
0 0
1 0

)
, X+ =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
.

In Serre [64] (Chapter IV), X+ is denoted X and X− is denoted Y .

Using the formulae (t7), (t8), (t9), we obtain

H+z
`−k = −(`− k)z`−k−1 (H+)

H−z
`−k = −(`+ k)z`−k+1 (H−)

H3z
`−k = kz`−k. (H3)

In all of the above formulae, recall that k = −`,−`+ 1, . . . ,+`.

The above formulae show the following interesting facts:

(1) The polynomial z`−k is an eigenvector of H3 for the eigenvalue k.

(2) The linear map H+ sends z`−k to an eigenvector of H3 for the eigenvalue k + 1. In
particular, when k = `, H+(1) is the zero polynomial.

(3) The linear map H− sends z`−k to an eigenvector of H3 for the eigenvalue k − 1. In
particular, when k = −`, H−(z2`) is the zero polynomial.

The above facts can be used to prove that the representation t` of sl(2,C) is irreducible;
see Section 5.7. Then it can be shown that the representation T` of SL(2,C) and its subgroup
SU(2) is also irreducible.
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Remark: Another interesting linear operator on sl(2,C) is the operator traditionally de-
noted J2 given by

J2 = t`(iξ1)2 + t`(iξ2)2 + t`(iξ3)2 = −(t`(ξ1)2 + t`(ξ2)2 + t`(ξ3)2).

It is easy to see that

J2 = H+H− +H3(H3 − I) = H−H+ +H3(H3 + I).

Using the formulae above, we can check that

J2(z`−k) = `(`+ 1)z`−k.

Thus `(`+ 1) is a common eigenvalue for all basis vectors z`−k. In some sense the operator
J2 behave like a Laplacian. It is called the Casimir operator of the representation t`. In
quantum physics, it an observable of the angular momentum.

5.7 Irreducible Lie Algebra Representations of sl(2,C)
and su(2)

This section assumes some background of Lie algebras and Lie groups. Elementary presen-
tations are found in Carter, Segal and Macdonald [7], Hall [31], and Gallier and Quaintance
[27]. More advanced treatments are given in Dieudonné [11], Duistermaat and Kolk [19],
Fulton and Harris [25], Hall [31], Helgason [35], Humphreys [38], Knapp [44, 43], Samelson
[58], Serre [64, 63], and Varadarajan [67].

In this section, we determine all the irreducible Lie algebra representations of sl(2,C).
The Lie algebra sl(2,C) is a (complex) simple Lie algebra, which means that it is not abelian
and that its only ideals are {0} and sl(2,C) itself. One of the most beautiful result of Lie
theory is that the complex simple(!) Lie algebras fall into four infinite families plus five
exceptional simple Lie algebras. Furthermore, the irreducible representations of the complex
simple Lie algebras can be completely determined. These results are presented in Fulton and
Harris [25] and Knapp [44], among other sources. The determination of the irreducible Lie
algebra representations of sl(2,C) is a “miniature” case.

As a basis of sl(2,C), it is convenient to use the basis (X, Y,H) of Section 5.6, namely

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

We immediately find the equations

[X, Y ] = H, [H,X] = 2X, [H,Y ] = −2Y.

(The Lie bracket [A,B] of two square matrices A and B is defined as [A,B] = AB −BA.)

Since we never actually defined Lie algebra representations, we recall the definition below.
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Definition 5.6. Let K denote the field K = R or K = C and let g be a Lie algebra. If g is
a real Lie algebra, then a Lie algebra representation of g in a K-vector space V is a R-linear
map ρ : g → Hom(V, V ), which means that ρ(λX) = λρ(X) for all λ ∈ R and all X ∈ g. If
g is a complex Lie algebra, then a Lie algebra representation of g in a C-vector space V is
a C-linear map ρ : g→ Hom(V, V ), which means that ρ(λX) = λρ(X) for all λ ∈ C and all
X ∈ g. In both cases, ρ also has the property

ρ([X, Y ])(v) = ρ(X)(ρ(Y )(v))− ρ(Y )(ρ(X)(v)), X, Y ∈ g, v ∈ V. ([−,−])

When no confusion arises, ρ(X)(v) is abbreviated as X · v. With this convention, the above
equation is written

[X, Y ] · v = X · (Y · v)− Y · (X · v), X, Y ∈ g, v ∈ V. ([−,−])

It should be noted that if g is a real Lie algebra and if V is a complex vector space, then
the linear maps ρ(X) : V → V are C-linear.

Definition 5.7. A representation ρ : g → Hom(V, V ) is irreducible if V 6= {0} and if the
only subspaces W of V invariant under ρ(X) for all X ∈ g are W = {0}, and W = V . Note
that if V is a complex space, then W is also a complex subspace of V .

The notion of map of Lie algebra representations is essentially the same as in the case of
groups (see Definition 3.3).

Definition 5.8. Given two representations ρ1 : g → Hom(V1, V1) and ρ2 : g → Hom(V2, V2)
of a Lie algebra g, a map (or morphism) of representations ϕ : ρ1 → ρ2 is a linear map
ϕ : V1 → V2 which is equivariant , which means that the following diagram commutes for
every X ∈ g:

V1
ρ1(X) //

ϕ

��

V1

ϕ

��
V2

ρ2(X)
// V2,

i.e.

ϕ ◦ ρ1(X) = ρ2(X) ◦ ϕ, X ∈ g.

The space of all maps between two representations as above is denoted Homg(ρ1, ρ2). Two
representations ρ1 : g→ Hom(V1, V1) and ρ2 : g→ Hom(V2, V2) are equivalent iff ϕ : V1 → V2

is an invertible linear map.

It should be noted that the map ϕ : V1 → V2 is R-linear if both V1 and V2 are real vector
spaces (in which case g is a real Lie algebra), and C-linear if both V1 and V2 are complex
vector spaces (in which case g is a real or a complex Lie algebra).
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As in Section 9.3, given a real Lie algebra g we can construct its complexification gC,
which is the complex Lie algebra whose carrier is the complex vector space g⊕ ig as a direct
sum of real subspaces (technically, (gC)|R = g ⊕ ig, see the beginning of Section 9.3) with
the Lie bracket given by

[u+ iv, x+ iy]C = [u, x]− [v, y] + i([u, y] + [v, x]).

Then for any representation ρ : g → Hom(V, V ) with V a complex vector space, we obtain
the complex representation ρC : gC → Hom(V, V ) given by

ρC(X + iY ) = ρ(X) + iρ(Y ), X, Y ∈ g.

Since ρ(X) : V → V and ρ(Y ) : V → V are C-linear maps of the complex vector space V ,
iρ(Y ) : V → V is also a C-linear map, and so ρC(X + iY ) makes sense. Observe that the
restriction of ρC to g is the original representation ρ : g→ Hom(V, V ).

We have the following useful result which shows that for a real Lie algebra g and a
complex vector space V , the study of the representations ρ : g→ Hom(V, V ) is equivalent to
the study of the complex representations ρC : gC → Hom(V, V ).

Proposition 5.6. Let g be a real Lie algebra and let V be a complex vector space V . There
is a bijection between the set of representations ρ : g→ Hom(V, V ) of g in V and the set of
representations ρ′ : gC → Hom(V, V ) of gC in V given by the map ρ 7→ ρC, whose inverse
is the restriction of ρ′ to g. The representation ρ : g → Hom(V, V ) is irreducible iff the
representation ρC : gC → Hom(V, V ) is irreducible.

Proof. We already explained the reason for the bijection. Suppose that ρ : g → Hom(V, V )
is irreducible, and let W be any subspace of V invariant under ρC(X + iY ) for all X, Y ∈ g.
Then by setting Y = 0, the subspace W is invariant under ρ(X) for all X ∈ g, and since
ρ : g→ Hom(V, V ) is irreducible, we must have W = {0} or W = V , so ρC is also irreducible.

Let us now assume that ρC : gC → Hom(V, V ) is irreducible and let W be any subspace of
V invariant under ρ(X) for all X ∈ g. Since W is a complex subspace, we have ρC(X+iY ) =
ρ(X) + iρ(Y ) ∈ W for all X, Y ∈ g, and since ρC : gC → Hom(V, V ) is irreducible, we must
have W = {0} or W = V , so ρ is also irreducible.

Proposition 5.6 applies to the real Lie algebra su(2). Indeed, the matrices(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)
are a basis (over R) of su(2) and also a basis (over C) of sl(2,C), and it can be shown that

sl(2,C) = su(2)⊕ isu(2)

as a direct sum of real subspaces; see Example 9.1 for details. Therefore sl(2,C) is the
complexification of su(2), and by Proposition 5.6, the irreducible representations of su(2) in



5.7. IRREDUCIBLE LIE ALGEBRA REPRESENTATIONS OF sl(2,C) AND su(2) 321

a complex vector space V are in bijection with the irreducible representations of sl(2,C) in
V .

We now consider the complex Lie algebra sl(2,C). Let ρ : sl(2,C)→ Hom(V, V ) be any
representation of sl(2,C) with V of finite dimension m+ 1. Since ρ(H) is a linear map over
a complex vector space of finite dimension m+ 1, it has m+ 1 complex eigenvalues (counted
with their multiplicities). For every eigenvalue λ of ρ(H), let V λ be the corresponding
eigenspace. In the context of Lie algebras, λ is called a weight . It turns out that ρ(H) is
diagonalizable, but we will not need this fact to characterize the irreducible representations
of sl(2,C).

The first important property is this.

Proposition 5.7. For any complex representation ρ : sl(2,C) → Hom(V, V ) with V finite-
dimensional, for any eigenvalue λ of ρ(H) and any vector v ∈ V λ, we have

H · (X · v) = (λ+ 2)X · v, H · (Y · v) = (λ− 2)Y · v. (V1)

Consequently, X : V λ → V λ+2 and Y : V λ → V λ−2.

Proof. Since HX −XH = [H,X] = 2X and v is an eigenvector of ρ(H) for λ, we get

H · (X · v) = [H,X] · v +X · (H · v) = 2X · v +X · λv = (λ+ 2)X · v.

Similarly, since HY − Y H = [H,Y ] = −2Y ,

H · (Y · v) = [H,Y ] · v + Y · (H · v) = −2Y · v + Y · λv = (λ− 2)Y · v,

as claimed.

Now let z 6= 0 be some vector z ∈ V λ, for some eigenvalue λ of ρ(H). Consider the
sequence

z, X · z, X2 · z, . . . , Xn · z, . . . .
By Proposition 5.7, Xn · z ∈ V λ+2n. The nonzero vectors of the form Xn · z correspond
to distinct eigenvalues λ + 2n of ρ(H) so they are linearly independent. But V is finite-
dimensional, so there is a smallest n, such that Xn+1 · z = 0, and if we let x = Xn · z, then
x 6= 0, X · x = 0, and Hx = (λ+ 2n)x. This suggests the following definition.

Definition 5.9. Let ρ : sl(2,C)→ Hom(V, V ) be complex representation of g with V finite-
dimensional. A nonzero vector e ∈ V is primitive of weight λ ∈ C if

Xe = 0, He = λe. (V2)

The argument just before Definition 5.9 proved the following result.

Proposition 5.8. Given any complex representation ρ : sl(2,C)→ Hom(V, V ) with V finite-
dimensional, there is some primitive element e ∈ V for some weight λ.
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A priori, λ is a complex number, but in fact we will prove that it is a nonnegative integer.
The next proposition is the key result.

Proposition 5.9. Given any complex representation ρ : sl(2,C)→ Hom(V, V ) with V finite-
dimensional, consider any primitive element e ∈ V of weight λ. Define the sequence (en)n≥−1

as follows:
en = (1/n!)Y n · e, n ≥ 0, (V3)

with e−1 = 0. Then the following properties hold:

H · en = (λ− 2n)en (V4)

Y · en = (n+ 1)en+1 (V5)

X · en = (λ− n+ 1)en−1. (V6)

There is a smallest m ≥ 0, such that em+1 = 0 and (e0, . . . , em) are linearly independent.
(We also have en = 0 for all n ≥ m + 1.) The weight λ is a nonnegative integer, namely
λ = m, and en ∈ V m−2n for n = 0, . . . ,m. See the diagram below.

V −m
X //

H

II V −(m−2)

Y
oo

H

II

X // · · ·
Y

oo
X //

V m−2

Y
oo

H

II

X //
V m

Y
oo

H

II

Proof. Equation (V5) follows by the definition of en since

Y · en = (1/n!)Y · Y n · e = (n+ 1)(1/((n+ 1)!)Y n+1 · e = (n+ 1)en+1.

Equation (V4) is proven by induction. For the base case n = 0, since e0 = e is a primitive
element of weight λ, we have H · e0 = H · e = λe = λe0.

For the induction step, since by the induction hypothesis, H · en = (λ− 2n)en, from the
second equation of Proposition 5.7 with λ− 2n instead of λ, we get

H · (Y · en) = (λ− 2n− 2) · (Y · en),

and by (V5), we obtain
H · en+1 = (λ− 2(n+ 1)) · en+1.

Equation (V6) is proven by induction. The base case is trivial since we set e−1 = 0. For
the induction step, since XY − Y X = [X, Y ] = H and nen = Y · en−1, we have

nX · en = XY · en−1

= [X, Y ] · en−1 + Y X · en−1

= H · en−1 + (λ− n+ 2)Y · en−2

= (λ− 2n+ 2)en−1 + (λ− n+ 2)(n− 1)en−1

= n(λ− n+ 1)en−1,



5.7. IRREDUCIBLE LIE ALGEBRA REPRESENTATIONS OF sl(2,C) AND su(2) 323

finishing the induction step.

By (V4), the nonzero ens correspond to distinct eigenvalues λ− 2n, so they are linearly
independent, and since V is finite-dimensional, there is some smallest m ≥ 0, such that
em+1 = 0. If we apply (V6) with n = m+ 1, we get

0 = X · 0 = X · em+1 = (λ−m)em

with em 6= 0, so λ = m.

We deduce the following theorem.

Theorem 5.10. Given any complex representation ρ : sl(2,C)→ Hom(V, V ) with V finite-
dimensional, for any primitive element e ∈ V of weight m ∈ N, the subspace W of V with
basis (e0, . . . , em) as in Proposition 5.9 is invariant under ρ and the restriction ρ : sl(2,C)→
Hom(W,W ) of ρ to W is irreducible.

Proof. Equations (V4), (V5), (V6) show that W is invariant under ρ. By equation (V4), the
m + 1 eigenvalues of the restriction of ρ(H) to W are m,m − 2,m − 4, . . . ,−(m − 2),−m
and have multiplicity 1 (since W has dimension m+ 1). Suppose W ′ is a nonzero subspace
of W invariant under ρ. Since (e0, . . . , em) is a basis of W , one of the ei must belong to W ′.
Since W ′ is invariant under ρ, we can apply (V6) to ei several times and since m− j+ 1 6= 0
if 0 ≤ j ≤ i ≤ m, we see that ei, ei−1, . . . , e0 = e belongs to W ′. By applying (V5) to ei, we
see that ei, ei+1, . . . , em all belong to W ′, so W ′ = W , that is, W is irreducible.

The nonnegative integer m is called the highest weight of the irreducible representation
ρ in W .

Remark: For any representation ρ : sl(2,C)→ Hom(V, V ) with V finite-dimensional, ρ(H)
is diagonalizable so we have a direct sum

V =
⊕
λ

V λ.

This is because sl(2,C) is a semisimple Lie algebra (in fact, a simple Lie algebra) and ad(H)
is diagonalizable since it has the three distinct eigenvalues 2, 0,−2 (recall that ad(H)(Z) =
[H,Z], and that [H,X] = 2X, [H,H] = 0, [H,Y ] = −2Y ). Then for any complex repre-
sentation ρ : sl(2,C) → Hom(V, V ) with V finite-dimensional, ρ(H) is diagonalizable. This
is a special case of results about semisimple Lie algebras found in Fulton and Harris [25]
(Appendix C, Section C.2) and Serre [63] (Part I, Chapter VI, Theorem 5.7).

We can now characterize all the irreducible (complex) representations of sl(2,C).

Definition 5.10. Let m ≥ 0 be any natural number, and let Wm be a complex vector space
of dimension m+ 1 with basis (e0, . . . , em). Define the endormorphisms XWm , Y Wm , ZWm of
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Wm as follows (by convention, e−1 = em+1 = 0).

HWmen = (m− 2n)en (V7)

Y Wmen = (n+ 1)en+1 (V8)

XWmen = (m− n+ 1)en−1. (V9)

We define the homomorphism ρm : sl(2,C)→ Hom(Wm,Wm) by

ρm(H) = HWm , ρm(X) = XWm , ρm(Y ) = Y Wm . (V10)

Theorem 5.11. The homomorphism ρm : sl(2,C) → Hom(Wm,Wm) is an irreducible rep-
resentation of sl(2,C). Every irreducible complex representation ρ : sl(2,C) → Hom(V, V )
with dim(V ) = m+ 1 is equivalent to the representation ρm : sl(2,C)→ Hom(Wm,Wm).

Proof. It is easy to check that the formulae defining XWm , Y Wm , HWm imply that

HWmXWm(en)−XWmHWm(en) = 2XWm(en)

HWmY Wm(en)− Y WmHWm(en) = −2Y Wm(en)

XWmY Wm(en)− Y WmXWm(en) = HWm(en),

so ρm is a representation. Observe that by construction e = e0 is a primitive element of
weight m and that the Y ne span Wm. Theorem 5.10 implies that ρm is irreducible.

Let ρ : sl(2,C) → Hom(V, V ) be any irreducible representation of sl(2,C) of dimension
m + 1. By Proposition 5.8 and Proposition 5.9, V contains some primitive element e′ of
weight m′, for some natural number m′. By Proposition 5.9, e′ generates a subspace W of V
invariant under ρ that has dimension m′ + 1. Since ρ is irreducible, we must have W = V .
It follows that V has (e′0, e

′
1, . . . , e

′
m) as a basis, with e′n = (1/n!)Y n · e′. Define the linear

isomorphism ϕ : Wm → V by ϕ(en) = e′n, for n = 0, . . . ,m. Since by Proposition 5.9 the
e′n satisfy equations (V4), (V5), (V6), and by construction the en satisfy equations (V7),
(V8), (V9), it is immediately verified that ϕ is an equivalence between the representations
ρm : sl(2,C)→ Hom(Wm,Wm) and ρ : sl(2,C)→ Hom(V, V ).

Since sl(2,C) is the complexification of su(2), by Proposition 5.6 and Theorem 5.11, we
obtain the following result.

Theorem 5.12. The irreducible representation ρm : sl(2,C) → Hom(Wm,Wm) induces by
restriction an irreducible representation ρm : su(2)→ Hom(Wm,Wm). Every irreducible rep-
resentation ρ : su(2) → Hom(V, V ) with V a complex vector space of dimension m + 1 is
equivalent to the irreducible representation ρm : su(2)→ Hom(Wm,Wm).

For m = 0, the space W0, is one-dimensional space isomorphic to C, in which case H,X, Y
are the zero map on W0; ρ0 is the trivial representation.
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For m = 1, the space W1 ' C2 has the basis (e0, e1), and H · e0 = e0, H · e1 = −e1,
X · e0 = 0, X · e1 = e0, Y · e0 = e1, Y · e1 = 0, so W1 = W−1

1 ⊕ W 1
1 where W−1

1 is the
eigenspace spanned by e1 associated with the eigenvalue −1, W 1

1 is the eigenspace spanned
by e0 associated with the eigenvalue 1, and ρ1 is the standard representation on C2.

Remark: It turns out that ρm is equivalent to the representation induced by ρ1 on the
symmetric tensor power SymmW1, but given a Lie algebra representation ρ : g→ Hom(V, V ),
one has to define the representation ρm� : g→ Hom(Symm V, Symm V ). This can be done as
follows. First, given two representations ρ1 : g → Hom(V, V ) and ρ2 : g → Hom(W,W ), we
define the tensor product representation ρ1 ⊗ ρ2 : g→ Hom(V ⊗W,V ⊗W ) by

[(ρ1 ⊗ ρ2)(X)](v ⊗ w) = [ρ1(X)](v)⊗ w + v ⊗ [ρ2(X)](w), X ∈ g, v ∈ V, w ∈ W.

Taking inspiration from the above equation, since SymmW1 is generated by the m-fold
powers v1 � · · · � vm with v1, . . . , vm ∈ V , we define ρm� recursively by

[(ρm�)(X)](v1 � · · · � vm) = [ρ(X)](v1)� v2 · · · � vm + v1 � [ρ(m−1)(X)](v2 � · · · � vm)

for m ≥ 2, with ρ� = ρ. Since W1 has the basis (e0, e1), it is a fact of linear algebra that
SymmW1 has the basis

(em0 , . . . , e
m−n
0 en1 , . . . , e

m
1 ), 0 ≤ n ≤ m,

where for notational simplicity, we suppress the symbol �, so we can find [ρm�1 (H)](em−n0 en1 ).
We can show by induction that

ρm�1 (H)(em−n0 en1 ) = (m− n)em−n−1
0 en1ρ1(H) · e0 + nem−n0 en−1

1 ρ1(H) · e1,

and since ρ1(H) · e0 = e0 and ρ1(H) · e1 = −e1, we get

ρm�1 (H)(em−n0 en1 ) = (m− 2n)em−n0 en1 .

Thus the eigenvalues of ρm�1 (H) are the m + 1 integers m,m − 2, . . . ,−(m − 2),−m, and
this implies that ρm�1 is equivalent to ρm. Since SymmW1 is isomorphic to the space of
homogeneous polynomials of degree m in two variables, we have an “a posteriori” explanation
of the fact that the spaces of the irreducible representations of SL(2,C) (and SU(2)) are
these spaces of homogeneous polynomials. See Fulton and Harris [25] (Chapter 11, Section
11.1).

As in the case of the representations of compact groups, we have the following result but
its proof is far from immediate.

Theorem 5.13. Every representation ρm : sl(2,C)→ Hom(V, V ) of sl(2,C) with V of finite
dimension splits as a direct sum of irreducible representation ρm : sl(2,C)→ Hom(Wm,Wm).
The number of irreducible factors isomorphic to ρm is the sum of the multiplicities of 0 and
1 as eigenvalues of ρ(H).
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Theorem 5.13 is known as complete reducibility and is usually attributed to H. Weyl. A
fascinating account of the history of its proof, starting in the mid 1890’s with proofs of E.
Cartan and G. Fano, can be found in Borel [2].

For a proof of Theorem 5.13, see Fulton and Harris [25] (Appendix C, Section C.2), Serre
[63] (Part I, Chapter VI, Section 3), Humphreys [38] (Chapter II, Section 6.3) and Samelson
[58] (Chapter 1, Section 1.12). See also Fulton and Harris [25] (Chapter 9, Section 3) for a
sketch of a proof using “Weyl’s unitary trick.”

Weyl’s unitary trick (actually called “unitarian trick” by Weyl himself) is discussed in
Serre [64] (Chapter IV, Theorem 6) in the special case of SU(2),SL(2,C), su(2), and sl(2,C).

Let G be a complex Lie group and let g be its (complex) Lie algebra. The trick works
for the following reasons:

(1) The complex Lie algebra sl(2,C) is the complexification of the real Lie algebra su(2).
It follows by (an easy adaptation of) Proposition 5.6 that there is a bijection d between
the set HomC(sl(2,C), g) of C-homomorphisms of the Lie algebras sl(2,C) and g and
the set HomR(su(2), g) of R-homomorphisms of the Lie algebras su(2) and g.

(2) The Lie groups SU(2) and SL(2,C) are connected and simply-connected.

(3) It follows from (2) (see Gallier and Quaintance [27] (Theorem 19.20), Fulton and Harris
[25] (Chapter 8, Section 3), Warner [71] (Chapter 3, Theorem 3.27) that there is a bijec-
tion b between the set HomC(SL(2,C), G) of C-homomorphisms (holomorphic maps)
of the Lie groups SL(2,C) and G and the set HomC(sl(2,C), g) of C-homomorphisms
of the Lie algebras sl(2,C) and g, and a bijection c between the set HomR(SU(2), G)
of R-homomorphisms of the Lie groups SU(2) and G and the set HomR(su(2), g) of
R-homomorphisms of the Lie algebras su(2) and g.

As a consequence, we obtain the following result.

Theorem 5.14. (Weyl’s Unitarian Trick) Let G be a complex Lie group and let g be its
(complex) Lie algebra. The following diagram commutes and all maps in it are bijections.

HomC(SL(2,C), G)

b

��

a // HomR(SU(2), G)

c

��
HomC(sl(2,C), g)

d
// HomR(su(2), g).

The only nonobvious map is a, which is the composition c−1 ◦ d ◦ b.
If we apply Theorem 5.14 to G = GL(V ) and g = Hom(V, V ) where V is a complex

vector space, since SU(2) is a compact Lie group, by Peter–Weyl II we obtain complete
reducibility, the fact that the representations of sl(2,C), su(2) and SL(2,C) (and of course
SU(2)) split as direct sums of irreducible representations whose representing spaces are all
described by Definition 5.10. Using the isomorphism (c), we also rediscover the structure of
the irreducible representations of SU(2).
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5.8 SU(2)-Invariant Hermitian Inner Product on PC
`

We now restrict our attention to the representations T` of SU(2). Our goal is to find
explicitly an SU(2)-invariant hermitian inner product on PC

` . Because SU(2) is compact,
such an inner product must exist. If such an invariant hermitian inner product 〈−,−〉 exists,
in particular, it must be invariant for the matrices T`(rx(ϕ/2)), T`(ry(θ/2)) and T`(rz(ψ/2)),
so we assert such invariance and deduce consequences by taking derivatives. In fact, the
proof shows that is suffices to assert invariance for the matrices T`(rx(ϕ/2)) and T`(ry(θ/2)).

First, we need to figure out what is T`(rx(ϕ/2))(z`−k). Since

rx(ϕ/2) =

(
ei
ϕ
2 0

0 e−i
ϕ
2

)
,

with a = ei
ϕ
2 , b = c = 0, and d = e−i

ϕ
2 , the formula

T`(A)(Q(z)) = (bz + d)2`Q

(
az + c

bz + d

)
yields

T`(rx(ϕ/2))(z`−k) = e−i`ϕ
(
ei
ϕ
2 z

e−i
ϕ
2

)`−k
= e−i`ϕei(`−k)ϕz`−k = e−ikϕz`−k,

that is,
T`(rx(ϕ/2))(z`−k) = e−ikϕz`−k.

The above equation is important enough to be recorded as a proposition.

Proposition 5.15. Each polynomial z`−k is an eigenvector of T`(rx(ϕ/2)) for the eigenvalue
e−ikϕ, that is,

T`(rx(ϕ/2))(z`−k) = e−ikϕz`−k. (∗1)

Thus, in the basis (z`−k)−`≤k≤`, the matrix of T`(rx(ϕ/2)) is the diagonal matrix
ei`ϕ

ei(`−1)ϕ

. . .

e−i(`−1)ϕ

e−i`ϕ

 .

The invariance of the inner product for T`(rx(ϕ/2)) is stated as

〈T`(rx(ϕ/2))(z`−j), T`(rx(ϕ/2))(z`−k)〉 = 〈z`−j, z`−k〉 (∗2)

for all j, k with −` ≤ j, k ≤ `, and since

T`(rx(ϕ/2))(z`−j) = e−ijϕz`−j and T`(rx(ϕ/2))(z`−k) = e−ikϕz`−k



328 CHAPTER 5. MATRIX REPRESENTATIONS OF SL(2,C), SU(2) AND SO(3)

(remembering that the hermitian inner product is semilinear on the second argument!), we
obtain

〈T`(rx(ϕ/2))(z`−j), T`(rx(ϕ/2))(z`−k)〉 = e−i(j−k)ϕ〈z`−j, z`−k〉. (∗3)

Equations (∗2) and (∗3) yield

e−i(j−k)ϕ〈z`−j, z`−k〉 = 〈z`−j, z`−k〉,

and these equations show that

〈z`−j, z`−k〉 = 0, for all j 6= k. (∗4)

Next, we need to compute 〈z`−k, z`−k〉 to find the normalization factors. Here we assert
invariance of the inner product for T`(ry(θ/2)) for z`−k and z`−k+1, which is stated as

〈T`(ry(θ/2))(z`−k), T`(ry(θ/2))(z`−k+1)〉 = 〈z`−k, z`−k+1〉 (∗5)

for all k with −` ≤ k ≤ `. The trick is to differentiate the above equation at θ = 0. Since
ry(θ/2) = eθξ2 , we obtain

〈t`(ξ2)(z`−k), z`−k+1〉+ 〈z`−k, t`(ξ2)(z`−k+1)〉 = 0. (∗6)

Using equation (t5), we obtain

−(`+ k)〈z`−k+1, z`−k+1〉+ (`− k + 1)〈z`−k, z`−k〉 = 0. (∗7)

By changing k to k + 1, we obtain

(`+ k + 1)〈z`−k, z`−k〉 = (`− k)〈z`−k−1, z`−k−1〉, (∗8)

and this recurrence equation yields

〈z`−k, z`−k〉 =
(`− k)!

(`+ k + 1) · · · (2`)
〈1, 1〉 =

(`− k)!(`+ k)!

(2`)!
〈1, 1〉.

It is natural to pick
〈1, 1〉 = (2`)!,

and so we obtain
〈z`−k, z`−k〉 = (`− k)!(`+ k)!, −` ≤ k ≤ `. (∗9)

Equations (∗4) and (∗9) show that the 2`+ 1 polynomials

z`−k√
(`− k)!(`+ k)!

,

form an orthonormal basis of PC
` for an invariant hermitian inner product on SU(2) which

is uniquely determined by setting 〈1, 1〉 = (2`)!. This is an important result that we record
below.
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Proposition 5.16. In Vilenkin’s notation, the polynomials

ψk(z) =
z`−k√

(`− k)!(`+ k)!
, −` ≤ k ≤ `, (∗10)

form an orthonormal basis of PC
` for a unique invariant hermitian inner product on SU(2).

The ψk are the unit-length eigenvectors of the linear map T`(rx(ϕ/2)).

Also note that the formulae (H+), (H−), (H3) become

H+ψk(z) = −
√

(`− k)(`+ k + 1)ψk+1(z) (H ′+)

H−ψk(z) = −
√

(`+ k)(`− k + 1)ψk−1(z) (H ′−)

H3ψk(z) = k ψk(z). (H ′3)

Actually, it is remarkable that if we define a hermitian inner product on PC
` by requir-

ing that the polynomials ψk form an orthonormal basis, then this inner product is SU(2)
invariant. The proof of this fact relies on two standard facts of Lie group theory about the
relationship between a representation and its derivative.

First, recall that if f : G → H is a homomorphism of Lie groups, then the derivative
dfe of f at the identity element e of G is a Lie algebra homomorphism dfe : g → h; see
Gallier and Quaintance [27] (Chapter 19). In particular, if H = GL(E), where E is a finite-
dimensional (complex) vector space, then f is a representation, and since the Lie algebra
of the group GL(E) is gl(E) = Hom(E,E), the space of all linear maps from E to itself,
dfe : g→ Hom(E,E) is what is called a Lie algebra representation.

If E has a hermitian inner product 〈−,−〉 and if H = U(E), the group of unitary linear
maps with respect to the hermitian inner product 〈−,−〉, we claim that the Lie algebra u(E)
of U(E) consists of the linear maps Z : E → E, such that

〈Z(u), v〉+ 〈u, Z(v)〉 = 0, for all u, v ∈ E, (skew1)

or equivalently
Z∗ = −Z, (skew2)

where Z∗ is the adjoint of Z with respect to the hermitian inner product 〈−,−〉, which is
the unique linear map Z∗ defined by the property that

〈Z(u), v〉 = 〈u, Z∗(v)〉, for all u, v ∈ E.

Linear maps Z : E → E satisfying property (skew1) (equivalently (skew2)) are called skew-
hermitian with respect to the hermitian inner product 〈−,−〉. First, since u(E) is the tangent
space to U(E) at id, by definition Z = C ′(0) for any smooth curve C : (−ε, ε)→ U(E), such
that C(0) = id, and since each C(t) is unitary, we have

〈C(t)(u), C(t)(v)〉 = 〈u, v〉
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for all t ∈ (−ε, ε) and all u, v ∈ E, so by differentiating at t = 0 we get

〈C ′(0)(u), C(0)(v)〉+ 〈C(0)(u), C ′(0)(v)〉 = 0,

which, since C ′(0) = Z and C(0) = id, yields

〈Z(u), v〉+ 〈u, Z(v)〉 = 0,

which is equation (skew1). To show that all skew-hermitian linear maps belong to u(E), we
use standard properties of the exponential map, namely that if Z is skew-hermitian, then
(eZ)∗ = e(Z∗) = e−Z , and so eZ is unitary (all with respect to the hermitian inner product
〈−,−〉 on E). Since E is finite-dimensional, we can pick an orthonormal basis of E with
respect to 〈−,−〉, and work with matrices. As a corollary, we have the following result.

Proposition 5.17. Define a hermitian inner product 〈−,−〉 on PC
` by requiring that the

polynomials ψk form an orthonormal basis. For any unitary representation T` : SU(2) →
U(PC

` ) (with respect to 〈−,−〉) we obtain the Lie algebra representation t` : su(2)→ u(PC
` ),

where t` = d(T`)I . Thus

t`(X)∗ = −t`(X), X ∈ su(2), (∗15)

namely t`(X) is skew-hermitian with respect to the hermitian inner product 〈−,−〉.

The converse is true.

Proposition 5.18. For any representation T` : SU(2) → GL(PC
` ), let t` = d(T`)I , so that

t` : su(2)→ Hom(PC
` ,PC

` ) is the corresponding Lie algebra representation. If for every X ∈
su(2) the linear map t`(X) : PC

` → PC
` is skew-hermitian with respect to the hermitian inner

product 〈−,−〉 on PC
` making the basis (ψk) orthonormal, then T`(A) is unitary with respect

to 〈−,−〉 for all A ∈ SU(2); in other words, T` is a unitary representation T` : SU(2) →
U(PC

` ).

Proof. This result is actually true for any representation U : G→ GL(E) where G is a con-
nected Lie group and E is finite-dimensional and equipped with a hermitian inner product,
but since the exponential map exp: su(2) → SU(2) is surjective (Gallier and Quaintance
[29], Section 15.5) we can give a simpler proof. Since every q ∈ SU(2) can be written as
q = eX for some X ∈ su(2), consider the function F : R→ C given by

F (t) = 〈T`(etX)(ψj), T`(e
tX)(ψk)〉, (∗16)

which has the property that F (0) = 〈ψj, ψk〉. We prove that F is constant by showing that
its derivative is zero for all t. If so, since SU(2) is connected, F must be constant, and since
its value at t = 0 is 〈ψj, ψk〉, for t = 1, we obtain

〈T`(q)(ψj), T`(q)(ψk)〉 = 〈ψj, ψk〉,
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which proves that T`(q) is unitary with respect to 〈−,−〉. Because the map t 7→ h(t) =
T`(e

tX) is a one-parameter group and h′(0) = d(T`)I(X) = t`(X), by Lie group theory,

T`(e
tX) = ett`(X);

see Gallier and Quaintance [27] (Proposition 4.13). By the chain rule

d(T`(e
tX))s = d(ett`(X))s = t`(X) ◦ est`(X) = t`(X) ◦ T`(esX).

If we take the derivative of equation (∗16) (at any t = s), we get

F ′(s) = 〈t`(X)(T`(e
sX)(ψj)), T`(e

sX)(ψk)〉+ 〈T`(esX)(ψj), t`(X)(T`(e
sX)(ψk))〉. (∗17)

Since t`(X) is skew-hermitian by hypothesis, we conclude that F ′(s) = 0 for all s.

According to Proposition 5.18, to prove that the hermitian inner product 〈−,−〉 on PC
`

making the basis (ψk) orthonormal is SU(2)-invariant, it suffices to prove that the linear
maps t`(X) are skew-hermitian with respect to 〈−,−〉 for all X ∈ su(2). Since (ξ1, ξ2, ξ3) is
a basis of su(2), we need to prove that t`(ξi) is skew-hermitian for i = 1, 2, 3.

Proposition 5.19. The linear maps t`(ξi) (1 ≤ i ≤ 3) are skew-hermitian for the hermitian
inner product 〈−,−〉 on PC

` making the basis (ψk) orthonormal.

Proof. First, we prove that t`(ξ1) is skew-hermitian using equation (t4),

t`(ξ1)z`−k =
i

2
(`− k)z`−k−1 +

i

2
(`+ k)z`−k+1,

which is expressed in terms of the basis (z`−k), and thus needs some adjustment. We divide
both sides by

√
(`− k)!(`+ k)!, which yields

t`(ξ1)
z`−k√

(`− k)!(`+ k)!
=
i

2
(`− k)

z`−k−1√
(`− k)!(`+ k)!

+
i

2
(`+ k)

z`−k+1√
(`− k)!(`+ k)!

.

Since

ψk+1(z) =
z`−k−1√

(`− k − 1)!(`+ k + 1)!
, ψk−1(z) =

z`−k+1√
(`− k + 1)!(`+ k − 1)!

,

we need to compute

(`− k)
√

(`− k − 1)!(`+ k + 1)!√
(`− k)!(`+ k)!

=
√

(`− k)(`+ k + 1)

√
(`− k − 1)!(`− k)(`+ k)!√

(`− k)!(`+ k)!

=
√

(`− k)(`+ k + 1),
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and

(`+ k)
√

(`− k + 1)!(`+ k − 1)!√
(`− k)!(`+ k)!

=
√

(`+ k)(`− k + 1)

√
(`− k)!(`+ k − 1)!(`+ k)√

(`− k)!(`+ k)!

=
√

(`+ k)(`− k + 1).

Consequently, we obtain the equation

t`(ξ1)ψk(z) =
i

2

√
(`− k)(`+ k + 1)ψk+1(z) +

i

2

√
(`+ k)(`− k + 1)ψk−1(z). (∗18)

Since (ψk) is an orthonormal basis, the (j, k) entry of the matrix t(1) representing t`(ξ1) is

t
(1)
jk = 〈t`(ξ1)(ψk(z)), ψj(z)〉 =

i

2

√
(`− k)(`+ k + 1)〈ψk+1(z), ψj(z)〉

+
i

2

√
(`+ k)(`− k + 1)〈ψk−1(z), ψj(z)〉,

and so the only nonzero entries are

t
(1)
k+1k =

i

2

√
(`− k)(`+ k + 1)

t
(1)
k−1k =

i

2

√
(`+ k)(`− k + 1),

and by changing k to k + 1

t
(1)
kk+1 =

i

2

√
(`+ k + 1)(`− k),

and finally

t
(1)
kk+1 = t

(1)
k+1k =

i

2

√
(`− k)(`+ k + 1).

It follows that t(1) is a pure imaginary matrix, such that −t
(1)
kk+1 = t

(1)
kk+1 = t

(1)
k+1k, which

proves that t`(ξ1) is skew-hermitian.

To prove that t`(ξ2) is skew-hermitian, we use equation (t5),

t`(ξ2)z`−k =
1

2
(`− k)z`−k−1 − 1

2
(`+ k)z`−k+1,

which only differs by the absence of i and the fact that the sign in front of the second term
is −1 instead of 1. This time we find that

t`(ξ2)ψk(z) =
1

2

√
(`− k)(`+ k + 1)ψk+1(z)− 1

2

√
(`+ k)(`− k + 1)ψk−1(z). (∗19)
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The (j, k) entry of the matrix t(2) representing t`(ξ2) is nonzero iff

t
(2)
kk+1 =

1

2

√
(`− k)(`+ k + 1)

t
(2)
k+1k = −1

2

√
(`+ k + 1)(`− k).

It follows that t(2) is a real matrix, such that −t
(2)
kk+1 = t

(2)
k+1k, which proves that t`(ξ2) is

skew-hermitian.

To prove that t`(ξ3) is skew-hermitian, we use equation (t6),

t`(ξ3)z`−k = −ikz`−k.

Since z`−k is an eigenvector, this is simpler. By dividing both sides by
√

(`− k)!(`+ k)!, we
obtain

t`(ξ3)ψk(z) = −ikψk(z). (∗20)

It follows that t(3) is a pure imaginary diagonal matrix with diagonal elements

t
(3)
kk = −ik,

and so t`(ξ3) is skew-hermitian. Having verified that the three linear maps t`(ξi) are skew-
hermitian, we conclude as we said earlier that the hermitian inner product defined by re-
quiring that the (ψk) form an orthonormal basis is SU(2)-invariant.

In summary, we proved the following result.

Proposition 5.20. The hermitian inner product on PC
` making the basis (ψk) orthonormal

is SU(2)-invariant.

Note that this inner product is not invariant with respect to SL(2,C), because as before
the linear maps t`(X) are skew-hermitian for X ∈ su(2), but are hermitian for X ∈ isu(2)
(recall that sl(2,C) = su(2)⊕ isu(2), as a real vector space).

5.9 Matrices of the Irreducible Representations

of SL(2,C)
We now use the basis (ψk) to find various expressions for the matrix entries of the matrix
t(`)(A) representing T`(A) in this basis. We give PC

` the hermitian inner product making
(ψk) an orthonormal basis. In this section, we consider an arbitrary matrix

A =

(
α β
γ δ

)
, α, β, γ, δ ∈ C, αδ − βγ = 1
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in SL(2,C). The special case of SU(2) is considered in later sections. In this latter case,
these matrices are unitary. We use α, β, γ, δ instead of a, b, c, d to make it easier to follow
Vilenkin’s exposition. Since the ψk form an orthonormal basis, we have

t
(`)
jk (A) = 〈T`(A)(ψk), ψj〉 =

〈T`(A)(z`−k), z`−j〉√
(`− j)!(`+ j)!(`− k)!(`+ k)!

. (∗21)

By (T`) we have

T`(A)(z`−k) = (βz + δ)2`

(
αz + γ

βz + δ

)`−k
= (αz + γ)`−k(βz + δ)`+k,

so we obtain

t
(`)
jk (A) =

〈(αz + γ)`−k(βz + δ)`+k, z`−j〉√
(`− j)!(`+ j)!(`− k)!(`+ k)!

. (∗22)

The expression on the right-hand side can be “doctored on” in various ways.

The first brute-force method is to use the binomial formula together with the orthogo-
nality of z`−j and z`−k for j 6= k and the formulae

〈z`−k, z`−k〉 = (`− k)!(`+ k)!, −` ≤ k ≤ `.

We get

t
(`)
jk (A) =

√
(`− j)!(`+ j)!

(`− k)!(`+ k)!

N∑
h=M

(
`− k

`− j − h

)(
`+ k

h

)
α`−j−hβhγj+h−kδ`+k−h (∗23)

with M = max(0, k − j), N = min(`− j, `+ k), which can be somewhat simplified as

t
(`)
jk (A) =

√
(`− j)!(`+ j)!(`− k)!(`+ k)!

×
N∑

h=M

(h!(`− j − h)!(`+ k − h)!(j − k + h)!)−1 α`−j−hβhγj+h−kδ`+k−h, (∗24)

also with M = max(0, k− j), N = min(`− j, `+ k). It is understood that if any of α, β, γ, δ
is zero, then the corresponding exponent must be zero. Of course, since αδ − βγ = 1, at
most two of these coefficients must be nonzero.

Using the factorization of A as the product of an upper triangular matrix and a lower
triangular matrix, Vilenkin obtains simpler formulae; see Vilenkin [70] (Chapter III, Section
3.2). Suppose δ 6= 0. Then we check immediately that if αδ−βγ = 1, then α = δ−1 +(βγ)/δ,
and so

A =

(
α β
γ δ

)
=

(
δ−1 β
0 δ

)(
1 0
γ/δ 1

)
.
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If we denote the first of the two matrices on the right-hand side by B and the second matrix
by C, we have A = BC, and since T` is a representation,

T`(A) = T`(B)T`(C),

which in terms of the matrices t(`)(A), t(`)(B), t(`)(C) means that

t(`)(A) = t(`)(B)t(`)(C).

Therefore, if we compute the matrices t(`)(B) and t(`)(C), then t
(`)
jk (A) will be given by

t
(`)
jk (A) =

∑̀
h=−`

t
(`)
jh (B)t

(`)
hk(C).

To compute t(`)(B), we set γ = 0 and α = δ−1 in Formula (∗24). The only nonzero term
is obtained for h = k − j, and since h must be a nonnegative integer, we must have j ≤ k.
We obtain the formula

t
(`)
jk (B) =


0, if j > k√

(`− j)!(`+ k)!

(`+ j)!(`− k)!

βk−jδj+k

(k − j)!
, if j ≤ k.

To compute t(`)(C), we set β = 0, α = δ = 1, and substitute γ/δ for γ in Formula (∗24).
The only nonzero term is obtained for h = 0, and for (j − k)! to make sense we must have
j ≥ k. We obtain the formula

t
(`)
jk (C) =


0, if j < k√

(`+ j)!(`− k)!

(`− j)!(`+ k)!

γj−kδk−j

(j − k)!
, if j ≥ k.

The βδ term in t
(`)
jh (B) is βh−jδj+h and the γδ term in t

(`)
hk(B) is γh−kδk−h, so the βγδ term

in t
(`)
jh (B)t

(`)
hk(C) is

βh−jδj+hγh−kδk−h = βh−jγh−kδj+k.

Since t
(`)
jh (B) = 0 if j > h and t

(`)
hj (C) = 0 if h < k, the only nonzero terms occur for

h ≥ max(j, k). In summary, we proved the following result.

Proposition 5.21. With respect to the orthonormal basis (ψk) of PC
` , the entries in the

matrix t(`)(A) are given by the formulae below.

(1) If δ 6= 0, then

t
(`)
jk (A) =

√
(`− j)!(`− k)!

(`+ j)!(`+ k)!
×

∑̀
h=max(j,k)

(`+ h)!

(`− h)!(h− j)!(h− k)!
βh−jγh−kδj+k. (∗25)
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In particular, if β = γ = 0, then αδ = 1, A =

(
α 0
0 1/α

)
, and t

(`)
jk (A) is the diagonal

matrix with
t
(`)
kk (A) = α−2k = δ2k.

(2) If δ = 0 and α 6= 0, then

t
(`)
jk (A) =


0, if j + k > 0√

(`− j)!(`− k)!

(`+ j)!(`+ k)!

(−1)`+jβk−j

(−(j + k))!αj+k
, if j + k ≤ 0.

(∗26)

(3) If α = δ = 0, then we obtain an anti-diagonal matrix

t
(`)
jk (A) =

{
0, if j + k 6= 0

(−1)`−jγ2j, if k = −j.
(∗27)

In particular, if A = rz(π/2) =

(
0 i
i 0

)
, then t

(`)
jk (A) = 0 if j 6= k and t

(`)
j−j(A) = i2`.

In Proposition 5.21, we should remember that if ` is a half integer, then in (∗25) h is also
a half integer. Of course, if ` is a half integer, then so are j, k.

Observe that

(`+ h)!

(`− h)!(h− j)!(h− k)!
=

(`+ h)!

(`− h)!(2h)!

(2h)!

(h− k)!(h+ k)!

(h+ k)!

(h− j)!(j + k)!
(j + k)!

=

(
`+ h

2h

)(
2h

h− k

)(
h+ k

h− j

)
(j + k)!,

with max(j, k) ≤ h ≤ `. In particular, if j = −k, then

(`+ h)!

(`− h)!(h+ k)!(h− k)!
=

(
`+ h

2h

)(
2h

h− k

)
. (†)

Another strategy is to use Taylor’s formula. Recall that for polynomial P (z) of degree
m, we have

P (z) =
m∑
j=0

P (j)(0)

j!
zj,

where P (k)(0) is the value of the kth derivative of P at z = 0. Now by definition the kth

column of the matrix t(`)(A) consists of the coordinates t
(`)
jk (A) of

T`(A)(ψk(z)) =
∑̀
j=−`

t
(`)
jk (A)ψj(z) =

∑̀
j=−`

t
(`)
jk (A)√

(`− j)!(`+ j)!
z`−j,
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and since

T`(A)(ψk(z)) =
(αz + γ)`−k(βz + δ)`+k√

(`− k)!(`+ k)!
, (∗28)

we deduce that t
(`)
jk (A)/

√
(`− j)!(`+ j)! is the coefficient of z`−j in the expansion of (∗28) in

powers of z. Using Taylor’s formula, we obtain

t
(`)
jk (A) =

√
(`+ j)!

(`− k)!(`+ k)!(`− j)!
d`−j

z`−j
[(αz + γ)`−k(βz + δ)`+k]z=0.

If α = 0 or β = 0, the above formula simplifies. If αβ 6= 0, we substitute y = α(βz + δ),
then from αδ − βγ = 1 we get αz + γ = (y − 1)/β, so we obtain

t
(`)
jk (A) =

√
(`+ j)!

(`− k)!(`+ k)!(`− j)!
βk−j

αk+j

d`−j

dy`−j
[y`+k(y − 1)`−k]y=αδ.

Finally, we let z = y − 1, and since αδ − 1 = βγ, we obtain

t
(`)
jk (A) =

√
(`+ j)!

(`− k)!(`+ k)!(`− j)!
βk−j

αk+j

d`−j

dz`−j
[z`−k(z + 1)`+k]z=βγ.

In summary, we have the following result.

Proposition 5.22. With respect to the orthonormal basis (ψk) of PC
` , the entries in the

matrix t(`)(A) are given by the formulae below.

t
(`)
jk (A) =

√
(`+ j)!

(`− k)!(`+ k)!(`− j)!
d`−j

z`−j
[(αz + γ)`−k(βz + δ)`+k]z=0. (∗29)

If αβ 6= 0, then

t
(`)
jk (A) =

√
(`+ j)!

(`− k)!(`+ k)!(`− j)!
βk−j

αk+j

d`−j

dz`−j
[z`−k(z + 1)`+k]z=βγ. (∗30)

5.10 Euler Angles Matrix Representations of T`

The “best” formula is obtained by using the Euler angles. We now restrict ourselves to
SU(2), although it is possible to handle the more general case; see Vilenkin [70] (Chapter
III, Sections 3.3–3.9).

By Proposition 5.4, every matrix q ∈ SU(2), where

q =

(
α β

−β α

)
, |α|2 + |β|2 = 1,
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can be expressed as

q = u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2) =

(
e
iϕ
2 0

0 e−
iϕ
2

)(
cos θ

2
i sin θ

2

i sin θ
2

cos θ
2

)(
e
iψ
2 0

0 e−
iψ
2

)
,

with

0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, −2π ≤ ψ < 2π.

Furthermore, if αβ 6= 0 and if we require that 0 < θ < π, then ϕ, θ, ψ are unique. Since T`
is a representation, we have

T`(q) = T`(rx(ϕ/2))T`(rz(θ/2))T`(rx(ψ/2)).

We also proved that the polynomials in the basis (ψk(z)) are eigenvectors of T`(rx(ϕ/2)) and
T`(rx(ψ/2)), namely (by (∗1))

T`(rx(ϕ/2))ψk(z) = e−ikϕψk(z)

T`(rx(ψ/2))ψk(z) = e−ikψψk(z).

Thus T`(rx(ϕ/2)) is represented by the diagonal matrix t(`)(rx(ϕ/2)) with t
(`)
kk (rx(ϕ/2)) =

e−ikϕ, and T`(rx(ψ/2)) is represented by the diagonal matrix t(`)(rx(ψ/2)) with t
(`)
kk (rx(ψ/2))

= e−ikψ. Since

T`(q) = T`(rx(ϕ/2))T`(rz(θ/2))T`(rx(ψ/2)),

we have

t(`)(q) = t(`)(rx(ϕ/2))t(`)(rz(θ/2))t(`)(rx(ψ/2)),

and since t(`)(rx(ϕ/2)) and t(`)(rx(ψ/2)) are diagonal matrices, the (j, k) entry of the matrix
t(`)(q) is

t
(`)
jk (q) = t

(`)
jj (rx(ϕ/2))t

(`)
jk (rz(θ/2))t

(`)
kk (rx(ψ/2))

= e−ijϕ t
(`)
jk (rz(θ/2)) e−ikψ = e−i(jϕ+kψ) t(`)`jk(rz(θ/2)),

that is,

t
(`)
jk (q) = e−i(jϕ+kψ) t

(`)
jk (rz(θ/2)).

We record this important result below.

Proposition 5.23. For any matrix q ∈ SU(2) expressed in terms of the Euler angles as
q = u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2), with respect to the orthonormal basis (ψk) of PC

` ,
we have

t
(`)
jk (q) = e−i(jϕ+kψ) t

(`)
jk (rz(θ/2)). (∗31)

Thus, we are left with finding an explicit expression for the matrix t(`)(rz(θ/2)).
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Definition 5.11. Define the matrix t(`)(θ) as t(`)(θ) = t(`)(rz(θ/2)), with

rz(θ/2) =

(
cos θ

2
i sin θ

2

i sin θ
2

cos θ
2

)
.

If θ = π, then rz(π/2) =

(
0 i
i 0

)
, and by (∗27) we know that t(`)(π) is the anti-diagonal

matrix with t
(`)
jk (π) = 0 if j 6= k and t

(`)
j−j(π) = i2`.

If θ = 0, then rz(0) is the identity matrix I2, and t(`)(0) is the identity matrix I2`+1.
If 0 ≤ θ < π, then we can find the matrix t(`)(θ) using equation (∗25) in we which we set
α = δ = cos θ

2
6= 0 (since 0 ≤ θ < π), and β = γ = i sin θ

2
. We obtain the following formula.

Proposition 5.24. The elements of the matrix t(`)(θ) = t(`)(rz(θ/2)) (0 ≤ θ < π) are given
by the formula

t
(`)
jk (θ) = i−(j+k)

√
(`− j)!(`− k)!

(`+ j)!(`+ k)!

(
cos

θ

2

)j+k
×

∑̀
h=max(j,k)

(`+ h)! i2h

(`− h)!(h− j)!(h− k)!

(
sin

θ

2

)2h−(j+k)

. (∗32)

If ` is a half integer, then h is also a half integer. For θ = 0, we must have h = j = k, and
t(`)(0) is the identity matrix I2`+1, as we already know.

If we assume that 0 < θ < π, then we obtain the following formula given in Vilenkin:

t
(`)
jk (θ) = i−(j+k)

√
(`− j)!(`− k)!

(`+ j)!(`+ k)!

(
cot

θ

2

)j+k
×

∑̀
h=max(j,k)

(`+ h)! i2h

(`− h)!(h− j)!(h− k)!

(
sin

θ

2

)2h

. (∗33)

If we recall from (†) that if j = −k then

(`+ h)!

(`− h)!(h+ k)!(h− k)!
=

(
`+ h

2h

)(
2h

h− k

)
,

we obtain

t
(`)
k−k(θ) = t

(`)
−kk(θ) =

∑̀
h=max(−k,k)

(
`+ h

2h

)(
2h

h− k

)
i2h
(

sin
θ

2

)2h

. (∗34)
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Even though this equation was derived assuming that θ < π, it is still correct for θ = π,
namely the following equation holds

∑̀
h=max(−k,k)

(
`+ h

2h

)(
2h

h− k

)
i2h = i2`,

or equivalently, since we may assume that k ≥ 0,

∑̀
h=k

(−1)`−h
(
`+ h

2h

)(
2h

h− k

)
= 1. (††)

This can be proven using an identity due to Euler. As a first step, we can prove that

∑̀
h=k

(−1)`−h
(
`+ h

2h

)(
2h

h− k

)
=
∑̀
h=k

(−1)`−h
(
`+ h

`− k

)(
`− k
`− h

)
.

Next there are two cases depending on ` being an integer or a half integer. The second case
reduces to the first by writing ` = ll + 1/2, k = kk + 1/2, h = hh + 1/2 where ll, kk, hh are
integers. The details are left as an exercise. If ` is an integer, then by changing the index of
summation we have∑̀

h=k

(−1)`−h
(
`+ h

`− k

)(
`− k
`− h

)
=

`−k∑
h=0

(−1)`−h−k
(
`− k
h

)(
`+ h+ k

`− k

)

= (−1)N
N∑
h=0

(−1)h
(
N

h

)(
N + 2k + h

N

)
,

with N = `−k. At this stage, we use an identity known as Euler’s finite difference formula,
namely

n∑
h=0

(−1)h
(
n

h

)(
x+ hy

n

)
= (−1)nyn.

Remarkably the result is independent of x. Finally we let n = N , x = N + 2k and y = 1 to
match Euler’s formula. We leave the details as an exercise.

Because there is a surjective homomorphism ρ : SU(2)→ SO(3) whose kernel is {I,−I}
(see Theorem 3.9), Proposition 3.10, Proposition 5.1, and the fact that the representation
U2` : SU(2) → GL(PC

2`(2)) is equivalent to the representation T` : SU(2) → GL(PC
` ) (see

the end of Section 5.5), imply that the irreducible unitary representations of SO(3) are of
the form W` : SO(3)→ U(PC

` ), with

W`(ρq) = T`(q) q ∈ SU(2), ` ∈ N,

and where T`′ : SU(2)→ U(PC
`′ ) are the irreducible unitary representations of SU(2) (with

`′ a half integer or an integer). So the irreducible representations of SO(3) constitute only
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half of the representations of SU(2), those that correspond to nonnegative integer values of

`. Therefore, all the formulae obtained for the matrices t
(`)
jk (q) apply and the matrix w

(`)
jk (ρq)

associated with the unitary map W`(ρq) is t
(`)
jk (q), with ` ∈ N.

Remarkably, if q ∈ SU(2) is expressed in terms of the Euler angles as q = u(ϕ, θ, ψ) =
rx(ϕ/2)rz(θ/2)rx(ψ/2), then the corresponding rotation matrix R = ρq is given by R =
Rx(ϕ)Rz(θ)Rx(ψ), where we may assume that 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, 0 ≤ ψ < 2π (see
Section 5.3). Consequently, if we express a rotation matrix R ∈ SO(3) in terms of Euler
angles as R = Rx(ϕ)Rz(θ)Rx(ψ), we find that the matrix w(`)(R) associated with the unitary
map W`(R) is t(`)(u(ϕ, θ, ψ)), with ` ∈ N. Using Proposition 5.23 and since by Definition
5.11, t(`)(θ) = t(`)(rz(θ/2)), we obtain the following result.

Proposition 5.25. For any matrix R ∈ SO(3) expressed in terms of the Euler angles as
R = Rx(ϕ)Rz(θ)Rx(ψ), with respect to the orthonormal basis (ψk) of PC

` , the matrix w(`)(R)
of the unitary map W`(R) associated with the irreducible representation W` : SO(3)→ U(PC

` )
is given by

w
(`)
jk (R) = e−i(jϕ+kψ) t

(`)
jk (θ), ` ∈ N. (∗31′)

Formula (∗31′) still gives the matrix elements T`(q) (with q ∈ SU(2)) of the irreducible
representation T` of SU(2) when ` is a positive half integer, but this is not a representation
of SO(3). This point is a notorious source of confusion.

The functions e−i(jϕ+kψ) t
(`)
jk (θ) arise in quantum mechanics, but physicists prefer the

functions t
(`)
jk (θ) to be real. In his famous book first published in German in 1931 and then

in English in 1959 (translated by J.J. Griffin), E. Wigner [77] introduced the matrices d`(θ)
given by

d`jk(θ) = (−1)j−kij−kt
(`)
jk (θ).

The reason for the factor (−1)j−kij−k is that by using Formula (∗24) with α = δ = cos θ
2

and β = γ = i sin θ
2
, we obtain

t
(`)
jk (θ) = ij−k

√
(`− j)!(`+ j)!(`− k)!(`+ k)!

×
N∑

h=M

(−1)h(h!(`− j − h)!(`+ k − h)!(j − k + h)!)−1

(
cos

θ

2

)2`+k−j−2h(
sin

θ

2

)2h+j−k

,

with M = max(0, k− j), N = min(`− j, `+ k) and 0 ≤ θ ≤ π. When we multiply the above
expression by (−1)j−kij−k, we obtain the term

(−1)j−kij−kij−k = (−1)j−ki2(j−k) = (−1)j−k(−1)j−k = +1.

The above amounts to performing the following operations on the matrix t(`)(θ): multiply
the jth row by (−1)jij and multiply the kth column by (−1)−ki−k. The resulting matrix
d(`)(θ) remains unitary. In fact, it becomes a real orthogonal matrix.
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Definition 5.12. The Wigner’s d-matrices d(`)(θ) are given by

d
(`)
jk (θ) =

√
(`− j)!(`+ j)!(`− k)!(`+ k)!

×
N∑

h=M

(−1)h(h!(`− j − h)!(`+ k − h)!(j − k + h)!)−1

(
cos

θ

2

)2`+k−j−2h(
sin

θ

2

)2h+j−k

,

(∗35)

with M = max(0, k − j), N = min(`− j, `+ k); see Wigner [77], Formula (15.27).

The d-matrices d(`)(θ) are real orthogonal matrices. However, beware that besides the
fact that the indices `, j, k, h are denoted j, µ′, µ, κ and the angles ϕ, θ, ψ are denoted α, β, γ,
the angles α, β, γ have a different meaning . Indeed, Wigner factors a unit quaternion as
q = rx(−α/2)ry(β/2)rx(−γ/2) (where rx and ry are defined in Section 5.3), and the x-
axis and the z-axis are swapped, which means that in our notation, the rotation matrix R
associated with q is

R = Rz(−α)Ry(β)Rz(−γ).

Wigner uses ry(β/2) instead of rz(β/2) because it is a real matrix. As a consequence,
Wigner’s D-matrices (see Wigner [77], Formula (15.8) and Formula (15.27)) are the matrices
D(`) given by

D(`)
jk (α, β, γ) = ei(jα+kγ)d

(`)
jk (β).

As earlier, the matrices D(`) correspond to the irreducible unitary representations U` of
SU(2) when ` assumes all nonnegative integer and half integer values, and when ` is restricted
to be a nonnegative integer, they correspond to the irreducible unitary representations W`

of SO(3).

According to Wigner, the method for determining the irreducible representations of
SO(3) as the irreducible representations of SU(2) corresponding to nonnegative integer
values of ` is due to H. Weyl, who also discovered the irreducible representations of SU(2).
The irreducible representations of SU(2) corresponding to half integer values of ` are often
called double-valued representations of SO(3), an unfortunate terminology since they are not
representations of SO(3), but instead representations of SU(2).

Wigner’s sign conventions is not always the sign convention used in the physics literature.
For example, using our notation, Sakurai and Napolitano [57] factor a rotation matrix in
terms of the Euler angles as

R = Rz(α)Ry(−β)Rz(γ),

where Rz(α), Ry(−β), Rz(γ) are expressed as in Definition 5.5 by

Rz(α) = e−iαJz , Ry(−β) = e−iβJy , Rz(γ) = e−iγJz .

They also add the sign factor (−1)j−k to the Wigner d-matrix entry d
(`)
jk (θ) (see Formula

(3.426)) and they define the D-matrix as

D(`)
jk (α, β, γ) = e−i(jα+kγ)(−1)j−kd

(`)
jk (β),

where d
(`)
jk (β) is given by (∗35); see Formula (3.202) in Sakurai and Napolitano [57].
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5.11 Representations of SL(2,C) and SU(2) Using

Finite Fourier Series

There is one more method for computing the matrix elements t
(`)
jk (A) (where A ∈ SL(2,C))

based on integration. The idea is to use another representing space for the representation
T`, namely the vector space (of dimension 2`+ 1) of finite Fourier series

Φ(eiϕ) =
∑̀
k=−`

cke
−ikϕ,

with ck ∈ C. Observe that if Q(z) is the polynomial of degree 2` given by

Q(z) =
∑̀
k=−`

ckz
`−k,

so that the powers appears in the order z2`, z2`−1, . . . , z, 1, the Fourier series Φ(eiϕ) with the
same coefficients is given by

Φ(eiϕ) = e−i`ϕQ(eiϕ).

Denote the space of Fourier series of dimension 2` + 1 as F`. We would like to define
a representation of SL(2,C) in F`. By analogy with what we did when we defined the
representation T` in the space PC

` from the representation U` in the space PC
2`(2), observe

that

e−i`ϕ(aeiϕ + c)`(beiϕ + d)`Φ

(
aeiϕ + c

beiϕ + d

)
= e−i`ϕ(aeiϕ + c)`(beiϕ + d)`

∑̀
k=−`

ck

(
aeiϕ + c

beiϕ + d

)−k

= e−i`ϕ
∑̀
k=−`

ck(ae
iϕ + c)`−k(beiϕ + d)`+k

= e−i`ϕS(eiϕ),

where S(z) is the polynomial of degree 2` given by

S(z) =
∑̀
k=−`

ck(az + c)`−k(bz + d)`+k,

and so e−i`ϕS(eiϕ) is indeed a Fourier series in the space F`. Consequently, we make the
following definition.

Definition 5.13. The map T` : SL(2,C)→ GL(F`) is defined by

T`(A)(Φ(eiϕ)) = e−i`ϕ(aeiϕ + c)`(beiϕ + d)`Φ

(
aeiϕ + c

beiϕ + d

)
(T`)

for every matrix A =

(
a b
c d

)
∈ SL(2,C) and every Fourier series Φ(eiϕ) ∈ F`.
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It is easily verified that T` : SL(2,C) → GL(F`) is a representation. We also check
immediately that the linear map defined on basis vectors by z`−k 7→ e−ikϕ is an isomorphism
between the vector spaces PC

` and F`, and we make it an isometry by declaring that the
inner product on F` is defined such that

〈e−imϕ, e−inϕ〉 =

{
0, if m 6= n

(`−m)!(`+m)!, if m = n.

Observe the very useful facts that

〈e−imϕ, e−inϕ〉 =
1

2π

∫ 2π

0

e−imϕeinϕdϕ = 0, m 6= n,

and

〈e−imϕ, e−imϕ〉 = (`−m)!`+m)! =
(`−m)!`+m)!

2π

∫ 2π

0

e−imϕeimϕ dϕ.

Therefore, for any Fourier series Φ(eiϕ) ∈ F`, we have

〈Φ(eiϕ), e−imϕ〉 =
(`−m)!(`+m)!

2π

∫ 2π

0

Φ(eiϕ)eimϕ dϕ. (∗36)

To show that the representation T` : SL(2,C) → GL(F`) is equivalent to the represen-
tation T` : SL(2,C) → GL(PC

` ) we proceed as follows. Let F : PC
` → F` be the linear map

given by
F ((Q(z)) = e−i`ϕQ(eiϕ) = Φ(eiϕ),

which on the basis (z`−k) is given by F (z`−k) = e−ikϕ. These equations show that F is an
isomorphism. Moreover, it is a unitary map because it preserves the hermitian inner product
(we defined the hermitian product on F` to achieve this).

We need to prove that

F ◦ T`(A) = T`(A) ◦ F, for all A ∈ SL(2,C).

For any Q ∈ PC
` , if we write

Q(z) =
∑̀
k=−`

ckz
`−k,

then we have

T`(A)(Q(z)) = (bz + d)2`Q

(
az + c

bz + d

)
=
∑̀
k=−`

ck(bz + d)2`

(
az + c

bz + d

)`−k

=
∑̀
k=−`

ck(az + c)`−k(bz + d)`+k = S(z).
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Using the above equation, we have

F (T`(A)(Q(z))) = e−i`ϕS(eiϕ) = e−i`ϕ
∑̀
k=−`

ck(ae
iϕ + c)`−k(beiϕ + d)`+k.

We also proved earlier that

T`(A)(Φ(eiϕ)) = e−i`ϕ(aeiϕ + c)`(beiϕ + d)`Φ

(
aeiϕ + c

beiϕ + d

)
= e−i`ϕS(eiϕ),

with

S(z) =
∑̀
k=−`

ck(az + c)`−k(bz + d)`+k.

But by definition Φ(eiϕ) = F (Q(z)) for Q as above, so we proved that

F ◦ T`(A) = T`(A) ◦ F for all A ∈ SL(2,C),

which shows that T` : SL(2,C)→ GL(F`) is a representation equivalent to the representation
T` : SL(2,C)→ GL(PC

` ). Because the linear map F : PC
` → F` is unitary, we claim that the

matrix of T`(A) in the basis (ψk(z)) is identical to the matrix of T`(A) in the basis (ψ′k(ϕ))

with ψ′k(ϕ) =
e−ikϕ√

(`− k)!(`+ k)!
. Recall that ψk(z) =

z`−k√
(`− k)!(`+ k)!

. This is because

T`(A) = F ◦ T`(A) ◦ F−1, F (ψk(z)) = ψ′k(ϕ), and the (j, k)-entry t
(`)′

jk (A) of the matrix of
T`(A) in the basis (ψ′k(ϕ)) is given by

t
(`)′

jk (A) = 〈T`(A)(ψ′k(ϕ)), ψ′j(ϕ)〉,

which is rewritten as

t
(`)′

jk (A) = 〈(F ◦ T`(A) ◦ F−1)(ψ′k(ϕ)), F (ψj(z))〉,

and then as
t
(`)′

jk (A) = 〈F (T`(A)(ψk(z))), F (ψj(z))〉.
Since F is unitary, we obtain

t
(`)′

jk (A) = 〈F (T`(A)(ψk(z))), F (ψj(z))〉 = 〈T`(A)(ψk(z)), ψj(z)〉 = t
(`)
jk (A),

establishing our claim.

We now compute T`(A)(Φ(eiϕ)) with Φ(eiϕ) = (eiϕ)−k using Formula (T`). We get

T`(A)(e−ikϕ) = e−i`ϕ(aeiϕ + c)`(beiϕ + d)`
(
aeiϕ + c

beiϕ + d

)−k
= (aeiϕ + c)`−k(beiϕ + d)`+k e−i`ϕ.
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As a consequence the matrix elements are given by

t
(`)
jk (A) = 〈T`(A)(ψ′k(ϕ)), ψ′j(ϕ)〉 =

〈T`(A)(e−ikϕ), e−ijϕ〉√
(`− j)!(`+ j)!(`− k)!(`+ k)!

=
〈(aeiϕ + c)`−k(beiϕ + d)`+k e−i`ϕ, e−ijϕ〉√

(`− j)!(`+ j)!(`− k)!(`+ k)!
.

Using (∗36), we obtain the following result.

Proposition 5.26. The matrix elements t
(`)
jk (A) are given by the following formula:

t
(`)
jk (A) =

1

2π

√
(`− j)!(`+ j)!

(`− k)!(`+ k)!

∫ 2π

0

(aeiϕ + c)`−k(beiϕ + d)`+k ei(j−`)ϕ dϕ. (∗37)

We obtain another useful formula for computing t
(`)
jk (θ) by applying the above formula to

the matrix

rz(θ/2) =

(
cos θ

2
i sin θ

2

i sin θ
2

cos θ
2

)
∈ SU(2).

We get

t
(`)
jk (θ) =

1

2π

√
(`− j)!(`+ j)!

(`− k)!(`+ k)!

∫ 2π

0

(
cos

θ

2
eiϕ + i sin

θ

2

)`−k(
i sin

θ

2
eiϕ + cos

θ

2

)`+k
ei(j−`)ϕ dϕ,

and since e−i`ϕ = e−
i(`+k)ϕ

2 e−
i(`−k)ϕ

2 , the above formula is also written as stated below.

Proposition 5.27. The matrix elements t
(`)
jk (θ) (0 ≤ θ ≤ π) are given by the following

formula:

t
(`)
jk (θ) =

1

2π

√
(`− j)!(`+ j)!

(`− k)!(`+ k)!

×
∫ 2π

0

(
cos

θ

2
e
iϕ
2 + i sin

θ

2
e−

iϕ
2

)`−k (
i sin

θ

2
e
iϕ
2 + cos

θ

2
e−

iϕ
2

)`+k
eijϕ dϕ. (∗38)

For small values of `, this equation is quite practical. For example, here is a list of the
matrices t`(θ) for ` = 0, 1/2, 1, 3/2 as in Vilenkin [70] (Chapter III, Section 3.7).

t(0)(θ) = (1), t(1/2)(θ) = rz(θ/2) =

(
cos θ

2
i sin θ

2

i sin θ
2

cos θ
2

)
,

t(1)(θ) =


cos2 θ

2
i√
2

sin θ
2
− sin2 θ

2

i√
2

sin θ
2

cos θ i√
2

sin θ
2

− sin2 θ
2

i√
2

sin θ
2

cos2 θ
2

 ,
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and

t(3/2)(θ) =
cos3 θ

2
i
√

3 sin θ
2

cos2 θ
2

−
√

3 sin2 θ
2

cos θ
2

−i sin3 θ
2

i
√

3 sin θ
2

cos2 θ
2

cos3 θ
2
− 2 cos θ

2
sin2 θ

2
2i cos2 θ

2
sin θ

2
− i sin3 θ

2
−
√

3 sin2 θ
2

cos θ
2

−
√

3 sin2 θ
2

cos θ
2

2i cos2 θ
2

sin θ
2
− i sin3 θ

2
cos3 θ

2
− 2 cos θ

2
sin2 θ

2
i
√

3 sin θ
2

cos2 θ
2

−i sin3 θ
2

−
√

3 sin2 θ
2

cos θ
2

i
√

3 sin θ
2

cos2 θ
2

cos3 θ
2

 .

5.12 Matrix Elements of T`(q) and Jacobi Polynomials

In this section, we assume again that q ∈ SU(2) is given in terms of the Euler angles as
q = u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2). Since cos θ = 2 cos2 θ

2
− 1 and sin2 θ

2
+ cos2 θ

2
= 1,

for 0 ≤ θ ≤ π, we have 0 ≤ cos θ
2
≤ 1 and 0 ≤ sin θ

2
≤ 1, so

cos
θ

2
=

√
1 + cos θ

2
, sin

θ

2
=

√
1− cos θ

2
, cot

θ

2
=

√
1 + cos θ

1− cos θ
, (∗39)

with θ > 0 for the third formula. Thus, we see that t
(`)
jk (θ) is a function of cos θ for 0 ≤ θ < π.

Therefore there is a function P `
jk(z), such that

t
(`)
jk (θ) = P `

jk(cos θ), 0 ≤ θ < π,

and (∗31) is also written as

t
(`)
jk (q) = e−i(jϕ+kψ) P `

jk(cos θ).

By equation (∗32) and the above trigonometric identities, we obtain the following result.

Proposition 5.28. The polynomial P `
jk(z) (−1 < z ≤ 1) given by

P `
jk(z) = i−(j+k)

√
(`− j)!(`− k)!

(`+ j)!(`+ k)!

(
1 + z

2

) j+k
2

×
∑̀

h=max(j,k)

(`+ h)! i2h

(`− h)!(h− j)!(h− k)!

(
1− z

2

) 2h−(j+k)
2

(∗40)

has the property that
t
(`)
jk (θ) = P `

jk(cos θ), 0 ≤ θ < π, (∗41)

and
t
(`)
jk (q) = e−i(jϕ+kψ) P `

jk(cos θ). (∗42)

If ` is a half integer, then h is also a half integer. It is understood that if z = 1, then
P `
jk(1) = 1 iff j = k, and P `

jk(1) = 0 otherwise.
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If 0 < θ < π, since α = δ = cos θ
2

and β = γ = i sin θ
2

are all nonzero, we obtain another
formula from equation (∗30) recalled below:

t
(`)
jk (q) =

√
(`+ j)!

(`− k)!(`+ k)!(`− j)!
βk−j

αk+j

d`−j

dz`−j
[z`−k(z + 1)`+k]z=βγ.

We perform the change of variable z = (y− 1)/2, so y = 2z+ 1 and since βγ = − sin2 θ
2
, the

condition z = βγ becomes y = −2 sin2 θ
2

+ 1 = cos θ, and

d`−j

dy`−j
= 2`−j

d`−j

dz`−j
.

We also have z = −1−y
2

, z + 1 = 1+y
2

,

z`−k(z + 1)`+k = (−1)`−k2−2`(1− y)`−k(1 + y)`+k.

Using the trigonometric identities in equations (∗39), we obtain

βk−j

αk+j
=

(
i sin θ

2

)k−j(
cos θ

2

)k+j
= ik−j

(
1− cos θ

2

) k−j
2
(

1 + cos θ

2

)− (k+j)
2

= ik−j 2j(1 + cos θ)−
(k+j)

2 (1− cos θ)
k−j
2 ,

and with z = cos θ we obtain the following result.

Proposition 5.29. If 0 < θ < π, so that −1 < z < 1, then we have

P `
jk(z) =

(−1)`−kik−j

2`

√
(`+ j)!

(`− k)!(`+ k)!(`− j)!

× (1 + z)−
(j+k)

2 (1− z)
k−j
2
d`−j

dy`−j
[(1− y)`−k(1 + y)`+k]y=z. (∗43)

The polynomials P `
jk(z) enjoy some symmetry relations. For example, Formula (∗40)

shows that
P `
jk(z) = P `

kj(z), −1 < z ≤ 1.

Since rz(θ/2) and rz(π/2) =

(
0 i
i 0

)
commute, it can be shown that

P `
jk(z) = P `

−j−k(z), −1 < z ≤ 1.

We leave the proof as an exercise. By Formula (∗43), we see immediately that

P `
jk(−z) = i2(`−j−k)P `

j−k(z), −1 < z < 1.
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It is also immediately verified that

rz(θ/2)−1 = rz(−θ/2) = rx(π/2)rz(θ/2)rx(−π/2),

where

rx(π/2) =

(
i 0
0 −i

)
, rx(−π/2) =

(
−i 0
0 i

)
,

so by (∗42) (with ϕ = π, ψ = −π) we obtain

t
(`)
jk (−θ) = (−1)k−jP `

jk(cos θ).

Formula (∗43) also reveals a relationship with the Jacobi polynomials.

Definition 5.14. The Jacobi polynomials P λ,µ
h (z), with λ, µ ∈ R, h ∈ N, are defined by the

formula

P λ,ν
h (z) =

(−1)h

2hh!
(1− z)−λ(1 + z)−µ

dh

dzh
[(1− z)λ+h(1 + z)µ+h]. (Ja)

To show that the P `
jk(z) are related to the Jacobi polynomials, taking a cue from Vilenkin

we compute

D = 2jik−j

√
(`− k)!(`+ k)!

(`− j)!(`+ j)!
(1− z)

k−j
2 (1 + z)−

(k+j)
2 P `

jk(z). (∗44)

We get

D = 2jik−j

√
(`− k)!(`+ k)!

(`− j)!(`+ j)!
(1− z)

k−j
2 (1 + z)−

(k+j)
2

× (−1)`−kik−j

2`

√
(`+ j)!

(`− k)!(`+ k)!(`− j)!

× (1 + z)−
(k+j)

2 (1− z)
k−j
2
d`−j

dy`−j
[(1− y)`−k(1 + y)`+k]y=z

=
(−1)`−j

2`−j(`− j)!
(1− z)k−j(1 + z)−(k+j) d

`−j

dz`−j
[(1− z)`−k(1 + z)`+k].

To match D with a Jacobi polynomial, we need to find h, λ, µ, such that

h = `− j, λ = −(k − j), µ = k + j, λ+ h = `− k, µ+ h = `+ k.

We see that h, λ, µ are uniquely determined by

h = `− j, λ = j − k, µ = k + j,

and that the last two equations are also satisfied. Observe that λ and µ are integers. Thus,
we proved the following result.
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Proposition 5.30. The polynomials P `
jk(z) and the Jacobi polynomials are related by the

equation

P j−k,k+j
`−j (z) = 2jik−j

√
(`− k)!(`+ k)!

(`− j)!(`+ j)!
(1− z)

k−j
2 (1 + z)−

(k+j)
2 P `

jk(z). (∗45)

As we noted earlier, if ` is a half integer then j and k cannot be zero. If ` is an integer,
then j = 0 or k = 0 is allowed, and so λ = 0 and µ = 0 are also allowed. In this case, the
Jacobi polynomial P 0,0

` (z), simply denoted as P`(z), is given by

P`(z) =
(−1)`

2``!

d`

dz`
(1− z2)`,

or equivalently

P`(z) =
1

2``!

d`

dz`
(z2 − 1)`.

This is a Legendre polynomial.

Similarly, if ` is an integer, then for k = 0 the polynomials P `
m0(z) are related to polyno-

mials Pm
` (z) known as the associated Legendre polynomials.

Definition 5.15. The Legendre polynomial P`(z) are defined by

P`(z) =
(−1)`

2``!

d`

dz`
(1− z2)`,

and the associated Legendre polynomials are defined by

Pm
` (z) =

(−1)m+`

2``!
(1− z2)

m
2
dm+`

dzm+`
(1− z2)` = (−1)m(1− z2)

m
2
dm

dzm
P`(z),

with `,m ∈ N.

Some authors omit the sign (−1)m in the definition of the associated Legendre polyno-
mials. We see immediately that

P `
00(z) = P`(z). (∗46)

It is not hard to show that

P j
` (z) = ij

√
(`+ j)!

(`− j)!
P `
j0(z). (∗47)

See Vilenkin [70] (Chapter III, Section 3.9). Since by (∗42), we have

t
(`)
j0 (q) = e−ijϕ P `

j0(cos θ),
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we obtain

t
(`)
j0 (q) = i−j

√
(`− j)!
(`+ j)!

e−ijϕ P j
` (cos θ), −` ≤ j ≤ `. (∗48)

Recall that ` is an integer.

Following Vilenkin [70] (Chapter III, Section 2.7) we show how the function t
(`)
j0 (q) (with

q = rx(ϕ/2)rz(θ/2)), which does not depend on ψ, can be viewed as a function on the sphere
S2.

5.13 Harmonic Functions on the Sphere S2

First, recall that the group SO(3) acts transitively in the sphere S2 and that the stabilizer
of the point e1 = (1, 0, 0) is the subgroup Hx of rotations

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


around the x-axis, so the sphere S2 is homeomorphic to the quotient space SO(3)/Hx. It
follows that the functions f ∈ L2(SO(3)), such that f(RQ) = f(R) for all R ∈ SO(3) and
all Q ∈ Hx correspond bijectively to the functions in L2(S2). From Section 5.3, since every
rotation R can be factored as

R = Rx(ϕ)Rz(θ)Rx(ψ),

with Rx(ϕ), Rx(ψ) ∈ Hx, we see that a representative of the left coset RHx is given by

Rx(ϕ)Rz(θ).

Therefore the points of S2 are the orbit of e1 = (1, 0, 0) under all rotations Rx(ϕ)Rz(θ).

But the group Hx corresponds to the subgroup Ωx defined below.

Definition 5.16. The subgroup Ωx of SU(2) is given by

Ωx =

{
H(t) = rx(t/2) =

(
e
it
2 0

0 e−
it
2

) ∣∣∣∣∣ 0 ≤ t ≤ 2π

}
. (Ωx)

In fact, we claim that SU(2)/Ωx is a homogeneous space homeomorphic to S2 so that
the functions f ∈ L2(SU(2)) such that f(qH) = f(q) for all q ∈ SU(2) and all H ∈ Ωx also
correspond bijectively to the functions in L2(S2).

The group SU(2) acts on the sphere S2 by rotations, which means that for any skew-
hermitian matrix

X =

(
ix y + iz

−y + iz −ix

)
, (x, y, z) ∈ S2,
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and any q ∈ SU(2), we have the action

q ·X = qXq∗.

Since this action is a rotation of S2, it is transitive. The stabilizer of e1 = (1, 0, 0) is the
subgroup consisting of all unit quaternions

q =

(
α β

−β α

)
such that (

α β

−β α

)(
i 0
0 −i

)(
α −β
β α

)
=

(
i 0
0 −i

)
,

or equivalently (
α β

−β α

)(
i 0
0 −i

)
=

(
i 0
0 −i

)(
α β

−β α

)
,

which means that (
iα −iβ
−iβ −iα

)
=

(
iα iβ

iβ −iα

)
,

and so β = 0. Therefore the stabilizer of e1 = (1, 0, 0) is indeed the subgroup Ωx. From
Section 5.3, since every unit quaternion q can be factored as

q = rx(ϕ/2)rz(θ/2)rx(ψ/2),

with rx(ϕ/2), rx(ψ/2) ∈ Ωx, we see that a representative of the left coset qΩx is given by

rx(ϕ/2)rz(θ/2).

Therefore the points of S2 are the orbit of e1 = (1, 0, 0) under all rotations rx(ϕ/2)rz(θ/2),
and from Section 5.3, since the corresponding rotation matrices are

Q =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,

by reading of the first column of the matrix Q, we see that the corresponding orbit points
on the sphere S2 have coordinates

(cos θ, sin θ cosϕ, sin θ sinϕ).

According to the physical convention, the spherical coordinates of a point p with respect
to the (azimuthal) angle ϕ measured from the x-axis in the xy-plane and (polar) angle θ
measured from the z-axis in the plane containing the z-axis an passing through the point p
are given by

(sin θ cosϕ, sin θ sinϕ, cos θ).
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Thus, we see that the coordinates

(cos θ, sin θ cosϕ, sin θ sinϕ)

are “funny” spherical coordinates for which the x-axis and the z-axis are swapped and ϕ is
changed to π/2− ϕ.

Following Vilenkin (Chapter III, Section 3.10), we make the following definition.

Definition 5.17. For any j, such that −` ≤ j ≤ `, the function t
(`)
j0 (q), which does not

depend on ψ (with q = rx(ϕ/2)rz(θ/2)rx(ψ/2)), can be viewed as a function on the sphere
S2, and is denoted Y`j(ϕ, θ), with 0 ≤ ϕ < 2π and 0 ≤ θ < π. The function Y`j(ϕ, θ) is
called a spherical function.

Observe that the 2` + 1 functions Y`j(ϕ, θ) = t
(`)
j0 (q) (−` ≤ j ≤ `) constitute the middle

column of the matrix t(`)(q).

In view of Proposition 5.25 and (∗41), for any matrix R ∈ SO(3) expressed in terms of
the Euler angles as R = Rx(ϕ)Rz(θ)Rx(ψ), with respect to the orthonormal basis (ψk) of PC

` ,
the matrix w(`)(R) of the unitary map W`(R) associated with the irreducible representation
W` : SO(3)→ U(PC

` ) is given by

w
(`)
jk (R) = e−i(jϕ+kψ) t

(`)
jk (θ) = e−i(jϕ+kψ) P `

jk(θ) = t
(`)
jk (q), ` ∈ N.

where q = rx(ϕ/2)rz(θ/2)rx(ψ/2). In particular, for k = 0, we see that

w
(`)
j0 (R) = t

(`)
j0 (q) = Y`j(ϕ, θ).

Thus, we have shown the following result.

Proposition 5.31. The following facts hold.

(1) For any matrix R ∈ SO(3) expressed as R = Rx(ϕ)Rz(θ)Rx(ψ) in terms of the Euler
angles, with respect to the orthonormal basis (ψk) of PC

` , the matrix w(`)(R) of the
unitary map W`(R) associated with the irreducible representation W` : SO(3)→ U(PC

` )
is equal to the matrix t(`)(q) of the unitary map T`(q) associated with the irreducible
representation T` : SU(2)→ U(PC

` ), where q = rx(ϕ/2)rz(θ/2)rx(ψ/2) (` ∈ N).

(2) Viewed as functions on S2, the 2`+1 functions t
(`)
j0 (q) (with q = rx(ϕ/2)rz(θ/2)rx(ψ/2))

constitute the middle column of the matrix t(`)(q) and the 2`+1 functions w
(`)
j0 (R) (with

R = Rx(ϕ)Rz(θ)Rx(ψ)) constitute the middle column of the matrix w(`)(R).

(3) Viewed as a function on S2 in spherical coordinates

(x, y, z) = (cos θ, sin θ cosϕ, sin θ sinϕ),

we have
Y`j(x, y, z) = Y`j(ϕ, θ) = t

(`)
j0 (q) = w

(`)
j0 (R),

with q = rx(ϕ/2)rz(θ/2) and R = Rx(ϕ)Rz(θ).
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As we observed earlier, the matrices t(`)(θ), and so the polynomials P `
jk(z), are not all

real. And indeed equation (∗48) shows that the functions Y`j(ϕ, θ) = t
(`)
j0 (q) are not all real.

A way to fix this is to multiply Y`j(ϕ, θ) by ij. It turns out that ij
√

2`+ 1Y`j(ϕ, θ) is a
function known as the classical spherical harmonic, (unfortunately) denoted Y j

` (θ, ϕ).

Definition 5.18. The function Y j
` (θ, ϕ) called Laplace spherical harmonic by Dieudonné is

given by

Y j
` (θ, ϕ) =

√
(2`+ 1)(`− j)!

(`+ j)!
e−ijϕP j

` (cos θ).

If we recall that the motivation for introducing the Wigner d-matrices was to deal with
real orthogonal matrices instead of complex unitary matrices, we can use the Wigner d-
matrices instead of the matrices t(`)(θ), but there is an annoying sign issue. Wigner defines
his d-matrices as

d`jk(θ) = (−1)j−kij−kt
(`)
jk (θ),

so for k = 0, the factor ij makes the term real, but now we have the extra factor (−1)j, so
the middle column of the d-matrix consists of the entries (−1)jP j

` (cos θ) instead of P j
` (cos θ).

The remedy is to redefine the Wigner d-matrices by omitting the factor (−1)j−k in the above
formula, or equivalently to define the Wigner D-matrix D(`)(R) = D(`)(ϕ, θ, ψ) as follows.

Definition 5.19. The Wigner D-matrix D(`)(R) is defined as

D(`)
jk (R) = D(`)

jk (ϕ, θ, ψ) = e−i(jϕ+kψ)(−1)j−kd
(`)
jk (θ) = e−i(jϕ+kψ)ij−kt

(`)
jk (θ),

where R = Rx(ϕ)Rz(θ)Rx(ψ).

Of course the Wigner D-matrix D(`) defines an irreducible representation D(`) : SO(3)→
U(PC

` ) equivalent to the irreducible representation W` : SO(3)→ U(PC
` ). Also now the mid-

dle column of D(`)(ϕ, θ, ψ) consists of the rescaled functions 1/
√

2`+ 1Y j
` (θ, ϕ), as desired.

Note that Sakurai and Napolitano [57] also add the factor (−1)j−k in their definition of the
D-matrix. We will prove in Section 5.15 that the family of functions (Y j

` (θ, ϕ))`∈N,−`≤j≤`
forms a Hilbert basis for the functions in L2(S2).

There is another property of the functions Y j
` (θ, ϕ) worth stating because it plays a role

in equivariant deep learning in cnns. Here we assume that Y j
` (θ, ϕ) is viewed as a function

on SO(3)/Hx. Since the group SO(3) acts on S2, it is natural to wonder how the function
λRY

j
` is related to Y j

` , for R ∈ SO(3). Here is more natural to write Y j
` (x, y, z), where

(x, y, z) ∈ S2 are expressed in spherical coordinates in terms of the Euler angles ϕ and θ as
in Proposition 5.31.

Proposition 5.32. Denote the column vector consisting of the 2` + 1 functions Y j
` by Y`

(` ∈ N). For every rotation R ∈ SO(3) expressed as R = Rx(ϕ)Rz(θ)Rx(ψ), we have

Y`(R · (x, y, z)) = D(`)(R)Y`(x, y, z) = D(`)(ϕ, θ, ψ)Y`(x, y, z), (x, y, z) ∈ S2.

As a corollary, we also have

Y`(R
−1 · (x, y, z)) = (D(`)(R))> Y`(x, y, z) = (D(`)(ϕ, θ, ψ))> Y`(x, y, z), (x, y, z) ∈ S2.
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Proof. Since D(`) : SO(3)→ U(PC
` ) is a representation, we have D(`)(RS) = D(`)(R)D(`)(S)

for all R, S ∈ SO(3). Since (x, y, z) is expressed in terms of the rotation matrix S =
Rx(ϕ1)Rz(θ1) for some Euler angles ϕ1, θ1 and since the middle column of the matrix
D(`)(RS) consists of the column vector (1/

√
2`+ 1)Y`(R · (x, y, z)) and the middle column

of the matrix D(`)(S) consists of the column vector (1/
√

2`+ 1)Y`(x, y, z), the result fol-
lows immediately by multiplying both sides of the equation D(`)(RS) = D(`)(R)D(`)(S) by√

2`+ 1. There is actually a subtle point, which is that R · (x, y, z) ∈ S2 is generally not
represented by RS, but by some rotation of the form Rx(ϕ2)Rz(θ2) in the coset RSHx.
The formulae of Section 5.4 can be used to factor RS = Rx(ϕ)Rz(θ)Rx(ψ)Rx(ϕ1)Rz(θ1) as
Rx(ϕ2)Rz(θ2)Rx(ψ2) and then Rx(ϕ2)Rz(θ2) is a representative in SO(3)/Hx of the coset
RSHx. However, as a function on SO(3), the functions in the middle column of D(`)(RS)
and in the middle column of D(`)(Rx(ϕ2)Rz(θ2)) are identical!

If we replace R by R−1, we get

Y`(R
−1 · (x, y, z)) = D(`)(R−1)Y`(x, y, z).

But D(`)(R−1) = (D(`)(R))>, so by conjugating on both sides of the above equation, we get

Y`(R
−1 · (x, y, z)) = (D(`)(R))> Y`(x, y, z),

as claimed.

In special case where j = 0 the function t
(`)
00 (q) = P`(cos θ) depends only on θ and is

called a zonal spherical function.

More properties of the Legendre and Jacobi polynomials and functional relations and
generating functions for the functions P `

jk(z), can be found in Vilenkin [70], Chapter III,
Sections 3–5.

We will now derive an explicit formula for an invariant Haar measure on SU(2) in terms
of the Euler angles ϕ, θ, ψ. Then since the representations T` : SU(2) → GL(PC

` ) form a
complete set of irreducible representations of SU(2), they are equivalent to the representation
Mρ of Peter–Weyl I (with ρ = `), so we will able to obtain a Hilbert sum decomposition of

L2(SU(2)) in terms of the functions t
(`)
jk (q), with q ∈ SU(2). We will also obtain a Hilbert

sum decomposition of L2(S2).

5.14 Integration on SU(2) and SO(3)

In this section, we derive explicit formulae for the normalized Haar measures on SU(2)
and SO(3) when these groups are parametrized by the Euler angles. Technically, these
parametrizations are injective only on open subsets of SU(2) and SO(3), but the comple-
ments of these open sets have measure zero so from the point of view integration we obtain
formulae for integrating all functions in L2(SU(2)) and all functions in L2(SO(3)) (respec-
tively equipped with these left and right invariant Haar measures).
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As a first step, we will need to derive a formula for an SU(2)-invariant volume form on
SU(2) as a pull-back of the SO(4)-invariant volume form ωS3 on S3. The reader may want to
review volume forms and integration on manifolds before reading this section. These topics
are covered in Gallier and Quaintance [28] (Chapters 4 and 6).

Definition 5.20. The bijection Σ: H→ R4 from the space H of quaternions to R4 is defined
as follows: for every quaternion A ∈ H, with

A =

(
a+ ib c+ id
−c+ id a− ib

)
, a, b, c, d ∈ R,

we have

Σ(A) = (a, b, c, d),

where, as usual, we view (a, b, c, d) as a column vector. The bijection Σ restricts to a bijection
Σ: SU(2)→ S3 from SU(2) to the sphere S3 (in R4).

It is clear that the map Σ: SU(2) → S3 is a homeomorphism. In fact, it is a smooth
diffeomorphism. We will compute the tangent map dΣA : TASU(2) → TΣ(A)S

3, with A ∈
SU(2). Then we will use Σ to define a volume form ω on SU(2) by pulling back a volume
form ωS3 on S3.

We warn our readers that in this section we do not follow our usual notational convention
that a unit quaternion, an element of SU(2), is denoted by a lower-case letter, typically q.
Since we also need to denote points on the sphere S3, to avoid potential confusion we denote
unit quaternions using capital letters, A,A′, etc.

The volume form ωS3 on S3 is SO(4)-invariant but, to prove that ω = Σ∗ωS3 is SU(2)-
invariant we need to understand how the left (or right) action of SU(2) on itself translates
into an action on S3. Here we use the “ancient” fact that left and right translation in SU(2)
translate into a rotation in R4 restricted to S3 via Σ. This fact can be found as far back as
Veblen and Young [69] and also in Gallier [26] (Chapter 9).

Given two matrices A,A′ ∈ SU(2), if Σ(A) = (a, b, c, d) and Σ(A′) = (a′, b′, c, d′), by
multiplying the matrices A and A′, we obtain the following identities:

Σ(AA′) = Σ(LAA
′) =


a −b −c −d
b a −d c
c d a −b
d −c b a



a′

b′

c′

d′

 ,

and

Σ(AA′) = Σ(RA′A) =


a′ −b′ −c′ −d′
b′ a′ d′ −c′
c′ −d′ a′ b′

d′ c′ −b′ a′



a
b
c
d

 .
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Definition 5.21. Let M(LA) and M(RA′) be the matrices

M(LA) =


a −b −c −d
b a −d c
c d a −b
d −c b a

 , M(RA′) =


a′ −b′ −c′ −d′
b′ a′ d′ −c′
c′ −d′ a′ b′

d′ c′ −b′ a′

 . (M1)

In summary, we proved that

Σ(AA′) = Σ(LAA
′) = M(LA)Σ(A′) = Σ(RA′A) = M(RA′)Σ(A). (M2)

Proposition 5.33. If A and A′ are unit quaternions, then M(LA) and M(RA′) belong to
SO(4); that is, they are rotation matrices.

Proof. Observe that the columns (and the rows) of the matrices M(LA) and M(RA′) are
orthogonal. Thus, when A and A′ are unit quaternions, both M(LA) and M(RA′) are
orthogonal matrices. Furthermore, it is obvious that M(LA∗) = M(LA)>, the transpose of
M(LA), and similarly, M(R(A′)∗) = M(RA′)

>. Since AA∗ = (a2 + b2 + c2 + d2)I2 = N(A)I2,
the matrix M(LA)M(LA)> is the diagonal matrix N(A)I (where I is the identity 4 × 4
matrix), and similarly the matrix M(RA′)M(RA′)

> is the diagonal matrix N(A′)I. Since
M(LA) and M(LA)> have the same determinant, we deduce that det(M(LA))2 = N(A)4, and
thus det(M(LA)) = ±N(A)2. However, it is obvious that one of the terms in det(M(LA)) is
a4, and thus

det(M(LA)) = (a2 + b2 + c2 + d2)2.

This shows that when A is a unit quaternion, M(LA) ∈ SO(4), that is, M(LA) a rotation
matrix, and similarly when A′ is a unit quaternion, M(RA′) ∈ SO(4) (see Veblen and Young
[69]).

We also need an explicit formula for the derivative dΣA : TASU(2)→ TΣ(A)S
3.

Proposition 5.34. For all A ∈ SU(2) and all Y ∈ TASU(2), we have

dΣA(Y ) = Σ(Y ). (dΣ)

Proof. Since the tangent space TASU(2) is equal to Asu(2), every Y ∈ TASU(2) is of the
form Y = AθX for some X ∈ su(2) given by

X =

(
ix1 x2 + ix3

−x2 + ix3 −ix1

)
with x2

1 + x2
2 + x2

3 = 1 and some θ ∈ R, and we have a curve

c(t) = AetθX
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such that c(0) = A and c′(0) = AθX = Y . But

etθX = cos(tθ)I2 + sin(tθ)X,

so by the chain rule

dΣA(Y ) = dΣc(0)(c
′(0)) = (Σ(c(t)))′t=0

= (Σ(A(cos(tθ)I2 + sin(tθ)X))′t=0

= (M(LA)(Σ(cos(tθ)I2 + sin(tθ)X))′t=0

= (M(LA)(cos(tθ), sin(tθ)x1, sin(tθ)x2, sin(tθ)x3))′t=0

= (M(LA)(−θ sin(tθ), θ cos(tθ)x1, θ cos(tθ)x2, θ cos(tθ)x3))t=0

= M(LA)(0, θx1, θx2, θx3)

= M(LA)Σ(θX) = Σ(AθX) = Σ(AA−1Y ) = Σ(Y ).

In summary, for all A ∈ SU(2) and all Y ∈ TASU(2), we have

dΣA(Y ) = Σ(Y ),

as claimed.

Since Σ is linear, the pull-back Σ∗ωS3 is given by

Σ∗(ωS3)A(Y ) = (ωS3)Σ(A)(dΣA(Y )) = (ωS3)Σ(A)(Σ(Y )).

Definition 5.22. The volume form ω on SU(2) is defined as ω = Σ∗(ωS3); that is, for all
A ∈ SU(2) and all Y ∈ TASU(2), we have

ωA(Y ) = (ωS3)Σ(A)(Σ(Y )). (ω)

Since Σ(A) = Σ(AI2) = M(LA)Σ(I2) = M(LA)e1, since Y = AθX with X ∈ su(2)
and M(LA) is a rotation matrix, Σ(A) = M(LA)e1 and Σ(Y ) = M(LA)Σ(θX) are indeed
orthogonal because e1 and Σ(θX) are orthogonal since θX has no real part.

Since the volume form ωS3 is invariant under SO(4), we can prove that the 3-form ω is
SU(2)-invariant.

Proposition 5.35. The volume form ω is invariant under SU(2).

Proof. First, we verify left-invariance. We need to prove that L∗Aω = ω for all A ∈ SU(2).
Since LA given by LA(A′) = AA′ is linear, we have (dLA)A′ = LA for all A′ ∈ SU(2) and
similarly since LM(LA) is linear, d(LM(LA))Q = LM(LA) for all Q ∈ SO(3), and so

(L∗Aω)A′(Y ) = ωLA(A′)((dLA)A′(Y )) = ωLA(A′)(LA(Y ))

= (ωS3)Σ(AA′)(Σ(LA(Y )))

= (ωS3)M(LA)Σ(A′)(M(LA)Σ(Y ))

= (ωS3)M(LA)Σ(A′)(d(LM(LA))Σ(A′)(Σ(Y ))),
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and since M(LA) ∈ SO(4) and ωS3 is invariant under SO(4), we conclude that

(L∗Aω)A′(Y ) = (ωS3)M(LA)Σ(A′)(d(LM(LA))Σ(A′)(Σ(Y ))) = (ωS3)Σ(A′)(Σ(Y )) = ωA′(Y ),

as claimed. Nex,t we verify right-invariance, which means that we need to check that R∗Aω =
ω. Since RA given by RA(A′) = A′A is linear, we have (dRA)A′ = RA for all A′ ∈ SU(2) and
similarly since RM(RA) is linear, d(RM(RA))Q = RM(RA) for all Q ∈ SO(3), and so

(R∗Aω)A′(Y ) = ωRA(A′)((dRA)A′(Y )) = ωRA(A′)(RA(Y ))

= (ωS3)Σ(A′A)(Σ(RA(Y )))

= (ωS3)M(RA)Σ(A′)(M(RA)Σ(Y ))

= (ωS3)M(RA)Σ(A′)(d(RM(RA))Σ(A′)(Σ(Y ))),

and since M(RA) ∈ SO(4) and ωS3 is invariant under SO(4), we conclude that

(R∗Aω)A′(Y ) = (ωS3)M(RA)Σ(A′)(d(RM(RA))Σ(A′)(Σ(Y ))) = (ωS3)Σ(A′)(Σ(Y )) = ωA′(Y ),

establishing right-invariance.

It is a standard result of differential geometry that the restriction ωS3 of the differential
3-form ω̃ on R4 to S3 given by

ω̃p = adx2 ∧ dx3 ∧ dx4 − bdx1 ∧ dx3 ∧ dx4 + cdx1 ∧ dx2 ∧ dx4 − dx1 ∧ dx2 ∧ dx3 (ω̃)

is a volume form on S3, with

(ωS3)p(u1, u2, u3) = det(p, u1, u2, u3), (ω̃S3)

where p = (a, b, c, d) ∈ S3 and u1, u2, u3 ∈ TpS3. See Gallier and Quaintance [28] (Chapter
6). Invariance under SO(4) follows from the fact that the determinant is preserved under
SO(4). Consequently, using the diffeomorphism Σ: SU(2)→ S3, we obtain the volume form
ωSU(2) on SU(2), for short ω, given by

(ωSU(2))A = ωA = adx2 ∧ dx3 ∧ dx4 − bdx1 ∧ dx3 ∧ dx4

+ cdx1 ∧ dx2 ∧ dx4 − dx1 ∧ dx2 ∧ dx3, (ωSU(2))

where

A =

(
a+ ib c+ id
−c+ id a− ib

)
.

In the above formula we abused notation because we identified TASU(2) with R4 using Σ.
As we showed earlier, the 3-form ω is SU(2)-invariant. After all this work, it is nice to see
that “things” are basically the same as if we were dealing with S3, but some justifications
are required, in particular invariance under SU(2). After all, SU(2) consists of complex
matrices, but SO(4) consists of real matrices.
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Definition 5.23. Let Ω ⊆ R3 be the open subset

Ω = (0, 2π)× (0, π)× (−2π, 2π). (Ω)

By Proposition 5.4, the map u : Ω→ SU(2) given by

u(ϕ, θ, ψ) = rx(ϕ/2)rz(θ/2)rx(ψ/2) =

(
e
iϕ
2 0

0 e−
iϕ
2

)(
cos θ

2
i sin θ

2

i sin θ
2

cos θ
2

)(
e
iψ
2 0

0 e−
iψ
2

)

=

 cos θ
2
e
i(ϕ+ψ)

2 i sin θ
2
e
i(ϕ−ψ)

2

i sin θ
2
e−

i(ϕ−ψ)
2 cos θ

2
e−

i(ϕ+ψ)
2


is a diffeomorphism onto an open subset of SU(2) that omits a subset of measure zero in
its range. We need to find the pull-back u∗ω of the volume form ω on SU(2), and since
ω = Σ∗(ωS3), we need to find

ωΩ = u∗ω = u∗(Σ∗(ωS3)) = (Σ ◦ u)∗(ωS3).

Definition 5.24. Let Φ: Ω → S3 be the composed map Φ = Σ ◦ u from Ω onto an open
subset of S3, given by

Φ(ϕ, θ, ψ) = (Φ1(ϕ, θ, ψ), Φ2(ϕ, θ, ψ), Φ3(ϕ, θ, ψ), Φ4(ϕ, θ, ψ)),

with

Φ1(ϕ, θ, ψ) = cos
θ

2
cos

(ϕ+ ψ)

2
Φ2(ϕ, θ, ψ) = cos

θ

2
sin

(ϕ+ ψ)

2

Φ3(ϕ, θ, ψ) = − sin
θ

2
sin

(ϕ− ψ)

2
Φ4(ϕ, θ, ψ) = sin

θ

2
cos

(ϕ− ψ)

2
.

The map Φ is a diffeomorphism.

Definition 5.25. Let ωΩ be the pull-back form ωΩ = Φ∗ωS3 .

The pull-back form ωΩ = Φ∗ωS3 is a volume form on Ω, and from the point of integration,
since a only subset of measure zero is omitted we can use it to define integration on SU(2).

Proposition 5.36. The volume form ωΩ is given by

ωΩ =
1

8
sin θ dθ ∧ dϕ ∧ dψ.

Proof. We need to compute

Φ∗ωS3 = Φ1(ϕ, θ, ψ)dΦ2 ∧ dΦ3 ∧ dΦ4 − Φ2(ϕ, θ, ψ)dΦ1 ∧ dΦ3 ∧ dΦ4

+ Φ3(ϕ, θ, ψ)dΦ1 ∧ dΦ2 ∧ dΦ4 − Φ4(ϕ, θ, ψ)dΦ1 ∧ dΦ2 ∧ dΦ3.
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It turns out that the computation is simpler if we let σ =
ϕ+ ψ

2
and τ =

ϕ− ψ
2

. Then we

have

dσ ∧ dτ =
1

4
(dϕ+ dψ) ∧ (dϕ− dψ) = −1

2
dϕ ∧ dψ.

Since

dΦ1 =
∂Φ1

∂σ
dσ +

∂Φ1

∂θ
dθ +

∂Φ1

∂τ
dτ dΦ2 =

∂Φ2

∂σ
dσ +

∂Φ2

∂θ
dθ +

∂Φ2

∂τ
dτ

dΦ4 =
∂Φ3

∂σ
dσ +

∂Φ3

∂θ
dθ +

∂Φ3

∂τ
dτ dΦ4 =

∂Φ4

∂σ
dσ +

∂Φ4

∂θ
dθ +

∂Φ4

∂τ
dτ,

after a moment of reflexion, we see that

Φ∗ωS3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1
∂Φ1

∂σ

∂Φ1

∂θ

∂Φ1

∂τ

Φ2
∂Φ2

∂σ

∂Φ2

∂θ

∂Φ2

∂τ

Φ3
∂Φ3

∂σ

∂Φ3

∂θ

∂Φ3

∂τ

Φ4
∂Φ4

∂σ

∂Φ4

∂θ

∂Φ4

∂τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
dσ dθ dτ.

We find that

∂Φ1

∂θ
= −1

2
sin

θ

2
cosσ

∂Φ1

∂σ
= − cos

θ

2
sinσ

∂Φ1

∂τ
= 0

∂Φ2

∂θ
= −1

2
sin

θ

2
sinσ

∂Φ2

∂σ
= cos

θ

2
cosσ

∂Φ2

∂τ
= 0

∂Φ3

∂θ
= −1

2
cos

θ

2
sin τ

∂Φ3

∂σ
= 0

∂Φ3

∂τ
= − sin

θ

2
cos τ

∂Φ4

∂θ
=

1

2
cos

θ

2
cos τ

∂Φ4

∂σ
= 0

∂Φ4

∂τ
= − sin

θ

2
sin τ.

Since

dσ ∧ dθ ∧ dτ = −dθ ∧ dσ ∧ dτ =
1

2
dθ ∧ dϕ ∧ dψ,

we obtain

Φ∗ωS3 =
1

4
cos

θ

2
sin

θ

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos
θ

2
cosσ − sin

θ

2
cosσ − sinσ 0

cos
θ

2
sinσ − sin

θ

2
sinσ cos θ 0

− sin
θ

2
sin τ − cos

θ

2
sin τ 0 − cos τ

sin
θ

2
cos τ cos

θ

2
cos τ 0 − sin τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
dθ ∧ dϕ ∧ dψ.
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Observe that the matrix corresponding to the determinant is orthogonal, so

Φ∗ωS3 = ±1

4
cos

θ

2
sin

θ

2
dθ ∧ dϕ ∧ dψ = ±1

8
sin θ dθ ∧ dϕ ∧ dψ.

In fact, it can be verified that the determinant has the value +1, so we get

ωΩ = Φ∗ωS3 =
1

8
sin θ dθ ∧ dϕ ∧ dψ,

as claimed.

Finally, given a continuous function f : Ω→ C the integral
∫

Ω
fωΩ is defined by∫

Ω

fωΩ =
1

8

∫ 2π

−2π

∫ 2π

0

∫ π

0

f(ϕ, θ, ψ) sin θ dθ dϕ dψ.

Since this integral yields the volume 2π2 (for f ≡ 1), we normalize the measure ν associated
with ωΩ so that

∫
Ω

1ωΩ = 1. Since Σ: SU(2) → S3 is a diffeomorphism we also have
ωS3 = (Σ−1)∗ω, and so for any continuous function f : SU(2)→ C,∫

SU(2)

fω =

∫
S3

(f ◦ Σ−1)ωS3 ,

and since for any continuous function f : S3 → C, we have∫
S3

fωS3 =

∫
Ω

(f ◦ Φ)ωΩ =

∫
Ω

(f ◦ Σ ◦ u)ωΩ,

we obtain ∫
SU(2)

fω =

∫
S3

(f ◦ Σ−1)ωS3 =

∫
Ω

(f ◦ Σ−1 ◦ Σ ◦ u)ωΩ =

∫
Ω

(f ◦ u)ωΩ.

In summary, we obtained the following result.

Proposition 5.37. The pull-back volume form ωΩ = Φ∗ωS3 on Ω is given by

ωΩ =
1

8
sin θ dθ ∧ dϕ ∧ dψ. (ωΩ)

For a continuous function f : Ω→ C, the integral
∫

Ω
fωΩ is given by∫

Ω

fωΩ =
1

16π2

∫ 2π

−2π

∫ 2π

0

∫ π

0

f(ϕ, θ, ψ) sin θ dθ dϕ dψ. (INT-Ω)

For any continuous function f : SU(2) → C, the integral
∫
SU(2)

fω =
∫

Ω
(f ◦ u)ωΩ is given

by ∫
SU(2)

fω =
1

16π2

∫ 2π

−2π

∫ 2π

0

∫ π

0

f(u(ϕ, θ, ψ)) sin θ dθdϕdψ. (INT-SU(2))

For any continuous function f : S3 → C, the integral
∫
S3 fω =

∫
Ω

(f ◦ Φ)ωΩ is given by∫
S3

fωS3 =
1

16π2

∫ 2π

−2π

∫ 2π

0

∫ π

0

f(Φ(ϕ, θ, ψ)) sin θ dθ dϕ dψ. (INT-S3)
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We also write
∫
SU(2)

f dν for
∫
SU(2)

fω.

Remark: Formula (INT−Ω) is stated in Vilenkin [70] (Chapter III, Section 6) and in
Kosmann-Schwarzbach [45], see Exercise 5.6.

It is remarkable that we can also obtain the normalized Haar measure on SO(3) in terms
of the Euler angles from the normalized Haar measure on SU(2) without any additional
computation. Recall that as a corollary of Proposition 5.4, the map ρ ◦ u0 from [0, 2π) ×
[0, π]×[0, 2π) to SO(3) is surjective, where ρ : SU(2)→ SO(3) is a surjective homomorphism
whose kernel is {−I, I} and u0 is the restriction of u : [0, 2π) × [0, π] × [−2π, 2π) → SU(2)
to [0, 2π)× [0, π]× [0, 2π).

Definition 5.26. Let Ω0 ⊆ R3 be the open subset

Ω0 = (0, 2π)× (0, π)× (0, 2π), (Ω0)

a proper open subset of Ω = (0, 2π) × (0, π) × (−2π, 2π), and let u0 : Ω0 → SU(2) be the
restriction of u : Ω→ SU(2) to Ω0.

Definition 5.27. The map R0 : Ω0 → SO(3) is given by

R0(ϕ, θ, ψ) = Rx(ϕ)Rz(θ)Rx(ψ),

or more explicitly,

R0(ϕ, θ, ψ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 .

Proposition 5.4 implies that u is injective on Ω = (0, 2π) × (0, π) × (−2π, 2π), and thus
u0 is injective on Ω0.

Definition 5.28. Let U0 = u0(Ω0) be the image of Ω0 by u0, an open subset of SU(2).

Proposition 5.38. The restriction ρ0 of ρ to U0 is injective. As a consequence, the map
R0 : Ω0 → SO(3) is also injective.

Proof. This is because if ρ(q1) = ρ(q2) for some q1, q2 ∈ Ω0, such that q1 6= q2, then q2 = −q1,
but if q1 = rx(ϕ/2)rz(θ/2)rx(ψ/2), then

rx(ϕ/2)rz(θ/2)rx((ψ − 2π)/2) = rx(ϕ/2)rz(θ/2)rx(ψ/2− π)

= −rx(ϕ/2)rz(θ/2)rx(ψ/2) = −q1,

so q2 = rx(ϕ/2)rz(θ/2)rx((ψ − 2π)/2) with −2π < ψ < 0 contradicting the fact that q2 ∈
Ω0.
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As a consequence, if we let V0 = ρ0(U0) ⊆ SO(3), the bijective map ρ0 : U0 → V0 has an
inverse s0 : V0 → U0.

Definition 5.29. Let V0 = ρ0(U0) ⊆ SO(3) and s0 : V0 → U0 be the inverse of ρ0 : U0 → V0.
Also let Σ0 be the composition Σ0 = Σ ◦ s0.

Consider the commutative diagram

Ω0
u0 //

R0

$$

U0 ⊆ SU(2) Σ //

ρ0

��

S3

V0 ⊆ SO(3).

s0

OO

Σ0

::

Since s0 is a diffeomorphism, we can pull back the volume form ω on SU(2) (really on
U0) to SO(3) (really V0).

Proposition 5.39. The 3-form s∗0ω is SO(3)-invariant.

Proof. We check left-invariance, leaving right-invariance as an exercise. For this, for any
Q,R ∈ V0 ⊆ SO(3) and any Y ∈ TRSO(3), we compute

(L∗Q(s∗0ω))R(Y ) = ((s0 ◦ LQ)∗ω)R(Y ) = ω(s0◦LQ)(R)(d(s0 ◦ LQ)R(Y ))

= ωs0(QR)(d(s0 ◦ LQ)R(Y ))

= ωs0(Q)s0(R)(d(s0 ◦ LQ)R(Y )).

But since (s0 ◦ LQ)(R) = s0(QR) = s0(Q)s0(R) = Ls0(Q)(s0(R)), we see that d(s0 ◦ LQ)R =
d(Ls0(Q))s0(R) ◦ (ds0)R, so we have

(L∗Q(s∗0ω))R(Y ) = ωs0(Q)s0(R)(d(s0 ◦ LQ)R(Y )) = ωLs0(Q)(s0(R))(d(Ls0(Q))s0(R)((ds0)R(Y ))).

Since ω is left-invariant, we obtain

(L∗Q(s∗0ω))R(Y ) = ωLs0(Q)(s0(R))(d(Ls0(Q))s0(R)((ds0)R(Y )))

= ω(s0(R)((ds0)R(Y )) = (s∗0ω)R(Y ),

establishing left-invariance.

It follows that s∗0ω is an invariant volume form on V0, and thus a volume form ωSO(3) on
SO(3) up to a set of measure zero.

Remark: It can be shown that there is an invariant volume form ωSO(3) on SO(3) such that
ωSO(3) and the volume form ωSU(2) on SU(2) are related by ωSU(2) = ρ∗ωSO(3), where ρ is
the covering homomorphism ρ : SU(2) → SO(3). This is because SO(3) is orientable. The
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proof is essentially the same as the proof that RPn is orientable iff n is odd; see Madsen and
Tornehave [51], Example 9.19. Thus the volume form s∗0ω on V0 ⊆ SO(3) is a piece of the
volume form ωSO(3) corresponding to a section s0 of ρ. The complement of the domain of s0

is a subset of measure zero in SO(3). The volume form ωSO(3) defines the Haar measure on
SO(3), and up to a subset of measure zero, so does s∗0ω.

The pull-back ωΩ0 = R∗0(s∗0ω) = (s0 ◦R0)∗ω of the volume form s∗0ω by R0 is the volume
form on Ω0 that we seek. However, the commutativity of the above diagram and the fact
that by definition ω = Σ∗ωS3 show that

ωΩ0 = (s0 ◦R0)∗ω = u∗0ω = u∗0(Σ∗ωS3) = (Σ ◦ u0)∗ωS3 .

Definition 5.30. Let Φ0 : Ω0 → S3 be the composed map Φ0 = Σ ◦ u0 and let ωΩ0 be the
volume form on Ω0 defined as the pull-back Φ∗0ωS3 of ωS3 .

Since u0 is the restriction of u to Ω0, we conclude that ωΩ0 = Φ∗0ωS3 is given as in the
SU(2) case, by

ωΩ0 =
1

8
sin θ dθ ∧ dϕ ∧ dψ.

Proposition 5.40. The pull-back volume form ωΩ0 = Φ∗0ωS3 on Ω0 is given by

ωΩ0 =
1

8
sin θ dθ ∧ dϕ ∧ dψ. (ωΩ0)

For a continuous function f : Ω0 → C, the integral
∫

Ω0
fωΩ0 is given by∫

Ω0

fωΩ0 =
1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

f(ϕ, θ, ψ) sin θ dθdϕdψ. (INT-Ω0)

For a continuous function f : SO(3)→ C, the integral
∫
SO(3)

fωSO(3) is given by∫
SO(3)

fωSO(3) =
1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

f(R0(ϕ, θ, ψ)) sin θ dθ dϕ dψ. (INT-SO(3))

We also write
∫
SO(3)

f dν0 for
∫
SO(3)

fωSO(3). Observe that the measure ν0 associated with

ωΩ0 is already normalized.

Remark: Formula (INT−Ω0) is stated in Kosmann-Schwarzbach [45], see Exercise 5.5.

5.15 Fourier Series of Functions in L2(SU(2)), L2(SO(3))

and L2(S2)

In the preceding sections we computed explicitly several matrix representations t(`)(q) for
the irreducible representations T` : SU(2) → U(PC

` ) with respect to an invariant hermitian
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inner product on PC
` . In terms of the general results presented in Sections 4.1–4.3, especially

Theorem 4.6, ρ = `, nρ = 2`+ 1, M`(q) = t(`)(q), and since

M`(q) =

(
1

n`
m

(`)
ij (q)

)
,

the functions m
(`)
ij (q) are given by m

(`)
ij (q) = (2` + 1)t

(`)
ij (q), where ` ranges through the

set R = {0, 1/2, 1, 3/2, 2, 5/2, 3, . . .} of all nonnegative integer and half integer values. By

Peter–Weyl I (Theorem 4.2), the n2
` = (2` + 1)2 functions 1√

n`
m

(`)
ij =

√
2`+ 1 t

(`)
ij in the

matrix
√

2`+ 1 t(`) form an orthonormal basis of the minimal two-sided ideal a` arising in
the Hilbert sum

L2(SU(2)) =
⊕
`

a`,

and thus the family of functions (√
2`+ 1 t

(`)
ij

)
−`≤i,j≤`, `∈R

,

with R = {0, 1/2, 1, 3/2, 2, . . .}, is a Hilbert basis of L2(SU(2)). By the results of Section
4.12 on the Fourier transform and the Fourier cotransform, by Definition 4.44 of the Fourier
transform F(f) and equation (FI) (see also Theorem 4.53),

f(s) =
∑
ρ∈R

nρ tr (F(f)(ρ)Mρ(s)) , f ∈ L2(G), s ∈ G,

since M`(q) = t(`)(q), for every ` ∈ R, the (2`+1)× (2`+1) matrix α(`) = F(f)(`) of Fourier
coefficients of f ∈ L2(SU(2)) is given by

α(`) =

∫
SU(2)

f(q)(t(`)(q))∗ dν(q),

where ν is the normalized Haar measure on SU(2), and by the Fourier inversion formula
(FI), we have

f(q) =
∑
`∈R

(2`+ 1) tr
(
α(`)t(`)(q)

)
, q ∈ SU(2).

Written in terms of matrix elements, we obtain the equations

α
(`)
jk =

∫
SU(2)

f(q)t
(`)
kj (q) dν(q), (FC1)

and

f(q) =
∑
`∈R

(2`+ 1)
∑̀
j=−`

∑̀
k=−`

α
(`)
kj t

(`)
jk (q), q ∈ SU(2). (FS1)
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Using the Euler angles, Proposition 5.28 (in particular, (∗41), (∗42)), namely

t
(`)
jk (q) = t

(`)
jk (u(ϕ, θ, ψ)) = e−i(jϕ+kψ) t

(`)
jk (θ) = e−i(jϕ+kψ) P `

jk(cos θ), ` ∈ R.

Proposition 5.37, and the fact that P `
jk(cos θ) = (−1)j−kP `

jk(cos θ) (left as an exercise), by
swapping j and k in (FC1), we obtain the following series expansion for the functions in
L2(SU(2)).

Proposition 5.41. Every function f ∈ L2(SU(2)) expressed in terms of the Euler angles
(0 ≤ ϕ < 2π, 0 ≤ θ < π,−2π ≤ ψ < 2π) can be written as the Fourier series

f(u(ϕ, θ, ψ)) =
∑
`∈R

(2`+ 1)
∑̀
j=−`

∑̀
k=−`

α
(`)
kj e

−i(jϕ+kψ)P `
jk(cos θ), (FS2)

where the Fourier coefficients are given by

α
(`)
kj =

(−1)j−k

16π2

∫ 2π

−2π

∫ 2π

0

∫ π

0

f(u(ϕ, θ, ψ))ei(jϕ+kψ)P `
jk(cos θ) sin θ dθ dϕ dψ. (FC2)

Remark: Vilenkin uses a different definition for the Fourier coefficients, namely he uses the
matrix (2` + 1)(α(`))>; see Vilenkin [70], Chapter III, Section 6.3. As a consequence, his
formulae are slightly different.

Remark: The Parseval identity is given by∑
`

(2`+ 1)
∑̀
j=−`

∑̀
k=−`

|α(`)
jk |

2 =
1

16π2

∫ 2π

−2π

∫ 2π

0

∫ π

0

|f(u(ϕ, θ, ψ))|2 sin θ dθ dϕ dψ. (PS1)

The above discussion applies to SO(3) and its irreducible representations W` : SO(3)→
U(PC

` ), which are now indexed by the set N of natural numbers. By Peter–Weyl I (Theorem

4.2), the n2
` = (2` + 1)2 functions 1√

n`
m

(`)
ij =

√
2`+ 1w

(`)
ij in the matrix

√
2`+ 1w(`), where

w(`)(R) is the matrix associated with W `(R) for R ∈ SO(3), form an orthonormal basis of
the minimal two-sided ideal a` arising in the Hilbert sum

L2(SO(3)) =
⊕
`

a`,

and thus the family of functions (√
2`+ 1w

(`)
ij

)
−`≤i,j≤`, `∈N

is a Hilbert basis of L2(SO(3)). It follows that for every ` ∈ N, the (2`+ 1)× (2`+ 1) matrix
α(`) = F(f)(`) of Fourier coefficients of f ∈ L2(SO(3)) is given by

α(`) =

∫
SO(3)

f(R)(w(`)(R))∗ dν0(R),



368 CHAPTER 5. MATRIX REPRESENTATIONS OF SL(2,C), SU(2) AND SO(3)

where ν0 is the normalized Haar measure on SO(3), and by the Fourier inversion formula
(FI), we have

f(R) =
∑
`∈N

(2`+ 1) tr
(
α(`)w(`)(R)

)
, R ∈ SO(3).

Written in terms of matrix elements, we obtain the equations

α
(`)
jk =

∫
SO(3)

f(R)w
(`)
kj (R) dν0(R), (FC1’)

and

f(R) =
∑
`∈N

(2`+ 1)
∑̀
j=−`

∑̀
k=−`

α
(`)
kj w

(`)
jk (q), R ∈ SO(3). (FS1’)

Using the Euler angles, Proposition 5.28 (in particular, (∗41), (∗42)), Proposition 5.40,
that by Proposition 5.25, we have

w
(`)
jk (R0(ϕ, θ, ψ)) = e−i(jϕ+kψ) t

(`)
jk (θ) = e−i(jϕ+kψ) P `

jk(cos θ), ` ∈ N,

and using the fact that P `
jk(cos θ) = (−1)j−kP `

jk(cos θ) (left as an exercise), we obtain the
following series expansion for the functions in L2(SO(3)).

Proposition 5.42. Every function f ∈ L2(SO(3)) expressed in terms of the Euler angles
(0 ≤ ϕ < 2π, 0 ≤ θ < π, 0 ≤ ψ < 2π) can be written as the Fourier series

f(R0(ϕ, θ, ψ)) =
∑
`∈N

(2`+ 1)
∑̀
j=−`

∑̀
k=−`

α
(`)
kj e

−i(jϕ+kψ)P `
jk(cos θ), (FS2’)

where the Fourier coefficients are given by

α
(`)
kj =

(−1)j−k

8π2

∫ 2π

0

∫ 2π

0

∫ π

0

f(R0(ϕ, θ, ψ))ei(jϕ+kψ)P `
jk(cos θ) sin θ dθ dϕ dψ. (FC2’)

Remarks:

(1) If the functions f are real-valued, it may be preferable to use the Wigner d-matrices
d(`)(θ) of Definition 5.12, which are real orthogonal, instead of the complex matrices

t(`)(θ), which amounts to using (−1)j−kij−kt
(`)
jk (θ) instead of t

(`)
jk (θ), that is, the real

polynomials (−1)j−kij−kP `
jk instead of P `

jk in (FS2’) and (FC2’). This is common
practice in computer vision.

(2) A variant of the definition of the Fourier transform and of the Fourier cotransform
occurs in the computer vision community. In these formula, w(`)(R) is replaced by
(w(`)(R))∗, namely

α(`) =

∫
SO(3)

f(R)w(`)(R) dν0(R),
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and
f(R) =

∑
`∈N

(2`+ 1) tr
(
α(`)(w(`)(R))∗

)
, R ∈ SO(3).

Our version is consistent with the definition of the Fourier transform in the case where
G is abelian.

Vilenkin investigates the expansion in Fourier series for two subspaces L2
k and jL

2 of
L2(SU(2)).

Definition 5.31. The subspace L2
k consists of the functions f ∈ L2(SU(2)), such that

f(qH(ψ)) = e−ikψf(q), q ∈ SU(2),

for all H(ψ) in the subgroup Ωx of SU(2) given by

Ωx =

{
H(t) = rx(t/2) =

(
e
it
2 0

0 e−
it
2

) ∣∣∣∣∣ 0 ≤ t ≤ 2π

}
. (Ωx)

It is easy to see that L2
k consists of the functions f ∈ L2(SU(2)) such that

f(u(ϕ, θ, ψ)) = e−ikψf(u(ϕ, θ, 0)),

for all ϕ, θ, ψ.

Definition 5.32. The subspace jL
2 consists of the functions f ∈ L2(SU(2)), such that

f(H(ϕ)q) = e−ijϕf(q), q ∈ SU(2),

for all H(ϕ) in the subgroup Ωx of SU(2).

It is easy to see that jL
2 consists of the functions f ∈ L2(SU(2)), such that

f(u(ϕ, θ, ψ)) = e−ijϕf(u(0, θ, ψ)),

for all ϕ, θ, ψ.

Observe that the functions t
(`)
jk (q) (with q expressed in terms of the Euler angles) for k

fixed,
t
(`)
jk (q) = e−ikψe−ijϕP `

jk(cos θ),

for ` = |k|, |k|+ 1, . . . , |k|+m, . . . , −` ≤ j ≤ `, belong to L2
k. In fact, it is shown in Vilenkin

[70] (Chapter III, Section 6.4) that these functions form an orthogonal basis of L2
k, more

precisely, every function f ∈ L2
k can written as the Fourier series

f(u(ϕ, θ, ψ)) = e−ikψ
∞∑
`=|k|

(2`+ 1)
∑̀
j=−`

α
(`)
j e−ijϕP

(`)
jk (cos θ), (FS3)
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where the Fourier coefficients are given by

α
(`)
j =

(−1)j−k

4π

∫ 2π

0

∫ π

0

f(u(ϕ, θ, 0))eijϕP `
jk(cos θ) sin θ dθ dϕ. (FC3)

In particular, for functions f ∈ L2(SU(2)), such that

f(qH) = f(q), for all q ∈ SU(2) and all H ∈ Ωx,

namely, functions which do not depend on the Euler angle ψ, we have

f(u(ϕ, θ, 0)) =
∞∑
`=0

(2`+ 1)
∑̀
j=−`

α
(`)
j e−ijϕP

(`)
j0 (cos θ), (FS4)

with

α
(`)
j =

(−1)j

4π

∫ 2π

0

∫ π

0

f(u(ϕ, θ, 0))eijϕP `
j0(cos θ) sin θ dθ dϕ. (FC4)

It is shown in Vilenkin [70] (Chapter III, Section 3.9) that (∗47), namely

P k
` (z) = ik

√
(`+ k)!

(`− k)!
P `
k0(z),

implies that we have

P−j` (z) = (−1)j
(`− j)!
(`+ j)!

P j
` (z),

so we obtain an expansion in terms of the associated Legendre functions P j
` (cos θ),

f(u(ϕ, θ, 0)) =
∞∑
`=0

(2`+ 1)
∑̀
j=−`

βj` e
−ijϕP j

` (cos θ), (FS5)

with

βj` =
1

4π

(`− j)!
(`+ j)!

∫ 2π

0

∫ π

0

f(u(ϕ, θ, 0))eijϕP j
` (cos θ) sin θ dθ dϕ. (FC5)

Similarly, it can be shown (see Vilenkin [70], Chapter III, Section 6.4) that every function
f ∈ jL

2 can written as the Fourier series

f(u(ϕ, θ, ψ)) = e−ijϕ
∞∑
`=|j|

(2`+ 1)
∑̀
k=−`

α
(`)
k e−ikψP

(`)
jk (cos θ), (FS6)

where the Fourier coefficients are given by

α
(`)
k =

(−1)j−k

8π

∫ 2π

−2π

∫ π

0

f(u(0, θ, ψ))eikψP `
jk(cos θ) sin θ dθ dψ. (FC6)
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In particular, for functions f ∈ L2(SU(2)), such that

f(Hq) = f(q), for all q ∈ SU(2) and all H ∈ Ωx,

namely, functions which do not depend on the Euler angle ϕ, we have

f(u(0, θ, ψ)) =
∞∑
`=0

(2`+ 1)
∑̀
k=−`

βk` e
−ikψP k

` (cos θ), (FS7)

with

βk` =
1

8π

(`− k)!

(`+ k)!

∫ 2π

−2π

∫ π

0

f(u(0, θ, ψ))eikψP k
` (cos θ) sin θ dθ dψ. (FC7)

Fourier expansion formulae for the functions in jL
2 ∩L2

k can also be obtained, as well as
formulae for functions f ∈ L2(SU(2)), such that

f(H1qH2) = f(q), for all q ∈ SU(2) and all H1, H2 ∈ Ωx,

namely functions that do not depend on the Euler angles ϕ and ψ, but we leave these as
exercises (see Vilenkin [70], Chapter III, Section 6.4).

The expansion in Fourier series of the function in L2(SU(2)) that are independent of ψ
yields a Fourier series expansion of functions in L2(S2).

This is because, as explained in Section 5.12, SU(2)/Ωx (see Definition 5.16 for the defi-
nition of Ωx) is a homogeneous space homeomorphic to S2 and the functions f ∈ L2(SU(2))
such that f(qH) = f(q) for all q ∈ SU(2) and all H ∈ Ωx correspond bijectively to the
functions in L2(S2).

We can use (FS5) and (FC5) to obtain the following Fourier series expansion for every
function f ∈ L2(S2) in terms of the associated Legendre functions,

f(ϕ, θ) =
∞∑
`=0

(2`+ 1)
∑̀
j=−`

βj` e
−ijϕP j

` (cos θ), (FS8)

with

βj` =
1

4π

(`− j)!
(`+ j)!

∫ 2π

0

∫ π

0

f(ϕ, θ)eijϕP j
` (cos θ) sin θ dθ dϕ. (FC8)

We also have the Parseval identity∫ 2π

0

∫ π

0

|f(ϕ, θ)|2dν =
∞∑
`=0

(2`+ 1)
∑̀
j=−`

(`+ j)!

(`− j)!
|βj` |

2, (PS2)

where dν = (1/4) sin θ dθ dϕ is the normalized measure on S2 in spherical coordinates; among
other sources, see Gallier and Quaintance [28] (Section 6.4).
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Recall from Definition 5.17 and (∗48) that

Y`j(ϕ, θ) = t
(`)
j0 (q) = i−j

√
(`− j)!
(`+ j)!

e−ijϕ P j
` (cos θ), −` ≤ j ≤ `,

with ` ∈ N, so we have√
(2`+ 1)(`− j)!

(`+ j)!
e−ijϕP j

` (cos θ) = ij
√

2`+ 1Y`j(ϕ, θ),

for ` ∈ N and −` ≤ j ≤ `, and in view of (FS8) and (FS2), the above functions form a Hilbert
basis for the functions in L2(S2). As we explained just after Proposition 5.31, the functions
ij
√

2`+ 1Y`j(ϕ, θ) are (a version of) the Laplace spherical harmonics Y j
` (θ, ϕ), namely

Y j
` (θ, ϕ) =

√
(2`+ 1)(`− j)!

(`+ j)!
e−ijϕP j

` (cos θ).

Remark: Some authors include 1/
√

4π in the leading constant.

The associated Legendre functions can be computed starting with the Legendre polyno-
mials using some recurrence equations; see Gallier and Quaintance [28] (Section 7.3).

5.16 Decomposition of Fields on the Sphere S2

In various applications it is necessary to decompose not only scalar-valued but also vector-
valued functions on the sphere S2 into Fourier series that behave nicely under rotations of the
sphere. Vilenkin suggests a way to do this that we now discuss (see Vilenkin [70] (Chapter
III, Section 6.6). To simplify notation, we will write P` instead of PC

` .

Let T` : SU(2) → U(P`) be the irreducible representation of SU(2) associated with
` ∈ R = {0, 1/2, 1, 3/2, 2, 5/2, 3, . . .}.

Definition 5.33. Let FS` be the Hilbert space of functions f : S2 → P` defined by the
isomorphism

FS` '
⊕̀
j=−`

L2(S2)ψj,

where the ψj constitute an orthonormal basis of P` for an SU(2)-invariant hermitian inner
product defined in Section 5.8 (P` is a complex vector space of dimension 2` + 1). More
precisely, the inner product of two functions f, g ∈ FS` is given by

〈f, g〉 =

∫
S2

〈f(ξ), g(ξ)〉 dσ(ξ),

where 〈−,−〉 is the SU(2)-invariant hermitian inner product on P` defined earlier and σ is
the normalized SO(3)-invariant measure on S2.
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Remark: In computer vision, the vectors in the vector space P` are called steerable vectors .
The group SU(2) acts on P` via the action

q · v = T`(q)(v), v ∈ P`, q ∈ SU(2).

As in the previous section, SU(2) acts on S2 by rotations, but for simplicity of notation,
we write qX instead of q · X = qXq∗, where q ∈ SU(2), X is the skew-hermitian matrix
corresponding to the point (x, y, z) on the sphere S2, and we write X ∈ S2. We define the
following representation.

Definition 5.34. For every ` ∈ R, let V` : SU(2)→ GL(FS` ) be the representation given by

[V`(q)(f)](X) = [T`(q)](f(q−1X)), q ∈ SU(2), (f : S2 → P`) ∈ FS` , X ∈ S2.

Vilenkin calls the functions in FS` fields of quantities on the sphere transforming according
to the irreducible representation T`. For example, for ` = 1, since 2`+ 1 = 3, we get a vector
field on the sphere.

Observe that for any two functions (f : S2 → P`), (g : S2 → P`) ∈ FS` , since T` is unitary
and σ is rotation invariant, we have

〈V`(q)(f), V`(q)(g)〉 =

∫
S2

〈[V`(q)(f)](X), [V`(q)(g)](X)〉 dσ(X)

=

∫
S2

〈[T`(q)](f(q−1X), [T`(q)](g(q−1X)〉 dσ(X)

=

∫
S2

〈f(q−1X), g(q−1X)〉 dσ(X)

=

∫
S2

〈f(X), g(X)〉 dσ(X) = 〈f, g〉.

Therefore the representation V` is unitary, that is, we have V` : SU(2)→ U(FS` ).

For technical reasons, we need to convert the functions in FS` , which are functions on the
sphere, to functions on SU(2). Let X0 be the skew-hermitian matrix

X0 =

(
i 0
0 −i

)
corresponding to e1 = (1, 0, 0) ∈ S2.

Definition 5.35. For every function (f : S2 → P`) ∈ FS` , let f̂ : SU(2)→ P` be the function
defined by

f̂(q) = [V`(q
−1)(f)](X0) = [T`(q

−1)](f(qX0)), q ∈ SU(2).

The functions f̂ : SU(2)→ P` belong to the Hilbert space defined below.



374 CHAPTER 5. MATRIX REPRESENTATIONS OF SL(2,C), SU(2) AND SO(3)

Definition 5.36. Let FSU
` be the Hilbert space of functions f : SU(2)→ P` defined by the

isomorphism

FSU
` '

⊕̀
j=−`

L2(SU(2))ψj.

More precisely, the inner product of two functions f, g ∈ FSU
` is given by

〈f, g〉 =

∫
SU(2)

〈f(q), g(q)〉 dν(q),

where 〈−,−〉 is the SU(2)-invariant hermitian inner product on P` defined earlier and ν is
the normalized Haar measure on SU(2).

Proposition 5.43. The map f 7→ f̂ is an injection from FS` to FSU
` .

Proof. Indeed, if f̂(q) = ĝ(q) for all q ∈ SU(2), then [T`(q
−1)](f(qX0)) = [T`(q

−1)](g(qX0))
for all q ∈ SU(2), and since T`(q

−1) is a bijection, f(qX0) = g(qX0) for all q ∈ SU(2), and
since the action of SU(2) on S2 is transitive, we must have f = g.

Definition 5.37. The image of FS` in FSU
` by the map ̂ is denoted by F̂S` .

Observe that f can be recovered from f̂ as follows:

f(qX0) = [T`(q)](f̂(q)), q ∈ SU(2).

Since Ωx is the stabilizer of X0, for every h ∈ Ωx we have hX0 = X0, and so

f̂(qh) = [T`((qh)−1)](f(qhX0))

= T`(h
−1)([T`(q

−1)](f(qX0)))

= [T`(h)−1](f̂(q)),

which we record as the equation

f̂(qh) = [T`(h)−1](f̂(q)), (f : S2 → P`) ∈ FS` , h ∈ Ωx. (fhat)

Let us figure out what is the function in F̂S` ⊆ FSU
` corresponding to the function

[V`(q0)](f) ∈ FS` , with (f : S2 → P`) ∈ FS` . We have

([V`(q0)](f))̂ (q) = [V`(q
−1)(V`(q0)(f))](X0)

= [V`(q
−1q0)(f)](X0) = f̂(q−1

0 q),

for all q0, q ∈ SU(2). This suggests the following definition.
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Definition 5.38. The representation V̂` : SU(2)→ U(F̂S` ) is given by

[V̂`(q0)(f̂ )](q) = f̂(q−1
0 q) = [T`(q

−1q0)](f(q−1
0 qX0)), (f : S2 → P`) ∈ FS` , q0, q ∈ SU(2).

The definition of V̂` implies that

V̂`(q0)(f̂ ) = ([V`(q0)](f))̂ ,

so that the following diagram commutes,

FS`
V`(q0) //

̂
��

FS`

̂
��

F̂S`
V̂`(q0)

// F̂S` ,

and since ̂ is an isomorphism between FS` and F̂S` , the representations V` : SU(2)→ U(FS` )

and V̂` : SU(2)→ U(F̂S` ) are equivalent.

The trick is now to decompose the space F̂S` into a direct sum of 2`+ 1 subspaces (F̂S` )k,
which are related to the spaces L2

−k introduced in Section 5.15.

Definition 5.39. For k with −` ≤ k ≤ `, for every function (f : S2 → P`) ∈ FS` , define the

function f̂k ∈ F̂S` as

f̂k(q) =
1

2π

∫ 2π

0

f̂(qh(t))e−ikt dt, q ∈ SU(2),

with

h(t) =

(
e
it
2 0

0 e−
it
2

)
∈ Ωx.

Proposition 5.44. For k with −` ≤ k ≤ `, for every function (f : S2 → P`) ∈ FS` , the
following properties hold:

(1)

f̂k(qh(s)) = eiksf̂k(q), q ∈ SU(2), h(s) ∈ Ωx.

Consequently, f̂k ∈
⊕`

j=−` L
2
−kψj.

(2)

f̂(q) =
∑̀
k=−`

f̂k(q), q ∈ SU(2).
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(3)

[V̂`(q0)(f̂ )]k(q) = f̂k(q
−1
0 q), q0, q ∈ SU(2).

Proof. (1) We have

f̂k(qh(s)) =
1

2π

∫ 2π

0

f̂(qh(s)h(t))e−ikt dt

= eiks
1

2π

∫ 2π

0

f̂(qh(s+ t))e−ik(s+t) dt

= eiks
1

2π

∫ 2π

0

f̂(qh(t1))e−ikt1 dt1

= eiksf̂k(q),

as claimed.

(2) Using (fhat), we have

∑̀
k=−`

f̂k(q) =
1

2π

∑̀
k=−`

∫ 2π

0

f̂(qh(t))e−ikt dt

=
1

2π

∫ 2π

0

(∑̀
k=−`

e−iktT`(h(t)−1)

)
(f̂(q)) dt.

Here we need to recall from Proposition 5.15 that in the basis (ψm)−`≤m≤`, since h(t) =
rx(t/2), the matrix of T`(h(t)−1) is the diagonal matrix

e−i`t

e−i(`−1)t

. . .

ei(`−1)t

ei`t

 .

Consequently, the entries of e−iktT`(h(t)−1) are of the form e−i(`−j+k)t with j = 0, 1, . . . , 2`
and `+ k − j an integer, but

1

2π

∫ 2π

0

e−i(`+k−j)t dt = δ`+k,j

so the only entry that survives corresponds to j = `+ k and its contribution is 1, so in fact

∑̀
k=−`

e−iktT`(h(t)−1) = I2`+1,
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and thus
1

2π

∫ 2π

0

(∑̀
k=−`

e−iktT`(h(t)−1)

)
(f̂(q)) dt = f̂(q),

as claimed.

(3) We have

[V̂ (q0)(f̂ )]k(q) =
1

2π

∫ 2π

0

[V̂ (q0)(f̂ )](qh(t))e−ikt dt

=
1

2π

∫ 2π

0

f̂(q−1
0 qh(t))e−ikt dt

= f̂k(q
−1
0 q),

which concludes the proof of the proposition.

As a corollary, we have the following result.

Proposition 5.45. Denote by (F̂S` )k the image of F̂S` by the linear map f̂ 7→ f̂k, with
(f : S2 → P`) ∈ FS` .

(1) We have a direct sum

F̂S` =
⊕̀
k=−`

(F̂S` )k,

where every function f̂k ∈ (F̂S` )k satisfies the equation

f̂k(qh(s)) = eiksf̂k(q), q ∈ SU(2), h(s) ∈ Ωx.

(2) The map (V̂`)k defined by

[V̂`(q0)(f̂ )]k(q) = f̂k(q
−1
0 q), q0, q ∈ SU(2)

is a representation (V̂`)k : SU(2)→ U((F̂S` )k), and we have

V̂`(q0) =
⊕̀
k=−`

(V̂`)k(q0).

Proof. Since by (2), F̂S` is the sum of the subspaces (F̂S` )k, and by (1), if there was a nonzero

function such that f̂k1 = f̂k2 for some k1 6= k2, then we would have

f̂k1(qh(s)) = eik1sf̂k1(q) = f̂k2(qh(s)) = eik2sf̂k2(q),
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and so we would have eik1s = eik2s for all s, which implies k1 = k2, a contradiction.

The fact that

V̂`(q0) =
⊕̀
k=−`

(V̂`)k(q0),

follows from parts (2) and (3).

For every function
∑`

j=−` (̂fj)ψj in (F̂S` )k, we have (̂fj) ∈ L2
−k (with fj ∈ L2(S2)), so

as shown in Section 5.15, the function (̂fj) can be expanded in Fourier series according to
Formulae (FS3) and (FC3) (with k changed to −k).

We leave it as an exercise to the reader to use the isomorphism ̂ : FS` → F̂S` to define a
direct sum decomposition of FS` of the form

FS` =
⊕̀
k=−`

(FS` )k

and to translate the results obtained for functions in F̂S` and the representations V̂` to the
functions in FS` and to the representations V`.

5.17 The Clebsch–Gordan Coefficients

The Clebsch–Gordan coefficients have to do with tensor products of the irreducible rep-
resentations T` of SU(2) (see Definition 4.11 for the definition of the tensor product of
representations). In general, the tensor product T`1 ⊗ T`2 of two irreducible representations
T`1 and T`2 of SU(2) is not irreducible, so according to the Peter–Weyl theorem (Theorem
4.16) it splits as a direct sum of irreducible representations. Since the character associated
with the representation T`1 ⊗ T`2 is equal to the product χT`1χT`2 of the characters χT`1
and χT`2 associated with T`1 and T`2 , by Proposition 4.18, this splitting as a direct sum
decomposition translates into a decomposition

χT`1χT`2 =
∑
`

c``1,`2χT` ,

where c``1,`2 is the number of times that the irreducible representation T` occurs in the
representation T`1 ⊗ T`2 (see Section 4.3).

The natural numbers c``1,`2 can be determined from the expression of the characters that
was obtained in Section 5.1. However this expression was obtained for the representations
Um in the space PC

m(2) of homogeneous polynomials of degree m in two variables, so we work
out the expression of the characters in terms of the representations T` in the spaces PC

` of
polynomials of degree 2` in one variable (in particular, ` is now an integer or a half integer).
To simplify notation, we will write P` instead of PC

` .
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Recall that we showed in the proof of Proposition 5.1 that every unitary matrix q ∈ SU(2)
is diagonalizable as

q = Rrx(t/2)R∗

for some unitary matrix R ∈ SU(2), where

rx(t/2) =

(
e
it
2 0

0 e−
it
2

)
is uniquely determined if 0 ≤ t ≤ 2π. If the matrix q is given by

q =

(
α β

−β α

)
, |α|2 + |β|2 = 1,

then its eigenvalues are the zeros of the equation∣∣∣∣λ− α −β
β λ− α

∣∣∣∣ = 0,

that is,
λ2 − 2<(α)λ+ 1 = 0,

(since α + α = 2<(α)), whose zeros are

λ = <(α)± i
√

1− (<(α))2.

Since we assumed that the eigenvalues of q are e±
it
2 , we have

<(α) = cos
t

2
.

If q is expressed in terms of the Euler angles as q = u(ϕ, θ, ψ), then from the fomulae just
before Proposition 5.4, we have

α = cos
θ

2
e
i(ϕ+ψ)

2 ,

and so

<(α) = cos
t

2
= cos

θ

2
cos

(ϕ+ ψ)

2
.

Since the characters are central functions, that is, constant on conjugacy classes, we have

χT`(q) = χT`(rx(t/2)) = tr(T`(rx(t/2))).

Since we showed in Proposition 5.15 that in the basis (z`−k)−`≤k≤`, the matrix of T`(rx(t/2))
is the diagonal matrix 

ei`t

ei(`−1)t

. . .

e−i(`−1)t

e−i`t

 ,
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we obtain

χT`(q) = χT`(rx(t/2)) =
∑̀
k=−`

e−ikt =
ε`+1 − ε−`

ε− 1
,

with ε = e−it, and we showed in the proof of Proposition 5.1 that we obtain the following
expression (in that formula we make m = 2` and ϕ = t/2):

χT`(q) =
ε`+1 − ε−`

ε− 1
=

sin
(
`+ 1

2

)
t

sin t
2

,

with ε = e−it. Compare Vilenkin [70], Chapter III, Section 7.1. Using the above formula, we
obtain the following result.

Proposition 5.46. For any two irreducible representations T`1 and T`2 of SU(2), we have

χT`1 (q)χT`2 (q) =

`1+`2∑
`=|`1−`2|

χT`(q), q ∈ SU(2). (CG1)

Proof. We follow Vilenkin [70], Chapter III, Section 8.1. First assume that `1 ≥ `2. With
ε = e−it as above, we have

χT`1 (q)χT`2 (q) =

`2∑
k=−`2

εk
(ε`1+1 − ε−`1)

ε− 1

=

`2∑
k=−`2

ε`1+k+1 − εk−`1
ε− 1

=
1

ε− 1
(ε`1+`2+1 + · · ·+ ε`1−`2+1 − ε`2−`1 − · · · − ε−`1−`2)

=
1

ε− 1
(ε`1+`2+1 − ε`2−`1 + · · ·+ ε`1−`2+1 − ε`2−`1),

where the last line is obtained by combining pairwise positive and negative terms, the sum
of whose indices is equal to 1, we obtain

χT`1 (q)χT`2 (q) =

`1+`2∑
`=`1−`2

ε`+1 − ε−`

ε− 1
=

`1+`2∑
`=`1−`2

χT`(q).

If `2 ≥ `1, the proof is similar but the sum starts with `2 − `1.

Remark: The above computation essentially appears in Wigner [77], Chapter 17, pages
186–187.

The above proposition shows the somewhat unexpected fact that in the decomposition of
the tensor product representation T`1 ⊗ T`2 , those representations T` that occur correspond
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to values of ` such that |`1− `2| ≤ ` ≤ `1 + `2 where ` is an integer or a half integer as `1 + `2

is, and each such representation occurs exactly once. Thus

T`1 ⊗ T`2 =

`1+`2⊕
`=|`1−`2|

T`. (CG2)

We also have an isomorphism

P`1 ⊗ P`2 '
`1+`2⊕

`=|`1−`2|

P`. (CG3)

The space P`1 ⊗ P`2 has dimension (2`1 + 1)(2`2 + 1) and each summand P` has dimension
2`+ 1. The reader should check that

(2`1 + 1)(2`2 + 1) =

`1+`2∑
`=|`1−`2|

(2`+ 1).

Recall from Proposition 5.16 that each vector space P` has an orthonormal basis (ψk) (−` ≤
k ≤ `) invariant under the action of SU(2). Following Vilenkin [70] (Chapter III, Section 8.2),
we denote the basis of P`1 as (fj) (−`1 ≤ j ≤ `1) and the basis of P`2 as (hk) (−`2 ≤ k ≤ `2).
Then the family of tensor products

fj ⊗ hk, −`1 ≤ j ≤ `1, −`2 ≤ k ≤ `2

is a basis of P`1⊗P`2 . If we give P`1⊗P`2 the inner product defined in Definition 4.10 induced
by the inner products associated with the bases (fj) and (hk), then the vectors (fj⊗hk) form
an orthonormal basis of P`1 ⊗ P`2 .

Since we have the direct sum

P`1 ⊗ P`2 '
`1+`2⊕

`=|`1−`2|

P`,

we also have a basis of P`1 ⊗P`2 consisting of the union of the bases associated with each of
the summand Pl, which Vilenkin denotes by

a`m, |`1 − `2| ≤ ` ≤ `1 + `2, −` ≤ m ≤ `,

where for ` fixed, (a`m) (−` ≤ m ≤ `) is the basis of P`. Since both bases are orthonormal
bases of P`1 ⊗P`2 , there is a unitary matrix C expressing the basis (fj ⊗ hk) in terms of the
basis (a`m), and the entries of the matrix C are called the Clebsch–Gordan coefficients .

Amazingly, these coefficients can be computed explicitly, but the formulae are very com-
plicated and the technical details of the computations are quite involved. Complete details
can be found in Vilenkin [70] (Chapter III, Section 8). We will content ourselves by providing
an outline of these computations.
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The first observation is that the matrix of (T`1 ⊗T`2)(q) = T`1(q)⊗T`2(q) with respect to
the basis (fj ⊗ hk) is the Kronecker product of the matrices t(`1)(q) and t(`2)(q). Following
Vilenkin we denote this matrix as α(q) = (α(jk),(j′k′)(q)), and we have

α(jk),(j′k′)(q) = t
(`1)
jj′ (q)t

(`2)
kk′ (q), (CG4)

with −`1 ≤ j, j′ ≤ `1, −`2 ≤ k, k′ ≤ `2.

On the other hand, in the basis (a`m), the matrix representing T`1(q)⊗ T`2(q) is a block-
diagonal matrix whose blocks are the matrices t(`)(q). Again, following Vilenkin, we denote
this matrix as β(q) = (β(`m),(`′m′)(q)), with |`1 − `2| ≤ `, `′ ≤ `1 + `2, −` ≤ m ≤ ` and
−`′ ≤ m′ ≤ `′. Since this matrix is block-diagonal we must have

β(`m),(`′m′)(q) = 0 if ` 6= `′,

and if ` = `′, then β(`m),(`m′)(q) = t
(`)
mm′(q), so we have

β(`m),(`′m′)(q) = δ``′t
(`)
mm′(q), (CG5)

with −` ≤ m ≤ `, −`′ ≤ m′ ≤ `′.

The change of basis matrix C = (C(`m),(jk)) is the unitary matrix defined such that the
(jk)th column of C consists of the coefficients of fj ⊗ hk over the basis (a`m), namely

fj ⊗ hk =

`1+`2∑
`=|`1−`2|

∑̀
m=−`

C(`m),(jk)a
`
m, (CG6)

with −`1 ≤ j ≤ `1, −`2 ≤ k ≤ `2. Since β(q) is the matrix of T`1(q) ⊗ T`2(q) in the “old”
basis (a`m) and α(q) is the matrix of T`1(q)⊗ T`2(q) in the “new” basis (fj ⊗ hk), we have

α(q) = C∗β(q)C. (CG7)

It turns out that it is often desirable to indicate explicitly the dependence of C on the
indices `1 and `2, so we also write C(`1, `2, `; j, k,m) instead of C(`m),(jk). To be more concise,
we introduce the following notation.

Definition 5.40. The coefficients C(`1, `2, `; j, k,m) are also written as C(l, j), with l =
(`1, `2, `) and j = (j, k,m) and are called the Clebsch–Gordan coefficients .

Remark: In Wigner [77] (Chapter 17, Section Vector Addition Model), the matrix C is
introduced but it is denoted S; see Formula (17.16), which is the analog of equation (CG7).
The coefficients C(`m),(jk) are called vector coupling coefficients instead of Clebsch–Gordan
coefficients, although in the book index, there is an entry for the Clebsch–Gordan coefficients.
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In terms of matrix elements, (CG7) yields

α(jk),(j′k′)(q) =

`1+`2∑
`,`′=|`1−`2|

∑̀
m=−`

`′∑
m′=−`′

C(`m),(jk)β(`m),(`′m′)C(`′m′),(j′k′). (CG8)

Using (CG4) and (CG5), we obtain

t
(`1)
jj′ (q)t

(`2)
kk′ (q) =

`1+`2∑
`=|`1−`2|

∑̀
m,m′=−`

C(l, j′)C(l, j)t
(`)
mm′(q), (CG9)

with l = (`1, `2, `), j = (j, k,m), j′ = (j′, k′,m′).

Equation (CG9) is the key to the computation of the coefficients C(l, j). By a clever

use of the fact that the functions
√

2`+ 1 t
(`)
mm′(q) (−` ≤ m,m′ ≤ `) form a Hilbert basis of

L2(SU(2)) (see the beginning of Section 5.15) and the expression of t
(`)
mm′(q) in terms of the

Euler angles given by Proposition 5.28 as

t
(`)
mm′(q) = e−i(mϕ+m′ψ) P `

mm′(cos θ) (∗)

(with q = u(ϕ, θ, ψ)), it is possible to find (more or less explicit) formulae for C(l, j).

The first step is to multiply both sides of (CG9) by t
(`)
mm′(q) and integrate over SU(2).

Since the
√

2`+ 1 t
(`)
mm′(q) (−` ≤ m,m′ ≤ `) form a Hilbert basis, we obtain

C(l, j′)C(l, j) = (2`+ 1)

∫
SU(2)

t
(`1)
jj′ (q)t

(`2)
kk′ (q)t

(`)
mm′(q) dµ(q). (CG10)

Using (∗) and the volume form

1

16π2
sin θ dθ dϕ dψ

(see Proposition 5.37), we find that the integral in (CG10) is nonzero if and only if j+k = m
and j′ + k′ = m′. Therefore we only need to compute the Clebsch–Gordan coefficients
C(`1, `2, `; j, k, j+k). Among those, it turns out that the coefficients C(`1, `2, `; `1,−`2, `1−`2)
play a special role. They can be computed before the arbitrary coefficients C(`1, `2, `; j, k, j+
k) and it can be arranged that C(`1, `2, `; `1,−`2, `1 − `2) ≥ 0, which implies that all
C(`1, `2, `; j, k, j+ k) are real, even though a priori they are complex numbers. The points is
that for each `, we can multiply all the basis vectors a`m by a complex number of unit length
and still obtain a Hilbert basis, and ensure that C(`1, `2, `; `1,−`2, `1 − `2) ≥ 0. From now
on, we assume that this normalization has been made.

We now go back to (CG10) in which we set m = j + k and m′ = j′ + k′ and use (∗) to
integrate (making the substitution x = cos θ) to obtain

C(l, j′)C(l, j) =
(2`+ 1)

2

∫ 1

−1

P `1
jj′(x)P `2

kk′(x)P `
j+k j′+k′(x) dx, (CG11)
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with l = (`1, `2, `), j = (j, k, j + k), j′ = (j′, k′, j′ + k′).

In order to compute C(`1, `2, `; `1,−`2, `1 − `2) we set j′ = `1 and k′ = −`2 in (CG11).
Then we can use the special case of (∗40) in which j = `, the symmetry equations P `

mn(z) =
P `
−m−n(z) and P `

mn(z) = P `
nm(z) (just after Proposition 5.29), and (∗43), and after a bit

of work on (CG11) (see Vilenkin [70], Chapter III, Section 8.3, page 179), we obtain the
following formidable equation:

C(`1, `2, `; `1,−`2, `1 − `2)C(`1, `2, `; j, k, j + k)

=
(−1)−`+`1+k(2`+ 1)

2`+`1+`2+1

√
(2`1)!(2`2)!(`+ j + k)!

(`1 − j)!(`1 + j)!(`2 − k)!(`2 + k)!

×

√
1

(`− j − k)!(`+ `1 − `2)!(`− `1 + `2)!

×
∫ 1

−1

(1− x)`1−j(1 + x)`2−k
d`−j−k

dx`−j−k
[(1− x)`−`1+`2(1 + x)`+`1−`2 ] dx. (CG12)

To find C(`1, `2, `; `1,−`2, `1 − `2) we set j = `1 and k = −`2. Sparing the reader some
details found in Vilenkin and using integration by parts `− `1 + `2 times, we find that

|C(`1, `2, `; `1,−`2, `1 − `2)|2 =
(2`+ 1)(2`1)!(2`2)!

(`1 + `2 − `)!(`1 + `2 + `+ 1)!
.

Since we normalized our bases so that C(`1, `2, `; `1,−`2, `1 − `2) ≥ 0, we obtain

C(`1, `2, `; `1,−`2, `1 − `2) =

√
(2`+ 1)(2`1)!(2`2)!

(`1 + `2 − `)!(`1 + `2 + `+ 1)!
. (CG13)

Observe that (CG13) implies that C(`1, `2, `; j, k, j + k) is real, so plugging (CG13) into
(CG12), we finally obtain the “master equation”

C(`1, `2, `; j, k, j + k) =
(−1)−`+`1+k

2`+`1+`2+1

×

√
(2`+ 1)(`+ j + k)!(`1 + `2 − `)!(`1 + `2 + `+ 1)!

(`1 − j)!(`1 + j)!(`2 − k)!(`2 + k)!(`− j − k)!(`+ `1 − `2)!(`− `1 + `2)!

×
∫ 1

−1

(1− x)`1−j(1 + x)`2−k
d`−j−k

dx`−j−k
[(1− x)`−`1+`2(1 + x)`+`1−`2 ] dx. (CG14)

Remark: Another master equation is obtained from (CG11) as follows. When we set j′ = `1

and k′ = −`2, the polynomial P `
j+k,`1−`2(x) appears, but P `

j+k,`1−`2(x) = P `
`1−`2,j+k(x), so we

can use P `
`1−`2,j+k(x) and obtain another version of (CG1); see Vilenkin [70], Chapter III,

Section 8.3, page 181.
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Equation (CG14) still does not give an explicit formula but such formulae can be obtained.
By using the product rule in (CG14) and integrating term by term, it is shown in Vilenkin
[70] (also page 181) that we have

C(`1, `2, `; j, k, j + k) = (−1)−`+`1+k

×

√
(2`+ 1)(`+ j + k)!(`1 + `2 − `)!(`− j − k)!(`+ `1 − `2)!(`− `1 + `2)!

(`1 + `2 + `+ 1)!(`1 − j)!(`1 + j)!(`2 − k)!(`2 + k)!

×
N∑

s=M

(−1)s(`+ `2 − j − s)!(`1 + j + s)!

s!(`− j − k − s)!(`− `1 + `2 − s)!(`1 − `2 + j + k + s)!
(CG15)

with M = max(0, `2 − `1 − j − k), N = min(`− j − k, `− `1 + `2).

Two more explicit formulae for C(`1, `2, `; j, k, j+k) in terms of sums are given in Vilenkin
[70], Chapter III, Section 8.3, pages 181–182.

The Clebsch–Gordan coefficients enjoy several symmetry relations. These relations are
discussed in Vilenkin [70], Chapter III, Section 8.4. For example, it can be shown that

C(`1, `2, `; j, k, j + k) = (−1)`−`1−`2C(`1, `2, `;−j,−k,−j − k)

C(`1, `2, `; j, k, j + k) = (−1)`−`1−`2C(`1, `2, `; k, j, j + k).

Wigner came up with an ingenious device to formulate these symmetry relations. The
Wigner symbol (also known as 3j-symbol)(

`1 `2 `3

m1 m2 m3

)
,

which is zero unless m3 = −m1−m2, is defined in terms of the Clebsch–Gordan coefficients
by the equation

C(`1, `2, `; j, k, j + k) = (−1)`1−`2+j+k
√

2`+ 1

(
`1 `2 `
j k −j − k

)
. (CG16)

In Wigner [77] (Chapter 24), the 3j-symbol is defined on page 290 in Equation (24.9a) (see
also Equation (24.9)). The Wigner symbol enjoys a total of 72 symmetries that can be
formulated as follows. If we associate to the Wigner symbol the 3× 3 matrix shown below,(

j1 j2 j3

m1 m2 m3

)
7→

−j1 + j2 + j3 j1 − j2 + j3 j1 + j2 − j3

j1 −m1 j2 −m2 j3 −m3

j1 +m− 1 j2 +m2 j3 +m3

 ,

then for an even permutation of the rows or columns of the 3× 3 matrix or under transposi-
tion, the Wigner symbol is unchanged, and for an odd permutation of the rows or columns
it is multiplied by (−1)j1+j2+j3 ; see Vilenkin [70], Chapter III, Section 8.4.

More properties of the Clebsch–Gordan coefficients, including special values, expansions
of products of the functions P `

mn(z), connections with Jacobi polynomials, recurrence formu-
lae, and generating functions, can be found in Vilenkin [70], Chapter III, Sections 8.5–8.9.
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5.18 Problems

Problem 5.1. Check that the polynomials listed at the end of Section 5.2 are indeed har-
monic.

Problem 5.2. In Section 5.4, we would like to determine some angles α, β, γ, such that

rx(α/2)rz(β/2)rx(γ/2) = q = rz(θ1/2)rx(ϕ2/2)rz(θ2/2).

(1) Prove that α, β, γ must satisfy the equations

cos β = cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2

eiα =
sin θ1 cos θ2 + cos θ1 sin θ2 cosϕ2 + i sin θ2 sinϕ2

sin β

e
i(α+γ)

2 =
cos θ1

2
cos θ2

2
e
iϕ2
2 − sin θ1

2
sin θ2

2
e
−iϕ2

2

cos β
2

.

(2) (Advanced) Prove that the following equations can be deduced from the equations of
part (1):

tanα =
sin θ2 sinϕ2

cos θ1 sin θ2 cosϕ2 + sin θ1 cos θ2

tan γ =
sin θ1 sinϕ2

sin θ1 cos θ2 cosϕ2 + cos θ1 sin θ2

,

and β is determined by the equation

cos β = cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ2,

with 0 ≤ θ ≤ π.

Problem 5.3. Prove that T` as given by Definition 5.3 is a representation T` : SL(2,C) →
GL(PC

` ), which yields a representation T` : SU(2) → GL(PC
` ) when restricted to the sub-

group SU(2) of SL(2,C).

Problem 5.4. Let Y be the matrix

Y =

(
b d
−a −c

)
.

(1) For any matrix

A =

(
a b
c d

)
, a, b, c, d ∈ C, ad− bc = 1,

in SL(2,C), verify that
Y A> = A−1Y,

and det(Y ) = ad− bc = 1. Then prove that Y defines a linear isomorphism of PC
2`(2)

given by Q(z1, z2) 7→ Q(bz1 + dz2,−az1 − cz2) and that this map is an equivalence
between the representations U` and U v

` (see just after Definition 5.3).
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(2) Check that the representation U2` : SL(2,C) → GL(PC
2`(2)) is equivalent to the rep-

resentation T` : SL(2,C) → GL(PC
` ), and similarly the representation U2` : SU(2) →

GL(PC
2`(2)) is equivalent to the representation T` : SU(2)→ GL(PC

` ).

Hint . Use the dehomogenization and the homogenization maps, which are linear isomor-
phisms.

Problem 5.5. Consider the basis (ξ1, ξ2, ξ3) of sl(2,C) and su(2) given in Definition 5.4.

(1) Prove the following cyclic equations regarding Lie brackets:

[ξ1, ξ2] = ξ3, [ξ2, ξ3] = ξ1, [ξ3, ξ1] = ξ2.

(2) Prove the following equation:

eϕξ3 = rx(ϕ/2), eθξ2 = ry(θ/2), eψξ1 = rz(ψ/2).

Problem 5.6. Let (E1, E2, E3) be the basis for so(3) given by

E1 =

0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

0 −1 0
1 0 0
0 0 0

 .

(1) Prove the equations

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.

(2) Prove that
eϕE1 = Rx(ϕ), e−θE2 = Ry(θ), eψE3 = Rz(ψ).

Problem 5.7. Consider the basis (X, Y,H) of sl(2,C) (see Section 5.6) given by

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

Prove that
[X, Y ] = H, [H,X] = 2X, [H,Y ] = −2Y.

(The Lie bracket [A,B] of two square matrices A and B is defined as [A,B] = AB −BA.)

Problem 5.8. Fill in the details of the computations needed to prove equations (∗23) and
(∗24) in Section 5.9.

Problem 5.9. Consider the map T` : SL(2,C)→ GL(F`) from Definition 5.13.

(1) Prove that T` is a representation.
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(2) Check that the linear map defined on basis vectors by z`−k 7→ e−ikϕ is an isomorphism
between the vector spaces PC

` and F`.

Problem 5.10. Use Proposition 5.27 to derive explicit formulae t`(θ) for ` = 0, 1/2, 1, 3/2.
Derive a formula for ` = 2.

Problem 5.11. Prove that the polynomials P `
jk(z) defined in Proposition 5.28 satisfies the

symmetry relation
P `
jk(z) = P `

−j−k(z), −1 < z ≤ 1.

Problem 5.12. Prove the equation

P j
` (z) = ij

√
(`+ j)!

(`− j)!
P `
j0(z). (∗47)

Problem 5.13. Supply the missing computations in the proof of Proposition 5.36.

Problem 5.14. Prove that

P `
jk(cos θ) = (−1)j−kP `

jk(cos θ).

Problem 5.15. Check that

(2`1 + 1)(2`2 + 1) =

`1+`2∑
`=|`1−`2|

(2`+ 1).

Problem 5.16. Provide the details of the proofs of equations (CG12), (CG13) and (CG15).

Hint . See Vilenkin [70], Chapter III, Section 8.3.

Problem 5.17. Prove the following equations:

C(`1, `2, `; j, k, j + k) = (−1)`−`1−`2C(`1, `2, `;−j,−k,−j − k)

C(`1, `2, `; j, k, j + k) = (−1)`−`1−`2C(`1, `2, `; k, j, j + k).



Chapter 6

Induced Representations

If G is a locally compact group and if H is a closed subgroup of G, under certain conditions,
it is possible to construct a Hilbert space H and a unitary representation Π: G→ U(H) of
G in H from a unitary representation U : H → U(E) of H in a (separable) Hilbert space
E. The representation Π is called an induced representation. In particular, this construction
can be used to define unitary representations of the group SL(2,R), which would be hard to
find if we did not have this method.

There are two approaches for the construction of the Hilbert space H:

1. The Hilbert space H is a set of functions from X = G/H to E.

2. The Hilbert space H is a set of functions from G to E.

In the first approach, we will construct unitary representations of G in H using certain
functions α : G×(G/H)→ GL(E) called cocycles . In the second approach, the construction
of the Hilbert space H is more complicated, but the definition of the operator Πs is simpler.

The general construction (in the first approach) consists of seven steps, where the first four
are purely algebraic and do not deal with continuous unitary representations, but instead
linear representations (group homomorphisms U : G → GL(E), where G is a group not
equipped with any topology and E is just a vector space with no additional structure):

(1) Let G be a group acting (on the left) on a set X, and let E be a vector space. In
Section 6.1, we define the notion of equilinear action of G on X×E, which is an action
of the form

s · (x, z) = (s · x, α(s, x)(z)), s ∈ G, x ∈ X, z ∈ E,

where α(s, x) is a linear automorphism of E satisfying the conditions

(a) For all x ∈ X
α(e, x) = idE.

389
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(b) For all x ∈ X and all s, t ∈ G,

α(st, x) = α(s, t · x) ◦ α(t, x).

A map α : G×X → GL(E) satisfying conditions (a) and (b) is called a cocycle of G with
values in GL(E). Conversely, an action of G on X and a cocycle α : G×X → GL(E)
determine an equilinear action of G on X×E. Then, we show that an equilinear action
of G on X × E induces a homomorphism Π: G → GL(EX), where EX is the vector
space of all functions from X to E. More precisely, for every function f : X → E, for
every s ∈ G, Πs(f) : X → E is function given by

(Πs(f))(x) = α(s, s−1 · x)(f(s−1 · x)), for every x ∈ X.

(2) In Section 6.2, we specialize the construction to the homogeneous space X = G/H of
left cosets. Then G acts on G/H on the left by

s · (gH) = sgH.

By choosing a set of representatives (rx)x∈G/H in the cosets of X = G/H (with x0 = H
and rx0 = e), a cocycle α : G × X → GL(E) determines a homomorphism σ : H →
GL(E) given by σ(h) = α(h, x0) and a map β : X → GL(E) given by β(x) = α(rx, x0).
Conversely, a homomorphism σ : H → GL(E) and a map β : X → GL(E) determine
a cocycle α : G × X → GL(E). In fact, we may restrict ourselves to the map β
given by β(x) = idE, and if we define u : G × X → H by u(s, x) = r−1

s·xsrx, the
map α : G × X → GL(E) given by α(s, x) = σ(u(s, x)) is a cocycle. The induced
representation is given by

(Πs(f))(x) = σ(u(s, s−1 · x))(f(s−1 · x)), f ∈ EX , x ∈ X.

This step is the most important application of step 1, and E is an arbitrary vector
space.

(3) For a given homomorphism σ : H → GL(E), the homomorphisms Π: G → GL(EX)
corresponding to cocycles associated with different maps β are equivalent.

(4) In Section 6.3, we show that a cocycle α : G × X → GL(E) determines a bijection
between EX and a subspace Lα of the set EG of maps from G to E defined by

Lα = {f ∈ EG | f(sh) = σ(h−1)(f(s)), s ∈ G, h ∈ H}.

As a consequence, the representation Π: G → GL(EX) corresponding to a cocycle α
is equivalent to the representation ΠLα : G→ GL(Lα) given by

((ΠLα)s(g))(t) = g(s−1t), for all g ∈ Lα and all s, t ∈ G.
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Observe that this is simply the left regular representation of Lα. The issue of choosing
between representations in the space EX or representations in the space Lα comes up
in Chapter 8.

This completes the purely algebraic construction. The next steps use topology and
analysis to construct unitary representations.

(5) In Section 6.4, we assume that G is a locally compact group and H is a closed subgroup
of G, in which case G/H is also locally compact. Let µ be a positive measure on
X = G/H, and assume that E is a separable Hilbert space. We then define a Hilbert
space L2

µ(X;E) consisting of measurable functions from X to E.

(6) In Section 6.5, given a unitary representation U of H in E, we assume that the measure
µ on X = G/H is G-invariant and that the cocycle α satisfies the conditions:

(i) The linear automorphisms α(s, x) of E are unitary operators of E for all s ∈ G
and all x ∈ G/H, and α(h, x0) = U(h) for all h ∈ H (where x0 denotes the coset
H).

(ii) For every s ∈ G, for every f ∈ L2
µ(X;E), the map x 7→ α(s, x)(f(x)) from X to

E is µ-measurable.

(iii) For every f ∈ L2
µ(X;E), the map s 7→ [Πs(f)] from G to L2

µ(X;E) is continuous.

Then the homomorphism s 7→ Πs([f ]) = [Πs(f)] is a unitary representation of G in
L2
µ(X;E) = H.

(7) In Sections 6.6 and 6.7, we generalize the previous construction to certain measure
called quasi-invariant . If the measure µ on G/H is quasi-invariant and another tech-
nical condition is satisfied, then the homomorphism s 7→ Πs([f ]) = [Πs(f)] is a unitary
representation of G in L2

µ(X;E). Quasi-invariant measures on G/H always exist and
can be constructed using rho-functions.

In Section 6.8, we illustrate the method of Section 6.7 by showing how to construct
unitary representations of SL(2,R) using induced representations. One example involves
the action of SL(2,R) on the projective line RP1, and the other example involves the action
of SL(2,R) on the upper half plane.

In Section 6.9, we consider a compact (metrizable) group G and a closed subgroup H of
G, and our goal is to determine the canonical (unitary) representation of G in L2

µ(G/H;C)
induced by the trivial representation of H in E = C (see Definition 6.13), where µ is the
G-invariant measure on G/H induced by a Haar measure λ on G. For simplicity of notation,
we write L2

µ(G/H) instead of L2
µ(G/H;C). To do this, it is necessary to understand what is

the restriction of the representation Mρ : G→ U(Cnρ) to H, with ρ ∈ R(G).

In Proposition 6.18, we show that the space L2
µ(G/H) is the Hilbert sum of subspaces

Lρ ⊆ aρ. If the trivial representation σ0 of H is contained d = (ρ : σ0) ≥ 1 times in
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the restriction of Mρ to H, then Lρ is the direct sum of the first d columns of the matrix

M
(H)
ρ = P ∗MρP , where P is a suitable change of basis matrix, namely,

Lρ =
d⊕
j=1

l
(ρ,H)
j and l

(ρ,H)
j =

nρ⊕
k=1

Cm(ρ,H)
kj .

If d = 0, then Lρ = (0).

Then, we consider the space H\G of right cosets Hs of G (s ∈ G). If π : G → H\G is
the quotient map π(s) = Hs, the fact that the Haar measure λ on a compact group is left
and right invariant implies immediately that there is a G-invariant measure µ′ on H\G. We

show in Proposition 6.19 that the space L2
µ′(H\G) is the Hilbert sum of subspaces Ľρ ⊆ aρ.

If the trivial representation σ0 of H is contained d = (ρ : σ0) ≥ 1 times in the restriction of

Mρ to H, then Ľρ is the direct sum of the first d rows of M
(H)
ρ ; that is

Ľρ =
d⊕
i=1

nρ⊕
j=1

Cm(ρ,H)
ij .

In preparation for Chapter 9, we consider the intersection L2
µ(G/H) ∩ L2

µ′(H\G). This
is a closed involutive subalgebra of L2(G), thus a complete Hilbert algebra. We can view a
function g ∈ L2

µ(G/H) ∩ L2
µ′(H\G) as a function g ∈ L2(G), such that

g(tst′) = g(s), for all t, t′ ∈ H and all s ∈ G. (∗H\G/H)

We can also think of the functions g ∈ L2
µ(G/H) ∩ L2

µ′(H\G) as functions defined on the
double classes (or double cosets) HsH of G with respect to H.

We denote the algebra of functions in L2(G) satisfying (∗H\G/H) as L2(H\G/H). Then
we show in Proposition 6.20 that the algebra L2(H\G/H) is the Hilbert sum of the minimal
two-sided ideals

aρ,σ0 = Lρ ∩ Ľρ =
d⊕
i=1

d⊕
j=1

Cm(ρ,H)
ij .

Each aρ,σ0 is a matrix algebra of dimension d2 having the family (m
(ρ,H)
ij )1≤i,j≤d as a basis.

Again, in preparation for Chapter 9 on Gelfand pairs, we show in Proposition 6.21 that
the algebra L2(H\G/H) is commutative if and only if (ρ : σ0) ≤ 1 for all ρ ∈ R(G). If so,
then for every ρ ∈ R(G), such that (ρ : σ0) = 1, the ideal aρ,σ0 is one-dimensional and is
spanned by the function

ωρ(s) =
1

nρ
m

(ρ,H)
11 (s),

which is continuous and of positive type. Thus

L2(H\G/H) =
⊕

ρ|(ρ:σ0)=1

Cωρ.
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The function ωρ also satisfies the following equations:

ωρ(tst
′) = ωρ(s), for all s ∈ G and all t, t′ ∈ H,

ωρ(e) = 1.

The function ωρ is called a (zonal) spherical function. Such functions are crucial in
generalizing the notion of Fourier transform to a homogeneous space G/H. In Chapter 9,
we will see how to achieve this when G is not compact (but H is compact). The key point
is to consider pairs (G,H) for which L2(H\G/H) is commutative. Actually, we can’t quite
work with L2(H\G/H) because this space is not closed under convolution, but we will be
able to work with another commutative algebra L1(H\G/H).

In Section 6.10, we present a nice example of the above situation for G = SO(n + 1)
and H = SO(n). In this case, G/H = SO(n + 1)/SO(n) ' Sn, the sphere in Rn+1. As a
consequence, we obtain a decomposition of L2(Sn) as a Hilbert sum of the classical spaces
HC
k (Sn) of spherical harmonics on Sn.

In Section 6.11, we present a method due to Blattner to deal with the situation where
G/H has no G-invariant measure. This is a modification of the construction of the Hilbert
space H and of the inner product described at the end of Section 6.5. This can be done in
two ways. These constructions yield induced unitary representations of G from a unitary
representation U : H → U(E) of H and do not involve cocycles.

In Section 6.12, we explain how the spaces of functions Lα (from Definition 6.8), and the
spaces H0 and H0 from Section 6.11 can be viewed as sections of spaces that are similar to
vector bundles but have less structure. More precisely, such structures have no trivialization
maps.

We begin with the simplest situation where we have a group G without any topology on
it, a subgroup H of G, a vector space Hσ, and a linear representation σ : H → GL(Hσ). As
usual, write X = G/H and π : G → G/H for the quotient map. Let Lσ be the subspace of
(Hσ)G consisting of all functions f : G→ Hσ, such that

f(gh) = σ(h−1)(f(g)), for all g ∈ G and all h ∈ H.

The key point is to construct a space E = G ×H Hσ, together with a surjective map
p : E → X, such that for every x ∈ X = G/H, the fibre Ex = p−1(x) is isomorphic to
the vector space Hσ, and the space of sections from X to E is in bijection with Lσ. This
is a special case of the so-called Borel construction used to construct a vector bundle from
a principal bundle; see Gallier and Quaintance [28] (Chapter 9, Section 9.9). Then the
main point of this section is to define two maps S : Lσ → Γ(E) and L : Γ(E) → Lσ, which
are mutual inverses, where Γ(E) is the space of sections of E, namely the set of functions
s : X → E, such that p ◦ s = idX , where p is the projection p : E → X.

The last important ingredient is that G acts (on the left) on E = G×HHσ in an equilinear
fashion; this is explained in Proposition 6.23.
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In Section 6.13, we show how induced representations can be recovered from certain
kinds of vector bundles E over the base space X = G/H (actually a more basic notion
of vector bundle) equipped with an equilinear action of a group G on E. Such bundles,
called G-bundles , are equipped with an equilinear action of the group G and generalize the
notion of bundle introduced in the previous section. If x0 denotes the coset H = eH in G,
then the action of G on the fibre E0 above x0 defines a representation σ : H → GL(E0).
Again, the main point is to define a space of functions Lσ and two maps S : Lσ → Γ(E) and
L : Γ(E) → Lσ, which are mutual inverses, where Γ(E) is the space of sections of E. The
induced representation of G induced by the representation σ of H can then be recovered
from the action of G on sections of E in terms of L and S.

The sections in Γ(E), called feature fields in group equivariant deep learning in computer
vision, are functions whose domain transforms under the action of G and whose codomain
transforms by representations of H equivalent to σ : H → GL(E0).

The above definitions and constructions are adapted to deal with unitary representations
in Section 6.14. In this case, G is a locally compact group, H is a closed subgroup of G,
and σ : H → U(Hσ) is a unitary representation, where Hσ is a separable Hilbert space.
These bundles are called hermitian G-bundles . We treat the special case where Hσ is finite-
dimensional in detail.

Unfortunately, in general the maps L and S are no longer well-defined. To remedy this
problem, we assume that our G-bundles are locally trivializable, that is, they are (smooth)
vector bundles.

Consequently in Section 6.15, we review principal H-bundles and hermitian vector bun-
dles. We then define hermitian G-vector bundles , which are simultaneously hermitian vector
bundles and hermitian G-bundles. We discuss the construction of a hermitian vector bundle
from a principal H-bundle obtained by replacing the fibre H by a vector space Hσ, which is
the space of a unitary representation σ : H → U(Hσ); see Theorem 6.27.

The generalization to hermitian G-vector bundles of infinite rank is sketched in Section
6.16, but we do not know how to proceed when G/H does not have a G-invariant measure.

6.1 Cocycles and Induced Representations

As a warm up and as an example of the second approach, we consider the case where G
is compact, H is a closed subgroup of G, and U is a linear representation of H in a finite-
dimensional vector space E. This means that U is a homomorphism U : H → GL(E) and
that condition (C) of Definition 3.1 is dropped.

Consider the Hilbert space L2(G;E) consisting of all functions f : G→ E, such that for
any orthonormal basis (e1, . . . , en) of E, f = f1e1 + · · ·+ fnen, where the fi are functions in
L2(G); equivalently, L2(G;E) is the finite Hilbert sum L2(G;E) =

⊕n
i=1 L2(G)ei. The inner
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product of two functions f =
∑

i=1 fiei and g =
∑

i=1 giei is

〈f, g〉 =
n∑
i=1

∫
G

fi(s)gi(s) dλ(s),

where λ is a Haar measure on G. This construction will be generalized in Section 6.4 to
an infinite-dimensional Hilbert space. Consider the subspace H of L2(G;E) consisting of all
functions f , such that

f(sh) = U(h−1)(f(s)), for all s ∈ G and all h ∈ H. (∗)

It is easy to check that H is closed in L2(G;E), so it is a Hilbert space. For any f ∈ H, as
before, let λsf be the function given by

(λsf)(t) = f(s−1t), s, t ∈ G.

For s ∈ G fixed, the map f 7→ λsf is obviously linear. Observe that by (∗), for all s, t ∈ G,
all h ∈ H, and all f ∈ H, we have

(λtf)(sh) = f(t−1sh) = U(h−1)(f(t−1s)) = U(h−1)((λtf)(s)),

so λtf ∈ H. For all s, t, t′ ∈ G, we also have

(λtt′f)(s) = f((tt′)−1s) = f(t′−1t−1s) = (λt′f)(t−1s) = λt((λt′f))(s).

If we define the map Π: G→ GL(H) by

Πs(f) = λsf, s ∈ G, f ∈ H,

equivalently
(Πs(f))(t) = f(s−1t), s, t ∈ G, f ∈ H,

then we see that Π is a linear representation of G in H (condition (C) of Definition 3.1 may
fail, but here we are not considering continuous representations). Since the Haar measure is
left and right invariant, the maps λtf are unitary (f ∈ H), so Π: G→ GL(H) is a unitary
representation of G in H, called the representation induced by U : H → GL(E).

It is easy to see that if we replace U by an equivalent representation h 7→ PU(h)P−1,
where P is a unitary transformation P : E → E ′, then the corresponding induced represen-
tation is s 7→ fPΠsf

−1
P , a unitary representation equivalent to Π, where fP is the linear map

from H to H′ given by fP (f) = P ◦ f . Therefore, the above construction defines a class of
unitary representations of G induced by a class of linear representations of H.

Let us now consider a more general situation. Our first construction is purely algebraic
and does not assume that the group G or the vector space E have any topology. As a
consequence, until Section 6.4 we consider linear representations of G in E; these are simply
homomorphisms U : G→ GL(E), with no continuity requirement.
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Definition 6.1. If we have a left group action · : G×X → X of a group G on a set X, for
any vector space E, a left action · : G × (X × E) → X × E is equilinear if there is some
function α : G×X → GL(E), such that

s · (x, z) = (s · x, α(s, x)(z)), for all s ∈ G, all x ∈ X, and all z ∈ E.

The crucial property of an equilinear action is that the second component pr2(s · (x, z))
of the action of s ∈ G on (x, z) ∈ X × E given by

s · (x, z) = (s · x, pr2(s · (x, z)))

is linear in z. This is the reason for introducing the linear isomorphism α(s, x) given by
α(s, x)(z) = pr2(s · (x, z)).

If we have an equilinear action · : G× (X × E)→ X × E, then the conditions for being
a left action are

e · (x, z) = (x, z)

(st) · (x, z) = s · (t · (x, z)),

which translate to

(e · x, α(e, x)(z)) = (x, z)

((st) · x, α(st, x)(z)) = s · (t · x, α(t, x)(z))

= (s · (t · x), α(s, t · x)(α(t, x)(z))),

so we must have

α(e, x)(z) = z

α(st, x)(z) = (α(s, t · x) ◦ α(t, x))(z),

for all s, t ∈ G, all x ∈ X, and all z ∈ E. By reversing the above computations, we see that
if a function α : G×X → GL(E) satisfies the above two conditions, then the map given by

s · (x, z) = (s · x, α(s, x)(z)), for all s ∈ G, all x ∈ X, and all z ∈ E,

is an equilinear action. In summary, we proved the following proposition.

Proposition 6.1. Given a left group action · : G ×X → X and a vector space E, for any
function α : G×X → GL(E), the map · : G× (X × E)→ X × E given by

s · (x, z) = (s · x, α(s, x)(z)), for all s ∈ G, all x ∈ X, and all z ∈ E,

is an equilinear action if and only if the following two conditions hold:

(a) For all x ∈ X,
α(e, x) = idE.
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(b) For all x ∈ X and all s, t ∈ G,

α(st, x) = α(s, t · x) ◦ α(t, x).

In view or Proposition 6.1, we make the following definition.

Definition 6.2. Let G be a left action of a group G on a set X, and let E be a vector space.
Let α : G×X → GL(E) be a function and assume that the following conditions hold:

(a) For all x ∈ X,
α(e, x) = idE.

(b) For all x ∈ X and all s, t ∈ G,

α(st, x) = α(s, t · x) ◦ α(t, x).

A map α : G × X → GL(E) satisfying conditions (a) and (b) is called a cocycle of G with
values in GL(E).

The point of equilinear actions is that they yield homomorphisms Π: G → GL(EX),
that is, linear representations of G in the vector space [X → E] = EX . We just explained
before Definition 6.2 how a cocycle defines an equilinear action. The reader may wonder
where cocycles come from. The answer will be given in the next section; they are induced
by linear representations of subgroups of G.

Given an equilinear action · : G × (X × E) → X × E, we obtain an action Π of G on
EX as follows: for every s ∈ G, for every f ∈ EX , the function Πs(f) ∈ EX is given by the
equation

s · (x, f(x)) = (s · x, (Πs(f))(s · x)), for all x ∈ X.
Using Definition 6.1, the above equation is equivalent to

(Πs(f))(s · x) = α(s, x)(f(x)), for all x ∈ X,

which is equivalent to

(Πs(f))(x) = α(s, s−1 · x)(f(s−1 · x)), for all x ∈ X.

We are led to the following definition.

Definition 6.3. Let G be a left action of a group G on a set X, and let E be a vector space.
For every equilinear action · : G×(X×E)→ X×E defined by a cocycle α : G×X → GL(E),
for every function f : X → E, for every s ∈ G, let Πα

s (f) : X → E be the function given by

(Πα
s (f))(x) = α(s, s−1 · x)(f(s−1 · x)), for every x ∈ X. (Πα

s )

The above equation defines a map Πα
s : EX → EX . The map Πα : G → GL(EX) given by

s 7→ Πα
s is the (linear) representation of G in EX induced by the cocycle α. For simplicity of

notation, we write Π instead of Πα.



398 CHAPTER 6. INDUCED REPRESENTATIONS

The following proposition confirms that the map Π is a linear representation of G in the
vector space EX .

Proposition 6.2. Let G be a left action of a group G on a set X, and let E be a vector
space. For every equilinear action · : G× (X×E)→ X×E defined by a cocycle α : G×X →
GL(E), for every s ∈ G, the map Πs : EX → EX is a linear isomorphism, and the map
Π: G → GL(EX) given by s 7→ Πs is a homomorphism, that is, a linear representation of
G in the vector space EX .

Proof. Since α(s, s−1 · x) is a linear automorphism of E, we have

(Πs(f1 + f2))(x) = α(s, s−1 · x)((f1 + f2)(s−1 · x))

= α(s, s−1 · x)(f1(s−1 · x) + f2(s−1 · x))

= α(s, s−1 · x)(f1(s−1 · x)) + α(s, s−1 · x)(f2(s−1 · x))

= (Πs(f1))(x) + (Πs(f2))(x),

and for every λ ∈ C,

(Πs(λf))(x) = α(s, s−1 · x)((λf)(s−1 · x))

= α(s, s−1 · x)(λf(s−1 · x))

= λα(s, s−1 · x)(f(s−1 · x))

= λ(Πs(f))(x),

so the map f 7→ Πs(f) from EX to itself is linear. Given any fixed s ∈ G, for every function
g : X → E, we have Πs(f) = g iff (Πs(f))(x) = g(x) for all x ∈ X iff

α(s, s−1 · x)(f(s−1 · x)) = g(x), for all x ∈ X,

and since α(s, s−1 · x) is an invertible linear map, we must have

f(s−1 · x) = (α(s, s−1 · x))−1(g(x)), for all x ∈ X,

so if we write y = s−1 · x, then x = s · y and since the map y 7→ s · y is a bijection (because ·
is a group action of G on X), we have

f(y) = (α(s, y))−1(g(s · y)), for all y ∈ X,

which shows that f is uniquely determined and thus that Πs is a bijection.

For all s, t ∈ G, we have

g(y) = (Πt(f))(y) = α(t, t−1 · y)(f(t−1 · y)),

so (
Πs(Πt(f))

)
(x) = (Πs(g))(x)

= α(s, s−1 · x)(g(s−1 · x))

=
(
α(s, s−1 · x) ◦ α(t, t−1 · (s−1 · x))

)
(f(t−1 · (s−1 · x))),
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and we also have

(Πst(f))(x) = α(st, (st)−1 · x)(f((st)−1 · x))

=
(
α(s, t · ((t−1s−1) · x)) ◦ α(t, (t−1s−1) · x)

)
(f(t−1s−1 · x))

=
(
α(s, s−1 · x) ◦ α(t, t−1 · (s−1 · x))

)
(f(t−1 · (s−1 · x)))

=
(
Πs(Πt(f))

)
(x),

which proves that Πst(f) = (Πs ◦ Πt)(f), that is, Π is a homomorphism.

If we let t = s−1 in (b) of Definition 6.2, we obtain

α(s−1, x) = (α(s, s−1 · x))−1,

so Πs(f) can also be written as

(Πs(f))(x) = (α(s−1, x))−1(f(s−1 · x)). (Πs)

6.2 Cocycles on a Homogeneous Space X = G/H

We now consider the special case where X = G/H is the homogeneous space of left cosets
for some subgroup H of G, and the left action of G acts on G/H given by

s · (gH) = sgH.

Definition 6.4. Given a group G and a subgroup H of G, a set of representatives (rx)x∈G/H
for the cosets of G/H is the choice for every coset x ∈ G/H of some element rx ∈ G, so
that x = rxH. Then every element g of x = rxH is written uniquely as g = rxh, with
h ∈ H. We denote the coset H by x0 and pick rx0 = e. For any s ∈ G, the representative of
s · x = s · rxH = srxH is denoted by rs·x.

If we denote the quotient map by π : G → G/H, then picking a set of representatives
(rx)x∈G/H in the cosets of G/H is equivalent to picking a section of π, that is, a map
r : G/H → G, such that π ◦ r = idG/H .

Since for every coset x ∈ G/H we have x = rx · x0 (the class rxH, which is x), condition
(b) of Definition 6.2 yields

α(srx, x0) = α(s, rx · x0) ◦ α(rx, x0) = α(s, x) ◦ α(rx, x0),

and so
α(s, x) = α(srx, x0) ◦ (α(rx, x0))−1. (∗1)

Equation (∗1) shows that the automorphisms α(s, x0) of E determine the α(s, x) for all
x ∈ X.
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Denote α(s, x0) by α0(s). conditions (a) and (b) of Definition 6.2 imply that

α0(e) = idE

α(sh, x0) = α(s, h · x0) ◦ α(h, x0),

for all s ∈ G and all h ∈ H, and since h · x0 = x0, we get

α0(sh) = α0(s) ◦ α0(h), for all s ∈ G and all h ∈ H. (∗2)

Now srx belongs to the coset srxH = s · rxH = s · x = rs·xH, so there is a unique element
of H, denoted u(s, x), such that

srx = rs·xu(s, x), (†)
and by (∗2),

α0(srx) = α0(rs·xu(s, x)) = α0(rs·x) ◦ α0(u(s, x)),

so (∗1) can be written as

α(s, x) = α0(rs·x) ◦ α0(u(s, x)) ◦ (α0(rx))
−1. (∗3)

Definition 6.5. Given α : G ×X → GL(E) as in Definition 6.2, for all s ∈ G, all h ∈ H,
and all x ∈ X, define α0(s), σ(h), β(x) and u(s, x) by

α0(s) = α(s, x0)

σ(h) = α(h, x0) = α0(h)

β(x) = α(rx, x0) = α0(rx)

u(s, x) = r−1
s·xsrx ∈ H. (u)

Then (∗3) becomes

α(s, x) = β(s · x) ◦ σ(u(s, x)) ◦ (β(x))−1, (∗4)

and (∗2) implies that

σ(h1h2) = σ(h1) ◦ σ(h2), for all h1, h2 ∈ H, (∗5)

which shows that σ : H → GL(E) is a homomorphism. Thus, the restriction of the cocycle
α to H × {x0} is a representation of H in E.

Note that for x = x0 = H, since rx0 = e, Equation (u) yields

u(s, x0) = r−1
s·x0srx0 = r−1

x s,

so we get
s = rxu(s, x0), s ∈ G, x = sH. (s)

In other words, u(s, x0) is the unique element h ∈ H, such that s ∈ G is expressed as s = rxh
in terms of the coset representative rx in sH.
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Conversely, let σ : H → GL(E) be any homomorphism, and let β : X → GL(E) be any
function. Then we define the function u : G×G/H → H using the equation

u(s, x) = r−1
s·xsrx

of Definition 6.5, and the function α : G×X → GL(E) given by (∗4), namely

α(s, x) = β(s · x) ◦ σ(u(s, x)) ◦ (β(x))−1.

Observe that for all s, t ∈ G and all x ∈ X, we have

u(st, x) = u(s, t · x)u(t, x), (∗h)

because by (†)

strx = r(st)·xu(st, x)

srt·x = rs·(t·x)u(s, t · x)

= r(st)·xu(s, t · x)

trx = rt·xu(t, x),

so we have
r(st)·xu(st, x) = strx = srt·xu(t, x) = r(st)·xu(s, t · x)u(t, x),

and since r(st)·x ∈ G, it is invertible, which proves (∗h). The verification that α(e, x) = idE
is immediate, since e · x = x, so u(e, x) = e, β(e · x) = β(x), and σ(e) = idE. Using (∗h) and
the fact that σ is a homomorphism, we have

α(st, x) = β(st · x) ◦ σ(u(st, x)) ◦ (β(x))−1

= β(st · x) ◦ σ(u(s, t · x)u(t, x)) ◦ (β(x))−1

= β(s · (t · x)) ◦ σ(u(s, t · x)) ◦ σ(u(t, x)) ◦ (β(x))−1

= β(s · (t · x)) ◦ σ(u(s, t · x)) ◦ β(t · x)−1 ◦ β(t · x) ◦ σ(u(t, x)) ◦ (β(x))−1

= α(s, t · x) ◦ α(t, x),

which shows that α is a cocycle. In summary, we obtained the following result.

Proposition 6.3. Let G be a group, H be a subgroup of G, and E be a vector space.
Choose a set (rx)x∈G/H of representatives for the cosets of X = G/H as explained above,
with x0 = H and rx0 = e. Every cocycle α : G×X → GL(E) determines a homomorphism
σ : H → GL(E) with σ(h) = α(h, x0) for all h ∈ H, a map β : X → GL(E) given by
β(x) = α(rx, x0) for all x ∈ X, and a map u : G×G/H → H given by u(s, x) = r−1

s·xsrx ∈ H,
such that

α(s, x) = β(s · x) ◦ σ(u(s, x)) ◦ (β(x))−1.

Conversely, given a homomorphism σ : H → GL(E) and a map β : X → GL(E), if we set

u(s, x) = r−1
s·xsrx (u)
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and

α(s, x) = β(s · x) ◦ σ(u(s, x)) ◦ (β(x))−1, (α)

then α : G×X → GL(E) is a cocycle.

Remark: Kirillov [42] (Appendix V, Section 2.1) calls (u) the Master equation. See also
Proposition 5, Lemma 2, and Lemma 3. This material is also discussed in Kririllov [40]
(Sections 13.1 and 13.2).

In view of Proposition 6.3, we make the following definition.

Definition 6.6. Given a homomorphism σ : H → GL(E) and a map β : X → GL(E), if α
is the cocycle associated with σ and β, we say that the representation Πα of G in EX defined
by α is the representation induced by σ and β.

Remarkably, for a given homomorphism σ : H → GL(E), the representations Π1 : G →
GL(EX) and Π2 : G → GL(EX) corresponding to the cocycles α1 and α2 associated with
two maps β1 and β2 are equivalent, in the sense that there is an automorphism γ of EX such
that

Π2 = γ ◦ Π1 ◦ γ−1.

This is proven as follows.

Proposition 6.4. Let G be a group, H be a subgroup of G, and E be a vector space. Choose
a set (rx)x∈G/H of representatives for the cosets of X = G/H as explained above, with x0 = H
and rx0 = e. Let σ : H → GL(E) be a homomorphism, β : X → GL(E) be a map, and α
be the cocycle determined by σ and β as in Proposition 6.3, and Π: G → GL(EX) be the
corresponding representation. If c(x) = β(x)−1 for all x ∈ X, then define the automorphism
γ of EX by

(γ(f))(x) = c(x)(f(x)), f ∈ EX , x ∈ X.

Then the representation

Π′ = γ ◦ Π ◦ γ−1

is associated with the cocycle α′ given by

α′(s, x) = σ(u(s, x)), (α′)

with

u(s, x) = r−1
s·xsrx. (u)

Thus, the representation Π induced by σ and β is equivalent to the representation induced
by σ and β′, with β′(x) = idE for all x ∈ X. The induced representation Π′ associated with
α′ is given by

(Π′s(f))(x) = σ(u(s−1, x)−1)(f(s−1 · x)) = σ(u(s, s−1 · x))(f(s−1 · x)), f ∈ EX , x ∈ X. (Π′)
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Proof. Consider any map c : X → GL(E), such that c(x0) = idE. Define the automorphism
γ of EX by

(γ(f))(x) = c(x)(f(x)), f ∈ EX , x ∈ X,

and let

Π′ = γ ◦ Π ◦ γ−1.

Since γ is an automorphism of EX , the map Π′ is a linear representation of G in EX . Clearly,
the inverse of γ is given by

(γ−1(f))(x) = c(x)−1(f(x)), f ∈ EX , x ∈ X,

and since for any g ∈ EX , we have

(Πs(g))(x) = α(s, s−1 · x)(g(s−1 · x)),

with g = γ−1(f), we obtain

(Πs(γ
−1)(f))(x) = α(s, s−1 · x)(γ−1(f)(s−1 · x))

= α(s, s−1 · x)
(
c(s−1 · x)−1(f(s−1 · x))

)
,

and so

c(x)
(
(Πs(γ

−1)(f))(x)
)

= c(x)
(
α(s, s−1 · x)

(
c(s−1 · x)−1(f(s−1 · x))

))
;

that is,

(Π′s(f))(x) =
(
c(x) ◦ α(s, s−1 · x) ◦ c(s−1 · x)−1

)
(f(s−1 · x)), (∗6)

which shows that Π′ is obtained from α′ as Π is obtained from α, with

α′(s, x) = c(s · x) ◦ α(s, x) ◦ c(x)−1. (∗7)

If we write α′0(s) = α′(s, x0) and β′(x) = α′0(rx) as before, then the hypothesis c(x0) = idE
implies that

α′0(h) = α′(h, x0) = c(h · x0) ◦ α(h, x0) ◦ c(x0)−1 = c(x0) ◦ σ(h) ◦ c(x0)−1 = σ(h)

for all h ∈ H, and

β′(x) = α′(rx, x0)

= c(rx · x0) ◦ α(rx, x0) ◦ c(x0)−1

= c(x) ◦ α(rx, x0)

= c(x) ◦ β(x);

that is,

β′(x) = c(x) ◦ β(x). (∗8)
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Since β(x0) = idE, we can pick c(x) = β(x)−1, and then

β′(x) = idE(x) for all x ∈ X, (∗9)

and since

α(s, x) = β(s · x) ◦ σ(u(s, x)) ◦ (β(x))−1,

from (∗7) we obtain

α′(s, x) = σ(u(s, x)). (∗10)

Therefore, Π is equivalent to Π′ with β′(x) = idE for all x ∈ X.

It is also easy to check that if σ is replaced by an equivalent representation σ′ of H in
EX , then the corresponding representations Π and Π′ of G in EX are equivalent.

Therefore, the process for making a representation Π of G in EX from a representation
σ of H in E and a function β : X → GL(E) defines a class of representations of G in EX .
Furthermore, there is a special representation associated with σ and the constant function
β given by β(x) = idE, for all x ∈ X.

In summary, the method is find a set (rx)x∈G/H of representatives for the cosets of G/H,
then to construct u given by u(s, x) = r−1

s·xsrx as in Equation (u), and then to define α by
α(s, x) = σ(u(s, x)). The induced representation is given by

(Πs(f))(x) = σ(u(s, s−1 · x))(f(s−1 · x)), f ∈ EX , x ∈ X. (∗)

Vilenkin [70] (Chapter 1, Section 7) calls such a representation a representation with operator
factor .

From a theoretical point of view, a cocycle α is equivalent to a pair (σ, β) as in Proposition
6.3, but from a practical point of view, it may be very hard (if not impossible) to find
constructively a set (rx)x∈G/H of representatives for the cosets of G/H. Thus, we use cocycles
α that agree with a given representation σ : H → GL(E), in the sense that α(h, x0) = σ(h)
for all h ∈ H.

A case of practical interest in equivariant machine learning is the case where G = SE(3)
and H = SO(3).

Example 6.1. Let G = SE(3) and H = SO(3). The group SE(3) is the group of affine rigid
motions of R3 consisting of rotations and translations. Here we view SE(3) as the group of
matrices

s =

(
Q a
0 1

)
, Q ∈ SO(3), a ∈ R3

under multiplication. For short, we denote the above matrix by (a,Q). The group SE(3)
acts on R3 by

(a,Q) · x = Qx+ a, x ∈ R3.
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Multiplication in SE(n) is given by

(a,Q)(b, R) = (a+Qb,QR),

and the inverse of (a,Q) is
(a,Q)−1 = (−Q>a,Q>).

For details on SE(3) and the fact that it is a semi-direct product of R3 and SO(3), see
Example 7.1. It is easy to see that the homogeneous space SE(3)/SO(3) is R3. Indeed,
SE(3) acts on R3, and the stabilizer of the origin 03 is SO(3) viewed as the set of matrices(

Q 0
0 1

)
, Q ∈ SO(3).

We now use the method based on Proposition 6.3 and Proposition 6.4 to construct an
induced representation of SE(3) from a representation σ : SO(3) → GL(E) of SO(3). For
this, we need to find a set of representative for the cosets of R3 = SE(3)/SO(3) in order to
define u, and then α(s, x) is given by α(s, x) = σ(u(s, x)) and the induced representation Π
is given by (∗). This is a case where it is easy to pick a set of coset representatives, namely
for each x ∈ R3, rx ∈ SE(3) is the matrix(

I3 x
0 1

)
,

the translation by x. The coset xSO(3) consists of the matrices(
Q x
0 1

)
=

(
I3 x
0 1

)(
Q 0
0 1

)
with x fixed. Let us compute u(s, x) = r−1

s·xsrx. First, s · x = (a,Q) · x = Qx+ a, so

rs·x =

(
I3 Qx+ a,
0 1

)
, r−1

s·x =

(
I3 −Qx− a,
0 1

)
,

and finally,

u(s, x) = r−1
s·xsrx =

(
I3 −Qx− a,
0 1

)(
Q a
0 1

)(
I3 x
0 1

)
=

(
Q −Qx
0 1

)(
I3 x
0 1

)
=

(
Q 0
0 1

)
.

Consequently, if σ : SO(3) → GL(E) is any representation of SO(3) is a finite-dimensional
(nontrivial) vector space E, the above shows that u(s, x) is independent of x and given by

u(s, x) = u((a,Q), x) = Q,
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and so α((a,Q), x) is given by

α((a,Q), x) = σ(u((a,Q), x)) = σ(Q).

Then by (∗) we obtain the representation Π: SE(3)→ GL(ER3
) of SE(3) in ER3

given by

(Π(a,Q)(f))(x) = σ(u(s, s−1 · x))(f(s−1 · x))

= σ(Q)(f((a,Q)−1 · x)) = σ(Q)(f(Q>(x− a))),

that is,
(Π(a,Q)(f))(x) = σ(Q)(f(Q>(x− a))), f ∈ ER3

, x ∈ R3.

This representation is reducible because the subspace of constant functions from R3 to E is
invariant.

6.3 Converting Induced Representations of G From EX

to EG

We can also show that a cocycle α : G×X → GL(E) defines an isomorphism τ between the
space EX and a subspace Lα of the space EG.

Definition 6.7. Let G be a group, H be a subgroup of G, E be a vector space, and write
X = G/H. Given any cocycle α : G×X → GL(E), for any function f : X → E, the function
fα : G→ E is given by

fα(s) = α(s−1, s · x0)(f(s · x0)) = (α(s, x0))−1(f(s · x0)), for all s ∈ G, (∗α1)

with x0 = H.

Recall from Definition 6.5 that σ(h) = α(h, x0) for all h ∈ H.

Proposition 6.5. With the hypotheses of Definition 6.7, the function fα satisfies the equa-
tion

fα(sh) = σ(h−1)(fα(s)), for all h ∈ H and all s ∈ G. (∗α2)

Proof. By (b) of Definition 6.2 and since h · x0 = x0, we have

fα(sh) = α((sh)−1, (sh) · x0)(f((sh) · x0))

= α(h−1s−1, (sh) · x0)(f((sh) · x0))

=
(
α(h−1, s−1 · (s · (h · x0))) ◦ α(s−1, s · (h · x0))

)
(f(s · (h · x0)))

=
(
α(h−1, x0) ◦ α(s−1, s · x0)

)
(f(s · x0))

= σ(h−1)(fα(s)),

establishing the proposition.
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Definition 6.8. Let G be a group, H be a subgroup of G, E be a vector space, and write
X = G/H. Given any cocycle α : G×X → GL(E), let Lα be the subspace of EG consisting
of all functions g : G→ E, such that

g(sh) = σ(h−1)(g(s)), for all s ∈ G and all h ∈ H, (∗α3)

where σ(h) = α(h, x0), for all h ∈ H (with x0 = H).

Proposition 6.6. With the hypotheses of Definition 6.7, for every g ∈ Lα, there is a unique
function f : E → X, such that g = fα. Therefore, the map τ : EX → Lα given by τ(f) = fα

is an isomorphism.

Proof. Note that the function s 7→ α(s, x0)(g(s)) has the same value if s is replaced by sh
for every h ∈ H, since by (b) of Definition 6.2, (∗α3), and the facts that σ(h) = α(h, x0) and
h · x0 = x0 for h ∈ H,

α(sh, x0)(g(sh)) =
(
α(s, h · x0) ◦ α(h, x0)

)
(g(sh))

=
(
α(s, x0) ◦ α(h, x0)

)(
σ(h−1)(g(s))

)
=
(
α(s, x0) ◦ σ(h) ◦ σ(h−1)

)
(g(s))

= α(s, x0)(g(s)).

Therefore, we have a well-defined function f : X → E given by

f(x) = f(s · x0) = α(s, x0)(g(s)), (∗f )

and by definition of fα, we have

fα(s) = (α(s, x0))−1(f(s · x0))

= (α(s, x0))−1
(
α(s, x0)(g(s))

)
= g(s),

that is, fα = g, which shows that τ is surjective.

Since α(s, x) is an automorphism and since the map s 7→ s · x0 from G to G/H is
surjective, for any two functions f1, f2 ∈ EX , if fα1 = fα2 , then

α(s−1, s · x0)(f1(s · x0)) = α(s−1, s · x0)(f2(s · x0))

for all s ∈ G, so f1 = f2, which shows that τ is injective.

Observe that in the proof of Proposition 6.6, Equation (∗f ) and the fact that τ(f) =
fα = g show that if g ∈ Lα, then

(τ−1(g))(s · x0) = α(s, x0)(g(s)). (∗τ−1(g))

For any cocycle α : G × X → GL(E), we can use the isomorphism τ : EX → Lα to
convert the representation Π: G→ GL(EX) defined by α into the equivalent representation
ΠLα given by ΠLα(s) = τ ◦ Π(s) ◦ τ−1.
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Proposition 6.7. For every cocycle α : G × X → GL(E), if Π: G → GL(EX) is the
representation defined by α, then the equivalent representation ΠLα : G → GL(Lα) defined
by ΠLα(s) = τ ◦ Π(s) ◦ τ−1 is given by

((ΠLα)s(g))(t) = g(s−1t), for all g ∈ Lα and all s, t ∈ G. (ΠLα)

Proof. For any g ∈ Lα, since by (∗τ−1(g))

(τ−1(g))(u · x0) = α(u, x0)(g(u)),

and
(Πs(f))(x) = α(s, s−1 · x0)(f(s−1 · x)),

with x = t · x0, we have

(Πs(f))(t · x0) = α(s, s−1 · x0)(f(s−1 · (t · x0))),

and by setting f = τ−1(g), we get(
Πs(τ

−1(g))
)
(t · x0) = α(s, s−1 · (t · x0))

(
(τ−1(g))(s−1 · (t · x0))

)
= α(s, (s−1t) · x0)

(
(τ−1(g))((s−1t) · x0)

)
= α(s, (s−1t) · x0)

(
α(s−1t, x0)(g(s−1t))

)
= α(ss−1t, x0)(g(s−1t))

= α(t, x0)(g(s−1t)).

Since
(τ(h))(t) = (α(t, x0))−1(h(t · x0)),

for any h ∈ EX , with h = Πs(τ
−1(g)), we obtain

τ
(
Πs(τ

−1(g))
)
(t) = (α(t, x0))−1

(
α(t, x0)(g(s−1t))

)
= g(s−1t),

as claimed.

Remark: Observe that Lα only depends on σ, so we may write Lσ instead of Lα, and ΠLα

depends only on σ, so we may also write ΠLσ instead of ΠLα .

The representation ΠLσ , which is simply the left regular representation of G on Lα, is
more intrinsic than the representations Πα acting on the space of functions in EX . The
representations Πα acting on the space of functions in EX require for their construction the
choice of a set of coset representatives (rx)x∈G/H in addition to the representation σ : H →
GL(E) in order to define a cocycle α. However, if X = G/H is a lot “smaller” than G, then
the space of functions in Lα (a space of functions from G to E) is very redundant and from
a practical point of view, it might be better to use the representations defined on the smaller
space of functions from X to E. This issue will come up in Chapter 8.

We have concluded our discussion of algebraic methods for constructing representations
of G from representations of a subgroup H of G.
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6.4 Construction of the Hilbert Space L2
µ(X ;E)

We now assume that G is a locally compact group and that H is a closed subgroup of G.
By Vol. I, Proposition 8.6(1), the space X = G/H is also locally compact. If G is separable,
then so is G/H, and if G is metrizable, then so G/H; see Dieudonné [14] (Chapter XII,
Sections 10 and 11).

Given a unitary representation U : H → U(E) of H, we would like to construct a unitary
representation Π: G → U(H) of G. This is possible under certain conditions on H and
G and on measures on X = G/H. Note that unlike in the previous sections, we are now
considering continuous unitary representations.

The first step is to construct a Hilbert space H that will be the representation space of
a unitary representation of G. There are two approaches:

1. The Hilbert space H is a set of functions from X = G/H to E.

2. The Hilbert space H is a set of functions from G to E, analogous to the space Lα of
Section 6.3.

The second step is to define the operators Πs (for s ∈ G), so that they are unitary
operators of H. This involves defining an inner product in H that makes the operators Πs

unitary. In the first approach that makes use of cocycles, the definition of the inner product
on H is straightforward. To ensure that the operators Πs are unitary, a Borel measure µ on
X = G/H is needed, and the cocycles must satisfy some additional conditions with respect
to the measure µ. The case where the measure µ is G-invariant is simpler than the case
where µ is only quasi-invariant.

In the second approach, the definition of the Hilbert space H is more complicated and
requires a completion. We will sketch two variants of this method at the end of Section 6.7.

A good candidate for the first approach is a subspace L2
µ(X;E) of the vector space EX ,

where µ is positive Borel measure on G/H. In the special case where H is compact, given a
cocycle α on G×X satisfying some suitable conditions, the space Lα will be a subspace of
L2
λ(G;E) ⊆ EG, where λ is a left-invariant Haar measure on G.

Whether µ is G-invariant is an issue that will come up later, but for the time being we
can ignore it.

Let E be a separable Hilbert space, and let (an) be a Hilbert basis of E. Every function
f : X → E can be written uniquely as f =

∑
n fnan, where fn : X → C, and such that the

series
∑

n |fn(x)|2 converges for all x ∈ X. By definition, we let

‖f(x)‖2
E =

∑
n

|fn(x)|2.

We claim that a function f : X → E is µ-measurable iff all the fn are µ-measurable.
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If f is µ-measurable, since fn(x) = 〈f(x), an〉, the fn are µ-measurable. Conversely, if the
fn are µ-measurable, then Egoroff’s theorem implies that f is µ-measurable; see Dieudonné
[14] (Chapter XIII, Theorem 13.9.10).

Definition 6.9. Let G be a locally compact group, H be a closed subgroup of G, µ be a
positive Borel measure on X = G/H, and E be a separable Hilbert space. For any Hilbert
basis (an) of E, let L2

µ(X;E) be the space of all µ-measurable functions f : X → E with

f =
∑

n fnan, such that the function x 7→
∑

n |fn(x)|2 = ‖f(x)‖2
E is µ-integrable.

It is easy to see that if f =
∑

n fnan, then fn ∈ L2
µ(X;C), and∫

G/H

‖f‖2
E dµ =

∑
n

∫
G/H

|fn|2 dµ =
∑
n

‖fn‖2
2 ;

see Dieudonné [14] (Chapter XIII, Sections 8 and 9). As a consequence, given two functions
f =

∑
n fnan and g =

∑
n gnan in L2

µ(X;E), by Vol. I, Proposition 5.41, the function
x 7→ 〈f(x), g(x)〉 is integrable and∫

G/H

〈f(x), g(x)〉 dµ(x) =
∑
n

∫
G/H

fn(x)gn(x) dµ(x).

Definition 6.10. We say that a function f ∈ L2
µ(X;E) is negligible if the function x 7→

‖f(x)‖2
E is zero almost everywhere.

The quotient of the space L2
µ(X;E) by the subspace of negligeable functions is denoted

by L2
µ(X;E). It is a hermitian space under the inner product

〈[f ], [g]〉 =

∫
G/H

〈f(x), g(x)〉 dµ(x),

and we have the norm N2
1 given by

N2([f ]) =
√
〈[f ], [f ]〉.

If [f ] is represented by f =
∑

n fnan, then

N2([f ])2 =

∫
G/H

‖f‖2
E dµ =

∑
n

‖fn‖2
2 .

Actually, it turns out that the hermitian space L2
µ(X;E) is complete, that is, it is a

Hilbert space. In fact, it is a separable Hilbert space.

1We are using the notation N2 for the norm on L2
µ(X;E) to avoid a confusion with the norm ‖ ‖2 on

L2
µ(X;C).
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Proposition 6.8. Let G be a locally compact group, H be a closed subgroup of G, µ be a
positive Borel measure on X = G/H, and E be a separable Hilbert space. The space L2

µ(X;E)
is a separable Hilbert space.

Proof. Let (f (m)) be a Cauchy sequence in L2
µ(X;E), with f (m) =

∑
n f

(m)
n an. For every

ε > 0, there is some m0, such that for all p, q ≥ m0, we have

N2(f (p) − f (q))2 =
∑
n

∫
G/H

|f (p)
n − f (q)

n |2 dµ ≤ ε, (∗1)

and this implies that for every n, the sequence (f
(m)
n )m≥1 is a Cauchy sequence in L2

µ(X;C).

Therefore, each sequence (f
(m)
n )m≥1 has a limit gn ∈ L2

µ(X;C), since L2
µ(X;C) is complete

by Fischer–Riesz. For every integer N > 0, if we let q tend to +∞ in (∗1), we see that

N∑
n=1

∥∥gn − f (p)
n

∥∥2

2
≤ ε, (∗2)

so
N∑
n=1

‖gn‖2
2 ≤

N∑
n=1

∥∥gn − f (p)
n

∥∥2

2
+

N∑
n=1

∥∥f (p)
n

∥∥2

2
≤ ε+

∥∥f (p)
∥∥2

2
,

which proves that the series
∑∞

n=1 ‖gn‖
2
2 converges. Since (by definition)

∞∑
n=1

‖gn‖2
2 = N2(g)2,

it follows that g =
∑

n gnan ∈ L2
µ(X;E), and by (∗2)

N2(g − f (p))2 =
∑
n

∥∥gn − f (p)
n

∥∥2

2
≤ ε

for all p ≥ m0, and so g is the limit of the sequence (f (m)) in L2
µ(X;E).

If D is a countable dense subset of L2
µ(X;C), then we can check that the set of functions

f =
∑
fnan, such that fn ∈ D for all n and fn = 0 but all for finitely many values of n is

dense in L2
µ(X;E).

6.5 Induced Representations, I; G/H has a

G-Invariant Measure

In the rest of this chapter, by unitary representation, we mean continuous unitary represen-
tation.
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We will now assume that the positive Borel measure µ on X = G/H is G-invariant.
Recall from Vol. I, Section 8.10 (Definition 8.18) that

(λs(µ))(A) = µ(s−1 · A),

for every Borel subset A of X, so µ is G-invariant if for every Borel subset A of X,

µ(s−1 · A) = µ(A), for all s ∈ G.

In this case, ∫
G/H

f(s · x) dµ(x) =

∫
G/H

f(x) dµ(x), for all s ∈ G.

Let E be a separable Hilbert space, and U : H → U(E) be a unitary representation of
H.

Theorem 6.9. Let G be a locally compact group, H be a closed subgroup of G, E be a
separable Hilbert space, and U : H → U(E) be a unitary representation of H. If X = G/H
admits a G-invariant σ-Radon measure µ, and for any cocycle α : G × X → U(E), if the
following conditions hold

(1) We have α(h, x0) = U(h) for all h ∈ H;

(2) For every s ∈ G, for every f ∈ L2
µ(X;E), the map x 7→ α(s, x)(f(x)) from X to E is

µ-measurable;

(3) For every f ∈ L2
µ(X;E), the map s 7→ Πs(f) is a continuous map from G to L2

µ(X;E),
where Π is the homomorphism Π: G→ GL(EX) induced by the cocycle α;

then the homomorphism Π: G→ U(L2
µ(X;E)) induced by the cocycle α given by

(Πs(f))(x) = (α(s−1, x))−1(f(s−1 · x)), f ∈ L2
µ(X;E), x ∈ X,

(see Definition 6.3) is a unitary representation of G.

Proof. We simply have to prove that

N2(Πs(f)) = N2(f), for all f ∈ L2
µ(X;E) and all s ∈ G,

which implies that Πs(f) ∈ L2
µ(X;E), and the other conditions imply that the homomor-

phism Π: G → GL(L2
µ(X;E)) induced by α is a unitary representation of G. Since by

hypothesis α(s, s−1 · x) is a unitary operator, we have

‖(Πs(f))(x)‖E =
∥∥α(s, s−1 · x)(f(s−1 · x))

∥∥
E

=
∥∥f(s−1 · x)

∥∥
E
,

and since µ is G-invariant,∫
G/H

∥∥f(s−1 · x)
∥∥2

E
dµ(x) =

∫
G/H

‖f(x)‖2
E dµ(x),

and so N2(Πs(f)) = N2(f).
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Definition 6.11. The unitary representation Π: G→ U(L2
µ(X;E)) induced by the cocycle

α (and the unitary representation U : H → U(E)) is denoted IndGHα, or by abuse of notation
even IndGHU .

Remark: To be very precise, the representing space L2
µ(X;E) of this representation should

be specified, for example as in IndGH,L2
µ(X;E)α, because there are variants of this construction

that use a different representation space.

If U is the trivial representation of H in E, and if we choose α(s, x) = idE for all
(s, x) ∈ G× (G/H), then it can be verified that the hypotheses of Theorem 6.9 are satisfied.
To verify condition (3), we use the fact that the family of maps f 7→ Πs(f) (s ∈ G) is
equicontinuous; see Vol. I, Proposition 2.13. Then we use Vol. I, Proposition 2.12; for details,
see Dieudonné [12] (Chapter XXII, Section 3). In this case, the subspace Lα corresponding to
L2
µ(X;E) consists of all functions of the form f ◦ π with f ∈ L2

µ(X;E), where π : G→ G/H
is the projection map.

If H is a (closed) compact subgroup of G, then by Vol. I, Proposition 8.43, the space
G/H has G-invariant measures (unique up to a scalar). This is a special case of particular
interest. A good illustration of this situation is provided by Example 6.1 that we now revisit.

Example 6.2. As in Example 6.1, consider the groups G = SE(3) and H ≈ SO(3), where G
is locally compact and H is compact and closed in G. Consequently, X = G/H ≈ R3 has an
SE(3)-invariant Radon measure µ. Consider any unitary representation σ : SO(3)→ U(E)
of SO(3) in a separable Hilbert space E. We showed in Example 6.1 that we have a cocycle
α : SE(3)× R3 → U(E) given by

α((a,Q), x) = σ(Q), a, x ∈ R3, Q ∈ SO(3),

and the homomorphism Π: SE(3)→ GL(ER3
) induced by α is given by

(Π(a,Q)(f))(x) = σ(Q)f(Q>(x− a)), f ∈ ER3

, x ∈ R3.

We leave it as an exercise to check that conditions (1)–(3) of Theorem 6.9 are satisfied,
and so Π is a unitary representation Π: SE(3) → U(L2

µ(R3;E)) of SE(3) in the Hilbert
space L2

µ(R3;E). If E is finite-dimensional, say of dimension n ≥ 1, then the Hilbert space
L2
µ(R3;E) is isomorphic to the direct sum of n copies of L2

µ(R3;C). Then every function
f ∈ L2

µ(R3;E) is identified with the n-tuple f = (f1, . . . , fn) where fi ∈ L2
µ(R3;C), with the

inner product of f = (f1, . . . , fn) and g = (g1, . . . , gn) given by

〈f, g〉 =
n∑
i=1

∫
R3

fn(x)g(x) dµ(x).

Another example of induced representations of G = SE(n) arises from the normal abelian
subgroup H = Rn.
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Example 6.3. Consider the groups G = SE(n) and H ≈ Rn, where G is locally compact
and H is a closed normal abelian group in G. Here, G = SE(n) consists of all matrices

s =

(
Q a
0 1

)
, with Q ∈ SO(n) and a ∈ Rn,

H ≈ Rn is the normal subgroup of SE(n) consisting of all matrices

h =

(
In b
0 1

)
, with b ∈ Rn,

and X = G/H ≈ SO(n) is the compact subgroup of SE(n) consisting of all matrices(
R 0
0 1

)
, with R ∈ SO(n).

Recall that since Rn is abelian, its irreducible representations are one-dimensional. Therefore,
the irreducible representations of Rn are determined by the characters of Rn, which by Vol.
I, Corollary 10.93 are of the form χy : Rn → T for any y ∈ Rn, with

χy(x) = eiy·x, x ∈ Rn.

Consequently, the irreducible representations ρ : Rn → U(1) of Rn are of the form

(ρ(x))(z) = χy(x)z, x ∈ Rn, z ∈ C

for any fixed y ∈ Rn, namely, multiplication by χy(x). Since for

s = (a,Q) =

(
Q a
0 1

)
∈ SE(n) and h = (b, I) =

(
I b
0 1

)
∈ H ≈ Rn,

we have

sH = (a,Q)H = {(a,Q)h | h ∈ H} =

{(
Q a+Qb
0 1

)
| b ∈ Rn

}
=

{(
Q c
0 1

)
| c ∈ Rn

}
,

and we have an isomorphism between SO(n) and X = SE(n)/H given by

Q 7→ (a,Q)H =

{(
Q c
0 1

)
| c ∈ Rn

}
.

Since each matrix in the coset (a,Q)H can be written uniquely as(
Q c
0 1

)
=

(
Q 0
0 1

)(
In Q>c
0 1

)
,
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it is very easy to pick a coset representative in SE(n), namely

rQ =

(
Q 0
0 1

)
, Q ∈ SO(n).

The coset H as point in X = SE(n)/H ≈ SO(n) is x0 = In. Since the action of SE(n) on
X = SE(n)/H ≈ SO(n) is given by

s1(sH) = (s1s)H, s1, s ∈ SE(n),

we have

s1(sH) = (s1s)H = (a1, Q1)(a,Q)H = (a1 +Q1a,Q1Q)H =

{(
Q1Q c

0 1

)
| c ∈ Rn

}
,

and using our isomorphism between SO(n) and X = SE(n)/H, the above equation becomes

s1 ·Q = (a1, Q1) ·Q = Q1Q, Q,Q1 ∈ SO(n), a1 ∈ Rn.

Then, since

s ·R = (a,Q) ·R = QR,

u(s, R) = (rs·R)−1srR is given by

u(s, R) = (rs·R)−1srR =

(
R>Q> 0

0 1

)(
Q a
0 1

)(
R 0
0 1

)
=

(
R> R>Q>a
0 1

)(
R 0
0 1

)
=

(
In R>Q>a
0 1

)
.

Technically, we prefer dealing with representations σ : Rn → U(1) rather than σ : H → U(1),
so using the isomorphism Rn ≈ H, we have

u((a,Q), R) = R>Q>a.

Consequently, for every irreducible representation σ = χy : Rn → U(1), we have the cocycle
α : SE(n)× SO(n)→ U(1) given by

α((a,Q), R) = σ(u((a,Q), R)) = σ(R>Q>a) = χy(R
>Q>a).

Observe that if (a,Q) ∈ H ≈ Rn, that is, Q = I, and R = x0 = I, we have α((a, I), I) =
σ(a) = χy(a). Since

s−1 ·R = (a,Q)−1 ·R = Q>R,

the representation Π: SE(n)→ GL(CSO(n)) of SE(n) in CSO(n) induced by the representa-
tion σ = χy : Rn → U(1) is defined such that for all s = (a,Q) ∈ SE(n), R ∈ SO(n) and all
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functions f : SO(n)→ C,

(Π(a,Q)(f))(R) = α(s, s−1 ·R)(f(s−1 ·R))

= α((a,Q), Q>R)(f((a,Q)−1 ·R))

= σ((Q>R)>Q>a)(f((a,Q)−1 ·R))

= σ(R>a)f((a,Q)−1 ·R)

= χy(R
>a)f((a,Q)−1 ·R)

= ei(y·(R
>a))f((a,Q)−1 ·R)

= ei((Ry)·a)f(Q>R).

Since the action of SE(n) on SO(n) is identical to the action of SO(n) on SO(n), the
homogeneous space X = SO(n) has an SE(n)-invariant Radon measure, namely the Haar
measure µ on SO(n). We already checked that the cocycle

α((a,Q), R) = χy(R
>Q>a) = ei(y·(R

>Q>a)) = ei((Ry)·(Q>a))

satisfies condition (1) of Theorem 6.9, and we leave it as an exercise to prove that condi-
tions (2) and (3) are also satisfied. As a consequence, we obtain a unitary representation
Π: SE(n)→ U(L2

µ(SO(n);C)) of SE(n) in the Hilbert space L2
µ(SO(n);C) given by

(Π(a,Q)(f))(R) = ei((Ry)·a)f(Q>R), (a,Q) ∈ SE(n), R ∈ SO(n),

f ∈ L2
µ(SO(n);C), y ∈ Rn.

The above formula suggests that it might be possible to define a representation of SE(n)
in the smaller Hilbert space L2

λ(S
n−1;C), where λ is an SO(n)-invariant Radon measure on

Sn−1, which exists since Sn−1 is a homogeneous space obtained by making SO(n) act on Sn−1

by the action R · x = Rx, where R ∈ SO(n) and x ∈ Sn−1, so Sn−1 ≈ SO(n)/SO(n − 1)
with SO(n−1) compact. Before proceeding any further, the reader may want to review Vol.
I, Section C.2 and Section C.3. We may assume that y 6= 0, because when y = 0, we have

(Π(a,Q)(f))(R) = f(Q>R),

a reducible representation called a quasi-regular representation of SE(n). Here, we pick the
base point to be

x0 = (1/r)y ∈ Sn−1, with r = ‖y‖ .

The stabilizer SO(n)x0 ≈ SO(n− 1) of x0 is given by

SO(n)x0 = {R ∈ SO(n) | Rx0 = x0},

and so, for any R1, R2 ∈ SO(n), the two cosets R1SO(n)x0 and R2SO(n)x0 are identi-
cal iff R>2 R1 ∈ SO(n)x0 iff R>2 R1x0 = x0 iff R1x0 = R2x0. The isomorphism between
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SO(n)/SO(n)x0 and the orbit SO(n)x0 = Sn−1 is given by RSO(n)x0 7→ Rx0 = (1/r)(Ry),

where R ∈ SO(n). Consider the map Π̃ : SE(n)→ U(L2
λ(S

n−1;C)) given by

(Π̃(a,Q)(f))([R]) = ei((Ry)·a)f(Q>[R]), (a,Q) ∈ SE(n), y ∈ Rn, (∗1)

with [R] ∈ SO(n)/SOx0 and f ∈ L2
λ(S

n−1;C), and where [R] denotes the coset RSOx0 .
Since by definition of the stabilizer SOx0 , if [R1] = [R2], then R1y = R2y, the right-hand

side of (∗1) does not depend on the representative chosen in the coset [R], so Π̃(a,Q) is well-
defined, and if we write x = (1/r)(Ry) ∈ Sn−1, since SO(n)/SOx0 ≈ Sn−1 under the map
[R] 7→ Rx0 = (1/r)Ry = x, we have

(Π̃(a,Q)(f))(x) = eir(x·a)f(Q>x), (a,Q) ∈ SE(n), x ∈ Sn−1, f ∈ L2
λ(S

n−1;C), r > 0. (∗2)

The above also shows that the representation Π: SE(n)→ U(L2
µ(SO(n);C)) of SE(n) in

the Hilbert space L2
µ(SO(n);C) is reducible because the subspace of L2

µ(SO(n);C) consisting
of the functions f ∈ L2

µ(SO(n);C), such that

f(RT ) = f(R), for all R ∈ SO(n) and all T ∈ SO(n)x0 ,

is invariant under Π(a,Q), because for all Q,R ∈ SO(n) and all T ∈ SO(n)x0 , we have

ei((RTy)·a)f(Q>RT ) = eir((RTx0)·a)f(Q>R) = eir((Rx0)·a)f(Q>R) = ei((Ry)·a)f(Q>R),

since Tx0 = x0 and f(Q>RT ) = f(Q>R).

The representations given by (∗2) are half of the representations of SE(n) discussed in
Vilenkin [70] (Chapter XI, Section 2), the other half corresponding to r < 0. However, it is
easy to see that each representation given by

(Π̃(a,Q)(f))(x) = e−ir(x·a)f(Q>x), (a,Q) ∈ SE(n), x ∈ Sn−1, f ∈ L2
λ(S

n−1;C), r > 0 (∗3)

is equivalent to the corresponding representation given by (∗2) (with no negative sign in
front of ir > 0) using the isometry T of L2

λ(S
n−1;C) given by

T (f)(x) = f(−x), x ∈ Sn−1,

in other words, T (f) = f̌ (see Vol. I, Definition 8.11). It is proven in Vilenkin [70] (Chapter
XI, Section 2) that the representations given by (∗2) (and thus by (∗3)) are irreducible.

Actually, if we allow ir to be any nonzero complex number z = ir, then Vilenkin proves
that

(Π̃(a,Q)(f))(x) = ez(x·a)f(Q>x), (a,Q) ∈ SE(n), x ∈ Sn−1, f ∈ L2
λ(S

n−1;C), z ∈ C∗ (∗4)

still defines an irreducible representation, but it is not unitary unless z = ir with r ∈ R and
r 6= 0.
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The representations of SE(n) given by (∗2) have the following interesting property. If we
consider their restriction to SO(n), so that s = (0, Q), then we see that they are given by

(Π̃(0,Q)(f))(x) = f(Q>x), Q ∈ SO(n), x ∈ Sn−1, f ∈ L2
λ(S

n−1;C). (∗5)

The constant function f0 : Sn−1 → C with value 1 is invariant under SO(n), in the sense
that

(Π̃(0,Q)(f0))(x) = f0(Q>x) = 1 for all Q ∈ SO(n) and all x ∈ Sn−1,

which means that
Π̃(0,Q)(f0) = f0, for all Q ∈ SO(n).

This is an instance of what is called a representation of class 1 relative to SO(n).

Definition 6.12. Let G be a locally compact group and H be a closed subgroup of G. A
unitary representation U : G→ U(E) of G in a Hilbert space E is a representation of class
1 relative to H if there is some nonzero vector x ∈ E invariant relative to H, which means
that

Uh(x) = x, for all h ∈ H.

Remark: Vilenkin [70] (Chapter I, Section 2) allows U to be nonunitary, but in this case
the restriction of U to H must be unitary.

The representations of Example 6.3 given by (∗2) are of class 1 relative to SO(n).

One of the reasons why representations of class 1 are interesting is the following. Suppose
a ∈ E is a nonzero vector invariant under H as above. For every x ∈ E, we define the function
fx : G→ C given by

fx(s) = 〈Us(x), a〉, s ∈ G.

The functions fx are called spherical functions of U relative to H. We claim that the functions
fx are constant on right cosets Hs.

Indeed, for all s ∈ G and all h ∈ H, we have

fx(hs) = 〈Uhs(x), a〉
= 〈Uh(Us(x)), a〉
= 〈Us(x), U∗h(a)〉
= 〈Us(x), Uh−1(a)〉
= 〈Us(x), a〉 = fx(s),

so
fx(hs) = f(s), for all s ∈ G and all h ∈ H.

In particular, for x = a, we claim that the function fa, called a zonal spherical function,
is constant on the two-sided cosets HsH (s ∈ G).
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Since we already know that fa(h1s) = fa(s) for all h1 ∈ H, it suffices to show that
fa(sh2) = fa(s) for all h2 ∈ H. We have

fa(sh2) = 〈Ush2(a), a〉
= 〈Us(Uh2(a)), a〉
= 〈Us(a), a〉 = fa(s).

Thus, we proved that

fa(h1sh2) = fa(s), for all h1, h2 ∈ H and all s ∈ G,

which means that fa is constant on the double cosets HsH. Geometrically, this means that
fa is constant on “spheres.” In particular, if G = SO(3) and H = SO(2), then the spherical
functions are the well-known spherical harmonics Y m

l (θ, ϕ) and the zonal spherical functions
are the Legendre polynomials Pl(cos θ). If G = SO(n) and H = SO(n− 1), then the zonal
spherical functions are given in terms of Gegenbaur polynomials; see Gallier and Quaintance
[28] (Chapter 7, Sections 3, 5–7).

Under some mild additional conditions, induced unitary representations of G in L2
µ(X;E)

can be converted to unitary representations of G in a closed subspace of L2
λ(G;E) (where λ

is a left Haar measure on G).

Suppose that the unitary cocycle α has the property that the map

s 7→ fα(s) = α(s−1, s · x0)(f(s · x0))

from G to E is λ-measurable for every f ∈ L2
µ(X;E). If so, using Proposition 6.5, we have

‖fα(sh)‖E = ‖fα(s)‖E = ‖f(s · x0)‖E

for all s ∈ G and all h ∈ H, and since by Vol. I, Proposition 8.43 and Theorem 7.10, for any
g ∈ L2(G/H;C), we have ∫

G/H

g dµ =

∫
G

(g ◦ π) dλ,

so we obtain

N2(fα)2 =

∫
G

‖fα(s)‖2
E dλ(s) =

∫
G

‖f(s · x0)‖2
E dλ(s) = N2(f ◦ π)2

N2(f ◦ π)2 =

∫
G

‖f(s · x0)‖2
E dλ(s) =

∫
G/H

‖f(x)‖E dµ(x) = N2(f)2,

that is, N2(fα) = N2(f), and we conclude that fα ∈ L2
λ(G;E).

Conversely, if g ∈ L2
λ(G;E) satisfies the property

g(sh) = U(h−1)(g(s)), for all s ∈ G and all h ∈ H, (∗U)
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and if the map s 7→ α(s, x0)(g(s)) from G to E is λ-measurable, then as in Proposition 6.6,
we can write this map as f ◦ π for some f ∈ L2

µ(X;E), and we have g = fα.

In this case, up to equivalence, we can consider the unitary representation IndGH,F α
induced by α as a unitary representation of G in the closed subspace F of L2

λ(G;E) spanned
by the functions g ∈ L2

λ(G;E) satisfying property (∗U). Then for all s ∈ G,

(IndGH,F α)s(g) = λsg, for all g ∈ F , (IndG)

equivalently, for all s, t ∈ G,

((IndGH,F α)s(g))(t) = g(s−1t), for all g ∈ F .

Notice the analogy with Proposition 6.7.

Note that IndGH,F α depends only on U , so we usually write IndGH,F U instead of IndGH,F α.

If E = C, then IndGH,F U is a subrepresentation of the regular representation of G in
L2(G).

Definition 6.13. If we choose U to be the trivial representation of H in E, then the functions
g ∈ L2

λ(G;E) satisfying condition (∗U) are constant on the classes sH, so we can identify F
with L2

µ(X;E). In this case, we say that the induced representation IndGH U of G in L2
µ(X;E)

is the canonical representation of G corresponding to the compact subgroup H and to its
trivial representation in E.

If H = (e) and E = C, then the induced representation is the regular representation of
G in L2(G).

Going back to the case where H is an arbitrary closed subgroup of G, and where there
is a G-invariant measure on G/H, there is another method, not using cocyles, for defining a
unitary induced representation of G from a unitary representation U : H → U(E). We can
define a Hilbert space H such that formula (IndG) defines a unitary induced representation
IndGH,H U of G in H. This method is described in Folland [22] (Chapter 6, Section 1), and
we briefly describe it.

Given a unitary representation U : H → U(E), let H0 be the following set of functions:

H0 = {f ∈ C(G,E) | π(supp(f)) is compact and

f(sh) = U(h−1)(f(s)) for all s ∈ G and all h ∈ H}.

The problem is that it is not obvious that H0 is nonempty! However, the following result
proven in Folland [22] (Chapter 6, Proposition 6.1) shows that this is not the case.

Proposition 6.10. If ϕ : G → E is a continuous function with compact support, then the
function fϕ from G to E given by

fϕ(s) =

∫
H

U(h)(ϕ(hs)) dλH(h)

belongs to H0 and is uniformly continuous on G. Moreover, every element of H0 is of the
form fϕ for some ϕ ∈ K(G,E).
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The group G acts on the left on H0 by f 7→ λsf . In order to act by unitary maps,
we need to define an inner product on H0 with respect to which these left translations are
isometries. Since G/H has G-invariant measures, this is easy to achieve. If f, g ∈ H0, then
the map s 7→ 〈f(s), g(s)〉E depends only on the coset sH, so we can define the inner product
〈f, g〉 by

〈f, g〉 =

∫
G/H

〈f(s), g(s)〉E dµ(sH).

This is clearly a positive hermitian form, and it is positive definite because µ(A) > 0 for
every nonempty open set A. This inner product is invariant under the left translations λs
because µ is G-invariant. Therefore, with respect to this inner product, the maps f 7→ λsf
are unitary. If H is the Hilbert space, which is the completion of H0, then the maps f 7→ λsf
extend to unitary operators on H. It follows from Proposition 6.10 that the map s 7→ λsf
from G toH are continuous for every f ∈ H0. Therefore, they define a unitary representation
of G in H given by

(IndGH,H U)s(f) = λs(f), f ∈ H.

This unitary representation has the advantage that it depends only on U , but one should
not neglect the fact that the construction involving cocycles allows more flexibility. The
Hilbert space H is also more complicated than the Hilbert space L2

µ(X;E).

When G/H admits no G-invariant measure, then we need to use a weaker notion of
invariance. It turns out that the notion of (strong) quasi-invariance does the job.

6.6 Quasi-Invariant Measures on G/H

The notion of quasi-invariance was first introduced by Mackey and Bruhat in the early 1950’s.
It also occurs in Bourbaki [4] (Chapter VII, §2, No. 5). We follow the exposition in Folland
[22] (Chapter 2, Section 2.6, and Chapter 6, Section 1).

As we said in Section 6.5, given any measure µ on X = G/H, for any s ∈ G, the measure
λs(µ) is given by

(λs(µ))(A) = µ(s−1 · A),

for every Borel subset A of X = G/H. We say µ is G-invariant if for every Borel subset A
of X,

µ(s−1 · A) = µ(A), for all s ∈ G.
In this case, ∫

G/H

g(s · x) dµ(x) =

∫
G/H

g(x) dµ(x), for all s ∈ G

and for all g ∈ L1
µ(G/H). It is not hard to prove an analog of Vol. I, Proposition 8.16(3),

namely ∫
G/H

g(s · x) dµ(x) =

∫
G/H

g(x) dλs(µ)(x)
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for all g ∈ L1
µ(G/H) and all s ∈ G. A weaker requirement than G-invariance is that∫
G/H

g(s · x) dµ(x) =

∫
G/H

g(x) dλs(µ)(x) =

∫
G/H

%(s, x)g(x) dµ(x)

for some continuous function % : G × (G/H) → (0,∞), for all g ∈ KC(G/H) and all s ∈ G.
The above discussion suggests the following definition.

Definition 6.14. A measure µ on G/H is (strongly) quasi-invariant if there is a continuous
function % : G× (G/H)→ (0,∞), such that∫

G/H

g(s · x) dµ(x) =

∫
G/H

%(s, x)g(x) dµ(x), for all g ∈ KC(G/H) and all s ∈ G. (qi%)

The key to quasi-invariance is the existence of certain functions from G to (0,∞) called
rho-functions .

Definition 6.15. A function ρ : G → (0,∞) is a rho-function for the pair (G,H) if it is a
continuous function, such that

ρ(sh) =
∆H(h)

∆G(h)
ρ(s), s ∈ G, h ∈ H, (∗ρ)

where ∆G is the modular function on G and ∆H is the modular function on H.

Proposition 6.11. If G is any locally compact group and H is any closed subgroup of G,
then (G,H) admits rho-functions.

Proposition 6.11 is proven in Folland [22] (Chapter 2, Proposition 2.54). One first proves
[22] (Chapter 2, Lemma 2.53) that there is a continuous function ϕ : G→ (0,∞), such that
the following properties hold:

(i) {y ∈ G | ϕ(y) > 0} ∩ sH 6= ∅ for all s ∈ G.

(ii) supp(ϕ) ∩KH is compact for every compact subset K of G.

Then define ρ by

ρ(s) =

∫
H

∆G(h)

∆H(h)
ϕ(sh) dλH(h).

It is not hard to check that the above function is a rho-function.

Recall from Vol. I, Definition 8.20 that the definition of the projection map P : KC(G)→
KC(G/H) defined as follow: for every f ∈ KC(G), for every s ∈ G, let

(P (f))(sH) =

∫
H

f(sh) dλH(h).

By Vol. I, Proposition 8.40, the map P is surjective.

The next proposition is proven in Folland [22] (Chapter 2, Lemma 2.55).
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Proposition 6.12. For any function f ∈ KC(G), if P (f) = 0, then
∫
fρ dλ = 0, for any

rho-function ρ.

The proof of Proposition 6.12 is very similar to the argument given in the proof of Vol.
I, Theorem 8.42. Then we have our first main theorem. Recall that π : G → G/H denotes
the quotient map.

Theorem 6.13. Let G be any locally compact group and H be any closed subgroup of G.
For every rho-function ρ for (G,H), there is a unique σ-Radon measure µ on G/H, such
that ∫

G/H

P (f)(x) dµ(x) =

∫
G

f(s)ρ(s) dλ(s), for all f ∈ KC(G). (qi)

Furthermore, if we let % : G× (G/H)→ (0,∞) be the continuous function given by

%(s, π(t)) =
ρ(s−1t)

ρ(t)
s, t ∈ G,

then for every g ∈ KC(G/H), we have∫
G/H

g(s · x) dµ(x) =

∫
G/H

%(s, x)g(x) dµ(x), for all s ∈ G, (qi%)

which means that µ is strongly quasi-invariant.

Proof. Theorem 6.13 is proven in Folland [22] (Chapter 2, Theorem 2.56). For any f ∈
KC(G), since P is surjective and since by Proposition 6.12, if P (f) = P (g), then

∫
G
fρ dλ =∫

G
gρ dλ, the map Φ given by Φ(P (f)) =

∫
G
fρ dλ is a well-defined positive linear functional

on KC(G/H). By Radon–Riesz I, it defines a unique σ-Radon measure µ on G/H satisfying
(qi).

The equation

ρ(sh) =
∆H(h)

∆G(h)
ρ(s), s ∈ G, h ∈ H,

satisfied by a rho-function shows that the ratio ρ(st)/ρ(t) depends only on the coset π(t) =
tH, because

ρ(sth)

ρ(th)
=

∆H(h)

∆G(h)

ρ(st)

ρ(th)
=

∆H(h)

∆G(h)

∆G(h)

∆H(h)

ρ(st)

ρ(t)
=
ρ(st)

ρ(t)
,

so we obtain a continuous function % : G× (G/H)→ (0,∞) given by

%(s, π(t)) =
ρ(s−1t)

ρ(t)
, s, t ∈ G.

First, by expanding both integrals as double integrals, it is easy to show that∫
G/H

P (f)(s · x) dµ(x) =

∫
G/H

P (λs−1f)(x) dµ(x).
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Then, we have ∫
G/H

P (f)(s · x) dµ(x) =

∫
G/H

P (λs−1f)(x) dµ(x)

=

∫
G

f(st)ρ(t) dλ(t)

=

∫
G

f(t)ρ(s−1t) dλ(t)

=

∫
G

%(s, π(t))f(t)ρ(t) dλ(t)

=

∫
G/H

P (%(s, π(−))f)(x) dµ(x)

=

∫
G/H

%(s, x)P (f)(x) dµ(x),

where we used Vol. I, Proposition 8.38(3) to prove the last step, which concludes the proof.

Remark: The map x 7→ %(s, x) is the Radon–Nikodym derivative of λs(µ) with respect to
µ.

The following converse of Theorem 6.13 is proven in Folland [22] (Chapter 2, Theorem
2.59).

Theorem 6.14. Let G be any locally compact group and H be any closed subgroup of G. Ev-
ery quasi-invariant measure µ on G/H arises from a rho-function as in (qi) and (qi%). Fur-
thermore, any two such measures µ and µ′ are strongly equivalent, which means that there is
a continuous function ϕ : G/H → (0,∞), such that

∫
G/H

g(x) dµ′(x) =
∫
G/H

ϕ(x)g(x) dµ(x)

for all g ∈ KC(G/H).

The following proposition shows that % behaves like a cocycle.

Proposition 6.15. Let G be any locally compact group and H be any closed subgroup of
G. For any quasi-invariant measure µ on G/H associated with the continuous function
% : G× (G/H)→ (0,∞), we have

%(st, x) = %(s, t · x)%(t, x), for all s, t ∈ G and all x ∈ G/H. (∗%)

Proof. Using (qi%), for every function g ∈ KC(G/H), we have∫
G/H

g(x)%(st, x) dµ(x) =

∫
G/H

g((st) · x) dµ(x) =

∫
G/H

g(s · (t · x)) dµ(x)

=

∫
G/H

%(s, t · x)g(t · x) dµ(x)

=

∫
G/H

g(x)%(s, t · x)%(t, x) dµ(x),
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which proves that

%(st, x) = %(s, t · x)%(t, x),

as claimed.

Remark: Dieudonné denotes %(s, x) by Js(x); see Dieudonné [12] (Chapter XXII, Section
3, No. 22.3.8.1–22.3.8.2).

We now use quasi-invariant measures to generalize the construction of Section 6.5.

6.7 Induced Representations, II; G/H has a

Quasi-Invariant Measure

If µ is a quasi-invariant measure on G/H, then by making a simple modification to condition
(1) of Theorem 6.9, we obtain the following result.

Theorem 6.16. Let G be a locally compact group, H be a closed subgroup of G, E be a
separable Hilbert space, and U : H → U(E) be a unitary representation of H. For any quasi-
invariant measure µ on X = G/H associated with the continuous function % : G× (G/H)→
(0,∞), for any cocycle α : G×X → U(E), if the following conditions hold

(1) The map %(s−1, x)1/2α(s, x) is a unitary map of E for all s ∈ G and all x ∈ X, such
that %(h−1, x0)1/2α(h, x0) = U(h) for all h ∈ H;

(2) For every s ∈ G, for every f ∈ L2
µ(X;E), the map x 7→ α(x, s)(f(x)) from X to E is

µ-measurable;

(3) For every f ∈ L2
µ(X;E), the map s 7→ Πs(f) is a continuous map from G to L2

µ(X;E),
where Π is the homomorphism Π: G→ GL(EX) induced by the cocycle α;

then the homomorphism Π: G→ U(L2
µ(X;E)) induced by the cocycle α given by

(Πs(f))(x) = (α(s−1, x))−1(f(s−1 · x)), f ∈ L2
µ(X;E), x ∈ X,

(see Definition 6.3) is a unitary representation of G.

Proof. We simply have to prove that

N2(Πs(f)) = N2(f), for all f ∈ L2
µ(X;E) and all s ∈ G,

which implies that Πs(f) ∈ L2
µ(X;E), and the other conditions imply that the homomor-

phism Π: G → GL(L2
µ(X;E)) induced by α is a unitary representation of G. Since by
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hypothesis %(s−1, x)1/2α(s, x) is a unitary operator, using (qi%), we have

N2(Πs(f))2 =

∫
G/H

∥∥α(s, s−1 · x)(f(s−1 · x))
∥∥2
dµ(x)

=

∫
G/H

%(s−1, x) ‖α(s, x)(f(x))‖2 dµ(x)

=

∫
G/H

∥∥%(s−1, x)1/2α(s, x)(f(x))
∥∥2
dµ(x)

=

∫
G/H

‖f(x)‖2 dµ(x),

and so N2(Πs(f)) = N2(f).

As an application of Theorem 6.16, we can pick

α(s, x) = (%(s−1, x))−1/2+ri idE,

with r ∈ R. By Proposition 6.15, the function α is a cocycle. condition (2) is satisfied because
% is measurable (in fact, continuous). The maps %(s−1, x)1/2α(s, x) = (%(s−1, x))ri idE are
unitary, since they are multiplication by a complex number of modulus 1. It remains to check
condition (3). This verification is performed in Dieudonné [12] (Chapter XXII, Section 3,
No. 22.3.8.3).

6.8 Examples of Induced Representations Via

Method II

We will now give several examples of the application of Theorem 6.16 to the group SL(2,R).
It turns out that the group SL(2,R) has no finite-dimensional unitary representations except
the trivial one, and Theorem 6.16 can be used to produce nontrivial unitary representations.

Example 6.4. Let G = SL(2,R) and H = S1 be the subgroup

S1 =

{(
a b
0 a−1

) ∣∣∣∣ a, b ∈ R, a 6= 0

}
,

and let E = C. We claim that the homogeneous space SL(2,R)/S1 is homeomorphic to
P1(R) = RP1, the real projective line. Indeed, there is an action of SL(2,R) on RP1 viewed
as R ∪ {∞} given by

s · z =

(
a b
c d

)
· z =

az + b

cz + d
, z ∈ RP1,

with the convention that when z = −d/c, then the result is ∞, and when z = ∞, then the
result if a/c. It is easy to check that this action is transitive and that the stabilizer of ∞ is
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the subgroup S1. We give RP1 the measure µ, which is the Lebesgue measure extended so
that {∞} has measure zero. Since(

a b
c d

)−1

=

(
d −b
−c a

)
,

(recall that ad− bc = 1), and since the derivative of the function

x 7→ dx− b
−cx+ a

is
d(−cx+ a)− (dx− b)(−c)

(−cx+ a)2
=

1

(cx− a)2
,

we see that for any function f ∈ L2
µ(RP1;C), using the change of variable x = az+b

cz+d
,∫ +∞

−∞
f(s · z) dµ(z) =

∫ +∞

−∞
f

(
az + b

cz + d

)
dµ(z) =

∫ +∞

−∞

1

(cx− a)2
f(x) dµ(x).

It follows that µ is quasi-invariant with

%(s, x) =
1

(cx− a)2
, where s =

(
a b
c d

)
.

The method of Theorem 6.16 with

α(s, x) = (%(s−1, x))−1/2+(r/2)i idC,

where r ∈ R, and with

(Πs(f))(x) = (α(s−1, x))−1(f(s−1 · x)),

yields the unitary representations of SL(2,R) in L2
µ(RP1;C) given by

Πs(f)(x) = |cx− a|−1+rif

(
b− dx
cx− a

)
, f ∈ L2

µ(RP1;C), where s =

(
a b
c d

)
.

It is also easy to check that the cocycles

α(s, x) =

(
1

(cx− a)2

)−1/2+(r/2)i

sign(cx− a) idC

with r ∈ R also work, and we get the representations of SL(2,R) in L2
µ(RP1;C) given by

Πs(f)(x) = |cx−a|−1+ri sign(cx−a)f

(
b− dx
cx− a

)
, f ∈ L2

µ(RP1;C), where s =

(
a b
c d

)
.

It can be shown that all these representations are irreducible and pairwise inequivalent for r >
0. These representations constitute the principal series of irreducible unitary representations
of SL(2,R).
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Example 6.5. Let G = SL(2,R) and H = SO(2) be the subgroup

SO(2) =

{(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣ 0 ≤ θ ≤ 2π,

}
,

and let E = C. We claim that the homogeneous space SL(2,R)/SO(2) is homeomorphic to
the upper half plane P = {z = x + iy ∈ C | y > 0}. Indeed, there is an action of SL(2,R)
on P given by

s · z =

(
a b
c d

)
· z =

az + b

cz + d
, z = x+ iy ∈ P.

It is easy to check that this action is transitive and that the stabilizer of z = i is SO(2).
Since the group SO(2) is compact, the space P = SL(2,R)/SO(2) admits SL(2,R)-invariant
measures. In fact, the measure µ corresponding to the positive Radon functional

h 7→
∫
P

h(x+ iy)
dx dy

y2
=

∫
y>0

∫ +∞

x=−∞
h(x+ iy)

dx dy

y2
, h ∈ KC(P ),

is such a measure.

We will need a method for picking a representative in every coset of SL(2,R)/SO(2) that
corresponds in a one-to-one fashion to an element z = x+ iy ∈ P . For this, we use the fact
that every matrix s ∈ SL(2,R) can be uniquely factored as(

a b
c d

)
=

(
λ µ
0 λ−1

)(
cos θ − sin θ
sin θ cos θ

)
=

(
λ cos θ + µ sin θ −λ sin θ + µ cos θ

λ−1 sin θ λ−1 cos θ

)
,

with λ, µ ∈ R, λ > 0, and 0 ≤ θ < 2π.

Indeed, if there is such a decomposition, then

c = λ−1 sin θ, d = λ−1 cos θ,

so
sin θ = λc, cos θ = λd,

and since(
λ µ
0 λ−1

)
=

(
a b
c d

)(
cos θ sin θ
− sin θ cos θ

)
=

(
a cos θ − b sin θ a sin θ + b cos θ
c cos θ − d sin θ c sin θ + d cos θ

)
,

we see that
λ−1 = c sin θ + d cos θ = λ(c2 + d2),

and since ad− bc = 1, we have c2 + d2 6= 0, so we can pick

λ =
1√

c2 + d2
,
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and then θ ∈ [0, 2π) is uniquely determined by

cos θ =
d√

c2 + d2
, sin θ =

c√
c2 + d2

,

and µ is determined by

µ = a sin θ + b cos θ = λ(ac+ bd) =
ac+ db√
c2 + d2

.

Observe that the group

S0 =

{(
a b
0 a−1

) ∣∣∣∣ a, b ∈ R, a > 0

}
is a subgroup of the group S1 of Example 6.4.

Given any z = x+iy ∈ P , there is a unique coset sSO(2) ⊆ SL(2,R) (where s ∈ SL(2,R))
that maps i to z, and in view of the above factorization of matrices in SL(2,R), we can pick
as a representative of this coset sSO(2) the matrix rz ∈ S0, such that

rz · i = z = x+ iy,

namely,

rz =

(√
y x/

√
y

0 1/
√
y

)
.

We now determine u(s, z), such that srz = rs·zu(s, z) (see Definition 6.5), with u(s, z) ∈
SO(2) and

s =

(
a b
c d

)
,

as in Section 6.2 (see Propositions 6.3 and 6.4). Since the imaginary part of s · z = (az +
b)/(cz + d) is y/|cz + d|2, we have

rs·z =

(√
y/|cz + d| ∗

0 |cz + d|/√y

)
,

so the equation srz = rs·zu(s, z) with

u(s, z) =

(
cos θ − sin θ
sin θ cos θ

)
,

namely, (
a b
c d

)(√
y x/

√
y

0 1/
√
y

)
=

(√
y/|cz + d| ∗

0 |cz + d|/√y

)(
cos θ − sin θ
sin θ cos θ

)
,
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yields in particular

c
√
y =
|cz + d|
√
y

sin θ,
cx+ d
√
y

=
|cz + d|
√
y

cos θ.

Therefore,

cos θ + i sin θ =
cx+ d+ ciy

|cz + d|
=

cz + d

|cz + d|
,

equivalently,

eiθ =
cz + d

|cz + d|
.

The group SO(2) is abelian, and since its unitary representations in C are characters, by
Vol. I, Proposition 10.9, they are of the form

h 7→ σn(h) = eniθ, n ∈ Z,

with

h =

(
cos θ − sin θ
sin θ cos θ

)
.

By the method of Section 6.2, since eiθ = cz+d
|cz+d| , we can pick the cocycle α to be

α(s, z) = σn(u(s, z)) =
(cz + d)n

|cz + d|n
idC,

and then
(Πs(f))(z) = (α(s−1, x))−1(f(s−1 · z)), f ∈ L2

µ(P ;C), z ∈ P.

Since

s−1 =

(
d −b
−c a

)
,

we get

α(s−1, z) =
(cz − a)n

|cz − a|n
idC,

and thus

(Πs(f))(z) =
(cz − a)−n

|cz − a|−n
f

(
b− dz
cz − a

)
, f ∈ L2

µ(P ;C), z ∈ P, s =

(
a b
c d

)
,

and for n ∈ Z.

These representations are not always irreducible. A way to see this is to construct an
equivalent representation by using the cocycles α′(s, z) = c(s · z) ◦ α(s, z) ◦ c(z)−1, as in
Section 6.2, with

c(z) = c(x+ iy) = y−n/2.
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The image of L2
µ(P ;C) under the map f 7→ cf is the space En of functions g : P → C, such

that the map z 7→ yng(z)2 is µ-integrable. One can then show that the equivalent unitary
representation is given by

(Πs(f))(z) = (cz − a)−ng

(
b− dz
cz − a

)
, g ∈ En, z ∈ P, s =

(
a b
c d

)
.

It can be shown that for n > 1, the space H2
n of holomorphic functions on P is nonempty

and invariant under Π. Furthermore, these representations in H2
n are irreducible. The

complex conjugates of these representations are also irreducible and not equivalent to the
previous ones; see Dieudonné [12] (Chapter XXII, Section 3).

These irreducible unitary representations of SL(2,R) constitute the discrete series . There
are other irreducible unitary representations of SL(2,R) called the complementary series .

For comprehensive treatments of the irreducible representations of SL(2,R) and other
semisimple Lie groups, see Knapp [43], Vilenkin [70], and Taylor [66].

6.9 Partial Traces, Induced Representations of Com-

pact Groups

In this section, we consider a compact (metrizable) group G and a closed subgroup H of
G, and our goal is to determine the canonical (unitary) representation of G in L2

µ(G/H;C)
induced by the trivial representation of H in E = C (see Definition 6.13), where µ is the
G-invariant measure on G/H induced by a Haar measure λ on G. For simplicity of notation,
we write L2

µ(G/H) instead of L2
µ(G/H;C). To do this, it is necessary to understand what is

the restriction of the representation Mρ : G→ U(Cnρ) to H, with ρ ∈ R(G).

We will denote the complete set of the irreducible representations of G given by the
Peter–Weyl theorem I (Theorem 4.2) by ρ ∈ R(G), the corresponding representations by
Mρ : G → U(Cnρ), and the identity element of aρ by uρ = 1

nρ
χρ, where χρ is the character

associated with ρ. Similarly, we will denote the complete set of irreducible representations
of H given by the Peter–Weyl theorem I by σ ∈ R(H), the corresponding representations by
Mσ : H → U(Cnσ), and the identity element of aσ by uσ = 1

nσ
χσ, where χσ is the character

associated with σ. The Haar measure on G is denoted by λG, and the Haar measure on H
is denoted by λH .

Consider the restriction V : H → U(Cnρ) of the representation Mρ : G → U(Cnρ) to H.
Recall that for any function f ∈ L2(H) and any x ∈ Cnρ , Vext(f)(x) is the weak integral of
the function t 7→ V (t)(x) with respect to fdλH (t ∈ H). We will write Mρ(f) for Vext(f).

By the Peter–Weyl theorem II (Theorem 4.16), for every σ ∈ R(H), the map π
Mρ
σ = Mρ(uσ)

given by

πMρ
σ (x) =

1

nσ

∫
H

χσ(t)Mρ(t)(x) dλH(t), x ∈ Cnρ ,
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is the orthogonal projection of Cnρ onto a closed subspace Eσ of Cnρ , and we have a Hilbert
sum

Cnρ =
⊕

σ∈R(H)

Eσ.

Recall from Section 4.12 that the integral defining π
Mρ
σ (x) can be computed by integrating

the matrix χσ(t)Mρ(t)(x), term by term. Furthermore, for each subspace Eσ 6= (0), each
irreducible representation Mσ of H is contained a certain number of times in the restriction
of Mρ to H, which we denote dσ = (ρ : σ), so Eσ is a finite Hilbert sum

Eσ =
dσ⊕
k=1

F σ
k ,

of subspaces F σ
1 , F

σ
2 , . . . , F

σ
dσ

of dimension nσ, invariant underMρ(t) for every t ∈ H, and such
that the restriction of Mρ to H and to each F σ

k is equivalent to the irreducible representation
Mσ. Thus, Eσ has dimension pσ = dσnσ.

We can pick an orthonormal basis of Cnρ consisting of the union of orthonormal bases
of each of the F σ

j and of a basis of the orthogonal complement F ′ of Eσ in Cnρ . Let P
be the change of basis matrix, which is unitary. For the basis of Eσ consisting of the first
pσ = dσnσ vectors of this basis, the matrix Mρ,σ(t) of the restriction of P ∗Mρ(t)P to Eσ is
a block diagonal matrix (consisting of dσ blocks) of the form

Mρ,σ(t) =


Mσ(t) 0 · · · 0

0 Mσ(t) · · · 0
...

...
. . .

...
0 0 · · · Mσ(t)

 ,

for every t ∈ H.

The automorphism Mρ(s) of Cnρ = Eσ⊕F ′ is defined by four linear maps Pρ,σ(s) : Eσ →
Eσ, M2(s) : F ′ → Eσ, M3(s) : Eσ → F ′, and M4(s) : F ′ → F ′, such that for any (u, v) ∈
Eσ × F ′ we have

Mρ(s)

(
u
v

)
=

(
Pρ,σ(s) M2(s)
M3(s) M4(s)

)(
u
v

)
=

(
Pρ,σ(s)u+M2(s)v
M3(s)u+M4(s)v

)
. (M1)

Since Mρ(uσ) is the orthogonal projection of Cnρ = Eσ ⊕ F ′ onto Eσ, the endomorphism
Mρ(uσ)Mρ(s)Mρ(uσ) of Cnρ (s ∈ G) is defined by

Mρ(uσ)Mρ(s)Mρ(uσ)

(
u
v

)
=

(
Pρ,σ(s)u

0

)
,

and so we can write

Mρ(uσ)Mρ(s)Mρ(uσ) =

(
Pρ,σ(s) 0

0 0

)
. (M2)
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In the new orthonormal basis of Eσ ⊕ F ′ = Cnρ , the matrix of the endomorphism
Mρ(uσ)Mρ(s)Mρ(uσ) is the block matrix

P ∗Mρ(uσ)Mρ(s)Mρ(uσ)P =

(
Q(s) 0

0 0

)
,

with Q(s) the pσ × pσ matrix

Q(s) =
1

nρ


m

(ρ,σ)
11 (s) m

(ρ,σ)
12 (s) . . . m

(ρ,σ)
1pσ (s)

m
(ρ,σ)
21 (s) m

(ρ,σ)
22 (s) . . . m

(ρ,σ)
2pσ (s)

...
...

. . .
...

m
(ρ,σ)
pσ1 (s) m

(ρ,σ)
pσ2 (s) . . . m

(ρ,σ)
pσpσ(s)

 .

Note that since we have made a change of basis, the entries m
(ρ,σ)
ij (s) are not equal to the

original entries m
(ρ)
ij (s) occurring in Mρ(s).

For any t ∈ H, the matrix Q(t) of Pρ,σ(t) is the block diagonal matrix Mρ,σ(t), because
the subspaces F σ

k are invariant under Mρ(t) for t ∈ H. Since Eσ is invariant under Mρ(t) for
t ∈ H, by (M1), for any (u, v) ∈ Eσ × F ′,

Mρ(t)Mρ(uσ)

(
u
v

)
= Mρ(t)

(
u
0

)
=

(
Pρ,σ(t)u

0

)
,

and

Mρ(uσ)Mρ(t)

(
u
v

)
= Mρ(uσ)

(
Pρ,σ(t)u

M3(t)u+M4(t)v

)
=

(
Pρ,σ(t)u

0

)
,

so

Mρ(t)Mρ(uσ) = Mρ(uσ)Mρ(t) =

(
Pρ,σ(t) 0

0 0

)
, (M3)

and since
Mρ(tst

′) = Mρ(t)Mρ(s)Mρ(t
′),

by (M3) and (M2,) we obtain the equation

Mρ(uσ)Mρ(tst
′)Mρ(uσ) = Mρ(uσ)Mρ(t)Mρ(s)Mρ(t

′)Mρ(uσ)

= Mρ(t)Mρ(uσ)Mρ(s)Mρ(uσ)Mρ(t
′)

= Mρ(t)Mρ(uσ)Mρ(uσ)Mρ(s)Mρ(uσ)Mρ(uσ)Mρ(t
′)

=

(
Pρ,σ(t) 0

0 0

)(
Pρ,σ(s) 0

0 0

)(
Pρ,σ(t′) 0

0 0

)
=

(
Pρ,σ(t)Pρ,σ(s)Pρ,σ(t′) 0

0 0

)
,



434 CHAPTER 6. INDUCED REPRESENTATIONS

and since by (M2), we have

Mρ(uσ)Mρ(tst
′)Mρ(uσ) =

(
Pρ,σ(tst′) 0

0 0

)
,

we obtain the equation

Pρ,σ(tst′) = Pρ,σ(t)Pρ,σ(s)Pρ,σ(t′), for all s ∈ G and all t, t′ ∈ H. (∗)

Since tr(AB) = tr(BA) and Mρ(uσ)Mρ(uσ) = Mρ(uσ) since Mρ(uσ) is a projection, we
have

tr(Mρ(uσ)Mρ(s)Mρ(uσ)) = tr(Mρ(uσ)Mρ(uσ)Mρ(s)) = tr(Mρ(uσ)Mρ(s)).

Definition 6.16. The partial trace of ρ with respect to σ is the function

s 7→ θρ,σ(s) = tr(Mρ(uσ)Mρ(s)Mρ(uσ)) = tr(Mρ(uσ)Mρ(s)),

which can also be expressed as

θρ,σ(s) =
1

nρ
(m

(ρ,σ)
11 (s) + · · ·+m(ρ,σ)

pσpσ(s)).

The function θρ,σ is continuous, no longer central, and not identically zero if σ is contained
in the restriction of Mρ to H. This function depends on ρ and σ, and we have

θρ,σ(t) = (ρ : σ)χσ(t), for all t ∈ H,

χρ(s) =
∑
σ

θρ,σ(s), for all s ∈ G.

It will be shown in Section 9.1 (see Example 9.6) that the partial traces for which p = 1
are the spherical functions when (G,H) is a Gelfand pair.

We have the following proposition.

Proposition 6.17. The following properties hold.

(1) We have

θρ,σ(tst−1) = θρ,σ(s), for all s ∈ G and all t ∈ H.

(2) When ρ ranges over R(G) and σ ranges over R(H), the partial traces θρ,σ are pairwise
orthogonal. In particular, θρ,σ and θρ′,σ′ can only be proportional if ρ′ = ρ and σ′ = σ.

(3) The partial traces θρ,σ are continuous functions of positive type.
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Proof. (1) This equation follows immediately from (∗) and the commutativity of the trace.

(2) This follows from the equation

θρ,σ(s) =
1

nρ
(m

(ρ,σ)
11 (s) + · · ·+m(ρ,σ)

pσpσ(s))

and the orthogonality properties of the m
(ρ,σ)
ij ; see Proposition 4.9.

(3) This follows from the properties m
(ρ,σ)
ii = m̌

(ρ,σ)
ii = m

(ρ,σ)
ii ∗m(ρ,σ)

ii of Proposition 4.9,

the fact that f ∗ f̌ is of positive type for every f ∈ L2(G), and the equation

θρ,σ(s) =
1

nρ
(m

(ρ,σ)
11 (s) + · · ·+m(ρ,σ)

pσpσ(s)).

Since G and H are compact, G/H has a G-invariant measure µ induced by a Haar
measure on G. We now try to understand what the canonical unitary representation of G in
L2
µ(G/H) induced by the trivial representation of H in E = C looks like. With the notations

as above, we have nσ0 = 1, and pσ0 = d.

First, let us observe that a function g ∈ L2
µ(G/H) can be viewed as a function g ∈ L2(G),

such that
g(st) = g(s), for all t ∈ H and all s ∈ G. (∗G/H)

Since (g ∗ δt)(s) = g(st), the above condition is equivalent to

g ∗ δt = g, for all t ∈ H, (∗′G/H)

and thus for any measure ν ∈ M1(G), the function ν ∗ g ∈ L2
µ(G/H) also satisfies the

equation
(ν ∗ g) ∗ δt = ν ∗ g,

so we deduce that L2
µ(G/H) is a closed left ideal in M1(G), which implies that L2

µ(G/H) is
a closed left ideal in L2(G). In particular, for every ρ ∈ R(G), the projection g 7→ uρ ∗ g of
L2(G) onto the ideal aρ maps L2

µ(G/H) onto itself, so L2
µ(G/H) is the Hilbert sum of the

subspaces
Lρ = L2

µ(G/H) ∩ aρ.

It remains to determine what the Lρ are. We explained that by applying Peter–Weyl II
(Theorem 4.16) to the restriction of the representation Mρ : G→ U(Cnρ) to H, we obtain a
decomposition of Cnρ as a finite Hilbert sum

Cnρ = Eσ1 ⊕ · · · ⊕ Eσq ,

with each Eσi a direct sum

Eσi =

dσi⊕
k=1

F σi
k
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of subspaces F σi
1 , F σi

2 , . . . , F σi
dσi

of dimension nσi , invariant under Mρ(t) for every t ∈ H, and

such that the restriction of Mρ to each F σi
k is equivalent to the irreducible representation

Mσi . Let us pick for an orthonormal basis of Cnρ the union of orthonormal bases of the F σi
k ,

and let P be the change of basis matrix, which is unitary. Then for any t ∈ H, we have

P ∗Mρ(t)P =


Mρ,σ1(t) 0 · · · 0

0 Mρ,σ2(t) · · · 0
...

...
. . .

...
0 0 · · · Mρ,σq(t)

 ,

where Mρ,σi(t) is the block matrix

Mρ,σi(t) =


Mσi(t) 0 · · · 0

0 Mσi(t) · · · 0
...

...
. . .

...
0 0 · · · Mσi(t)


(consisting of dσi blocks) defined earlier. Thus, the matrix M

(H)
ρ (t) = P ∗Mρ(t)P (with

t ∈ H) is the block matrix consisting of the blocks Mσi(t), each one repeated dσi times. We

also define the matrices M
(H)
ρ (s) = (m

(ρ,H)
ij (s)) for all s ∈ G by

M (H)
ρ (s) = P ∗Mρ(s)P, s ∈ G.

Beware that if s ∈ G but s /∈ H, then the matrix M
(H)
ρ (s) does not have the nice block

structure enjoyed by the matrices M
(H)
ρ (t) when t ∈ H. The representations of G in Cnρ

defined by the matrices Mρ(s) and M
(H)
ρ (s) (s ∈ G) are equivalent. The matrix M

(H)
ρ denotes

the matrix of n2
ρ functions m

(ρ,H)
ij given by s 7→ m

(ρ,H)
ij (s) and we also write M

(H)
ρ = P ∗MρP .

By Proposition 4.9, the matrix M
(H)
ρ defines n2

ρ functions m
(ρ,H)
ij that form an orthonormal

basis of aρ and satisfy the same properties as the functions m
(ρ)
i,j defined by the matrix Mρ.

Proposition 6.18. The space L2
µ(G/H) is the Hilbert sum of subspaces Lρ ⊆ aρ. If the

trivial representation σ0 of H is contained d = (ρ : σ0) ≥ 1 times in the restriction of Mρ to

H, then Lρ is the direct sum of the first d columns of M
(H)
ρ = P ∗MρP ,

Lρ =
d⊕
j=1

l
(ρ,H)
j and l

(ρ,H)
j =

nρ⊕
k=1

Cm(ρ,H)
kj .

If d = 0, then Lρ = (0). The subrepresentation Π: G → U(Lρ) in Lρ of the canonical
representation Π: G→ U(L2

µ(G/H)) of G in L2
µ(G/H) induced by the trivial representation

of H in C is the Hilbert sum of d = (ρ : σ0) irreducible representations equivalent to Mρ.
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Proof. Since any function g ∈ L2(G/H) ∩ aρ can be written as g =
∑

ij cijm
(ρ,H)
ij (for some

cij ∈ C), the equation (∗G/H) and Proposition 4.9(4) yield∑
i,j,k

cijm
(ρ,H)
ik (s)m

(ρ,H)
kj (t) =

∑
i,k

cikm
(ρ,H)
ik (s),

with 1 ≤ i, j, k ≤ nρ, all s ∈ G and all t ∈ H, and since the n2
ρ functions m

(ρ,H)
ij are linearly

independent, we get
nρ∑
j=1

cijm
(ρ,H)
kj (t) = cik, (∗1)

for all i, k with 1 ≤ i, k ≤ nρ and for all t ∈ H.

Suppose that the trivial representation σ0 of H is contained d ≥ 1 times in the re-
striction of Mρ to H, which means that the first d matrices Mσ0(t) in Mρ,σ0(t) are just
one-dimensional matrices equal to 1, the other matrices being at least two-dimensional. We
then have m

(ρ,H)
kj (t) = δkj for k ≤ d or j ≤ d, hence (∗1) is trivially verified for k ≤ d, and

we are left with the equations
nρ∑

j=d+1

cijm
(ρ,H)
kj (t) = cik, k > d and t ∈ H. (∗2)

Consider one of the matrices Mσh(t) and assume it corresponds to the lines of index k, such

that k′h ≤ k ≤ k′′h. Then we have m
(ρ,H)
kj (t) = 0 for k′h ≤ k ≤ k′′h and all j except those for

which k′h ≤ j ≤ k′′h; in addition, since σ 6= σ0, by the fact stated just after Definition 4.3, we
have ∫

H

m
(ρ,H)
kj (t) dλH(t) = 0

for all these indices. Integrating both sides of (∗2), we see that cik = 0 for all indices i and
all k > d.

Therefore Lρ is the subspace of aρ, of dimension dnρ, spanned by the m
(ρ,H)
ij such that

j ≤ d, equivalently, the direct sum of the first d columns of M
(H)
ρ ,

Lρ =
d⊕
j=1

l
(ρ,H)
j and l

(ρ,H)
j =

nρ⊕
k=1

Cm(ρ,H)
kj .

If d = 0, then the above reasoning shows that Lρ = (0).

The canonical representation Π: G → U(L2
µ(G/H)) of G in L2

µ(G/H) induced by the
trivial representation of H in C is a subrepresentation of the regular representation of G.
We know from the discussion just after Definition 4.7 that on aρ, the regular representation
R splits into nρ irreducible representations all equivalent to Mρ, and we can view these

representations as acting on the columns of Mρ, the left ideals l
(ρ)
j . Therefore, the subrepre-

sentation in Lρ of the canonical representation Π of G induced by the trivial representation
of H in C is the Hilbert sum of (ρ : σ0) irreducible representations equivalent to Mρ.
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Remark: It is possible to describe the unitary representations of G induced by the nontrivial
irreducible representations Mσi of H; see Dieudonné’s [12] Chapter XXII, Section 5, Problem
1.

We can also consider the space H\G of right cosets Hs of G (s ∈ G). If π : G → H\G
is the quotient map π(s) = Hs, the fact that the Haar measure λ on a compact group is
left and right invariant implies immediately that there is a G-invariant measure µ′ on H\G,
such that ∫

G/H

g(x) dµ′(x) =

∫
G

(g ◦ π) dλ,

and ∫
G/H

g(x · s) dµ′(x) =

∫
G/H

g(x) dµ′(x), for all s ∈ G,

with
(Ht) · s = Hts, s, t ∈ G.

Every function g ∈ L2
µ′(H\G) can be viewed as a function g ∈ L2(G), such that

g(ts) = g(s), for all t ∈ H and all s ∈ G. (∗H\G)

Since (δt ∗ g)(s) = g(t−1s), the above condition is equivalent to

δt ∗ g = g, for all t ∈ H. (∗′H\G)

The space L2
µ′(H\G) is the image of the space L2

µ(G/H) under the isomorphism g 7→ ǧ
(here we use the fact that G is unimodular). Therefore L2

µ′(H\G) is a closed right ideal

in L2(G), and it is the Hilbert sum of the images Ľρ of the Lρ; since by Theorem 4.6(2)

we have mji = m̌ij, we deduce that Ľρ is the direct sum of the first d rows of M
(H)
ρ (with

d = (ρ : σ0)).

Let us record this fact.

Proposition 6.19. The space L2
µ′(H\G) is the Hilbert sum of subspaces Ľρ ⊆ aρ. If the

trivial representation σ0 of H is contained d = (ρ : σ0) ≥ 1 times in the restriction of Mρ to

H, then Ľρ is the direct sum of the first d rows of M
(H)
ρ ; that is,

Ľρ =
d⊕
i=1

nρ⊕
j=1

Cm(ρ,H)
ij .

Let us now consider the intersection L2
µ(G/H) ∩ L2

µ′(H\G). This is a closed involutive
subalgebra of L2(G), thus a complete Hilbert algebra. We can view a function g ∈ L2

µ(G/H)∩
L2
µ′(H\G) as a function g ∈ L2(G), such that

g(tst′) = g(s), for all t, t′ ∈ H and all s ∈ G, (∗H\G/H)
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or equivalently,

δt ∗ g ∗ δt′ = g, for all t, t′ ∈ H. (∗′H\G/H)

We can also think of the functions g ∈ L2
µ(G/H)∩L2

µ′(H\G) as functions defined on the double
classes (or double cosets) HsH of G with respect to H. In this case, if π : G → H\G/H is
the quotient map π(s) = HsH, the fact that the Haar measure λ on a compact group is left
and right invariant implies that there is a G-invariant measure µ on H\G/H, such that∫

H\G/H
g(x) dµ(x) =

∫
G

(g ◦ π) dλ.

We denote the algebra of functions in L2(G) satisfying (∗H\G/H) as L2
µ(H\G/H), or

simply as L2(H\G/H). The following proposition follows immediately from the previous
two propositions.

Proposition 6.20. The algebra L2(H\G/H) is the Hilbert sum of the minimal two-sided
ideals

aρ,σ0 = Lρ ∩ Ľρ =
d⊕
i=1

d⊕
j=1

Cm(ρ,H)
ij .

Each aρ,σ0 is a matrix algebra of dimension d2 having the family (m
(ρ,H)
ij )1≤i,j≤d as a basis.

The center of aρ,σ0 is the one-dimensional subspace

C(m
(ρ,H)
11 + · · ·+m

(ρ,H)
dd ) = Cnρθρ,σ0 ,

and uρ,σ0 = m
(ρ,H)
11 + · · ·+m

(ρ,H)
dd is the unit of aρ,σ0. The map g 7→ uρ,σ0 ∗ g = g ∗ uρ,σ0 is the

orthogonal projection of L2(H\G/H) onto aρ,σ0.

The subspace

l
(ρ,H)
σ0,1

= l
(ρ,H)
1 ∩ aρ,σ0 = Cm(ρ,H)

11 ⊕ · · · ⊕ Cm(ρ,H)
d1

is a minimal left ideal of L2(H\G/H). By Theorem 2.36, this ideal defines the irreducible

representation Wρ : L2(H\G/H) → L(l
(ρ,H)
σ0,1

) of the algebra L2(H\G/H) in l
(ρ,H)
σ0,1

(of dimen-
sion d), given by

(Wρ(g))(f) = g ∗ f, g ∈ L2(H\G/H), f ∈ l
(ρ,H)
σ0,1

.

From Theorem 2.36(2), up to equivalence, we obtain all irreducible representations of the

space L2(H\G/H) in l
(ρ,H)
σ0,1

in this fashion. We can describe the representation Wρ explicitly
as follows. For every g ∈ L2(H\G/H), by Proposition 4.9, we can write

g ∗ uρ,σ0 =
∑

1≤i,k≤d

cik(g)m
(ρ,H)
ik ∈ aρ,σ0 ,
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and the jth column of the matrix Wρ(g) consists of the coordinates of Wρ(g)(m
(ρ,H)
j1 ) =

g∗m(ρ,H)
j1 over the basis (m

(ρ,H)
11 , . . . ,m

(ρ,H)
d1 ), and since uρ,σ0 is the unit of aρ,σ0 , by Proposition

4.9,

g ∗m(ρ,H)
1j = g ∗ uρ,σ0 ∗m

(ρ,H)
1j =

( ∑
1≤i,k≤d

cik(g)m
(ρ,H)
ik

)
∗m(ρ,H)

j1 =
∑

1≤i≤d

cij(g)m
(ρ,H)
i1 ,

so Wρ(g) = (cij(g)), a d× d matrix.

The above facts imply the following proposition.

Proposition 6.21. The algebra L2(H\G/H) is commutative if and only if (ρ : σ0) ≤ 1 for
all ρ ∈ R(G). If so, then for every ρ ∈ R(G), such that (ρ : σ0) = 1, the ideal aρ,σ0 is
one-dimensional and is spanned by the function

ωρ(s) = θρ,σ0 =
1

nρ
m

(ρ,H)
11 (s),

which is continuous and of positive type. Thus,

L2(H\G/H) =
⊕

ρ|(ρ:σ0)=1

Cωρ.

The orthogonal projection of L2(H\G/H) onto Cωρ is given by

g 7→ ωρ ∗ g = g ∗ ωρ.

The function ωρ also satisfies the following equations:

ωρ(tst
′) = ωρ(s), for all s ∈ G and all t, t′ ∈ H

ωρ(e) = 1.

The function ωρ is called a (zonal) spherical function.

The irreducible unitary representation Wρ is one-dimensional, which implies that for
every g ∈ L2(H\G/H) (since g ∗ ωρ is continuous), we have

g ∗ ωρ = ζ(g)ωρ,

where ζ must be a character of L2(H\G/H) with values in T (because ωρ ∗ ωρ = ωρ and
g ∗ ωρ = ωρ ∗ g). Since ζ is an algebra homomorphism and ζ(g) ∈ T, we conclude that ζ is a
hermitian character of L2(H\G/H).

Since (ρ : σ0) = 1, the left ideal Lρ is equal to the ideal l
(ρ,H)
1 , which by Proposition 4.9(5)

is a minimal ideal in aρ, and by Proposition 4.4, it is spanned by the elements of the form
λsωρ = δs ∗ ωρ, for all s ∈ G.
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6.10 Spherical Harmonics on Sn and L2(Sn)

A nice example of the above situation arises if G = SO(n+ 1) and H = SO(n). In this case,
G/H = SO(n + 1)/SO(n) ' Sn. By Proposition 6.18, the space L2(SO(n + 1)/SO(n)) '
L2(Sn) is the Hilbert sum of the subspaces Lρ ⊆ aρ for which (ρ : σ0) ≥ 1, where

L2(SO(n+ 1)) =
⊕
ρ

aρ

is the Hilbert sum given by Peter–Weyl I and where d = (ρ : σ0) ≥ 1 is the number of times
that the trivial representation σ0 of SO(n) is contained in the restriction of Mρ to SO(n).

Then Lρ is the direct sum of the first d columns of M
(H)
ρ ,

Lρ =
d⊕
j=1

l
(ρ,H)
j and l

(ρ,H)
j =

nρ⊕
k=1

Cm(ρ,H)
kj .

The subrepresentation Π: SO(n+1)→ U(Lρ) of the canonical representation (see Definition
6.13) Π: SO(n+1)→ U(L2(Sn)) of SO(n+1) in L2(Sn) induced by the trivial representation
of SO(n) in C is the Hilbert sum of d = (ρ : σ0) irreducible representations equivalent to
Mρ. Recall (see (IndG) before Definition 6.13) that

(ΠQ(f))(x) = f(Q−1x) = f(Q>x), Q ∈ SO(n+ 1), f ∈ L2(Sn), x ∈ Sn.

However, (SO(n + 1),SO(n)) is one of examples of a Gelfand pair given in Section 9.7,
Case 1, so L2(H\G/H) is commutative. We need to exhibit SO(n) as a subgroup of the
fixed points of an involution σ of SO(n+1). To do this, let s : Rn+1 → Rn+1 be the reflection
about the hyperplane x1 = 0, which is given by

s(x1, x2, . . . , xn+1) = (−x1, x2, . . . , xn+1).

Obviously s−1 = s. Then let σ : SO(n+ 1)→ SO(n+ 1) be the automorphism given by

σ(Q) = sQs, Q ∈ SO(n+ 1).

Since s2 = I, we also have σ2 = id. In matrix form

σ(Q) =

(
−1 0
0 In

)
Q

(
−1 0
0 In

)
.

The groups SO(n+ 1)σ of fixed points of σ are the rotations Q ∈ SO(n+ 1), such that

Q =

(
−1 0
0 In

)
Q

(
−1 0
0 In

)
,

and if we write

Q =

(
q11 u
v Q1

)
,
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we must have (
q11 u
v Q1

)
=

(
−1 0
0 In

)(
q11 u
v Q1

)(
−1 0
0 In

)
=

(
q11 −u
−v Q1

)
,

and so u = v = 0. Consequently, SO(n+ 1)σ = S(O(1)×O(n)), with

S(O(1)×O(n)) =

{(
λ 0
0 Q1

) ∣∣∣∣ λ = ±1, Q1 ∈ O(n), λ det(Q1) = 1

}
.

The stabilizer of e1 = (1, 0, . . . , 0) corresponds to λ = +1, and it is indeed isomorphic to
SO(n).

Since (SO(n + 1),SO(n)) is a Gelfand pair, L2(H\G/H) is commutative (with G =
SO(n+ 1), H = SO(n)), so by Proposition 6.21, we have d = (ρ : σ0) ≤ 1 for all ρ.

It can be shown that the Lρ for which (ρ : σ0) = 1 are exactly the spaces HC
k (Sn) of

spherical harmonics on Sn; see Definition 5.1. Thus, we have a Hilbert sum

L2(Sn) =
⊕
k≥0

HC
k (Sn).

We also obtain a decomposition of the regular representation R : SO(n+1)→ U(L2(Sn))
into irreducible representations Rk : SO(n + 1) → U(HC

k (Sn)) of SO(n + 1) in the spaces
HC
k (Sn) of spherical harmonics on Sn. The above facts are proven in Dieudonné [13] (Chapter

XXIII, Section 38). A different proof is given in Gallier and Quaintance [28] (Chapter 7).
One of the technical results used in these proofs is that

PC
k (n) = HC

k (n)⊕ ‖x‖2HC
k−2(n)⊕ · · · ⊕ ‖x‖2jHC

k−2j(n)⊕ · · · ⊕ ‖x‖2[k/2]HC
[k/2](n),

with the understanding that only the first term occurs on the right-hand side when k < 2
(the spaces PC

k (n) and HC
k (n) are described in Definition 5.1).

It is shown in Vilenkin [70] (Chapter IX, Sections 2.10, 2.11) that the irreducible repre-
sentations Rk : SO(n+1)→ U(HC

k (Sn)) are irreducible representations of class 1 relative to
SO(n) (see Definition 6.12) and that they form a complete set of representations of class 1 of
SO(n+ 1) relative to the subgroup SO(n). For n = 2, these are actually all the irreducible
representations of SO(3) (see Proposition 5.3).

The space HC
k (Sn) is also the eigenspace associated to the eigenvalue −k(n+k−1) of the

Laplacian ∆Sn on Sn. The unique zonal spherical function ωρ = 1
nρ
m

(ρ,H)
11 in HC

k (Sn) is given

in terms of Gegenbaur polynomials; see Gallier and Quaintance [28] (Chapter 7, Sections 3,
5–7).
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6.11 Induced Representations, III; Blattner’s Method

It is possible to modify the construction of the Hilbert space H and the inner product
described at the end of Section 6.5 to deal with the situation where G/H has no G-invariant
measure. This can be done in two ways as explained in Folland [22] (Chapter 6, Section 6.1).
These constructions yield induced unitary representations of G from a unitary representation
U : H → U(E) of H and do not involve cocycles.

First method. In the first construction, the space H0 and the inner product are defined
as before, namely

H0 = {f ∈ C(G,E) | π(supp(f)) is compact and

f(sh) = U(h−1)(f(s)) for all s ∈ G and all h ∈ H},

and

〈f, g〉 =

∫
G/H

〈f(s), g(s)〉E dµ(sH).

Recall that π : G→ G/H denotes the quotient map. The Hilbert space H is the completion
of H0. The new ingredient is that to make the operators Πs unitary, we use a quasi-invariant
measure µ associated with a continuous function % : G× (G/H)→ (0,∞). We define Πµ

s by

(Πµ
s (f))(t) = %(s, tH)1/2f(s−1t), f ∈ H, s, t ∈ G. (indv1)

Then, as in the proof of Theorem 6.16, we check that the operators Πµ
s are unitary with

respect to the inner product on H defined above, and we obtain a unitary representation
Πµ : G→ U(H), also denoted IndG,µH,H U (for short IndGH U). This representation depends on
µ, but it can be shown that if µ′ is another quasi-invariant measure on G/H associated with
%′ : G × (G/H) → (0,∞), then the automorphism f 7→ (ρ′/ρ)1/2f is a unitary equivalence
of ρµ and ρµ

′
, where ρ and ρ′ are the rho-functions associated with µ and µ′ (see Theorem

6.14).

Blattner’s method. The second construction, due to Blattner, does not make use of
quasi-invariant measures, but instead modifies the definition of the space H0. In this sense,
it is more intrinsic. Define the space H0 as

H0 =

{
f ∈ C(G,E) | π(supp(f)) is compact and

f(sh) =

(
∆H(h)

∆G(h)

)1/2

U(h−1)(f(s)) for all s ∈ G and all h ∈ H
}
.

The map π : G→ G/H is the quotient map. Again, it is not obvious that H0 is not empty,

but Proposition 6.10 can be modified (by adding the factor
(

∆G(h)
∆H(h)

)1/2

under the integral)

to show that H0 is nonempty.
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Next, we need to define an inner product on H0, so that the operators Πs become unitary.
The construction of such an inner product is a bit eccentric. For every f ∈ H0, the map
s 7→ ‖f(s)‖2

E is almost a rho-function, except that it is not strictly positive. However, it is
still possible to prove that the map

P : ϕ 7→
∫
G

ϕ(s) ‖f(s)‖2
E dλ(s), ϕ ∈ KC(G)

is a positive Radon functional on KC(G/H), so by Radon–Riesz I, there is σ-Radon measure
µf on G/H, such that ∫

G/H

P (ϕ) dµf =

∫
G

ϕ(s) ‖f(s)‖2
E dλ(s),

for all ϕ ∈ KC(G). Furthermore, the support of µf is contained in π(supp(f)), hence
compact. Therefore, µf (G/H) is finite. Then, given f, g ∈ H0, define the complex measure
µf,g by polarization as

µf,g =
1

4
(µf+g − µf−g + iµf+ig − iµf−ig),

so that ∫
G/H

P (ϕ) dµf,g =

∫
G

ϕ(s)〈f(s), g(s)〉E dλ(s), ϕ ∈ KC(G).

The inner product on H0 is defined as

〈f, g〉 = µf,g(G/H).

It can be verified that we obtain a hermitian inner product, and we let H′ be the Hilbert
space completion of H0. Finally, it can be verified that the operators Πs are unitary with
respect to the inner product on H′ defined above, where

(Πs(f))(t) = f(s−1t), f ∈ H′, s, t ∈ G. (indv2)

Therefore we obtain a unitary representation Π′ : G → U(H′), also denoted IndGH,H′ U (for

short IndGH U).

It can also be shown that for any quasi-invariant measure µ on G/H, the representations
Πµ : G→ U(H) and Π′ : G→ U(H′) are equivalent (the isomorphism between H and H′ is
given by f 7→ ρ1/2f).

There is also an interpretation of the representations Πµ and Π′ as representations on
sections of homogeneous hermitian vector bundles over G/H. Such description is discussed
in Folland [22] (Chapter 6) and Kirillov [40] (Section 13) and we present this approach in
the following sections.
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6.12 The Borel Construction from a Representation

In this section, we explain how the spaces of functions Lα (from Definition 6.8), and the
spaces H0 and H0 from Section 6.11 can be viewed as sections of spaces that are similar to
vector bundles but have less structure. More precisely, such structures have no trivialization
maps.

We begin with the simplest situation where we have a group G without any topology on
it, a subgroup H of G, a vector space Hσ, and a linear representation σ : H → GL(Hσ). As
usual, write X = G/H and π : G → G/H for the quotient map. Let Lσ be the subspace of
(Hσ)G consisting of all functions f : G→ Hσ, such that

f(gh) = σ(h−1)(f(g)), for all g ∈ G and all h ∈ H.

The key point is to construct a space E = G ×H Hσ together with a surjective map
p : E → X, such that for every x ∈ X = G/H, the fibre Ex = p−1(x) is isomorphic to the
vector space Hσ, and the space of sections from X to E is in bijection with Lσ. This is
a special case of the so-called Borel construction used to construct a vector bundle from a
principal bundle; see Gallier and Quaintance [28] (Chapter 9, Section 9.9).

Definition 6.17. Consider a group G, a subgroup H of G, a vector space Hσ, and a linear
representation σ : H → GL(Hσ). As usual, write X = G/H, π : G→ G/H for the quotient
map, and denote the coset H = eH by x0. The group H acts on G×Hσ on the right by the
action

(g, u) · h = (gh, σ(h−1)(u)), g ∈ G, u ∈ Hσ, h ∈ H. (act1)

The space E = G ×H Hσ is the orbit space of G ×Hσ under the above action, namely the
set of equivalence classes

[(g, u)] = {(gh, σ(h−1)(u)) | h ∈ H} (g ∈ G, u ∈ Hσ)

of G×Hσ under the equivalence relation ∼ defined such that for all g1, g2 ∈ G and u1, u2 ∈
Hσ,

(g1, u1) ∼ (g2, u2) iff (∃h ∈ H)(g2 = g1h, u2 = σ(h−1)(u1)). (∼1)

The projection p : E → X is defined as π ◦ pr1, namely for every equivalence class z =
[(g, u)] = {(gh, σ(h−1)(u)) | h ∈ H},

p(z) = gH = π(pr1(z)).

It is immediately verified that the above definition does not depend on the choice of g in the
coset gH.

For every x = gH ∈ G/H = X, the fibre Ex = p−1(x) can be given the structure
of a vector space isomorphic to Hσ. If we pick a section r : X → G, namely a set of
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representatives (rx)x∈X (with rx ∈ G) for the cosets x ∈ X = G/H, with rx0 = e,2 then the
map θrx : Hσ → Ex given by

θrx(u) = [(rx, u)] (θrx)

is injective, because if θrx(u1) = θrx(u2), then

{(rxh, σ(h−1)(u1)) | h ∈ H} = {(rxh, σ(h−1)(u2)) | h ∈ H},

which implies that σ(h−1)(u1) = σ(h−1)(u2) for all h ∈ H. In particular, for h = e, since
σ(e) = id, we get u1 = u2. The map θrx is also surjective since for any equivalence class
[(rx, u)] ∈ Ex, by construction, θrx(u) = [(rx, u)].

Note that the above shows that the equivalence classes in the fibre Ex are the subsets
[(rx, u)] = {(rxh, σ(h−1)(u)) | h ∈ H} and that any two such classes are disjoint for distinct
vectors u1, u2 in Hσ.

We can transfer the vector space structure on Hσ to Ex using the bijection θrx , namely

[(rx, u1)] + [(rx, u2)] = [(rx, u1 + u2)]

λ[(rx, u)] = [(rx, λu)],

for all u, u1, u2 ∈ Hσ, and λ ∈ C. If a different section r2 : G/H → G is used, then
(r2)x = rxhx for some hx ∈ H. Then we have (with h = h−1

x )

θ(r2)x(u) = [(rxhx, u)] = [(rxhxh
−1
x , σ(hx)(u))] = [(rx, σ(hx)(u))].

The vector space structure on Ex defined by the section r2 is now given by

[(rx, u1)] + [(rx, u2)] = [(rx, σ(hx)(u1) + σ(hx)(u2))]

λ[(rx, u)] = [(rx, λσ(hx)(u))],

and since σ(hx) is linear, we have

[(rx, u1)] + [(rx, u2)] = [(rx, σ(hx)(u1 + u2))]

λ[(rx, u)] = [(rx, σ(hx)(λu))].

Since σ(hx) is a linear isomorphism, we see that σ(hx) is a linear isomorphism between Ex
as a vector space, whose structure is induced by r and as a vector space, whose structure
is induced by r2. In any case, there is a linear isomorphism between Hσ and Ex (although
noncanonical).

Looking ahead, if Hσ is a (separable) Hilbert space, G is locally compact, H is a closed
subgroup of G, and and if σ : H → U(Hσ) is a unitary representation, then the map θrx can
be used to transfer the Hilbert space structure of Hσ to the fibre Ex by setting

〈[(rx, u1)], [(rx, u2)]〉 = 〈u2, u2〉, u1, u2 ∈ Hσ.

2We always assume that for every set of coset representatives (rx)x∈X we chose rx0
= e.



6.12. THE BOREL CONSTRUCTION FROM A REPRESENTATION 447

If a different section r2 is used, since the maps σ(hx) are unitary, 〈σ(hx)(u2), σ(hx)(u2)〉 =
〈u2, u2〉, and so the hermitian inner products on Ex induced by r and r2 are identical. There
are unitary isomorphisms between the Hilbert spaces Hσ and Ex.

The fact that the space Lσ is realized by the space of sections of E is shown in the next
proposition.

Definition 6.18. A section of E is any function s : X → E, such that p ◦ s = idX , where p
is the projection p : E → X, or equivalently a function s : X → E, such that s(x) ∈ Ex for
every x ∈ X = G/H. The set of sections s : X → E is denoted Γ(E).

Remark: At this stage, X = G/H is just a set without any topology, so a section is just a
function. Later, when G and H are locally compact groups, it will make sense to consider
continuous sections.

Given a set of coset representatives (rx)x∈X , recall from Definition 6.5 (Equation (u))
that we define u(g, x) as

u(g, x) = r−1
g·xgrx,

and that by Equation (s), we have

g = rxu(g, x0), s ∈ G, x = gH.

Proposition 6.22. Let E = G×H Hσ, X = G/H, p : E → X, and σ : H → GL(Hσ), as in
Definition 6.17. Also let Lσ be the set consisting of all functions f : G→ Hσ, such that

f(gh) = σ(h−1)(f(g)), for all g ∈ G and all h ∈ H.

The maps S : Lσ → Γ(E) and L : Γ(E) → Lσ are defined as follows. Pick any set of
representatives (rx)x∈X (with rx ∈ G) for the cosets x ∈ X = G/H. For every function
f : G→ Hσ, for any coset x = rxH, define the section S(f) by

S(f)(x) = [(rx, f(rx))], (S)

and for every section s : X → E, for every coset x = rxH, if s(x) = [(rx, u)] for some
u ∈ Hσ, define the function L(s) on G by

L(s)(rxh) = σ(h−1)(u), h ∈ H, (L)

or equivalently

L(s)(g) = σ(u(g, x0)−1)(u), g ∈ G. (L′)

Then, S(f) does not depend on the set of coset representatives (rx)x∈X , S(f) ∈ Γ(E), L(s) ∈
Lσ, and S and L are mutual inverses. Therefore, S is a bijection between Lσ and Γ(E).
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Proof. If another set (rxhx)x∈X of coset representatives is used (with hx ∈ H for all x ∈ X),
since f ∈ Lσ, we have f(rxhx) = σ(h−1

x )(f(rx)), so by the definition of the equivalence
relation on G×Hσ, we have

S(f)(x) = [(rxhx, f(rxhx))] = [(rxhx, σ(h−1
x )(f(rx)))] = [(rx, f(rx))],

which shows that the definition of S(f) does not depend on set of coset representatives
(rx)x∈X . By definition, S(f)(x) ∈ Ex, so S(f) is a section of E.

If we write g = rxh, for every h2 ∈ H, since σ is a representation, we have

L(s)(gh2) = L(s)(rxhh2) = σ((hh2)−1)(u) = σ(h−1
2 h−1)(u)

= σ(h−1
2 )(σ(h−1)(u)) = σ(h−1

2 )(L(s)(g)),

which shows that L(s) ∈ Lσ.

Given any f ∈ Lσ, for every x ∈ X, we have

S(f)(x) = [(rx, f(rx))],

and then since f ∈ Lσ, for all h ∈ H we have

L(S(f))(rxh) = σ(h−1)(f(rx)) = f(rxh),

namely, L(S(f)) = f .

Given any s ∈ Γ(E), for every coset x = rxH, if s(x) = [(rx, u)], for every h ∈ H, we
have

L(s)(rxh) = σ(h−1)(u),

so in particular L(s)(rx) = u, and then

S(L(s))(x) = [(rx,L(s)(rx))] = [(rx, u)] = s(x),

that is, S(L(s)) = s. Since L(S(f)) = f and S(L(s)) = s, the maps S and L are mutual
inverses.

Remark: If we use the isomorphisms θrx : Hσ → Ex given by

θrx(u) = [(rx, u)], u ∈ Hσ,

then the maps S : Lσ → Γ(E) and L : Γ(E)→ Lσ are defined as follows. For every function
f : G→ Hσ in Lσ and for any coset x = rxH,

S(f)(x) = θrx(f(rx)), (S2)

and for every section s : X → E and any g ∈ G,

L(s)(g) = σ(u(g, x0)−1)(θ−1
rx (s(gH))). (L2)

The isomorphisms θrx are omitted by some authors but this is not quite right.

The last important ingredient is that G acts (on the left) on E = G×HHσ in an equilinear
fashion.
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Definition 6.19. Under the same conditions as in Definition 6.17, we define a left action of
G on E = G×H Hσ by

g1 · [(g, u)] = [(g1g, u)], g1, g ∈ G, u ∈ Hσ.

That this action is equilinear means the following.

Proposition 6.23. Under the same conditions as in Definition 6.19, the following facts
hold:

(1) The action of G on E = G×H Hσ is equivariant, which means that

p(g · [(g1, u)]) = g · p([(g1, u)]), g, g1 ∈ G, u ∈ Hσ.

The action on the right-hand side is the action on cosets in G/H given by g · (g2H) =
(gg2)H.

(2) The restriction of the action of G to the fibre Ex is a linear isomorphism between Ex
and Eg·x (x ∈ G/H). In particular, every fibre Ex is isomorphic to Ex0.

Proof. We have

p((g · [(g1, u)]) = p([(gg1, u)])

= π(gg1) = (gg1)H = g · (g1H) = g · p([(g1, u)]).

We will show in the next proposition that an equivariant action as above is a bijection
between each fibre Ex and the fibre Eg·x. Since the fibre Ex consists of the equivalence
classes [(rx, u)] (u ∈ Hσ) for some coset representative rx of x ∈ G/H, the action of G on
Ex is given by

g · [(rx, u)] = [(grx, u)], g ∈ G,

which is obviously linear in u. Thus, the map induced by the action of G on the fibre Ex is
a linear isomorphism.

Observe that the action of H on the fibre Ex0 is a representation σ0 : H → GL(Ex0)
equivalent to the representation σ : H → GL(Hσ), since Ex0 consists of the equivalence
classes of the form [(e, u)] (recall that rx0 = e), with u ∈ Hσ, so for every h ∈ H,

h · [(e, u)] = [(h, u)] = [(hh−1, σ(h)(u))] = [(e, σ(h)(u))].

The linear isomorphisms between the fibres Ex0 and Ex induce representations σx : H →
GL(Ex) equivalent to the representation σ : H → GL(Hσ).
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6.13 Induced Representations and G-Bundles

Next, what we would like to do is to show how induced representations can be recovered from
certain kinds of vector bundles (actually a more basic notion of vector bundle) equipped with
an equilinear action. Such construction is given as an exercise in Dieudonné [12] (Chapter
XXII, Section 3, Problem 16). It is also discussed in Kirillov [40] (Section 13) and sketched
without details in Folland [22] (Chapter 6). Following Kirillov, we adopt the terminology of
G-bundle. First, we introduce a weaker notion that we call pre-G-bundle (for the lack of a
better name).

Definition 6.20. Let G be a group, H be a subgroup of G, E be some set, and p : E → X
be a surjective map, where as usual, we write X = G/H. We say that E (really p : E → X)
is a pre-G-bundle if there is an equivariant left action · of G on E, which means that

p(g · z) = g · p(z), g ∈ G, z ∈ E.

Proposition 6.24. If p : E → X is a pre-G-bundle, then for every x ∈ X = G/H, for every
g ∈ G, the map z 7→ g · z (z ∈ Ex) is a bijection from Ex to Eg·x.

Proof. Equivariance means that if z ∈ Ex, that is, p(z) = x, then

p(g · z) = g · p(z) = g · x,

so g · z ∈ Eg·x. Thus

g · Ex ⊆ Eg·x. (1)

The above inclusion holds for all g ∈ G and all x ∈ X = G/H, and in particular for g−1 and
g · x, which yields

g−1 · Eg·x ⊆ Eg−1·(g·x) = Ex.

This last equation is equivalent to

Eg·x ⊆ g · Ex. (2)

By (1) and (2), we obtain

g · Ex = Eg·x. (3)

The maps induced by group actions are bijective, so our result is proven.

We finally come to the desired concept by requiring that the fibres are vector spaces and
that the bijections between fibres are linear isomorphisms. The key concept is the notion of
equilinear action which occurs in Dieudonné [16], Chapter XIX, Section 1.

Definition 6.21. Let G be a group, H be a subgroup of G, E be some set, and p : E → X
be a surjective map, where as usual, we write X = G/H. We say that E (really p : E → X)
is a G-bundle if each fibre Ex (x ∈ X = G/H) is a vector space and if there is an equilinear
left action · of G on E, which means that:
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(1) The action is equivariant, that is,

p(g · z) = g · p(z), g ∈ G, z ∈ E.

(2) For every x ∈ X = G/H, for every g ∈ G, the map z 7→ g · z (z ∈ Ex) is a linear
isomorphism between Ex and Eg·x.

Let x0 denote the coset H = eH. Proposition 6.24 implies that every fibre is isomorphic
to Ex0 . Then the restriction of the action of G to H on the fibre Ex0 , for simplicity also
denoted as E0, maps E0 to E0 (since h · x0 = x0 for all h ∈ H). Since the maps z 7→ h · z
(z ∈ E0) are linear isomorphisms, we have a representation σ : H → GL(E0) given by

σ(h)(z) = h · z. (σ)

Observe that E = G ×H Hσ with the projection p : E → X is a G-bundle. If E is an
abstract G-bundle as in Definition 6.21, then the fibre E0 plays the role of the vector space
Hσ, which occurs in the representation σ : H → GL(Hσ) and is involved in the construction
of the G-bundle G×HHσ. So it is natural to also refer to E0 as Hσ, which we will do except
when confusion arises.

Let (rx)x∈X be any set of coset representatives of X = G/H. The map σx from Ex to
itself given by

σx(h)(z) = (rxhr
−1
x ) · z = rx · σ(h)(r−1

x · z), h ∈ H, z ∈ Ex,

is a linear isomorphism of Ex, in other words, a representation σx : H → GL(Ex). The
representation σx : H → GL(Ex) is equivalent to the representation σ : H → GL(E0) via
the linear isomorphism from E0 to Ex given by z 7→ rx · z.

It is easy to see that if another set of coset representatives (rxhx)x∈X is used, then

σx(h)(z) = (rxhxhh
−1
x r−1

x ) · z;

in other words, we obtain a representation equivalent to σ : H → GL(E0), where the linear
isomorphism from E0 to Ex is given by z 7→ rxhx · z.

Consequently, the sections in Γ(E), called feature fields in group equivariant deep learning
in computer vision, are functions whose domain transforms under the action of G and whose
codomain transforms by representations of H equivalent to σ : H → GL(E0); more precisely,
each fibre Ex transforms under the representation σx.

The space Lσ and the representation of G in Lσ induced by σ : H → GL(E0) can be
recovered from the G-vector bundle as we now explain. We use inspiration from Proposition
6.22.
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Definition 6.22. Let p : E → X be a G-bundle, with X = G/H. As before, let x0 = H, E0

be the fibre E0 = p−1(x0), and σ : H → GL(E0) be the representation given by σ(h)(z) = h·z
for all z ∈ E0 and all h ∈ H. Also, let Lσ be the set consisting of all functions f : G→ E0,
such that

f(gh) = σ(h−1)(f(g)) = h−1 · f(g), for all g ∈ G and all h ∈ H. (∗†1)

There is an action of G on the set Γ(E) of section s : X → E given by

(g · s)(x) = g · (s(g−1 · x)), g ∈ G, x ∈ X. (†Γ)

In the above equation, G acts on X = G/H in g−1 · x, and G acts on E in g · (s(g−1 · x)).

Define the maps S and L as follows. For every function f : G→ E0 ∈ Lσ, for every coset
x ∈ X = G/H and any coset representative rx ∈ G of x, let

S(f)(x) = rx · f(rx), (S3)

where the action is the action of G on E. For every section s : X → E, for every g ∈ G, let

L(s)(g) = g−1 · s(gH) = g−1 · s(g · x0), (L3)

where the action is the action of G on E.

It is instructive to see how the formulae for the maps L and S given in Definition 6.22
are equivalent to the formulae (S2) and (L2) when specialized to the G-bundles of the form
p : G×H Hσ → G/H.

First, note that the fibre E0 consists of the equivalence classes [(e, u)] with u ∈ Hσ, and
since the action of G on E = G×H Hσ is given by g1 · [(g, u)] = [(g1g, u)], we get

rx · [(e, u)] = [rx, u] = θrx(u).

Because E = G×HHσ is constructed from the spaceHσ, in Proposition 6.22, the functions in
Lσ are functions from G to Hσ, but in the more general setting there is no such “privileged”
vector space, so in Definition 6.22, the functions in Lσ are functions from G to E0. If we
denote the set of functions f : X → Hσ by Lσ,H, then the map f 7→ θe ◦ f is an isomorphism
between Lσ,H and Lσ (recall that θe is the isomorphism θe : Hσ → E0). We also denote the
map S from Lσ,H to Γ(E) defined by Equation (S2) as SH. It follows that for every function
f : G→ Hσ in Lσ,H, since θe ◦ f is a function from G to E0, we have

S(θe ◦ f)(x) = rx · (θe ◦ f)(rx) = rx · [(e, f(rx))] = [(rx, f(rx))] = θrx(f(rx)).

The above formula shows that
SH(f) = S(θe ◦ f).

It is often convenient to identify Hσ and E0 using the isomorphism θe.
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To go from sections to functions in Lσ, we need to remember that when we use the G-
bundle E = G×H Hσ, σ is a representation σ : H → GL(Hσ) and Lσ,H consists of functions
f : G→ Hσ, but in the abstract version of G-bundles, σ is a representation σ : H → GL(E0)
and Lσ consists of functions f : G→ E0. Let us denote the representation from H to Hσ by
σH : H → GL(Hσ). Then if E is the G-bundle E = G×H Hσ, we have

σ(h) = θe ◦ σH(h) ◦ θ−1
e , h ∈ H.

Let us denote the map L from Γ(E) to Lσ,H defined by Equation (L2) as LH. For any section
s : X → E, since g = rxu(g, x0) with x = gH, we have

L(s)(g) = g−1 · s(gH) = (rxu(g, x0))−1 · s(gH) = u(g, x0)−1 · (r−1
x · s(gH))

= σ(u(g, x0)−1)(r−1
x · s(gH))

= θe ◦ σH(u(g, x0)−1)(θ−1
e (r−1

x · s(gH))).

We now have to work on the term θ−1
e (r−1

x ·s(gH)). But we know that the section s : X → E
is of the form s(x) = [(rx, u)] for some u ∈ E0 (with x = gH), so

r−1
x · s(gH) = r−1

x · s(x) = r−1
x · [(rx, u)] = [(e, u)] = θe(u),

and thus
θ−1
e (r−1

x · s(gH)) = u = θ−1
rx ([(rx, u)]) = θ−1

rx (s(x)).

In summary, we proved that

L(s)(g) = θe ◦ σH(u(g, x0)−1)(θ−1
rx (s(gH))) = θe ◦ LH(s)(g),

or equivalently
LH(s)(g) = θ−1

e ◦ L(s)(g).

Note that we have also proved that

L(s)(g) = σ(u(g, x0)−1)(r−1
x ·s(x)) = (σ(u(g, x0)))−1(r−1

x ·s(g ·x0)), x = gH = g ·x0. (L′3)

In Definition 6.7 of Section 6.3, given a cocycle α, given a section s : X → E, we defined
the function sα : G→ E by

sα(g) = (α(g, x0))−1(s(g · x0)), for all g ∈ G. (∗α1)

There, E plays the role of the vector space E0 involved in the representation σ : H →
GL(E0). For any set (rx)x∈X of coset representatives of X = G/H, we know that α(g, x) =
σ(u(g, x)) (g ∈ G, x ∈ G/H) is a cocycle and Equation (L′3) is basically Equation (∗α1),
except that r−1

x · s(g · x0) occurs instead of s(g · x0). But as we explained earlier, in the case
of the G-bundle G×H Hσ, since s(g · x0) ∈ Eg·x0 , we have r−1

x · s(g · x0) ∈ E0 ≈ Hσ, so the
two formulae are equivalent.



454 CHAPTER 6. INDUCED REPRESENTATIONS

Furthermore, since g = rxu(g, x0) with x = gH = g · x0, we have

S(f)(g · x0) = g · f(g) = (rxu(g, x0)) · f(g) = rx · (u(g, x0) · f(g)) = rx · σ(u(g, x0))(f(g)),

namely
S(f)(g · x0) = rx · σ(u(g, x0))(f(g)). (S ′3)

In Proposition 6.6, we proved that for any function f : G → E ∈ Lα, the function
F : X → E given by

F (x) = f(g · x0) = α(g, x0)(f(g)) (∗f )

has the property that Fα = f . Again, if α is the cocycle given by α(g, x) = σ(u(g, x))
(g ∈ G, x ∈ G/H), then Equations (∗f ) and (S ′3) only differ by the presence of the term rx,
but in the case of the G-bundle G ×H Hσ, we have σ(u(g, x0))(f(g)) ∈ E0 ≈ Hσ and the
purpose of rx is move σ(u(g, x0))(f(g)) to the fibre Eg·x0 , so the two formulae are equivalent.

Proposition 6.25. The following facts hold.

(1) The map S(f) is independent of the choice of the representative g chosen in the coset
x = gH = g · x0 and S(f) ∈ Γ(E); that is,

S(f)(gH) = S(f)(g · x0) = g · f(g), g ∈ G. (S ′′3 )

(2) We have L(s) ∈ Lσ.

(3) The maps S : Lσ → Γ(E) and L : Γ(E) → Lσ are mutual inverses. Thus, S is an
isomorphism between Lσ and Γ(E).

Proof. (1) If another representative g2 = gh in the coset x = gH ∈ G/H is used (with
h ∈ H), since f ∈ Lσ and by definition of σ, σ(h−1)(f(g)) = h−1 · f(g), we have

S(f)(g2H) = (gh) · f(gh) = (gh) · σ(h−1)(f(g)) = (gh) · (h−1 · f(g))

= ((gh) · h−1) · f(g) = (g · (h · h−1)) · f(g) = g · f(g).

Therefore,
S(f)(g2H) = g2 · f(g2) = g · f(g) = S(f)(gH),

namely, the definition of S(f) does not depend on the choice of representatives in the coset
x = gH. For any x = gH ∈ G/H, since f(g) ∈ E0 = Ex0 , we have g · f(g) ∈ Eg·x0 = Ex,
since g is a representative in the coset x = gH ∈ X = G/H. Thus, S(f) ∈ Γ(E).

(2) If x = gH, then s(x) ∈ Ex, and so g−1 · s(x) ∈ Eg−1·x = Eg−1·gH = EH = E0. For any
h ∈ H, by definition of σ in terms of the action of H on E0, we have

L(s)(gh) = (gh)−1 · s((gh)H) = (h−1g−1) · s(g(hH)) = (h−1g−1) · s(gH)

= h−1 · (g−1 · s(gH)) = h−1 · L(s)(g) = σ(h−1)(L(s)(g)),



6.13. INDUCED REPRESENTATIONS AND G-BUNDLES 455

which shows that L(s) ∈ Lσ.

(3) For any f ∈ Lσ, if x = gH, we have

S(f)(gH) = g · f(g),

and then

L(S(f))(g) = g−1 · S(f)(gH) = g−1 · (g · f(g)) = (g−1 · g) · f(g) = f(g),

that is, L(S(f)) = f .

For any s : X → E0, for every g ∈ G, we have

L(s)(g) = g−1 · s(gH),

and then we have

S(L(s))(gH) = g · L(s)(g) = g · (g−1 · s(gH)) = (g · g−1) · s(gH)) = s(gH)

that is, S(L(s)) = s. Consequently, the maps S : Lσ → Γ(E) and L : Γ(E)→ Lσ are mutual
inverses and S is an isomorphism between Lσ and Γ(E).

We can also recover the representation IndGH σ : G → GL(Lσ) induced by the represen-
tation σ : H → GL(E0).

Proposition 6.26. Define the map ρ : G→ GL(Lσ) by

ρ(g)(f) = S−1(g · S(f)) = L(g · S(f)), g ∈ G, f ∈ Lσ. (†2)

In the above equation, S(f) ∈ Γ(E) and the action of G is the action of G on Γ(E) from
Definition 6.22. For all g, g1 ∈ G and all f ∈ Lσ, we have

[ρ(g)(f)](g1) = f(g−1g1), (†3)

that is, ρ : G → GL(Lσ) is the representation IndGH σ induced from the representation
σ : H → GL(E0).

Proof. By the definitions of S and L and of the action of G on sections in Γ(E) (see (†Γ))
in Definition 6.22, and using Proposition 6.25(1), we have

L(g · S(f))(g1) = g−1
1 · (g · S(f))(g1H) = g−1

1 · (g · S(f)(g−1 · (g1H)))

= (g−1
1 g) · S(f)(g−1g1H) = (g−1

1 g) · ((g−1g1) · f(g−1g1)) = f(g−1g1),

as claimed.
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6.14 Hermitian G-Bundles

The above definitions and constructions can be adapted to deal with unitary representations.
In this case, G is a locally compact group, H is a closed subgroup of G, and σ : H → U(Hσ)
is a unitary representation, where Hσ is a separable Hilbert space. As we explained earlier,
up to linear isomorphisms, we can endow the fibres Ex of the G-bundle E = G×HHσ with a
Hilbert space structure, so that each fibre Ex is isometric to Hσ via a unitary isomorphism.
The action of G on E has the property that each map z 7→ g · z from the fibre Ex to the
fibre Eg·x is unitary .

Definition 6.23. Let G be a locally compact group, H a closed subgroup of G, E be some
topological Hausdorff space, and p : E → X be a surjective continuous map, where as usual,
we write X = G/H. We say that E (really p : E → X) is a hermitian G-bundle if each fibre
Ex (x ∈ X = G/H) is a separable Hilbert space and if there is an equilinear continuous left
action · : G× E → E of G on E, which means that:

(1) The action is equivariant, that is,

p(g · z) = g · p(z), g ∈ G, z ∈ E.

(2) For every x ∈ X = G/H, for every g ∈ G, the map z 7→ g · z (z ∈ Ex) is a unitary
isomorphism between Ex and Eg·x.

Let x0 denote the coset H = eH. Every fibre is isomorphic to Ex0 and the restriction of the
action of G to H on the fibre Ex0 , for simplicity also denoted as E0, maps E0 to E0 (since
h · x0 = x0 for all h ∈ H). Since the action of G on E is continuous, for every z ∈ E0 the
map h 7→ h · z is a continuous map from H to E0, and since the maps z 7→ h · z (z ∈ E0) are
unitary, we have a unitary representation σ : H → U(E0) given by

σ(h)(z) = h · z. (σ)

If the fibres are finite-dimensional vector spaces equipped with hermitian inner products, we
say that E has finite rank , and the common dimension of these vector spaces is called the
rank of E.

Assume that E is a hermitian G-bundle of rank n, and pick some orthonormal basis
(e1, . . . , en) of E0. Since the map z 7→ g · z (z ∈ E0, g ∈ G) is a unitary map from E0 to
Eg·x0 , the n-tuple (g · e1, . . . , g · en) is an orthonormal basis of Eg·x0 . Inspired by Section 6.1,
we make the following definition.

Definition 6.24. Let E be a hermitian G-bundle of rank n and pick some orthonormal basis
(e1, . . . , en) of E0. The Hilbert space L2(G;E0) consists of all functions f : G→ E0 such that
f = f1e1 + · · ·+fnen, where the fi are functions in L2(G); equivalently, L2(G;E0) is the finite



6.14. HERMITIAN G-BUNDLES 457

Hilbert sum L2(G;E0) =
⊕n

i=1 L2(G)ei. The inner product of two functions f =
∑

i=1 fiei
and g =

∑
i=1 giei is

〈f, g〉 =
n∑
i=1

∫
G

fi(s)gi(s) dλG(s),

where λG is a left Haar measure on G. Let Lσ be the subspace of L2(G;E0) given by

Lσ = {f ∈ L2(G;E0) | f(gh) = σ(h−1)(f(g)), for all g ∈ G and all h ∈ H}. (†4)

It is easy to check that Lσ is closed in L2(G;E0), so it is a Hilbert space. If A(h) is the
unitary matrix representing σ(h) with respect to the basis (e1, . . . , en), with

σ(h)(ej) =
n∑
i=1

aijei,

we leave it as an exercise to prove that the condition f(gh) = σ(h−1)(f(g)) translates intof1(gh)
...

fn(gh)

 = A(h)∗

f1(g)
...

fn(g)

 .

Since (g ·e1, . . . , g ·en) is an orthonormal basis of Eg·x0 for every g, every section s : X → E
is uniquely determined by n functions si : X → C defined by

s(g · x0) = s1(g · x0)(g · e1) + · · ·+ sn(g · x0)(g · en), g ∈ G.

By analogy with the definition of L2(G;E0) we have the following definition.

Definition 6.25. Let E be a hermitian G-bundle of rank n and pick some orthonormal basis
(e1, . . . , en) of E0. The subspace L2(X;E) of Γ(E) is defined as the Hilbert space of sections
s : X → E that can be expressed as

s(g · x0) = s1(g · x0)(g · e1) + · · ·+ sn(g · x0)(g · en), g ∈ G,

for some functions si ∈ L2
µ(X), where µ is the G-invariant measure (unique up to a scalar) on

X = G/H induced by λG. Then for two sections s, t ∈ L2(X;E) determined by the n-tuples
(s1, . . . , sn) and (t1, . . . , tn) of functions in L2

µ(X), the inner product is given by

〈s, t〉 =
n∑
i=1

∫
X

si(x)ti(x) dµ(x).

Note that the induced representation ρ : G → GL(Lσ) of Proposition 6.26 is now a
unitary representation ρ : G→ U(Lσ).
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A difficulty that arises because sections now belong to L2(X;E) and functions in Lσ now
belong to L2(G;E0) is that, in general, if r : X → G is a section specifying a set of coset
representatives of X = G/H, the maps L and S as defined by

L(s)(g) = (σ(u(g, x0)))−1(r−1
x · s(g · x0)), x = gH = g · x0, (L′3)

and
S(f)(g · x0) = rx · σ(u(g, x0))(f(g)), (S ′3)

may yield a function L(s) not in Lσ for some section s ∈ L2(X;E), or a section S(f) not
in L2(X;E) for some function f ∈ Lσ. If they do for all s ∈ L2(X;E) and all f ∈ Lσ,
they are mutual inverse maps from Lσ to L2(X;E), so we can figure out what is the induced
representation Π: G→ U(L2(X;E)) from the definition of the representation ρ : G→ U(Lσ)
using the fact that the following diagram commutes

Lσ
ρ(g) // Lσ

S

��
L2(X;E)

L

OO

Πg
// L2(X;E)

for every g ∈ G. For any g ∈ G, any x ∈ X = G/H, and any s ∈ L2(X;E), since
ρ(g)(f) = L(g · S(f)) for any f ∈ Lσ, we have

(Πg(s))(x) = [S(ρ(g)(L(s)))](x) = [S(L(g · S(L(s))))](x)

= (g · s)(x) = g · s(g−1 · x),

which we record as
(Πg(s))(x) = g · s(g−1 · x). (†5)

Now, since by definition of u(g, y),

rg·yu(g, y) = gry,

with y = g−1 · x, we get
rxu(g, g−1 · x) = grg−1·x,

which implies that
g = rxu(g, g−1 · x)(rg−1·x)

−1, (†6)

and substituting the right-hand side expression for the leftmost occurrence of g in g ·s(g−1 ·x),
we deduce that

(Πg(s))(x) = g · s(g−1 · x) = [rxu(g, g−1 · x)(rg−1·x)
−1] · s(g−1 · x)

= rx · [u(g, g−1 · x) · ((rg−1·x)
−1 · s(g−1 · x))]

= rx · σ(u(g, g−1 · x))((rg−1·x)
−1 · s(g−1 · x)),
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that is,
(Πg(s))(x) = rx · σ(u(g, g−1 · x))((rg−1·x)

−1 · s(g−1 · x)). (†7)

If we compare with Formula (Πα
s ) in Definition 6.3, namely,

(Πα
g (s))(x) = α(g, g−1 · x)(s(g−1 · x)), (Πα

s )

since α(g, y) = σ(u(g, y)) is a cocycle, we have

(Πσ
g (s))(x) = σ(u(g, g−1 · x))(s(g−1 · x)), (Πσ

s )

and as we explained earlier, in the case of the G-bundle G×H Hσ, the map z 7→ rx · z sends
the fibre E0 to the fibre Ex and the map x 7→ g−1 ·x sends the fibre Eg·x to the fibre E0, and
since σ is a representation in E0, we see that (†7) and (Πσ

s ) are indeed equivalent.

We still have the issue that, in general, the representation Π may not be continuous. This
depends on the existence of suitable sections r : X → G. A case where continuous sections
exist is when G = N oH is a semi-direct product with N abelian; see Section 8.13.

6.15 Hermitian G-Vector Bundles

A way to deal with the problem that continuous sections r : X → Gmay not exist is to assume
that p : E → G/H is locally trivial, namely to assume the existence of local trivializations.
In other words, we assume that E is a vector bundle. We will recall the definition of vector
bundles and principal bundles below. Vector bundles and principal bundles are discussed
in Gallier and Quaintance [28], Bott and Tu [3], Morita [53], Bröcker and tom Dieck [6],
Duistermaat and Kolk [19] and Dieudonné [15].

To avoid technical complications, we assume that G is a Lie group and that H is a closed
Lie subgroup of G. Now, because G is a Lie group and H is a closed Lie subgroup of G, the
quotient space X = G/H is a smooth manifold and π : G → G/H is a principal H-bundle,
whose definition is recalled below; see Gallier and Quaintance [28] (Section 9.9, Proposition
9.2) and Duistermaat and Kolk [19] (Appendix A).

Definition 6.26. A principal H-bundle is a quadruple ξ = (E , π, E/H,H), where E be a
smooth manifold, H is Lie group, and · : E × H → E is a smooth right action of H on E
satisfying the following properties:

(1) The right action of H on E is free;

(2) The orbit space X = E/H is a smooth manifold under the quotient topology, and the
projection π : E → E/H is smooth;

(3) There is some open cover U = (Uα)α∈I of X = E/H and a family ψ = (ψα)α∈I of
diffeomorphisms called (local) trivializations

ψα : π−1(Uα)→ Uα ×H,

such that
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(a) (local triviality) the diagram

π−1(Uα)

π
$$

ψα // Uα ×H

pr1
{{

Uα

commutes.

(b) Every map ψα : π−1(Uα)→ Uα×H is an equivariant diffeomorphism, which means
that

ψα(z · h) = ψα(z) · h

for all z ∈ π−1(Uα) and all h ∈ H, where the right action of H on Uα ×H is
(x, h1) · h = (x, h1h). Observe that if ψα(z) = (x, h1), then since ψα(z) · h =
(x, h1h), we have pr1(ψα(z) · h) = pr1(ψα(z)) = x = π(z).

Recall that the action · : E × H → E is free if it acts without fixed points, that is, for
every h ∈ H, if h 6= 1, then x · h 6= x for all x ∈ E .

By conditions (a) and (b), and the definition of the right action of H on Uα ×H, for all
z ∈ π−1(Uα) and all h ∈ H, we have

π(z · h) = pr1(ψα(z · h)) = pr1(ψα(z) · h) = pr1(ψα(z)) = π(z),

so for any x ∈ X = E/H and any z ∈ Ex = π−1(x), we have z · h ∈ Ex. In fact, for any
z ∈ Ex, we claim that

Ex = {z · h | h ∈ H},

namely the orbits of the right action of H on E are the fibres Ex, with x ∈ X. Since the
action of H on E is free, the action of H on Ex is also free.

To prove this, first observe that the restriction of ψα to Ex for any x ∈ Uα is a diffeomor-
phism from Ex onto {x} ×H given by

ψα(z) = (x, ψα,x(z)),

where ψα,x : Ex → H is a diffeomorphism between Ex and H.

Secondly, by definition of the right action of H on Uα × H, for any z ∈ Ex, if ψα(z) =
(x, h1), we have

{ψα(z · h) | h ∈ H} = {ψα(z) · h | h ∈ H} = {(x, h1) · h | h ∈ H}
= {(x, h1h) | h ∈ H} = {x} ×H,

and so
{z · h | h ∈ H} = ψ−1

α ({x} ×H) = Ex.
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For all α, β such that Uα ∩ Uβ 6= ∅, for every x ∈ Uα ∩ Uβ, we have a diffeomorphism

ψα,x ◦ ψ−1
β,x : H −→ H,

which yields the map gαβ : Uα ∩ Uβ → Diff(H) called a transition map given by

gαβ(x) = ψα,x ◦ ψ−1
β,x, x ∈ Uα ∩ Uβ.

Intuitively, the transition functions express how the fibre Ex twists as x moves in Uα ∩ Uβ.
From the definition above, the isomorphism ψα ◦ ψ−1

β : (Uα ∩ Uβ) × H → (Uα ∩ Uβ) × H is
given by

(ψα ◦ ψ−1
β )(x, h) = (x, gαβ(x)(h)), x ∈ Uα ∩ Uβ, h ∈ H.

A priori, the map gαβ(x) is a diffeomorphism of the Lie group H, but because the transition
maps ψα are equivariant, it is shown in Gallier and Quaintance [28] (Chapter 9, Proposition
9.21) that gαβ(x) is the left translation by gαβ(x)(1) ∈ H, that is,

gαβ(x)(h) = gαβ(x)(1)h, x ∈ Uα ∩ Uβ, h ∈ H.

Since the group of left translations of H (the maps Lh : H → H given by Lh(h1) = hh1

(h, h1 ∈ H)) is isomorphic to H, we usually view the map gαβ(x) as the element gαβ(x)(1)
of H, and thus we view the transition function gαβ as a map gαβ : Uα ∩ Uβ → H, such that

(ψα ◦ ψ−1
β )(x, h) = (x, gαβ(x)h), x ∈ Uα ∩ Uβ, h ∈ H.

Another technical issue is that Definition 6.26 is too restrictive because it does not allow
for the addition of compatible local trivializations. We can fix this problem as follows.

Definition 6.27. Let ξ = (E , π,X,H) be principal bundle, with X = E/H. Given a
trivializing cover {(Uα, ψα)} for ξ, for any open U of X and any diffeomorphism

ϕ : π−1(U)→ U ×H,

we say that (U,ϕ) is compatible with the trivializing cover {(Uα, ψα)} iff whenever U∩Uα 6= ∅,
there is some smooth map gα : U ∩ Uα → H, so that

ϕ ◦ ψ−1
α (x, h) = (x, gα(x)(h)),

for all x ∈ U ∩ Uα and all h ∈ H. Two trivializing covers are equivalent iff every local
trivialization of one cover is compatible with the other cover. This is equivalent to saying
that the union of two trivializing covers is a trivializing cover.

Definition 6.27 yields the official definition of a principal bundle ξ = (E , π,X,H) in
which {(Uα, ψα)} is an equivalence class of trivializing covers. As for manifolds, given a
trivializing cover {(Uα, ψα)}, the set of all bundle charts compatible with {(Uα, ψα)} is a
maximal trivializing cover equivalent to {(Uα, ψα)}.

In the special case where E is equal to a Lie group G and H is a closed Lie subgroup of
G, as we said above, (G, π : G→ X,X,H) is principal H-bundle (with X = G/H).
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Definition 6.28. A hermitian vector bundle with fibre H is a quadruple ξ = (E , p,X,H),
where E and X are smooth manifold, p : E → X is a surjective smooth map, andH is a finite-
dimensional complex vector space with a hermitian inner product, such that the following
conditions hold:

(1) Each fibre Ex (x ∈ X) is a finite-dimensional space equipped with a hermitian inner
product 〈−,−〉x.

(2) There is some open cover U = (Uα)α∈I of X and a family ϕ = (ϕα)α∈I of diffeomor-
phisms called (local) trivializations

ϕα : p−1(Uα)→ Uα ×H,

such that:

(a) (local triviality) the diagram

p−1(Uα)

p
##

ϕα // Uα ×H

pr1
{{

Uα

commutes.

(b) For every x ∈ Uα, the map ϕα,x : Ex → H is a unitary isomorphism.

Since the maps ϕα,x are unitary, the maps

ϕα,x ◦ ϕ−1
β,x : H −→ H

are also unitary, so the transition maps are of the form gαβ : Uα ∩ Uβ → U(H).

We also need to be able to add compatible trivializations.

Definition 6.29. Let ξ = (E , p,X,H) be a hermitian vector bundle. Given a trivializing
cover {(Uα, ϕα)} for ξ, for any open U of X and any diffeomorphism

ϕ : p−1(U)→ U ×H,

we say that (U,ϕ) is compatible with the trivializing cover {(Uα, ϕα)} iff whenever U∩Uα 6= ∅,
there is some smooth map gα : U ∩ Uα → U(H), so that

ϕ ◦ ϕ−1
α (x, u) = (x, gα(x)(u))

for all x ∈ U ∩ Uα and all u ∈ H. Two trivializing covers are equivalent iff every local
trivialization of one cover is compatible with the other cover. This is equivalent to saying
that the union of two trivializing covers is a trivializing cover.
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The official definition of a hermitian vector bundle ξ = (E , p,X,H) requires {(Uα, ϕα)} to
be an equivalence class of trivializing covers. As earlier, given a trivializing cover {(Uα, ϕα)},
the set of all bundle charts compatible with {(Uα, ϕα)} is a maximal trivializing cover equiv-
alent to {(Uα, ϕα)}.

Technically, a hermitian vector bundle has the property that the hermitian inner product
〈−,−〉x on the fibre Ex varies smoothly with x ∈ X. This is formalized as follows. For any
open subset U of X, a frame over U is an n-tuple (s1, . . . , sn) of smooth sections si : U → E ,
such that (s1(x), . . . , sn(x)) is a basis of the fibre Ex for all x ∈ U (where n is the dimension
of H and all the Ex). The hermitian inner products 〈−,−〉x have the property that for every
Uα, for every frame (s1, . . . , sn) over Uα, the maps

x 7→ 〈si(x), sj(x)〉x, 1 ≤ i, j ≤ n, x ∈ Uα,

are smooth. For details, see Gallier and Quaintance [28] (Section 9.8) and Morita [53]
(Section 5.1).

Remark: Since X is a manifold, for any local trivialization ϕα : p−1(Uα) → Uα × H, of ξ,
since Uα is an open subset of X, there is some open set V in the maximal atlas defining X,
such that V ⊆ Uα and a chart θ : V → Rm (where m is the dimension of the manifold X),
so if ρ : H → Rn is an isomorphism (obtained by picking a basis on H), the map

(θ × ρ) ◦ ϕα : p−1(V )→ Rm+n

is a chart of E viewed as a manifold.

We can now define a hermitian G-vector bundle as a hermitian G-bundle, which is also
a hermitian vector bundle in the special case where X = G/H.

Definition 6.30. Let G be a Lie group, H a closed subgroup of G, E a smooth manifold,
H a finite-dimensional complex vector space equipped with a hermitian inner product, and
p : E → X be a surjective smooth map, where as usual, we write X = G/H. We say that E,
more precisely (E, p,X,H, G), is a hermitian G-vector bundle with fibre H if

(1) Each fibre Ex (x ∈ X = G/H) is a finite-dimensional vector space equipped with a
hermitian inner product 〈−,−〉x and there is an equilinear smooth left action · of G on
E.

(2) There is some open cover U = (Uα)α∈I of X = G/H and a family ϕ = (ϕα)α∈I of
diffeomorphisms called (local) trivializations

ϕα : p−1(Uα)→ Uα ×H,

such that:
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(a) (local triviality) the diagram

p−1(Uα)

p
##

ϕα // Uα ×H

pr1
{{

Uα

commutes.

(b) For every x ∈ Uα, the map ϕα,x : Ex → H is a unitary isomorphism.

As in the case of a hermitian vector bundle, we require that the hermitian inner product
〈−,−〉x varies smoothly with x.

If ξ = (E , π,X,H) is a principal H-bundle (with X = E/H) and σ : H → U(Hσ) is
a unitary representation of H in a finite-dimensional hermitian vector space Hσ, then the
Borel construction of Section 6.12 can be adapted to produce a hermitian vector bundle
(E, p : E → X,X,Hσ), with E = E ×H Hσ and X = E/H. The following theorem is a
special case of a construction in which Hσ is replaced by any smooth manifold F equipped
with a smooth left action of H on F (technically, an effective action);3 see Dieudonné [15]
(Theorem 16.14.7).

Theorem 6.27. Let ξ = (E , π,X,H) be a principal H-bundle (with X = E/H) and σ : H →
U(Hσ) be a unitary representation of H in a finite-dimensional hermitian vector space Hσ.
Consider the right action of H on E ×Hσ given by

(z, u) · h = (z · h, σ(h−1)(u)), z ∈ E , u ∈ Hσ, h ∈ H. (act2)

Here, the right action of H on E is the action arising from the fact that E is a principal H-
bundle, so it is free, and thus the action (act2) is also free. Then, the orbit space E = E×HHσ

is a smooth manifold. Furthermore, the following properties hold.

(1) The quadruple (E, p, E/H,Hσ) is a hermitian vector bundle with fibre Hσ, where the
projection p : E ×H Hσ → E/H is given by p([(z, u)]) = π(z), z ∈ E , u ∈ Hσ, and with
π : E → E/H.

(2) If U = (Uα)α∈I is an open cover of X = E/H and ψ = (ψα)α∈I is a family of local
trivializations ψα : π−1(Uα) → Uα × H for E, then for any smooth section s : Uα →
π−1(Uα), the inverse ϕ−1

α of a local trivialization ϕα : p−1(Uα)→ Uα×Hσ of E is given
by

ϕ−1
α (x, u) = [(s(x), u)], x ∈ Uα, u ∈ Hσ.

(3) For every z ∈ E, the map u 7→ [(z, u)] is a unitary map from Hσ to the fibre Eπ(z) =
p−1(π(z)).

3Recall that an action · : H × F → F is effective if for any h ∈ H, if h · x = x for all x ∈ F , then h = 1.
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(4) For any x ∈ X, for any fixed x0 ∈ Ex = π−1(x), the map given by

h · [(x0, u)] = [(x0, h · u)] = [(x0, σh(u))], h ∈ H, u ∈ Hσ,

is a unitary representation of H on the fibre Ex = p−1(x).

Proof. (1) Some details of the proof are given in Duistermaat and Kolk [19] (Section 2.40),
and a very detailed proof is given in Dieudonné [15] (Theorem 16.10.3, Theorem 16.14.1 and
Theorem 16.14.7). The representation σ : H → U(Hσ) defines a left action of H on Hσ but
it is convenient to denote a right action of H on Hσ as

h−1 · u = σ(h−1)(u), h ∈ H, u ∈ Hσ,

so that the right action of H on E ×Hσ is written as

(z, u) · h = (z · h, h−1 · u), z ∈ E , u ∈ Hσ, h ∈ H. (act3)

The above action immediately generalizes to the case where H acts (on the left) smoothly
(and effectively) on a manifold F , and then the orbit space E = E ×H F is a fibre bundle
with fibre F .

(2) Given that it can be proven that E = E ×H Hσ is a smooth manifold (see Dieudonné
[15], Theorem 16.10.3, Theorem 16.14.1), it is interesting to see how trivializing maps are
defined.

Since ξ = (E , π,X,H) is a principal H-bundle, trivializing maps exist, so there is an open
cover U = (Uα)α∈I of X = E/H and a family ψ = (ψα)α∈I of trivializing diffeomorphisms

ψα : π−1(Uα)→ Uα ×H. (ψα)

Since π = pr1 ◦ ψα and ψα is a diffeomorphism, a smooth function s : Uα → π−1(Uα) is a
section, which means that π ◦ s = id, iff π ◦ ψ−1

α ◦ ψα ◦ s = id iff pr1 ◦ ψα ◦ s = id, but since
ψα◦s : Uα → Uα×H and smooth sections s1 : Uα → Uα×H are of the form s1(x) = (x, f1(x))
for some smooth function f1 : Uα → H, smooth sections s : Uα → π−1(Uα) exist and are of
the form ψ−1

α ◦s1, where s1 : Uα → Uα×H is a smooth section of the trivial H-bundle Uα×H.

For any smooth section s : Uα → π−1
α (Uα), for any z ∈ π−1

α (Uα), since s(π(z)) ∈ Eπ(z) and
H acts freely on Eπ(z), there is a unique h ∈ H, denote it hz, such that

s(π(z)) = z · hz. (hz)

Define the map Fα : π−1(Uα)×Hσ → Uα ×Hσ by

Fα(z, u) = (π(z), h−1
z · u), z ∈ π−1(Uα), u ∈ Hσ. (Fα)

We claim that
Fα(z · h, h−1 · u) = Fα(z, u). (†8)
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Since z and z · h are in the same orbit, π(z · h) = π(z), and the unique h1 ∈ H, such that

s(π(z)) = s(π(z · h)) = (z · h) · h1 = z · (hh1),

satisfies the equation hh1 = hz because hz is the unique element of H, such that

s(π(z)) = z · hz,

so hz·h = h−1hz, and then

Fα(z · h, h−1 · u) = (π(z · h), h−1
z·h · (h

−1 · u)) = (π(z), (h−1hz)
−1 · (h−1 · u))

= (π(z), (h−1
z hh−1) · u) = (π(z), h−1

z · u) = Fα(z, u).

Consequently, Fα induces a well-defined map ϕα : π−1(Uα)×H Hσ → Uα ×Hσ given by

ϕα([(z, u)]) = Fα(z, u) = (π(z), h−1
z · u), z ∈ π−1(Uα), u ∈ Hσ. (ϕα)

It is easy to see that this map is smooth. The inverse ηα : π−1(Uα)×H Hσ → Uα×Hσ of ϕα
is defined as follows:

ηα(x, u) = [(s(x), u)], x ∈ Uα, u ∈ Hσ. (ηα)

Since by (hz),
s(π(z)) = z · hz,

and since π ◦ s = id because s : Uα → π−1(Uα) is a section, using the equivalence defined by
(act3), we get

ηα(ϕα[(z, u)]) = ηα(π(z), h−1
z · u) = [(s(π(z)), h−1

z · u)]

= [(z · hz, h−1
z · u)] = [(z, u)].

For the reverse composition, we need to observe that by definition of hz, with z = s(x), we
have

s(x) = s(π(s(x))) = s(x) · hs(x),

so hs(x) = 1, and then

ϕα(ηα(x, u)) = ϕα([(s(x), u)]) = (π(s(x)), h−1
s(x) · u)

= (x, 1 · u) = (x, u).

Therefore, ϕα and ηα are mutual inverses, as claimed. It follows that ϕα : π−1(Uα)×HHσ →
Uα ×Hσ is a diffeomorphism. Since by definition of p : E ×H Hσ → E/H, p([(z, u)]) = π(z)
with π : E → E/H, we see that

p−1(Uα) = π−1(Uα)×H Hσ,

so the diffeomorphism ϕα : p−1(Uα)→ Uα ×Hσ is a trivialization of E ×H Hσ.
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In summary, for every smooth section s : Uα → π−1(Uα), the inverse ϕ−1
α of a local

trivialization ϕα : p−1(Uα)→ Uα ×Hσ is given by

ϕ−1
α (x, u) = [(s(x), u)], x ∈ Uα, u ∈ Hσ. (†9)

(3) As we explained in Section 6.12, for any x ∈ X = E/H, for any z ∈ Ex = π−1(x), we
have p−1(x) = {[(z, u)] | u ∈ Hσ}. If [(z, u)] = [(z, v)] for some z ∈ E and some u, v ∈ Hσ,
then there is some h ∈ H, such that z = z · h and u = h−1 · v, and since H acts freely on E ,
we must have h = e and v = u. This shows that the map u 7→ [(z, u)] is injective, and since
it is also surjective, it is bijective.

If we pick the section sα : Uα → π−1(Uα) to be the special section given by

sα(x) = ψ−1
α (x, 1), x ∈ Uα, (†10)

then we can figure out what are the corresponding transition functions. First, from (†9), we
have

ϕ−1
α (x, u) = [(ψ−1

α (x, 1), u)]. (†11)

Next, for any z ∈ Ex, we have

ϕα([(z, u)]) = (π(z), h−1
z · u) = (x, h−1

z · u),

where hz is the unique element of H, such that

sα(x) = ψ−1
α (x, 1) = z · hz.

If
ψα(z) = (x, h1),

then since ψα is equivariant, we have

ψα(z · h−1
1 ) = ψα(z) · h−1

1 = (x, h1) · h−1
1 = (x, 1),

which shows that
ψ−1
α (x, 1) = z · h−1

1 ,

and so
hz = h−1

1 .

In summary, if ψα(z) = (x, h1), then

ϕα([(z, u)]) = (x, h1 · u). (†12)

For any α, β such that Uα ∩ Uβ 6= ∅, we need to compute (ϕα ◦ ϕ−1
β )(x, u). By (†11), we

have
ϕ−1
β (x, u) = [(ψ−1

β (x, 1), u)].
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If we let z = ψ−1
β (x, 1), we need to compute

ψα(z) = ψα(ψ−1
β (x, 1)) = (x, gαβ(x)(1)),

where the gαβ are the transition functions of the principal bundle E , and so by (†12),

(ϕα ◦ ϕ−1
β )(x, u) = (x, gαβ(x)(1) · u),

which shows that the transition functions of the vector bundle E are also given by the
gαβ(x)(1) ∈ H, except that this time H acts on H (on the left). Going back to the original
definition of the action of H on H given by the unitary representation σ, we have

(ϕα ◦ ϕ−1
β )(x, u) = (x, σ(gαβ(x)(1))(u)).

Combining what we did in Section 6.12 with Theorem 6.27, we obtain the following result.

Theorem 6.28. Let G be a Lie group, H a closed Lie subgroup of G, and σ : H → U(Hσ) a
unitary representation in a finite-dimensional hermitian vector space. Then (E, p,X,Hσ, G)
is a hermitian G-vector bundle, with E = G×H Hσ and X = G/H.

6.16 The Case of G-Bundles of Infinite Rank

If the hermitian G-bundle E has infinite rank, namely the fibres are separable Hilbert spaces,
a more sophisticated method is required. The solution is to restrict our attention to sections
with compact support . There is also the problem that G/H may not have a G-invariant
measure. This causes a difficulty for defining an inner product on the Hilbert space Lσ,
which is the completion of a subspace of L2(G;E0). This problem can also be overcome.

Let us first assume that G/H has a G-invariant measure. In this case, Lα is replaced by
the set of continuous functions H0 defined in Section 6.5 and given by

H0 = {f ∈ C(G,E0) | π(supp(f)) is compact and

f(gh) = σ(h−1)(f(g)) for all g ∈ G and all h ∈ H},

where π : G→ G/H.

As in Section 6.5, we define a hermitian inner product on H0 and form the Hilbert space
Lσ, which is the completion of H0. The induced representation in Lσ is then the usual one,
namely

(IndGH σ)g(f)(g1) = f(g−1g1).

If G/H does not have a G-invariant measure, then as in Section 6.11 there are two
approaches. In the first approach, we use the same space of functions E0 as before but we use
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an inner product involving a quasi-invariant measure and the definition of the representation
has an extra term %(g, g1H)1/2 as in (indv1), namely

(IndGH σ)g(f)(g1) = %(g, g1H)1/2f(g−1g1), f ∈ Lσ, g, g1 ∈ G.

In the second approach, we restrict ourselves to G-bundles obtained from G and Hσ by
a quotient process. In the more general case of abstract G-bundles, it should be possible to
use a tensor product construction but we haven’t worked out the details.

The method is to modify the (right) action of H on G×Hσ, so that it is given by

(g, u) · h =

(
gh,

(
∆H(h)

∆G(h)

)1/2

σ(h−1)(u)

)
, g ∈ G, u ∈ E0, h ∈ H.

Since the modular function is a homomorphism on H, the above is indeed an action. We
obtain a new orbit space that we still denote (with a slight abuse of notation) G×HHσ. Let
H0 be the subspace of C(G,Hσ) given by

H0 =

{
f ∈ C(G,Hσ) | π(supp(f)) is compact and

f(gh) =

(
∆H(h)

∆G(h)

)1/2

σ(h−1)(f(g)) for all g ∈ G and all h ∈ H
}
.

As in Section 6.11, a hermitian inner product on H0 can be defined and if Lσ is the Hilbert
space, which is the completion of H0, then as usual the induced representation in Lσ is given
by

(IndGH σ)g(f)(g1) = f(g−1g1).

Remark: In general, E = G ×H Hσ does not have trivialization maps and so it is not a
vector bundle. A counter-example is given in Folland [22] (Chapter 6, Section 6.8). However,
if G is a Lie group and if H is a compact subgroup of G, then G×H Hσ is a vector bundle
(in fact, a homogeneous hermitian vector bundle).

6.17 Problems

Problem 6.1. Let G be a compact group, H be a closed subgroup of G, and U be a
linear representation of H in a finite-dimensional vector space E. Consider the Hilbert
space L2(G;E) consisting of all functions f : G → E, such that for any orthonormal basis
(e1, . . . , en) of E, f = f1e1 + · · · + fnen, where the fi are functions in L2(G). The inner
product of two functions f =

∑
i=1 fiei and g =

∑
i=1 giei is

〈f, g〉 =
n∑
i=1

∫
G

fi(s)gi(s) dλ(s),
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where λ is a Haar measure on G. Consider the subspace H of L2(G;E) consisting of all
functions f , such that

f(sh) = U(h−1)(f(s)), for all s ∈ G and all h ∈ H.

Show that H is (topologically) closed in L2(G;E), where L2(G;E) has the norm induced by
the above defined inner product.

Problem 6.2. (A continuation of Problem 6.1) Define the map Π: G→ GL(H) by

Πs(f) = λsf, s ∈ G, f ∈ H,

or equivalently, by
(Πs(f))(t) = f(s−1t), s, t ∈ G, f ∈ H.

(1) Show that Π is a linear representation of G in H.

(2) Show that Π: G→ GL(H) is a unitary representation of G in H.

Now, replace U by an equivalent representation h 7→ PU(h)P−1, where P is a unitary
transformation P : E → E ′. Show that the corresponding induced representation is s 7→
fPΠsf

−1
P , a unitary representation equivalent to Π, where fP is the linear map from H to

H′ given by fP (f) = P ◦ f .

Problem 6.3. Let G be a group, H be a subgroup of G, and E be a vector space. Let
X = G/H be the homogenous space of left coset, and σ : H → GL(E) be a given homomor-
phism. Check that if σ is replaced by an equivalent representation σ′ of H in EX , then the
corresponding representations Π and Π′ of G in EX are equivalent.

Problem 6.4. Let G be a locally compact group, H be a closed subgroup of G, E be a
separable Hilbert space, and U : H → U(E) be the trivial representation of H in E. For the
choice of α(s, x) = idE for all (s, x) ∈ G× (G/H), show that the hypotheses of Theorem 6.9
are satisfied.

Hint . To verify condition (3), use the fact that the family of maps f 7→ Πs(f) (s ∈ G) is
equicontinuous; see Dieudonné [12], Chapter XXII, Section 3.

Problem 6.5. Consider the groups G = SE(3) and H ≈ SO(3) and any unitary represen-
tation σ : SO(3)→ U(E) of SO(3) in a separable Hilbert space E. We showed in Example
6.1 that we have a cocycle α : SE(3)× R3 → U(E) given by

α((a,Q), x) = σ(Q), a, x ∈ R3, Q ∈ SO(3),

and the homomorphism Π: SE(3)→ GL(ER3
) induced by α is given by

(Π(a,Q)(f))(x) = σ(Q)f(Q>(x− a)), f ∈ ER3

, x ∈ R3.

Check that conditions (1)–(3) of Theorem 6.9 are satisfied.
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Problem 6.6. In Example 6.3, we obtain a unitary representation Π: SE(n)→ U(L2
µ(SO(n);

C)) of SE(n) in the Hilbert space L2
µ(SO(n);C) given by

(Π(a,Q)(f))(R) = ei((Ry)·a)f(Q>R), (a,Q) ∈ SE(n), R ∈ SO(n),

f ∈ L2
µ(SO(n);C), y ∈ Rn.

Check that the above representation satisfies conditions (2) and (3) of Theorem 6.9.

Problem 6.7. In Example 6.3 we also defined a representation Π̃ : SE(n)→ U(L2
λ(S

n−1;C))
of SE(n) in the Hilbert space L2

λ(S
n−1;C) via

(Π̃(a,Q)(f))(x) = eir(x·a)f(Q>x), (a,Q) ∈ SE(n), x ∈ Sn−1,

f ∈ L2
λ(S

n−1;C), r > 0. (†)

(1) Show that for each for each fixed r, the representation given by

(Π̃(a,Q)(f))(x) = e−ir(x·a)f(Q>x), (a,Q) ∈ SE(n), x ∈ Sn−1, f ∈ L2
λ(S

n−1;C), r > 0

is equivalent to that of (†).

(2) Prove that the representation given by (†) is irreducible. Hint: See Vilenkin [70],
Chapter XI, Section 2.

(3) (Advanced) Prove that

(Π̃(a,Q)(f))(x) = ez(x·a)f(Q>x), (a,Q) ∈ SE(n), x ∈ Sn−1, f ∈ L2
λ(S

n−1;C), z ∈ C∗
(∗4)

is irreducible representation, but it is not unitary unless z = ir with r ∈ R and r 6= 0.
Hint: See Vilenkin [70].

Problem 6.8. Prove Proposition 6.10.

Hint . See Folland [22], Chapter 6, Proposition 6.1.

Problem 6.9. Prove Proposition 6.11.

Hint . See Folland [22], Chapter 2, Proposition 2.54.

Problem 6.10. Prove Proposition 6.12.

Hint . See Folland [22], Chapter 2, Lemma 2.55.

Problem 6.11. (Advanced Exercise) Prove Theorem 6.14.

Hint . See Folland [22], Chapter 2, Theorem 2.59.
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Problem 6.12. Let G be a locally compact group, H be a closed subgroup of G, E be a
separable Hilbert space, and U : H → U(E) be a unitary representation of H. For any quasi-
invariant measure µ on X = G/H associated with the continuous function % : G× (G/H)→
(0,∞), define the cocycle α : G×X → U(E) via

α(s, x) = (%(s−1, x))−1/2+ri idE.

Verify that α(s, x) satisfies condition (3) of Theorem 6.16.

Hint . See Dieudonné [12], Chapter XXII, Section 3, No. 22.3.8.3.

Problem 6.13. Let G = SL(2,R) and H = S1 be the subgroup

S1 =

{(
a b
0 a−1

) ∣∣∣∣ a, b ∈ R, a 6= 0

}
,

and let E = C.

(1) Show that the homogeneous space SL(2,R)/S1 is homeomorphic to P1(R) = RP1, the
real projective line. Recall from Example 6.4 that the action of SL(2,R) on RP1 viewed
as R ∪ {∞} is given by

s · z =

(
a b
c d

)
· z =

az + b

cz + d
, z ∈ RP1,

with the convention that when z = −d/c, then the result is ∞, and when z = ∞,
then the result if a/c. In particular, check that this action is transitive and that the
stabilizer of ∞ is the subgroup S1.

(2) If we give RP1 the measure µ, which is the Lebesgue measure extended so that {∞}
has measure zero, check that the cocycles

α(s, x) =

(
1

(cx− a)2

)−1/2+(r/2)i

sign(cx− a) idC,

with r ∈ R, satisfy the conditions of Theorem 6.16.

Problem 6.14. (A continuation of Problem 6.13) Let

s =

(
a b
c d

)
.

(1) Show that the induced representation of SL(2,R) in L2
µ(RP1;C) given by

Πs(f)(x) = |cx− a|−1+rif

(
b− dx
cx− a

)
, f ∈ L2

µ(RP1;C),

is irreducible.
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(2) Show that the induced representation of SL(2,R) in L2
µ(RP1;C) given by

Πs(f)(x) = |cx− a|−1+ri sign(cx− a)f

(
b− dx
cx− a

)
, f ∈ L2

µ(RP1;C),

is irreducible.

(3) Show that the above representations of SL(2,R) in L2
µ(RP1;C) are pairwise inequivalent

for r > 0.

Problem 6.15. Let G = SL(2,R) and H = SO(2) be the subgroup

SO(2) =

{(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣ 0 ≤ θ ≤ 2π,

}
,

and let E = C.

(1) Show that the homogeneous space SL(2,R)/SO(2) is homeomorphic to the upper half
plane P = {z = x+ iy ∈ C | y > 0}, where the action of SL(2,R) on P given by

s · z =

(
a b
c d

)
· z =

az + b

cz + d
, z = x+ iy ∈ P.

In particular, check that this action is transitive and that the stabilizer of z = i is
SO(2).

(2) In Example 6.5, we showed that

(Πs(f))(z) = (α(s−1, x))−1(f(s−1 · z)), f ∈ L2
µ(P ;C), z ∈ P,

is an induced representation of SL(2,R) into L2
µ(P ;C) where

α(s, z) =
(cz + d)n

|cz + d|n
idC.

Define α′(s, z) = c(s · z) ◦ α(s, z) ◦ c(z)−1, with

c(z) = c(x+ iy) = y−n/2,

and show that image of L2
µ(P ;C) under the map f 7→ cf is the space En of functions

g : P → C, such that the map z 7→ yng(z)2 is µ-integrable.

(3) Then show that the equivalent unitary representation is given by

(Πs(f))(z) = (cz − a)−ng

(
b− dz
cz − a

)
, g ∈ En, z ∈ P, s =

(
a b
c d

)
.
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Problem 6.16. Let G be a compact (metrizable) group and H be a closed subgroup of G.
Show that L2

µ′(H\G) is the image of L2
µ(G/H) under the isomorphism g 7→ ǧ.

Problem 6.17. Let G = SO(n + 1), H = SO(n), and G/H = SO(n + 1)/SO(n) ' Sn.
By Proposition 6.18, the space L2(SO(n + 1)/SO(n)) ' L2(Sn) is the Hilbert sum of the
subspaces Lρ ⊆ aρ for which (ρ : σ0) ≥ 1, where

L2(SO(n+ 1)) =
⊕
ρ

aρ

is the Hilbert sum given by Peter–Weyl I and where d = (ρ : σ0) ≥ 1 is the number of times
that the trivial representation σ0 of SO(n) is contained in the restriction of Mρ to SO(n).

(1) Show that the Lρ for which (ρ : σ0) = 1 are exactly the spaces HC
k (Sn) of spherical

harmonics on Sn; see Definition 5.1.

(2) (Advanced) Obtain a decomposition of the regular representation R : SO(n + 1) →
U(L2(Sn)) into irreducible representations Rk : SO(n+1)→ U(HC

k (Sn)) of SO(n+1)
in the spaces HC

k (Sn) of spherical harmonics on Sn. Hint: See Dieudonné [13], Chapter
XXIII, Section 38, or Gallier and Quaintance [28], Chapter 7.

(3) (Advanced) Show that the irreducible representations Rk : SO(n + 1) → U(HC
k (Sn))

are irreducible representations of class 1 relative to SO(n).

Hint . See Vilenkin, Chapter IX, Sections 2–3 [70].

Problem 6.18. (Advanced Exercise) Let G be a locally compact group, H be a closed sub-
group of G, E be a separable Hilbert space, and U : H → U(E) be a unitary representation
of H. Define

H0 = {f ∈ C(G,E) | π(supp(f)) is compact and

f(sh) = U(h−1)(f(s)) for all s ∈ G and all h ∈ H},

and define an inner product on H0 via

〈f, g〉 =

∫
G/H

〈f(s), g(s)〉E dµ(sH).

LetH be the Hilbert space completion ofH0. Given any quasi-invariant measure µ associated
with a continuous function % : G× (G/H)→ (0,∞), define Πµ

s by

(Πµ
s (f))(t) = %(s, tH)1/2f(s−1t), f ∈ H, s, t ∈ G.

Show that the operators Πµ
s are unitary with respect to the inner product on H defined

above.

Hint . See Folland [22], Chapter 6, Section 6.1.
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Problem 6.19. (Advanced Exercise) Let G be a locally compact group, H be a closed sub-
group of G, E be a separable Hilbert space, and U : H → U(E) be a unitary representation
of H. Define

H0 =

{
f ∈ C(G,E) | π(supp(f)) is compact and

f(sh) =

(
∆H(h)

∆G(h)

)1/2

U(h−1)(f(s)) for all s ∈ G and all h ∈ H
}
.

Show that H0 is not empty.

Hint . Modify Proposition 6.10 by adding the factor
(

∆G(h)
∆H(h)

)1/2

under the integral.

Problem 6.20. Show that p : E → X as defined in Definition 6.17 does not depend on the
choice of g in the coset gH.

Problem 6.21. Verify that E = G ×H Hσ with the projection p : E → X as defined in
Definition 6.17 is a G-bundle (see Definition 6.21).

Problem 6.22. Let L2(G;E0) be the Hilbert space defined in Definition 6.24. Let Lσ be
the subspace of L2(G;E0) given by

Lσ = {f ∈ L2(G;E0) | f(gh) = σ(h−1)(f(g)), for all g ∈ G and all h ∈ H}.

Show that Lσ is closed in L2(G;E0).

Problem 6.23. Let G be a locally compact group, H be a closed subgroup of G, E be some
topological Hausdorff space, and p : E → X be a surjective continuous map, where as usual,
we write X = G/H. Furthermore, assume that E (really p : E → X) is a hermitian G-bundle
of finite rank as defined in Definition 6.23. This means we have a unitary representation
σ : H → U(E0) given by

σ(h)(z) = h · z.

If A(h) is the unitary matrix representing σ(h) with respect to the basis (e1, . . . , en), with

σ(h)(ej) =
n∑
i=1

aijei,

prove that the condition f(gh) = σ(h−1)(f(g)) translates intof1(gh)
...

fn(gh)

 = A(h)∗

f1(g)
...

fn(g)

 .
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Chapter 7

Constructing Induced
Representations a la Mackey

One of the most important contributions to the theory of unitary representations is a method
due to Mackey for constructing all irreducible representations of a locally compact group
as induced irreducible representations from “small” subgroups Hν of G. This method is
often referred to as the “Mackey machine.” In its most general form, the method is very
complicated but in the case where G has an abelian normal subgroup N , it is tractable.
The basic reason is that because N is abelian its irreducible representations are given by the
characters of N . There is also a natural action · : G × N̂ → N̂ of G on the dual group N̂
(the group of characters of N). The key to the construction is that because N is an abelian
locally compact group, by Theorem 3.20, for any unitary representation U : G → U(HU)
of G, since the restriction of U to N is a unitary representation, there is a unique regular
projection-valued measure P on the dual group N̂ , such that

U(n) =

∫
N̂

χ(n) dP (χ), n ∈ N.

Moreover, the projection-valued measure P on N̂ satisfies two properties (see Proposition
7.1):

(1) We have

U(s)P (E)U(s)−1 = P (s · E), for all Borel subsets E ⊆ N̂ and all s ∈ G. (imp)

(2) If U is irreducible, then for every G-invariant Borel set E ⊆ N̂ (which means that
{s · χ | χ ∈ E} = s · E = E for every s ∈ G), either P (E) = I or P (E) = 0.

If the action of G on N̂ is nice enough (the space of orbits of this action is countably
separated, see Definition 7.2), then P is identically zero except on a single orbit Oν , so we can
consider P as living on G/Gν (where Gν is the stabilizer of ν), and G acts transitively on this
space. Then the data (G,U,X, P ) consisting of the unitary representation U : G→ U(HU),

477
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of a transitive action of G on the homogeneous space X = G/Gν (for some fixed ν ∈ N̂),
and of a regular projection-valued measure P on G/Gν , such that

U(s)P (E)U(s)−1 = P (s · E), for all Borel sets E ⊆ G/Gν and all s ∈ G,

constitute a transitive system of imprimitivity (see Definition 7.3). Technically, there are
two equivalent ways of defining systems of imprimitivity but in this introduction we can
ignore the second definition. The relevance of systems of imprimitivity is Mackey’s im-
primitivity theorem (Theorem 7.3), which implies that U is equivalent to a representation
obtained by the induction method from some irreducible representation of Gν . Technically,
Mackey’s imprimitivity theorem says more, namely that any transitive system of imprim-
itivity is equivalent to a system of imprimitivity arising by induction from the subgroup
defining the homogeneous space X. If the action of G on N̂ is regular (see Definition 7.6),
then Mackey’s imprimitivity theorem implies Theorem 7.4, which is the result that shows
that for every irreducible representation U : G → U(HU) of G, there is a unique orbit O,
such that for any ν ∈ O (so that O = Oν), there is an irreducible unitary representation
σ : Gν → U(Hσ), such that U is equivalent to IndGGνσ, the induced representation obtained
from σ.

Unfortunately, the subgroups Gν may still not be small enough. However, if for some
ν ∈ N̂ there is a continuous homomorphism ν̃ : Gν → U(1) extending ν, then for every
irreducible representation ρ : Gν/N → U(Hρ) of Gν/N , the map σ : Gν → U(Hρ) given by

σ(s) = ν̃(s)ρ(sN), s ∈ Gν ,

defines an irreducible representation of Gν in Hρ (see Proposition 7.6). In this case, we can
use irreducible representations of the “little groups” Hν = Gν/N in the inducing process of
Theorem 7.4.

The above extension condition is satisfied by semi-direct products G = N oH, where N
is a normal abelian subgroup of G. Then every irreducible representation of G is obtained
in terms of the characters of N and of the irreducible representations of the little groups
Hν associated with the characters ν ∈ N̂ ; see Theorem 7.7. Using this method, we describe
all irreducible representations of SE(n); see Example 7.1. We also determine all irreducible
representations of O(2) (see Example 7.2) and indicate how all irreducible representations
of E(2) and E(3) can be obtained.

Historically, the little group method was first used by Wigner in a famous paper (1939)
on the representations of the Poincaré group R4oSO0(3, 1), where SO0(3, 1) is the so-called
restricted Lorentz group.

A thorough exposition of Mackey’s method is given in Folland [22] (Chapter 6). A concise
but very clear description of Mackey’s method is also provided in Warner [72] (Chapter
5, Section 5.4). The reader interested in the history and the applications to physics (in
particular, quantum mechanics) of harmonic analysis should consult Mackey [50].
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7.1 Introduction to the Mackey Machine

The reader may want to review the notion of projection-valued measure discussed in Section
2.12. Let G be a locally compact group and N be a nontrivial closed abelian normal subgroup
of G. The group G acts by conjugation on the normal subgroup N , namely for every s ∈ G,
we let Cs be the automorphism of N given by Cs(t) = sts−1 for all t ∈ N . Then the map
s 7→ Cs is a homomorphism from G to Aut(N). Since G is a locally compact group and N is

a closed abelian subgroup of G, the dual group N̂ , namely the group of characters χ : N → C
of N , is well-defined. But then we can define an action of G on N̂ as follows.

Definition 7.1. With G, N and N̂ as above, we define an action · : G× N̂ → N̂ , such that
for all s ∈ G, n ∈ N , and χ ∈ N̂ ,

(s · χ)(n) = χ(s−1ns). (act)

To simplify notation, we often denote s · χ as sχ.

Note that

((st) · χ)(n) = χ((st)−1nst) = χ(t−1s−1nst)

= (t · χ)(s−1ns) = (s · (t · χ))(n),

and obviously
(e · χ)(n) = χ(e−1ne) = χ(n),

so · : G× N̂ → N̂ is indeed an action of G on N̂ . Then, as usual, for every χ ∈ N̂ , we define
the stabilizer Gχ of χ and the orbit Oχ ⊆ N̂ of χ as

Gχ = {s ∈ G | s · χ = χ}
Oχ = {s · χ | s ∈ G}.

The subgroup Gχ is closed in G. Since N is abelian, we have N ⊆ Gχ, and recall that

there is a bijection between Oχ and G/Gχ. The action · : G × N̂ → N̂ is never transitive
(for instance, O1 = {1}) and the orbits can be complicated. What is remarkable is the fact

that under certain conditions on the action of G on N̂ , an irreducible unitary representation
U of G arises from some irreducible representation ρ of Gν for some ν ∈ N̂ as an induced
representation from Gν to G.

The key to the construction is that because N is an abelian locally compact group, by
Theorem 3.20, for any unitary representation U : G → U(HU) of G, since the restriction of
U to N is a unitary representation, there is a unique regular projection-valued measure P
on the dual group N̂ , such that

U(n) =

∫
N̂

χ(n) dP (χ), n ∈ N.
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The crucial step is to figure out for every fixed s ∈ G what are the projection-valued measures
associated with the representations

n 7→ U(s)U(n)U(s−1)

and
n 7→ U(sns−1).

Since U is a representation, U(s)U(n)U(s−1) = U(sns−1), so we obtain a condition on P .

Proposition 7.1. Let G be a locally compact group and N be a closed abelian normal sub-
group of G. For any unitary representation U : G→ U(HU) of G, let P be the unique regular

projection-valued measure on N̂ , such that for the restriction U : N → U(HU) of U to N ,
we have

U(n) =

∫
N̂

χ(n) dP (χ), n ∈ N.

The following properties hold.

(1) The projection-valued measure P on N̂ satisfies the equation

U(s)P (E)U(s)−1 = P (s · E), for all Borel subsets E ⊆ N̂ and all s ∈ G. (imp)

(2) If U is irreducible, then for every G-invariant Borel set E ⊆ N̂ (which means that
{s · χ | χ ∈ E} = s · E = E for every s ∈ G), either P (E) = I or P (E) = 0. We say
that P is ergodic.

Proof. Since U(s) is a unitary map for every s ∈ G and since each P (E) is a self-adjoint
idempotent linear map, it is immediately verified that U(s)P (E)U(s)−1 = U(s)P (E)U(s)∗

is also a self-adjoint idempotent linear map. It is not hard to check that for any fixed s ∈ G,
the map Q defined on the Borel subsets of N̂ by

Q(E) = U(s)P (E)U(s)−1

is a regular projection-valued measure (see Definition 2.22). For all u, v ∈ HU , for all n ∈ N ,
since U(s) is unitary, we have

〈U(s)U(n)U(s)−1(u), v〉 = 〈U(n)U(s)−1(u), U(s)−1(v)〉,

so by definition,

〈U(n)U(s)−1(u), U(s)−1(v)〉 =

∫
N̂

χ(n) dPU(s)−1(u),U(s)−1(v)(χ).

But by definition, for any Borel set E in N̂ ,

PU(s)−1(u),U(s)−1(v)(E) = 〈P (E)U(s)−1(u), U(s)−1(v)〉
= 〈U(s)P (E)U(s)−1(u), v〉
= 〈Q(E)(u), v〉 = Qu,v(E).



7.1. INTRODUCTION TO THE MACKEY MACHINE 481

so we deduce that

〈U(s)U(n)U(s)−1(u), v〉 =

∫
N̂

χ(n) dQu,v(χ),

and thus

U(s)U(n)U(s)−1 =

∫
N̂

χ(n) dQ(χ). (∗1)

We also have

〈U(sns−1)(u), v〉 =

∫
N̂

χ(sns−1) dPu,v(χ).

Since by (act),
(s · χ)(n) = χ(s−1ns),

we obtain

〈U(sns−1)(u), v〉 =

∫
N̂

(s−1 · χ)(n) dPu,v(χ).

We now need to go back to Vol I, Section 8.10. We have an action · : G × N̂ → N̂ and
a σ-Radon measure µ on N̂ (which is locally compact). Recall from Vol I, Definition 8.18

that for any s ∈ G and any Borel subset E of N̂ , we define s · E as

s · E = {s · χ | χ ∈ E},

for any function f : N̂ → C, the function λs(f) by

(λs(f))(χ) = f(s−1 · χ),

and the measure λs(µ) by
(λs(µ))(E) = µ(s−1 · E).

The proof of Vol I, Proposition 8.16 is immediately adapted to show that for any f ∈ L1(N̂),
we have ∫

N̂

λs(f) dµ =

∫
N̂

f dλs−1(µ),

which can also be written as∫
N̂

f(s−1 · χ) dµ(χ) =

∫
N̂

f(χ) d(λs−1(µ))(χ).

If we apply the above equation to the function f given by

f(χ) = χ(n)

for some fixed n ∈ N and to the positive measure Pu,u, we obtain∫
N̂

(s−1 · χ)(n) dPu,u(χ) =

∫
N̂

χ(n) d(λs−1(Pu,u))(χ).
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Using the polarization method of Section 2.12, since∫
f dPu,v =

1

4

(∫
f dPu+v,u+v −

∫
f dPu−v,u−v + i

(∫
f dPu+iv,u+iv −

∫
f dPu−iv,u−iv

))
,

we obtain

〈U(sns−1)(u), v〉 =

∫
N̂

(s−1 · χ)(n) dPu,v(χ)

=

∫
N̂

χ(n) d(λs−1(Pu,v))(χ),

where (λs−1(Pu,v))(E) = Pu,v(s · E), so

〈U(sns−1)(u), v〉 =

∫
N̂

χ(n) d(λs−1(Pu,v))(χ). (∗2)

Now by definition, for any Borel subset E of N̂ ,

Pu,v(s · E) = 〈P (s · E)(u), v〉,

so
(λs−1(Pu,v))(E) = Pu,v(s · E) = 〈P (s · E)(u), v〉.

We can check quickly that the map E 7→ P (s · E) is a regular projection-valued measure,

since the map E 7→ s · E is a bijection on Borel sets, such that s · N̂ = N̂ and s · ∅ = ∅.
Consequently, the map λs−1(P ) given by (λs−1(P ))(E) = P (s · E) is a projection-valued
measure, and by (∗2), we have

U(sns−1) =

∫
N̂

χ(n) d(λs−1(P ))(χ). (∗3)

Since U is a representation, U(s)U(n)U(s)−1 = U(sns−1), so by (∗1) and (∗3), we obtain

U(sns−1) =

∫
N̂

χ(n) dQ(χ) =

∫
N̂

χ(n) d(λs−1(P ))(χ). (∗4)

By uniqueness of the projection-valued measure defining a unitary representation, we con-
clude that

Q = λs−1(P ),

which more explicitly means that

U(s)P (E)U(s)−1 = P (s · E), for all Borel sets E ⊆ N̂ .

If U is irreducible and if the Borel set E is G-invariant, that is, s · E = E, then

U(s)P (E)U(s)−1 = P (E), for all s ∈ G,

so U(s)P (E) = P (E)U(s) for all s ∈ G, which means that P (E) ∈ C(U), where C(U) is the
commutant of U (see Definition 3.9). By Schur’s Lemma, P (E) is a scalar multiple of the
identity, and since it is a projection, either P (E) = I or P (E) = 0.
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In summary, for any unitary representation U : G→ U(HU) of G, there is some regular

projection-valued measure P on N̂ , such that

U(s)P (E)U(s)−1 = P (s · E), for all Borel sets E ⊆ N̂ and all s ∈ G,

and there is an action of the group G on N̂ . These are just the ingredients that constitute
Mackey’s systems of imprimitivity! However, before defining systems of imprimitivity, we
note that if the representation U is irreducible, it would be nice if P was identically zero
except on a single orbit Oν (for some ν ∈ N̂) because then we could consider P as living on
G/Gν , and G acts transitively on this space. Furthermore, in this case, Mackey’s imprim-
itivity theorem applies, which implies that U is equivalent to a representation obtained by
the induction method from some irreducible representation of Gν . This is the essence of the
Mackey machine for constructing induced representations.

Definition 7.2. Let G be a locally compact group and N be a closed normal abelian
subgroup of G. Consider the action of G on N̂ as in Definition 7.1. The space of orbits
of this action is countably separated if there is a countable family (Ej) of G-invariant Borel

subsets of N̂ , such that for each orbit O, we have

O =
⋂
{Ej | O ⊆ Ej};

in other words, each orbit is the intersection of the Ej that contain it.

Proposition 7.2. If U is an irreducible unitary representation U : G → U(HU) and if the
space of orbits of the action of Definition 7.1 is countably separated, then there is a single
orbit O = Oν in N̂ , such that P (Oν) = I.

Proof. Let (Ej) be a countable family of G-invariant Borel subsets of N̂ with the property
of Definition 7.2, so that for every orbit O, there is some countable index set J , such that

O =
⋂
j∈J

Ej.

It follows that P (O) is the projection onto the intersection of the ranges of the P (Ej),
with j ∈ J . Since U is irreducible, by Proposition 7.1, either P (Ej) = I or P (Ej) = 0.
Consequently, if P (Ej) = I for all j ∈ J , then P (O) = I, or else P (O) = 0 if P (Ej) = 0
for some j ∈ J . We claim that there is some orbit O, such that P (O) = I. Otherwise, for

every orbit O there is some index jO such that O ⊆ EjO and P (EjO) = 0. Since N̂ is the

union of the orbits, by property (4) of Definition 2.22. we obtain P (N̂) = 0, which is absurd

since P (N̂) = 1. Finally, suppose that there are two disjoint orbits O1 and O2, such that
P (O1) = P (O2) = I. But then by property (3) of Definition 2.22,

I = P (O1) ◦ P (O2) = P (O1 ∩ O2) = P (∅) = 0,

a contradiction.
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If the action of G on N̂ is nice enough so that the space of orbits of this action is countably
separated and if G/Gχ is homeomorphic to Oχ for all χ ∈ N̂ , then the data consisting of
the unitary representation U : G → U(H), of a transitive action of G on the homogeneous

space X = G/Gν (for some fixed ν ∈ N̂), and of a regular projection-valued measure P on
G/Gν , such that

U(s)P (E)U(s)−1 = P (s · E), for all Borel sets E ⊆ G/Gν and all s ∈ G,

constitute a transitive system of imprimitivity . Mackey’s imprimitivity theorem applies to
such a system, and this theorem is the key to defining irreducible representations obtained
by the induced representation method. We now define (transitive) systems of imprimitivity
and state Mackey’s famous imprimitivity theorem.

7.2 Systems of Imprimitivity and the Imprimitivity

Theorem

There are two equivalent ways of defining systems of imprimitivity. The first definition makes
explicit use of a projection-valued measure and the second one uses a representation of the
algebra C0(S;C). The second definition is often technically easier to work with.

Definition 7.3. A system of imprimitivity, version 1, is a quadruple Σ = (G,U,X, P ),
where

(1) G is a locally compact group.

(2) U : G→ U(HU) is a unitary representation of G in a Hilbert space HU .

(3) X is a G-space, which means that X is a locally compact Hausdorff space and there is
a continuous action · : G×X → X.

(4) P is projection-valued measure on X with values in L(HU) satisfying the equation

U(s)P (E)U(s)−1 = P (s · E), for all Borel subsets E ⊆ X and all s ∈ G. (imp1)

The system of imprimitivity Σ = (G,U,X, P ) is transitive if X is a homogeneous G-space.
This means that X = G/H for some closed subgroup H of G (with the action g · (sH) =
(gs)H, for all g, s ∈ G).

The projection-valued measure P on X determines a non-degenerate representation
V : C0(X;C)→ L(HU) of the algebra C0(X;C) defined by

V (f) =

∫
X

f dP, f ∈ C0(X;C).
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As in the proof of Proposition 7.1, for all u, v ∈ HU and all f ∈ C0(X;C), since U(s) is
unitary, we have

〈U(s)V (f)U(s)−1(u), v〉 = 〈V (f)U(s)−1(u), U(s)−1(v)〉,

so by definition

〈V (f)U(s)−1(u), U(s)−1(v)〉 =

∫
X

f dPU(s)−1(u),U(s)−1(v).

But by definition, for any Borel set E in X,

PU(s)−1(u),U(s)−1(v)(E) = 〈P (E)U(s)−1(u), U(s)−1(v)〉
= 〈U(s)P (E)U(s)−1(u), v〉
= 〈P (s · E)(u), v〉 by (imp1)

= Pu,v(s · E) = λs−1(Pu,v)(E).

Consequently,

〈U(s)V (f)U(s)−1(u), v〉 =

∫
X

f dλs−1(Pu,v) =

∫
X

λs(f) dPu,v.

The above equation says that

U(s)V (f)U(s)−1 =

∫
X

λs(f) dP,

which, by definition of V , means that

U(s)V (f)U(s)−1 = V (λs(f)), f ∈ C0(X;C), s ∈ G.

Conversely, if we have a nondegenerate representation V : C0(X;C) → L(HU) satisfying
the above equation, then by Theorem 2.61, there is a projection-valued measure P on X,
such that

V (f) =

∫
X

f dP, f ∈ C0(X;C).

Since the equation

U(s)V (f)U(s)−1 = V (λs(f)), f ∈ C0(X;C), s ∈ G

holds, a reasoning similar to the one used in the proof of Proposition 7.1 shows that Equation
(imp1) holds. We are led to the following definition, which, by the above reasoning, is
equivalent to Definition 7.3.

Definition 7.4. A system of imprimitivity, version 2, is a quadruple Σ = (G,U,X, V ),
where
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(1) G is a locally compact group.

(2) U : G→ U(HU) is a unitary representation of G in a Hilbert space HU .

(3) X is a G-space, which means that X is a locally compact Hausdorff space and there is
a continuous action · : G×X → X.

(4) V is a nondegenerate representation V : C0(X;C)→ L(HU) satisfying the equation

U(s)V (f)U(s)−1 = V (λs(f)), f ∈ C0(X;C), s ∈ G. (imp2)

As before, the system of imprimitivity Σ = (G,U,X, V ) is transitive if X is a homogeneous
G-space, X = G/H, for some closed subgroup H of G.

One of the main sources of systems of imprimitivity is from induced representations. In
fact, we obtain transitive systems of imprimitivity.

Technically, it is better to use Blattner’s method for constructing an induced unitary
representation Π′ : G → U(H′) of G from a unitary representation U of H, where H is a
closed subgroup of G, as described in Section 6.11, because the definition of Π′ in Formula
(indv2) is simpler than Formula (indv1).

Since we denote the subgroup of G by H and since we use E to denote Borel sets, to
avoid a notational clash we denote the Hilbert space involved in the unitary representation
U of H by HU , so that our representation of H is written U : H → U(HU). Also, since we
are using Blattner’s construction instead of the first method from Section 6.11, we will drop
the prime superscript and write Π instead of Π′ and H instead of H′. The Hilbert space HΠ

associated with the induced unitary representation Π: G → U(HΠ) of the representation
U : H → U(HU), usually denoted H unless confusion arises, is the completion of a space H0

defined as

H0 =

{
f ∈ C(G,HU) | π(supp(f)) is compact and

f(sh) =

(
∆H(h)

∆G(h)

)1/2

U(h−1)(f(s)) for all s ∈ G and all h ∈ H
}
.

Here, π : G→ G/H denotes the quotient map.

Given a unitary representation U : H → U(HU), the induced unitary representation
Π: G→ U(H), also denoted IndGH,H U or even IndGH U , is given by

(Πs(f))(t) = f(s−1t), f ∈ H, s, t ∈ G.

A natural candidate for a projection-valued measure PU on X = G/H is to set

PU(E)(f) = (χE ◦ π)(f), E ⊆ G/H, f ∈ H.
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Here, PU(E) ∈ L(H) and (χE ◦ π)(f) is the pointwise-multiplication of the functions χE ◦ π
and f , both defined on G. However, it is not obvious that this definition makes sense and
that condition (imp1) is satisfied, so we circumvent these difficulties by using the definition
of a system of imprimitivity given by Definition 7.4. We need to define a representation
V : C0(G/H,C)→ L(H) satisfying condition (imp2).

If we take a close look at the definition of H0 in Section 6.11, we can check that for any
ϕ ∈ C0(G/H;C) and any f ∈ H0, since f : G→ HU and ϕ◦π : G→ C, the function (ϕ◦π)f
from G to HU given by

((ϕ ◦ π)f)(s) = (ϕ ◦ π)(s)f(s)

belongs to H0 and that
‖(ϕ ◦ π)f‖H ≤ ‖ϕ‖∞ ‖f‖H .

As a consequence, since H0 is dense in H, if we set

V (ϕ)(f) = (ϕ ◦ π)f, f ∈ H,

we obtain a representation V : C0(G/H,C) → L(H), and it is easy to see that V is nonde-
generate. It remains to that prove that (indv2) hold (with respect to Π). For all f ∈ H0

and all s, t ∈ G (recall that functions in H0 have domain G), we have

((ΠsV (ϕ)Π−1
s )(f))(t) = Πs(V (ϕ)(Πs−1(f(t))))

= V (ϕ)(Πs−1(f(s−1t))) by definition of Π

= ϕ(π(s−1t))Πs−1(f(s−1t)) by definition of V

= ϕ(π(s−1t))f(t) by definition of Π

= ϕ(s−1 · π(t))f(t) by definition of the action on G/H

= λs(ϕ)(π(t))f(t)

= (V (λs(ϕ))(f))(t), by definition of V

proving that
(ΠsV (ϕ)Π−1

s )(f) = V (λs(ϕ))(f),

for all f ∈ H0. Since H0 is dense in H, we deduce that (ind2) holds, and so (G,Π, G/H, V )
is a transitive system of imprimitivity, version 2.

By Theorem 2.61, there is a unique projection-valued measure PU on X, such that

V (f) =

∫
X

f dPU , f ∈ C0(X;C),

and (G, IndGHU,G/H, P
U) is called the canonical system of imprimitivity associated to Π =

IndGHU . It can be verified that

PU(E)(f) = (χE ◦ π)(f), E ⊆ G/H, f ∈ H,
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as we said earlier, but using the representation V , we verified that such a definition is
legitimate.

Remark: The projection-valued measure arising from V is denoted by PU . We prefer the
notation PU to the notation P V even though PU arises from V , because V is a representation
in a Hilbert space H obtained as the completion of a space H0, which consists of certain
functions from G to HU , where HU is the Hilbert space of the representation U .

The raison d’être for all this is that every transitive system of imprimitivity is equivalent
to the canonical system of imprimitivity arising from some induced representation. This
theorem originally due to Mackey is one of the greatest results in the theory of unitary
representations. First, we define the notion of equivalence of systems of imprimitivity.

Definition 7.5. Two systems of imprimitivity Σ = (G,U,X, P ) and Σ′ = (G,U ′, X, P ′)
(with the same groupG and the same spaceX), where U : G→ U(HU) and U ′ : G→ U(HU ′)
are two unitary representations, are equivalent if there is a unitary map T : HU → HU ′ , such
that

TU(s)T−1 = U ′(s), for all ∈ G
TP (E)T−1 = P ′(E), for all Borel sets E ⊆ X.

We now state the celebrated imprimitivity theorem.

Theorem 7.3. (Mackey’s Imprimitivity Theorem, 1949–1953) Let G be a locally compact
group and H be a closed subgroup of G. Every transitive system of imprimitivity Σ =
(G,U,G/H, P ), where U : G → U(HU) is a unitary representation of G, is equivalent to
a transitive system of imprimitivity of the form (G,Π, G/H, P σ), where Π = IndGHσ : G →
U(H) is the representation induced by some unitary representation σ : H → U(Hσ) of H.
Thus, there is a unitary map T : HU → H, such that

TU(s)T−1 = (IndGHσ)(s), for all s ∈ G
TP (E)T−1 = P σ(E), for all Borel sets E ⊆ G/X.

Moreover, the unitary representation σ : H → U(Hσ) is determined by Σ up to equivalence.

The proof of Theorem 7.3 is long and very technical. The version of the proof given
in Folland [22] requires two sections (Sections 6.4 and 6.5) and stretches from page 167 to
page 182. A key idea due to Blatter is to use an algebra L(X ×G) and to extend a unitary
representation of G to this algebra, by analogy with the method of extending a representation
of G to a representation of L1(G). If G is a Lie group, the proof is significantly simpler. A
version of the imprimitivity theorem for Lie groups called the Mackey Inducibility Criterion
by Kirillov is proven in Kirillov [42]; see Appendix V, Section 2.4. A sketch of proof for Lie
groups is also given by Taylor [66]; see Chapter V, Section 1. The good news is that we now
have all the machinery needed to tackle the problem introduced in Section 7.1.
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7.3 The Mackey Machine

Let G be a locally compact group and N be a nontrivial closed abelian normal subgroup of
G. As introduced in Definition 7.1, there is an action · : G× N̂ → N̂ , such that for all s ∈ G,
n ∈ N , and χ ∈ N̂ ,

(s · χ)(n) = χ(s−1ns). (act)

Recall that for every χ ∈ N̂ , we define the stabilizer Gχ of χ and the orbit Oχ of χ as

Gχ = {s ∈ G | s · χ = χ}
Oχ = {s · χ | s ∈ G}.

Our goal is to show that if the action of G on N̂ is nice enough, then every irreducible
representation U : G→ U(HU) of G arises as an induced representation of some irreducible

representation σ of Gν for some ν ∈ N̂ . The notion of nice action is formalized as follows.

Definition 7.6. We say the action · : G× N̂ → N̂ is regular , or that G acts regularly on N̂ ,
if the following two conditions hold:

(1) The orbit space of our action is countably separated, as in Definition 7.2. Recall that

this means that there is a countable family (Ej) of G-invariant Borel subsets of N̂ ,
such that for each orbit O, we have

O =
⋂
{Ej | O ⊆ Ej},

(2) For every ν ∈ N̂ , the map from G/Gν to Oν given by gGν 7→ g ·ν is a homeomorphism.

Remark: When condition (1) of Definition 7.6 holds, Kirillov called the orbit space tame;
see Kirillov [42], Appendix V, Section 2.4.

Now, given an irreducible representation U : G → U(HU) of G, the “miracle” is that

(G,U,G/Gν , P ) is a transitive system of imprimitivity for some ν ∈ N̂ , where P is the
projection-valued measure arising from Proposition 7.1 and where the unique orbit Oν exists
by Proposition 7.2. Then the imprimitivity theorem applies and yields a unitary represen-
tation σ : Gν → Hσ, such that U is equivalent to IndGGνσ : G → U(H). This yields most of
the first main theorem of this section.

Theorem 7.4. Let G be a locally compact group and N be a nontrivial closed abelian nor-
mal subgroup of G. Suppose the action · : G × N̂ → N̂ is regular. For every irreducible
representation U : G→ U(HU) of G, there is a unique orbit O, such that for any ν ∈ O (so
that O = Oν), there is an irreducible unitary representation σ : Gν → U(Hσ), such that U
is equivalent to IndGGνσ. Moreover, we have

σ(n) = ν(n)idHσ

for all n ∈ N .
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Proof sketch. Since the unitary representation U : G→ U(HU) is irreducible, by Proposition
7.1, the projection-valued measure P induced by the restriction of U to N has property
(indv1). Since the action of G on N̂ is regular, the orbit space is countably separated, so
by Proposition 7.2, there is a single orbit O, such that P (O) = I, and so P is identically

zero on N̂ −O. Pick any ν ∈ N̂ , such that O = Oν . The fact that the action of G on N̂ is
regular implies that G/Gν is homeomorphic to Oν and we may pull P back to G/Gν . Now
(G,U,G/Gν , P ) is a transitive system of imprimitivity so we can apply the imprimitivity
theorem (Theorem 7.3), which tells us that (G,U,G/Gν , P ) is equivalent to a transitive
system of imprimitivity of the form (G, IndGGνσ,G/Gν , P

σ), where IndGGνσ : G→ U(H) is the
representation induced by some unitary representation σ : Gν → U(Hσ) of Gν . In particular,
the unitary representations U : G → U(HU) and IndGGνσ : G → U(H) are equivalent, and

since U is irreducible, so is IndGGνσ. This also implies that σ is irreducible. The last part of
the theorem is proven in Folland [22]; see Proposition 6.37.

The orbit O in Theorem 7.4 is unique, but ν may be chosen arbitrarily in O. If ν ′ is
another element of O = Oν , then ν ′ = s · ν for some s ∈ G and the stabilizers Gν and Gν′

are isomorphic; in fact, Gν′ = s ·Gν · s−1; see Vol I, Section C.3. But then, given any unitary
representation σ : Gν → U(Hσ) of Gν , we obtain the representation σ′ : Gν′ → U(Hσ) of
Gν′ given by σ′(t) = σ(s−1ts), for all t ∈ Gν , and this map is obviously bijective. We
can also check that the unitary transformation T : H → H′ given by (Tf)(t) = f(s−1ts)
(where f ∈ H) is an equivalence of the unitary representations IndGGνσ : G → U(H) and

IndGGν′σ
′ : G→ U(H′). Hence, the choice of ν in O is not essential.

Theorem 7.4 has the following converse.

Theorem 7.5. Let G be a locally compact group and N be a nontrivial closed abelian normal
subgroup of G. Suppose the action · : G × N̂ → N̂ is regular. For any ν ∈ N̂ and for any
irreducible unitary representation σ : Gν → U(Hσ) of Gν, such that σ(n) = ν(n)idHσ for all
n ∈ N , the unitary representation IndGGνσ : G → U(H) is irreducible. If σ′ : Gν → U(Hσ′)

is another unitary representation of Gν, such that IndGGνσ : G → U(H) and IndGGνσ
′ : G →

U(H′) are equivalent, then σ and σ′ are equivalent.

Theorem 7.5 is proven in Folland [22]; see Theorem 6.39.

Theoretically, Theorem 7.4 and Theorem 7.5 settle our problem, but in many cases these
results are not useful because the groups Gν may be rather large and their representations
may not be much easier to analyze than the representations of G itself. For example, if
ν = 1 (the constant character with value 1), then Oν = {1} and Gν = G. In this case,
Theorem 7.4 yields an irreducible representation σ : G→ U(Hσ), such that σ(n) = idHσ for
all n ∈ N equivalent to the original representation U : G→ U(HU). Since σ is trivial on N
it follows that σ yields an irreducible, representation ρ : G/N → U(Hσ) of G/N , and σ is a
lift of the representation ρ of the smaller group G/N to G, in the sense that σ = ρ◦ q, where



7.4. IRREDUCIBLE REPRESENTATIONS OF SEMI-DIRECT PRODUCTS 491

q : G→ G/N is the quotient map as illustrated below.

G
q //

σ
##

G/N

ρ

��
U(Hσ).

Recall that N ⊆ Gν . There are a number of examples where the character ν ∈ N̂ can
be extended “nicely” to a representation of Gν . In this case, we can lift an irreducible
representation of the smaller group Gν/N to Gν .

Proposition 7.6. Let G be a locally compact group and N be a nontrivial closed abelian
normal subgroup of G. Suppose that for some ν ∈ N̂ there is a continuous homomorphism
ν̃ : Gν → T extending ν. For every irreducible representation ρ : Gν/N → U(Hρ) of Gν/N ,
the map σ : Gν → U(Hρ) given by

σ(s) = ν̃(s)ρ(sN), s ∈ Gν

defines an irreducible representation of Gν in Hρ, such that σ(n) = ν(n)idHρ for all n ∈ N .
Furthermore, every irreducible unitary representation σ of Gν as above arises in this way.

Proposition 7.6 is proven in Folland [22]; see Proposition 6.40. The proof is simple but not
illuminating. An orbit O such that some character ν ∈ O can be extended to a continuous
homomorphism ν̃ : Gν → T is called accommodating ; see Warner [72] (Section 5.4).

It turns out that an interesting class of groups to which Proposition 7.6 applies is the
class of semi-direct products NoH, in which N is an abelian group. In this case, the groups
Gν/N are isomorphic to the groups Hν = Gν ∩H, called little groups . The Mackey machine
yields all irreducible representations of G = N oH as induced representations obtained by
combining characters of N and irreducible representations of the little groups Hν . The little
group method was first used by Wigner in a famous paper (1939) on the representations of
the Poincaré group R4oSO0(3, 1), where SO0(3, 1) is the so-called restricted Lorentz group.

7.4 Irreducible Representations of Semi-Direct

Products

For our purposes, it is more convenient to adopt the “internal” view of a semi-direct product,
where a group G is already given as well as two subgroups N and H, such that

(1) N is a normal subgroup of G.

(2) G = NH.

(3) N ∩H = {e}.
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Then (2) and (3) imply that the map N ×H 7→ G given by (n, h) 7→ nh is a bijection. The
multiplication operation in G is given by

(n1h1)(n2h2) = (n1[h1n2h
−1
1 ])(h1h2), n1, n2 ∈ N, h1, h2 ∈ H.

So H acts on N by conjugation on the left. It is immediately verified that the inverse of
nh ∈ G is given by

(nh)−1 = (h−1n−1h)h−1.

Since we also assume that G is locally compact, we require N and H to be closed, and
that the map N×H 7→ G given by (n, h) 7→ nh is a homeomorphism. The standard notation
for a semi-direct product is G = NoH.1 The multiplication operation in G = NoH makes
it clear that the map q : N o H → H given by q(nh) = h (n ∈ N, h ∈ H) is a surjective
homomorphism with kernel N .

Now if N is also abelian, as before the group of characters N̂ (the dual group) makes

sense. For any ν ∈ N̂ , since N ⊆ Gν , the quotient group Gν/N is well-defined. Since
G = NH, if we let Hν = Gν ∩H, we check immediately that

Gν = N oHν .

Since Gν/N is the group of cosets sN = Ns (since N is normal) with s ∈ Gν , the map
Ns 7→ s (with s ∈ Hν) is an isomorphism from Gν/N to Hν .

Definition 7.7. Given any semi-direct product G = N oH (with N normal and abelian)

as above, for any ν ∈ N̂ , the group Hν given by

Hν = Gν ∩H

is called the little group associated with ν. As observed above,

Gν = N oHν , Hν ≈ Gν/N.

The reason why little groups are interesting is that Proposition 7.6 applies. Indeed, given
any character ν : N → T, we can extend ν to a homomorphism ν̃ : Gν → T as follows:

ν̃(nh) = ν(n), h ∈ Hν , n ∈ N. (ν̃)

We need to check that ṽ is a homomorphism. First, we have

ν̃((n1h1)(n2h2)) = ν̃((n1[h1n2h
−1
1 ])(h1h2))

= ν(n1[h1n2h
−1
1 ])

= ν(n1)ν(h1n2h
−1
1 ),

1Curiously, Folland uses the notation N nH; see Folland [22].
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that is
ν̃((n1h1)(n2h2)) = ν(n1)ν(h1n2h

−1
1 ). (1)

However, by definition of the action of G on N̂ (see Definition 7.1), for any χ ∈ N̂ and any
s ∈ G, we have

(s · χ)(n) = χ(s−1ns),

so
ν(h1n2h

−1
1 ) = (h−1

1 · ν)(n2). (2)

But h1 ∈ Hν = Gν ∩H and since Hν is a group, h−1
1 ∈ Hν , so as h−1

1 ∈ Hν is a stabilizer of
ν, we have

h−1
1 · ν = ν, (3)

and thus by (2) and (3),
ν(h1n2h

−1
1 ) = ν(n2). (4)

Finally, by (1) and (4), and by definition of ν̃, we have

ν̃((n1h1)(n2h2)) = ν(n1)ν(n2) = ν̃(n1h1)ν̃(n2h2),

that is,
ν̃((n1h1)(n2h2)) = ν̃(n1h1)ν̃(n2h2), (5)

which shows that ν̃ : Gν → T is a homomorphism extending ν.

We can now apply Proposition 7.6. SinceHν ≈ Gν/N , for every irreducible representation
ρ : Hν → U(Hρ) of Hν , the map σ : Gν → U(Hρ) given by

σ(nh) = ν̃(nh)ρ(h) = ν(n)ρ(h), n ∈ N, h ∈ Hν ,

defines an irreducible representation of Gν in Hρ, such that σ(n) = ν(n)idHρ for all n ∈ N .

Definition 7.8. For any ν ∈ N̂ and any irreducible representation ρ : Hν → U(Hρ) of Hν ,
the irreducible representation σ : Gν → U(Hρ) given by

σ(nh) = ν(n)ρ(h), n ∈ N, h ∈ Hν

is denoted by νρ.

Since the restriction of νρ to Hν is equal to σ, it is easy to see that νρ is equivalent to
νρ′ iff ρ is equivalent to ρ′.

Remark: (Serre) Since Hν ≈ Gν/N , there is a surjective quotient map qν : Gν → Hν , so
any representation ρ : Hν → U(Hρ) of Hν lifts to the representation qν ◦ ρ : Gν → U(Hρ)
of Gν . It is also clear that if ρ is irreducible, then so is qν ◦ ρ. Write ρ̃ = qν ◦ ρ. Since
ν̃ : Gν → U(1) is also an irreducible representation of Gν , we deduce that νρ is equivalent
to the tensor product representation ν̃ ⊗ ρ̃ (recall that C⊗CW ≈ W for any complex vector
space W ).
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We can now apply Theorem 7.4 and Theorem 7.5 to the above situation to obtain a
complete characterization of the irreducible representations of a semi-direct product G =
N o H (with N normal an abelian) in terms of the characters of N and of the irreducible

representations of the little groups Hν associated with the characters ν ∈ N̂ .

Theorem 7.7. Let G be locally compact group which is a semi-direct product G = N o H
with N normal and abelian. Suppose that G acts regularly on N̂ .

(1) For any ν ∈ N̂ , if ρ : Hν → U(Hρ) is any irreducible representation of the little group
Hν, then the induced representation IndGGν νρ of G (with νρ as in Definition 7.8) is
irreducible.

(2) Every irreducible representation U : G→ U(HU) of G is equivalent to some irreducible
induced representation IndGGν νρ as in (1).

(3) Two induced representations IndGGν νρ and IndGGν′ ν
′ρ′ are equivalent iff ν ′ = s · ν for

some s ∈ G (ν and ν ′ belong to the same orbit), and the representation ρ and h 7→
ρ′(s−1hs) are equivalent.

We are now ready for some examples.

Example 7.1. Consider the group SE(n) of rigid motions of Rn defined as the group of
(n+ 1)× (n+ 1) matrices

SE(n) =

{(
Q u
0 1

)
|Q ∈ SO(n), u ∈ Rn

}
.

We assume that n ≥ 2, since SE(1) ≈ R is abelian so its irreducible unitary representations
are one-dimensional, and thus are of the form z 7→ χ(x)z for all x ∈ R and all z ∈ C, where
χ is any character of R. We know from Vol I, Proposition 10.9 that the characters of R are
of the form x 7→ eiyx, for any fixed y ∈ R. The subgroups N and H are defined as follows:

N =

{(
In u
0 1

)
| u ∈ Rn

}
, H =

{(
Q 0
0 1

)
|Q ∈ SO(n)

}
.

We have (
Q u
0 1

)
=

(
In u
0 1

)(
Q 0
0 1

)
,

which shows that SE(n) = NH, and(
Q u
0 1

)(
R v
0 1

)
=

(
QR u+Qv
0 1

)
,

and so (
Q u
0 1

)−1

=

(
Q> −Q>u
0 1

)
.
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Clearly, N ∩H = {In+1} and N is abelian. We also have(
Q u
0 1

)(
In v
0 1

)(
Q u
0 1

)−1

=

(
Q u
0 1

)(
In v
0 1

)(
Q> −Q>u
0 1

)
=

(
Q u+Qv
0 1

)(
Q> −Q>u
0 1

)
=

(
In Qv
0 1

)
,

so N is a normal subgroup (which is also abelian). Consequently, SE(n) is the semidirect
product SE(n) = N o H. It is also clear that H is isomorphic to SO(n) and that N is
isomorphic to Rn, so we may write SE(n) = Rn o SO(n). It is often convenient to use a
more concise notation for the element of SE(n) = RnoSO(n), namely we denote the matrix(

Q u
0 1

)
by (u,Q). Multiplication in SE(n) is then given by

(u,Q)(v,R) = (u+Qv,QR).

The action of SE(n) on Rn is given by

(u,Q)x = Qx+ u, x ∈ Rn,

namely rotate x by Q and then translate by u. This is equivalent to the usual trick of
embedding Rn in Rn+1 by mapping x to

(
x
1

)
, and then(

Q u
0 1

)(
x
1

)
=

(
Qx+ u

1

)
.

We have to figure out how SE(n) acts on N̂ to determine its orbits. Observe that(
Q u
0 1

)−1(
In v
0 1

)(
Q u
0 1

)
=

(
Q> −Q>u
0 1

)(
In v
0 1

)(
Q u
0 1

)
=

(
Q> −Q>u+Q>v
0 1

)(
Q u
0 1

)
=

(
In Q>v
0 1

)
,

that is

(u,Q)−1(v, In)(u,Q) = (Q>v, In). (†)



496CHAPTER 7. CONSTRUCTING INDUCED REPRESENTATIONS A LA MACKEY

To describe the action of G = SE(n) on N̂ , we introduce the isomorphism t : N → Rn given
by

t(x, In) = x, x ∈ Rn.

Then we have an isomorphism between R̂n and N̂ given by χ 7→ χ ◦ t, with χ ∈ R̂n. By
Vol I, Corollary 10.11, the characters in R̂n are the homomorphims χy from Rn to T (with
y ∈ Rn) given by

χy(x) = eiy·x, x ∈ Rn,

where y·x is the Euclidean product in Rn (y·x =
∑n

k=1 ykxk). By composing the isomorphism

from Rn to R̂n given by y 7→ χy and the isomorphism between R̂n and N̂ given by χ 7→ χ◦ t,
we obtain the isomorphism between Rn and N̂ given by y 7→ χy ◦ t (with y ∈ Rn).

Thus the characters in N̂ are of the form (x, In) 7→ χy(t(x, In)) = χy(x). By Definition

7.1, the action of G = SE(n) on N̂ is given by

((u,Q) · χy)(x, In) = χy(t((u,Q)−1(x, In)(u,Q))), x ∈ Rn,

which by (†) yields

((u,Q) · χy)(x, In) = χy(t(Q
>x, In)) = χy(Q

>x) = eiy·(Q
>x) = ei(Qy)·x) = χQy(t(x, In)).

Therefore, under the isomorphism between Rn and N̂ given by y 7→ χy ◦ t (with y ∈ Rn), we

see that the action of G = SE(n) on N̂ is the action of G = SE(n) on Rn given by

(u,Q)(y) = Qy, y ∈ Rn; (††)

in other words, only the rotation Q is applied. This is the usual action of SO(n) on Rn.

Remark: Note the subtle point that the action of G = SE(n) on N̂ uses a right conjugation
of (x, In) by (u,Q), namely (u,Q)−1(x, In)(u,Q), and this yields (Q>x, In). The appearance
of Q> seems wrong, but it is compensated by the fact that in the argument of χy, we now
have the inner product y · (Q>x), and in order to make the input x appear, we transpose
again to obtain Qy · x = y · (Q>x).

Remember that we have an isomorphism between Rn and N̂ given by y 7→ χy ◦ t (with

y ∈ Rn), so a character ν ∈ N̂ may be denoted by νy. Using this isomorphism, it is easy to
determine the orbits and the little groups. By (††), the orbits of the action of G = SE(n) on

N̂ can be viewed as the orbits of the action of SO(n) on Rn, namely for every r ∈ [0,+∞),
the sphere Sr(0) of radius r centered at the origin,

Or = Sr(0) = {x ∈ Rn | ‖x‖2 = r}.

For r = 0, we have O0 = {0n}. For the countable separation property, we use the G-invariant
annuli

{x ∈ Rn | α < ‖x‖2 < β}
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with α < β rational. For r > 0, we pick the special representative re1 on the sphere Or with
e1 = (1, 0, . . . , 0) ∈ Rn. Then we see immediately that the little group Hre1 is isomorphic
to SO(n − 1). For r = 0, the little group H0 is SO(n) and G0 = G = SE(n). For r > 0,

the characters ν ∈ N̂ corresponding to points in Or are of the form χy ◦ t, with y ∈ Rn and
‖y‖2 = r. Earlier, we denoted them by νy.

Theorem 7.7 yields all irreducible representations of SE(n).

(1) For r = 0, we have G0 = G and H0 = SO(n). We obtain the finite-dimensional
irreducible representations q ◦ σ by lifting the irreducible representations σ of SO(n)
to SE(n) by composition with the quotient map q : SE(n)→ SO(n).

(2) For every r > 0, for every y ∈ Rn with ‖y‖2 = r, we have the character νr,y given by
νr,y(x) = ei(y·x). We also have Hr,y = SO(n − 1) and Gr,y = Rn o SO(n − 1). Then
for every irreducible representation ρ : SO(n− 1)→ U(Hρ) of SO(n− 1), we have the
irreducible representation νr,yρ : Rn o SO(n− 1)→ U(Hρ) given by

(νr,yρ)(xQ) = νr,y(x)ρ(Q) = eiy·xρ(Q), x ∈ Rn, Q ∈ SO(n− 1), ‖y‖2 = r.

The induced representation Ind
SE(n)
RnoSO(n−1) νr,yρ of SE(n) is irreducible.

In the special case of (2), where ρ : SO(n−1)→ U(1) is the trivial representation (ρ(Q) =

1 for all Q ∈ SO(n−1)), it can be shown that the induced representation Ind
SE(n)
RnoSO(n−1) νr,yρ

is equivalent to the induced representation Ind
SE(n)
Rn νr,y (see Folland [22], Section 6.3). But

we have determined such induced representations in Example 6.3. We found that these are
the irreducible representations Π̃ : SE(n)→ U(L2

λ(S
n−1;C)) of class 1 described in Vilenkin

[70] (Chapter XI, Section 2) given by

(Π̃(a,Q)(f))(x) = eir(x·a)f(Q>x), (a,Q) ∈ SE(n), x ∈ Sn−1, f ∈ L2
λ(S

n−1;C), r > 0.

For n = 2, 3, we can be more precise.

(1) For n = 2, we have SO(1) = {1}. Thus, for r > 0 the irreducible representations of
SE(2) are of the form

Ind
SE(2)

R2 νr,y, with νr,y(x) = eiy·x, x, y ∈ R2, ‖y‖2 = r.

According to the above discussion, they are equivalent to the irreducible representations
Π̃ : SE(2) → U(L2

λ(S
1;C)) of class 1 described in Vilenkin [70] (Chapter IV, Section

2) given by

(Π̃(a,Q)(f))(x) = eir(x·a)f(Q>x), (a,Q) ∈ SE(2), x ∈ S1, f ∈ L2
λ(S

1;C), r > 0.

For r = 0, G0 = SO(2). The group SO(2) is abelian and SO(2) ≈ U(1) ≈ T, so we
know from Vol I, Proposition 10.9 that the irreducible representations of SO(2) are
the homomorphisms ρk : SO(2)→ U(1) given by

ρk(e
iθ)(z) = eikθz, k ∈ Z, 0 ≤ θ < 2π, z ∈ C.
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We obtain irreducible representations of SE(2) obtained by lifting the irreducible rep-
resentations ρk of SO(2) to SE(2) by composing with the projection map q : SE(2)→
SO(2).

(2) For n = 3, if r > 0 then Hre1 = SO(2). As in (1), the irreducible representations of
SO(2) ≈ U(1) are the homomorphisms ρk : SO(2)→ U(1) given by

ρk(e
iθ)(z) = eikθz, k ∈ Z, 0 ≤ θ < 2π, z ∈ C.

We obtain the irreducible representations νr,yρk : R3 o SO(2)→ U(1) given by

(νr,yρk)(xe
iθ)(z) = ei(y·x+kθ)z, x, y ∈ R3, ‖y‖2 = r, 0 ≤ θ < 2π, k ∈ Z, z ∈ C,

which yield the irreducible representations Ind
SE(3)

R3oSO(2) νr,yρk of SE(3). In the spe-

cial case k = 0, these are equivalent to the irreducible representations Π̃ : SE(3) →
U(L2

λ(S
2;C)) of class 1 given by

(Π̃(a,Q)(f))(x) = eir(x·a)f(Q>x), (a,Q) ∈ SE(3), x ∈ S2, f ∈ L2
λ(S

2;C), r > 0.

If r = 0, we obtain the irreducible representations of SE(3) by lifting the irreducible
representations of SO(3) to SE(3) by composing with the projection map q : SE(3)→
SO(3).

In the next example, we find all irreducible representations of O(2).

Example 7.2. In Section 4.4, we claimed that O(2) is isomorphic to the semi-direct product
SO(2) o {I2, J}, where

J =

(
−1 0
0 1

)
.

Here, N = SO(2) and H = {I2, J} ' Z/2Z. Clearly, SO(2) ∩ H = {I2} and if Q ∈ O(2)
with det(Q) = −1, then Q = (QJ)J with QJ ∈ SO(2), a unique factorization of Q in NH.
The subgroup SO(2) is normal in O(2) since for any Q ∈ O(2) and any R ∈ SO(2), we have

det(Q>RQ) = det(Q>) det(R) det(Q) = det(Q)2 det(R) = 1× 1 = 1,

so Q>RQ ∈ SO(2). The above argument can be immediately adapted to prove that O(2m)
is isomorphic to the semi-direct product SO(2m) o {I2m, J} for any m ≥ 1, where J is any
reflection in O(2m), for instance J = diag(−1, 1, . . . , 1). Unfortunately, H is not normal in
O(2m), even for m = 1 (we leave this fact as an exercise).

Using the equation JRθJ = R−θ proven in (∗J) below, multiplication in SO(2)o {I2, J}
is given by

RθRϕ = Rθ+ϕ,

Rθ(RϕJ) = Rθ+ϕJ,
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and the two nontrivial cases

(RθJ)Rϕ = Rθ(JRϕJ)J = Rθ(R−ϕ)J = Rθ−ϕJ,

and
(RθJ)(RϕJ) = Rθ(JRϕJ) = RθR−ϕ = Rθ−ϕ.

We will use the isomorphism from SO(2) to U(1) given by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
7→ eiθ.

Since SO(2) ≈ U(1) is abelian, its irreducible representations are given by its characters,
namely the homomorphisms χm : SO(2)→ U(1) given by

χm(Rθ) = eimθ, m ∈ Z, 0 ≤ θ < 2π.

Let us figure out the action of O(2) on the group of characters ŜO(2) ' Z. For any character
χm and any Q ∈ O(2), by (act), we have

Q · χm(Rθ) = χm(Q>RθQ).

There are two cases.

(1) If Q ∈ O(2) and det(Q) = +1, then Q = Rϕ ∈ SO(2), so

Q>RθQ = R−ϕRθRϕ = R−ϕRϕRθ = Rθ,

since SO(2) is abelian.

(2) If Q ∈ O(2) and det(Q) = −1, then Q = RϕJ with Rϕ ∈ SO(2), so

Q>RθQ = JR−ϕRθRϕJ = JRθJ.

But

JRθJ =

(
−1 0
0 1

)(
cos θ − sin θ
sin θ cos θ

)(
−1 0
0 1

)
=

(
− cos θ sin θ
sin θ cos θ

)(
−1 0
0 1

)
=

(
cos θ sin θ
− sin θ cos θ

)
= R−θ,

which we record as
JRθJ = R−θ. (∗J)
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In summary, since χm(R−θ) = χ−m(Rθ), we have

Q · χm(Rθ) =

{
χm(Rθ), if det(Q) = +1

χ−m(Rθ), if det(Q) = −1.

We can now determine the stabilizers of the characters. If ν = χ0, then

Q · χ0 = χ0, for all Q ∈ O(2),

so Gχ0 = O(2) and Hχ0 = H.

If ν = χm with m 6= 0, then

Q · χm = χm iff det(Q) = +1,

so Gν = SO(2), and in this case, Hν = {I2}.
The orbits are given by

Oχ0 = {χ0},
and for m 6= 0,

Oχm = {Q · χm | Q ∈ O(2)} = {χm, χ−m}.

Since ŜO(2) ' Z is discrete, O(2) acts regularly on ŜO(2).

According to Theorem 7.7, we obtain the following irreducible representations.

(1) If ν = χ0, since Gχ0 = O(2) and H = {I2, J}, for any irreducible representation ρ of
H, χ0ρ = ρ is an irreducible representation of O(2). Since H = {I2, J} is abelian and
finite it has two irreducible representations ρ0 : H → U(1) and ρ1 : H → U(1) given by
ρ0(I2) = ρ0(J) = 1 and ρ1(I2) = 1, ρ1(J) = −1, so we obtain the irreducible unitary
representations of O(2) in U(1) given by

ρk(QX) = ρk(X), Q ∈ SO(2), X ∈ {I2, J}, k ∈ {0, 1}.

Since ρ1(X) = det(X) = det(QX), ρ1 is the determinant representation of O(2) in
U(1), and ρ0 is the trivial representation in U(1).

(2) If ν = χm with m 6= 0, since Gν = SO(2) and Hν = {I2}, the only irreducible
representation of Hν is the trivial representation ρ0 : Hν → U(1) given by ρ0(I2) = 1,
so we have the irreducible unitary representation χmρ0 = χm of SO(2) in U(1), and

the induced representation Ind
O(2)
SO(2) χm is an irreducible representation of O(2).

The space Hm of the representation Ind
O(2)
SO(2) χm can be determined. Recall that Hm is

the Hilbert space, which is the completion of the space H0
m defined as

H0
m =

{
f ∈ C(O(2),C) | π(supp(f)) is compact and

f(sh) =

(
∆SO(2)(h)

∆O(2)(h)

)1/2

χm(h−1)(f(s)) for all s ∈ O(2) and all h ∈ SO(2)

}
,
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where π : O(2) → O(2)/SO(2) is the quotient map. Here ,U = χm is an irreducible repre-
sentation of SO(2) with m 6= 0, namely a character of SO(2), so HU = C, and since both
SO(2) and O(2) are compact, the terms ∆SO(2)(h) and ∆O(2)(h) are both equal to 1, and so

H0
m =

{
f ∈ C(O(2),C) | f(sh) = χm(h−1)(f(s)) for all s ∈ O(2) and all h ∈ SO(2)

}
.

If det(s) = 1, so that s = Rθ ∈ SO(2), then we must have

f(sh) = χm(h−1)(f(s)), for all h ∈ SO(2),

which means that if we write h = Rϕ, then

f(RθRϕ) = e−imϕf(Rθ) for all ϕ,

that is (for ϕ = −θ),
f(Rθ) = e−imθf(I2).

If det(s) = −1, so that s = RθJ with Rθ ∈ SO(2), then we must have

f(sh) = χm(h−1)(f(s)), for all h ∈ SO(2),

which means that if we write h = Rϕ, then

f(RθJRϕ) = e−imϕf(RθJ) for all ϕ.

But

RθJRϕ =

(
cos θ − sin θ
sin θ cos θ

)(
−1 0
0 1

)(
cosϕ − sinϕ
sinϕ cosϕ

)
=

(
− cos θ − sin θ
− sin θ cos θ

)(
cosϕ − sinϕ
sinϕ cosϕ

)
=

(
− cos θ cosϕ− sin θ sinϕ cos θ sinϕ− sin θ cosϕ
− sin θ cosϕ+ cos θ sinϕ sin θ sinϕ+ cos θ cosϕ

)
=

(
− cos(θ − ϕ) − sin(θ − ϕ)
− sin(θ − ϕ) cos(θ − ϕ)

)
.

It follows that for ϕ = θ, we have

f(RθJ) = eimθf(J).

In summary, f ∈ C(O(2),C) must satisfy the conditions

f(s) =

{
e−imθf(I2), if s = Rθ

eimθf(J), if s = RθJ.
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Then f(I2), f(J) are two arbitrary scalars z1 and z2 in C, so Hm = H0
m is a two-dimensional

space isomorphic to C2, where the isomorphism is given by f 7→ (f(I2), f(J)) ∈ C2. We can
also describe the space Hm as the space of functions f : O(2)→ C given by

f(s) =

{
e−imθz1, if s = Rθ

eimθz2, if s = RθJ,

for some (z1, z2) ∈ C2.

The induced representation Πm : O(2)→ U(Hm) is the left-regular representation,

(Πm(s)(f))(t) = f(s−1t), f ∈ Hm, s, t ∈ O(2).

Given f defined by (z1, z2) ∈ C2, we can find out which vector in C2 corresponds to the
function Πm(s)(f) given by t 7→ f(s−1t) (for s fixed).

(1) If s = Rθ, then s−1t = Rϕ−θ if t = Rϕ, and s−1t = Rϕ−θJ if t = RϕJ , so

(Πm(Rθ)(f))(t) =

{
e−imϕeimθz1, if t = Rϕ

eimϕe−imθz2, if t = RϕJ,

so the function Πm(s)(f) is determined by (eimθz1, e
−imθz2).

(2) If s = RθJ and t = Rϕ, then s−1t = JR−θRϕ = JRϕ−θ. Since by (∗J) we have
JRϕ−θJ = Rθ−ϕ and J2 = I2, we obtain JRϕ−θ = Rθ−ϕJ , and so

s−1t = Rθ−ϕJ.

If s = RθJ and t = RϕJ , then s−1t = JR−θRϕJ = JRϕ−θJ = Rθ−ϕ. It follows that

(Πm(RθJ)(f))(t) =

{
e−imϕeimθz2, if t = Rϕ

eimϕe−imθz1, if t = RϕJ,

so the function Πm(RθJ)(f) is determined by (eimθz2, e
−imθz1).

In summary, if f is given by (z1, z2) ∈ C2, for any nonzero m ∈ Z, we have

Πm(s)

(
z1

z2

)
=

(
eimθ 0

0 e−imθ

)(
z1

z2

)
, if s = Rθ

Πm(s)

(
z1

z2

)
=

(
0 eimθ

e−imθ 0

)(
z1

z2

)
=

(
0 1
1 0

)(
eimθ 0

0 e−imθ

)(
z1

z2

)
, if s = RθJ.

This expresses the representation Πm as an irreducible unitary representation of O(2) in C2.
We can also express the above as

Πm(RθX) =

(
0 1
1 0

) 1−det(X)
2

(
eimθ 0

0 e−imθ

)
, X ∈ {I2, J},
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or

Πm(RθX) =

(
0 1
1 0

) 1−det(X)
2

e
imθ

1 0
0 −1


, X ∈ {I2, J},

for any nonzero m ∈ Z.

For m = 1, it is an easy exercise to prove that the set of matrices{(
eiθ 0
0 e−iθ

)
,

(
0 eiθ

e−iθ 0

) ∣∣∣∣ 0 ≤ θ < 2π

}
is a subgroup of SU(2) isomorphic to O(2) under the map

Rθ 7→
(
eiθ 0
0 e−iθ

)
, RθJ 7→

(
0 eiθ

e−iθ 0

)
,

so the representation Π1 is equivalent to the standard action of O(2) on C2 by multiplication.

Using the results of Example 7.2, we can determine all the irreducible representations of
E(2) = R2 o O(2), by a method analogous to the method used for SE(2) = R2 o SO(2)
in Example 7.1. Similarly, using the results of Example 4.6 to determine the irreducible
representations of O(3), we can determine all the irreducible representations of E(3) =
R3 o O(3), also by the method used for SE(3) = R3 o SO(3) in Example 7.1. We leave the
details as exercises.

7.5 Problems

Problem 7.1. Let G be a locally compact group, N be a closed abelian subgroup of G, and
N̂ be the group of characters χ : N → C of N . Recall from Definition 7.1 that the action of
G on N̂ is given by

(s · χ)(n) = χ(s−1ns).

The stabilizer Gχ of χ and the orbit Oχ ⊆ N̂ of χ are defined as

Gχ = {s ∈ G | s · χ = χ}
Oχ = {s · χ | s ∈ G}.

(1) Show that subgroup Gχ is closed in G. Also show that N ⊆ Gχ.

(2) Construct an explicit bijection between Oχ and G/Gχ.

Problem 7.2. Let G be a locally compact group and N be a closed abelian normal subgroup
of G. For any unitary representation U : G → U(HU) of G, let P be the unique regular

projection-valued measure on N̂ , such that for the restriction U : N → U(HU) of U to N ,
we have

U(n) =

∫
N̂

χ(n) dP (χ), n ∈ N.
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(1) Show that for any fixed s ∈ G, the map Q defined on the Borel subsets of N̂ by

Q(E) = U(s)P (E)U(s)−1

is a regular projection-valued measure.

(2) For any f ∈ L1(N̂), show that∫
N̂

f(s−1 · χ) dµ(χ) =

∫
N̂

f(χ) d(λs−1(µ))(χ).

Hint . Adapt the proof of Vol I, Proposition 8.16.

(3) For any Borel subset E of N̂ , show that map E 7→ P (s·E) is a regular projection-valued
measure.

Problem 7.3. Let (G, IndGHU,G/H, P
U) be the canonical system of imprimitivity associated

to Π = IndGHU ; see Definition 7.4. Show that

PU(E)(f) = (χE ◦ π)(f), E ⊆ G/H, f ∈ H.

Problem 7.4. (Advanced Exercise) Study Sections 6.4 and 6.5 of Folland [22] and write up
a detailed proof sketch of Theorem 7.3, Mackey’s imprimitivity theorem.

Problem 7.5. Complete the proof sketch of Theorem 7.4.

Hint . See Proposition 6.37 of Folland [22].

Problem 7.6. (Advanced Exercise) Prove Theorem 7.5.

Hint . See Theorem 6.39 of Folland [22].

Problem 7.7. Let G be a locally compact group, H be a closed subgroup of G, and N be
closed normal subgroup of G. Let G = N oH be the semi-direct product as defined at the
beginning of Section 7.4.

(1) Show that the map q : N oH → H given by q(nh) = h (n ∈ N, h ∈ H) is a surjective
homomorphism with kernel N .

(2) Let Hν = Gν ∩H and check that

Gν = N oHν .

(3) Prove that the map Ns 7→ s (with s ∈ Hν) is an isomorphism from Gν/N to Hν .

Problem 7.8. Review Definition 7.8 and show that νρ is equivalent to νρ′ iff ρ is equivalent
to ρ′.
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Problem 7.9. Recall that SE(n) is the group of rigid motions of Rn defined as the group
of (n+ 1)× (n+ 1) matrices

SE(n) =

{(
Q u
0 1

)
|Q ∈ SO(n), u ∈ Rn

}
;

see Example 7.1. The subgroups N and H are defined as follows:

N =

{(
In u
0 1

)
| u ∈ Rn

}
, H =

{(
Q 0
0 1

)
|Q ∈ SO(n)

}
,

in which case SE(n) = N oH.

The orbits of the action of G = SE(n) on N̂ can be viewed as the orbits of the action
of SO(n) on Rn, namely for every r ∈ [0,+∞), the sphere Sr(0) of radius r centered at the
origin,

Or = Sr(0) = {x ∈ Rn | ‖x‖2 = r}.

For every r > 0, for every y ∈ Rn with ‖y‖2 = r, we have the character νr,y given by νr,y(x) =
ei(y·x). Then for every irreducible representation ρ : SO(n − 1) → U(Hρ) of SO(n − 1), we
have the irreducible representation νr,yρ : Rn o SO(n− 1)→ U(Hρ) given by

(νr,yρ)(xQ) = νr,y(x)ρ(Q) = eiy·xρ(Q), x ∈ Rn, Q ∈ SO(n− 1), ‖y‖2 = r;

see (2) of Example 7.1.

In the special case where ρ : SO(n−1)→ U(1) is the trivial representation (ρ(Q) = 1 for

all Q ∈ SO(n − 1)), show that the induced representation Ind
SE(n)
RnoSO(n−1) νr,yρ is equivalent

to the induced representation Ind
SE(n)
Rn νr,y.

Hint . See Section 6.3 in Folland [22].

Problem 7.10.

(1) Verify that O(2) is isomorphic to the semi-direct product SO(2) o {I2, J}, where

J =

(
−1 0
0 1

)
.

(2) Prove that O(2m) is isomorphic to the semi-direct product SO(2m)o{I2m, J} for any
m ≥ 1, where J is any reflection in O(2m), for instance J = diag(−1, 1, . . . , 1). Also
show that H is not normal in O(2m).

(3) Verify that O(2) acts regularly on ŜO(2). See Example 7.2 and Definition 7.6.
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(4) Prove that the set of matrices{(
eiθ 0
0 e−iθ

)
,

(
0 eiθ

e−iθ 0

) ∣∣∣∣ 0 ≤ θ < 2π

}
is a subgroup of SU(2) isomorphic to O(2) under the map

Rθ 7→
(
eiθ 0
0 e−iθ

)
, RθJ 7→

(
0 eiθ

e−iθ 0

)
.

Problem 7.11. Use the results of Example 7.2 to determine all the irreducible representa-
tions of E(2) = R2 o O(2).

Hint . Use a method analogous to the method used for SE(2) = R2 oSO(2) in Example 7.1.

Problem 7.12. Use the results of Example 4.6 to determine all the irreducible representa-
tions of E(3) = R3 o O(3) via the techniques of Example 7.1.



Chapter 8

Equivariant Convolutional Neural
Networks

8.1 Introduction

Most of the material in this chapter is heavily inspired by the work of Bekkers, Boomsma,
Cesa, Cohen, Forré, Geiger, Lang, Verlinder, Weiler, and Welling. The general theme is to
develop a theory of equivariant convolutional neural networks (CNNs). Such neural networks
process spatially structured data like images, audio, or videos. The purpose and the need
for such neural networks is very clearly articulated in the preface of the recent book by
Weiler, Forré, Verlinde, and Welling [75] that we highly recommend. Erik Bekkers’ Lectures
available on YouTube also provide an excellent coverage of this topic (Group Equivariant
Deep Learning, UvA-2022). Our goal in this chapter is to show how many of the fairly
abstract concepts discussed earlier (representations, analysis on compact groups, Peter–
Weyl theorems, Fourier transform, induced representations) are used to tackle very practical
problems. Sections 8.7, 8.9 and 8.10 do contain original results.

In Section 8.2, motivated by the problem of matching a pattern k (also called a correlation
kernel or template kernel) in an image f , we define the notion of cross-correlation, for short
correlation, given by

(k ? f)(x) =

∫
R2

f(t)k(t− x) dt.

Technically, a correlation is a convolution with the reflected kernel ǩ, which is the function
defined by ǩ(s) = k(−s). However, for our purpose, the notion of correlation is more natural.

Since images and correlation kernels are viewed as functions from R2 to R, it is natural
to view the action of a group G on images as given by the regular representation R of G on
L2(R2) induced by an action of G in R2, namely

[Rg(f)](x) = λg(f)(x) = f(g−1 · x), g ∈ G, x ∈ R2, f ∈ L2(R2).

507
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If we want to be more precise, we denote this representation by RG→LR2
. Observe that

[Rg(f)](g · x) = f(g−1 · (g · x)) = f(x),

so the color f(x) of the pixel originally at location x is now the color at location g · x
in the image Rg(f), which means the image defined by Rg(f) is obtained by applying the
transformation g to the image defined by f . In computer vision, this is called image warping .
For example, if G = SE(2), the image f is translated and rotated by g = (x,R) ∈ SE(2).

In the special case where G = R2, the group of translations of R2 itself, because the
Lebesgue measure on R2 is translation-invariant, we have the following commutative diagram
expressing that the linear map Φ: L2(R2) → L2(R2) given by Φ(f) = k ? f is translation-
invariant :

L2(R2) Φ //

R
R2→L2(R2)
x

��

L2(R2)

R
R2→L2(R2)
x

��
L2(R2)

Φ
// L2(R2)

commutes for all x ∈ R2. See Figure 8.3.

However, if G is the group SO(2), the rotations in the plane R2, if the image f is rotated
by an angle θ, we have the new image given by

(R
SO(2)→L2(R2)
Rθ

f)(t) = f(R−θ(t)), t ∈ R2, Rθ ∈ SO(2),

but the diagram

L2(R2) Φ //

R
SO(2)→L2(R2)
Rθ ��

L2(R2)

R
SO(2)→L2(R2)
Rθ��

L2(R2)
Φ
// L2(R2)

does not commute. The linear map Φ is not rotation-equivariant. See Figure 8.4.

This is unfortunate, because in general, we would like to know whether the pattern k
occurs in f , translated or rotated. More generally, if G is a group of transformations of R2,
we would like our transform Φ to be G-equivariant , which means that the diagram

L2(R2) Φ //

R
G→L2(R2)
g

��

L2(R2)

R
G→L2(R2)
g

��
L2(R2)

Φ
// L2(R2)

commutes for all g ∈ G.

As we just explained, equivariance fails beyond translation-equivariance, so what can we
do to remedy this problem?
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A solution is to define a lifted correlation. The basic idea presented in Section 8.3 is
that instead of rotating the input image, we apply a rotated kernel to the image. We first
illustrate this process in the case of SE(2) = R2 o SO(2), but this method works for semi-
direct products of the form G = Rd oH. We will denote an element of SE(2) as g = (x, θ),
where x ∈ R2 and θ ∈ R (mod 2π). Then we define the lifted correlation k ?̃ f by

(k ?̃ f)(x, θ) =

∫
R2

f(t)(λ(x,θ)k)(t) dt =

∫
R2

f(t)k(R−θ(t− x)) dt.

We are now using the lifted (rotated) kernel λRθk, but observe that our transform now
takes an input function f (image, signal) in L2(R2), but yields an output function Φ(f) =
k ?̃ f in the larger function space L2(SE(2)) of functions defined on the group SE(2). Such
functions are called feature maps . In this situation, a feature map in L2(SE(2)) can be
viewed as a stack of rectangular grids, one for each θ ∈ R (mod 2π). We can obtain a final
score of the occurrence of the template k moved over the image f in all positions determined
by the rotation Rθ ∈ SO(2) via some projection process over the θ-axis; this is often called
pooling in machine learning (max-pooling being a common instance of pooling).

The major benefit of lifted kernels is that we recover equivariance under the group SO(2).

All this is generalized to semi-direct products of the form G = Rd o H, where H is a
compact group. Correlation on feature maps (functions in L2(G)), called group correlation,
is discussed in Section 8.4. However, for d > 2, it is usually not practically possible to
discretize the group H, so a different approach is needed. A solution is to use steerable
families , which are discussed in Section 8.6. The notion of steerability occured first in the
seminal paper of Freeman and Adelson [24].

The idea behind steerability is that if a function f is defined on some measure space X
and if there is an action of a group H on X, then it would be nice if f(h−1 · x) could be
expressed in a simple way in terms of f(x). In general, this is asking for too much, but if we
consider a family of linearly independent functions (Y1, . . . , YL) in L2(X), then we say that
they form an H-steerable family if there is representation Σ: H → U(L), such that

Y (h−1 · x) = Σ(h)>Y (x), h ∈ H, x ∈ X,

where Y (x) denotes the column vector

Y (x) =

Y1(x)
...

YL(x)

 ∈ CL;

see Definition 8.5. A typical case is X = S1 (the circle) and H = SO(2) (the group of
rotation in the plane), in which case, for any integers n1, . . . , nL, the circular harmonics
(Y1(α) = e−in1α, . . . , YL(α) = e−inLα) form a steerable family. If a correlation kernel k can be
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expressed as a linear combination of a steerable family Y , then the lifted convolution k ?̃ f
can be computed in a cheap way in terms of the vector-valued function

fY (x) =

∫
Rd
f(t)Y (t− x) dt.

We can think of fY (x) as some kinds of Fourier coefficients.

In Section 8.7, we present a method for finding steerable families on a suitable space
X equipped with a continuous action of a compact group H. The trick is to consider the
unitary representation V : H → U(L2(X)) given by

(V (h)f)(x) = f(h−1 · x), h ∈ H, f ∈ L2(X), x ∈ X. (V )

According to the Peter–Weyl theorem, Version II, the space L2(X) is the Hilbert sum of
closed subspaces Eρ with ρ ∈ R(H). Furthermore, each subspace Eρ is a finite or countably

infinite Hilbert sum of dρ (where dρ =∞ is possible) closed finite-dimensional subspaces E
kρ
ρ

(1 ≤ kρ ≤ dρ), such that for every ρ and every kρ, each subrepresentation V
kρ
ρ : H → U(E

kρ
ρ )

is equivalent to the irreducible representation Mρ : H → U(Cnρ). We can find steerable

families for each of the spaces E
kρ
ρ (the families Yρ,kρ ; see Theorem 8.7). We give many

examples of steerable families, including SE(d) and homogeneous spaces X = H/H0 with H
compact.

In Section 8.8, we introduce the notion of feature field , which as Cesa, Lang and Weiler [8]
say, “is the fundamental design choice underlying steerable CNNs.” Such functions already
arise when steerable kernels are used. Feature fields are vector-valued functions f : Rd → H
whose domain transforms under the action of a group G = Rd o H and whose codomain
transforms under a representation σ : H → GL(H), in most cases actually a unitary rep-
resentation. Thus, the space of feature fields transforms under the induced representation
IndGH σ, namely for any feature field f ,

[(IndGH σ)(x,h)f ](t) = σ(h)(f(h−1 · (t− x))), (x, h) ∈ Rd oH, t ∈ Rd.

We know how to transform G-feature maps using group correlation defined in Definition
8.4. This defines a transform Φ on L2(G) (where G = RdoH) given by fout = Φ(fin) = k?fin.
Since it is too expensive to compute Φ(fin) = k ? fin, it would be nice if we could define a

vector space of Fourier coefficients L2(Rd, Ĥ) consisting of matrix-valued functions on Rd, and

a new Fourier transform F τ : L2(G) → L2(Rd, Ĥ) and cotransform F τ : L2(Rd, Ĥ) → L2(G)
that promote the Fourier transform F on H (and are cheap to compute), so that we have
the following diagram

L2(G) Φ //

Fτ

��

L2(G)

Fτ

��

L2(Rd, Ĥ)

Fτ

OO

?
// L2(Rd, Ĥ).

Fτ

OO
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The missing map Φ̂, a notion of correlation on feature fields, would allow us to recover
k ? fin by Fourier inversion. We simply define Φ̂ as

Φ̂ = F τ ◦ Φ ◦ F τ ,

using F τ and F τ . The problem is then to define the space L2(Rd, Ĥ) and the Fourier
transform and Fourier cotransform on it. To do this rigorously is nontrivial.

A function f ∈ L2(RdoH) can be viewed as a function fH : Rd → L2(H), and when H is a

compact group, fH corresponds to a family (f̂ρ) of functions defined by the Fourier transforms

of the functions fH(x). Furthermore, the functions f̂ρ are feature fields f̂ρ : Rd → Mnρ(C).
The original function f ∈ L2(Rd oH) can be recovered pointwise by Fourier inversion from

the family of functions f̂ρ. However, the new twist is that the Fourier coefficients of f

are now tuples (f̂ρ)ρ∈R(H) of functions f̂ρ : Rd → Mnρ(C). This causes new problems to

reconstruct a function from its Fourier coefficients because even if the functions f̂ρ belong to
L2(Rd,Mnρ(C)), there is no guarantee that the function obtained from the inverse Fourier

transform belongs to L2(G). Some additional condition is required on the functions f̂ρ.

We provide a solution to this problem in Section 8.9 by constructing a Hilbert space
L2(Rd, Ĥ), such that the new Fourier transform F τ : L2(G) → L2(Rd, Ĥ) and the Fourier

cotransform F τ : L2(Rd, Ĥ)→ L2(G) are mutual inverses; see Theorem 8.8.

We denote the projection of L2(Rd, Ĥ) on the ρth factor, by L2(Rd, Ĥ)ρ. Then the

maps F τ : L2(G) → L2(Rd, Ĥ) and F τ : L2(Rd, Ĥ) → L2(G) define the family of maps

F τρ : L2(G)→ L2(Rd, Ĥ)ρ and F τ ρ : L2(Rd, Ĥ)ρ → L2(G). For every ρ ∈ R(H), let σρ : H →
U(Mnρ(C)) be the representation

σρ = Hom(Mρ, id)

associated with the representation Mρ : H → U(Cnρ) as in Definition 8.8. Then the diagrams

L2(G)
Fτρ //

R
G→L2(G)
(x,h)

��

L2(Rd, Ĥ)ρ

(IndGH σρ)(x,h)

��

L2(G)
Fτρ

// L2(Rd, Ĥ)ρ

and

L2(Rd, Ĥ)ρ
Fτ ρ //

(IndGH σρ)(x,h)

��

L2(G)

R
G→L2(G)
(x,h)

��
L2(Rd, Ĥ)ρ

Fτ ρ
// L2(G)
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commute, with
[(IndGH (σρ)(x,h) f̂ρ](x1) = f̂ρ(h

−1 · (x1 − x))Mρ(h)∗.

Since a group correlation Φ on L2(G) is equivariant with respect to the regular representation

RG→L2(G), we see that if we define Φ̂ρ2,ρ1 as

Φ̂ρ2,ρ1(f̂ρ1) = F τρ2(Φ(F τ ρ1(f̂ρ1))),

using the two commutative diagrams above, we have the following commutative diagram

L2(Rd, Ĥ)ρ1

(IndGH σρ1 )(x,h)

��

Φ̂ρ2,ρ1 // L2(Rd, Ĥ)ρ2

(IndGH σρ2 )(x,h)

��

L2(Rd, Ĥ)ρ1
Φ̂ρ2,ρ1

// L2(Rd, Ĥ)ρ2 ,

which shows that Φ̂ρ2,ρ1 is equivariant with respect to the representations IndGH σρ1 and

IndGH σρ2 . If we define Φ̂ρ1 as

Φ̂ρ1(f̂ρ1) =
∑

ρ1∈R(H)

Φ̂ρ2,ρ1(f̂ρ1),

then we obtain our desired correlation on L2(Rd, Ĥ) given by

Φ̂((f̂ρ1)ρ1∈R(H)) =
(
Φ̂ρ1(f̂ρ1)

)
ρ2∈R(H)

,

and in view of the previous discussion, it is equivariant with respect to the induced repre-
sentations IndGH σρ1 and IndGH σρ2 , more precisely the representation defined by the family of
these representations. Of course, this is the main point of group correlation!

In Section 8.10, we show that if the group correlation Φ: L2(G) → L2(G) (with G =
Rd oH) is given by a kernel k as

Φ(f)(x, h) =

∫
RdoH

k(h−1 · (x1 − x), h−1h1)f(x1, h1) dλH(h1) dx1,

then

[Φ̂ρ2,ρ1(f̂ρ1)](x) = F τρ2 [Φ(F τ ρ1(f̂ρ1))](x) =

∫
Rd

Φρ2,ρ1(x1 − x, f̂ρ1(x1)) dx1, (Φ̂bis
ρ2,ρ1

)

where Φρ2,ρ1 : Rd ×Mnρ1
(C)→ Mnρ2

(C) is given by

Φρ2,ρ1(x1 − x,A)

=

∫
H

∫
H

nρ1tr
(
AMρ1(h1)

)
k(h−1 · (x1 − x), h−1h1)Mρ2(h)∗ dλH(h) dλH(h1), (Φρ2,ρ1)
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with A ∈ Mnρ1
(C).

In order to go further, we need to express the kernel Φρ2,ρ1(x,A) in terms of H-steerable
functions on L2(Rd o H). We show how to proceed with H = SO(d) using the steerable
basis of L2(SE(d)) given in Example 8.9. We obtain

Φρ2,ρ1(x1 − x,A) =

∫
H

nρ1 tr
(
AMρ1(h1)

)
Wρ2(h

−1
1 (x1 − x))M∗

ρ2
(h1) dλH(h1), (∗Φρ2,ρ1

)

and

[Φ̂ρ2,ρ1(f̂ρ1)](x) = F τρ2 [Φ(F τ ρ1(f̂ρ1))](x) =

∫
Rd

Φρ2,ρ1(x1 − x, f̂ρ1(x1)) dx1, (∗Φ̂ρ2,ρ1
)

where Wρ2(x1) is an nρ2 × nρ2 matrix, whose (kρ2 , `ρ2) entry is a function in L2(Rd).

The above construction is performed entirely in Section 8.11 for the group SE(2) =
R2 o SO(2). The corresponding CNNs are known as harmonic nets .

Because the group correlation Φ is equivariant with respect to the left regular repre-
sentation R (on L2(G)), the components Φ̂ρ2,ρ1 of Φ̂ are equivariant with respect to the
representations IndGH σρ1 and IndGH σρ2 , namely the following diagram commutes.

L2(Rd, Ĥ)ρ1

(IndGH σρ1 )(x,h)

��

Φ̂ρ2,ρ1 // L2(Rd, Ĥ)ρ2

(IndGH σρ2 )(x,h)

��

L2(Rd, Ĥ)ρ1
Φ̂ρ2,ρ1

// L2(Rd, Ĥ)ρ2 .

Practice shows that it is desirable to design more general group correlations that are
equivariant with respect to other representations besides the left regular representation and
to consider feature fields that transform under representations other than the representations
Hom(Mρ, id).

A first generalization is to have two feature fields spaces FF(Rd, H, σin : H → U(Hin))
and FF(Rd, H, σout : H → U(Hout)) associated with an input representation σin and an
output representation σout, where Hin and Hout are two finite-dimensional vector spaces
equipped with a hermitian inner product, and what we are seeking is a linear G-equivariant
map Φ̂ between these spaces. We assume that feature fields f : Rd → Hin are functions in
L2(Rd,Hin), and similarly for feature fields f : Rd → Hout (see Definition 6.25). To say that

Φ̂ is G-equivariant means that the following diagram commutes

FF(Rd, H, σin) Φ̂ //

(IndGH σin)(x,h)

��

FF(Rd, H, σout)

(IndGH σout)(x,h)

��
FF(Rd, H, σin)

Φ̂

// FF(Rd, H, σout)
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for all (x, h) ∈ G = Rd oH.

A complete solution to this problem was given in a sequence of remarkable papers by
Weiler, Geiger, Weilling, Boomsma and Cohen [76] (for SE(3)), Weiler and Cesa [74] (for
E(2)), Lang and Weiler [46] (for a homogeneous space X induced by a transitive action of a
compact group H), Cesa, Lang and Weiler [8] (for E(3)), and Cohen, Geiger and Weiler [9]
(feature fields on homogeneous spaces).

In the case where H = SO(d), it is shown in Section 8.12 that such a map is given by a
kernel K : Rd → Hom(Hin,Hout) via

Φ̂(f)(t) =

∫
Rd
K(y − t)(f(y)) dy, f : Rd → Hin, t ∈ Rd, (K1)

and the kernel K satisfies the equivariance constraint

K(h · t) = σout(h) ◦K(t) ◦ σin(h)−1, h ∈ SO(d), t ∈ Rd. (EC1)

Functions K : Rd → Hom(Hin,Hout) satisfying the equivariance constraint (EC1) are called
equivariant convolution kernels or G-steerable kernels . The above result is often referred to
by the slogan “correlation is all you need.”

Until now, we have been assuming that we are dealing with feature fields defined on
X = Rd and that the group G is a semi-direct product G = Rd oH with H = SO(d), and
more generally a compact group. It is possible to deal with the more general situation, where
X is a homogeneous space of the form X = G/H with G locally compact and unimodular
and H compact equipped with a unitary representation σ : H → U(Hσ). The main problem
is to define the “right” notion of feature field. This issue is addressed in Section 8.13.

Cohen, Geiger and Weiler [9] propose to use the G-bundle E = G ×H Hσ introduced in
Section 6.13; see Definition 6.17. But then we might as well use the hermitian G-bundles of
finite rank of Definition 6.23 (see Section 6.13) and the natural choice for the space of feature
fields is the subspace L2(X;E) of the space of sections of the hermitian G-bundle p : E → X,
with X = G/H (see Definition 6.25). Recall that the restriction of the action of G to H
on the fibre E0 is a unitary representation σ : H → U(E0). For the time being, we will
assume that there exists a section r : X → G, such that the maps L : L2(X;E) → Lσ and
S : Lσ → L2(X;E) define isomorphisms between L2(X;E) and Lσ. Recall from Equation
(†4) of Definition 6.24 that Lσ is the set consisting of all functions f ∈ L2(G;E0), such that

f(gh) = σ(h−1)(f(g)) = h−1 · f(g), for all g ∈ G and all h ∈ H.

In view of the isomorphism between L2(X;E) and Lσ, the induced representation IndGH σ is
equivalent to the left regular representation of G in Lσ. We also assume that the section
r : X → G makes the representation Π continuous.

Inspired by Cohen, Geiger and Weiler [9] we consider the more general situation in which
we have two hermitian G-bundles of finite rank pin : Ein → Xin and pout : Eout → Xout, where
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Xin = G/Hin and Xout = G/Hout for the same group G, input and output representations σin

and σout, and determine what are the linear maps Φ: Lσin → Lσout that are equivariant with
respect to the representations IndGHin

σin and IndGHout
σout, which means that the following

diagram commutes

Lσin
Φ //

(IndGHin
σin)(g)

��

Lσout

(IndGHout
σout)(g)

��
Lσin

Φ
// Lσout

for all g ∈ G (for simplicity of notation, we use Φ instead of Φ̂).

To reduce the amount of subscripts, we will denote the fibre (Ein)0 above xin
0 = Hin by

Ein
0 and the fibre (Eout)0 above xout

0 = Hout by Eout
0 . Note that Ein

0 plays the role of Hin and
Eout

0 plays the role of Hout. Then our representations σin and σout are σin : Hin → U(Ein
0 ) and

σout : Hout → U(Eout
0 ). Technically, the equivariant linear maps Φ from Lσin to Lσout are the

maps in the space HomHin,Hout(IndGHin
σin, IndGHout

σout) of maps between the representations

IndGHin
σin and IndGHout

σout.

Proposition 8.12 generalizes results proven in Cohen, Geiger and Weiler [9] (see Theorem
3.1 and Theorem 3.2) and shows that the equivariant maps Φ as above are determined by
the space of equivariant G-kernels given by

HomHin,Hout(G,Hom(Ein
0 , E

out
0 )) = {K : G→ Hom(Ein

0 , E
out
0 ) |

K(h2gh1) = σout(h2) ◦K(g) ◦ σin(h1),

g ∈ G, h1 ∈ Hin, h2 ∈ Hout}. (EC2)

The above condition is more complicated than (EC1), and these kernels are defined on G,
which makes them rather impractical.

In Section 8.14, we give another characterizations originally due to Cohen, Geiger and
Weiler [9] of the space HomHin,Hout(IndGHin

σin, IndGHout
σout) in terms of kernels defined on

Xin = G/Hin. More precisely, we prove that there is a bijection between the space of equivari-
ant G-kernels HomHin,Hout(G,Hom(Ein

0 , E
out
0 )) and the space HomHout(Xin,Hom(Ein

0 , E
out
0 ))

of equivariant Xin-kernels, which are maps κ : Xin → Hom(Ein
0 , E

out
0 ) satisfying a certain

condition; see Proposition 8.13.

The G-equivariant maps in HomHin,Hout(IndGHin
σin, IndGHout

σout) are functions from Lσin

to Lσout and still require integration over G to be computed using equivariant kernels in the
space HomHin,Hout(G,Hom(Ein

0 , E
out
0 )). It would be nice if we could transform the integration

over G to a more practically computable integration over Xin. This can be achieved by using
the maps Sout : Lσout → L2(Xout, Eout) and Lin : L2(Xin, Ein) → Lσin given by (S ′′3 ) and (L′3)
of Section 6.13. When these maps are well-defined, which is our assumption, they can be
used to define maps from L2(X,Ein) to L2(X,Eout) from functions from Lσin to Lσout . This
process is explained in Section 8.15.
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Pick a set of coset representatives (rin
x )x∈G/Hin

for Xin = G/Hin and a set of coset repre-
sentatives (rout

x )x∈G/Hout for Xout = G/Hout. Then for every section s ∈ L2(Xin, Ein), for every
x ∈ Xout, observe that for every equivariant kernel K ∈ HomHin,Hout(G,Hom(Ein

0 , E
out
0 )), the

function Φ̃ given by

Φ̃(s) = Sout(K ? (Lin(s)))

maps L2(Xin, Ein) to L2(Xout, Eout), as illustrated in the following diagram.

Lσin
Φ=K?− // Lσout

Sout

��
L2(Xin, Ein)

Φ̃

//

Lin

OO

L2(Xout, Eout).

We obtain formulae expressing Sout(K?(Lin(s))) in terms of an integral overXin; see Formulae
(†8) and (†9). Special cases of this formula are also discussed. The issue of finding G-
equivariant kernels still remains and is addressed in Section 8.16.

As in Lang and Weiler [46] and Cesa, Lang and Weiler [8] we now assume that Hin =
Hout = H, so Xin = Xout = X = G/H, and we have two Hermitian G-bundles Ein and
Eout. The Hermitian G-bundles define two representations σin : H → U(Hin) and σout : H →
U(Hout), where we denote the fibres Ein

0 and Eout
0 as Hin and Hout, which is closer to the

notation used by the above authors. We consider the space of equivariant X-kernels defined
as

HomH(X,Hom(Hin,Hout)) = {κ : X → Hom(Hin,Hout) |
κ(h · x) = σout(h) ◦ κ(x) ◦ σin(h)−1,

x ∈ X, h ∈ H}. (EC6)

Remarkably, Lang and Weiler [46] and Cesa, Lang and Weiler [8] completely characterized
the kernels in κ ∈ HomH(X,Hom(Hin,Hout)), when H is a compact group acting on a
topological Hausdorff space X equipped with the σ-algebra of Borel sets and an H-invariant
measure µ.

A key ingredient is the analog of the left regular representation V : H → U(L2(X)) of
L2(X) induced by the action of H on X already introduced in Section 8.7 and given by

(V (h)f)(x) = f(h−1 · x), h ∈ H, f ∈ L2(X), x ∈ X.

For the sake of consistency of notation, we will also denote the representation V as RH→L2(X).

The other key ingredient is the set of H-maps

HomH(RH→L2(X),Hom(σin, σout)),
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which is the space of linear maps K : L2(X) → Hom(Hin,Hout), such that the following
diagram commutes

L2(X) K //

RH→L2(X)(h)

��

Hom(Hin,Hout)

Hom(σin,σout)(h)

��
L2(X)

K
// Hom(Hin,Hout)

for every h ∈ H; see Definition 3.9. Cesa, Lang and Weiler [8] call the maps K kernel
operators .

The main result is that there is a bijection between the space HomH(X,Hom(Hin,Hout))
of equivariant X-kernels and the space HomH(RH→L2(X),Hom(σin, σout)) of kernel operators;
see Theorem 8.14. This isomorphism is a kind of linearization of the first space.

But now Proposition 4.28 tells us that the representations Hom(σin, σout) and σin ⊗ σout

are equivalent, so we obtain an isomorphism

HomH(X,Hom(Hin,Hout)) ≈ HomH(RH→L2(X), σin ⊗ σout). (†15)

Since H is a compact group, we can now use Theorem 8.7 (a direct consequence of
Peter–Weyl II) to express L2(X) as a Hilbert sum of spaces corresponding to irreducible
representations of H and the decomposition of the tensor product representation σin ⊗ σout

as a Hilbert sum of irreducible representations of H (see Proposition 4.18 and Equation (⊗)
in Section 4.4). Such a decomposition is achieved in a theorem referred to as Wigner–Eckart
theorem for steerable kernels by Cesa, Lang and Weiler [8] (Theorem B.5); see Theorem 8.15.
The more general theorem that also applies to real representations is proven in Cesa, Lang
and Weiler [8].

Cesa, Lang and Weiler [8] also prove a version of the above result in which a basis of
HomH(X,Hom(Hin,Hout)) is exhibited. The formulae are a bit messy, so we will not give
details here; see Theorem B.6 and Theorem B.7 in Cesa, Lang and Weiler [8]. The idea
is clear though. A steerable basis for L2(X) is provided by Theorem 8.7; these are the

functions Yρ,kρ . Matrices CG
c
ρ1
in,out

j of Clebsch–Gordan coefficients expressing the change of
basis required when decomposing the representation σin ⊗ σout into irreducibles are needed.
The commutants C(Mρ1) of the representations Mρ1 also play a role in the real case; see
Section 8.16.

8.2 Cross-Correlation as Template Matching

Template matching is one of the central problems arising in computer vision. Instances
of this problem are (1) recognizing a face or shape in a scene, say a group of people; (2)
detecting the presence of an abnormal cell in a tissue.



518 CHAPTER 8. EQUIVARIANT CONVOLUTIONAL NEURAL NETWORKS

A way to describe the problem in mathematical terms is to represent images, more
generally “signals,” as functions f : R2 → R. Actually, such functions have compact support,
which is typically a rectangular grid, and they are only defined on the finite number of grid
points. Mathematically, it is convenient to assume that these functions belong to the Hilbert
space of real valued functions in L2(R2). The pattern to be detected is also given by a function
k ∈ L1(R2) with compact support usually known as a kernel .1 To detect whether the pattern
k occurs in the image f , we slide k over f using all possible translations x ∈ R2, namely
create the translate functions λxk given by (λxk)(t) = k(t − x) (t ∈ R2), and test whether
we find a match at any location t ∈ R2 between f(t) and (λxk)(t) by forming the product
f(t)k(t− x) and then by averaging these scores by computing the integral∫

R2

f(t)k(t− x) dt, (∗1)

where dt is the Lebesgue measure on R2. See Figures 8.1 and 8.2. If k and f are discrete
functions defined on the same grid, then the above integral is a finite sum.

f is represented by the pink square

😐

k is the pattern 😐

Figure 8.1: Let f(x) represent the color of the pixel at location x. The graph of f : R2 → R
is represented by the pink square with a single smiley face. We want to locate the smiley
face k : R2 → R within this square.

Now the expression in (∗1) is almost the convolution of f and k, except for a wrong sign.
The convolution f ∗ k is given by

(f ∗ k)(x) =

∫
R2

f(t)k(x− t) dt. (∗2)

As we said earlier in Vol. I, Section 8.12, the expression in (∗1) is the convolution f ∗ ǩ,
where ǩ is the function defined by ǩ(s) = k(−s). We can think of ǩ as a reflected kernel.

1Unfortunately, the term kernel has multiple meanings, but it seems universally adopted in signal pro-
cessing.
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(k +f )(x) 
finding the pattern in f

😐

🫥🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥🫥🫥 🫥🫥🫥

🫥
🫥🫥🫥🫥🫥🫥

Figure 8.2: To detect whether the smiley face occurs in the square, we form the product
f(t)k(t− x) and compute (k ? f)(x) =

∫
R2 f(t)k(t− x) dt.

Since for our purpose expression (∗1) is more natural than a convolution with a reflected
kernel, we define the notion of cross-correlation as follows.

Definition 8.1. For any function f ∈ L2(R2) and for any correlation kernel k ∈ L1(R2) the
cross-correlation of k and f , denoted by k ? f , is defined so that for all x ∈ R2,

(k ? f)(x) =

∫
R2

f(t)k(t− x) dt. (∗3)

If we need to be more precise, we write k ?R2 f .

The function k is often called the convolution kernel, but it is really the correlation kernel
(or template kernel).

Note that we did not specify what kind of condition needs to be imposed on the kernel
k. We certainly would like k ? f to belong to L2(R2). By a result of Folland [22] (Chapter 2,
Proposition 2.39), if k ∈ L1(R2) and if k has compact support, then k ? f ∈ L2(R2).

However, later we will also need to consider more general notions of correlation from
some space of L2-integrable functions to itself and it will be crucial that such maps Φ be
continuous linear maps definable in terms of kernels. This implies that these correlations are
Hilbert–Schmidt operators , as discussed in Section 2.5. Recall the fundamental result that if
L2
µ(X) is separable, then a linear map T : L2

µ(X)→ L2
µ(X) is a Hilbert–Schmidt operator iff

there is a kernel K : X ×X → C, which is a function in the space L2
µ⊗µ(X ×X), such that

(T (f))(x) =

∫
X

K(x, y)f(y) dµ(y), f ∈ L2
µ(X), x ∈ X. (HS1)

To assert that K ∈ L2
µ⊗µ(X ×X) means that K is a µ⊗ µ-measurable map and that

‖K‖2
2 =

∫
X

∫
X

|K(x, y)|2 dµ(x) dµ(y) <∞. (HS2)
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If we define K as K(x, y) = k(y − x), we see that the map f 7→ k ? f is Hilbert-Schmidt
if k ∈ L2(R2) and if ∫

R2

∫
R2

|k(y − x)|2 dλR2 (x) dλR2 (y) <∞,

where λR2 is the Lebesgue measure on R2.

The right-hand side of (∗3) can be viewed as an inner product in L2(R2), namely

〈f, λx(k)〉 =

∫
R2

f(t)k(t− x) dt. (∗4)

The above observation is the key to generalizing cross-correlation to groups more general
than R2. The key observation is that the function λxk is the result of applying the regular
left representation R of R2 in L2(R2), since

(Rx(k))(t) = (λxk)(t) = k(−x+ t) = k(t− x),

as the group R2 is abelian. In order to define the cross-correlation for more general groups
G, we use the regular left representation R of G in L2(G) or possibly L2(X) for some space
X on which G acts.

If we wish to be more precise, we denote this representation by

RG→L2(X).

The machine learning community tends to use the notation LG→L2(X).

Now because the Lebesgue measure is translation invariant, cross-correlation is equivari-
ant under translation. What this means is that if we define the (linear) map Φ: L2(R2) →
L2(R2) by

Φ(f) = k ? f,

since R2 acts on L2(R2) by the regular left representation RR2→L2(R2), we have the commu-
tative diagram

L2(R2) Φ //

R
R2→L2(R2)
x

��

L2(R2)

R
R2→L2(R2)
x

��
L2(R2)

Φ
// L2(R2)

for all x ∈ R2, whose proof is left as an exercise. The above diagram expresses the fact that
the transform Φ is R2-equivariant. See Figure 8.3.

Now what happens if the image is rotated by an angle θ, so that we have the new image
given by

(R
SO(2)→L2(R2)
Rθ

f)(t) = f(R−θ(t)), t ∈ R2, Rθ ∈ SO(2)?
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😐

🫥🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥🫥🫥 🫥🫥🫥

🫥
🫥🫥🫥🫥🫥🫥

translate f and look for pattern

(k+R  (f ))(x) g

😐

🫥🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥🫥🫥 🫥🫥🫥

🫥
🫥🫥🫥🫥🫥🫥

untranslated surface

Equivalent to looking for the pattern in untranslated surface
R  ((k +f )(x))g

Figure 8.3: If we translate the surface and look for the pattern, we must calculate (k ?
Rg(f))(x) =

∫
R2 f(t − g)k(t − x) dt. This is equivalent to looking for the pattern in the

original surface via Rg((k ? f)(x)) =
∫
R2 f(t)k(t− x+ g) dt.

The problem is that the new diagram

L2(R2) Φ //

R
SO(2)→L2(R2)
Rθ ��

L2(R2)

R
SO(2)→L2(R2)
Rθ��

L2(R2)
Φ
// L2(R2)

does not commute; the transform

[Φ(R
SO(2)→L2(R2)
Rθ

f)](x) =

∫
R2

f(R−θ(t))k(t− x) dt

of the rotated image f is not equal to the rotated transform

[R
SO(2)→L2(R2)
Rθ

(Φ(f))](x) =

∫
R2

f(t)k(t−R−θ(x)) dt.

This is because we can make the change of variable t1 = R−θ(t) in the integral

[Φ(R
SO(2)→L2(R2)
Rθ

f)](x) =

∫
R2

f(R−θ(t))k(t− x) dt,

so t = Rθ(t1) and since the diffeomorphism of R2 given by t 7→ R−θ(t) has Jacobian deter-
minant equal to +1, we obtain∫

R2

f(t1)k(Rθ(t1)− x) dt1 6=
∫
R2

f(t)k(t−R−θ(x)) dt.
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😐🫥

rotate f and look for pattern

(k+R  (f ))(x) g

😐

😐

🫥

😐 pattern to translate in rotated image

🫥🫥
🫥
🫥🫥
🫥
🫥
🫥
🫥
🫥
🫥
🫥
🫥

Original unrotated f

R  ((k+f )(x))g

NOT EQUIVALENT

need to translate by R   (x)g

🫥
🫥🫥
🫥

🫥
🫥
🫥🫥
🫥

🫥
🫥
🫥
🫥
🫥

🫥
🫥🫥
🫥🫥

this is a translation along the diagonal

Figure 8.4: If we rotate the surface and look for the pattern, we must calculate (k ?
Rg(f))(x) =

∫
R2 f(R−θ(t))k(t − x) dt. This is not the same as the rotated transformation

Rg((k ? f)(x)) =
∫
R2 f(t)k(t−R−θ(x)) dt.

Equivariance under rotation fails; see Figure 8.4.

This is a very unfortunate problem, because in general, we would like to know whether
the pattern k occurs in f , translated or rotated.

One possible remedy is data augmentation, which means creating rotated templates, but
this is an expensive technique which often fails to identify rotated patterns.

A better solution is to define a lifted correlation.

8.3 Lifted Correlation

The basic idea is that instead of rotating the input image,!p
we apply a rotated kernel to the image. We first illustrate this process in the case of

SE(2) = R2oSO(2), but this method works for semi-direct products of the form G = RdoH.
We will denote an element of SE(2) as g = (x, θ), where x ∈ R2 and θ ∈ R (mod 2π). Then
we define the lifted correlation k ?̃ f by

(k ?̃ f)(x, θ) = 〈f, λ(x,θ)k〉 =

∫
R2

f(t)(λ(x,θ)k)(t) dt =

∫
R2

f(t)k(R−θ(t− x)) dt; (∗5)

see Figure 8.5.
Observe that we are still integrating over R2, but we are using the rotated kernel λRθk,

and we can still use efficient methods available to compute the last integral.

But observe that our transform now takes an input function f (image, signal) in L2(R2),
but yields an output function Φ(f) = k ?̃ f in the larger function space L2(SE(2)) of functions



8.3. LIFTED CORRELATION 523

x

y

θ

😐

🫥
🫥🫥🫥🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥🫥
🫥🫥🫥🫥🫥🫥

🫥🫥🫥🫥🫥

🫥🫥🫥
🫥
🫥
🫥🫥🫥
🫥🫥
🫥🫥

🫥

🫥

🫥

🫥🫥

🫥

🫥🫥🫥
🫥🫥🫥
🫥
🫥
🫥
🫥
🫥🫥
🫥🫥
🫥🫥
🫥

🫥🫥🫥

🫥
🫥🫥
🫥
🫥🫥
🫥
🫥 😐🫥
🫥
🫥🫥
🫥

🫥

(k+ f )(x, θ) ~

Figure 8.5: An illustration of the lifted correlation (k ?̃ f)(x, θ). As before, f is represented
by the pink square in the horizontal xy-plane. Each θ layer contains a rotated copy of the
smiley face pattern which is then translated over the the image of f in the xy-plane.

defined on the group SE(2). Equivariance is verified as follows. We have

(k ?̃ λRϕf)(x, θ) =

∫
R2

(λRϕf)(t)k(R−θ(t− x)) dt

=

∫
R2

f(R−ϕt)k(R−θ(t− x)) dt.

We can make the change of variable t1 = R−ϕt, so t = Rϕt1 and since the diffeomorphism of
R2 given by t 7→ R−ϕt has Jacobian determinant equal to +1, we obtain

(k ?̃ λRϕf)(x, θ) =

∫
R2

f(R−ϕt)k(R−θ(t− x)) dt =

∫
R2

f(t1)k(R−θ(Rϕt1 − x)) dt1.

On the other hand, the left regular action of SO(2) in L2(SE(2)) is given by

λRϕ(g)(x, θ) = g(R−ϕx, θ − ϕ), g ∈ L2(SE(2)),

so we have

λRϕ(k ?̃ f)(x, θ) = (k ?̃ f)(R−ϕx, θ − ϕ)

=

∫
R2

f(t)k(R−(θ−ϕ)(t−R−ϕx)) dt =

∫
R2

f(t)k(R−θ(Rϕt− x)) dt.

Therefore

(k ?̃ λRϕf)(x, θ) = λRϕ(k ?̃ f)(x, θ),
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or equivalently, the diagram

L2(R2) Φ //

R
SO(2)→L2(R2)
Rϕ

��

L2(SE(2))

R
SO(2)→L2(SE(2))
Rϕ

��
L2(R2)

Φ
// L2(SE(2))

commutes for all Rϕ ∈ SO(2), which shows that equivariance holds.

The above definition can be generalized to a group G, which is a semi-direct product
G = Rd o H. At first, it is more convenient to assume that G = NH, where N is normal
in G and isomorphic to Rd (thus abelian) and that N ∩H = {e}; see Section 7.4 for details.
Given that multiplication in G is given by

(n1h1)(n2h2) = (n1[h1n2h
−1
1 ])(h1h2), (mult1)

and that the inverse of n1h1 is (h−1
1 n−1

1 h1)h−1
1 , since we are assuming that N is abelian, it is

convenient to use the additive notation + for the group operation onN , so that multiplication
in G is given by

(n1h1)(n2h2) = (n1 + h1n2h
−1
1 )(h1h2),

and the inverse of (n1h1) is (h−1
1 (−n1)h1)h−1

1 . But because N ∩ H = {e}, the additive
identity of N ' Rd is denoted e instead of 0. The group G = N oH ' Rd oH acts on Rd

as follows:
(nh) · t = n+ hth−1, nh ∈ Rd oH, t ∈ Rd. (∗6)

Since (nh)−1 = (h−1(−n)h)h−1, we obtain

(nh)−1 · t = h−1(−n)h+ h−1th = h−1(t− n)h, nh ∈ Rd oH, t ∈ Rd. (∗7)

In the special case where n = e, we obtain the action of H on Rd given by

h · t = hth−1, h ∈ H, t ∈ Rd, (∗8)

and in the special case when h = e, we obtain the action of Rd on Rd given by

n · t = n+ t, n, t ∈ Rd. (∗9)

We have the corresponding actions of H and Rd on L2(Rd) given by

(λhk)(t) = k(h−1 · t) = k(h−1th)

(λxk)(t) = k((−x) · t) = k(t− x),

which induce the left regular representations RH→L2(Rd) of H in Rd and RRd→L2(Rd) of Rd in
L2(Rd) given by

(R
H→L2(Rd)
h k)(t) = k(h−1 · t) = k(h−1th) (RH→L2(Rd))

(RRd→L2(Rd)
x k)(t) = k((−x) · t) = k(t− x). (RRd→L2(Rd))
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It follows that for any t ∈ Rd and any xh ∈ Rd oH, we have

(λ(xh)k)(t) = k((xh)−1 · t) = k(h−1(t− x)h) = k(h−1 · (t− x)) = (λx(λhk))(t).

Definition 8.2. For any function f ∈ L2(Rd), for any correlation kernel k ∈ L2(Rd) with∫
Rd

∫
Rd
|k(y − x)|2 dλRd (x) dλRd (y) <∞,

where λRd is the Lebesgue measure on Rd, and for any semi-direct product Rd o H (H is
usually a compact group), the lifted correlation k ?̃ f is defined by

(k ?̃ f)(xh) = 〈f, λ(xh)k〉 =

∫
Rd
f(t)k(h−1(t− x)h) dt, xh ∈ Rd oH. (∗10)

Since k(h−1(t − x)h) = (λx(λhk))(t), we see that this formula is similar to (∗3) except
that we use the correlation kernel λhk instead of k.

Given an input function f ∈ L2(Rd), we obtain an output function k ?̃ f ∈ L2(Rd oH).
In the special case where H = SO(d), the formula in (∗10) simplifies as shown in the next
example.

Example 8.1. In the special case H = SO(d), we have G = SE(d) ' Rd o SO(d), where
SE(d) consists of the (d+ 1)× (d+ 1) matrices(

Q x
0 1

)
, Q ∈ SO(d), x ∈ Rd,

and since (
Q x
0 1

)
=

(
Id x
0 1

)(
Q 0
0 1

)
,

we have SE(d) = N oH, where N ' Rd consists of all matrices n of the form

n =

(
Id x
0 1

)
, x ∈ Rd,

and H ' SO(d) consists of all matrices h of the form

h =

(
Q 0
0 1

)
, Q ∈ SO(d).

If we denote an element of SE(d) as (x,Q), since

h

(
Id t
0 1

)
h−1 =

(
Id Qt
0 1

)
,
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using the isomorphism (
Id y
0 1

)
7→ y

between N and Rd,
hth−1 = Qt,

so the action in (∗6) of SE(d) on Rd (with n = x) is given by

(x,Q) · t = x+Qt, t, x ∈ Rd, Q ∈ SO(d). (∗11)

With this notation, when G = SE(d) = Rd o SO(d), Equation (∗10) becomes

(k ?̃ f)(x,Q) = 〈f, λ(x,Q)k〉 =

∫
Rd
f(t)k(Q−1(t− x)) dt, (x,Q) ∈ Rd o SO(d). (∗12)

Note that viewing the elements of SE(d) are pairs (x,Q) with x ∈ Rd and Q ∈ SO(d)
corresponds to defining the semi-direct product G = N oH as the Cartesian product N ×H
with the multiplication operation

(n1, h1)(n2, h2) = (n1 + (h1 · n2), h1h2), (mult2)

where · : H × N → N is an action of H on N , such that for each h ∈ H, the map n 7→
h · n is an automorphism of N ; equivalently, the action · is defined by a homomorphism
τ : H → Aut(N), with h · n = τ(h)(n). Since N and H are no longer given as subgroups of
a common group, we denote the identity element of N as 0 and the identity element of H as
e. The inverse of an element (n, h) ∈ G = N oH is equal to (−h−1 ·n, h−1). For details, see
Gallier and Quaintance [27] (Chapter 19, Section 19.5). With this point of view, the action
of SO(d) on Rd is

Q · x = Qx,

and multiplication is given by

(x1, Q1)(x2, Q2) = (x1 +Q1x2, Q1Q2).

Furthermore, Equation (∗10) becomes

(k ?̃ f)(x, h) =

∫
Rd
f(t)k(h−1 · (t− x)) dt, (x, h) ∈ Rd ×H. (∗10′)

Actually, the above equation is also valid if G = N o H is viewed as NH, as in our first
interpretation, since the action of H on N ' Rd is given by h · n = hnh−1.

From now on, unless specified otherwise, we will use the version of a semi-direct product
N oH as the Cartesian product N ×H with the multiplication operation given by (mult2).
Elements of N oH are denoted by pairs (x, h) ∈ N ×H.

The functions arising from lifted convolutions are given a name as below.
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Definition 8.3. Functions f : Rd × H → C in L2(Rd o H) = L2(G) are called G-feature
maps .

If the group H can be easily discretized, then we can compute a discretization of the
function k ?̃ f . This is the case when d = 2 and H = SO(2). In this situation, a feature map
in L2(SE(2)) can be viewed as a stack of rectangular grids, one for each θ ∈ R (mod 2π).
We can obtain a final score of the occurrence of the template k moved over the image f in
all positions determined by the group elements h ∈ H, in this case rotations Rθ ∈ SO(2),
by some projection process over the “H-axis,” in this case, the θ-axis; this is often called
pooling in machine learning (max-pooling being a common instance of pooling).

The major benefit of lifted kernels is that we recover equivariance under the group H.
Since H is a subgroup of G = Rd o H, we have the left regular representation of H in
L2(Rd oH), namely, for every f ∈ L2(Rd oH) we have

(R
H→L2(RdoH)
h (f))(x, h1) = f(h−1 · (x, h1)) = f(h−1 · x, h−1h1), h ∈ H (RH→L2(RdoH))

for all (x, h1) ∈ Rd oH.

The following result reveals a sufficient condition on the action of H on Rd to ensure
equivariance.

Proposition 8.1. Let Φ: L2(Rd)→ L2(Rd oH) be given by

Φ(f) = k ?̃ f

as in (∗10′). We have

(R
H→L2(RdoH)
h (k ?̃ f))(x, h1) =

∫
Rd
f(t)k(h−1

1 · (h · t− x)) dt

(k ?̃ (R
H→L2(Rd)
h f))(x, h1) =

∫
Rd
f(h−1 · t)k(h−1

1 · (t− x)) dt,

for all h, h1 ∈ H and all x ∈ Rd. If we denote by Jh = det d(Lh)0 the Jacobian determinant
of the linear map Lh : Rd → Rd defined by Lh(t) = h · t (h ∈ H, t ∈ Rd),2 then

(k ?̃ (R
H→L2(Rd)
h f))(x, h1) = |Jh|(RH→L2(RdoH)

h (k ?̃ f))(x, h1) (†1)

for all h, h1 ∈ H and all x ∈ Rd. Consequently, if |Jh| = 1 for all h ∈ H, then the following
diagram

L2(Rd) Φ //

R
H→L2(Rd)
h ��

L2(Rd oH)

R
H→L2(RdoH)
h��

L2(Rd)
Φ
// L2(Rd oH)

commutes for all h ∈ H, which shows that Φ is H-equivariant.
2Recall that the derivative d(Lh)x of the linear map Lh at x ∈ Rd is independent of x ∈ Rd.
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Proof. We have

(R
H→L2(RdoH)
h (k ?̃ f))(x, h1) = (k ?̃ f)(h−1 · x, h−1h1)

=

∫
Rd
f(t)k((h−1h1)−1 · (t− h−1 · x)) dt

=

∫
Rd
f(t)k(h−1

1 · (h · t− x)) dt,

and

(k ?̃ (R
H→L2(Rd)
h f))(x, h1) =

∫
Rd
f(h−1 · t)k(h−1

1 · (t− x)) dt.

Since the maps Lh are injective and C1, by making the change of variable t = h · t1 (so
h−1 · t = t1) in the integral ∫

Rd
f(h−1 · t)k(h−1

1 · (t− x)) dt,

by the change of variable equation in an integral, we get∫
Rd
f(h−1 · t)k(h−1

1 · (t− x)) dt = |Jh|
∫
Rd
f(t1)k(h−1

1 · (h · t1 − x)) dt1,

which proves Equation (†1).

Under the conditions of Proposition 8.1, by construction Φ is also Rd-equivariant, so Φ
is actually Rd oH-equivariant.

8.4 Group Correlation on Locally Compact Groups

Now that we are dealing with functions defined on the group G = RdoH, in order to proceed
to different layers of a convolutional neural network, we take the last step in generalizing the
notion of cross-correlation, which is to define the notion of group correlation. This notion
actually makes sense for any locally compact group.

Definition 8.4. Let G be a locally compact group with left Haar measure λG. For any
f ∈ L2(G) and for any correlation kernel k ∈ L2(G) with∫

G

∫
G

|k(g−1
1 g2)|2 dλG(g1) dλG(g2) <∞,

where λG is the left Haar measure on G, the cross-correlation operator , or simply correlation
operator of k and f , denoted k ? f , is defined by

(k ? f)(s) = 〈f, λs(k)〉 =

∫
G

f(t)λs(k)(t) dλG(t) =

∫
G

f(t)k(s−1t) dλG(t), s ∈ G.

The function k is called the correlation kernel .
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Recall the left regular representation of G in L2(G) given by

(RG→L2(G)
g f)(t) = (λgf)(t) = f(g−1t), g, t ∈ G, f ∈ L2(G).

We have

(k ? λg(f))(s) =

∫
G

(λgf)(t)k(s−1t) dλG(t) =

∫
G

f(g−1t)k(s−1t) dλG(t),

and

(λg(k ? f))(s) = (k ? f)(g−1s) =

∫
G

f(t)k((g−1s)−1t) dλG(t) =

∫
G

f(t)k(s−1gt) dλG(t).

Since the Haar measure λG is left-invariant, by substituting t = g−1t for t, we get

(λg(k ? f))(s) =

∫
G

f(t)k(s−1gt) dλG(t) =

∫
G

f(g−1t)k(s−1t) dλG(t) = (k ? λg(f))(s).

This shows that the map Φ: L2(G)→ L2(G) given by

Φ(f) = k ? f

is G-equivariant, which means that the following diagram

L2(G) Φ //

R
G→L2(G)
s

��

L2(G)

R
G→L2(G)
s

��
L2(G)

Φ
// L2(G)

commutes for all s ∈ G. In group correlation (Definition 8.4), the template k is moved
around by all group elements s ∈ G, and the moved template λsk is matched against the
image f .

Example 8.2. In the special case where G = RdoSO(d) (d = 2, 3), Definition 8.4 becomes

(k ? f)(x,Q) = 〈f, λ(x,Q)(k)〉 =

∫
Rd

∫
SO(d)

f(y,R)λ(x,Q)(k)(y,R) dλRd(y)dλSO(d)(R)

=

∫
Rd

∫
SO(d)

f(y,R)k(Q−1(y − x), Q−1R) dλRd(y)dλSO(d)(R),

with x ∈ Rd, Q ∈ SO(d). In the above example, since f and k are functions from G =
RdoSO(d) to R and since we denote the elements of G as pairs (x,Q), we write f and k as
functions of two arguments.
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For d = 2 and H = SO(2), Definition 8.2 and the above formula can be effectively
computed.

A typical equivariant convolutional neural network (CNN) consists of several layers, start-
ing with an input image f0 ∈ L2(R2). The first layer is a lifting layer, which produces the
first SE(2)-feature map

f1 = k1 ?̃ f0

using a correlation kernel k1 ∈ L2(R2). The subsequent layers are group correlation layers,
such that

fl+1 = kl+1 ? fl,

with fl, fl+1 ∈ L2(SE(2)) and kl+1 ∈ L2(SE(2)). After each correlation transform, some
activation function is applied, possibly a pointwise RELU. The last layer is a projection
layer which produces a function in L2(R2) using some pooling process over the θ-axis. The
use of correlation kernels in L2(SE(2)) allows the detection of patterns using features at
relative poses.

For d = 3, there are serious computational issues. A way around this difficulty is to
use steerable kernels discussed in Section 8.6. But first, we need to discuss how to equip a
semi-direct product with a Haar measure, because there are some subtle issues.

8.5 Haar Measures on Semi-Direct Products

Again, it is more convenient to assume that we consider semi-direct products G = N oH =
NH, where N and H are subgroups of G with N normal, and N ∩ H = {e}; see Section
7.4. We also assume that N and H are locally compact and that the map ϕ : N ×H → G
given by ϕ(n, h) = nh is a homeomorphism. Then by Definition 3.16, we obtain the measure
µG = ϕ∗(µN ⊗ µH) on G as the direct image of the product measure µN ⊗ µH on N × H,
where µN is a Haar measure on N and µH is a Haar measure on H. By Proposition 3.19,
for any f ∈ L1

µG
(G), we have f ◦ ϕ ∈ L1

µN⊗µH (G), and∫
G

f(g)dµG(g) =

∫
N×H

f(nh) d(µN ⊗ µH)(n, h) =

∫
H

(∫
N

f(nh) dµN(n)

)
dµH(h). (µ1)

Curiously, if µN and µH are right invariant, then µG is also right-invariant, but if µN and
µH are left invariant, then µG is not necessarily left-invariant. We will construct both a left
Haar measure and a right Haar measure for G from a left Haar measure λN on N and a left
Haar measure λH on H and obtain a formula for the modular function on G = N oH. In
general, even if N and H are unimodular, G is not. The problem is that H acts on N by
conjugation, and these automorphisms may not have a modulus equal to 1.

Recall from Vol. I, Section 8.8 that if G is a locally compact group with a left Haar
measure λG, for any automorphism u : G → G of G, there is a unique positive number
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mod(u) called the modulus of u, such that∫
G

f(u(s)) dλG(s) = (mod(u))−1

∫
G

f(s) dλG(s) (µ2)

for all f ∈ L1
λG

(G); see Vol. I, Definition 8.17 and Vol. I, Proposition 8.28. By Vol. I,
Proposition 8.29, the above property also holds for a right Haar measure since mod(u) is the
same as in the case of a left Haar measure. The map u 7→ mod(u) is continuous. This is
shown in Hewitt and Ross [37], Chapter IV, Section 15, Section 15.29, and in Bourbaki [4],
Chapter VII, Section 1, no. 10, Proposition 12. It is also easy to see that if G is discrete or
compact, then mod(u) = 1 for any automorphism u of G.

Also recall from Vol. I, Section 8.6 that if λG is a left Haar measure, then there is a
homomorphism ∆: G→ R∗+ (where R∗+ denotes the set of positive reals) called the modular
function of G, such that∫

G

f(xs) dλG(x) = ∆(s)−1

∫
G

f(x) dλG(x), s ∈ G, (µ3)

for all f ∈ L1
λG

(G); see Vol. I, Definition 8.12 and Vol. I, Proposition 8.22. It is shown in
Bourbaki [4], Chapter VII, Section 1, no. 1, Proposition 1, that ∆ is continuous. This fact
is also proven in Hewitt and Ross [37], Chapter IV, Section 15, Theorem 15.11. By Vol. I,
Proposition 8.27, if λG is a left Haar measure, then ∆−1

G ·λG is a right Haar measure defined,
such that ∫

G

f(x) d(∆−1
G · λG)(x) =

∫
G

∆(x)−1f(x) dλG(x). (µ4)

This can also be verified directly as follows.∫
G

f(xs) d(∆−1
G · λG)(x) =

∫
G

∆(x)−1f(xs) dλG(x) (1)

=

∫
G

∆(s)∆(s)−1∆(x)−1f(xs) dλG(x) (2)

= ∆(s)

∫
G

∆(xs)−1f(xs) dλG(x) (3)

= ∆(s)∆(s)−1

∫
G

∆(x)−1f(x) dλG(x) (4)

=

∫
G

f(x) d(∆−1
G · λG)(x), (5)

where (1) follows by definition, (2) by inserting ∆(s)∆(s)−1, (3) since ∆ is a group homo-
morphism, (4) by (µ3) applied to the function x 7→ ∆(x)−1f(x), and (5) by definition.

Now since Haar measures (left or right) are unique up to a constant, we deduce that
every right Haar measure ν on G if of the form ν = ∆−1 · λ for some left Haar measure λ on
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G, and thus ∆ · ν = ∆ ·∆−1 · λ = λ is a left Haar measure. Furthermore, if λ is a left Haar
measure on G, we have

∫
G

f(sx) d(∆−1
G · λ)(x) =

∫
G

∆(x)−1f(sx) dλ(x) (1)

=

∫
G

∆(s)∆(sx)−1f(sx) dλ(x) (2)

= ∆(s)

∫
G

∆(x)−1f(x) dλ(x) (3)

= ∆(s)

∫
G

f(x) d(∆−1
G · λ)(x), (4)

where (1) follows by definition, (2) by replacing ∆(x)−1 by ∆(s)∆(sx)−1, (3) by left-invariance
of λ, and (4) by definition. This proves that the modular function of the right Haar measure
∆−1
G · λ is also ∆G, and thus the modular function of all right Haar measures on G is ∆G. If

νG is a right Haar measure on G, then we have the following analog of (µ3):

∫
G

f(sx) dνG(x) = ∆(s)

∫
G

f(x) dνG(x), s ∈ G, (µ′3)

for all f ∈ L1
νG

(G).

The image of the product measure λN ⊗λH by ϕ given by (µ1) is a natural candidate for
a left Haar measure on G, but the following result shows that left-invariance fails. However,
this result also suggests how to repair the lack of left-invariance. The repair involves the
term mod(ih), where ih : N → N is the automorphism given by

ih(n) = hnh−1, n ∈ N, h ∈ H. (µ6)

Proposition 8.2. Let G = N oH = NH be the semi-direct product of two locally compact
subgroups N and H, and µG be the image of the product measure λN ⊗ λH by ϕ, where λN
and λH are left Haar measures on N and H, respectively. Then, we have

∫
G

f((n1h1)(nh)) dµG(nh) = mod(ih1)
−1

∫
G

f(nh) dµG(nh) (µ5)

for all n1h1 ∈ G and all f ∈ L1
µG

(G), where ih1 : N → N is the automorphism given by

ih1(n) = h1nh
−1
1 , n ∈ N.
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Proof. Since (n1h1)(nh) = (n1[h1nh
−1
1 ])(h1h), using Fubini’s theorem, we have∫

G

f((n1h1)(nh)) dµG(nh) =

∫
G

f((n1[h1nh
−1
1 ])(h1h)) dµG(nh) (1)

=

∫
H

(∫
N

f((n1[h1nh
−1
1 ])(h1h)) dλN(n)

)
dλH(h) (2)

= mod(ih1)
−1

∫
H

(∫
N

f((n1n)(h1h)) dλN(n)

)
dλH(h) (3)

= mod(ih1)
−1

∫
N

(∫
H

f(n(h1h)) dλH(h)

)
dλN(n) (4)

= mod(ih1)
−1

∫
N

(∫
H

f(nh) dλH(h)

)
dλN(n) (5)

= mod(ih1)
−1

∫
G

f(nh) dµG(nh), (6)

where (3) follows by (µ2), (4) follows by Fubini and left-invariance of λN , (5) follows by left
invariance of λH , and (2) and (6) by Fubini and by definition of the measure dµG.

Proposition 8.2 shows that the measure µG is not left-invariant in general. The culprit is
the term mod(ih1)

−1, which reflects the action of H on N . Following Bourbaki [4], Chapter
VII, Section 2, Number 9, we can fix the problem by considering the image of the measure
λN ⊗mod(ih)

−1λH by ϕ, which means that we define the measure λG, such that∫
G

f(g)dλG(g) =

∫
H

mod(ih)
−1

(∫
N

f(nh) dλN(n)

)
dλH(h) (µ7)

for all f ∈ L1
λG

(G).

Technically, we need to view (µ7) as defining a functional on K(G) and use a version of
the Radon–Riesz theorem to construct the measure λG but we will not delve into this matter
here and leave the details as an exercise. The following result shows that λG is left-invariant.

Proposition 8.3. Let G = N oH = NH be the semi-direct product of two locally compact
subgroups N and H with λN and λH left Haar measures on N and H, respectively, and λG
be image of the measure λN ⊗mod(ih)

−1λH by ϕ, which is defined such that∫
G

f(nh)dλG(nh) =

∫
H

mod(ih)
−1

(∫
N

f(nh) dλN(n)

)
dλH(h)

for all f ∈ L1
µG

(G). The measure λG is a left-invariant Haar measure.
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Proof. Using Fubini and the fact that mod(ih1h)
−1 = mod(ih)

−1mod(ih1)
−1, we have∫

G

f((n1h1)(nh)) dλG(nh) =

∫
G

f((n1[h1nh
−1
1 ])(h1h)) dλG(nh) (1)

=

∫
H

mod(ih)
−1

(∫
N

f((n1[h1nh
−1
1 ])(h1h)) dλN(n)

)
dλH(h) (2)

=

∫
H

mod(ih)
−1mod(ih1)

−1

(∫
N

f(n(h1h)) dλN(n)

)
dµH(h) (3)

=

∫
N

(∫
H

mod(ih1h)
−1f(n(h1h))dλH(h)

)
dµN(n) (4)

=

∫
N

(∫
H

mod(ih)
−1f(nh) dλH(h)

)
dµN(n) (5)

=

∫
H

mod(ih)
−1

(∫
N

f(nh) dλN(n)

)
dλH(h) (6)

=

∫
G

f(nh) dλG(nh), (7)

where (1), (2) and (7) follow by definition, (3) by (µ2) and by left-invariance of λN , (4) by
Fubini and the fact that mod is a group homomorphism, (5) by left invariance of λH , and
(6) by Fubini.

The following result shows how right-invariance fails but it also reveals what is the mod-
ular function of G = N oH. Recall that

(nh)(n1h1) = (n[hn1h
−1])(hh1).

Proposition 8.4. Let G = N oH = NH be the semi-direct product of two locally compact
subgroups N and H, and l λG be the left Haar measure defined by (µ7), with λN and λH left
Haar measures on N and H, respectively. We have∫

G

f((nh)(n1h1)) dλG(nh) = mod(ih1)∆N(n1)−1∆H(h1)−1

∫
G

f(nh)dλN(n) dλH(h). (µ8)

Consequently, the modular function of the group G is given by

∆G(nh) = mod(ih)
−1∆N(n)∆H(h). (µ9)

Proof. We need the fact that since N is a closed normal subgroup of G, then

∆N(n) = ∆G(n), n ∈ N,

where ∆G is the modular function of the left Haar measure λG given by (µ7). This is
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Proposition 10 in Bourbaki [4], Chapter VII, Section 2, No. 7. We have∫
G

f((nh)(n1h1)) dλG(nh) =

∫
G

f((n[hn1h
−1])(hh1)) dλG(nh) (1)

=

∫
H

(
mod(ih)

−1

∫
N

f((n[hn1h
−1])(hh1))dλN(n)

)
dλH(h) (2)

=

∫
H

(
mod(ih)

−1

∫
N

∆N(hn1h
−1)−1f(n(hh1))dλN(n)

)
dλH(h) (3)

=

∫
H

(
mod(ih)

−1

∫
N

∆N(hh1h
−1
1 n1h1(hh1)−1)−1f(n(hh1))dλN(n)

)
dλH(h) (4)

= mod(ih1)

∫
N

(∫
H

mod(ihh1)
−1∆N(hh1h

−1
1 n1h1(hh1)−1)−1f(n(hh1))dλH(h)

)
dλN(n) (5)

= mod(ih1)∆H(h1)−1

∫
N

(∫
H

mod(ih)
−1∆N(hh−1

1 n1h1h
−1)−1f(nh)dλH(h)

)
dλN(n) (6)

= mod(ih1)∆H(h1)−1

∫
N

(∫
H

mod(ih)
−1∆G(hh−1

1 n1h1h
−1)−1f(nh)dλH(h)

)
dλN(n) (7)

= mod(ih1)∆H(h1)−1

∫
N

(∫
H

mod(ih)
−1∆G(n1)−1f(nh)dλH(h)

)
dλN(n) (8)

= mod(ih1)∆N(n1)−1∆H(h1)−1

∫
N

(∫
H

mod(ih)
−1f(nh)dλH(h)

)
dλN(n) (9)

= mod(ih1)∆N(n1)−1∆H(h1)−1

∫
H

mod(ih)
−1

(∫
N

f(nh) dλN(n)

)
dλH(h) (10)

= mod(ih1)∆N(n1)−1∆H(h1)−1

∫
G

f(nh)dλG(nh), (11)

where (1), (2) and (11) follow by definition, (3) by (µ3) for λN , (4) by inserting h1h
−1
1 twice

in ∆N(hn1h
−1)−1, (5) by replacing mod(ih)

−1 by mod(ih1)mod(ihh1)
−1 and Fubini, (6) by

(µ3) for λH applied to the entire integrand, (7) by replacing ∆N by ∆G, (8) since ∆G is a
group homomorphism, (9) by moving the constant term ∆N(n1)−1 = ∆G(n1)−1 outside of
the integrals, and (10) by Fubini.

A right Haar measure can be obtained by using the right Haar measures ∆−1
N · λN and

∆−1
H · λH .

Proposition 8.5. Let G = N oH = NH be the semi-direct product of two locally compact
subgroups N and H, and νG be the image of the measure (∆−1

N ·λN)⊗ (∆−1
H ·λH) by ϕ, where

λN is a left Haar measure on N and λH is a left Haar measure on H, defined such that∫
G

f(nh) dνG(nh) =

∫
H

∆H(h)−1

(∫
N

∆N(n)−1f(nh) dλN(n)

)
dλH(h) (µ10)

for all f ∈ L1
µG

(G). The measure νG is a right-invariant Haar measure.
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Proof. Using Fubini and left-invariance, we have∫
G

f((nh)(n1h1)) dνG(nh)

=

∫
H

∆H(h)−1

(∫
N

∆N(n)−1f((n(hn1h
−1))(hh1)) dλN(n)

)
dλH(h) (1)

=

∫
H

∆H(h)−1

(∫
N

∆N(hn1h
−1)∆N(n(hn1h

−1))−1f((n(hn1h
−1))(hh1)) dλN(n)

)
dλH(h) (2)

=

∫
H

∆H(h)−1

(∫
N

∆N(hn1h
−1)∆N(hn1h

−1)−1∆N(n)−1f(n(hh1)) dλN(n)

)
dλH(h) (3)

=

∫
N

∆N(n)−1

(∫
H

∆H(h)−1f(n(hh1)) dλH(h)

)
dλN(n) (4)

=

∫
N

∆N(n)−1

(∫
H

∆H(h1)∆H(hh1)−1f(n(hh1)) dλH(h)

)
dλN(n) (5)

=

∫
N

∆N(n)−1

(∫
H

∆H(h1)∆H(h1)−1∆H(h)−1f(nh) dλH(h)

)
dλN(n) (6)

=

∫
N

∆N(n)−1

(∫
H

∆H(h)−1f(nh) dλH(h)

)
dλN(n) =

∫
G

f(nh) dνG(nh), (7)

where (1) and (7) follow by definition, (2) by replacing ∆N(n)−1 by the term ∆N(hnh−1)
∆N(n(hnh−1))−1, (3) by (µ3) for λN , (4) by simplification and Fubini, (5) by replacing
∆H(h)−1 by ∆H(h1)∆H(hh1)−1, (6) by (µ3) for λH , and (7) by simplification and Fubini.

Remark: if νN and νH are right Haar measures, a similar but simpler proof shows that the
image of the measure νN ⊗ νH by ϕ is right-invariant. This fact is also stated in Hewitt and
Ross [37], Chapter IV, Section 15.

The right Haar measure νG is not left-invariant in general.

Proposition 8.6. Let G = N oH = NH be the semi-direct product of two locally compact
subgroups N and H and let νG be the image of the measure (∆−1

N · λN) ⊗ (∆−1
H · λH) by ϕ,

where λN is a left Haar measure on N and λH is a left Haar measure on H, defined such
that ∫

G

f(nh) dνG(nh) =

∫
H

∆H(h)−1

(∫
N

∆N(n)−1f(nh) dλN(n)

)
dλH(h)

for all f ∈ L1
µG

(G). We have∫
G

f((n1h1)(nh)) dνG(nh) = mod(ih1)
−1∆N(n1)∆H(h1)

∫
G

f(nh) dνG(nh). (µ11)
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Proof. Using Fubini and left-invariance, we have∫
G

f((n1h1)(nh)) dνG(nh)

=

∫
H

∆H(h)−1

(∫
N

∆N(n)−1f((n1(h1nh
−1
1 ))(h1h)) dλN(n)

)
dλH(h) (1)

=

∫
H

∆H(h)−1

(∫
N

∆N(h1nh
−1
1 )−1f((n1(h1nh

−1
1 ))(h1h)) dλN(n)

)
dλH(h) (2)

= mod(ih1)
−1

∫
H

∆H(h)−1

(∫
N

∆N(n)−1f((n1n)(h1h)) dλN(n)

)
dλH(h) (3)

= mod(ih1)
−1

∫
H

∆H(h)−1

(∫
N

∆N(n1)∆N(n1n)−1f((n1n)(h1h)) dλN(n)

)
dλH(h) (4)

= mod(ih1)
−1∆N(n1)

∫
N

∆N(n)−1

(∫
H

∆H(h)−1f(n(h1h)) dλH(h)

)
dλN(n) (5)

= mod(ih1)
−1∆N(n1)

∫
N

∆N(n)−1

(∫
H

∆H(h1)∆H(h1h)−1f(n(h1h)) dλH(h)

)
dλN(n) (6)

= mod(ih1)
−1∆N(n1)∆H(h1)

∫
N

∆N(n)−1

(∫
H

∆H(h)−1f(nh) dλH(h)

)
dλN(n) (7)

= mod(ih1)
−1∆N(n1)∆H(h1)

∫
G

f(nh) dνG(nh), (8)

where (1) and (8) follow by definition, (2) by replacing ∆N(n)−1 by ∆N(h1nh
−1
1 )−1, (3)

by (µ2), (4) by replacing ∆N(n)−1 by ∆N(n1)∆N(n1n)−1, (5) by left invariance for λN and
Fubini, (6) by replacing ∆H(h)−1 by ∆H(h1)∆H(h1h)−1, and (7) by left invariance for λH .

In general, the left-invariant measure λG, image of the measure λN ⊗mod(ih)
−1λH by ϕ

is not right-invariant, and the right Haar measure νG, image of the measure (∆−1
N · λN) ⊗

(∆−1
H · λH) by ϕ, is not left-invariant. The modular function of the right measure νG is

∆νG(nh) = mod(ih)
−1∆N(n)∆H(h), (µ12)

where ih : N → N is the automorphism given by

ih(n) = hnh−1, n ∈ N, h ∈ H.

This confirms the result of Proposition 8.4.

As a consequence, even if N and G are unimodular, which means that ∆N(n) = 1 for
all n ∈ N and ∆H(h) = 1 for all h ∈ H, neither λG nor νG is both left and right-invariant.
However, if mod(ih) = 1 for all h ∈ H, then the Haar measures λG and νG are both left and
right-invariant and G = N oH is unimodular. This is the case when N is compact. This is
also the case where N = Rd, H is a closed subgroup of GL(d), and the automorphisms ih are
linear maps of determinant ±1. In particular, SE(d) = Rd o SO(d) and E(d) = Rd o O(d)
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satisfy this condition, so they are unimodular. Indeed, by Vol. I, Proposition 8.32, if
u ∈ GL(d), then

mod(u) = | det(u)|. (µ13)

As shown in Example 8.1, the action of H ' SO(d) on N ' Rd given by

n 7→ hnh−1, n =

(
Id x
0 1

)
, h =

(
Q 0
0 1

)
, Q ∈ SO(d), x ∈ Rd,

yields

hnh−1 =

(
Id Qx
0 1

)
,

ih is indeed a linear map of determinant +1, and thus so by (µ13), we have mod(ih) = 1.
More generally, if det(Q) = ±1, so that H is isomorphic to a closed subgroup of GL(d)
consisting of matrices of determinant ±1, then det(ih) = ±1, and again by (µ13), we have
mod(ih) = 1.

All of the results of this section also hold for L2 instead of L1. The proof is left as an
exercise.

8.6 Steerable Families

Since it is not practical to use the definition of cross-correlation involving integration over
the group G = RdoH, we go back to the notion of lifted correlation. As we said earlier, it is
more convenient to assume that the semi-direct product G = RdoH is defined by an action
of H on Rd by automorphisms, so that elements of G are denoted as pairs (x, h) ∈ Rd ×H.
Then as in Definition 8.2, for any function f ∈ L2(Rd) and any correlation kernel k, the lifted
correlation k ?̃ f is defined by (∗10′), namely

(k ?̃ f)(x, h) =

∫
Rd
f(t)k(h−1 · (t− x)) dt, (x, h) ∈ Rd ×H.

Observe that k ?̃ f is a function with domain Rd ×H. Computing (k ?̃ f)(x, h) requires
sampling the group H, which is too expensive if d ≥ 3. A way around this problem is to
express the kernels k in terms of a basis of “steerable functions.” Intuitively, this means
using some kind of generalized harmonic functions. In our case, we need to find bases of
functions in L2(Rd) that are H-steerable. In applications, H is a compact group so as we
will see shortly, we can use the Peter–Weyl theorem, actually Version II, namely Theorem
4.3, to find steerable bases.

The problem is the presence of the term k(h−1 · (t−x)) in the integral defining k ?̃ f . The
key point is that if we can express the kernel k as a linear combination of linearly independent
functions Y1, . . . , YL in L2(Rd) that are “nice,” which means that for every h ∈ H and every
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x ∈ Rd, each Yj(h
−1 · x) can be expressed as a linear combination of Y1(x), . . . , YL(x), then

it is possible to express (k ?̃ f)(x, h) in a linear fashion in terms of the vector

fY (x) =

∫
Rd
f(t)Y (t− x) dt,

where Y (x) denotes the column vector

Y (x) =

Y1(x)
...

YL(x)

 ∈ CL.

So let us assume that for every h ∈ H, there is an invertible matrix Σ(h) ∈ GL(L,C), such
that 

Y1(h−1 · x)
Y2(h−1 · x)

...
YL(h−1 · x)

 =


Σ(h)11 Σ(h)2,1 · · · Σ(h)L1

Σ(h)12 Σ(h)2,2 · · · Σ(h)L2
...

...
. . .

...
Σ(h)1L Σ(h)2,L · · · Σ(h)LL



Y1(x)
Y2(x)

...
YL(x)

 ,

or more concisely,
Y (h−1 · x) = Σ(h)>Y (x), x ∈ Rd. (steer1)

If Equation (steer1) holds, we say that (Y1, . . . , YL) is an H-steerable family (or H-steerable
basis). For short, we often drop H. In fact, we will see later that the map Σ: H → U(L)
is a representation of H. The reason for using Σ(h)> instead of Σ(h) is technical and
will become clear later when we explain how to create steerable families. The notion of
steerability occured first in the seminal paper of Freeman and Adelson [24].

Next, assume that the kernel k can be expressed as a linear combination of the Yi using
some coefficients wi ∈ C that we call weights . Let us write

k(x;w) =
L∑
i=1

wi Yi(x) = w∗Y (x), x ∈ X, (kw1)

where w ∈ CL is the column vector consisting of the wi. The reason for using conjugate
weights will become apparent in the computation below.

Let us compute k(h−1 · x;w). Since Y is a steerable family, we have

k(h−1 · x;w) = w∗Y (h−1 · x) = w∗Σ(h)>Y (x)

= (Σ(h)w)∗Y (x) = k(x; Σ(h)w),

namely
k(h−1 · x;w) = k(x; Σ(h)w). (kw2)

So the new kernel is obtained by simply modifying the weights using the matrix Σ(h).
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And now let us compute the lifted correlation k ?̃ f given by

(k ?̃ f)(x, h) =

∫
Rd
f(t)k(h−1 · (t− x);w) dt, (x, h) ∈ Rd oH.

Using the fact that k is a steerable family, we have

(k ?̃ f)(x, h) =

∫
Rd
f(t)k(h−1 · (t− x);w) dt

=

∫
Rd
f(t)w∗Σ(h)>Y (t− x) dt

= w∗Σ(h)>
∫
Rd
f(t)Y (t− x) dt.

Let fY be the function fY : Rd → CL given by

fY (x) =


∫
Rd f(t)Y1(t− x) dt

...∫
Rd f(t)YL(t− x) dt

 =

∫
Rd
f(t)Y (t− x) dt. (fY )

Then using the trick that for any two column vectors u, v ∈ Cn, we have

u>v = tr(vu>),

we obtain

(k ?̃ f)(x, h) =

∫
Rd
f(t)k(h−1 · (t− x);w) dt

= w∗Σ(h)>
∫
Rd
f(t)Y (t− x) dt

= w∗Σ(h)>fY (x) = tr(fY (x)w∗Σ(h)>),

where we use the identity u>v = tr(vu>) with u = (w∗Σ(h)>)> and v = fY (x). Observe
that

f̂(x) = fY (x)w∗

is an L × L matrix that can be thought of as some kind of Fourier coefficients of f . The
formula

(k ?̃ f)(x, h) = tr
(
fY (x)w∗Σ(h)>

)
= tr

(
f̂(x) Σ(h)>

)
shows that (k ?̃ f)(x, h) is similar to a Fourier cotransform with respect to the representation

Σ>, where f̂(x)/L plays the role of F(f)(ρ) and Σ> plays the role of Mρ (see Formula (FI) in
Section 4.12 and Theorem 4.53), except that Σ> is not necessarily irreducible. The function

f̂ : Rd → ML(C) given by f̂(x) = fY (x)w∗ is a matrix-valued function.
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What we have gained is that when we compute the integral

fY (x) =

∫
Rd
f(t)Y (t− x) dt,

we incorporate all the information about the action of H on Rd into fY without having to
sample the group H. The functions (Y1, . . . , YL) package all the information about the group

H needed to compute the essential part of (k ?̃ f)(x, h). The outer product f̂(x) = fY (x)w∗

incorporates all the information in the kernel k using the weight vector w. Computing

(k ?̃ f)(x, h) = tr
(
f̂(x) Σ(h)>

)
= tr

(
Σ(h)f̂(x)>

)
is then very cheap, since it is a linear operation only involving the matrix Σ(h).

Another important observation is that starting with an input function f ∈ L2(Rd), the
lifted correlation k ?̃ f is a scalar-valued function (with codomain C) defined on the aug-

mented domain Rd×H, but f̂ is a vector-valued function from Rd to the augmented codomain
ML(C). The group Rd×H acts on the domain Rd of f̂ , and the group H acts on its codomain
ML(C) in terms of the representation Σ by multiplication on the left by Σ(h). This is one of
the motivations for introducing certain vector-valued functions called feature fields , discussed
in Section 8.8.

The notion of steerability is easily generalized to any measure space X, such that L2(X)
is separable and H acts continuously on X. For example, any locally compact, metrizable,
separable space X equipped with a σ-regular, locally finite, Borel measure µ will do; see Vol.
I, Theorem 7.11.

Definition 8.5. Let X be any measure space, such that L2(X) is separable and H acts
continuously on X. Some linearly independent functions (Y1, . . . , YL) in L2(X) form an
H-steerable family (or H-steerable basis) if there is a representation Σ: H → U(L), such
that

Y (h−1 · x) = Σ(h)>Y (x), h ∈ H, x ∈ X, (steer2)

where Y (x) denotes the column vector

Y (x) =

Y1(x)
...

YL(x)

 ∈ CL.

This more general notion will be needed in Section 8.16 to construct equivariant kernels.

The simplest example (simpler that X = R2) is the circle, X = S1, with H = SO(2), the
group of rotations in the plane.

Example 8.3. Let H = SO(2) and X = S1 ≈ SO(2). For any L-tuple of integers
(n1, . . . , nL), we claim that

Y (α) = (e−in1α, . . . , e−inLα)
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is a steerable family (where the expression on the right-hand side denotes a column vector).

As we saw in Proposition 3.14, every unitary representation Σ: SO(2)→ U(L) is given
by a matrix of the form

Σ(α) =


eik1α 0 . . . 0

0 eik2α . . . 0
...

...
. . .

...
0 . . . . . . eikLα


with k1, . . . , kL ∈ Z, so if we pick kj = nj, for j = 1, . . . , L and

Yj(α) = e−injα,

since
Yj(α− θ) = e−inj(α−θ) = einjθe−injα = einjθYj(α),

we see that Y1(α− θ)
...

YL(α− θ)

 =


ein1θ 0 . . . 0

0 ein2θ . . . 0
...

...
. . .

...
0 . . . . . . einLθ


Y1(α)

...
YL(α)

 ,

which confirms that (Y1(α) = e−in1α, . . . , YL(α) = e−inLα) is a steerable family (again, the
expression on the right-hand side denotes a column vector).

8.7 Construction of H-Steerable Families

We now present a method for finding steerable families on a space X as above equipped with
a continuous action of a compact group H. The trick is to consider the unitary representation
V : H → U(L2(X)) given by

(V (h)f)(x) = f(h−1 · x), h ∈ H, f ∈ L2(X), x ∈ X. (V )

According to the Peter–Weyl theorem, Version II (Theorem 4.16), the space L2(X) is the
Hilbert sum of closed subspaces Eρ with ρ ∈ R(H) (which may be reduced to zero), where
Eρ is the projection of L2(X) under the projection πVρ given by

πVρ (f) = nρ

∫
H

χρ(h)(V (h)f) dλ(h),

where f ∈ L2(X) and λ is a left Haar measure on H.

First, we need to take care of a technicality. As stated the theorem involves the projection
πVρ (f) of a function f ∈ L2(X) and it is defined as a weak integral. For our purposes, we
need a formula defining (πVρ (f))(x) for every x ∈ H. This can be achieved as follows.
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By definition of πVρ (f) as a weak integral, it is the unique function (given by the Riesz
representation theorem, Theorem 3.16(2)), such that

〈πVρ (f), g〉 = nρ

∫
H

χρ(h)〈V (h)f, g〉 dλ(h)

for all g ∈ L2(X), and using the definition of the inner product on L2(X) and Fubini, the
above is expressed as∫

X

(πVρ (f))(x)g(x) dµX(x) = nρ

∫
H

χρ(h)

∫
X

(V (h)f)(x)g(x) dµX(x) dλ(h)

= nρ

∫
X

(∫
H

χρ(h)(V (h)f)(x) dλ(h)

)
g(x) dµX(x),

and since it holds for all g ∈ L2(X), we must have

(πVρ (f))(x) = nρ

∫
H

χρ(h)(V (h)f)(x) dλ(h) = nρ

∫
H

χρ(h)f(h−1 · x) dλ(h). (πVρ )

So the projection πVρ (f) of the function f ∈ L2(X) can be defined pointwise by (πVρ ), but it
is not obvious a priori that this yields a function in L2(X), which is guaranteed by the weak
integral argument.

Going back to Peter–Weyl II, each subspace Eρ is a finite or countably infinite Hilbert

sum of dρ (where dρ =∞ is possible) closed finite-dimensional subspaces E
kρ
ρ (1 ≤ kρ ≤ dρ),

such that for every ρ and every kρ, each subrepresentation V
kρ
ρ : H → U(E

kρ
ρ ) is equivalent

to the irreducible representation Mρ : H → U(Cnρ). Thus there are linear isomorphisms

θ
kρ
ρ : E

kρ
ρ → Cnρ , such that the following diagram commutes

E
kρ
ρ

θ
kρ
ρ //

V
kρ
ρ (h)

��

Cnρ

Mρ(h)

��
E
kρ
ρ

θ
kρ
ρ

// Cnρ

for all h ∈ H. Since (V (h)f)(x) = f(h−1 · x), we have

f(h−1 · x) = (V kρ
ρ (h)f)(x), h ∈ H, f ∈ Ekρ

ρ , x ∈ X, (steer3)

for all ρ ∈ R(H) and all kρ. If we pick an orthonormal basis (orthogonal works too)

(Y 1
ρ,kρ

, . . . , Y
nρ
ρ,kρ

) in each E
kρ
ρ so that the family (Y j

ρ,kρ
)ρ∈R(H),1≤kρ≤dρ,1≤j≤nρ is a Hilbert basis of

L2(X), then there is an nρ× nρ unitary matrix Mρ,kρ(h) representing the linear map V
kρ
ρ (h)

with respect to the basis (Y 1
ρ,kρ

, . . . , Y
nρ
ρ,kρ

) defined by

Y j
ρ,kρ

(h−1 · x) =

nρ∑
i=1

M
ρ,kρ
ij (h)Y i

ρ,kρ(x).
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If we stack the Y i
ρ,kρ

(x) into a column vector Yρ,kρ(x) and the Y j
ρ,kρ

(h−1 · x) into a column

vector Yρ,kρ(h
−1 · x), we can write

Yρ,kρ(h
−1 · x) = (Mρ,kρ(h))>Yρ,kρ(x). (steer4)

Remark: The presence of the transposition is the familiar artifact of linear algebra caused
by the fact that Yρ,kρ(x) is a column vector.

Replacing h by h−1 in (steer4), we get

Yρ,kρ(h · x) = (Mρ,kρ(h−1))>Yρ,kρ(x) = ((Mρ,kρ(h))∗)>Yρ,kρ(x)

= Mρ,kρ(h)Yρ,kρ(x),

so conjugating on both sides, we get

Yρ,kρ(h · x) = Mρ,kρ(h)Yρ,kρ(x). (steer5)

Observe that the unitary representation V
kρ
ρ : H → U(E

kρ
ρ ) define a representation in

matrix form Mρ,kρ : H → U(Cnρ) equivalent to the irreducible representation Mρ. The
equations (steer4) express the fact that the basis functions (Y 1

ρ,kρ
, . . . , Y

nρ
ρ,kρ

) are steerable.

Definition 8.6. If H is a compact group and X is a locally compact, metrizable, separable
space equipped with a σ-regular, locally finite, Borel measure µ, given any continuous action
of H on X, some linerarly independent functions (Y1, . . . , YL) in L2(X) form an H-steerable
family (or H-steerable basis) if there is a representation Σ: H → U(L), such that

Y (h−1 · x) = Σ(h)>Y (x), h ∈ H, x ∈ X, (steer6)

or equivalently,

Y (h · x) = Σ(h)Y (x), h ∈ H, x ∈ X, (steer7)

where Y (x) denotes the column vector

Y (x) =

Y1(x)
...

YL(x)

 ∈ CL.

Remark: Steerability as defined above is equivalent to the notion of steerability as defined
in Lang and Weiler [46]. In Cesa, Lang and Weiler [8] as well as Bekkers [1], the notion of
steerability is defined using Y (h · x) instead of Y (h−1 · x). We pass from one version to the
other by conjugation of the functions. In the papers mentioned above, steerable families are
also called harmonic basis functions .

Due to its importance, the preceding discussion is summarized in the following theorem.
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Theorem 8.7. Let X be a locally compact, metrizable, separable space equipped with a σ-
regular, locally finite, Borel measure µ. If H is a compact group acting continuously on
X (not necessarily in a transitive fashion), consider the unitary representation V : H →
U(L2(X)) given by

(V (h)f)(x) = f(h−1 · x), h ∈ H, f ∈ L2(X), x ∈ X.

According to the Peter–Weyl theorem, Version II, the space L2(X) is the Hilbert sum of closed
subspaces Eρ with ρ ∈ R(H) (which may be reduced to zero), where Eρ is the projection of
L2(X) under the projection πVρ given by

(πVρ (f))(x) = nρ

∫
H

χρ(h)f(h−1 · x) dλ(h),

where f ∈ L2(X), x ∈ X, and λ is a left Haar measure on H. Each subspace Eρ is a finite
or countably infinite Hilbert sum of dρ (where dρ = ∞ is possible) closed finite-dimensional

subspaces E
kρ
ρ (1 ≤ kρ ≤ dρ), such that for every ρ and every kρ, each subrepresentation

V
kρ
ρ : H → U(E

kρ
ρ ) is equivalent to the irreducible representation Mρ : H → U(Cnρ). Fur-

thermore, each space E
kρ
ρ has an H-steerable orthonormal basis with respect to an irreducible

representation equivalent to Mρ (the functions specified by the column vectors Yρ,kρ). The
union of these H-steerable families for all ρ ∈ R(h) and all kρ is an H-steerable Hilbert basis
of L2(X).

A similar result is proven in Lang and Weiler [46] and in Cesa Lang and Weiler [8]. In
fact, a version of this result applying to real representations is also shown.

We now consider several examples.

Example 8.4. Let H = SO(2) and X = S1 ≈ SO(2). In this case, R = Z, all irreducible
representations are one-dimensional and of the form z 7→ einθz, and the characters are given
by χn(eiθ) = einθ. Given a function f ∈ L2(S1), we have

πn(f)(eiα) =

∫
H

χn(eiθ)f((eiθ)−1eiα) dλ(h) =

∫ π

−π
e−inθf(e−iθeiα)

dθ

2π

=
1

2π

∫ π

−π
e−inθf(ei(α−θ)) dθ =

1

2π

∫ −π
π

e−in(α−ϕ)f(eiϕ) (−dϕ)

=
1

2π
e−inα

∫ π

−π
einϕf(eiϕ) dϕ =

1

2π
ei(−n)α

∫ π

−π
e−i(−n)ϕf(eiϕ) dϕ = e−inαc−n,

where

cn =
1

2π

∫ π

−π
e−inϕf(eiϕ) dϕ

is the nth Fourier coefficient of f . Thus

πn(f)(eiα) = e−inαc−n. (str1)
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The index n is flipped to −n due to the fact that the projection operator uses χρ(h). The
space En is one-dimensional and has the function

Yn(eiα) = e−inα (str2)

as a basis. It is steerable since

Yn(ei(α−θ)) = e−in(α−θ) = einθe−inα = einθYn(eiα),

and χn(eiθ) = einθ is a character.

Example 8.5. Let H = SO(2) and X = R2. In this case, again R = Z, all irreducible
representations are one-dimensional and the characters are of the form χn(eiθ) = einθ. Given
any function f ∈ L2(R2), we have

πn(f)(x) =

∫
H

χn(eiθ)f(R−1
θ x) dλ(h) =

∫ π

−π
e−inθf((R−θ)x)

dθ

2π
,

where Rθ is the rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

This time En is the Hilbert sum of countably many subspaces of dimension 1. Let us compute
fn(Rϕx) where fn(x) = πn(f)(x). We have

fn(Rϕx) =

∫ π

−π
e−inθf(R−θRϕx)

dθ

2π

=

∫ π

−π
e−inθf(R−(θ−ϕ)x)

dθ

2π
=

∫ π

−π
e−in(ψ+ϕ)f((R−ψ)x)

dψ

2π

= e−inϕ
∫ π

−π
e−inψf((R−ψ)x)

dψ

2π
= e−inϕfn(x).

In summary,
fn(Rϕx) = e−inϕfn(x). (str3)

For x = re1, r ∈ R+, where e1 = (1, 0), we get

fn(rRϕe1) = e−inϕf rad
n (r),

with

f rad
n (r) = fn(re1) =

∫ π

−π
e−inθf(r(R−θ)e1)

dθ

2π
. (str4)

The function f rad
n is called a radial function. It is a function defined on R+. We see that in

polar coordinates (r, ϕ),
fn(r, ϕ) = e−inϕf rad

n (r). (str5)
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Thus, we are reduced to finding a Hilbert basis of L2(R+). There are many candidates
but the Hilbert basis involving the Hermite functions is particularly elegant. These are the
functions

ψm(x) = e−
x2

2 Hm(x), (str6)

where the Hm(x) are Hermite polynomials. The functions ψm are also a Hilbert basis of
L2(R); see Sansone [59], Chapter IV, Section 7 and Folland [21], Chapter 6, Section 6.4.

The Hermite polynomials are real polynomials given by the equations

Hm(x) = (−1)mex
2 dm

dxm
e−x

2

. (str7)

They are also defined by the recurrence relations

Hn+2(x) = 2xHn+1(x)− 2(n+ 1)Hn(x)

H1(x) = 2x

H0(x) = 1.

From these equations, the following explicit formula can be derived:

Hm(x) =

bm
2
c∑

k=0

(−1)k
m(m− 1)(m− 2) · · · (m− 2k + 1)

k!
(2x)m−2k;

see Sansone [59], Chapter IV, Section 2 and Folland [21], Chapter 6, Section 6.4. The first
six Hermite polynomials are

H0(x) = 1 H1(x) = 2x H2(x) = 4x2 − 2

H3(x) = 8x2 − 12x H4(x) = 16x4 − 48x2 + 12 H5(x) = 32x5 − 160x3 + 120x.

The Hermite polynomials are orthogonal with respect to the inner product

〈f, g〉 =

∫
R
e−x

2

f(x)g(x) dx,

and so the functions ψm are orthogonal with respect to the usual inner product on L2(R).
They are not orthonormal because∫ ∞

−∞
H2
m(x)e−x

2

dx =
√
π 2mm!.

See Sansone [59], Chapter IV, Section 2. The purpose of the term e−
x2

2 is to insure that the
functions ψm are square integrable over R.

The Hermite polynomials are discussed quite extensively in Sansone [59], Chapter IV,
Sections 2–5 and 7, and in Folland [21], Chapter 6, Section 6.4. Note that Sansone omits the
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factor (−1)m. As a consequence, for m odd, Sansone’s version of the Hermite polynomials is
−Hm(x), and so the term of degree m has a negative coefficient. The fact that the Hermite

functions e−
x2

2 Hm(x) form a Hilbert basis of L2(R) is proven in Sansone [59], Chapter IV,
Section 7 and in Folland [21], Chapter 6, Section 6.4.

Then the functions

Ym,n(r, ϕ) = e−inϕe−
r2

2 Hm(r), m ≥ 0, (str8)

form a steerable Hilbert basis of En (n ∈ Z). Indeed, we see immediately that

Ym,n(r, ϕ− θ) = einθYm,n(r, ϕ).

This case was also investigated by Weiler and Cesa [46] in a more informal fashion.

Example 8.6. Let H = SO(2) and X = L2(SE(2)). The action of SO(2) on L2(SE(2)) is
the left regular action RSO(2)→L2(SE(2)) given by

R
SO(2)→L2(SE(2))
Rϕ

(f)(x, ψ) = f(R−ϕx, ψ − ϕ), f ∈ L2(SE(2)), x ∈ R2, Rϕ ∈ SO(2).

In this case, again R = Z, all irreducible representations are one-dimensional and the char-
acters are of the form χn(eiϕ) = einϕ. Given any function f ∈ L2(SE(2)), we have

πn(f)(x, ψ) =

∫ π

−π
e−inϕf(R−ϕx, ψ − ϕ)

dϕ

2π
,

where Rϕ is the rotation matrix

Rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

The space En is the Hilbert sum of countably many subspaces of dimension 1. Write
fn(x, ψ) = πn(f)(x, ψ). If we let ϕ = ψ + ϕ1, so that ψ − ϕ = −ϕ1, we obtain

fn(x, ψ) =

∫ π

−π
e−inϕf(R−ϕx, ψ − ϕ)

dϕ

2π

=

∫ π

−π
e−in(ψ+ϕ1)f(R−(ψ+ϕ1)x,−ϕ1)

dϕ1

2π

= e−inψ
∫ π

−π
e−inϕ1f(R−ϕ1R−ψx,−ϕ1)

dϕ1

2π

= e−inψ
∫ π

−π
einϕ1f(Rϕ1R−ψx, ϕ1)

dϕ1

2π
.

In summary, we proved that

fn(x, ψ) = e−inψ
∫ π

−π
einϕ1f(Rϕ1R−ψx, ϕ1)

dϕ1

2π
. (str9)
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As a consequence, we have

fn(Rαx, ψ + α) = e−in(ψ+α)

∫ π

−π
einϕ1f(Rϕ1R−(ψ+α)Rαx, ϕ1)

dϕ1

2π

= e−inαe−inψ
∫ π

−π
einϕ1f(Rϕ1R−ψx, ϕ1)

dϕ1

2π

= e−inαfn(x, ψ).

Thus, we proved that

fn(Rαx, ψ + α) = e−inαfn(x, ψ). (str10)

For x = re1, r ∈ R+, with e1 = (1, 0), from (str9), we get

fn(rRαe1, θ) = e−inθf rad
n (r, θ − α), (str11)

with

f rad
n (r, ψ) = fn(re1, ψ) =

∫ π

−π
einϕf(rRϕR−ψe1, ϕ)

dϕ

2π
. (str12)

In polar coordinates (r, α),

fn((r, α), θ) = e−inθf rad
n (r, θ − α). (str13)

Observe that since in polar coordinates the effect of a rotation R−ϕ is to transform (r, α) to
(r, α− ϕ), we have

fn((r, α− ϕ), θ − ϕ) = e−in(θ−ϕ)f rad
n (r, θ − ϕ− (α− ϕ))

= einϕe−inθf rad
n (r, θ − α) = einϕfn((r, α), θ),

confirming that the functions fn are steerable.

The functions f rad
n belong to L2(R+×SO(2)). For every fixed ψ they are radial function

of x = re1, and for fixed r they are functions of ψ. Since the functions e−
r2

2 Hm(r) form a
Hilbert basis of L2(R+) and the functions e−ikψ form a Hilbert basis of L2(SO(2)), it can be

shown that the family of functions e−
r2

2 Hm(r)e−ikψ form a Hilbert basis of L2(R+×SO(2));
see Lang [48], Chapter XVII, Problem 9.

At first glance, it is not obvious that the functions f rad
n (r, ψ) yield all the functions in the

Hilbert basis of L2(R+ × SO(2)). In fact they do and this is shown as follows. If we define
the function f by

f(rRαe1, ψ) = e−
r2

2 Hm(r)e−ikαe−inψeikψ,

then we have

f(rRϕ−ψe1, ϕ) = e−
r2

2 Hm(r)e−ik(ϕ−ψ)e−inϕeikϕ = e−
r2

2 Hm(r)e−inϕeikψ,
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and then by (str12) and the previous equation

f rad
n (r, ψ) =

∫ π

−π
einϕf(rRϕ−ψe1, ϕ)

dϕ

2π

=

∫ π

−π
e−

r2

2 Hm(r)einϕe−inϕeikψ
dϕ

2π
= e−

r2

2 Hm(r)eikψ.

By (str13) and the above reasoning, the functions e−inθeik(θ−α)e−
r2

2 Hm(r) for n fixed form
a Hilbert basis of En, and thus the functions

Yk,m,n((r, α), θ) = e−inθeik(θ−α)e−
r2

2 Hm(r) = e−i(n−k)θe−ikαe−
r2

2 Hm(r) (str14)

form a steerable basis of L2(SE(2)), with n, k ∈ Z and m ≥ 0. In Section 8.11 ,it will be more
convenient to change the index k to n− k, in which case the term e−i(n−k)θe−ikα becomes

e−ikθe−i(n−k)α = e−inαe−ik(θ−α),

and so we also have the steerable basis of functions

e−inαe−ik(θ−α)e−
r2

2 Hm(r), n, k ∈ Z, m ≥ 0. (str15)

Example 8.7. Let H be any compact group and let X = G with G acting on itself by left
multiplication. Since the Mρ are (irreducible) representations of H, we have Mρ(s

−1t) =

Mρ(s
−1)Mρ(t) = Mρ(s)

∗Mρ(t), so the jth column (1/nρ)m
(ρ)
∗j (s−1t) of the matrix Mρ(s

−1t)
can be expressed as

(1/nρ)m
(ρ)
∗j (s−1t) = Mρ(s)

∗(1/nρ)m
(ρ)
∗j (t) = (Mρ(s))

>(1/nρ)m
(ρ)
∗j (t),

and so

m
(ρ)
∗j (s−1t) = (Mρ(s))

>m
(ρ)
∗j (t). (str16)

Since the family of functions (
1
√
nρ
m

(ρ)
ij

)
1≤i,j≤nρ, ρ∈R(H)

is a Hilbert basis of L2(G), it follows that according to Definition 8.6, (m1j, . . . ,mnρ,j) forms

a steerable basis of l
(ρ)
j for j = 1, . . . , nρ, using the notation of Section 4.1. Note that in

terms of the notation used in Theorem 8.7, dρ = nρ. Recall that by Peter–Weyl I, L2(H)
is the Hilbert sum of minimal two-sided ideals aρ isomorphic to the matrix algebra Mnρ(C),

and aρ is expressed as the finite Hilbert sum of nρ minimal left ideals l
(ρ)
j .

Observe that we can also obtain the above result by considering the left regular repre-
sentation V = R of G. As noted just after Definition 4.7, the projection πVρ maps L2(G)

onto aρ, so the functions (m1j, . . . ,mnρ,j) are indeed in aρ and form a basis of l
(ρ)
j , the jth

column of Mρ. Thus Equation (steer6) holds.
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Example 8.8. Let H = SO(n + 1) and X = Sn (n ≥ 2). It is shown in Section 6.10 that
we have a Hilbert sum

L2(Sn) =
⊕
`≥0

HC
` (Sn)

and that we obtain a decomposition of the left regular representation R : SO(n + 1) →
U(L2(Sn)) into irreducible representations R` : SO(n + 1) → U(HC

` (Sn)) of SO(n + 1) in
the spaces HC

` (Sn) of spherical harmonics on Sn. The space HC
k (Sn) has dimension

ak,n+1 =

(
n+ k

k

)
−
(
n+ k − 2

k − 2

)
if n ≥ 1, k ≥ 2, with a0,n+1 = 1 and a1,n+1 = n. For n = 2, we get ak,3 = 2k+ 1. Since R` is
the left regular representation,

f(Q−1x) = ((R`)Q(f))(x), Q ∈ SO(n+ 1), f ∈ HC
` (Sn), x ∈ Sn.

This shows that by Definition 8.6, the space HC
` (Sn) is steerable. In theory, by picking an

orthogonal basis (Y `
1 , . . . , Y

`
a`,n+1

) of size a`,n+1 in HC
` (Sn) and expressing the representation

R` in matrix form over this basis, we obtain a steerable basis. The basis functions Y `
j can be

expressed in terms of the Gegenbauer polynomials and some suitable points on the sphere
Sn; see Theorem 7.29 in Gallier and Quaintance [28].

When n = 2, the spherical harmonics inHC
` (S2) can be expressed in spherical coordinates

in terms of the associated Legendre functions P j
` . These are the Laplace spherical harmonics

Y j
` , which are functions of the form e−ijϕP j

` (cos θ), with ` ∈ N and −` ≤ j ≤ `, up to a
constant; see Definition 5.17 in Section 5.12 and Section 5.15. We know from Section 5.12
that the representations D(`) : SO(3)→ U(PC

` ), where D(`) is the Wigner D-matrix defined
in Definition 5.19, are irreducible, and by Proposition 5.32, the column vector Y` consisting

of the 2` + 1 functions Y j
` is a steerable basis. The case n = 2 is also treated in Lang and

Weiler [46], but they do not state explicitly what is their definition of the Wigner D-matrices,
and it appears that they are missing a conjugation.

Example 8.9. In this example, we describe a method generalizing the method of Example
8.6 to decompose L2(SE(n)) using the representation V and the projections

(πVρ (f))(x, h1) = nρ

∫
SO(n)

χρ(h)f(h−1x, h−1h1) dλ(h) =

∫
SO(n)

uρ(h)f(h−1x, h−1h1) dλ(h),

with (x, h1) ∈ SE(n), for all f ∈ L2(SE(n)) and all ρ ∈ R(SO(n)).

Write fρ(x, h1) = (πVρ (f))(x, h1). Since SO(n) is unimodular (because it is compact), we
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have

fρ(x, h1) =

∫
SO(n)

uρ(h)f(h−1x, h−1h1) dλ(h),

=

∫
SO(n)

uρ(h1h2)f(h−1
2 h−1

1 x, h−1
2 ) dλ(h2), h = h1h2

=

∫
SO(n)

uρ(h1h
−1
2 )f(h2h

−1
1 x, h2) dλ(h2). (∗13)

Recall that uρ = m
(ρ)
11 + · · ·+m

(ρ)
nρnρ , which is nρ times the trace of the matrix Mρ corre-

sponding to the irreducible representation of SO(n) indexed by ρ. Since Mρ = (1/nρ)
(
m

(ρ)
ij

)
and it is a representation, because (1/nρ)m

(ρ)
ii (h1h3) is the (i, i)-entry in the matrix Mρ(h1h3),

it is equal to the inner product of the ith row of Mρ(h1) by the ith column of Mρ(h3), so

(1/nρ)m
(ρ)
ii (h1h3) =

nρ∑
j=1

(1/nρ)m
(ρ)
ij (h1)(1/nρ)m

(ρ)
ji (h3),

and by multiplying both sides by nρ, we get

uρ(h1h3) =

nρ∑
i=1

m
(ρ)
ii (h1h3) = (1/nρ)

nρ∑
i,j=1

m
(ρ)
ij (h1)m

(ρ)
ji (h3). (∗14)

The calculations in (∗14) and (∗13) imply that

fρ(x, h1) =

∫
SO(n)

uρ(h1h
−1
2 )f(h2h

−1
1 x, h2) dλ(h2)

= nρ

nρ∑
i,j=1

1

nρ
m

(ρ)
ij (h1)

∫
SO(n)

1

nρ
m

(ρ)
ji (h−1

2 )f(h2h
−1
1 x, h2) dλ(h2)

= nρ

nρ∑
i,j=1

1

nρ
m

(ρ)
ij (h1)

∫
SO(n)

1

nρ
m

(ρ)
ij (h2)f(h2h

−1
1 x, h2) dλ(h2). (∗15)

Using the fact that if A and B are any two n× n matrices, then

n∑
i,j=1

aijbij = tr(AB>),

and observing that the matrix whose entries are the terms∫
SO(n)

1

nρ
m

(ρ)
ij (h2)f(h2h

−1
1 x, h2) dλ(h2)
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is the matrix∫
SO(n)

Mρ(h2)f(h2h
−1
1 x, h2) dλ(h2) =

∫
SO(n)

((
Mρ(h2)

)∗)>
f(h2h

−1
1 x, h2) dλ(h2),

we obtain

fρ(x, h1) = nρ tr

(
Mρ(h1)

∫
SO(n)

(
Mρ(h2)

)∗
f(h2h

−1
1 x, h2) dλ(h2)

)
. (∗16)

Observe that this is the generalization of (str9). Also,
(
Mρ(h2)

)∗
=
(
Mρ(h2)

)>
. If for any

fixed (x, h1) we define the function f(x,h1) given by

f(x,h1)(h2) = f(h2h
−1
1 x, h2), (f(x,h1))

then the value of the Fourier transform of f(x,h1) at ρ is

F(f(x,h1))ρ =

∫
SO(n)

(
Mρ(h2)

)∗
f(h2h

−1
1 x, h2) dλ(h2), (F(f(x,h1))ρ)

and thus

fρ(x, h1) = nρ tr
(
Mρ(h1)F(f(x,h1))ρ

)
= nρtr

(
Mρ(h1)F(f(x,h1))ρ

)
. (∗17)

We also define f rad
ρ : Rd → Mnρ(C) by

f rad
ρ (x) =

∫
SO(n)

(
Mρ(h2)

)∗
f(h2x, h2) dλ(h2) =

∫
SO(n)

Mρ(h2)>f(h2x, h2) dλ(h2), (f rad
ρ )

and so we have
fρ(x, h1) = nρ tr

(
Mρ(h1) f rad

ρ (h−1
1 x)

)
. (fρ)

Observe that

fρ(hx, hh1) = nρ tr
(
Mρ(hh1) f rad

ρ ((hh1)−1hx)
)

= nρtr
(
Mρ(h)Mρ(h1) f rad

ρ (h−1
1 x)

)
, (str17)

which expresses steerability with respect to SO(n).

Using Lang [48], Chapter XVII, Problem 9, since the family of functions e−
x2

2 Hm(x) is a
Hilbert basis of L2(R), the family of functions

e−
x21
2 Hk1(x1) · · · e−

x2n
2 Hkn(xn) = e−

‖x‖22
2 Hk1(x1) · · ·Hkn(xn), k1, . . . , kn ≥ 0,

with x = (x1, . . . , xn) ∈ Rn, is a Hilbert basis of L2(Rn).
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For f ∈ L2(SE(n)) given by

f(x, h2) = e−‖x‖
2/2Hk1(x1) · · ·Hkn(xn)m

(ρ)
k` (h2),

we find that f rad
ρ (x) is the nρ × nρ-matrix whose (`, k) entry is e−‖x‖

2/2Hk1(x1) · · ·Hkn(xn),
and all other entries are 0, which implies that

fρ(x, h1) = m
(ρ)
k` (h1) e−‖x‖

2/2Hk1((h
−1
1 x)1) · · ·Hkn((h−1

1 x)n)

belongs to the subspace Eρ, the projection of L2(SE(n)) by πVρ .

The Hilbert space L2(SE(n)) is isomorphic to L2(SO(n)×Rn), and since by Peter–Weyl
I, the Hilbert space L2(SO(n)) is the Hilbert sum of the minimal two-sided ideals aρ, which

have the n2
ρ functions m

(ρ)
k` as an orthogonal basis, we conclude that the family of functions(
m

(ρ)
k` (h1) e−

‖x‖2
2 Hk1((h

−1
1 x)1) · · ·Hkn((h−1

1 x)n)
) ∣∣∣

ρ ∈ R(SO(n)), 1 ≤ k, ` ≤ nρ, k1, . . . , kn ≥ 0, (str18)

with h1 ∈ SO(n) and x ∈ Rn, is an SO(n)-steerable Hilbert basis of L2(SE(n)). More
precisely, for any fixed ρ ∈ R(SO(n)), 1 ≤ ` ≤ nρ, k1, . . . , kn ≥ 0, if we write k = (k1, . . . , kn),
by (str16), the column vector Y ρ

`,k(h1, x) of dimension nρ with

Y ρ
k,`,k(h1, x) = m

(ρ)
k` (h1) e−

‖x‖2
2 Hk1((h

−1
1 x)1) · · ·Hkn((h−1

1 x)n), 1 ≤ k ≤ nρ,

satisfies the steerability equation

Y ρ
`,k(h−1h1, h

−1x) = (Mρ(h))>Y ρ
`,k(h1, x). (str19)

If n = 2, then R(SO(2)) = Z, m`(θ) = ei`θ, so we find that the family(
e−i`θ e−

x2+y2

2 Hk1(x cos θ + y sin θ)Hk2(−x sin θ + y cos θ)
)
`∈Z, k1,k2≥0

(str20)

is steerable basis of L2(SE(2)).

If n = 3, then R(SO(3)) = N, ρ = `, nρ = 2` + 1, the functions
√

2`+ 1w
(`)
jk (R)

(R ∈ SO(3)) of Section 5.15 (see also Section 5.10) from a Hilbert basis of L2(SO(3)), so we
find that the family(√

2`+ 1w
(`)
jk (R) e−

x21+x
2
2+x

2
3

2 Hk1((R
−1x)1)Hk2((R

−1x)2)Hk3((R
−1x)3)

) ∣∣∣
` ∈ N, −` ≤ j, k ≤ `, k1, k2, k3 ≥ 0, (str21)
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with R ∈ SO(3) and x ∈ R3, is steerable basis of L2(SE(3)). For fixed ` ∈ N,−` ≤ k ≤
`, k1.k2, k3 ≥ 0, if we write k = (k1, k2, k3) and if Y `

k,k(R, x) is the column vector given by

Y `
j,k,k(R, x) =

√
2`+ 1w

(`)
jk (R) e−

x21+x
2
2+x

2
3

2 Hk1((R
−1x)1)Hk2((R

−1x)2)Hk3((R
−1x)3),

with −` ≤ j ≤ `, then we have

Y `
k,k(Q−1R,Q−1x) = (w(`)(Q))>Y `

k,k(R, x). (str22)

We can also express the matrices w(`)(R) in terms of the Euler angles and the Wigner
d-matrices as in Section 5.15; see the remark just after Proposition 5.42.

Example 8.10. In Example 8.8, we considered the compact group H = SO(n + 1), the
subgroup H0 = SO(n), and the homogeneous space X = Sn = H/H0. We now consider
the more general situation, where H is a compact (metrizable and separable) group, H0 is
any closed subgroup of H, and X is the homogeneous space X = H/H0. This is a situation
where we can use Proposition 6.18.

If the trivial representation σ0 of H0 is contained dρ times in the restriction of Mρ to H0,

then Lρ = L2(H/H0)∩aρ is the direct sum of the first dρ columns of M
(H0)
ρ , where M

(H0)
ρ is a

matrix similar to Mρ defined in Section 6.9. Proposition 6.18 also implies that the functions

m
(ρ,H0)
ij satisfy the equations

m
(ρ,H0)
ij (hh0) = m

(ρ,H0)
ij (h), h ∈ H, h0 ∈ H0, 1 ≤ i ≤ nρ, 1 ≤ j ≤ dρ,

which means that they can be viewed as functions on L2(H/H0) = L2(X). From now on,

we will use the representations defined by the matrices M
(H0)
ρ , which are equivalent to the

representations Mρ. For simplicity of notation (and with a slight abuse of notation), we will

denote the matrix M
(H0)
ρ as Mρ.

Since the functions m
(ρ)
k` for 1 ≤ k ≤ nρ and 1 ≤ ` ≤ dρ are functions defined on H/H0,

equivalently functions defined on H constant on cosets in H/H0, for any x = h1H0 ∈ H/H0,
we have

m
(ρ)
k` (hx) = m

(ρ)
k` ((hh1)H0) = m

(ρ)
k` (hh1). (str23)

By (str16), we have the following equation between column vectors

m
(ρ)
∗` (h−1h1) = (Mρ(h))>m

(ρ)
∗` (h1),

and so by (str23) and the above equation, we also have the equation

m
(ρ)
∗` (h−1x) = (Mρ(h))>m

(ρ)
∗` (x), 1 ≤ ` ≤ dρ, x ∈ H/H0. (str24)

Then for fixed ρ ∈ R(H), 1 ≤ ` ≤ dρ, if Y ρ
` (x) is the column vector given by

Y ρ
k,`(x) = m

(ρ)
k` (x), 1 ≤ k ≤ nρ,
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by (str24), we have the steerability equations

Y ρ
` (h−1x) = (Mρ(h))>Y ρ

` (x), x ∈ H/H0 ≈ X. (str25)

In the special case where H = SO(n + 1) and H0 = SO(n), the homogeneous space is
X = Sn, and we know from Section 6.10 that dρ = 1 when the trivial representation of SO(n)
occurs in the restriction of Mρ (the irreducible representation of SO(n + 1) corresponding
to ρ) to SO(n). In this case, the first column of Mρ is a steerable family for Sn.

Also note that Example 8.7 corresponds to the special case where H0 is the trivial group
{e}.

Example 8.11. In this example, we describe a general method to decompose L2(X) using
the representation V and the projections

(πVρ (f))(x) = nρ

∫
H

χρ(h)f(h−1 · x) dλ(h) =

∫
H

uρ(h)f(h−1 · x) dλ(h), x ∈ X,

for all f ∈ L2(X) and all ρ ∈ R(H). As before, we assume that X is a locally compact,
metrizable, separable space equipped with a σ-regular, locally finite, Borel measure µ.

Recall that uρ = m
(ρ)
11 + · · ·+m

(ρ)
nρnρ , nρ times the trace of the matrix Mρ. Our goal is to

compute (πVρ (f))(h1 · x) with h1 ∈ H. Since H is compact, it is unimodular, so we have

(πVρ (f))(h1 · x) =

∫
H

uρ(h)f(h−1 · (h1 · x)) dλ(h) =

∫
H

uρ(h)f((h−1h1) · x) dλ(h), h = h1h2

=

∫
H

uρ(h1h2)f(h−1
2 · x) dλ(h2)

=

∫
H

uρ(h1h
−1
2 )f(h2 · x) dλ(h2).

Since Mρ is a representation

uρ(h1h3) =

nρ∑
i=1

m
(ρ)
ii (h1h3) = (1/nρ)

nρ∑
i,j=1

m
(ρ)
ij (h1)m

(ρ)
ji (h3),

so we get

(πVρ (f))(h1 · x) =

nρ∑
i,j=1

m
(ρ)
ij (h1)

∫
H

(1/nρ)m
(ρ)
ji (h−1

2 )f(h2 · x) dλ(h2)

=

nρ∑
i,j=1

m
(ρ)
ij (h1)

∫
H

(1/nρ)m
(ρ)
ij (h2)f(h2 · x) dλ(h2). (∗18)

The action of H on X defines an orbit space Ω also denoted X/G, where Ω is the
topological space, which is the quotient of X by the equivalence relation defined such that
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x ∼ y iff y = h ·x for some h ∈ H (x, y ∈ X). For any x ∈ X, the orbit H ·x (also denoted by
O(x)) of x is defined as H · x = {h · x | h ∈ H}. Each orbit ω ∈ Ω is an equivalence class of
the equivalence relation ∼, and because the action of H is transitive on each orbit, the orbit
ω is equal to H · x for all x in ω. In general, Ω is not a manifold; in fact, it may not even be
Hausdorff, although it is since H is compact, because in this case the action is proper; see
Gallier and Quaintance [27] (Chapter 23, see Proposition 23.5 and Corollary 23.8). However,
the projection map p : X → X/G is open and continuous, so if X is locally compact, then
so is Ω = X/G; see Duistermaat and Kolk [19], Section 2.5. In fact, Duistermaat and Kolk
[19] contains a thorough treatment of the properties of the orbit space of a proper but not
necessarily free action of a Lie group on a topological space.

If we pick some base-point xω0 in each orbit ω and if Hxω0
is the stabilizer of the transitive

action of H on ω (namely, Hxω0
= {h ∈ H | h · xω0 = xω0 }), the projection map πxω0 : H → ω

given by πxω0 (h) = h·xω0 induces the bijection πxω0 : H/Hxω0
→ ω defined by πxω0 (hHxω0

) = h·xω0
for all h ∈ H. It follows that for any fixed orbit ω, for any h · xω0 ∈ ω, we have

(πVρ (f))(h · xω0 ) =

nρ∑
i,j=1

m
(ρ)
ij (h)

∫
H

(1/nρ)m
(ρ)
ij (h2)f(h2 · xω0 ) dλ(h2), h ∈ H,

and in view of the bijection πxω0 : H/Hxω0
→ ω, we can view the restriction of πVρ (f) : X → C

to ω as a function on H/Hxω0
defined by

(πVρ (f))(hHxω0
) =

nρ∑
i,j=1

m
(ρ)
ij (h)

∫
H

(1/nρ)m
(ρ)
ij (h2)f(h2 · xω0 ) dλ(h2), h ∈ H. (∗19)

We can also view a function g : H/Hxω0
→ C as a function on H constant on cosets, which

means that

g(hhω) = g(h), for all hω ∈ Hxω0
and all h ∈ H,

and since we view πVρ (f) as a function on H/Hxω0
, we can view πVρ (f) as a function on H

satisfying the equation

πVρ (f)(hhω) = πVρ (f)(h), h ∈ H, hω ∈ Hxω0
,

and for any h1 ∈ hHxω0
, we can write

(πVρ (f))(h1) =

nρ∑
i,j=1

m
(ρ)
ij (h1)

∫
H

(1/nρ)m
(ρ)
ij (h2)f(h2 · xω0 ) dλ(h2). (∗20)

Equation (∗20) implies that πVρ (f) ∈ Lρ = L2(H/Hxω0
) ∩ aρ so as in Example 8.10 we

can use Proposition 6.18. If the trivial representation σ0 of Hxω0
is contained dρ times in the

restriction of Mρ to Hxω0
, then Lρ = L2(H/Hxω0

)∩ aρ is the direct sum of the first dρ columns
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of M
(Hxω0

)

ρ , where M
(Hxω0

)

ρ , the matrix similar to Mρ defined in Section 6.9. Proposition 6.18

also implies that the functions m
(ρ,Hxω0

)

ij satisfy the equations

m
(ρ,Hxω0

)

ij (hhω) = m
(ρ,Hxω0

)

ij (h), h ∈ H, hω ∈ Hxω0
, 1 ≤ i ≤ nρ, 1 ≤ j ≤ dρ,

which means that they can be viewed as functions on L2(H/Hxω0
) = L2(ω). From now on,

we will use the representations defined by the matrices M
(Hxω0

)

ρ , which are equivalent to the
representations Mρ, so (∗20) becomes

(πVρ (f))(h1) =

nρ∑
i,j=1

m
(ρ,Hxω0

)

ij (h1)

∫
H

(1/nρ)m
(ρ,Hxω0

)

ij (h2)f(h2 · xω0 ) dλ(h2), h1 ∈ hHxω0
, (∗20′)

which implies that∫
H

(1/nρ)m
(ρ,Hxω0

)

ij (h2)f(h2 · xω0 ) dλ(h2) = 0, 1 ≤ i ≤ nρ, dρ + 1 ≤ j ≤ nρ.

For simplicity of notation (and with a slight abuse of notation), we will denote the matrix

M
(Hxω0

)

ρ as Mρ. By (∗20′), for any xω = hHxω0
∈ H/Hxω0

≈ ω, we have

(πVρ (f))(xω) =

nρ∑
i=1

dρ∑
j=1

m
(ρ)
ij (xω)

∫
H

(1/nρ)m
(ρ)
ij (h2)f(h2 · xω0 ) dλ(h2).

If Mρ[nρ; dρ](h) is the matrix whose first dρ columns are the entries (1/nρ)m
(ρ)
ij (h) for

i = 1, . . . , nρ and j = 1, . . . , dρ and whose last nρ − dρ columns are zero columns, and if(
Mρ[nρ; dρ]

)∗
(h2), a matrix whose last nρ−dρ rows are zero rows, is the conjugate transpose

of the matrix Mρ[nρ; dρ](h2), then

(πVρ (f))(xω) = nρ tr

(
Mρ[nρ; dρ](xω)

∫
H

(
Mρ[nρ; dρ]

)∗
(h2)f(h2 · xω0 ) dλ(h2)

)
= nρ tr

(
Mρ[nρ; dρ](xω)

∫
H

(
Mρ[nρ; dρ](h2)

)>
f(h2 · xω0 ) dλ(h2)

)
for all xω = hHxω0

∈ H/Hxω0
≈ ω.

The next step is to get a better understanding of the function f rad
ρ : Ω → Mnρ(C) given

by

f rad
ρ (ω) =

∫
H

(
Mρ[nρ; dρ]

)∗
(h2)f(h2 · xω0 ) dλ(h2)

=

∫
H

(
Mρ[nρ; dρ](h2)

)>
f(h2 · xω0 ) dλ(h2),
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which actually yields matrices whose last nρ − dρ rows are zero rows.

At this point, we can’t say anything without making assumptions on the orbit space
Ω, which could be very complicated. For example, some orbits could be discrete, as in
the case where X = Rd and H = SO(d), where the orbit space can be identified with
R+ = {ω ∈ R | ω ≥ 0}, and the orbits are spheres of radius ω > 0 and the set {0} (where
0 ∈ Rd) for ω = 0.

If we assume that X is a manifold and that the action of H on X is free, since H is
compact this action is also proper, and thus the quotient space Ω = X/H is a manifold. In
fact, the canonical projection is a submersion and X/H is a principal (right) H-bundle; see
Theorem 9.31 in Gallier and Quaintance [28] and Theorem 23.11 in Gallier and Quaintance
[27]. But as we already said earlier, since we are assuming that G is compact and metrizable
and that X is locally compact, metrizable, and separable, the orbit space Ω = X/G is also
Hausdorff, locally compact, and separable. Then L2(Ω) is also separable, so we can pick a
Hilbert basis of L2(Ω), say (ϕi)i∈I for some countable index set I.

Since the orbits ω ∈ Ω form a partition of X and since we have bijections πxω0 : H/Hxω0
→

ω, we can view X as the disjoint union of the homogeneous spaces H/Hxω0
, and so every

function f : X → C can be expressed locally in a unique way in terms of a family of functions
fω : H/Hxω0

→ C, with H/Hxω0
≈ ω ∈ Ω. For every ω ∈ Ω, we have

f(xω) = fω(xω), for all xω ∈ H/Hxω0
≈ ω.

We can view xω as a generalization of the polar coordinates, which in Rd are specified by
the vectors rx, with x ∈ Sd−1(1) and r ∈ R+ − {0}, where Sd−1(1) is the unit sphere in Rd.
These are commonly used in differential geometry. In R2, the polar coordinates are given by
(r cos θ, r sin θ).

Consider the particular function f defined such that for every ω ∈ Ω,

f(xω) = m
(ρ)
k` (xω)ϕi(ω), for all xω ∈ H/Hxω0

≈ ω,

where ϕi is some function in a Hilbert basis of L2(Ω). Using (∗20′) and the orthogonality

relations of the functions m
(ρ)
ij , we find that for all ω ∈ Ω, we have

(πVρ (f))(xω) = m
(ρ)
k` (xω)ϕi(ω), for all xω ∈ H/Hxω0

≈ ω.

Remark: We can also show that f rad
ρ (ω) is the nρ × nρ matrix whose (`, k)-entry is ϕi(ω)

and all other entries are 0. This fact is left as an exercise.

Therefore, the family of functions(
m

(ρ)
k` (xω)ϕi(ω)

)
, xω ∈ H/Hxω0

≈ ω, ω ∈ Ω,

ρ ∈ R(H), 1 ≤ k ≤ nρ, 1 ≤ ` ≤ dρ, i ∈ I,
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is a steerable Hilbert basis of L2(X). More precisely, recall that the action of the group H
on the homogeneous space H/Hxω0

is given by h · (h1Hxω0
) = (hh1)Hxω0

. Since the functions

m
(ρ)
k` for 1 ≤ k ≤ nρ and 1 ≤ ` ≤ dρ are functions defined on H/Hxω0

, equivalently functions
defined on H constant on cosets in H/Hxω0

, for any xω = h1Hxω0
∈ H/Hxω0

, we have

m
(ρ)
k` (hxω) = m

(ρ)
k` ((hh1)Hxω0

) = m
(ρ)
k` (hh1).

By (str16), we have the following equation between column vectors

m
(ρ)
∗` (h−1h1) = (Mρ(h))>m

(ρ)
∗` (h1),

and so we also have the equation

m
(ρ)
∗` (h−1xω) = (Mρ(h))>m

(ρ)
∗` (xω), 1 ≤ ` ≤ dρ. (str26)

Then for fixed ρ ∈ R(H), 1 ≤ ` ≤ dρ, i ∈ I, if Y ρ
`,i(xω, ω) is the column vector given by

Y ρ
k,`,i(xω) = m

(ρ)
k` (xω)ϕi(ω), 1 ≤ k ≤ nρ,

by (str26), we have the steerability equations

Y ρ
`,i(h

−1xω) = (Mρ(h))>Y ρ
`,i(xω, ω), xω ∈ H/Hxω0

≈ ω, ω ∈ Ω. (str27)

In the special case where X = Rd and H = SO(d), as we said earlier, the orbit space is
Ω = R+ and the orbits are spheres Sd−1(ω) of radius ω > 0 together with {0}; see Figure
8.6. Note that the action of SO(d) on Rd is not free. The origin is a fixed point of every
rotation, and for d odd, the eigenspace associated with the eigenvalue 1 has dimension at
least 1. And indeed, R+ is not a manifold (but it is a manifold with boundary {0}).

We can pick xω0 = ωe0 (with e0 = (1, 0, . . . , 0)) and all subgroups Hxω0
are all isomorphic

to SO(d− 1); see Figure 8.7. In this case, the spherical harmonics constitute a Hilbert basis
for Sd−1 and the Hermite functions give us a Hilbert basis for L2(R+). Using the notation
of Example 8.8, if (Y `

1 , . . . , Y
`
a`,d

) is an orthogonal basis of size a`,d in HC
` (Sd−1), the family

of functions (
Y `
j

( x

‖x‖

)
e−‖x‖

2/2Hm(‖x‖)
) ∣∣∣∣ `,m ∈ N, 1 ≤ j ≤ a`,d

for all x ∈ Rd − {0}, is a steerable basis of L2(Rd). Here we are using the polar coordinates
x = ry, with y = x

‖x‖ ∈ S
d−1 and r = ‖x‖ ∈ R+. For d = 3, due to the change of indexing the

spherical harmonics associated with the index ` constitute the middle column of the matrix
w(`)(R) (R ∈ SO(d)). This case is also dealt with in Weiler, Geiger, Welling, Boomsma, and
Cohen [76].

Example 8.11 suggests an alternative to the steerable family found in Example 8.9.
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x    = ωeω
00

x    = ωeω
00

Orbit Space Ω 

Figure 8.6: For X = R3 and H = SO(3), the orbits are spheres S2(ω) and the orbit space is
the x-axis.

Example 8.12. Since the Hilbert space L2(SE(n)) is isomorphic to L2(SO(n) × Rn), we
can use the steerable basis of L2(Rn) found in Example 8.11, and so we obtain the steerable
family

(
m

(ρ)
j1k1

(h1)Y `2
j2

(
h−1

1

x

‖x‖

)
e−
‖x‖2

2 Hm(‖x‖)
) ∣∣∣

ρ ∈ R(SO(n)), 1 ≤ j1, k1 ≤ nρ, `2,m ∈ N, 1 ≤ j2 ≤ a`2,n, (str28)

with h1 ∈ SO(n) and x ∈ Rn, is an SO(n)-steerable Hilbert basis of L2(SE(n)).

For n = 3, the family(√
2`1 + 1w

(`1)
j1k1

(R)Y j2
`2

(
R−1 x

‖x‖

)
e−
‖x‖2

2 Hm(‖x‖)
) ∣∣∣

`1, `2,m ∈ N, −`1 ≤ j1, k1 ≤ `1, −`2 ≤ j2 ≤ `2, (str29)

with R ∈ SO(3) and x ∈ R3, is an SO(3)-steerable basis of L2(SE(3)). In the above formula,
the Y j2

`2
are the Laplace spherical harmonics. We can also express the matrices w(`)(R) in

terms of the Euler angles and the Wigner d-matrices as in Section 5.15; see the remark just
after Proposition 5.42. Details are left as an exercise.

In Section 8.6, we noticed that the functions f̂ are vector-valued functions from Rd to
the codomain ML(C) and that the group G = RdoH acts on their domain Rd, whereas the
group H acts on their codomain ML(C) in terms of the representation Σ. Experience has
shown that the design of efficient convolution neural networks (CNN) is greatly facilitated

if they operate on functions having the properties of the f̂ listed above. Such functions are
known as feature fields .
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x    = ωeω
00

stabilizer of x    = ωeω
0 0

Figure 8.7: The stabilizer of ω(1, 0, 0) ∈ S2(ω) is the circle in the yz-plane with equation
y2 + z2 = ω. Such a circle is isomorphic to SO(2).

8.8 Feature Fields

We begin with the definition of feature fields involving a semi-direct product group G =
Rd oH. This definition will be generalized later to a G-bundle on a homogenous space X
(see Section 6.13).

To help intuition, suppose that G = R2 o SO(2). A scalar-valued function f : R2 → R
(more generally f : R2 → C) can be viewed as a gray-scale image, or temperature field, or
pressure field. The group G = R2oSO(2) acts on such an image by moving each pixel at t to
the new positionRt+x, since f 7→ R(x,R)f , with (R(x,R)f)(t) = f((x,R)−1·t) = f(R−1(t−x)),
where g = (x,R) ∈ R2 o SO(2), so (R(x,R)f)(Rt + x) = f(R−1(Rt + x − x)) = f(t); see
Figure 8.8.

original image Rotate 45 degrees Shift by (1,0)

Figure 8.8: The image of f(t) is the gray-scaled smiley face. The action of G = R2oSO(2) on
this image moves each pixel to Rt+x, where R is a rotation by 45 degrees counter-clockwise
and x is a translation by [1 0]>.

On the other hand, a function f : R2 → R2 defines a vector field, such as a velocity field,
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an optical flow, or a gradient image. This time ,such a vector field transforms under the
action of G = R2 o SO(2) as follows: the vector v = f(t) originally located at t is moved to
the location Rt + x, and then rotated by R, so that the overall action results in the vector
Rv in location Rt+ x. See Figure 8.9.

Move underlying triangle (tails of the vectors) to Rt + x

Then each vector is rotated 45 degreesoriginal image

Figure 8.9: The image of f(t) is the vectorized triangular smiley face. The action of G =
R2 o SO(2) on this image moves each pixel to Rt+ x, (where R is a rotation by 45 degrees
counter-clockwise and x is a translation by [1 0]>), and then rotates the vector by 45 degrees
counter-clockwise.

Given a more general vector field f : R2 → E, where E is some finite-dimensional her-
mitian vector space, it is useful to generalize the action on a vector v = f(t) so that it is
specified by a representation σ : SO(2)→ U(E) as

σ(R)(v) in location Rt+ x.

Observe that the expression σ(R)(f(R−1(t−x))) is exactly the formula obtained in Example
6.1 for the induced representation [(IndGSO(2) σ)(x,R)](f) = Π(x,R)(f), except that here SO(3)
has been replaced by SO(2). The preceding discussion suggests the following definition.

Definition 8.7. Let G = Rd o H be a semi-direct product with H a compact group and
σ : H → GL(H) be a representation, where H is any complex vector space (possibly infinite
dimensional). IfH is finite-dimensional or a separable Hilbert space, we assume that σ : H →
U(H) is a unitary representation. A feature field is any function f : Rd → H. The space
of such feature fields is denoted by FF(Rd, H, σ : H → GL(H)). The representation σ is
called the type of the feature field. The group G acts on feature fields via the induced
representation IndGH σ, namely

[(IndGH σ)(x,h)f ](t) = σ(h)(f(h−1 · (t− x))), (x, h) ∈ Rd oH, t ∈ Rd. (†2)

Note that (†2) is the immediate generalization of the formula obtained in Example 6.1,
for the induced representation [(IndGH σ)(x,Q)](f) = Π(x,Q)(f). Most authors use ρ instead of
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σ. This clashes with our notation used for indexing the irreducible representations of the
group H, so we use σ instead.

A scalar field, namely a function f : Rd → C in L2(Rd), is the special case corresponding
to H = C and representation σ : H → U(1) given by σ(h) = idC for all h ∈ H. In this case,
IndGH σ = RG→L2(Rd), the left regular representation of G.

A vector field f : Rd → Cd corresponds to the case where H is a closed subgroup of
GL(d,C) and the representation σ : H → GL(d,C) is the standard representation given by
σ(h) = h, namely σ(h)(x) = hx for any x ∈ Cd, where h is a matrix in H.

Example 8.13. Let us show how G-feature maps f : Rd × H → C in L2(Rd o H) can be
viewed as feature fields fH : Rd → L2(H) (with G = RdoH). The left regular representation
RG→L2(RdoH) acts on G-feature maps via

(R
G→L2(RdoH)
(x,h) f)(x1, h1) = f(h−1 · (x1 − x), h−1h1), x, x1 ∈ Rd, h, h1 ∈ H.

A G-feature map can be converted into a feature field as follows. Given f : Rd ×H → C in
L2(Rd oH), let fH : Rd → L2(H), where

(fH(x))(h) = f(x, h), x ∈ Rd, h ∈ H.

From an intuitive point of view, for h ∈ H fixed, the map x 7→ f(x, h) can be viewed as a
sort of image based on Rd, where the value f(x, h) is the color at the location x ∈ Rd; see
Figure 8.10. These images can be thought of as parallel layers, and for x fixed, as h varies
the color f(x, h) moves along a sort of fibre that passes through each of the layers “above
x.” For d = 2 and H = SO(2), it is possible to visualize these fibres. They are circles, but
it is simpler to view them as line segments of height 2π with both endpoints identified. See
Figure 8.11.

H

R
d

f(x,h) for h fixed

f(x,h) for h fixed

f(x,h) for h fixed

Figure 8.10: A schematic illustration of fH(x) = f(x, h), where H = SO(2). For each fixed
h ∈ H, the image of f(x, h) is the horizontal colored layer.
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R
d

2π

x fixed

fibre SO(2)

identify endpoints
R

d

x fixed

fibre SO(2)

Figure 8.11: Two illustrations of the fibre SO(2) above a fixed x ∈ R2.

The left regular representation RH→L2(H) acts on L2(H) in the usual way, namely

(R
H→L2(H)
h g)(h1) = g(h−1h1), g ∈ CH , h, h1 ∈ H.

Then the induced representation IndGH RH→L2(H) (here σ = RH→L2(H)) acts on the feature
fields fH : Rd → L2(H) by

[(IndGH RH→L2(H))(x,h)f
H ](x1) = R

H→L2(H)
h (fH(h−1 · (x1 − x))).

By definition of RH→L2(H), we get

(R
H→L2(H)
h (fH(h−1 · (x1 − x))))(h1) = (fH(h−1 · (x1 − x)))(h−1h1)

= f(h−1 · (x1 − x), h−1h1) = (R
G→L2(RdoH)
(x,h) f)(x1, h1).

Therefore,

(IndGH RH→L2(H))(x,h)f
H = R

G→L2(RdoH)
(x,h) f,

which shows that G-feature maps f : Rd×H → C can be viewed as feature fields fH : Rd →
L2(H), using the left regular representations RH→L2(H). In this case, H = L2(H) and
σ = RH→L2(H).

The following definition will be needed in the next section.

Definition 8.8. Let σ : H → GL(F ) be a representation with F finite-dimensional. Define
the function Hom(σ, id) by

Hom(σ, id)hf = f ◦ σh−1 , f ∈ Hom(F, F ), h ∈ H.

Since both σh−1 : F → F and f : F → F are linear, Hom(σ, id)hf : F → F is also a linear
map for all h ∈ H. Furthermore, we have

Hom(σ, id)h1h2f = f ◦ σ(h1h2)−1 = f ◦ σh−1
2
◦ σh−1

1

= (Hom(σ, id)h2f) ◦ σh−1 = Hom(σ, id)h1(Hom(σ, id)h2f)

= (Hom(σ, id)h1 ◦ Hom(σ, id)h2)f,
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which proves that Hom(σ, id) is a representation Hom(σ, id) : H → GL(Hom(F, F )).

Actually, the representation Hom(σ, id) is a special case of the Hom representation in Def-
inition 4.21 with σ1 : H → GL(F ) the representation σ1 = σ and σ2 the trivial representation
given by σ2(h) = idF for all h ∈ H.

If F = Cn, then Hom(Cn,Cn) is isomorphic to the space Mn(C) of n × n matrices, and
if H is a closed subgroup of GL(n,C), then Hom(σ, id) acts on Mn(C) by multiplication on
the right by the matrix σ−1

h , namely

Hom(σ, id)h(A) = Aσ−1
h , A ∈ Mn(C). (∗22)

This is the situation that occurs in practice. If Cn is equipped with its standard hermitian
inner product and if σ : H → U(n) is a unitary representation, so that σh is a unitary matrix,
if we give Mn(C) the hermitian inner product 〈A,B〉 = tr(B∗A), then the representation
Hom(σ, id) is unitary because using the fact that tr(XY ) = tr(Y X), we have

〈Aσ−1
h , Bσ−1

h 〉 = 〈Aσ∗h, Bσ∗h〉 = tr((Bσ∗h)
∗(Aσ∗h)) = tr(σhB

∗Aσ∗h)

= tr(σ∗hσhB
∗A) = tr(B∗A) = 〈A,B〉.

In the next section, we show how to construct a Fourier transform on a semi-direct
product G = Rd oH, where H is compact in terms of the Fourier transform F on H.

8.9 Promoting the Fourier Transform from H to RdoH
If we view a function defined on G = Rd oH as a function f : Rd oH → C, the new twist
is that the Fourier coefficients of f are now tuples (f̂ρ)ρ∈R(H) of functions f̂ρ : Rd → Mnρ(C).
This causes new problems to reconstruct a function from its Fourier coefficients because
even if the functions f̂ρ belong to L2(Rd,Mnρ(C)), there is no guarantee that the function
obtained from the inverse Fourier transform belongs to L2(G). Some additional condition is

required on the functions f̂ρ. We provide a solution to this problem below by constructing a

Hilbert space L2(Rd, Ĥ), such that the new Fourier transform F τ : L2(G) → L2(Rd, Ĥ) and

the Fourier cotransform F τ : L2(Rd, Ĥ) → L2(G) are mutual inverses. We found the key
idea in a paper by Mensah and Awussi [52], who investigate the situation of a semi-direct
product H oRd, where Rd acts on H by automorphisms.

The first crucial observation is that for any function f ∈ L2(Rd o H), by Fubini, for
any fixed x ∈ Rd, we have fH(x) ∈ L2(H), where fH is the function defined in Example
8.13. Since H is a compact group, the Fourier transform F(fH(x)) is well-defined. For every
ρ ∈ R(H) and every fixed x ∈ Rd, recall that F(fH(x))(ρ) is the nρ × nρ matrix given by

F(fH(x))(ρ) =

∫
H

(fH(x))(h)Mρ(h)∗ dλ(h) =

∫
H

f(x, h)Mρ(h)∗ dλ(h),

where Mρ is an irreducible representation of H in Cnρ . To reduce the amount of superscripts,
we also denote fH(x) as f(x,−).
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Technically, F : L2(H)→ L2(Ĥ) is defined for functions with domain H, with

L2(Ĥ) =

{
F ∈

∏
ρ∈R(H)

Mnρ(C) | ‖F‖L2(Ĥ) <∞
}
,

and

‖F‖L2(Ĥ) =

( ∑
ρ∈R(H)

nρ ‖F (ρ)‖2
HS

)1/2

=

( ∑
ρ∈R(H)

nρ tr
(
F (ρ)∗F (ρ)

))1/2

;

see Definition 4.47 and Definition 4.48. The vector space L2(Ĥ) is a Hilbert space under the
inner product

〈F1, F2〉L2(Ĥ) =
∑

ρ∈R(H)

nρ〈F1(ρ), F2(ρ)〉HS =
∑

ρ∈R(H)

nρ tr
(
F2(ρ)∗F1(ρ)

)
;

see Theorem 4.45.

We would like to define a notion of Fourier transform on functions in L2(Rd o H) that
makes use of the Fourier transform F defined on H, so to avoid confusion, we will denote
this new Fourier transform by F τ . The motivation is that τ : H → GL(n) is the action of
H on Rd, with τ(h)(x) = hxh−1.

Definition 8.9. For any fixed x ∈ Rd and any G-feature map f ∈ L2(Rd o H), we define

F(f(x,−)) = (F(f(x,−))ρ)ρ∈R(H) ∈ L2(Ĥ), also denoted f̂(x), by

F(f(x,−))ρ = f̂(x)ρ =

∫
H

f(x, h)Mρ(h)∗ dλ(h), ρ ∈ R(H). (f̂(x))

Then if we let x vary in Rd, for any fixed ρ, we obtain a function f̂ρ : Rd → Mnρ(C) given by

f̂ρ(x) = f̂(x)ρ =

∫
H

f(x, h)Mρ(h)∗ dλ(h), x ∈ Rd. (f̂ρ)

By Fubini, since f ∈ L2(Rd o H), we have f̂ρ ∈ L2(Rd,Mnρ(C)). This step requires a
justification that we leave as an exercise.

The function f̂ρ is called a Fourier coefficients feature field of type ρ or steerable feature

field of type ρ. The R(H)-indexed family (f̂ρ)ρ∈R(H) is denoted by f̂ and is called the family
of Fourier coefficients feature fields of f or family of steerable feature fields of f .

Observe that

f̂(x) = (f̂ρ(x))ρ∈R(H) ∈ L2(Ĥ), for every x ∈ Rd,

and consequently, (f̂ρ)ρ∈R(H) belongs to the space Eτ (Ĥ) defined next.
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Definition 8.10. The vector space Eτ (Ĥ) is defined by

Eτ (Ĥ) =

{
F ∈

∏
ρ∈R(H)

L2(Rd,Mnρ(C)) | (Fρ(x))ρ∈R(H) ∈ L2(Ĥ), x ∈ Rd

}
. (Eτ (Ĥ))

Note the analogy with the space E(Ĥ) of Definition 4.48.

Definition 8.11. We define the map F τ from L2(Rd oH) to Eτ (Ĥ) by setting

F τ (f) = (F τρ (f))ρ∈R(H), f ∈ L2(G), with

F τρ (f)(x) = f̂ρ(x) = F(f(x,−))ρ =

∫
H

f(x, h)Mρ(h)∗ dλ(h) x ∈ Rd, ρ ∈ R(H). (F τ )

Observe that by line (f̂(x)), for every fixed x ∈ Rd, we have

F τ (f)(x) = (F τρ (f)(x))ρ∈R(H) = F(f(x,−)). (F τ (f)(x))

We will see shortly that steerable feature fields of type ρ transform under the representa-
tion Hom(Mρ, id). For this reason, the space of steerable feature fields of type ρ is denoted by

FF(Rd, H,Hom(Mρ, id)). These are matrix-valued functions f̂ρ : Rd → Mnρ(C) that belong
to L2(Rd,Mnρ(C)). Actually, we will see below (see Definition 8.12) that there is some extra

condition on the family (f̂ρ)ρ∈R(H) that ensures that Fourier inversion yields a function in
L2(G).

For every fixed x ∈ Rd, the function fH(x) ∈ L2(H) can be recovered by Fourier inversion

using the Fourier cotransform F from L2(Ĥ) to L2(H) from the family of Fourier coefficients

feature fields f̂ = (f̂ρ)ρ∈R(H) ∈ Eτ (Ĥ) evaluated at x, namely the R(H)-indexed family

f̂(x) = (f̂ρ(x))ρ∈R(H) ∈ L2(Ĥ), using the formula

(fH(x))(h) = [F(f̂(x))](h) =
∑

ρ∈R(H)

nρ tr
(
f̂ρ(x)Mρ(h)

)
, h ∈ H.

Thus the G-feature map f : Rd ×H → C can also be recovered pointwise, via

f(x, h) = [F(f̂(x))](h) =
∑

ρ∈R(H)

nρ tr
(
f̂ρ(x)Mρ(h)

)
. (F(f̂(x)))

The definition of a map F τ from Eτ (Ĥ) to L2(RdoH) is more delicate. The space Eτ (Ĥ)
is actually too big to ensure that the resulting functions belong to L2(Rd oH). Inspired by
Mensah and Awussi [52], we define the following space.

Definition 8.12. Define the vector space L2(Rd, Ĥ) by

L2(Rd, Ĥ) =

{
F ∈ Eτ (Ĥ)

∣∣∣ ‖F (−)‖L2(Ĥ) ∈ L2(Rd)

}
, (L2(Rd, Ĥ))
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where ‖F (−)‖L2(Ĥ) is the function defined, such that if F = (Fρ)ρ∈R(H), then

‖F (x)‖L2(Ĥ) =

( ∑
ρ∈R(H)

nρ ‖Fρ(x)‖2
HS

)1/2

. (‖F (−)‖L2(Ĥ))

Note that ‖F (−)‖L2(Ĥ) ∈ L2(Rd) implies that∫
Rd
‖F (x)‖2

L2(Ĥ) dx <∞.

The vector space L2(Rd, Ĥ) is equipped with the norm ‖ ‖L2(Rd,Ĥ) given by

‖F‖2
L2(Rd,Ĥ) =

∫
Rd
‖F (x)‖2

L2(Ĥ) dx = (‖F (−)‖2
L2(Ĥ))

2
L2(Rd). (‖F‖L2(Rd,Ĥ))

Note the analogy with the definition of the space L2(Ĥ) in Definition 4.48. We also define

an inner product on L2(Rd, Ĥ) as follows.

Definition 8.13. For any two sequences of functions F1, F2 ∈ L2(Rd, Ĥ), let 〈F1, F2〉L2(Rd,Ĥ)

be given by

〈F1, F2〉L2(Rd,Ĥ) =

∫
Rd

∑
ρ∈R(H)

nρ tr
(

(F2)ρ(x))∗(F1)ρ(x)
)
dx. (〈−,−〉)

Observe that

‖F‖2
L2(Rd,Ĥ) = 〈F, F 〉L2(Rd,Ĥ),

but we still need to prove that the integral in (〈−,−〉) is well defined. We will use the

Cauchy–Schwarz inequality both in L2(Ĥ) and L2(Rd). We have

|〈F1, F2〉L2(Rd,Ĥ)| =
∣∣∣∣∫

Rd

∑
ρ∈R(H)

nρ 〈(F1)ρ(x), (F2)ρ(x)〉HS dx

∣∣∣∣ (1)

≤
∫
Rd

∣∣∣∣ ∑
ρ∈R(H)

nρ 〈(F1)ρ(x), (F2)ρ(x)〉HS

∣∣∣∣dx (2)

=

∫
Rd

∣∣∣〈F1(x), F2(x)〉L2(Ĥ)

∣∣∣ dx (3)

≤
∫
Rd
‖F1(x)‖L2(Ĥ) ‖F2(x)‖L2(Ĥ) dx (4)

≤
(∫

Rd
‖F1(x)‖2

L2(Ĥ) dx

)1/2(∫
Rd
‖F2(x)‖2

L2(Ĥ) dx

)1/2

(5)

= ‖F1‖L2(Rd,Ĥ) ‖F2‖L2(Rd,Ĥ) , (6)
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where (1) holds by definition, (2) by a standard property of the integral, (3) by definition

of the inner product in L2(Ĥ), (4) by the Cauchy–Schwarz inequality in L2(Ĥ), (5) by the
Cauchy–Schwarz inequality in L2(Rd), and (6) by definition (see (‖F‖L2(Rd,Ĥ) )).

We will also need the projection L2(Rd, Ĥ)ρ of L2(Rd, Ĥ) on the ρth factor, that is,

L2(Rd, Ĥ)ρ = {Fρ | (Fρ)ρ∈R(H) ∈ L2(Rd, Ĥ)}. (L2(Rd, Ĥ)ρ)

We have the following important version of Plancherel theorem for our Fourier transform
F τ : L2(G)→ L2(Rd, Ĥ).

Theorem 8.8. The map F τ : L2(G) → L2(Rd, Ĥ) (with G = Rd o H) is an isometric
isomorphism of Hilbert spaces. That is, it is bijective and

〈F τ (f),F τ (g)〉L2(Rd,Ĥ) = 〈f, g〉L2(G), f, g ∈ L2(Rd oH).

In particular, it is continuous.

Proof. First, we prove that the map F τ is an isometry. Since L2(G) is a Hilbert space, this

proves that L2(Rd, Ĥ) is also a Hilbert space. Since the norm on L2(Rd, Ĥ) is induced by

the inner product on L2(Rd, Ĥ), it suffices to prove that the norm is preserved. This is a
standard result of linear algebra; for example, see Gallier and Quaintance [29] (Chapter 13,
Proposition 13.1). For any f ∈ L2(Rd oH), we have

‖F τ (f)‖2
L2(Rd,Ĥ) =

∫
Rd
‖F τ (f)(x)‖2

L2(Ĥ) dx by definition

=

∫
Rd
‖F(f(x,−))‖2

L2(Ĥ) dx by (F τ (f)(x)).

However, for fixed x, F(f(x,−)) is the Fourier transform of the function f(x,−) ∈ L2(H).
By Plancherel Theorem (Theorem 4.50), we have

‖F(f(x,−))‖2
L2(Ĥ) = ‖f(x,−)‖2

L2(H) .

Since f ∈ L2(Rd oH), by Fubini

‖f‖2
L2(G) =

∫
G

|f(x, h)|2 dλG(x, h) =

∫
Rd

∫
H

|f(x, h)|2 dλH(h) dx <∞,

but ∫
Rd

∫
H

|f(x, h)|2 dλH(h) dx =

∫
Rd
‖f(x,−)‖2

L2(H) dx,
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which shows that the function x 7→ ‖F(f(x,−))‖L2(Ĥ) is in L2(Rd). Consequently, we have

‖F τ (f)‖2
L2(Rd,Ĥ) =

∫
Rd
‖F(f(x,−))‖2

L2(Ĥ) dx

=

∫
Rd
‖f(x,−)‖2

L2(H) dx by Plancherel

=

∫
Rd

∫
H

|f(x, h)|2 dλH(h) dx by definition of the L2(H)-norm

= ‖f‖2
L2(G) . by Fubini

Since F τ is an isometry, it is injective. It remains to prove that it is surjective.

For any F = (Fρ)ρ∈R(H) ∈ L2(Rd, Ĥ) and for every fixed x ∈ Rd, we have F (x) =

(Fρ(x))ρ∈R(H) ∈ L2(Ĥ). By Plancherel applied to the Fourier transform F between L2(H)

and L2(Ĥ), there is a unique function fx ∈ L2(H), such that

F(fx) = F (x) and ‖fx‖L2(H) = ‖F (x)‖L2(Ĥ) . (∗23)

Define the function f : Rd oH → C by

f(x, h) = fx(h), x ∈ Rd, h ∈ H. (∗24)

Observe that
f(x,−) = fx, (∗25)

so we get

‖f‖L2(G) =

∫
Rd

∫
H

|f(x, h)|2 dλH(h) dx by definition of ‖f‖2
L2(G)

=

∫
Rd

∫
H

|fx(h)|2 dλH(h) dx by (∗24)

=

∫
Rd
‖fx‖2

L2(H) dx by definition of ‖fx‖2
L2(H)

=

∫
Rd
‖F (x)‖2

L2(Ĥ) dx by (∗23)

= ‖F‖2
L2(Rd,Ĥ) <∞, by definition of ‖F‖2

L2(Rd,Ĥ)

and the last step because F ∈ L2(Rd, Ĥ). Therefore, f ∈ L2(G). Then by (F τ (f)(x)), (∗25)
and (∗23), we have

F τ (f)(x) = F(f(x,−)) = F(fx) = F (x), x ∈ Rd,

which means that F τ (f) = F , and thus F τ is surjective.
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Since we already know that functions in L2(G) can be recovered pointwise using the
Fourier transform on H, we can exhibit the inverse F τ of the Fourier transform F τ .

Definition 8.14. Define the map F τ ρ : L2(Rd, Ĥ)ρ → L2(G) for every ρ ∈ R(H) by

F τ ρ(f̂ρ)(x, h) = nρ tr
(
f̂ρ(x)Mρ(h)

)
, x ∈ Rd, h ∈ H, f̂ρ ∈ L2(Rd, Ĥ)ρ, (F τ ρ)

and the map F τ : L2(Rd, Ĥ)→ L2(G) by

F τ ((f̂ρ)ρ∈R(H))(x, h) =
∑

ρ∈R(H)

F τ ρ(f̂ρ)(x, h), x ∈ Rd, h ∈ H, (f̂ρ)ρ∈R(H) ∈ L2(R2, Ĥ). (F τ )

Then F τ : L2(G)→ L2(Rd, Ĥ) and F τ : L2(Rd, Ĥ)→ L2(G) are mutual inverses.

We claim that the map f̂ρ ∈ L2(Rd, Ĥ)ρ is indeed a feature field, with H = Mnρ(C) and

σ = Hom(Mρ, id). For this, we need to see how the function f̂ρ changes when G = Rd oH
acts on f via the left regular action RG→L2(G) given by

R
G→L2(G)
(x,h) (f)(x1, h1) = f(h−1 · (x1 − x), h−1h1).

Proposition 8.9. For every ρ ∈ R(H), let σρ : H → U(Mnρ(C)) be the representation

σρ = Hom(Mρ, id)

associated with the representation Mρ : H → U(Cnρ) as in Definition 8.8. For every function

f̂ρ ∈ L2(Rd, Ĥ)ρ, we have

F τρ [R
G→L2(G)
(x,h) (f)](x1) = [(IndGH (σρ)(x,h) f̂ρ](x1) = f̂ρ(h

−1 · (x1 − x))Mρ(h)∗. (∗26)

Proof. Using the fact that the Haar measure λ is left (and right) invariant and the fact that
Mρ is a representation, we have

F τρ [R
G→L2(G)
(x,h) (f)](x1) =

∫
H

R
G→L2(G)
(x,h) (f)(x1, h1)Mρ(h1)∗ dλ(h1)

=

∫
H

f(h−1 · (x1 − x), h−1h1)Mρ(h1)∗ dλ(h1)

=

∫
H

f(h−1 · (x1 − x), h2)Mρ(hh2)∗ dλ(h2), h1 = hh2

=

(∫
H

f(h−1 · (x1 − x), h2)Mρ(h2)∗ dλ(h2)

)
Mρ(h)∗

= f̂ρ(h
−1 · (x1 − x))Mρ(h)∗.

The above computation shows that

F τρ [R
G→L2(G)
(x,h) (f)](x1) = f̂ρ(h

−1 · (x1 − x))Mρ(h)∗,

as claimed.
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Equation (∗26) shows that the group G = Rd oH acts on the feature fields of type ρ via

[(IndGH (σρ)(x,h) f̂ρ](x1) = f̂ρ(h
−1 · (x1 − x))Mρ(h)∗, (σρ)

for all (x, h) ∈ Rd oH and all x1 ∈ Rd, and (∗26) is equivalent to the commutativity of the
following diagram

L2(G)
Fτρ //

R
G→L2(G)
(x,h)

��

L2(Rd, Ĥ)ρ

(IndGH σρ)(x,h)

��

L2(G)
Fτρ

// L2(Rd, Ĥ)ρ

for all (x, h) ∈ G = Rd oH.

We also package the representations IndGH σρ : G→ U(L2(Rd, Ĥ)ρ) in the map

IndGH σ : G× L2(Rd, Ĥ)→ L2(Rd, Ĥ)

defined such that for any f̂ = (f̂ρ)ρ∈R(H),

[(IndGH σ)(x,h)f̂ ]ρ(x1) = [(IndGH σρ)(x,h)f̂ρ](x1), x1 ∈ Rd, ρ ∈ R(H). (σ)

The following result should not be too surprising.

Proposition 8.10. The following diagram commutes

L2(Rd, Ĥ)ρ
Fτ ρ //

(IndGH σρ)(x,h)

��

L2(G)

R
G→L2(G)
(x,h)

��
L2(Rd, Ĥ)ρ

Fτ ρ
// L2(G)

for all (x, h) ∈ G = Rd oH.

Proof. For any f̂ρ ∈ L2(Rd, Ĥ)ρ we have

F τ ρ((IndGH σρ)(x,h)f̂ρ)(x1, h1) = nρ tr
(

((IndGH σρ)(x,h)f̂ρ)(x1)Mρ(h1)
)

by (F τ ρ)

= nρ tr
(
f̂ρ(h

−1 · (x1 − x))Mρ(h)∗Mρ(h1)
)

by (∗26)

= nρ tr
(
f̂ρ(h

−1 · (x1 − x))Mρ(h
−1h1)

)
.

We also have

R(x,h)(F τ ρ(f̂ρ))(x1, h1) = F τ ρ(f̂ρ)(h−1 · (x1 − x)), h−1h1) by definition of R(x,h)

= nρ tr
(
f̂ρ(h

−1 · (x1 − x))Mρ(h
−1h1)

)
. by (F τ ρ)
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Consequently

F τ ρ((IndGH σρ)(x,h)f̂ρ)(x1, h1) = R(x,h)(F τ ρ(f̂ρ))(x1, h1),

as claimed.

Remark: We also have the representation Hom(id,Mρ), which acts on Mnρ(C) by multipli-
cation on the left by Mρ(h) for every h ∈ H. The induced representation Hom(id,Mρ) of
Rd oH on the feature fields of type ρ is then given by

[(IndGH Hom(id,Mρ))(x,h) f̂ρ](x1) = Hom(id,Mρ)(h)(f̂ρ(h
−1 · (x1 − x)))

= Mρ(h)f̂ρ(h
−1 · (x1 − x))

for all (x, h) ∈ Rd o H and all x1 ∈ Rd. It is a bit more natural than the representation
induced by Hom(Mρ, id).3

Example 8.14. Let H = SO(2) so that G = R2oSO(2) = SE(2). In this case, R(SO(2)) =
Z and nρ = 1. We will denote ρ as `. For any f ∈ L2(SE(2)), for every x ∈ R2, the Fourier

transform F τ (f) of f is the Z-indexed sequence (f̂`)`∈Z of functions given by

f̂`(x) = F τ (f(x,−))` =

∫
S1

e−i`θf(x, θ) dθ, x ∈ R2, ` ∈ Z.

The functions f̂` are the feature fields associated with `. Observe that this is an example of
(f̂ρ).

Given a family f̂ = (f̂m)m∈Z of function f̂m ∈ L2(R2,Z)m, such that f̂(x) = (f̂m(x))m∈Z ∈
`2(Z) for all x ∈ R2 and ( ∞∑

m=−∞

|f̂m(−)|2
)1/2

∈ L2(R2),

the Fourier cotransform F τ (f̂)(x, θ) is given by

F τ (f̂)(x, θ) =
∞∑

m=−∞

f̂m(x)eimθ.

It is instructive to see in this more concrete case how the function f̂` changes when
SE(2) = R2 o SO(2) acts on f via the left regular action RSE(2)→L2(SE(2)) given by

R
SE(2)→L2(SE(2))
(x,θ) (f)(x1, θ1) = f(R−θ(x1 − x), θ1 − θ).

3Which representation arises naturally depends on the definition of the Fourier transform. The literature
is not consistent on this matter. For exampl, Bekkers uses Mρ instead of M∗ρ .
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Using the fact that the Haar measure on SO(2) is left (and right) invariant, we have

F τ [RSE(2)→L2(SE(2))
(x,θ) (f)(x1,−)]` =

∫
SO(2)

R
SE(2)→L2(SE(2))
(x,θ) (f)(x1, θ1)e−i`θ1 dθ1

=

∫
SO(2)

f(R−θ(x1 − x), θ1 − θ)e−i`θ1 dθ1

=

∫
SO(2)

f(R−θ(x1 − x), θ2)e−i`(θ+θ2) dθ2, θ1 = θ + θ2

= e−i`θ
∫
SO(2)

f(R−θ(x1 − x), θ2)e−i`θ2 dθ2

= e−i`θf̂`(R−θ(x1 − x)).

Thus, we have

R̂(x,θ)(f)
`
(x1) = e−i`θf̂`(R−θ(x1 − x)),

so the representation that needs to be associated with the feature fields corresponding to `
is e−i`θ, and not ei`θ. Since multiplication in C is commutative, given a character χ`(θ) =
ei`θ, the representation Hom(χ`, id) is just multiplication by e−i`θ and the representation
Hom(id, χ`) is just multiplication by ei`θ.

Example 8.15. Given a function f : Rd → C in L2(Rd), in the case of a steerable kernel
k(x;w) expressed in terms of a steerable family Y = (Y1, . . . , YL) as in Section 8.6, by lifted
correlation we obtain the G-feature map k ?̃ f : Rd ×H → C given by

(k ?̃ f)(x, h) = tr
(
f̂(x) Σ(h)>

)
,

using the Fourier coefficients

f̂(x) = fY (x)w∗ ∈ ML(C),

with

fY (x) =

∫
Rd
f(t)Y (t− x) dt, x ∈ Rd.

The map f̂ : Rd → ML(C) is a feature field that transforms under IndGH Hom(id,Σ). In this
case H = ML(C), σ = Hom(id,Σ), and

[(IndGH Hom(id,Σ))(x,h) f̂ρ](t) = Σ(h)f̂ρ(h
−1 · (t− x)).

8.10 Correlation on the Space of Feature Fields

L2(Rd, Ĥ)

As we mentioned at the end of Section 8.4, a typical CNN consists of layers, starting with a
lifting layer followed by group correlation layers (often called group convolution layers). The
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last layer is typically a projection layer involving some pooling process. This is a simpler
process that we will not discuss here.

The lifting layer takes as input a function fin ∈ L2(Rd) and produces an output function
fout ∈ L2(Rd oH) given by a lifted correlation with

fout(x, h) = (k ?̃ fin)(x, h),

where

(k ?̃ fin)(x, h) =

∫
Rd
fin(t)k(h−1 · (t− x)) dt, (x, h) ∈ Rd ×H.

Computing (k ?̃ fin)(x, h) requires discretizing the group H, which is not possible in practice
if d > 2. If the kernel k can be expressed in terms of an H-steerable family Y of L functions
in L2(Rd) and a representation Σ: H → U(L), then fout(x, h) can be computed a lot cheaply

in terms of a feature field f̂out : Rd → ML(C) defined from fin and Y as

fout(x, h) = (k ?̃ fin)(x, h) = tr
(
f̂out(x) Σ(h)>

)
,

where f̂out(x) is a matrix of Fourier coefficients.

A group correlation layer takes as input a function fin ∈ L2(Rd o H) and produces as
output a function fout ∈ L2(Rd oH) using a group correlation

fout(s) = (k ? fin)(s) =

∫
G

fin(t)k(s−1t) dλG(t), s ∈ G = Rd oH.

We saw in the previous section that a G-feature map f ∈ L2(Rd o H) yields a family

f̂ = (f̂ρ)ρ∈R(H) of feature fields f̂ρ ∈ L2(Rd, Ĥ)ρ and that f can be recovered pointwise by
Fourier inversion, namely

f(x, h) =
∑

ρ∈R(H)

nρ tr
(
f̂ρ(x)Mρ(h)

)
.

We know how to transform G-feature maps using group correlation defined in Definition
8.4. This defines a transform Φ on L2(G) (where G = RdoH) given by fout = Φ(fin) = k?fin.
We can summarize the situation by the following diagram:

L2(G) Φ //

Fτ

��

L2(G)

Fτ

��

L2(Rd, Ĥ)

Fτ

OO

?
// L2(Rd, Ĥ).

Fτ

OO

Since it is too expensive to compute Φ(fin) = k ? fin, it would be nice if we could define

the missing map Φ̂, a notion of correlation

Φ̂ : L2(Rd, Ĥ)→ L2(Rd, Ĥ)
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on feature fields, and then we would recover k ? fin by Fourier inversion. In theory, this is
possible; we simply define Φ̂ as

Φ̂ = F τ ◦ Φ ◦ F τ ,

using F τ and F τ . We can push this approach further, using the fact that the Fourier
transform F τρ is continuous and that Φ is a continuous linear map. The following proposition
is needed.

Proposition 8.11. If E and F are two normed vector spaces and if Φ: E → F is a contin-
uous linear map, then the following properties hold:

(1) For any convergent series
∑∞

n=1 un (with un ∈ E), the series
∑∞

n=1 Φ(un) converges in
F and

Φ

( ∞∑
n=1

un

)
=
∞∑
n=1

Φ(un).

(2) For any countable index set Λ, for any summable series
∑

`∈Λ u` (with u` ∈ E), the
series

∑
`∈Λ Φ(u`) is summable in F and

Φ

(∑
`∈Λ

u`

)
=
∑
`∈Λ

Φ(u`).

See Vol. I, Definition D.6 for the definition of a summable series.

Proof. We prove (1) leaving the proof of (2) as an exercise. If Sn =
∑n

k=1 uk is a partial
sum, since Φ is linear,

Φ(Sn) = Φ

( ∞∑
k=1

uk

)
=

n∑
k=1

Φ(uk).

Since the sequence (Sn) converges to
∑∞

n=1 un and since Φ is continuous, the sequence (Φ(Sn))

converges to Φ

(∑∞
n=1 un

)
, and thus the sequence of partial sums

∑n
k=1 Φ(uk) also converges

to the same limit Φ

(∑∞
n=1 un

)
as claimed.

Proposition 8.11(2) applies to series indexed by Z. In particular, a summable series∑
n∈Z un corresponds to the case below.
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Then for any family (f̂ρ1)ρ1∈R(H) of feature fields in L2(Rd, Ĥ), we have

Φ̂((f̂ρ1)ρ1∈R(H)) = F τ
(

Φ

( ∑
ρ1∈R(H)

F τ ρ1(f̂ρ1)
))

by (F τ )

= F τ
( ∑
ρ1∈R(H)

Φ(F τ ρ1(f̂ρ1))
)

by Proposition 8.11 for Φ

=

(
F τρ2

( ∑
ρ1∈R(H)

Φ(F τ ρ1(f̂ρ1))
))

ρ2∈R(H)

by definition of F τ

=

( ∑
ρ1∈R(H)

F τρ2(Φ(F τ ρ1(f̂ρ1)))
)
ρ2∈R(H)

by Proposition 8.11 for F τρ2 .

Define Φ̂ρ1 and Φ̂ρ2,ρ1 as

Φ̂ρ2,ρ1(f̂ρ1) = F τρ2(Φ(F τ ρ1(f̂ρ1))) (Φ̂ρ2,ρ1)

Φ̂ρ1(f̂ρ1) =
∑

ρ1∈R(H)

Φ̂ρ2,ρ1(f̂ρ1), (Φ̂ρ1)

so that
Φ̂((f̂ρ1)ρ1∈R(H)) =

(
Φ̂ρ1(f̂ρ1)

)
ρ2∈R(H)

. (Φ̂)

It is an interesting and useful fact that the transforms Φ̂ρ2,ρ1 are equivariant with respect
to the representations IndGH σρ1 and IndGH σρ2 . Consider the diagram

L2(Rd, Ĥ)ρ1
Fτ ρ1 //

(IndGH σρ1 )(x,h)

��

L2(G)

R(x,h)

��

Φ // L2(G)

R(x,h)

��

Fτρ2 // L2(Rd, Ĥ)ρ2

(IndGH σρ2 )(x,h)

��

L2(Rd, Ĥ)ρ1 Fτ ρ1
// L2(G)

Φ
// L2(G)

Fτρ2
// L2(Rd, Ĥ)ρ2 .

Since the three squares commute, the outer square also commutes, so we have the following
commutative diagram

L2(Rd, Ĥ)ρ1

(IndGH σρ1 )(x,h)

��

Φ̂ρ2,ρ1 // L2(Rd, Ĥ)ρ2

(IndGH σρ2 )(x,h)

��

L2(Rd, Ĥ)ρ1
Φ̂ρ2,ρ1

// L2(Rd, Ĥ)ρ2 ,

which shows that Φ̂ρ2,ρ1 is equivariant with respect to the representations IndGH σρ1 and
IndGH σρ2 .
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Suppose the group correlation Φ: L2(G)→ L2(G) is given by a kernel k as

Φ(f)(x, h) =

∫
RdoH

k(h−1 · (x1 − x), h−1h1)f(x1, h1) dλH(h1) dx1.

Since
[F τ ρ1(f̂ρ1)](x1, h1) = nρ1tr

(
f̂ρ1(x1)Mρ1(h1)

)
,

we have

Φ(F τ ρ1(f̂ρ1))(x, h) =

∫
RdoH

k(h−1 · (x1 − x), h−1h1)nρ1tr
(
f̂ρ1(x1)Mρ1(h1)

)
dλH(h1) dx1,

and then using Fubini,we have

F τρ2 [Φ(F τ ρ1(f̂ρ1))](x)

=

∫
H

∫
RdoH

k(h−1 · (x1 − x), h−1h1)nρ1tr
(
f̂ρ1(x1)Mρ1(h1)

)
dλH(h1) dx1Mρ2(h)∗ dλH(h)

=

∫
Rd

∫
H

∫
H

nρ1tr
(
f̂ρ1(x1)Mρ1(h1)

)
k(h−1 · (x1 − x), h−1h1)Mρ2(h)∗ dλH(h) dλH(h1) dx1.

This suggests defining Φρ2,ρ1 : Rd ×Mnρ1
(C)→ Mnρ2

(C) by

Φρ2,ρ1(x1 − x,A)

=

∫
H

∫
H

nρ1tr
(
AMρ1(h1)

)
k(h−1 · (x1 − x), h−1h1)Mρ2(h)∗ dλH(h) dλH(h1), (Φρ2,ρ1)

where A ∈ Mnρ1
(C), so that

[Φ̂ρ2,ρ1(f̂ρ1)](x) = F τρ2 [Φ(F τ ρ1(f̂ρ1))](x) =

∫
Rd

Φρ2,ρ1(x1 − x, f̂ρ1(x1)) dx1. (Φ̂bis
ρ2,ρ1

)

In order to go further, we need to express the kernel Φρ2,ρ1(x,A) in terms of H-steerable
functions on L2(RdoH). We will do this explicitly for SE(2) in Section 8.11. Next, we show
how to proceed with H = SO(d).

By (fρ) and (str18) in Example 8.9, the Hilbert space L2(SE(d)) has a Hilbert basis
consisting of functions of the form(

m
(ρ)
kρ`ρ

(h1)wρ,kρ,`ρ(h
−1
1 x)

)
1≤kρ,`ρ≤nρ, ρ∈R(SO(d))

, (str30)

with h1 ∈ SO(d) and x ∈ Rd, where wρ,kρ,`ρ is the sum of a series in the functions

e−
‖x‖2

2 Hk1(x1) · · ·Hkn(xd). (str31)
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Thus, the kernel k(x1, h1) can be expressed as the sum of a series

k(x1, h1) =
∑

1≤kρ,`ρ≤nρ, ρ∈R(SO(d))

m
(ρ)
kρ`ρ

(h1)wρ,kρ,`ρ(h
−1
1 x1). (k(x1, h1))

The result to be presented next makes use of the nρ2×nρ2 matrix Wρ2(x1) whose (kρ2 , `ρ2)
entry is wρ2,kρ2 ,`ρ2 (x1). We need to find an expression for k(h−1(x1 − x), h−1h1). We have

k(h−1(x1 − x), h−1h1) =
∑

1≤kρ,`ρ≤nρ, ρ∈R(SO(d))

m
(ρ)
kρ`ρ

(h−1h1)wρ,kρ,`ρ((h
−1h1)−1h−1(x1 − x))

=
∑

1≤kρ,`ρ≤nρ, ρ∈R(SO(d))

m
(ρ)
kρ`ρ

(h−1h1)wρ,kρ,`ρ(h
−1
1 (x1 − x)).

As explained earlier and using Theorem 4.6(2), we have

m
(ρ)
kρ`ρ

(h−1h1) = (1/nρ)

nρ∑
jρ=1

m
(ρ)
kρjρ

(h−1)m
(ρ)
jρ`ρ

(h1) = (1/nρ)

nρ∑
jρ=1

m
(ρ)
jρkρ

(h)m
(ρ)
jρ`ρ

(h1),

which yields

k(h−1(x1 − x), h−1h1) =
∑

1≤kρ,`ρ≤nρ, ρ∈R(SO(d))

m
(ρ)
kρ`ρ

(h−1h1)wρ,kρ,`ρ(h
−1
1 (x1 − x))

=
∑

1≤kρ,`ρ,jρ≤nρ
ρ∈R(SO(d))

(1/nρ)m
(ρ)
jρkρ

(h)m
(ρ)
jρ`ρ

(h1) wρ,kρ,`ρ(h
−1
1 (x1 − x)).

Plugging the above expression in

Φρ2,ρ1(x1 − x,A)

=

∫
H

∫
H

nρ1tr
(
AMρ1(h1)

)
k(h−1(x1 − x), h−1h1)Mρ2(h)∗ dλH(h) dλH(h1),

we get

Φρ2,ρ1(x1 − x,A) =
∑

1≤kρ,`ρ,jρ≤nρ
ρ∈R(SO(d))

∫
H

∫
H

nρ1 tr
(
AMρ1(h1)

)
(1/nρ)m

(ρ)
jρ`ρ

(h1)

wρ,kρ,`ρ(h
−1
1 (x1 − x))m

(ρ)
jρkρ

(h)Mρ2(h)∗ dλH(h) dλH(h1).

Since the functions m
(ρ)
jρkρ

and m
(ρ2)
jρ2kρ2

are orthogonal for ρ 6= ρ2 by Theorem 4.6(1), only the
terms for which ρ = ρ2 survive, so we get

Φρ2,ρ1(x1 − x,A) =
∑

1≤kρ2 ,`ρ2 ,jρ2≤nρ2

∫
H

nρ1 tr
(
AMρ1(h1)

)
m

(ρ2)
jρ2`ρ2

(h1)

wρ2,kρ2 ,`ρ2 (h−1
1 (x1 − x))

∫
H

(1/nρ2)m
(ρ2)
jρ2kρ2

(h)Mρ2(h)∗ dλH(h) dλH(h1).
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Now the (k′ρ2 , j
′
ρ2

)-entry in the matrix Mρ2(h)∗ is m
(ρ2)
j′ρ2k

′
ρ2

(h), and since by Theorem

4.6(1,3) the functions m
(ρ2)
j′ρ2k

′
ρ2

and m
(ρ2)
jρ2kρ2

are orthogonal unless k′ρ2 = kρ2 and j′ρ2 = jρ2 ,

in which case 〈m(ρ2)
jρ2kρ2

,m
(ρ2)
jρ2kρ2

〉 = nρ2 , the inner integral evaluates to∫
H

(1/nρ2)m
(ρ2)
jρ2kρ2

(h)Mρ2(h)∗ dλH(h) = Ekρ2jρ2 ,

the matrix with 1 in the (kρ2 , jρ2) entry and 0 otherwise, so

Φρ2,ρ1(x1 − x,A)

=

∫
H

nρ1 tr
(
AMρ1(h1)

) nρ2∑
`ρ2=1

∑
1≤kρ2 ,jρ2≤nρ2

wρ2,kρ2 ,`ρ2 (h−1
1 (x1 − x))m

(ρ2)
jρ2`ρ2

(h1)Ekρ2jρ2 dλH(h1)

=

∫
H

nρ1 tr
(
AMρ1(h1)

) ∑
1≤kρ2 ,jρ2≤nρ2

nρ2∑
`ρ2=1

wρ2,kρ2 ,`ρ2 (h−1
1 (x1 − x))m

(ρ2)
`ρ2jρ2

(h−1
1 )Ekρ2jρ2 dλH(h1)

=

∫
H

nρ1 tr
(
AMρ1(h1)

)( nρ2∑
`ρ2=1

wρ2,kρ2 ,`ρ2 (h−1
1 (x1 − x))m

(ρ2)
`ρ2jρ2

(h−1
1 )

)
1≤kρ2 ,jρ2≤nρ2

dλH(h1)

=

∫
H

nρ1 tr
(
AMρ1(h1)

)
Wρ2(h

−1
1 (x1 − x))M∗

ρ2
(h1) dλH(h1).

In summary,

Φρ2,ρ1(x1 − x,A) =

∫
H

nρ1 tr
(
AMρ1(h1)

)
Wρ2(h

−1
1 (x1 − x))M∗

ρ2
(h1) dλH(h1), (∗Φρ2,ρ1

)

and

[Φ̂ρ2,ρ1(f̂ρ1)](x) = F τρ2 [Φ(F τ ρ1(f̂ρ1))](x) =

∫
Rd

Φρ2,ρ1(x1 − x, f̂ρ1(x1)) dx1, (∗Φ̂ρ2,ρ1
)

where Wρ2(x1) is the nρ2 × nρ2 matrix whose (kρ2 , `ρ2) entry is wρ2,kρ2 ,`ρ2 (x1) introduced just
after (k(x1, h1)).

It is not hard to show that the above results can be generalized to the situation where
H is a compact matrix group acting on Rd by multiplication.

In the special case where d = 2 and H = SO(2), we can use polar coordinates and view
the functions in L2(SE(2)) as functions f((‖x‖ , α), θ). In this case, by (str14) from Example
8.6, a Hilbert basis consists of the functions of the form

e−imθeik(θ−αx)wm,k(‖x‖), m, k ∈ Z.
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In this special case `ρ = ρ ∈ Z, there is no index kρ since nρ = 1, h1 = eiθ
′
, m

(ρ)
kρ`ρ

(h1) = e−iρθ
′
,

Mρ(θ
′) = eiρθ

′
, m = ρ2, and by (str30) and (str31) the matrix Wρ2(‖x1 − x‖ , αx1−x − θ′)

consists of the series
∞∑

k=∞

e−ik(θ′−αx1−x)wρ2,k(‖x1 − x‖).

It follows that we need to evaluate the integral (∗Φρ2,ρ1
);

∞∑
k=∞

∫
SO(2)

eiρ1θ
′
e−ik(θ′−αx1−x)wρ2,k(‖x1 − x‖)e−iρ2θ

′
dθ′

=
∞∑

k=∞

eikαx1−xwρ2,k(‖x1 − x‖)
∫
SO(2)

ei(ρ1−ρ2−k)θ′ dθ′ = e−i(ρ2−ρ1)αx1−xwρ2,ρ1−ρ2(‖x1 − x‖).

In conclusion, we obtain the kernel

Φρ2,ρ1(x1 − x,A) = Ae−i(ρ2−ρ1)αx1−xwρ2,ρ1−ρ2(‖x1 − x‖).

Since this is a scalar kernel that simply multiplies by A, we can express it as

Φρ2,ρ1(x1 − x) = e−i(ρ2−ρ1)αx1−xwρ2,ρ1−ρ2(‖x1 − x‖).

We derive this formula in full detail in the next section. The second index ρ1−ρ2 is different
from what we get in the next section because the computation makes use of polar coordinates
early on. If we index wm,k as wm,k+m, we find the same term wρ2,ρ1(‖x1 − x‖).

8.11 Harmonic Nets

In the special case where X = R2, H = SO(2) and G = SE(2) = R2 o SO(2), it is possible

to construct the transform Φ̂ explicitly. This case is known in the literature as harmonic
nets . We follow Erik Bekkers’ YouTube video Lecture 2.7 with a few corrections.

Recall that group correlation on SE(2) is given by

Φ(f)(x, θ) =

∫
SE(2)

k(R−θ(x
′ − x), θ′ − θ)f(x′, θ′) dx′ dθ′. (∗27)

Given a sequence f̂ = (f̂`)`∈Z of functions f̂` : R2 → C, such that (f̂`(x))`∈Z ∈ `2(C) for all
x ∈ R2 and ( ∞∑

`=−∞

|f̂`(−)|2
)1/2

∈ L2(R2),

we define the Fourier cotransform F τ (f̂) of f̂ by

F τ (f̂)(x′, θ′) =
∞∑

`=−∞

f̂`(x
′)ei`θ

′
. (∗28)
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Now F τ (f̂) ∈ L2(SE(2)) so Φ(F τ (f̂)) makes sense, and then for every x ∈ R2, we can

compute the Fourier transform F τ (Φ(F τ (f̂))(x,−)) of Φ(F τ (f̂))(x,−) by

F τ (Φ(F τ (f̂))(x,−))m =

∫
SO(2)

Φ(F τ (f̂))(x, θ)e−imθ dθ, m ∈ Z. (∗29)

Then the correlation transform Φ̂ defined on sequences of functions f̂ = (f̂`)`∈Z (with

f̂` : R2 → C) that we are seeking is the family of functions (Φ̂(f̂)m)m∈Z given by

Φ̂(f̂)m(x) = F τ (Φ(F τ (f̂))(x,−))m.

Substituting the expression (∗28) in (∗29), we obtain

F τ (Φ(F τ (f̂))(x,−))m =

∫
SO(2)

Φ

( ∞∑
`=−∞

f̂`(x
′)ei`θ

′
)

(x, θ)e−imθ dθ, m ∈ Z

=
∞∑

`=−∞

∫
SO(2)

Φ(f̂`(x
′)ei`θ

′
)(x, θ)e−imθ dθ, ]m ∈ Z,

where we used Proposition 8.11 to swap the infinite sum (F τ and Φ are linear and continu-
ous). Then, using (∗27) and Fubini, we obtain

∞∑
`=−∞

∫
SO(2)

Φ(f̂`(x
′)ei`θ

′
)(x, θ)e−imθ dθ

=
∞∑

`=−∞

∫
R2

∫
SO(2)

∫
SO(2)

k(R−θ(x
′ − x), θ′ − θ)f̂`(x′)ei`θ

′
e−imθ dθ dθ′ dx′. (∗30)

This shows that we need to figure out what is the term

Φm,`(x
′ − x) =

∫
SO(2)

∫
SO(2)

k(R−θ(x
′ − x), θ′ − θ)e−imθ dθ ei`θ′ dθ′, (∗31)

since we obtain

Φ̂(f̂)m(x) =
∞∑

`=−∞

∫
R2

Φm,`(x
′ − x)f̂`(x

′) dx′. (∗32)

At this stage,we use the result of Example 8.6 to express the kernel k ∈ L2(SE(2)) as a
sum of SO(2)-steerable functions using polar coordinates x = (‖x‖2 , αx), in the form

k(x, ψ) =
∞∑

n=−∞

kn(x, ψ) (∗33)

kn(x, ψ) = e−inαxwn(‖x‖ , ψ − αx) (∗34)
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as in (str15), where wn is a function on R+ × SO(2) that can also be expanded in terms

of the basis functions e−ikθe−
r2

2 Hm(r), but right now we do need to do this. By (str10),
steerability means that4

kn(R−θx, ψ − θ) = einθkn(x, ψ), (∗35)

which yields5

k(R−θ(x
′ − x), θ′ − θ) =

∞∑
n=−∞

kn(R−θ(x
′ − x), θ′ − θ) =

∞∑
n=−∞

einθkn(x′ − x, θ′)

=
∞∑

n=−∞

einθe−inαx′−xwn(‖x′ − x‖ , θ′ − αx′−x). (∗36)

Going back to the expression for Φm,`(x
′ − x) in (∗28), we obtain

Φm,`(x
′ − x) =

∫
SO(2)

∫
SO(2)

( ∞∑
n=−∞

einθe−inαx′−xwn(‖x′ − x‖ , θ′ − αx′−x)
)
e−imθ dθ ei`θ

′
dθ′

=

∫
SO(2)

( ∞∑
n=−∞

∫
SO(2)

wn(‖x′ − x‖ , θ′ − αx′−x)e−inαx′−xe−i(m−n)θ dθ

)
ei`θ

′
dθ′ (∗37)

using Proposition 8.11 to swap the infinite sum (F τ is linear and continuous). Since∫
SO(2)

e−i(m−n)θ dθ =

{
0 if m 6= n

1 if m = n,

there is only one term in the sum for n = m, so we get

Φm,`(x
′ − x) =

(∫
SO(2)

wm(‖x′ − x‖ , θ′ − αx′−x)ei`θ
′
dθ′
)
e−imαx′−x . (∗38)

Observe that the term ∫
SO(2)

wm(‖x′ − x‖ , θ′ − αx′−x)ei`θ
′
dθ′

is the Fourier cotransform of the function λαx′−xwm(‖x′ − x‖ ,−), so the shift property (see
Vol. I, Proposition 10.19(3)), implies that∫

SO(2)

wm(‖x′ − x‖ , θ′ − αx′−x)ei`θ
′
dθ′ = ei`αx′−x

∫
SO(2)

wm(‖x′ − x‖ , θ′)ei`θ′ dθ′, (∗39)

4Bekkers has ψ − θ instead of ψ in the term kn(x, ψ), so his kn is not steerable.
5Bekkers has an extra θ and a missing αx′−x in the term wn(‖x′ − x‖ , θ′ − αx′−x).
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which is also easy to verify by making the change of variable ψ = θ′−αx′−x. But the Fourier
cotransform and the Fourier transform of a function g are related by the equation

F τ (g)` = F τ (g)`,

(see Vol. I, Proposition 10.19(1)), so we have∫
SO(2)

wm(‖x′ − x‖ , θ′)ei`θ′ dθ′ = F τ (wm(‖x′ − x‖ ,−))`,

It is simpler to stick to the Fourier cotransform since it will be evaluated anyway when we

express wn(‖x′ − x‖ , θ′) in terms of the basis functions e−ikθ
′

and e−
r2

2 Hq(r) as in Example
8.6. From (∗38) and (∗39), we obtain

Φm,`(x
′ − x) = F τ (wm(‖x′ − x‖ ,−))` e

−i(m−`)αx′−x . (∗40)

In summary, we proved that

Φ̂(f̂)m(x) =
∞∑

`=−∞

∫
R2

Φm,`(x
′ − x)f̂`(x

′) dx′ (∗41)

Φm,`(x
′ − x) = F τ (wm(‖x′ − x‖ ,−))` e

−i(m−`)αx′−x . (∗42)

The above formula can be further simplified using the fact shown in Example 8.6, namely
that the function (r, θ′) 7→ wm(r, θ′) can be expressed as a series of the form

wm(r, θ′) =
∞∑

k=−∞

e−ikθ
′
wrad
m,k(r), (∗43)

where wrad
m,k(r) is a series whose terms are the functions e−

r2

2 Hq(r); see (str15). Then we can

compute the Fourier cotransform F τ (wm(‖x′ − x‖ ,−))`, which is given by

F τ (wm(‖x′ − x‖ ,−))` =

∫
SO(2)

wm(‖x′ − x‖ , θ′)ei`θ′ dθ′

=

∫
SO(2)

(
∞∑

k=−∞

e−ikθ
′
wrad
m,k(‖x′ − x‖)

)
ei`θ

′
dθ′

=
∞∑

k=−∞

wrad
m,k(‖x′ − x‖)

∫
SO(2)

ei(`−k)θ′ dθ′ = wrad
m,`(‖x′ − x‖),

where we used Proposition 8.11 to swap the infinite sum (the Fourier cotransform is linear
and continuous). Finally, we obtain the formulae

Φ̂(f̂)m(x) =
∞∑

`=−∞

∫
R2

Φm,`(x
′ − x)f̂`(x

′) dx′ (∗44)

Φm,`(x
′ − x) = wrad

m,`(‖x′ − x‖) e−i(m−`)αx′−x . (∗45)
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It is instructive to see how the original group correlation Φ(f̂)(x, θ) is expressed for an
input function given as a Fourier series

f̂(x, θ) =
∞∑

`=−∞

f̂`(x)ei`θ

when we express the kernel k in terms of steerable functions as we did before. Since we
are not applying a Fourier transform the blue terms involving e−imθ dθ disappear, and using
Proposition 8.11, we get

Φ(f̂)(x, θ) =

∫
SE(2)

k(R−θ(x
′ − x), θ′ − θ)

(
∞∑

`=−∞

f̂`(x
′)ei`θ

′

)
dx′ dθ′

=
∞∑

`=−∞

∫
R2

∫
SO(2)

k(R−θ(x
′ − x), θ′ − θ)f̂`(x′)ei`θ

′
dθ′ dx′. (∗46)

This shows that we need to figure out what is the term

Φ`(x
′ − x, θ) =

∫
SO(2)

k(R−θ(x
′ − x), θ′ − θ)ei`θ′ dθ′, (∗47)

since we have

Φ(f̂)(x, θ) =
∞∑

`=−∞

∫
R2

Φ`(x
′ − x, θ)f̂`(x′) dx′. (∗48)

Retracing our steps, we leave it as an exercise to show that

Φ`(x
′ − x, θ) =

∞∑
n=−∞

wrad
n,` (‖x′ − x‖) e−i(n−`)αx′−xeinθ. (∗49)

When we take the Fourier transform of Φ`(x
′ − x,−) (with x, x′ fixed), we have

Φ`(x
′ − x,−)m =

∫
SO(2)

∞∑
n=−∞

wrad
n,` (‖x′ − x‖) e−i(n−`)αx′−xeinθe−imθ dθ

= wrad
m,`(‖x′ − x‖) e−i(m−`)αx′−x = Φm,`(x

′ − x), (∗50)

confirming that we go back and forth from the group correlation Φ to the steerable group
correlation Φ̂ via the Fourier transform and the Fourier cotransform. Also note that steerable
correlation is much cheaper than group correlation since to compute the group correlation
term Φ`(x

′−x, θ) requires integration involving the radial functions wrad
n,` (‖x′ − x‖) for all n.
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8.12 Equivariant Correlation G-Kernels When

G = Rd oH

In Section 8.10, we solved the problem of finding a notion of equivariant group correlation
for feature fields f̂ρ ∈ L2(Rd, Ĥ), which are functions f̂ρ : Rd → Mnρ(C) that transform under
the representation σρ : H → U(Mnρ(C)), with σρ = Hom(Mρ, id) (see Proposition 8.9). For

this, we used the Fourier transform F τ and the Fourier cotransform F τ defined in Section
8.9. Recall that given a correlation kernel k on L2(G), we have the group correlation Φ on

L2(G) (where G = Rd o H) given by fout = Φ(fin) = k ? fin. The correlation Φ̂ on feature

fields in L2(Rd, Ĥ) is the map that makes the following diagram commute:

L2(G) Φ //

Fτ

��

L2(G)

Fτ

��

L2(Rd, Ĥ)

Fτ

OO

Φ̂

// L2(Rd, Ĥ).

Fτ

OO

In Section 8.10, we showed how to construct Φ̂ by expressing the kernel k in terms of a basis
of steerable functions in L2(G).

Because the group correlation Φ is equivariant with respect to the left regular repre-
sentation R (on L2(G)), the components Φ̂ρ2,ρ1 of Φ̂ are equivariant with respect to the
representations IndGH σρ1 and IndGH σρ2 , namely the following diagram commutes.

L2(Rd, Ĥ)ρ1

(IndGH σρ1 )(x,h)

��

Φ̂ρ2,ρ1 // L2(Rd, Ĥ)ρ2

(IndGH σρ2 )(x,h)

��

L2(Rd, Ĥ)ρ1
Φ̂ρ2,ρ1

// L2(Rd, Ĥ)ρ2 .

Practice shows that it is desirable to design more general group correlations that are
equivariant with respect to other representations besides the left regular representation and
to consider feature fields that transform under representations other than the representations
Hom(Mρ, id).

A first generalization is to have two feature fields spaces FF(Rd, H, σin : H → U(Hin))
and FF(Rd, H, σout : H → U(Hout)) associated with an input representation σin and an
output representation σout, where Hin and Hout are two finite-dimensional vector spaces
equipped with a hermitian inner product, and what we are seeking is a linear G-equivariant
map Φ̂ between these spaces. We assume that feature fields f : Rd → Hin are functions in
L2(Rd,Hin), and similarly, for feature fields f : Rd → Hout (see Definition 6.25).

It turns out that in order to guarantee the existence of G-equivariant continuous linear
maps Φ̂ : FF(Rd, H, σin)→ FF(Rd, H, σout) specified by kernels, we need to consider the spe-
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cial continuous linear maps consisting of the Hilbert–Schmidt operators discussed in Section
2.5.

To say that Φ̂ is G-equivariant means that the following diagram commutes

FF(Rd, H, σin) Φ̂ //

(IndGH σin)(x,h)

��

FF(Rd, H, σout)

(IndGH σout)(x,h)

��
FF(Rd, H, σin)

Φ̂

// FF(Rd, H, σout)

for all (x, h) ∈ G = Rd oH, with

[(IndGH σin)(x,h)fin](t) = σin(h)(fin(h−1 · (t− x))), t ∈ Rd, fin : Rd → Hin

[(IndGH σout)(x,h)fout](t) = σout(h)(fout(h
−1 · (t− x))), t ∈ Rd, fout : Rd → Hout,

as in (†2).

A complete solution to this problem was given in a sequence of remarkable papers by
Weiler, Geiger, Weilling, Boomsma and Cohen [76] (for SE(3)), Weiler and Cesa [74] (for
E(2)), Lang and Weiler [46] (for a homogeneous space X induced by a transitive action of a
compact group H), Cesa, Lang and Weiler [8] (for E(3)), and Cohen, Geiger and Weiler [9]
(feature fields on homogeneous spaces).6

It is shown by Weiler, Geiger, Weilling, Boomsma and Cohen [76] that in the case where
H = SO(d), such a map is given by a kernel K : Rd → Hom(Hin,Hout) via

Φ̂(f)(t) =

∫
Rd
K(y − t)(f(y)) dy, f : Rd → Hin, t ∈ Rd, (K1)

and the kernel K satisfies the equivariance constraint

K(h · t) = σout(h) ◦K(t) ◦ σin(h)−1, h ∈ SO(d), t ∈ Rd. (EC1)

Functions K : Rd → Hom(Hin,Hout) satisfying the equivariance constraint (EC1) are called
equivariant convolution kernels or G-steerable kernels . The above result is often referred to
by the slogan “correlation is all you need.”

It is instructive to give the proof since it is prototypical of this kind of argument.

Proof. The first step is to make use of a result of functional analysis that says that any
Hilbert–Schmidt operator Φ̂ : L2(Rd,Hin) → L2(Rd,Hout) can be expressed in terms of a
so-called kernel K : Rd × Rd → Hom(Hin,Hout), as

Φ̂(f)(t) =

∫
Rd
K(t, y)(f(y)) dy, f ∈ L2(Rd,Hin), t, y ∈ Rd, (∗K1)

6The fact that we must consider correlations that are Hilbert–Schmidt is not mentioned in the above
papers.
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with K ∈ L2(Rd × Rd,Hom(Hin,Hout)). This result is shown in Section 2.5.

The next step is to find the conditions for a linear continuous map Φ̂ as above to be
equivariant, which means that

(IndGH σout)(x,h) ◦ Φ̂ = Φ̂ ◦ (IndGH σin)(x,h)

for all g = (x, h) ∈ Rd oH (with H = SO(d)).

Since H = SO(d) and SO(d) acts on Rd by multiplication, we simply write hy for h · y,
where h ∈ SO(d) and y ∈ Rd. The action of G = RdoSO(d) on Rd is given by g ·y = hy+x,
where g = (x, h) ∈ Rd o SO(d) and y ∈ Rd. Using (∗K1), we have

Φ̂[(IndGH σin)(x,h)f ](t) =

∫
Rd
K(t, y)(σin(h)(f(h−1(y − x)))) dy,

and since g−1 = (x, h)−1 = (−h−1x, h−1), if we make the change of variable y 7→ hy+x = g ·y,
since the determinant of the Jacobian matrix of this affine map is +1, by the change of
variable formula, we get∫

Rd
K(t, y)(σin(h)(f(h−1(y − x)))) dy =

∫
Rd
K(t, g · y)(σin(h)(f(y))) dy.

Using (∗K1) and since σout(h) is linear, by Vol. I, Proposition 5.24(7), we also have

[(IndGH σout)(x,h)Φ̂](t) = σout(h)(Φ̂(h−1(t− x)))

= σout(h)

(∫
Rd
K(h−1(t− x), y)(f(y)) dy

)
=

∫
Rd
σout(h)

(
K(g−1 · t, y)(f(y))

)
dy.

Consequently, we must have

K(t, g · y) ◦ σin(h) = σout(h) ◦ K(g−1 · t, y)

for all g ∈ G = Rd oH and all t, y ∈ Rd, which by replacing t by g · t is equivalent to

K(g · t, g · y) = σout(h) ◦ K(t, y) ◦ σin(h)−1, g ∈ G, h ∈ H, t, y ∈ Rd. (K1)

In particular, for g = −t and h = e, we get

K(0, y − t) = K(t, y), (K′1)

so we define K, such that

K(y) = K(0, y),
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and since K(t, y) = K(0, y − t) = K(y − t), (∗K1) becomes

Φ̂(f)(t) =

∫
Rd
K(y − t)(f(y)) dy,

as claimed.

By setting t = 0 in (K1), we see that K satisfies the condition

K(g · y) = σout(h) ◦K(y) ◦ σin(h)−1, g ∈ G, h ∈ H, y ∈ Rd.

Since the expression given by (K1) is already translation invariant, it suffices to require the
above condition for g ∈ H = SO(d), which is (EC1).

Note that a crucial point of the proof is that we are using the Lebesgue measure on Rd

and that the determinant of the Jacobian of the change of variable is +1, because we are
considering transformations in the affine group of rigid motions SE(d).

Earlier, Bekkers [1] considered a situation which is less general in a way, because no
representations are involved, but more general in another way, because he is dealing with
two homogeneous spaces Xin = G/Hin and Xout = G/Hout, where G is a locally compact
group which is not necessarily a semi-direct product. In this case, we would like to know
when a Hilbert–Schmidt operator Φ from L2(Xin) to L2(Xout) is equivariant with respect
to the regular representations RG→L2(Xin) and RG→L2(Xout) induced by G on L2(Xin) and
L2(Xout). A new difficulty that now comes up is that Xin may not have a G-invariant
measure. Although Bekkers [1] does not make use of quasi-invariant measures, he proves
a result in terms of Radon–Nikodym derivatives of measures, which can be translated as
follows using %-functions. Let xout

0 be a chosen point in Xout = G/Hout, so that Hout is the
stabilizer of xout

0 .

Suppose that % defines a quasi-invariant measure µ on Xin = G/Hin. First, we have the
fact that every equivariant Hilbert–Schmidt operator Φ from L2(Xin) to L2(Xout) is given by

Φ(f)(y) =

∫
Xin

K(x, y)f(x) dµ(x), y ∈ Xout, f ∈ L2(Xin), (∗K2)

for some kernel K ∈ L2
µin⊗µout(Xin×Xout). This result is shown in Section 2.5. Observe that

the roles of x and y have been switched in K(x, y) since we now have f(x), so this is correct.
To say that Φ is G-equivariant means that the following diagram commutes

L2(Xin) Φ //

R
G→L2(Xin)
g

��

L2(Xout)

R
G→L2(Xout)
g

��
L2(Xin)

Φ
// L2(Xout)
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for all g ∈ G. For any f ∈ L2(Xin) and any y ∈ Xout, we have

[(Φ ◦RG→L2(Xin)
g )(f)](y) =

∫
Xin

K(x, y)f(g−1 · x) dµ(x),

and

[(RG→L2(Xout)
g ◦ Φ)(f)](y)

=

∫
Xin

K(x, g−1 · y)f(x) dµ(x)

=

∫
Xin

%(g−1, x)K(g−1 · x, g−1 · y)f(g−1 · x) dµ(x).

The equation
[(Φ ◦RG→L2(Xin)

g )(f)](y) = [(RG→L2(Xout)
g ◦ Φ)(f)](y)

asserting the commutativity of the above diagram implies that K satisfies the equation

K(x, y) = %(g−1, x)K(g−1 · x, g−1 · y), g ∈ G, x ∈ Xin, y ∈ Xout. (K2)

If we define K : Xin → C by
K(x) = K(x, xout

0 ),

then for any gy ∈ G such that y = gy · xout
0 ,

K(x, y) = K(x, gy · xout
0 ) = %(g−1

y , x)K(g−1
y · x, g−1

y · y)

= %(g−1
y , x)K(g−1

y · x, xout
0 ) = %(g−1

y , x)K(g−1
y · x).

Consequently, every equivariant continuous linear map Φ from L2(Xin) to L2(Xout) is given
by

Φ(f)(y) =

∫
Xin

%(g−1
y , x)K(g−1

y · x)f(x) dµ(x), y ∈ Xout, f ∈ L2(Xin), (K2)

where gy ∈ G is any element such that y = gy · xout
0 . Since h · xout

0 = xout
0 for all h ∈ Hout,

by setting g = h ∈ Hout and y = xout
0 in (K2), we deduce that the map K : Xin → C satisfies

the condition
K(x) = %(h−1, x)K(h−1 · x), h ∈ Hout, x ∈ Xin. (K3)

The factor involving % disappears or is replaced by a more tractable term in many practical
cases. This is the case when G is unimodular. If Xin = Rd and G = Rd oHout with Hout a
closed subgroup of GL(d), then if g = (x, h) ∈ G, the condition on K becomes

K(x) =
1

| det(h)|
K(h−1 · x), h ∈ Hout, x ∈ Xin, (K4)

where det(h) is the determinant of the matrix representing h. For more details, see Bekkers
[1].
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8.13 Equivariant Correlation G-Kernels; General Case

Until now, we have been assuming that we are dealing with feature fields defined on X = Rd

and that the group G is a semi-direct product G = Rd o H with H = SO(d), and more
generally a compact group. It is possible to deal with the more general situation, where X
is a homogeneous space of the form X = G/H with G locally compact and unimodular and
H compact equipped with a unitary representation σ : H → U(Hσ). The main problem is
to define the “right” notion of feature field.

Cohen, Geiger and Weiler [9] propose to use the G-bundle E = G ×H Hσ introduced in
Section 6.13; see Definition 6.17. But then, we might as well use the hermitian G-bundles of
finite rank of Definition 6.23 (see Section 6.13) and the natural choice for the space of feature
fields is the subspace L2(X;E) of the space of sections of the hermitian G-bundle p : E → X,
with X = G/H (see Definition 6.25). Recall that the restriction of the action of G to H on
the fibre E0 is a unitary representation σ : H → U(E0), and that for every fibre Ex, there
is a representation σx : H → U(Ex) equivalent to the representation σ : H → U(E0). For
the time being, we will assume that there exists a section r : X → G, such that the maps
L : L2(X;E) → Lσ and S : Lσ → L2(X;E) define isomorphisms between L2(X;E) and Lσ.
Recall from Equation (†4) of Definition 6.24 that Lσ is the set consisting of all functions
f ∈ L2(G;E0), such that

f(gh) = σ(h−1)(f(g)) = h−1 · f(g), for all g ∈ G and all h ∈ H.

We will assume that the representations σ : H → U(E0) are irreducible. Then the
feature fields with values in the fibre Ex transform according to the induced representation
IndGH σx = Π; see Equation (†7) in Section 6.13. In view of the isomorphism between L2(X;E)
and Lσ given by the map L : L2(X;E)→ Lσ (see Definition 6.22, Equation (L3)), with

L(s)(g) = g−1 · s(g · x0), s ∈ L2(X;E), g ∈ G,

the induced representation IndGH σx = Π is equivalent to the left regular representation of G
in Lσ. We also assume that the section r : X → G makes the representation Π continuous.

Inspired by Cohen, Geiger and Weiler [9] we consider the more general situation in which
we have two hermitian G-bundles of finite rank pin : Ein → Xin and pout : Eout → Xout, where
Xin = G/Hin and Xout = G/Hout for the same group G, input and output representations σin

and σout, and determine what are the linear maps Φ: Lσin → Lσout that are equivariant with
respect to the representations IndGHin

σin and IndGHout
σout, which means that the following

diagram commutes

Lσin Φ //

(IndGHin
σin)(g)

��

Lσout

(IndGHout
σout)(g)

��
Lσin

Φ
// Lσout
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for all g ∈ G, where

[(IndGHin
σin)(g)](fin)(g1) = fin(g−1g1), g, g1 ∈ G, fin ∈ Lσin

[(IndGHout
σout)(g)](fout)(g1) = fout(g

−1g1), g, g1 ∈ G, fout ∈ Lσout .

To reduce the amount of subscripts, we will denote the fibre (Ein)0 above xin
0 = Hin by

Ein
0 and the fibre (Eout)0 above xout

0 = Hout by Eout
0 . Then our representations σin and σout

are σin : Hin → U(Ein
0 ) and σout : Hout → U(Eout

0 ).

The following proposition generalizes results proven in Cohen, Geiger and Weiler [9] (see
Theorem 3.1 and Theorem 3.2). In the sequel, we assume that all hermitian G-bundles have
finite rank .

Proposition 8.12. Let pin : Ein → Xin and pout : Eout → Xout be two hermitian G-bundles,
where Xin = G/Hin and Xout = G/Hout for the same locally compact and unimodular group
G. If the space of equivariant G-kernels is defined as

HomHin,Hout(G,Hom(Ein
0 , E

out
0 )) = {K : G→ Hom(Ein

0 , E
out
0 ) |

K(h2gh1) = σout(h2) ◦K(g) ◦ σin(h1),∫
G

∫
G

∥∥K(g−1
1 g2)

∥∥2
dλG(g1) dλG(g2) <∞,

g ∈ G, h1 ∈ Hin, h2 ∈ Hout}, (EC2)

then every equivariant Hilbert–Schmidt operator Φ ∈ HomHin,Hout(IndGHin
σin, IndGHout

σout) is
of the form

(Φ(fin))(g) =

∫
G

K(g−1t)(fin(t)) dλG(t) = (K ? fin)(g), fin ∈ Lσin , g ∈ G, (Φ)

for a unique K ∈ HomHin,Hout(G,Hom(Ein
0 , E

out
0 )).

Proof. As usual, the first step is to use the fact from functional analysis that any Hilbert–
Schmidt operator Φ from Lσin to Lσout is of the form

Φ(fin)(g1) =

∫
G

K(g1, g2)(fin(g2)) dλG(g2), fin ∈ Lσin , g1 ∈ G, (∗K3)

for some kernel K ∈ L2
λG⊗λG(G×G,Hom(Ein, Eout)). See Section 2.5. The second step is to

assert that Φ is equivariant, which is expressed by the equation

(IndGHout
σout)(g) ◦ Φ = Φ ◦ (IndGHin

σin)(g),

for all g ∈ G. Since

[(IndGHin
σin)(g)](fin)(g2) = fin(g−1g2), g, g2 ∈ G, fin ∈ Lσin

[(IndGHout
σout)(g)](fout)(g1) = fout(g

−1g1), g, g1 ∈ G, fout ∈ Lσout ,
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using the fact that λG is left invariant, we obtain

Φ[[(IndGHin
σin)(g)](fin)](g1) =

∫
G

K(g1, g2)([(IndGHin
σin)(g)](fin)(g2)) dλG(g2)

=

∫
G

K(g1, g2)(fin(g−1g2)) dλG(g2)

=

∫
G

K(g1, gg2)(fin(g2)) dλG(g2),

and

[[(IndGHout
σout)(g)](Φ(fin))](g1) =

∫
G

K(g−1g1, g2)(fin(g2)) dλG(g2).

Consequently, equivariance is equivalent to

K(g1, gg2) = K(g−1g1, g2), g, g1, g2 ∈ G,

which is equivalent to
K(gg1, gg2) = K(g1, g2), g, g1, g2 ∈ G. (K5)

If we define K : G→ Hom(Ein, Eout) by

K(g) = K(e, g),

then we have
K(g1, g2) = K(e, g−1

1 g2) = K(g−1
1 g2),

so (∗K3) becomes

Φ(fin)(g1) =

∫
G

K(g−1
1 g2)(fin(g2)) dλG(g2), fin ∈ Lσin , g1 ∈ G. (∗K4)

Now, since Φ maps Lσin to Lσout and the functions in these spaces satisfy the conditions

fin(gh1) = σin(h−1
1 )(fin(g)), h1 ∈ Hin, g ∈ G,

fout(gh2) = σout(h
−1
2 )(fout(g)), h2 ∈ Hout, g ∈ G,

this imposes certain conditions on the kernel K. Since fin ∈ Lσin and λG is right-invariant
because G is assumed to be unimodular, for any h1 ∈ Hin, we have∫

G

K(g−1
1 g2h1)(fin(g2)) dλG(g2) =

∫
G

K(g−1
1 g2)(fin(g2h

−1
1 )) dλG(g2)

=

∫
G

K(g−1
1 g2)(σin(h1)(fin(g2))) dλG(g2),

which implies that

K(g−1
1 g2h1) = K(g−1

1 g2) ◦ σin(h1), g1, g2 ∈ G, h1 ∈ Hin,
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and thus,
K(gh1) = K(g) ◦ σin(h1), g ∈ G, h1 ∈ Hin. (K6)

Observe that if G is not unimodular, in which case the Haar measure λG is only left-
invariant, the modular term ∆(h1) needs to be added, namely we have the equation

K(gh1) = ∆(h1)K(g) ◦ σin(h1), g ∈ G, h1 ∈ Hin. (K′6)

We also need to assert that Φ(fin) ∈ Lσout , namely Φ(fin)(gh2) = σout(h
−1
2 )(Φ(fin)(g)),

for all h2 ∈ Hout. We have

Φ(fin)(gh2) =

∫
G

K((gh2)−1g2)(fin(g2)) dλG(g2)

=

∫
G

K(h−1
2 g−1g2)(fin(g2)) dλG(g2),

and then (by Vol. I, Proposition 5.24(7), since σ(h−1
2 ) is linear)

σout(h
−1
2 )(Φ(fin)(g)) = σout(h

−1
2 )

(∫
G

K(g−1g2)(fin(g2)) dλG(g2)

)
=

∫
G

σout(h
−1
2 )(K(g−1g2)(fin(g2))) dλG(g2),

so we deduce that

K(h−1
2 g−1g2) = σout(h

−1
2 ) ◦K(g−1g2), g, g2 ∈ G, h2 ∈ Hout,

which is equivalent to

K(h2g) = σout(h2) ◦K(g), g,∈ G, h2 ∈ Hout. (K7)

But (K6) and (K7) together are equivalent to (EC2), which concludes the proof.

Observe that Φ(fin) is a generalization of group correlation as defined in Definition 8.4
to vector valued-functions. Since we are dealing with finite-dimensional vector spaces, we
don’t need the notion of weak integral and in (Φ) we use component-wise integration. Recall
that IndGHin

σin : G → U(Lσin) and IndGHout
σout : G → U(Lσout) and that Lσin is a space of

functions from G to Ein
0 and that Lσout is a space of functions from G to Eout

0 .

The equivariance condition (EC2) is a bit awkward since it involves the two-sided term
h2gh1, with h1 ∈ Hin and h2 ∈ Hout. Lang and Weiler [46] showed that by considering the
group H = Hout ×Hin, condition (EC2) can be reduced to the familiar condition

K(h · g) = σout(h) ◦K(g) ◦ σin(h)−1, h ∈ H, g ∈ G. (EC)

The key observation is that as subgroups of G, Hin and Hout act on G, but we can consider
the more general situation where a compact group H acts on G and seek kernels K : G →
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Hom(Ein
0 , E

out
0 ) satisfying the condition (EC). Indeed, if we let H = Hout × Hin and define

the left action of H = Hout ×Hin on G by

(h2, h1) · g = h2gh
−1
1 , h1 ∈ Hin, h2 ∈ Hout,

and the representations σHin : H → U(Ein
0 ) and σHout : H → U(Eout

0 ) by

σHin (h2, h1) = σin(h1)

σHout(h2, h1) = σout(h2),

then the condition (EC), namely

K(h · g) = σHout(h) ◦K(g) ◦ (σHin (h))−1, h = (h2, h1) ∈ H, g ∈ G,

is equivalent to

K(h2gh
−1
1 ) = σout(h2) ◦K(g) ◦ σin(h1)−1, h1 ∈ Hin, h2 ∈ Hout, g ∈ H,

which is equivalent to

K(h2gh1) = σout(h2) ◦K(g) ◦ σin(h1), h1 ∈ Hin, h2 ∈ Hout, g ∈ H, (EC2)

since in the quantification over h1 ∈ Hin, we can replace h−1
1 by h1.

Unlike the previous cases, the kernels K are defined on the group G and the formula
(Φ) expressing K ? fin as an integral requires integration over G. This is more expensive
than the previous cases that only required integration over Rd, or more generally, over Xin.
The technical reason is that the definition of the induced representations IndGHin

σin and

IndGHout
σout is a lot simpler when they are acting on the spaces Lσin and Lσout , since they

are simply the regular representations. The representations σin and σout are hidden in the
definition of the spaces Lσin and Lσout .

To define these representations on functions defined on Xin or Xout is more complicated
because this requires picking some sets of coset representatives (rin

x )x∈G/Hin
and (rout

x )x∈G/Hout

but then, there is no guarantee that the corresponding sections are continuous. We will
assume in the sequel that the maps Lin and Sin are continuous, and similarly for the maps
Lout and Sout.

8.14 Equivariant Correlation Xin-Kernels

Cohen, Geiger and Weiler [9] give other characterizations of the space HomHin,Hout(IndGHin
σin,

IndGHout
σout); one in terms of kernels defined onXin = G/Hin, and the other in terms of kernels

on the space Hout\G/Hin of double cosets. We discuss the solution in terms of kernels on
Xin = G/Hin and refer the reader to Cohen, Geiger and Weiler [9] for the third solution (see
Theorem 3.4).
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The key is to pick a set of coset representatives (rin
x )x∈G/Hin

. Here xin
0 = Hin, and as usual

rin
xin0

= e. As we said earlier, we assume that maps Lin and Sin are continuous. Then, recall

from Definition 6.5 that for every coset x ∈ Xin = G/Hin and every g ∈ G, we set

uin(g, x) = (rin
g·x)
−1grin

x ∈ Hin, (u)

and that by Equation (s), if x = gHin = g · xin
0 , we have

g = rin
x u

in(g, xin
0 ).

Then for any g ∈ G, if x = gHin = g · xin
0 , by setting h2 = e in (EC2), we have K(g1h1) =

K(g1) ◦ σin(h1) for all g1 ∈ G and all h1 ∈ Hin, so we can write

K(g) = K(rin
x u

in(g, xin
0 )) = K(rin

x ) ◦ σin(uin(g, xin
0 )).

This suggests defining κ : Xin → Hom(Ein
0 , E

out
0 ) by

κ(x) = K(rin
x ), x ∈ Xin = G/Hin. (κ)

By setting h1 = e, the left Hout-equivariance of K says that K(h2g1) = σout(h2) ◦K(g1) for
all g1 ∈ G and all h2 ∈ Hout. Then, if x = gHin, using (∗h) just after Definition 6.5 (namely
uin(h2g, x

in
0 ) = uin(h2, g · xin

0 )uin(g, xin
0 )) and since h2gHin = h2 · (gHin) = h2 · x, we have

K(h2g) = K(rin
h2·xu

in(h2g, x
in
0 )) = K(rin

h2·xu
in(h2, g · xin

0 )uin(g, xin
0 ))

= K(rin
h2·xu

in(h2, x)uin(g, xin
0 )) = K(rin

h2·x) ◦ σin(uin(h2, x)uin(g, xin
0 ))

= K(rin
h2·x) ◦ σin(uin(h2, x)) ◦ σin(uin(g, xin

0 )),

and since
K(g) = K(rin

x ) ◦ σin(uin(g, xin
0 )),

the equation K(h2g) = σout(h2) ◦K(g) yields

K(rin
h2·x) ◦ σin(uin(h2, x)) ◦ σin(uin(g, xin

0 )) = σout(h2) ◦K(rin
x ) ◦ σin(uin(g, xin

0 )),

that is
K(rin

h2·x) = σout(h2) ◦K(rin
x ) ◦ σin(uin(h2, x)−1).

Since by definition κ(x) = K(rin
x ) and κ(h2 · x) = K(rin

h2·x), we obtain

κ(h2 · x) = σout(h2) ◦ κ(x) ◦ σin(uin(h2, x)−1). (κHout)

Now given a function κ : Xin → Hom(Ein
0 , E

out
0 ), define K : G → Hom(Ein

0 , E
out
0 ), such

that for every g ∈ G, if x = gHin, then

K(g) = κ(x) ◦ σin(uin(g, xin
0 )). (∗K)
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For any h1 ∈ Hin, since h1 · xin
0 = xin

0 and rin
xin0

= e. we have

uin(h1, x
in
0 ) = (rin

h1·xin0
)−1h1r

in
xin0

= (rin
xin0

)−1h1 = h1.

Then by (∗h),
uin(gh1, x

in
0 ) = uin(g, h1 · xin

0 )uin(h1, x
in
0 ) = uin(g, xin

0 )h1,

and since x = gHin = gh1Hin, we have

K(gh1) = κ(x) ◦ σin(uin(gh1, x
in
0 )) = κ(x) ◦ σin(uin(g, xin

0 )h1)

= κ(x) ◦ σin(uin(g, xin
0 )) ◦ σin(h1) = K(g) ◦ σin(h1).

This shows that K is right Hin-equivariant. Now assume that κ satisfies (κHout). If x = g ·xin
0 ,

then h2g · xin
0 = h2 · (g · xin

0 ) = h2 · x, so

K(h2g) = κ(h2 · x) ◦ σin(uin(h2g, x
in
0 )),

which by (κHout) yields

K(h2g) = σout(h2) ◦ κ(x) ◦ σin(uin(h2, x)−1) ◦ σin(uin(h2g, x
in
0 )).

Using the fact that
uin(h2g, x

in
0 ) = uin(h2, g · xin

0 )uin(g, xin
0 ),

we have

σin(uin(h2g, x
in
0 )) = σin(uin(h2, g · xin

0 )) ◦ σin(uin(g, xin
0 )) = σin(uin(h2, x)) ◦ σin(uin(g, xin

0 ))

and we obtain

K(h2g) = σout(h2) ◦ κ(x) ◦ σin(uin(h2, x)−1) ◦ σin(uin(h2, x)) ◦ σin(uin(g, xin
0 ))

= σout(h2) ◦ κ(x) ◦ σin(uin(g, xin
0 )) = σout(h2) ◦K(g),

which shows that K is left Hout-equivariant. As a consequence of the above argument, we
obtain the following proposition which generalizes a result originally proven in Cohen, Geiger
and Weiler [9] (Theorem 3.3).

Proposition 8.13. Let pin : Ein
0 → Xin and pout : Eout

0 → Xout be two hermitian G-bundles
where Xin = G/Hin and Xout = G/Hout for the same locally compact and unimodular group
G. If the space of equivariant G-kernels is defined as

HomHin,Hout(G,Hom(Ein
0 , E

out
0 )) = {K : G→ Hom(Ein

0 , E
out
0 ) |

K(h2gh1) = σout(h2) ◦K(g) ◦ σin(h1),∫
G

∫
G

∥∥K(g−1
1 g2)

∥∥2
dλG(g1) dλG(g2) <∞,

g ∈ G, h1 ∈ Hin, h2 ∈ Hout},
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and the space of equivariant Xin-kernels is defined as

HomHout(Xin,Hom(Ein
0 , E

out
0 )) = {κ : Xin → Hom(Ein

0 , E
out
0 ) |

κ(h2 · x) = σout(h2) ◦ κ(x) ◦ σin(uin(h2, x)−1),∫
G

∫
G

∥∥κ((g−1
1 g2) · xin

0 )
∥∥2

dλG(g1) dλG(g2) <∞,

x ∈ Xin, h2 ∈ Hout}, (EC3)

then the map that assigns to every Xin-kernel κ the G-kernel K defined such that for every
g ∈ G, if x = gHin = g · xin

0 , then

K(g) = κ(x) ◦ σin(uin(g, xin
0 ))

is a bijection.

The dependency on x of the term σin(uin(h2, x)−1) is a problem. It would be nice if Hin

had the property that we could find a section (a set of coset representatives) rin : G/Hin → G
satisfying the property

rin
h2·x = h2r

in
x h
−1
2 , x ∈ Xin = G/Hin, h2 ∈ Hout. (†3)

Indeed, in this case, from (u) rewritten as

rin
h2·xu

in(h2, x) = h2r
in
x ,

we get

h2r
in
x h
−1
2 uin(h2, x) = h2r

in
x ,

that is,

uin(h2, x) = h2. (†4)

It follows that

σin(uin(h2, x)−1) = σin(h2)−1,

and (EC3) is then the more friendly condition

κ(h2 · x) = σout(h2) ◦ κ(x) ◦ σin(h2)−1, h2 ∈ Hout, x ∈ Xin. (EC4)

Equation (†3) holds in the case where H = Hin = Hout and G is a semi-direct product.
Technically, it is preferable to view G = N o H in the flavor where G = NH with N and
H subgroups of G. Then every g ∈ G can be written uniquely as g = nh with n ∈ N and
h ∈ H, so X = G/H is isomorphic to N and we identify them. We can pick the set of coset
representatives

rn = n, n ∈ N ≈ G/H. (†5)
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The action of N on G/H = N is just multiplication, so for any n, n1 ∈ N , we have

rn1·n = n1n = n1rn. (†6)

If x = nH, since h2 · x = h2nH and

h2n = h2nh
−1
2 h2,

as N is normal in G, h2nh
−1
2 ∈ N , and since h2 · x = h2nH = h2nh

−1
2 h2H = h2nh

−1
2 H with

h2nh
−1
2 ∈ N , we have rh2·x = h2nh

−1
2 = h2rxh

−1
2 , namely (†3) holds. Consequently, by (†4),

the equation satisfied by Xin-kernels is

κ(h2 · x) = σout(h2) ◦ κ(x) ◦ σin(h2)−1, h2 ∈ H, x ∈ X, (EC5)

which gives us back the condition satisfied by kernels in the case where G is a semi-direct
product G = Rd oH.

In general, there does not appear to be a simple way to find conditions for which the
term σin(uin(h2, x)−1) goes away. Cohen, Geiger and Weiler [9] (Theorem 3.4) show that by
considering kernels defined on the double coset space Hout\G/Hin, condition (EC3) almost
becomes condition (EC5), but the analog of the representation σin depends on x, so this is
not a reduction to (EC5).

8.15 Passing from Lσin and Lσout to L2(Xin, Ein) and

L2(Xout, Eout)

The G-equivariant maps in HomHin,Hout(IndGHin
σin, IndGHout

σout) are functions from Lσin to
Lσout and still require integration over G to be computed using equivariant kernels in the
space HomHin,Hout(G,Hom(Ein

0 , E
out
0 )). It would be nice if we could transform the integration

over G to a more practically computable integration over Xin. This can be achieved by using
the maps Sout : Lσout → L2(Xout, Eout) and Lin : L2(Xin, Ein) → Lσin given by (S ′′3 ) and (L′3)
of Section 6.13. When these maps are well-defined, which is our assumption, they can be
used to define maps from L2(X,Ein) to L2(X,Eout) from functions from Lσin to Lσout . Recall
that (L′3) is given by

L(s)(g) = σ(u(g, x0)−1)(r−1
x · s(x)), x = gH = g · x0, g ∈ G, s ∈ L2(X,E),

and (S ′′3 ) is given by

S(f)(gH) = S(f)(g · x0) = g · f(g), g ∈ G, f ∈ Lσ.

Pick a set of coset representatives (rin
x )x∈G/Hin

for Xin = G/Hin and a set of coset repre-
sentatives (rout

x )x∈G/Hout for Xout = G/Hout. Then for every section s ∈ L2(Xin, Ein), for every
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x ∈ Xout, observe that for every equivariant kernel K ∈ HomHin,Hout(G,Hom(Ein
0 , E

out
0 )), the

function Φ̃ given by
Φ̃(s) = Sout(K ? (Lin(s)))

maps L2(Xin, Ein) to L2(Xout, Eout), because Lin(s) ∈ Lσin , K? (Lin(s)) ∈ Lσout , and Sout(K?
(Lin(s))) ∈ L2(Xout, Eout), as illustrated in the following diagram.

Lσin
Φ=K?− // Lσout

Sout

��
L2(Xin, Ein)

Φ̃

//

Lin

OO

L2(Xout, Eout).

We now work out several explicit formulae for Sout(K ? (Lin(s))), the most general ones
being (†8) and (†9). Since for any s ∈ L2(Xin, Ein),

Lin(s)(t) = σin(uin(t, xin
0 )−1)((rin

y )−1 · s(y)), y = t · xin
0 ∈ Xin, x

in
0 = Hin, t ∈ G,

by (Φ) of Proposition 8.12, for any g ∈ G, we have

(K ? (Lin(s)))(g) =

∫
G

K(g−1t)[Lin(s)(t)] dλG(t)

=

∫
G

K(g−1t)[σin(uin(t, xin
0 )−1)((rin

y )−1 · s(y))] dλG(t),

and since
Sout(f)(x) = rout

x · f(rout
x ), x = rout

x · xout
0 ∈ Xout, x

out
0 = Hout,

with f = K ? (Lin(s)), we get

[Sout(K ? (Lin(s)))](x) = rout
x ·

∫
G

K((rout
x )−1t)[σin(uin(t, xin

0 )−1)((rin
y )−1 · s(y))] dλG(t).

Since by Proposition 8.13,

K(g1) = κ(g1 · xin
0 ) ◦ σin(uin(g1, x

in
0 )),

and y = t · xin
0 , we get

[Sout(K ? (Lin(s)))](x)

= rout
x ·

∫
G

κ((rout
x )−1y)[[σin(uin((rout

x )−1t, xin
0 )) ◦ σin(uin(t, xin

0 )−1)]((rin
y )−1 · s(y))] dλG(t)

= rout
x ·

∫
G

κ((rout
x )−1y)[σin(uin((rout

x )−1t, xin
0 )uin(t, xin

0 )−1)((rin
y )−1 · s(y))] dλG(t).
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We now proceed by simplifying the expression in the square bracket. Using the equation

u(st, x) = u(s, t · x)u(t, x), (∗h)

we have

uin((rout
x )−1t, xin

0 ) = uin((rout
x )−1, t · xin

0 )uin(t, xin
0 ),

so

uin((rout
x )−1t, xin

0 )uin(t, xin
0 )−1 = uin((rout

x )−1, t · xin
0 ) = uin((rout

x )−1, y).

Consequently, for any s ∈ L2(Xin, Ein), we obtain

[Sout(K?(Lin(s)))](x) = rout
x ·
∫
G

κ((rout
x )−1y)[σin(uin((rout

x )−1, y))((rin
y )−1 ·s(y))] dλG(t), (†7)

with y = t · xin
0 , t ∈ G, and x = rout

x · xout
0 ∈ Xout.

By Vol. I, Proposition 8.43, since G is a locally compact group and Hin is a compact
subgroup of G, the space Xin = G/Hin admits a G-invariant σ-Radon measure γ so that for
any s ∈ L2(Xin, Ein) and any x = rout

x · xout
0 ∈ Xout,

[Sout(K?(Lin(s)))](x) = rout
x ·
∫
Xin

κ((rout
x )−1y)[σin(uin((rout

x )−1, y))((rin
y )−1 ·s(y))] dγ(y). (†8)

The condition on κ in (EC3) translates to∫
Xin

∫
Xin

∥∥κ((rout
x )−1y)

∥∥2
dλXin

(x) dλXin
(y) <∞.

Formula (†8) is the main formula of this section. It uses a cheaper integration over Xin and
the simpler kernel κ. This formula holds in the general framework of hermitian G-bundles of
finite rank. A similar formula is given in Cohen, Geiger and Weiler [9] (Formula (14)), but
with the term uin((rout

x )−1rin
y , x

in
0 ) instead of the term uin((rout

x )−1, y). In fact, these terms
are equal. This is because by (∗h),

uin((rout
x )−1rin

y , x
in
0 ) = uin((rout

x )−1, rin
y · xin

0 )uin(rin
y , x

in
0 )

= uin((rout
x )−1, y),

since uin(rin
y , x

in
0 ) = e, which follows from Equation (u), since

uin(rin
y , x

in
0 ) = (rin

riny ·xin0
)−1rin

y r
in
xin0

= (rin
y )−1rin

y e = e.

We finish this section by considering two special cases of the main formula.
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Example 8.16. If the hermitian G-bundles Ein and Eout arise from the Borel construction
(see Section 6.12) from the representations σin : Hin → U(Hin) and σout : Hout → U(Hout),
then the fibres Exin (with xin ∈ Xin) consists of equivalence classes {[(rin

xin
, uin)] | uin ∈ Hin},

and the fibres Exout (with xout ∈ Xout) consists of equivalence classes {[(rout
xout , uout)] | uout ∈

Hout}. The fibre Ein
0 above xin

0 = Hin consists of equivalence classes of the form [(e, uin)], and
the fibre Eout

0 above xout
0 = Hout consists of equivalence classes of the form [(e, uout)]. The

fibre Ein
0 is isomorphic to Hin, and the fibre Eout

0 is isomorphic to Hout; see the discussion
just after Definition 6.21. We also explained in Section 6.13 that the definition of the action
of G on these hermitian G-bundles implies that

(rin
xin

)−1 · [(rin
xin
, uin)] = [(e, uin)],

and
rout
xout · [(e, uout)] = [(rout

xout , uout)],

so the above maps provide isomorphisms from Exin to Ein
0 and from Eout

0 to Exout . Since the
sections in Γ(Ein) are of the form

sin(xin) = [(rin
xin
, uin)],

and the sections in Γ(Eout) are of the form

sout(xout) = [(rout
xout , uout)],

and since κ(xin) maps the fibre Ein
0 to the fibre Eout

0 , we see that if we identify all the fibres
Exin with Ein

0 and all the fibres Exout with Eout
0 , then we can view sections in Γ(Ein) as

functions from Xin to Ein
0 ≈ Hin and sections in Γ(Eout) as functions from Xout to Eout

0 ≈
Hout, so we can drop the terms rout

x and (rin
y )−1 and we get the formula

[Sout(K ? (Lin(s)))](x) =

∫
Xin

κ((rout
x )−1y)[σin(uin((rout

x )−1, y))(s(y))] dγ(y), (†9)

for all s ∈ L2(Xin, Ein), with y ∈ Xin and x ∈ Xout.

The second special case deals with semi-direct products.

Example 8.17. If H = Hin = Hout and G is a semi-direct product G = N o H, then
X = G/H ≈ N . By (†6), rn·y = nry when n ∈ N , and from

rn·yu(n, y) = nry,

we get nryu(n, y) = nry, that is
u(n, y) = e. (†10)

Consequently, by setting n = (rx)
−1 ∈ N , we have u(r−1

x , y) = e, and since rx = x and
ry = y, by (†10) and (†8), we obtain

[S(K ? (L(s)))](x) = x ·
∫
N

κ(x−1y)(y−1 · s(y)) dγ(y), x, y ∈ N, (†11)
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for all s ∈ L2(X,E).

If the hermitian G-bundles are constructed from representations σin : H → U(Hin) and
σout : H → U(Hout), the above formula becomes

[S(K ? (L(s)))](x) =

∫
N

κ(x−1y)(s(y)) dγ(y), x, y ∈ N, (†12)

for all s ∈ L2(X,E). Note the analogy of (†12) and (Φ) from Proposition 8.12.

The issue of finding G-equivariant kernels still remains.

8.16 Equivariant Kernels and Kernel Operators

As in Lang and Weiler [46] and Cesa, Lang and Weiler [8], we now assume that Hin = Hout =
H, so Xin = Xout = X = G/H, and we have two Hermitian G-bundles Ein and Eout. The
Hermitian G-bundles define two representations σin : H → U(Hin) and σout : H → U(Hout),
where we denote the fibres Ein

0 and Eout
0 as Hin and Hout, which is closer to the notation

used by the above authors. We consider the space of equivariant X-kernels defined below.

Definition 8.15. The space of equivariant X-kernels HomH(X,Hom(Hin,Hout)) is given by

HomH(X,Hom(Hin,Hout)) = {κ : X → Hom(Hin,Hout) |
κ(h · x) = σout(h) ◦ κ(x) ◦ σin(h)−1,∫
X

∫
X

∥∥κ((rx)
−1y)

∥∥2
dλX(x) dλX(y) <∞,

x ∈ X, h ∈ H}, (EC6)

Remarkably, Lang and Weiler [46] and Cesa, Lang and Weiler [8] completely characterized
the kernels in κ ∈ HomH(X,Hom(Hin,Hout)) when H is a compact group acting on a
topological Hausdorff space X equipped with the σ-algebra of Borel sets and an H-invariant
measure µ. This does not cover all the cases of condition (EC3) but it does cover the case
where X = G and H = Hout×Hin, since condition (EC2) can be reduced to condition (EC),
and the case where X = Xin = G/Hin if condition (EC4) holds (with H = Hout), which
happens if Hin = Hout and G is a semi-direct product G = N o H. Note that typically
H does not act transitively on X. In all of these cases, X arises from a transitive action
of the group G, but the results described below hold for any space X. We assume that
σin : H → U(Hin) and σout : H → U(Hout) are irreducible. This is not a restriction as
explained in Lang and Weiler [46].

If we pick bases for the (finite-dimensional) spaces Hin and Hout, then the representations
σin and σout are represented by matrices Σin and Σout, and κ(x) is also represented by a
matrix κ̃(x). If we vectorize the matrix κ̃(x) by making it into a vector vec(κ̃(x)) obtained
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by concatenating its rows, then we can use the fact from linear algebra that for any m×m
matrix A, any n× n matrix B, and m× n matrix Z, we have the identity

vec(AZB) = (B> ⊗ A)vec(Z),

where⊗ denotes the Kronecker product of matrices. Then (since (Σ−1
in )> = Σin), the equation

κ(h · x) = σout(h) ◦ κ(x) ◦ σin(h)−1

becomes the following equation in matrix form

vec(κ̃)(h · x) = [(Σin ⊗ Σout)(h)]vec(κ̃(x)). (∗51)

Observe that (∗51) is the analog of (steer7) with vec(κ̃(x)) instead of Yρ,kρ and Σin⊗Σout

instead of Mρ,kρ(h). If the representation σin ⊗ σout is reducible, we need to decompose it
as a direct sum of irreducibles. Otherwise, some steerable family Yρ,kρ is a solution of (∗51).
We now explain how a basis of solutions of (∗51) can be found.

A key ingredient is the analog of the left regular representation V : H → U(L2(X)) of
L2(X) induced by the action of H on X already introduced in Section 8.7 and given by

(V (h)f)(x) = f(h−1 · x), h ∈ H, f ∈ L2(X), x ∈ X.

For the sake of consistency of notation, we will also denote the representation V as RH→L2(X).

The other key ingredient is the set of H-maps

HomH(RH→L2(X),Hom(σin, σout)),

which is the space of continuous linear maps K : L2(X) → Hom(Hin,Hout) such that the
following diagram commutes

L2(X) K //

RH→L2(X)(h)

��

Hom(Hin,Hout)

Hom(σin,σout)(h)

��
L2(X)

K
// Hom(Hin,Hout)

for every h ∈ H; see Definition 3.9. Cesa, Lang and Weiler [8] call the maps K kernel
operators . Recall from Definition 4.21 that the representation Hom(σin, σout) is defined such
that

[Hom(σin, σout)(h)](f) = σout(h) ◦ f ◦ σin(h−1), f ∈ Hom(Hin,Hout), h ∈ H.

The main result is that there is a bijection between the space HomH(X,Hom(Hin,Hout))
of equivariant X-kernels and the space HomH(RH→L2(X),Hom(σin, σout)) of kernel operators.
This isomorphism is a kind of linearization of the first space. The following result is shown
in Cesa, Lang and Weiler [8] (Theorem B2). See also Lang and Weiler [46] (Theorem C7).
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Theorem 8.14. There is an isomorphism between the space HomH(X,Hom(Hin,Hout)) of
equivariant X-kernels and the space HomH(RH→L2(X),Hom(σin, σout)) of kernel operators.

The isomorphism is defined as follows. The map from HomH(X,Hom(Hin,Hout)) to
HomH(RH→L2(X),Hom(σin, σout)) is defined such that for any kernel κ : X → Hom(Hin,Hout),
we define the extension κ̂ of κ to L2(X) as

κ̂(f) =

∫
X

f(x)κ(x) dµ(x), f ∈ L2(X), (†13)

and the map from HomH(RH→L2(X),Hom(σin, σout)) to HomH(X,Hom(Hin,Hout)) is defined
such that for every kernel operator K : L2(X) → Hom(Hin,Hout), we define the restriction
K|X of K to X as

(K|X)(x) = K(δx), x ∈ X, (†14)

where δx is the Dirac δ-function. Technically, this does not make sense and to make this
correct it is necessary to use a form of regularization similar to the method explained in Vol.
I, Section 8.16; see Corollary 8.52. This what is done in Lang and Weiler [46] (Appendix
C, Theorem C7). It is shown in Cesa, Lang and Weiler [8] that the above maps are mutual
inverses (see also Lang and Weiler [46] for some of the details, Appendix C, Part C2).

But now Proposition 4.28 tells us that the representations Hom(σin, σout) and σin ⊗ σout

are equivalent, so we obtain an isomorphism

HomH(X,Hom(Hin,Hout)) ≈ HomH(RH→L2(X), σin ⊗ σout). (†15)

Since H is a compact group, we can now use Theorem 8.7 (a direct consequence of
Peter–Weyl II) to express L2(X) as a Hilbert sum of spaces corresponding to irreducible
representations of H and the decomposition of the tensor product representation σin ⊗ σout

as a Hilbert sum of irreducible representations of H (see Proposition 4.18 and Equation (⊗)
in Section 4.4) to obtain the following decomposition of HomH(RH→L2(X), σin ⊗ σout), and
thus of HomH(X,Hom(Hin,Hout)). We obtain

HomH(RH→L2(X), σin ⊗ σout) ≈
⊕

ρ1∈R(H)

dρ1⊕
kρ1=1

HomH(Mρ1 , σin ⊗ σout)

≈
⊕

ρ1∈R(H)

dρ1⊕
kρ1=1

⊕
ρ2∈R(H)

c
ρ2
in,out⊕
j=1

HomH(Mρ1 ,Mρ2),

where cρ2in,out is the number of times that the irreducible representation Mρ2 occurs in the
representation σin⊗σout (which is equal to 0 if it does not occur). Recall that the coefficients
cρ2in,out are the Clebsch–Gordan coefficients (see Definition 4.11). Now, since we have been
dealing with complex representations all along, by Schur’s Lemma (see Lemma 3.2(2) or
Theorem 3.11(2)), since Mρ1 and Mρ2 are irreducible,

HomH(Mρ1 ,Mρ2) =

{
{0}, if ρ1 6= ρ2

C, if ρ1 = ρ2.
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Therefore, we obtain

HomH(RH→L2(X), σin ⊗ σout) ≈
⊕

ρ1∈R(H)

dρ1⊕
kρ1=1

c
ρ1
in,out⊕
j=1

HomH(Mρ1 ,Mρ1)

≈
⊕

ρ1∈R(H)

dρ1⊕
kρ1=1

c
ρ1
in,out⊕
j=1

C(Mρ1) =
⊕

ρ1∈R(H)

dρ1⊕
kρ1=1

c
ρ1
in,out⊕
j=1

C,

where C(Mρ1) is commutant (or centralizer) of Mρ1 , see Definition 3.9.

Cesa, Lang and Weiler [8] also consider real representations. In this case, Schur’s Lemma
(Lemma 3.2(2)) is not as strong and the centralizers may have dimension greater than 1.
The situation where real representations are considered is actually quite subtle and fairly
involved. Among other things, a version of the Peter–Weyl theorems in the real case is
required. Cesa, Lang and Weiler [8] and Lang and Weiler [46] address these issues in great
depth.

In summary, we have shown the following basis independent version in the case of complex
representations of a theorem referred to as Wigner–Eckart theorem for steerable kernels by
Cesa, Lang and Weiler [8] (Theorem B.5). The more general theorem that also applies to
real representations is proven in Cesa, Lang and Weiler [8].

Theorem 8.15. There is an isomorphism of vector spaces

HomH(X,Hom(Hin,Hout)) ≈
⊕

ρ1∈R(H)

dρ1⊕
kρ1=1

c
ρ1
in,out⊕
j=1

C(Mρ1). (†16)

If the representations are complex, then C(Mρ1) = C for all ρ1 ∈ R(H).

Cesa, Lang and Weiler [8] also prove a version of the above result in which a basis of
HomH(X,Hom(Hin,Hout)) is exhibited. The formulae are a bit messy so we will not give
details here; see Theorem B.6 and Theorem B.7 in Cesa, Lang and Weiler [8]. The idea
is clear though. A steerable basis for L2(X) is provided by Theorem 8.7; these are the

functions Yρ,kρ . Matrices CG
c
ρ1
in,out

j of Clebsch–Gordan coefficients expressing the change of
basis required when decomposing the representation σin ⊗ σout into irreducibles are needed.
If C(Mρ1) is not one-dimensional, then a basis Cjρ1 (in matrix form) of each copy of C(Mρ1)
is needed. In matrix form, a basis of HomH(X,Hom(Hin,Hout)) is given by

Kρkρjρ1 = (CG
c
ρ1
in,out

j )∗Cjρ1Yρ,kρ ; (†17)

see Theorem B.7 in Cesa, Lang and Weiler [8] and Theorem D13 (Formula (20)) in Lang
and Weiler [46]. These two papers use different definitions of steerability and since we use
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(steer7), as in Lang and Weiler [46], we need a conjugation over Y (see the remark just
before Theorem 8.7).

With Formula (†17), we finally achieved the goal of Section 8.12, which was to define
a notion of G-equivariant correlation directly on feature fields. For this, we introduced G-
equivariant kernels (for G = RdoH) and we showed that they must satisfy the equivariance
constraints (EC1). In Section 8.13, we considered the more general situation of two hermitian
G-bundles. In Proposition 8.12, we characterized equivariant correlation G-kernels (denoted
K), whose domain in G. These are not practical so we showed in Section 8.14 that the
previous G-kernels can be expressed in terms of Xin-kernels (denoted κ) which are defined
on Xin; see Proposition 8.13. They satisfy condition (EC3), which is simpler than (EC1) but
still contains the term uin(h2, x)−1. This term disappears if G is a semi-direct product. In
Section 8.15, we show how to replace integration over G by integration over Xin, using the
Xin-kernels instead of G-kernels; see Formula (†8). Finally, in this section, we obtained a
complete characterization as well as steerable bases of Xin-kernels in the simper case where
Hin = Hout = H (but we still have input and output representations σin and σout). This
result (Theorem 8.15) is a generalization of the results shown in Sections 8.6 and 8.7, where
the steerable families Yρ,kρ are replaced by a basis of steerable kernels given by (†17).

As explained in Section 6 and Section B4 of Lang and Weiler [46] and in Cesa, Lang and
Weiler [8] (Algorithm 1 in Section 3), in order to actually compute a basis of a steerable
kernel, the following steps need to be carried out.

(1) Compute the irreducible representations Mρ of H (or at least those are needed).

(2) Compute a steerable basis of functions Yρ,kρ for L2(X) (provided by Theorem 8.7). See
Appendix B of Cesa, Lang and Weiler [8], in particular, Section B.4.

(3) Find the Clebsch–Gordan decomposition (in matrix form) into irreducibles for the
tensor product representation σin ⊗ σout. Appendix E of Cesa, Lang and Weiler [8]
presents numerical methods to do this. If the group H is finite then this can be done
by solving for the null space of some suitable linear system. If the group H is infinite,
then this can often be done by random sampling and then solving for the null space of
the linear system obtained from the sampling process.

(4) Find a basis for the commutant C(Mρ) of Mρ for all ρ ∈ R(H) (or at least those that
are needed). This problem is addressed in Appendix C of Cesa, Lang and Weiler [8].

Explicit examples are given in Cesa, Lang and Weiler [8].

8.17 Problems

Problem 8.1. Let Φ: L2(R2)→ L2(R2) be the linear operator given by

Φ(f) = k ? f,
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as in Section 8.2. Recall that R2 acts on L2(R2) by the regular left representation RR2→L2(R2).
Prove that we have the commutative diagram

L2(R2) Φ //

R
R2→L2(R2)
x

��

L2(R2)

R
R2→L2(R2)
x

��
L2(R2)

Φ
// L2(R2)

for all x ∈ R2, which shows that the transform Φ is translation-equivariant.

Problem 8.2. Consider the function ϕ on K(G) given by

ϕ(f) =

∫
H

mod(ih)
−1

(∫
N

f(nh) dλN(n)

)
dλH(h). (µ7)

Using the Radon–Riesz theorem II (see Vol. I, Theorem 7.15) to show that ϕ defines a Radon
measure λG on G, such that

∫
G
f(g)dλG(g) = ϕ(f) for all f ∈ K(G).

Problem 8.3. Prove that if νN and νH are right Haar measures, then the image of the
measure νN ⊗ νH by ϕ is also a right Haar measure.

Problem 8.4. Find the Hermite polynomials H0, . . . , H5 using the recurrence relations given
in Example 8.5 just after (srt7).

Problem 8.5. Prove that if f̂ρ is the function defined in Definition 8.9, then we have

f̂ρ ∈ L2(Rd,Mnρ(C)).

Hint . Use Fubini.

Problem 8.6. Prove part (2) of Proposition 8.11.

Problem 8.7. Study the proof of Theorem 8.14 given in Cesa, Lang and Weiler [8] (Theorem
B2). See also Lang and Weiler [46] (Theorem C7), in particular, the argument involving
approximating the Dirac function.

Problem 8.8. Study the examples given in Cesa, Lang and Weiler [8], as well as Appendix
C.
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Chapter 9

Harmonic Analysis on Gelfand Pairs

This chapter is the culmination of all of the theories discussed in this book. We are able
to present a very general version of the Fourier transform on a homogeneous space G/K,
where (G,K) is a Gelfand pair. This chapter presents material discussed in Dieudonné [12]
(Chapter XXII, Sections 6–10).

We saw in Section 6.9 that if G is a compact group and if H is a closed subgroup of G,
then the algebra L2(H\G/H) is commutative if and only if (ρ : σ0) ≤ 1 for all ρ ∈ R(G)
(where σ0 is the class of the trivial representation of H). If so, then for every ρ ∈ R(G),
such that (ρ : σ0) = 1, the ideal aρ,σ0 is one-dimensional and is spanned by the function

ωρ(s) = θρ,σ0 =
1

nρ
m

(ρ,H)
11 (s),

which is continuous and of positive type. The function ωρ is called a (zonal) spherical
function.

The goal of this chapter is to generalize the above results for a compact group to a locally
compact (metrizable and separable) unimodular group G and to a compact subgroup K of
G.

The first difficulty is that if G is not compact, then L2(G) is not closed under convolution
(in general, L2(G) is not contained in L1(G)). So we have to work with K(G) instead (recall
that K(G) is the subset of C(G) consisting of the continuous functions with compact support
f : G→ C).

There is a bijection between the space C(G/K) of continuous functions f : G/K → C
and the subspace of continuous functions g : G→ C, such that

g(st) = g(s), for all s ∈ G and all t ∈ K.

We also have a bijection between the space C(K\G) of continuous functions f : K\G → C
and the subspace of continuous functions g : G→ C, such that

g(ts) = g(s), for all s ∈ G and all t ∈ K.

611
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Let C(K\G/K) = C(G/K)∩C(K\G), which consists of the continuous functions f : G→ C
which are constant on double cosets KsK (s ∈ G), and let K(K\G/K) be the subspace
of C(K\G/K) consisting of the continuous functions with compact support. The space
K(K\G/K) is an involutive subalgebra of K(G), and thus of L1(G).

The key ingredient is the Banach algebra L1(K\G/K), the closure of K(K\G/K) in
L1(G). Gelfand’s remarkable discovery is that much of the harmonic analysis on abelian
locally compact groups and compact groups can be generalized to a pair (G,K), where G is
a noncommutative locally compact unimodular (metrizable and separable) group, and K is
a compact subgroup of G, if the algebra L1(K\G/K) is commutative. In this case, (G,K)
is called a Gelfand pair .

Fortunately, there is a sufficient criterion for a pair (G,K) to be a Gelfand pair involving
an involutive isomorphism σ : G→ G, such that K is a closed subgroup of the group Gσ of
fixed points of σ (see Theorem 9.2). This criterion is reminiscent of Élie Cartan’s notion of
symmetric space (see Helgason [35] or Gallier and Quaintance [27]), and indeed, many kinds
of symmetric spaces are Gelfand pairs. The proof that a pair satisfying this criterion is a
Gelfand pair is given in Section 9.1. The conditions of this criterion are flexible enough to
apply to three broad classes of pairs (G,K); see Section 9.7.

The purpose of Section 9.2 is to characterize the characters of the algebra L1(K\G/K)
in terms of certain functions in C(K\G/K), called spherical functions . Every character ζ of
the commutative Banach algebra L1(K\G/K) is given by a unique function ω ∈ C(K\G/K),
which is bounded and continuous on G, with

ζ(f) = (f, ω) =

∫
G

f(x)ω(x) dλG(x), f ∈ L1(K\G/K);

see Proposition 9.4. A function ω ∈ C(K\G/K) as above is called a spherical function.

Two criteria for a bounded function ω ∈ C(K\G/K) (different from the zero function) to
be a spherical function are given in Theorem 9.6. In particular, the function ω is a spherical
function on G relative to K iff∫

K

ω(xty) dλK(t) = ω(x)ω(y), for all x, y ∈ G. (s1)

The space of spherical functions on the Gelfand pair (G,K) is denoted S(G/K). The
subspace of characters of the commutative involutive Banach algebra A = L1(K\G/K)⊕Cδe
whose restriction to L1(K\G/K) is not the zero function is denoted by X0(A). This subspace
is locally compact in the weak ∗-topology (metrizable and separable).

The map ω 7→ ζω = (f, ω) is a homeomorphism of S(G/K) equipped with the induced
topology of Fréchet space of C(G) onto X0(A) equipped with the topology induced by the
weak ∗-topology of the dual A′ of A. Consequently, S(G/K) is locally compact.

An important class of Lie groups that yield Gelfand pairs are the real forms of a complex
semi-simple Lie group, and Sections 9.3–9.6 are devoted to a discussion of these Lie groups.
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One needs to understand how to find the real forms g0 of a complex Lie algebra g, that is,
the real Lie algebras g0, such that

g = g0 ⊕ ig0,

namely, g is the complexification of g0. Finding such real algebras g0 is equivalent to finding
certain semilinear idempotent maps on g called conjugations (see Proposition 9.11). Now, if
we happen to have some semi-simple real form gu, such that

g = gu ⊕ igu,

and if cu is the corresponding conjugation, then it can be shown that all the other real forms
g0 of g are given by conjugations c0 that commute with cu. Then all this has to be promoted
to Lie groups (essentially by using the exponential map).

Three examples of Gelfand pairs are discussed in Section 9.7. In the first example, G is
a compact Lie group that has an involutive automorphism σ; this corresponds to symmetric
spaces of compact type. In the second example, G1 arises as a real form of a complex,
semi-simple, simply-connected Lie group G, and G1 has finite center. This corresponds to
a symmetric space of noncompact type. The third example is a certain kind of semi-direct
product; a typical illustration of this case is the group of rigid motions SE(n,R).

The Fourier transform and the Fourier cotransform for a Gelfand pair are introduced in
Section 9.8. For every function f ∈ L1(K\G/K), the Fourier cotransform Ff of f is the
function Ff : S(G/K)→ C given by

(Ff)(ω) = (f, ω) =

∫
G

f(x)ω(x) dλG(x), ω ∈ S(G/K),

and the Fourier transform Ff of f is the function Ff : S(G/K)→ C given by

(Ff)(ω) = (f̌ , ω) =

∫
G

f(x−1)ω(x) dλG(x) =

∫
G

f(x)ω(x−1) dλG(x), ω ∈ S(G/K).

Using the space S(G/K) of spherical functions as the domain of F and F instead of
characters yields a simultaneous generalization of the case where G is commutative and the
case where G is compact. On L1(K\G/K), we have the familar equations

F(f ∗ g) = (Ff)(Fg), F(f ∗ g) = (Ff)(Fg). (∗)

In Section 9.9, we generalize Fourier inversion. For this, we use the construction of certain
positive σ-Radon measures from measures of positive type (recall Definition 3.21) using the
Plancherel transform.

When G is not compact, the spherical functions in S(G/K) are not necessarily of positive
type. The subset of S(G/K) consisting of the spherical functions of positive type is denoted
by Z(G/K).
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Theorem 9.21 states that given a measure µ of positive type on G, there is a unique
(positive) Radon measure µ4 on Z(G/K), such that for every function f ∈ K(K\G/K),
the Fourier cotransform Ff belong to L2

µ4(Z(G/K);C), and for any two functions f, g ∈
K(K\G/K), we have ∫

G

(g∗ ∗ f)dµ =

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dµ4(ω).

The measure µ4 is called the Plancherel transform of µ.

In particular, if µ = δe, the Dirac measure, we obtain a measure mZ = δ4e , called the
canonical measure on Z(G/K), and then the linear maps f 7→ Ff and f 7→ Ff , with f, g ∈
K(K\G/K), are isometries, and by Theorem 9.21, these maps extend to isomorphisms from
the Hilbert space L2(K\G/K) onto the Hilbert space L2

mZ
(Z(G/K)). This is a generalization

of the Plancherel theorem (Vol I, Theorem 10.27).

Another type of Fourier inversion formula is given by Proposition 9.28. The map p 7→
(p λG)4 is a bijection between the space P+(K\G/K) of functions in C(K\G/K), which are
of positive type onto the space M1

+(Z(G/K)) of bounded positive measures on Z(G/K).

Section 9.10 discusses an extension of the Plancherel transform to the space P(G) which
is the complex vector space spanned by the union of the complex measures and the Radon
measures. In Proposition 9.34, we obtain a Fourier inversion formula which yields the inver-
sion formula of the Pontrjagin duality theorem, Vol I, Theorem 10.30, as a special case.

Finally, in Section 9.11, we show that functions of positive type induce irreducible rep-
resentations; see Theorem 9.35. We also state a theorem of Stone characterizing the unitary
representations of R in a separable Hilbert space (Theorem 9.40).

9.1 Gelfand Pairs

In the rest of this chapter, we assume that G is locally compact, metrizable, separable
and unimodular group, and that K is a compact subgroup of G. Recall that there is a
bijection between the space C(G/K) of continuous functions f : G/K → C and the subspace
of continuous functions g : G→ C, such that

g(st) = g(s), for all s ∈ G and all t ∈ K,

equivalently,
g ∗ δt = g, for all t ∈ K.

This bijection is given by the map f 7→ f ◦ π, where π : G → G/K is the projection
map. Observe that (g ∗ δt)(s) = g(st−1) (see (∗ρs−1 ) after Vol I, Definition 8.26; since G
is unimodular, the term ∆(t−1) is equal to 1), so the condition g ∗ δt = g is equivalent to
g(st−1) = g(s) for all t ∈ K, but this is equivalent to g(st) = g(s) for all t ∈ K since K is
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a group. From now on, we identify C(G/K) with the subspace of C(G) satisfying the above
equivalent properties.

We also have a bijection between the space C(K\G) of continuous functions f : K\G→ C
and the subspace of continuous functions g : G→ C, such that

g(ts) = g(s), for all s ∈ G and all t ∈ K,

equivalently,
δt ∗ g = g, for all t ∈ K,

and we identify C(K\G) with the subspace of C(G) satisfying the above equivalent properties.
Observe that (δt ∗ g)(s) = g(t−1s), so δt ∗ g = g is equivalent to g(t−1s) = g(s) for all t ∈ K,
which is equivalent to g(ts) = g(s) for all t ∈ K.

Let C(K\G/K) = C(G/K)∩C(K\G), which consists of the continuous functions f : G→
C which are constant on double cosets KsK (s ∈ G).

Since K is compact, for every compact subset A of G/K, the subset π−1(A) is compact
in G. The map f 7→ f ◦ π is thus a bijection between the subspace K(G/K) of C(G/K)
onto a subspace of K(G). This subspace is denoted by K(G)∩C(G/K). Similarly, there is a
bijection between the space K(K\G) and the space K(G)∩C(K\G), and a bijection between
the space K(K\G/K) and the space K(G) ∩ C(K\G/K).

We saw earlier that K(G) is an involutive subalgebra under convolution of the algebra
L1(G) (see Vol I, Example 9.6(4)). It follows that K(G/K) is a left ideal in K(G) and that

K(K\G) is a right ideal in K(G), and the involution f 7→ f̌ maps K(G/K) onto K(K\G).
As a consequence, K(K\G/K) is an involutive subalgebra of K(G) (and so of L1(G)).

Let λK be the Haar measure on K normalized so that λK(K) = 1, and since G is assumed
to be unimodular, let λG be a left and right-invariant Haar measure on G (since K is compact,
it is unimodular so λK is also left and right-invariant). In order to study the characters of
the Banach algebra L1(K\G/K), which is the closure of K(K\G/K) in L1(G), we need to
project C(G) onto C(K\G/K).

Definition 9.1. We define a projection map from C(G) onto C(K\G/K) by

f ](s) =

∫
K

∫
K

f(tst′) dλK(t) dλK(t′), s ∈ G,

for any f ∈ C(G).

It is easily checked that if f ∈ C(G), then f ](t1st
′
1) = f ](s) for all t1, t

′
1 ∈ K, so f ] ∈

C(K\G/K). As a consequence, since λ(K) = 1,

f ]](s) =

∫
K

∫
K

f ](tst′) dλK(t) dλK(t′) =

∫
K

∫
K

f ](s) dλK(t) dλK(t′) = f ](s),

and the map f 7→ f ] is indeed a projection. It is also easy to check that for all f ∈ C(K\G/K)
and for all g ∈ C(G), we have

(fg)] = fg].



616 CHAPTER 9. HARMONIC ANALYSIS ON GELFAND PAIRS

Proposition 9.1. The restriction of the projection f 7→ f ] to K(G) maps K(G) onto
K(K\G/K), and we have

(f ∗ g)] = f ∗ g], (g ∗ f)] = g] ∗ f

for all f ∈ K(K\G/K), and all g ∈ C(G).

Proof. We leave the first statement as an exercise and prove the first of the two equations.
We have

(f ∗ g)(x) =

∫
G

f(s)g(s−1x) dλG(s),

and using the left invariance of λG and the fact that f(ts) = f(s) and λK(K) = 1, we have

(f ∗ g)](x) =

∫
K

∫
K

∫
G

f(s)g(s−1txt′) dλG(s) dλK(t) dλK(t′)

=

∫
K

∫
K

∫
G

f(ts)g(s−1xt′) dλG(s) dλK(t) dλK(t′)

=

∫
K

∫
K

∫
G

f(s)g(s−1xt′) dλG(s) dλK(t) dλK(t′)

=

∫
K

∫
G

f(s)g(s−1xt′) dλG(s) dλK(t′).

We also have

g](x) =

∫
K

∫
K

g(txt′) dλK(t) dλK(t′),

and using the right invariance of λG and the fact that f(st) = f(s) and λK(K) = 1, we have

(f ∗ g])(x) =

∫
G

∫
K

∫
K

f(s)g(ts−1xt′) dλK(t) dλK(t′) dλG(s)

=

∫
G

∫
K

∫
K

f(st)g(s−1xt′) dλK(t) dλK(t′) dλG(s)

=

∫
G

∫
K

∫
K

f(s)g(s−1xt′) dλK(t) dλK(t′) dλG(s)

=

∫
G

∫
K

f(s)g(s−1xt′) dλK(t′) dλG(s),

and by Fubini, we can interchange the integrations, which shows that (f ∗ g)] = f ∗ g]. The
proof that (g ∗ f)] = g] ∗ f is analogous.

A Gelfand pair (G,K) is defined as follows.

Definition 9.2. Let G be a locally compact (metrizable and separable) unimodular group,
and let K be a compact subgroup. We say that the pair (G,K) is a Gelfand pair if the
algebra K(K\G/K) is commutative (under convolution).
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Obviously, if G is abelian, then (G,K) is a Gelfand pair. The following theorem, which
is one of the key theorems of the theory of Gelfand pairs, gives a sufficient criterion for a
pair (G,K) to be a Gelfand pair. Using this criterion, we will show later that there are lots
of Gelfand pairs.

Theorem 9.2. (Gelfand) Let G be locally compact (metrizable and separable) unimodular
group, σ : G → G be an involutive isomorphism of G (σ ◦ σ = idG), and Gσ = {s ∈ G |
σ(s) = s} be the subgroup of elements of G left fixed by σ. Let K be any closed subgroup of
Gσ and assume the following properties:

(1) The subgroup Gσ is compact.

(2) Every x ∈ G can be written (possibly not uniquely) as x = yz, with y ∈ K, z ∈ G, and
σ(z) = z−1.

Then (G,K) is Gelfand pair.

Proof. Since σ2 = idG, we have mod(σ)2 = mod(σ2) = mod(idG) = 1, and since mod(σ) > 0,
we get mod(σ) = 1 (see Vol I, Definition 8.17 and Proposition 8.31). It follows that σ leaves
any Haar measure λG of G invariant. For every f ∈ K(G), let fσ be the function given by

fσ(s) = f(σ(s)) = f(σ−1(s)), s ∈ G.

We check immediately that the map σ̂ : K(G) → K(G) given by σ̂(f) = fσ is an involutive
automorphism of the vector space K(G), and since σ leaves any Haar measure on G invariant,
it is an automorphism of the algebra K(G) (under convolution). Since σ(t) = t for all t ∈ K, if
f(x) = f(txt′) for all t, t ∈ K, then f(σ(txt′)) = f(tσ(x)t′) = f(σ(x)), so if f ∈ K(K\G/K)
then fσ ∈ K(K\G/K), which means that the automorphism σ̂ leaves the algebraK(K\G/K)
invariant, and its restriction to K(K\G/K) is an automorphism of this subalgebra. If we
can prove that

fσ ∗ gσ = gσ ∗ fσ, for all f, g ∈ K(K\G/K),

then we will have proven that K(K\G/K) is commutative.

The trick is that for any function f ∈ K(K\G/K), we have fσ = f̌ . Every x ∈ G can be
written as x = yz with y ∈ K and σ(z) = z−1, which yields

σ(x) = σ(yz) = σ(y)σ(z) = yz−1 = y(z−1y−1)y,

and for every f ∈ K(K\G/K), we have

f(σ(x)) = f(y(z−1y−1)y) = f(z−1y−1) = f(x−1) = f̌(x);

that is, fσ = f̌ . Since G is unimodular, the Haar measure is right-invariant, so for any two
function f, g ∈ K(G), we easily verify that

(f̌ ∗ ǧ)ˇ = g ∗ f.
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Then for f, g ∈ K(K\G/K), we have

fσ ∗ gσ = f̌ ∗ ǧ = (g ∗ f)ˇ = (g ∗ f)σ = gσ ∗ fσ,

where we used Vol I, Proposition 8.28 and the fact that mod(σ) = 1 to prove the equality
(g ∗ f)σ = gσ ∗ fσ. The details are left as an exercise.

From now on, we assume that (G,K) is a Gelfand pair .

Definition 9.3. The closure of K(K\G/K) in L1(G) is denoted L1(K\G/K). The space
L1(K\G/K) is an involutive, commutative, Banach subalgebra of L1(G). Similarly, denote
by L2(K\G/K) the closure of K(K\G/K) in L2(G).

The following results are proven in Dieudonné [12] (Chapter XXII, Section 6).

Proposition 9.3. The projection f 7→ f ] of K(G) onto K(K\G/K) extends to a continuous
projection of L1(G) onto L1(K\G/K). For any f ∈ L1(G), we have

∥∥f ]∥∥
1
≤ ‖f‖1, and the

class [f ]] is the class of the function f ] equal almost everywhere to the function

s 7→
∫
K

∫
K

f(tst′) dλK(t) dλK(t′).

Similarly, the projection f 7→ f ] of K(G) onto K(K\G/K) extends to a continuous projection
of L2(G) onto L2(K\G/K). For any f ∈ L2(G), we have

∥∥f ]∥∥
2
≤ ‖f‖2, and the class [f ]]

is the class of the function f ] equal almost everywhere to the function

s 7→
∫
K

∫
K

f(tst′) dλK(t) dλK(t′).

Definition 9.4. We denote by L1(G/K) and L2(G/K) the subspaces of L1(G) and L2(G)
consisting of the functions f , such that for almost all s ∈ G, we have

f(st) = f(s), for all t ∈ K.

Similarly, we denote by L1(K\G) and L2(K\G) the subspaces of L1(G) and L2(G) consisting
of the functions f , such that for almost all s ∈ G, we have

f(ts) = f(s), for all t ∈ K.

Let L1(K\G/K) = L1(G/K) ∩ L1(K\G) and L2(K\G/K) = L2(G/K) ∩ L2(K\G).

If f ∈ L1(G) (resp. f ∈ L2(G)), then f ] ∈ L1(K\G/K) (resp. f ] ∈ L2(K\G/K)),
and L1(K\G/K) (resp. L2(K\G/K)) is the canonical image in L1(G) (resp. L2(G)) of
L1(K\G/K) (resp. L2(K\G/K)).

We also obtain an alternative description of L1(K\G/K) (resp. L2(K\G/K)) in terms
of L1(G/K) and L1(K\G) (resp. L2(G/K) and L2(K\G)).

If we denote by L1(G/K), L1(K\G) (resp. L2(G/K), L2(K\G)) the canonical images
in L1(G) (resp. L2(G)) of L1(G/K),L1(K\G) (resp. L2(G/K),L2(K\G)), then we have
L1(K\G/K) = L1(G/K) ∩ L1(K\G) (resp. L2(K\G/K) = L2(G/K) ∩ L2(K\G)).
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9.2 Spherical Functions

Our next goal is to characterize the characters of the algebra L1(K\G/K) in terms of certain
functions in C(K\G/K) called spherical functions. In this chapter, we will use the notation
(f, g) as an abbreviation for ∫

G

f(x)g(x) dλG(x),

whenever such an integral makes sense for some functions f, g : G→ C.

Theorem 9.4. Every nonzero character ζ of the commutative Banach algebra L1(K\G/K)
is given by a unique function ω ∈ C(K\G/K), which is bounded and continuous on G, with

ζ(f) = (f, ω) =

∫
G

f(x)ω(x) dλG(x), f ∈ L1(K\G/K).

Furthermore, ω is uniformly continuous for every left-invariant metric on G, and |ω(s)| ≤
ω(e) = 1 for all s ∈ G.

Proof. Every character ζ of the commutative subalgebra L1(K\G/K) of M1(G) can be
extended to a character ζ ′ of the unital commutative Banach algebra L1(K\G/K) ⊕ Cδe
by setting ζ ′(f + λδe) = ζ(f) + λ. By Vol I, Theorem 9.19, we have |ζ(f)| ≤ ‖f‖1 for all
f ∈ L1(K\G/K). As a consequence, the map Φ: L1(G)→ C given by

Φ(f) = ζ(f ]), f ∈ L1(G)

is a linear form of norm ≤ 1 because by Proposition 9.3,
∥∥f ]∥∥

1
≤ ‖f‖1, and by Vol. I,

Theorem 5.51, there is a unique function ω0 ∈ L∞(G) with ‖ω0‖∞ ≤ 1, such that

Φ(f) = ζ(f ]) =

∫
G

f(x)ω0(x) dλG(x). (Φ1)

The problem is that ω0 ∈ L∞(G) is in the wrong space because we need it to be in C(K\G/K)
(and to be bounded by 1). To remedy this problem, we define another function ω in terms
of ω0, which we regularize by integrating against some function f0 ∈ K(K\G/K). In the
end, we will see that ω0 and ω are equal almost everywhere, but this will take some work.

First, observe that for all t, t′ ∈ K and all f ∈ K(G), we have∫
f(txt′)ω0(x) dλG(x) =

∫
f(x)ω0(x) dλG(x). (∗)

To prove this, if we let ht,t′ be the function given by ht,t′(x) = f(txt′), then will prove that

h]t,t′ = f ], and so ζ(f ]) = ζ(h]t,t′). Indeed, using the left and right invariance of the Haar
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measure λK , we have

h]t,t′(x) =

∫
K

∫
K

ht,t′(t1xt2) dλK(t1) dλK(t2)

=

∫
K

∫
K

f(tt1xt2t
′) dλK(t1) dλK(t2)

=

∫
K

∫
K

f(t1xt2) dλK(t1) dλK(t2) = f ](x).

By hypothesis, the character ζ is not identically zero, so there is some function f0 ∈
K(K\G/K), such that ζ(f0) 6= 0. Since ζ is a character of L1(K\G/K), for every function
g ∈ K(K\G/K), since f0 ∈ K(K\G/K) we also have g∗f0 ∈ K(K\G/K), so (g∗f0)] = g∗f0,
and using Fubini’s theorem and the fact that ζ is a character of K(K\G/K), we have

ζ(g) = ζ(f0)−1ζ(f0)ζ(g) = ζ(f0)−1ζ(g)ζ(f0)

= ζ(f0)−1ζ(g ∗ f0) = ζ(f0)−1ζ((g ∗ f0)])

= ζ(f0)−1

∫ ∫
G×G

f0(s−1x)g(s)ω0(x) dλG(s) dλG(x)

=

∫
G

g(s)ω(s) dλG(s),

with

ω(s) = ζ(f0)−1

∫
G

f0(s−1x)ω0(x) dλG(x) = ζ(f0)−1

∫
G

f0(x)ω0(sx) dλG(x). (ω1)

It follows by Theorem 14.10.6(ii) of Dieudonné [14] (Chapter XIV, Section 10) that ω is
bounded in G and uniformly continuous for every left-invariant distance on G. Observe that
for the integral on the right-hand side of

ζ(g) =

∫
G

g(s)ω(s) dλG(s)

to make sense, we need g ∈ K(K\G/K), since we only know that ω0 ∈ L∞(G). We will
extend the above equation to functions in L1(K\G/K) by density.

Next, we need to prove that ω ∈ C(K\G/K). For all t, t′ ∈ K, since f0 ∈ K(K\G/K),
by (ω1), we have

ω(tst′) = ζ(f0)−1

∫
G

f0(t′−1s−1t−1x)ω0(x) dλG(x)

= ζ(f0)−1

∫
G

f0(s−1t−1x)ω0(x) dλG(x)

= ζ(f0)−1

∫
G

f0(s−1x)ω0(x) dλG(x) = ω(s),
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where the first equation holds because f0 ∈ K(K\G/K) and we used (∗) with f(x) =
f0(s−1x) in the last step. Since K(K\G/K) is dense in L1(K\G/K), we proved that

ζ(f) = (f, ω) =

∫
G

f(x)ω(x) dλG(x), f ∈ L1(K\G/K). (†1)

We still need to prove that |ω(s)| ≤ 1 for all s ∈ G. Since we know that this is true of
ω0, we prove that [ω] = [ω0]. By Vol I, Theorem 7.10 and Theorem 5.51, it suffices to prove
that ∫

G

f(x)ω(x) dλ(x) =

∫
G

f(x)ω0(x) dλ(x) = ζ(f ]), for all f ∈ K(G).

Observe that since ω] = ω (because ω ∈ C(K\G/K)), and

ζ(g) =

∫
G

g(s)ω(s) dλG(s), g ∈ L1(K\G/K), (ζ1)

if we can prove that

(f ], ψ) =

∫
G

f ](x)ψ(x) dλG(x) =

∫
G

f(x)ψ](x) dλG(x) = (f, ψ]), (∗∗)

for all f ∈ K(G) and all ψ ∈ C(G), we will be done, because by (Φ1), (ζ1) and (∗∗),∫
G

f(x)ω0(x) dλ(x) = ζ(f ]) =

∫
G

f ](s)ω(s) dλG(s)

=

∫
G

f(s)ω](s) dλG(s)

=

∫
G

f(s)ω(s) dλG(s),

as claimed. To prove (∗∗), using Fubini, and the fact that G is unimodular, we have∫
G

f ](x)ψ(x) dλG(x) =

∫
G

∫
K

∫
K

f(tst′)ψ(s) dλK(t) dλK(t′) dλG(s)

=

∫
G

∫
K

∫
K

f(s)ψ(t−1st′−1) dλK(t) dλK(t′) dλG(s)

=

∫
G

∫
K

∫
K

f(s)ψ(tst′) dλK(t) dλK(t′) dλG(s)

=

∫
G

f(x)ψ](x) dλG(x).

Now, since ω = ω0 almost everywhere and since ω is continuous, we have proven that
there is unique function ω ∈ C(K\G/K) satisfying the condition of the proposition and that
|ω(s)| ≤ 1, since ‖ω0‖∞ ≤ 1. If we let s = e in

ω(s) = ζ(f0)−1

∫
G

f0(s−1x)ω0(x) dλG(x),
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since

ζ(f ]0) =

∫
G

f0(x)ω0(x) dλG(x),

and f ]0 = f0 because f0 ∈ K(K\G/K), we get

ω(e) = ζ(f0)−1

∫
G

f0(x)ω0(x) dλG(x)

= ζ(f0)−1ζ(f ]0) = ζ(f0)−1ζ(f0) = 1,

as claimed.

Remark: The above proof shows that the function ω ∈ C(K\G/K) of Theorem 9.4 is given
by

ω(s) = (f0, ω)−1

∫
G

f0(s−1x)ω(x) dλG(x),

with (f0, ω) =
∫
G
f0(s)ω(s) dλG(s), for any function f0 ∈ K(K\G/K), such that (f0, ω) 6= 0.

Definition 9.5. A bounded function ω ∈ C(K\G/K) is a spherical (or zonal spherical)
function on G relative to K, if the function

f 7→ (f, ω) =

∫
G

f(s)ω(s) dλG(s), f ∈ L1(K\G/K)

is a nonzero character of L1(K\G/K), which means that the map f 7→ (f, ω) is linear in
f ∈ L1(K\G/K) and that

(f ∗ g, ω) = (f, ω)(g, ω), for all f, g ∈ L1(K\G/K). (†2)

Theorem 9.4 shows that if ω is a spherical function, then ω(e) = 1 and |ω(s)| ≤ 1 for all
s ∈ G.

Proposition 9.5. If ω is a spherical function, then ω and ω̌ are also spherical functions.

Proof. For every f ∈ K(K\G/K), by Vol I, Proposition 7.24, we have∫
f(s)ω(s) dλG(s) =

∫
f(s)ω(s) dλG(s),

and for all f, g ∈ K(K\G/K), we have

f ∗ g = f ∗ g,
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which proves that ω induces a character, because∫
(f ∗ g)(s)ω(s) dλG(s) =

∫
(f ∗ g)(s)ω(s) dλG(s) =

∫
f ∗ g(s)ω(s) dλG(s)

=

∫
f(s)ω(s) dλG(s)

∫
g(s)ω(s) dλG(s) by (†2)

=

∫
f(s)ω(s) dλG(s)

∫
g(s)ω(s) dλG(s).

Since G is unimodular, we also have∫
G

f(s)ω̌(s) dλG(s) =

∫
G

f(s)ω(s−1) dλG(s)

=

∫
G

f(s−1)ω(s) dλG(s)

=

∫
G

f̌(s)ω(s) dλG(s),

and if f, g ∈ K(K\G/K), we have

(f ∗ g)ˇ = ǧ ∗ f̌ = f̌ ∗ ǧ,

so ω̌ induces a character.

Observe that Theorem 9.4 shows that a spherical function is uniformly continuous for
every left-invariant as well as every right-invariant distance on G. In general, a spherical
function does not have compact support .

The next theorem gives criteria for a bounded function in C(K\G/K) (different from the
zero function) to be a spherical function.

Theorem 9.6. Let ω be a bounded function in C(K\G/K) not equal to the zero function.
The following properties are equivalent:

(1) The function ω is a spherical function on G relative to K.

(2) We have ∫
K

ω(xty) dλK(t) = ω(x)ω(y), for all x, y ∈ G. (s1)

(3) We have ω(e) = 1, and for every function f ∈ K(K\G/K), there is some λf ∈ C,
such that

f ∗ ω = λfω. (s2)

In fact

λf = (f̌ , ω) =

∫
G

f̌(x)ω(x) dλG(x).

Similarly, ω ∗ f = λfω, for the same λf .
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Proof. First we prove that (3) implies (1). Assume that f ∗ ω = λfω for every f ∈
K(K\G/K). Since ω(e) = 1, by (s2), we have

λf̌ = (f̌ ∗ ω)(e) =

∫
G

f(s)ω(s) dλG(s) = (f, ω).

Therefore,

λf = (f̌ , ω).

For all f, g ∈ K(K\G/K), we have (f ∗ g)ˇ ∗ ω = (ǧ ∗ f̌) ∗ ω = ǧ ∗ (f̌ ∗ ω), which by (s2)
implies that

λǧ∗f̌ = λǧλf̌ ,

and so

(f ∗ g, ω) = (f, ω)(g, ω),

which shows that the map f 7→ (f, ω) is a character. The proof is similar if ω ∗ f = λfω.

We now prove that (1) implies (3). We claim that for all f ∈ K(K\G/K), we have

f ∗ ω = (f̌ , ω)ω =

(∫
G

f(s−1)ω(s) dλG(s)

)
ω. (†3)

Since f ∗ ω ∈ C(K\G/K), in view of (∗∗), namely

(h], ψ) = (h, ψ]), for all h ∈ K(G) and all ψ ∈ K(G),

and since ω] = ω, it suffices to prove that

(g, f ∗ ω) = (f̌ , ω)(g, ω), for all g ∈ K(K\G/K), (†4)

because by Proposition 9.1, (f ∗ ω)] = f ∗ ω] = f ∗ ω, so by (∗∗) and (†4),

(h, f ∗ ω) = (h, (f ∗ ω)])

= (h], f ∗ ω)

= (f̌ , ω)(h], ω)

= (f̌ , ω)(h, ω])

= (f̌ , ω)(h, ω) = (h, (f̌ , ω)ω)

for all h ∈ K(G), and thus f ∗ ω = (f̌ , ω)ω. In that last step, we used the fact that the map
f1, f2 7→ (f1, f2) is bilinear, so for every λ ∈ C, we have λ(f1, f2) = (λf1, f2) = (f1, λf2).

Using Fubini and the fact that G is unimodular, we have

(g, f ∗ ω) = (f̌ ∗ g, ω),
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since ∫
G

∫
G

g(s)f(t)ω(t−1s)dλG(t) dλG(s) =

∫
G

∫
G

g(ts)f(t)ω(s)dλG(t) dλG(s)

=

∫
G

∫
G

f(t−1)g(t−1s)ω(s)dλG(t) dλG(s).

Since ω is a spherical function, by (†2),

(g, f ∗ ω) = (f̌ ∗ g, ω) = (f̌ , ω)(g, ω).

Since ω̌ is also spherical (by Proposition 9.5), by (†3) and since G is unimodular, using Vol
I, Proposition 8.27, we have

ω ∗ f = (f̌ ∗ ω̌)
ˇ

= (f, ω̌)ω̌
ˇ

= (f, ω̌)ω = (f̌ , ω)ω.

Let us now prove that (2) and (3) are equivalent. For any ω ∈ C(K\G/K), define the
function h by

h(x, y) =

∫
K

ω(xty) dλK(t), x, y ∈ G.

A simple adaptation of the proof of Vol I, Proposition 8.20 shows the map x 7→ h(x, y) is
continuous. For all t′ ∈ K, since ω(t′xty) = ω(xty), we have h(t′x, y) = h(x, y), and due to
the invariance of λK , we have h(xt′, y) = h(x, y). It follows that the function x 7→ h(x, y) is
in C(K\G/K). Let us show that for every function f ∈ K(K\G/K), we have∫

G

f̌(x)h(x, y) dλG(x) = (f ∗ ω)(y). (†5)

Since f ∗ ω ∈ C(K\G/K) and G is unimodular, by Fubini, we have∫
G

f̌(x)h(x, y) dλG(x) =

∫
G

∫
K

f̌(x)ω(xty) dλK(t) dλG(x)

=

∫
G

∫
K

f(x)ω(x−1ty) dλG(x) dλK(t)

=

∫
K

(f ∗ ω)(ty) dλK(t) =

∫
K

(f ∗ ω)(y) dλK(t) = (f ∗ ω)(y).

If (2) holds, Equation (s1), namely∫
K

ω(xty) dλK(t) = ω(x)ω(y),

implies that h(x, y) = ω(x)ω(y), so by (†5), we have

(f ∗ ω)(y) =

∫
G

f̌(x)h(x, y) dλG(x) =

∫
G

f̌(x)ω(x)ω(y)dλG(x)

= ω(y)

∫
G

f̌(x)ω(x)dλG(x) = (f̌ , ω)ω(y),
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which proves (3).

Conversely, if (3) holds, we saw in proving that (3) implies (1) that f ∗ ω = (f̌ , ω)ω. We
prove that this implies that h(x, y) = ω(x)ω(y), which is (s1). For any function g ∈ K(G),
by (∗∗), using the fact that h, ω ∈ C(K\G/K) and (†3), we have

(g, h(−, y)) = (g, h(−, y)]) = (g], h(−, y)) = (ǧ] ∗ ω)(y)

= (g], ω)ω(y) = (g, ω])ω(y) = (g, ω)ω(y) = (g, ω(y)ω),

and so h(x, y) = ω(x)ω(y), as claimed.

Remark: If a bounded continuous function ω on G not equal to the zero function satisfies
the equation ∫

K

ω(xty) dλK(t) = ω(x)ω(y)

for all x, y ∈ G, then it must belong to C(K\G/K), and thus is a spherical function. Indeed,
since λK is left and right invariant, for any t′ ∈ K, we have

ω(xt′)ω(y) = ω(x)ω(y) = ω(x)ω(t′y)

for all x, y ∈ G and all t′ ∈ K, which shows that ω(xt′) = ω(x) and ω(t′y) = ω(y).

Definition 9.6. Let S(G/K), or simply S, denote the space of spherical functions on G
relative to K. This is a subspace of C(K\G/K) ∩ L∞(G).

Let A = L1(K\G/K) ⊕ Cδe, a commutative, involutive, unital Banach algebra. In the
degenerate case where δe ∈ L1(K\G/K), the group G is a discrete group and δe is invariant
by translation by the elements of K. This implies that K = {e}, and that G is commutative
and discrete. Otherwise, there is exactly one character of the algebra A = L1(K\G/K)⊕Cδe,
whose restriction to L1(K\G/K) is the zero function.

Definition 9.7. The subspace of characters of the commutative involutive Banach algebra
A = L1(K\G/K)⊕Cδe, whose restriction to L1(K\G/K) is not the zero function is denoted
by X0(A). This subspace is locally compact (metrizable and separable).

For every spherical function ω ∈ S(G/K), let ζω ∈ X0(A) be the character given by

ζω(f) = (f, ω) =

∫
G

f(x)ω(x) dλG(x), f ∈ L1(K\G/K).

The map ω 7→ ζω is a bijection between S(G/K) and X0(A). In fact, we have the following
stronger result.

Theorem 9.7. The following properties hold:
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(1) The map ω 7→ ζω is a homeomorphism of S(G/K) equipped with the induced topology
of Fréchet space of C(G) (see Vol I, Definition 2.18 and Proposition 2.23) onto X0(A)
equipped with the topology induced by the weak ∗-topology of the dual A′ of A (see Vol
I, Definition 9.13). Consequently, S(G/K) is locally compact.

(2) Every compact subset L of S(G/K) is equicontinuous.

(3) The map (x, ω) 7→ ω(x) from G× S(G/K) to C is continuous.

Proof sketch. The proof of (1) is given in Dieudonné [12] (Chapter XXII, Section 6, no.
22.6.9). This proof is very technical and makes use of the following results proven in
Dieudonné [12] (Chapter XXII, Section 1, no. 22.1.11.1 and 22.1.11.2).

Proposition 9.8. For every subset B of C(G) consisting of uniformly bounded functions,
the topology induced by the weak ∗-topology on L∞(G) (see Definition 3.19) is coarser than
the topology induced by the topology of C(G) as a Fréchet space.

Using Proposition 9.8, the following result can be shown.

Proposition 9.9. Let B be a subset of C(G) consisting of uniformly bounded functions and
having the following property: for every p0 ∈ B, for every compact subset K of G, for every
ε > 0, there is some neighborhood U of p0 in B for the weak ∗-topology on L∞(G) and some
compact neighborhood W of e in G, such that for every function p ∈ U , we have

|(a−1χW ∗ p)(s)− p(s)| ≤ ε for all s ∈ K,

where a = λG(W ). Then the topology on B induced by the weak ∗-topology on L∞(G) is
identical to the topology induced by the topology of C(G) as a Fréchet space.

Proposition 9.9 follows from the following result also proven in Dieudonné [12] (Chapter
XXII, Section 1, no. 22.1.11.5).

Proposition 9.10. For every function f ∈ L1(G) and for every bounded subset B of the
Banach space L∞(G), the map g 7→ f ∗ g is a continuous map from B equipped with the
weak ∗-topology on L∞(G) to the Fréchet space C(G).

The proof of Proposition 9.10 uses the trick that

(f ∗ g)(s) =

∫
G

f(t)g(t−1s) dλG(t) =

∫
G

f(st)g(t−1) dλG(t)

=

∫
G

(λs−1f)(t)ǧ(t) dλG(t) = (ǧ, λs−1f).

(2) Pick any x0 ∈ G. For every compact neighborhood V0 of x0, by definition of the
Fréchet topology on C(G), the restriction map f 7→ f |V0 from C(G) to C(V ;C) is contin-
uous, thus the image L0 of L under this map is compact. By Ascoli III (Vol I, Theorem
2.14, Dieudonné’s version), L0 is equicontinuous. Consequently, for every ε > 0 there is a
neighborhood V ⊆ V0 of x0, such that |ω(x)− ω(x0)| ≤ ε for all x ∈ V and all ω ∈ L.
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(3) Let (x0, ω0) be an element of G×S(G/K). By (2), for every ε > 0, there is a compact
neighborhood V of x0 in G and a compact neighborhood W of ω0 in S(G/K), such that
|ω(x) − ω(x0)| ≤ ε for all x ∈ V and all ω ∈ W . By definition of the Fréchet topology on
C(G), there is a neighborhood U ⊆ W of ω0 in S(G/K) such that |ω(x)− ω0(x)| ≤ ε for all
x ∈ V and all ω ∈ U . We deduce that

|ω(x)− ω0(x0)| ≤ |ω(x)− ω(x0)|+ |ω(x0)− ω0(x0)| ≤ 2ε

for all x ∈ V and all ω ∈ U .

A theory of spherical functions for Lie groups, in particular symmetric spaces, not based
on Gelfand pairs but instead on certain invariant differential operators is discussed in Hel-
gason [34] (Chapter 4).

In order to present some of the examples of Gelfand pairs involving Lie groups, we need
to discuss some material about semi-simple Lie groups.

9.3 Real Forms of a Complex Semi-Simple Lie

Algebra

This section assumes some background of Lie algebras and Lie groups. Such material is
discussed extensively in Carter, Segal and Macdonald [7], Dieudonné [11], Duistermaat and
Kolk [19], Fulton and Harris [25], Gallier and Quaintance [27, 28], Hall [31], Helgason [35],
Humphreys [38], Knapp [44, 43], Samelson [58], Serre [64, 63], and Varadarajan [67]. The
most elementary presentations occur in Carter, Segal and Macdonald [7], Hall [31], and
Gallier and Quaintance [27]. We need to review the process of “complexifying” a real vector
space V . But first, we recall how to view a complex vector space as a real vector space.

Definition 9.8. If V is a complex vector space, then we denote by V |R the vector space
whose underlying abelian group is V , but with the scalar multiplication restricted to R.

We can define the complexification VC of the real vector space V as the complex vector
space whose carrier is the tensor product C ⊗R V , but more directly as V × V , with the
addition operation

(u1, v1) + (u2, v2) = (u1 + u2, v1,+v2), u1, u2, v1, v2 ∈ V,

and the scalar product given by

(a+ ib)(u, v) = (au− bv, av + bu), a, b ∈ R, u, v ∈ V.

Observe that

(0, v) = i(v, 0),
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so we can write
(u, v) = (u, 0) + i(v, 0),

and if j : V → VC is the injection given by j(u) = (u, 0), for all u ∈ V , then we have an
isomorphism

VC ∼= V ⊕ iV,
as a direct sum of real subspaces. More precisely, the injection j induces an isomorphism

(VC)|R ∼= V ⊕ iV,

but by abuse of notation, we usually write VC = V ⊕ iV . Using the above isomorphism, the
scalar multiplication of a vector u+ iv ∈ VC by a complex number a+ ib is given by

(a+ ib)(u+ iv) = au− bv + i(av + bu).

The map cV : VC → VC given by

cV (u+ iv) = u− iv, u, v ∈ V,

is semi-linear and an involution; that is, c2
V = idVC . The map cV is called the conjugation of

VC associated with V . Observe that

V = {w ∈ VC | cV (w) = w}, iV = {w ∈ VC | cV (w) = −w}.

To simplify notation, we usually write c instead of cV .

If g is a real Lie algebra, then its complexification gC is the complex Lie algebra whose
carrier is the complex vector space, such that (gC)|R = g⊕ig as a direct sum of real subspaces,
with the Lie bracket given by

[u+ iv, x+ iy]C = [u, x]− [v, y] + i([u, y] + [v, x]).

If c is the conjugation of gC associated with g, then

c([u+ iv, x+ iy]C) = c([u, x]− [v, y] + i([u, y] + [v, x]))

= c([u, x])− c([v, y])− i(c([u, y]) + c([v, x]))

= [u, x]− [v, y]− i([u, y] + [v, x])

= [u− iv, x− iy]C = [c(u+ iv), c(x+ iy)]C.

This shows that c is an automorphism of the real Lie algebra (gC)|R.

Definition 9.9. Given a complex Lie algebra g, a real Lie algebra g0, such that

g|R ∼= g0 ⊕ ig0

as a direct sum of real subspaces is called a real form of g. The complex Lie algebra g is the
complexification of g0.
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The following proposition shows that finding a real form of a complex Lie algebra g is
equivalent to finding an automorphism c of the real Lie algebra g|R satisfying the properties
stated in the following proposition.

Proposition 9.11. Let g be a complex Lie algebra, g0 be a real Lie algebra, and assume that
g|R = g0⊕ ig0; that is, g is the complexification of g0. Then the conjugation c0 : g→ g given
by c0(u+ iv) = u− iv (u, v ∈ g0) has the following properties:

(a) The map c0 is semi-linear, which means that c0(x + y) = c0(x) + c0(y), and c0(ix) =
−ic0(x), for all x, y ∈ g.

(b) The map c0 is idempotent; that is, c2
0 = idg.

(c) We have
c0([x, y]) = [c0(x), c0(y)], for all x, y ∈ g.

Conversely, if a map c : g→ g has properties (a), (b), (c), then if we consider the linear
automorphism c : g|R → g|R of g viewed as a real vector space, and if we let

g1 = {x ∈ g | c(x) = x},

the subspace g1 is a real Lie subalgebra of g|R, and we have

g|R = g1 ⊕ ig1;

that is, g is the complexification of g1.

Proof. We already proved the first part of the proposition. Conversely, since c is an involutive
automorphism of g|R, we know by linear algebra that

g|R = g1 ⊕ g−1

where g1 and g−1 are the real eigenspaces of c given by

g1 = {x ∈ g | c(x) = x}, g−1 = {x ∈ g | c(x) = −x}.

Since c is semi-linear, for every x ∈ g1, we have

c(ix) = −ic(x) = −ix,

so ix ∈ g−1, which shows that
ig1 ⊆ g−1. (∗)

For every x ∈ g−1, we have
c(ix) = −ic(x) = ix,

so ix ∈ g1, which shows that
ig−1 ⊆ g1.
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But the above inclusion implies that

g−1 ⊆ ig1. (∗∗)

By (∗) and (∗∗), we get
g−1 = ig1,

and so
g|R = g1 ⊕ ig1,

as claimed. Since c is the identity on g1 and satisfies (c), we conclude that g1 is a (real)
subalgebra of g.

Definition 9.10. Given a complex Lie algebra g, a map c0 : g→ g satisfying conditions (a),
(b), (c) of Proposition 9.11 is called a conjugation.

Recall that a semi-simple Lie algebra has no commutative ideals other than (0). A
Lie group is semi-simple if its Lie algebra is semi-simple; see Gallier and Quaintance [27],
Section 21.5, Definition 21.8. If the reader is familiar with the notion of Killing form,
Cartan’s criterion says that a Lie algebra is semi-simple iff its Killing form is nondegenerate;
see Gallier and Quaintance [27], Section 21.6, Theorem 21.26, Knapp [44], and Serre [64].

Let Gu be a real compact semi-simple simply-connected Lie group, gu be its real semi-
simple Lie algebra, and g = gu⊕igu be the complex Lie algebra which is its complexification.
Then it is possible to determine all the real forms g0 of g (up to isomorphism).

Recall that the conjugation cu : g→ g associated with gu is given by

cu(x+ iy) = x− iy, x, y ∈ gu.

It can be proven that in order to find all conjugations c0 : g→ g of g, it suffices to consider
conjugations that commute with cu; see Dieudonné [11] (Chapter XXI, no. 21.18.3). The
key to the proof is that the Killing form associated with the Lie algebra of a compact semi-
simple connected Lie group is negative definite; see Gallier and Quaintance [27], Section
21.6, Theorem 21.27. Technically, we have the following result.

Theorem 9.12. Let Gu be a real compact semi-simple simply-connected Lie group, gu be its
real semi-simple Lie algebra, and g = gu ⊕ igu be its complexification. For any conjugation
c of g, there is an automorphism ϕ : g→ g such that cu and ϕ ◦ c ◦ ϕ−1 commute.

Proof. The proof assumes some familiarity with the properties of the Killing form and may
be safely omitted. The Killing form is the bilinear form on g defined by

Bg(u, v) = tr(adu ◦ adv), u, v ∈ g,

where adu(w) = [u,w]. The first fact is that the mapping

(u, v) 7→ 〈u, v〉 = −Bg(u, cu(v))
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is a Hermitian inner product on g, where Bg is the Killing form of g; see Dieudonné [11]
(Chapter XXI, no. 21.17.2.1). Consider the map h = c ◦ cu. For simplicity of notation,
we suppress the composition symbol. Since c and cu are semi-linear maps that preserve the
Lie bracket, h = ccu is actually linear, and since h−1 = (ccu)

−1 = cuc, we see that ccu is
an automorphism of the Lie algebra g. We will prove that h is self-adjoint with respect to
the inner product 〈−,−〉. As a consequence, h is diagonalizable and has real eigenvalues, so
S = h2 has strictly positive eigenvalues. Then we will see that ϕ = S−1/4 does the job.

First, observe that

h−1cu = cuccu = cuh.

Since h and h−1 preserve the Lie bracket, they also preserve the Killing form, and since
the Killing form is invariant under automorphisms (see Proposition 21.25 in Gallier and
Quaintance [27]), so we have

〈h(u), v〉 = −Bg(h(u), cu(v))

= −Bg(u, h
−1(cu(v)))

= −Bg(u, cu(h(v)))

= 〈u, h(v)〉,

which shows that h is self-adjoint. Thus, h is diagonalizable with respect to an orthonormal
basis of eigenvectors and its eigenvalues are real. But then S = h2 is a self-adjoint linear
map with strictly positive eigenvalues, so with respect to an orthonormal basis (e1, . . . , en)
of eigenvectors, S is represented by a diagonal matrix

Λ = diag(λ1, . . . , λn),

with λi > 0 for i = 1, . . . , n. For any real number t > 0, define the matrix Λt as

Λt = diag(λt1, . . . , λ
t
n).

Obviously, the linear isomorphisms St represented by the matrices Λt commute with h. We
claim that they are also Lie algebra isomorphisms of g. The Lie bracket on g is determined
by its values on the basis (e1, . . . , en), that is, by equations

[ej, ek] =
n∑
l=1

ajklel, 1 ≤ j, k ≤ n,

for some ajkl ∈ C. To express that S is an automorphism of g is equivalent to stating the
equations

[S(ej), S(ek)] = S([ej, ek]), 1 ≤ j, k ≤ n,

and since

[S(ej), S(ek)] = λjλk[ej, ek], S(el) = λlel,
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to stating the equations

λjλk

n∑
l′=1

ajkl′el′ =
n∑
l=1

λlajklel,

that is, to stating the equations

λjλkajkl = ajklλl, 1 ≤ j, k, l ≤ n. (∗1)

These equations are nontrivial only when ajkl 6= 0, in which case

λjλk = λl.

These equations imply that
λtjλ

t
k = λtl

for all t ≥ 0, so
λtjλ

t
kajkl = ajklλ

t
l , 1 ≤ j, k, l ≤ n,

which shows that the St are Lie algebra isomorphisms of g. If we let S−t = (St)−1 for t > 0,
consider the conjugation of g given by

c(t) = StcuS
−t. (c(t))

Beware that in general c(1) 6= c, this is why we use the notation c(t) instead of ct. Observe
that since h = ccu,

cuhc
−1
u = cuccuc

−1
u = cuc = h−1,

so
cuhc

−1
u cuhc

−1
u = h−1h−1,

namely
cuh

2c−1
u = h−2,

and since S = h2, we get cuSc
−1
u = S−1. Since c2

u = id, the equation cuSc
−1
u = S−1 is

equivalent to
Scu = cuS

−1. (∗2)

We prove that the above equation implies that

Stcu = cuS
−t for all t > 0. (∗3)

The map cu is linear over R, so we can express (∗2) in terms of matrices over the basis
(e1, . . . , en). If (cij) is the matrix representing cu, we know that S is represented by the
diagonal matrix Λ, so (∗2) is equivalent to the equations

λicij = cijλ
−1
j , 1 ≤ i, j ≤ n. (∗4)

These equations are trivially satisfied if cij = 0 and otherwise they imply

λi = λ−1
j ,
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which in turn imply
λti = λ−tj , for all t > 0,

and thus
λticij = cijλ

−t
j , 1 ≤ i, j ≤ n, (∗5)

which means that
Stcu = cuS

−t,

as claimed. Using the equation Stcu = cuS
−t from (∗3) and Equation (c(t)), we have

cc(t) = cStcuS
−t = ccuS

−2t = hS−2t

c(t)c = (cc(t))−1 = S2th−1 = h−1S2t.

If we let t = 1/4, then
h−1S1/2 = cc(t) = c(t)c,

since S = h2 and so
hS−1/2 = hS−1S1/2 = hh−2S1/2 = h−1S1/2.

Therefore, with ϕ = S−1/4, we see that c(1/4) = S1/4cuS
−1/4 = ϕ−1 ◦ cu ◦ϕ commutes with c,

namely
c ◦ ϕ−1 ◦ cu ◦ ϕ = ϕ−1 ◦ cu ◦ ϕ ◦ c,

which implies
ϕ ◦ c ◦ ϕ−1 ◦ cu = cu ◦ ϕ ◦ c ◦ ϕ−1,

that is, cu and ϕ ◦ c ◦ ϕ−1 commute.

� Beware that even though S = h2, in general, S1/2 6= h because h may have some negative
eigenvalues, but S is positive definite and so are all of its powers St.

Let c0 : g→ g be a conjugation of g that commutes with cu. In this case, for any x ∈ gu,
since

c0(x) = c0(cu(x)) = cu(c0(x)),

we see that c0(x) ∈ gu, so gu is invariant under c0, and similarly, for any x ∈ gu, since

c0(ix) = −c0(cu(ix)) = −cu(c0(ix)),

so igu is also invariant under c0.

Since the restriction of c0 to gu is an involutive automorphism of gu, we know by linear
algebra that

gu = E1 ⊕ E−1,

where E1 and E−1 are the real eigenspaces of c0 given by

E1 = {x ∈ gu | c0(x) = x}, E−1 = {x ∈ gu | c0(x) = −x}.
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It is customary to denote E1 by k0 and E−1 by ip0, where both are real vector spaces, so
that

gu = k0 ⊕ ip0,

and igu = ik0 ⊕ p0. Since c0 is semi-linear, for any ix ∈ ip0, we have

−ix = c0(ix) = −ic0(x),

so c0(x) = x if x ∈ p0, and for ix ∈ ik0, we have

c0(ix) = −ic0(x) = −ix,

since c0(x) = x for x ∈ k0. Consequently, the (real) Lie algebra g0 of fixed points of c0 is

g0 = k0 ⊕ p0,

and
g = g0 + ig0 = k0 ⊕ p0 ⊕ ik0 ⊕ ip0 = k0 ⊕ ip0 ⊕ ik0 ⊕ p0 = gu ⊕ igu,

so g0 is a semi-simple Lie algebra.

Definition 9.11. The decomposition

g0 = k0 ⊕ p0

is called a Cartan decomposition of the real Lie algebra g0 (with respect to the conjugation
c0).

Next, we give several examples of Cartan decompositions. The group

G = SL(n,C) = {X ∈ Mn(C) | det(X) = 1}

is one of the simplest and most important examples of a complex semi-simple Lie group, and
the Lie group

Gu = SU(n) = {X ∈ Mn(C) | XX∗ = X∗X = In, det(X) = 1}

is one of the simplest and most important example of a real semi-simple Lie group, so we
use these groups in our examples. The Lie group SL(n,C) has Lie algebra sl(n,C) and the
Lie group SU(n) has Lie algebra su(n), both defined in the next section.

9.4 Examples of Cartan Decompositions

Example 9.1. Consider the real Lie algebra gu = su(n) of n × n complex skew-hermitian
matrices with zero trace,

su(n) = {X ∈ Mn(C) | X∗ = −X, tr(X) = 0}.
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We claim that the complexification g = su(n)C of su(n) is the complex Lie algebra sl(n,C)
of n× n complex matrices with zero trace,

sl(n,C) = {X ∈ Mn(C) | tr(X) = 0}.

First, observe that isu(n) is the (real) vector space (not a Lie algebra) of hermitian matrices
with zero trace,

isu(n) = {X ∈ Mn(C) | X∗ = X, tr(X) = 0}.
Indeed, if X∗ = −X, then (iX)∗ = −iX∗ = iX, and if tr(X) = 0, then tr(iX) = itr(X) = 0,
so

isu(n) ⊆ {X ∈ Mn(C) | X∗ = X, tr(X) = 0}.
Conversely, if X∗ = X, then (iX)∗ = −iX∗ = −iX, and if tr(X) = 0, then tr(iX) =
itr(X) = 0, so

i{X ∈ Mn(C) | X∗ = X, tr(X) = 0} ⊆ su(n).

But the above equation implies that

{X ∈ Mn(C) | X∗ = X, tr(X) = 0} ⊆ isu(n),

so
isu(n) = {X ∈ Mn(C) | X∗ = X, tr(X) = 0}.

Every complex matrix X ∈ Mn(C) can be written as

X =
1

2
(X +X∗) +

1

2
(X −X∗),

and we have

1

2
(X +X∗)∗ =

1

2
(X∗ +X∗∗) =

1

2
(X∗ +X) =

1

2
(X +X∗),

and
1

2
(X −X∗)∗ =

1

2
(X∗ −X∗∗) =

1

2
(X∗ −X) = −1

2
(X −X∗).

Also, if tr(X) = 0, then

tr

(
1

2
(X +X∗)

)
=

1

2
(tr(X) + tr(X∗)) =

1

2
(tr(X) + tr(X)) = 0,

and

tr

(
1

2
(X −X∗)

)
=

1

2
(tr(X)− tr(X∗)) =

1

2
(tr(X)− tr(X)) = 0.

Thus, if X ∈ sl(n,C), then 1
2
(X +X∗) ∈ su(n) and 1

2
(X −X∗) ∈ isu(n), which proves that

sl(n,C) = su(n)⊕ isu(n). (∗)

The sum is a direct sum because the only matrix such that X∗ = −X and X∗ = X is the
matrix X = 0.

Since su(n) = {X ∈ sl(n,C) | X∗ = −X}, the conjugation cu of sl(n,C) associated with
su(n) is the map given by cu(X) = −X∗.
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We now consider three types of conjugations on g = sl(n,C) which lead to interesting
real forms of sl(n,C).

Example 9.2. Consider the conjugation c0 of sl(n,C) given by c0(X) = X. Obviously, c0

commutes with cu. The restriction of c0 to gu = su(n) is also c0, and we obtain

k0 = so(n) = {X ∈ su(n) | X = X}
ip0 = {X ∈ su(n) | X = −X},

where so(n) is the Lie algebra of n× n real skew-symmetric matrices.

But for any X = (xjk) ∈ su(n), if xjk = ajk + ibjk, with ajk, bjk ∈ R, since X∗ = −X, we
have xkj = −ajk + ibjk, so akk = 0. If we also have X = −X, then ajk + ibjk = −ajk + ibjk, so
ajk = 0 for all j, k, which means that X = (ibjk), with (bjk) a real symmetric matrix. Thus

p0 = s(n) = {X ∈ Mn(R) | X> = X, tr(X) = 0},

the vector space of n × n real symmetric matrices with zero trace (not a Lie algebra). We
obtain

g0 = k0 ⊕ p0 = so(n)⊕ s(n) = sl(n,R),

with
sl(n,R) = {X ∈ Mn(R) | tr(X) = 0}.

It turns out that a Gelfand pair arises from two Lie groups G0 and K0, whose Lie
algebras are sl(n,R) and sl(n,R)∩ su(n) = so(n). To describe these groups, first we need to
consider the complex simply-connected Lie group G = SL(n,C), whose complex Lie algebra
is g = sl(n,C).

Definition 9.12. A complex Lie group G of (complex) dimension n can also be viewed
as a real Lie group of (real) dimension 2n denoted G|R, by viewing a holomorphic chart
ϕ : U → Cn of G as a real smooth function ϕ : U → R2n. More generally, a complex
manifold M of (complex) dimension n can be viewed as a real manifold of dimension 2n
denoted M |R.

Using the correspondence between simply-connected real Lie groups and real Lie al-
gebras (see Gallier and Quaintance [27], Section 19.4), there is a unique automorphism
σ0 : SL(n,C)|R → SL(n,C)|R such that d(σ0)I = c0, where c0 : sl(n,C)R → sl(n,C)|R is the
map c0(X) = X, and σ0 is also given by

σ0(X) = X.

The real Lie group G0 is the set of fixed points of SL(n,C)|R under the automorphism
σ0, given by

G0 = {X ∈ SL(n,C)R | X = X} = SL(n,R).
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Note that the Lie algebra of G0 = SL(n,R) is g0 = sl(n,R). The simply-connected real Lie
group Gu whose Lie algebra is su(n) is Gu = SU(n). We define K0 by

K0 = G0 ∩Gu = SL(n,R) ∩ SU(n) = SO(n).

Note that

SL(n,R) = {X ∈ Mn(R) | det(X) = 1}
SO(n) = {X ∈ Mn(R) | XX> = X>X = In, det(X) = 1},

and that the Lie algebra of the compact Lie group K0 = SO(n) is

k0 = so(n) = {X ∈ Mn(R) | X> = −X}.

The following paragraph is meant for readers well acquainted with Lie groups and Lie
algebras and can be safely omitted. The real Lie group G0 = SL(n,R) is semi-simple and
the real Lie group K0 = SO(n) is semi-simple for n ≥ 3. These groups are connected but
not simply-connected. For n = 2, the universal cover of SL(2,R) is R3 and the universal

cover of SO(2) is R. For n ≥ 3, the universal cover G̃0 = S̃L(n,R) of G0 = SL(n,R)

is not a matrix group and the universal cover of K0 = SO(n) is K̃0 = Spin(n). The
real semi-simple (connected) Lie group G0 = SL(n,R) is called a real form of the complex
semi-simple (simply-connected) Lie group G = SL(n,C). We will show later that the pair
(G0, K0) = (SL(n,R),SO(n)) is a Gelfand pair.

Example 9.3. Again, consider the real Lie algebra gu = su(n) of n × n complex skew-
hermitian matrices with zero trace. In this example, we also need the Lie algebra u(n) of
the real Lie group

U(n) = {X ∈ Mn(C) | XX∗ = X∗X = In},

given by
u(n) = {X ∈ Mn(C) | X∗ = −X}.

In other words, u(n) consists of all skew-Hermitian complex matrices. Observe that

su(n) = {X ∈ u(n) | tr(X) = 0} = u(n) ∩ sl(n,C).

We showed in Example 9.2 that the complexification su(n)C of su(n) is the complex Lie
algebra g = sl(n,C) of n×n complex matrices with zero trace. This time, let c0 : sl(n,C)→
sl(n,C) be the conjugation given by

c0(X) = −Ip,n−pX∗Ip,n−p,

where

Ip,n−p =

(
Ip 0p,n−p

0n−p,p −Ip,n−p

)
,
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with 1 ≤ p ≤ n − 1. Obviously, I∗p,n−p = Ip,n−p and I2
p,n−p = In, and c0 commutes with

cu (given by cu(X) = −X∗). Since matrices in su(n) satisfy the property X∗ = −X, the
restriction of c0 to su(n) is given by c0(X) = Ip,n−pXIp,n−p. If we write

X =

(
U B
A V

)
,

where U ∈ Mp(C), V ∈ Mn−p(C), A ∈ Mn−p,p(C), B ∈ Mp,n−p(C), then

Ip,n−pXIp,n−p =

(
Ip 0p,n−p

0n−p,p −In−p

)(
U B
A V

)(
Ip 0p,n−p

0n−p,p −In−p

)
=

(
U −B
−A V

)
.

Therefore

k0 = {X ∈ su(n) | Ip,n−pXIp,n−p = X}

=

{(
U 0
0 V

) ∣∣∣∣ U∗ = −U, V ∗ = −V, tr(U) + tr(V ) = 0

}
=

{(
U 0
0 V

) ∣∣∣∣ U ∈ u(p), V ∈ u(n− p), tr(U) + tr(V ) = 0

}
,

and

ip0 = {X ∈ su(n) | −Ip,n−pXIp,n−p = X}

=

{(
0 −A∗
A 0

) ∣∣∣∣ A ∈ Mn−p,p(C)

}
,

so

p0 =

{(
0 −iA∗
iA 0

) ∣∣∣∣ A ∈ Mn−p,p(C)

}
=

{(
0 (iA)∗

iA 0

) ∣∣∣∣ A ∈ Mn−p,p(C)

}
=

{(
0 A∗

A 0

) ∣∣∣∣ A ∈ Mn−p,p(C)

}
.

Consequently, the real Lie algebra g0 corresponding to the conjugation c0 is given by

g0 = k0 ⊕ p0 =

{(
U A∗

A V

) ∣∣∣∣ U ∈ u(p), V ∈ u(n− p), A ∈ Mn−p,p(C), tr(U) + tr(V ) = 0

}
.

Thus, g0 = su(p, n− p), the Lie algebra of the real Lie group SU(p, n− p) defined by

SU(p, n− p) = {X ∈ Mn(C) | X∗Ip,n−pX = Ip,n−p, det(X) = 1}.

Given any p× p matrix U , if α = tr(U), we let

U1 = U − α

p
Ip,
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and then we have
tr(U1) = tr(U)− pα

p
= α− α = 0,

so we can write
U = U1 +

α

p
Ip

with tr(U1) = 0, and since tr(U) + tr(V ) = 0, we also let

V1 = V +
α

n− p
In−p,

so that tr(V1) = 0 and

V = V1 −
α

n− p
In−p,

which shows that we can also write every matrix X ∈ k0 as

X =

(
U1 0
0 0

)
+ i

(α
p
Ip 0

0 − α
n−pIn−p

)
+

(
0 0
0 V1

)
, U1 ∈ su(p), V1 ∈ su(n− p), α ∈ R,

and
k0
∼= su(p)⊕ iR⊕ su(n− p),

where all the summands are ideals.

The derivative d(σ0)I of the automorphism σ0 : SL(n,C)|R → SL(n,C)|R given by

σ0(X) = Ip,n−p(X
∗)−1Ip,n−p

is the map c0 : sl(n,C)R → sl(n,C)R also given by c0(X) = −Ip,n−pX∗Ip,n−p. The real Lie
group G0 is the set of fixed points of SL(n,C)R under the automorphism σ0, given by

G0 = {X ∈ SL(n,C)|R | X = Ip,n−p(X
∗)−1Ip,n−p}

= {X ∈ SL(n,C)|R | X∗Ip,n−pX = Ip,n−p} = SU(p, n− p).

If we write

X =

(
U B
A V

)
for any X ∈ SU(p, n− p), it is easy to check that if X ∈ SU(p, n− p) ∩ SU(n), then

U∗U − A∗A = Ip

V ∗V −B∗B = In−p

U∗U + A∗A = Ip

V ∗V +B∗B = In−p

U∗B − A∗V = 0

U∗B + A∗V = 0,
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which implies that A = 0 and B = 0. Therefore,

K0 = G0 ∩Gu = SU(p, n− p) ∩ SU(n)

=

{(
U 0
0 V

) ∣∣∣∣ U ∈ U(p), V ∈ U(n− p), det(U) det(V ) = 1

}
.

This group is usually denoted S(U(p) ×U(n − p)). For any X ∈ S(U(p) ×U(n − p)), we
can write

X =

(
U1 0
0 In−p

)
λ 0 0 0
0 Ip−1 0 0
0 0 λ−1 0
0 0 0 In−p−1

(Ip 0
0 V1

)
,

with U1 ∈ SU(p), V1 ∈ SU(n− p) and λ ∈ C with |λ| = 1. Therefore

K0 = S(U(p)×U(n− p)) ∼= SU(p)×U(1)× SU(n− p).

Again, the following paragraph is meant for readers well acquainted with Lie groups and
Lie algebras and can be safely omitted. The Lie algebra of the real compact Lie group
K0 = SU(p) × U(1) × SU(n − p) is k0 = su(p) ⊕ iR ⊕ su(n − p). The real Lie groups
G0 = SU(p, n − p) and K0 = SU(p) × U(1) × SU(n − p) are semi-simple and connected

but not simply-connected. The universal cover of K0 is K̃0 = SU(p) × R × SU(n − p),
and the universal cover of G0 = SU(p, n− p) is G0 = Spin(p, n− p). The real semi-simple
(connected) Lie group G0 = SU(p, n − q) is called a real form of the complex semi-simple
(simply-connected) Lie group G = SL(n,C). We will show later that the pair (G0, K0) =
(SU(p, n− p),SU(p)×U(1)× SU(n− p)) is a Gelfand pair.

9.5 Quaternionic and Complex Symplectic

Lie Groups

Again, consider the real Lie algebra gu = su(n) of n × n complex skew-hermitian matrices
with zero trace and its complexification g = sl(n,C). This time assume n = 2m, and let
c0 : sl(n,C)→ sl(n,C) be the conjugation given by

c0(X) = −JmXJm,

with

Jm =

(
0m Im
−Im 0m

)
.

Since J2
m = −I2m, Jm = Jm, and J>m = −Jm, the conjugation c0 commutes with cu. The auto-

morphism σ0 : SL(2m,C)|R → SL(2m,C)R such that (dσ0)I = c0 is also σ0(X) = −JmXJm.
In this example, since we also consider matrices whose entries are quaternions, we denote
the group SU(n) as SU(n,C) and the Lie algebra su(n) as su(n,C) to avoid confusion.
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We will determine the Lie algebras k0 = {X ∈ su(2m,C) | c0(X) = X}, the group
G0 = {X ∈ SL(2m,C)|R | σ0(X) = X}, and the group K0 = G0 ∩ SU(2m,C). The group
G0 is a Lie group known as SU∗(2m). We give another description of the group SU∗(2m)
as a group of matrices with quaternion entries (SL(m,H)). We also give two descriptions of
the group K0; one as a group of matrices with quaternion entries (SU(m,H)), and the other
as a symplectic group (Sp(m)).

If we write

X =

(
U V
A B

)
∈ SL(2m,C),

where U, V,A,B ∈ Mm(C), then we have

−JmXJm =

(
0 −Im
Im 0

)(
U V
A B

)(
0 Im
−Im 0

)
=

(
0 −Im
Im 0

)(
−V U
−B A

)
=

(
B −A
−V U

)
,

so X = −JmXJm iff
U = B, V = −A, A = −V , B = U,

which simplifies to
B = U, A = −V .

Therefore, X is of the form

X =

(
U V
−V U

)
,

and the real Lie group G0 = {X ∈ SL(2m,C)|R | X = −JmXJm} is given by

G0 =

{(
U V
−V U

)
∈ SL(2m,C)

∣∣∣∣ U, V ∈ Mm(C)

}
.

Definition 9.13. The real Lie group SU∗(2m) is defined by

SU∗(2m) =

{(
U V
−V U

)
∈ SL(2m,C)

∣∣∣∣ U, V ∈ Mm(C)

}
.

The notation SU∗(2m) for this real Lie group is introduced in Helgason [35], Chapter
X, Section 2. We will show later that the (real) Lie group SU∗(2m) is isomorphic to the
quaternionic (real) Lie group SL(m,H).

Since X ∈ SU∗(2m) is invertible, for any vector z =
(
x
y

)
∈ C2m, if Xz = 0 then z = 0, so

in particular, for y = 0, since

Xz =

(
U V
−V U

)(
x
y

)
=

(
Ux+ V y
−V x+ Uy

)
,
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we have Xz = 0 iff Ux + V y = 0 and V x + Uy = 0. So with y = 0, if Ux = 0, then x = 0,
and with x = 0, if V y = 0, then y = 0 which implies that U and V are invertible. Therefore,
the group G0, the set of fixed points of σ0, is also given by

G0 =

{
X =

(
U V
−V U

) ∣∣∣∣ U, V ∈ GL(m,C)|R, det(X) = 1

}
.

Since the conjugation c0 on sl(2m,C) has the same expression as the conjugation σ0 on
SL(2m,C)|R, the same computation as above shows that

su∗(2m) =

{(
U V
−V U

) ∣∣∣∣ U, V ∈ Mm(C), tr(U) + tr(U) = 0

}
.

We also have

k0 = {X ∈ su(2m,C) | X = −JmXJm}

=

{(
U V
−V U

) ∣∣∣∣ U ∈ u(m,C), V ∈ Mm(C), V > = V

}
=

{(
U V
−V −U>

) ∣∣∣∣ U ∈ u(m,C), V ∈ Mm(C), V > = V

}
,

and

ip0 = {X ∈ su(2m,C) | X = JmXJm}

=

{(
U V
V −U

) ∣∣∣∣ U ∈ u(m,C), V ∈ Mm(C), V > = −V, tr(U) = 0

}
.

Consequently, we have

p0 =

{(
iU iV
iV −iU

) ∣∣∣∣ U ∈ u(m,C), V ∈ Mm(C), V > = −V, tr(U) = 0

}
=

{(
A B
−B A

) ∣∣∣∣ A ∈ iu(m,C), B ∈ Mm(C), B> = −B, tr(A) = 0

}
=

{(
A B
−B A

) ∣∣∣∣ A, B ∈ Mm(C), A∗ = A, B> = −B, tr(A) = 0

}
=

{(
A B
−B A>

) ∣∣∣∣ A, B ∈ Mm(C), A∗ = A, B> = −B, tr(A) = 0

}
.

Observe that if X ∈ k0, then automatically tr(X) = 0. We immediately check that

su∗(2m) = k0 ⊕ p0.

The (real) Lie group SU∗(2m) can also be viewed as the (real) Lie group SL(m,H), where
H is the skew-field of quaternions. To see this, it is convenient to view the real algebra H as

H = C⊕ Cj.
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using the fact that every quaternion can be written uniquely as

q = a+ xi+ yj + zk = a+ xi+ (y + zi)j, a, x, y, z ∈ R,

since ij = k. Since the conjugate q of q is q = a − xi − yj − zk = a − xi − (y + zi)j, if we
write q = α + βj with α, β ∈ C, then

q = α− βj.

Also, since ij = −ji, for any α = a+ bi ∈ C, we have

jα = j(a+ bi) = ja+ bji = aj − bij = (a− bi)j = αj.

In summary, we have
α + jβ = α− βj, jα = αj. (conj)

Every m×m matrix X = (αk` + βk`j) ∈ Mm(H) can be written uniquely as

X = U + V j,

with U = (αk`) ∈ Mm(C) and V = (βk`) ∈ Mm(C). Then in view of the equations (conj), if
X = (αk` + βk`j) ∈ Mm(H) and if we define

X =
(
α`k + β`kj

)
and X∗ = X

>
,

then we have
X∗ = (U + V j)∗ = U∗ − V >j.

We also have
jV = V j.

In summary, we have
(U + V j)∗ = U∗ − V >j, jV = V j. (conj’)

The (real) Lie group GL(m,H) is the group of matrices X ∈ Mm(H) such that there is
some Y ∈ Mm(H) with

XY = Y X = Im.

Observe that since j2 = −1, we have

(U1 + V1j)(U2 + V2j) = U1U2 + U1V2j + V1jU2 + V1jV2j

= U1U2 + U1V2j + V1U2j + V1V2j
2

= U1U2 − V1V2 + (U1V2 + V1U2)j.

Since (
U1 V1

−V1 U1

)(
U2 V2

−V2 U2

)
=

(
U1U2 − V1V2 U1V2 + V1U2

−U1 V2 − V1U2 U1 U2 − V1V2

)
,
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the map ϕ : Mm(H)→ M2m(C) given by

ϕ(U + V j) =

(
U V
−V U

)
is an injective R-algebra homomorphism. Observe that this is the matrix in the definition
of G0.

What we did previously shows that this homomorphism restricts to an injective homo-
morphism ϕ : GL(m,H)→ GL(2m,C), which allows us to view the group GL(m,H) as

ϕ(GL(m,H)) =

{
X =

(
U V
−V U

) ∣∣∣∣ X ∈ GL(2m,C), U, V ∈ GL(m,C)

}
.

Definition 9.14. We define the (real) Lie group SL(m,H) as

SL(m,H) = {X ∈ ϕ(GL(m,H)) | det(X) = 1} = ϕ(GL(m,H)) ∩ SL(2m,C).

Therefore, we conclude that

G0 = SU∗(2m) = SL(m,H).

This is a real, semi-simple, simply-connected Lie group.

Technically, SL(m,H) should be defined as the subgroup of GL(m,H) given by

{X ∈ GL(m,H) | det(ϕ(X)) = 1},

but for our purpose, it is more convenient to view GL(m,H) and its various subgroups as
subgroups of GL(2m,C).

With this identification in mind, the Lie algebras gl(m,H) of GL(m,H) and sl(m,H) of
SL(m,H) are given by

gl(m,H) =

{(
U V
−V U

) ∣∣∣∣ U, V ∈Mm(C)

}
,

and

sl(m,H) =

{(
U V
−V U

) ∣∣∣∣ U, V ∈Mm(C), tr(U) + tr(U) = 0

}
.

Observe that
sl(m,H) = su∗(2m),

as it should be.

We can also identify

K0 = G0 ∩ SU(2m,C) = SU∗(2m) ∩ SU(2m,C) = SL(m,H) ∩ SU(2m,C).
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There are two descriptions for the Lie group K0; one as a quaternionic group; another in
terms of the complex symplectic group Sp(m,C).

For the quaternionic description, define U(m,H) as the (real) Lie group

U(m,H) = {X = U + V j ∈ GL(m,H) | X∗X = XX∗ = Im}.

It is easy to see that only the first equation is needed. Using (conj’), this is equivalent to

(U + V j)∗(U + V j) = (U∗ − V >j)(U + V j)

= U∗U + U∗V j − V >jU − V >jV j
= U∗U + U∗V j − V >Uj − V >V j2

= U∗U + V >V + (U∗V − V >U)j = Im,

so we get
U∗U + V >V = Im, U∗V − V >U = 0.

On the other hand, for

X =

(
U V
−V U

)
,

we have X∗X = I2m iff(
U∗ −V >
V ∗ U>

)(
U V
−V U

)
=

(
U∗U + V >V U∗V − V >U
V ∗U − U>V V ∗V + U>U

)
=

(
Im 0
0 Im

)
,

and these are equivalent to the same conditions as above,

U∗U + V >V = Im, U∗V − V >U = 0.

We conclude that

ϕ(U(m,H)) = ϕ(GL(m,H)) ∩U(2m,C).

Definition 9.15. The (real) Lie group SU(m,H) is defined as

SU(m,H) = ϕ(GL(m,H)) ∩ SU(2m,C).

Since
SL(m,H) = ϕ(GL(m,H)) ∩ SL(2m,C),

we have
SU(m,H) = SL(m,H) ∩ SU(2m,C).

Again, for our purpose, it is more convenient to view SL(m,H) and SU(m,H) as subgroups
of GL(2m,C).
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In summary, we see that

K0 = SU∗(2m) ∩ SU(2m,C) = SL(m,H) ∩ SU(2m,C)

= SU(m,H).

This is a real, semi-simple, simply-connected Lie group.

The Lie algebra u(m,H) of U(m,H) consists of the space of matrices

u(m,H) = {X ∈ Mm(H) | X∗ = −X}.

If we write X = U + V j (with U, V ∈ Mn(C)), then X∗ = −X is equivalent to

(U + V j)∗ = U∗ − V >j = −U − V j,

that is,
U∗ = −U, V > = V.

Thus, we can also write

u(m,H) =

{(
U V
−V U

) ∣∣∣∣ U, V ∈Mm(C), U∗ = −U, V > = V

}
=

{(
U V
−V −U>

) ∣∣∣∣ U ∈ u(m,C), V ∈Mm(C), V > = V

}
,

and so
u(m,H) = k0.

Since
su(m,H) = {X ∈ u(m,H) | tr(X) = 0},

we find that
su(m,H) = u(m,H) = k0,

as it should be.

The real Lie group SU(m,H) has another description in terms of the complex symplectic
group Sp(m,C). Since

SU(m,H) = {X ∈ M2m(C) | X∗X = I2m, X = −JmXJm, det(X) = 1},

first from X∗X = I2m, we get

I2m = X∗X = −X∗JmXJm;

since J2
m = −I2m, we get

X∗JmX = Jm,

and since Jm = Jm, by conjugating both sides, we get

X>JmX = Jm.
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Definition 9.16. The complex symplectic group Sp(m,C) is defined as

Sp(m,C) = {X ∈ M2m(C) | X>JmX = Jm}.

It can be shown that the complex Lie algebra sp(m,C) of the complex Lie group Sp(m,C)
is given by

sp(m,C) =

{(
U V1

V2 −U>
) ∣∣∣∣ U, V1, V2 ∈Mm(C), V >1 = V1, V

>
2 = V2

}
;

see Helgason [35] (Chapter X, Section 2, page 446).

The preceding argument showed that

SU(m,H) = SL(m,H) ∩ SU(2m,C) ⊆ Sp(m,C) ∩U(2m,C).

It can also be shown that the group Sp(m,C) is connected; see Helgason [35] (Chapter
X, Section 2, Lemma 2.4) or Knapp [44] (Chapter I, Proposition 1.145). Since Jm is
invertible (J−1

m = −Jm), the equation X>JmX = Jm shows that det(X) = ±1. Since
det(I) = 1 and Sp(m,C) is connected, we deduce that for every X ∈ Sp(m,C), we have
det(X) = 1. (There are also purely algebraic proofs of this property using the fact that
the symplectic transvections generate Sp(m,C) and that they have determinant 1.) Thus, if
X ∈ Sp(m,C)∩U(2m,C), then in fact X ∈ Sp(m,C)∩SU(2m,C), and from X>JmX = Jm
and X∗X = I2m, by reversing the above argument, we deduce that X = −JmXJm, and so

Sp(m,C) ∩U(2m,C) ⊆ SL(m,H) ∩ SU(2m,C) = SU(m,H).

We just showed that

SU(m,H) = SL(m,H) ∩ SU(2m,C) = Sp(m,C) ∩U(2m,C).

Definition 9.17. We define the real Lie group Sp(m) as

Sp(m) = Sp(m,C) ∩U(2m,C);

see Helgason [35] (Chapter X, Section 2).

Since we showed that det(X) = 1 for all X ∈ Sp(m,C), we also have

Sp(m) = Sp(m,C) ∩ SU(2m,C).

In view of Definition 9.17, we just proved that

Sp(m) = SU(m,H),
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and the Lie algebra sp(m) of Sp(m) is equal to sp(m,C) ∩ u(2m,C), so it is given by

sp(m) =

{(
U V
−V ∗ −U>

) ∣∣∣∣U ∈ u(m,C), V ∈ Mm(C), V > = V

}
=

{(
U V
−V −U>

) ∣∣∣∣U ∈ u(m,C), V ∈ Mm(C), V > = V

}
.

Again,
sp(m) = k0,

as it should be.

The real semi-simple simply-connected Lie group G0 = SL(m,H) = SU∗(2m) is another
real form of the complex semi-simple (simply-connected) Lie group G = SL(2m,C). We
will show later that the pair (G0, K0) = (SL(m,H),SU(m,H)) = (SU∗(2m),Sp(m)) is a
Gelfand pair.

It can be shown that up to isomorphism, SL(n,R), SU(p, n − p), and SL(m,H) =
SU∗(2m) (when n = 2m), are the only real forms of SL(n,C); see Helgason [35] and
Dieudonné [11] (Chapter XXI, Section 21.18.11).

9.6 Real Forms of Complex Semi-Simple

Simply-Connected Lie Groups

A general method to find real forms of a complex, semi-simple, connected, simply-connected
Lie group G with complex semi-simple Lie algebra g goes as follows. Suppose we have real,
compact, semi-simple, connected, simply-connected Lie group Gu with Lie algebra gu, such
that g = gu⊕ igu is the complexification of the real Lie algebra gu. In our previous examples,
g = sl(n,C), G = SL(n,C), gu = su(n,C), and Gu = SU(n,C). By a famous theorem of
Hermann Weyl, such a real semi-simple Lie algebra gu and such a compact, semi-simple,
connected, simply-connected, Lie group Gu always exist; see Dieudonné [11] (Chapter XXI,
no. 21.20.7).

Also assume that we have a conjugation c0 : g→ g that commutes with the conjugation
cu associated with gu. Using the correspondence between (real) connected, simply-connected
Lie groups and (real) Lie algebras, there is a unique involutive automorphism σ0 : G|R → G|R
such that d(σ0)e = c0, where c0 : g|R → g|R. If P is the closed submanifold of G|R which is the
image of the real vector space igu by the exponential map expG : g→ G (ix 7→ exp(ix), x ∈
gu), then the following result can be shown.

Proposition 9.13. The exponential map expG is a diffeomorphism of igu onto P , and the
map (x, y) 7→ xy is a diffeomorphism of Gu × P onto G|R (as real manifolds).

The automorphism σ0 of G|R leaves Gu and P |R invariant since c0 leaves gu and igu
invariant.
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Example 9.4. If G = SL(n,C), g = sl(n,C), Gu = SU(n,C), and gu = su(n,C), then

igu = isu(n,C) = {X ∈ Mn(C) | X∗ = X, tr(X) = 0},

and P = expG(igu) is the manifold of hermitian positive definite matrices with determinant
+1. The factorization SL(n,C) = SU(n,C)P is the polar form for matrices in SL(n,C).

Let G0 be the real Lie subgroup of G|R given by

G0 = {s ∈ G|R | σ0(s) = s}.

It is shown in Dieudonné [16] (Proposition 20.4.3) that the Lie algebra g0 of G0 is the
subalgebra of g consisting of the set of fixed points of d(σ0)e. Since G is semi-simple, it is
not hard to show (using the Killing form of g and the fact that the Killing form is invariant
under automorphisms) that g0 is semi-simple. Thus, the group G0 is a real semi-simple Lie
group. Since σ0 leaves Gu invariant, the group

K0 = G0 ∩Gu = {s ∈ Gu | σ0(s) = s}

is a real compact subgroup of Gu consisting of the fixed points of Gu under σ0. The group
G0 also contains the image P0 of p0 ⊆ igu under the exponential map v 7→ expG0

(v), and
since expG0

(c0(v)) = σ0(expG0
(v)) (see Proposition 19.7 in Gallier and Quaintance [27]), the

manifold P0 is the set of fixed points of P |R under σ0. We have the following result whose
proof is given in Dieudonné [16] (Proposition 21.18.5.1).

Proposition 9.14. The map v 7→ expG0
(v) is a diffeomorphism of p0 onto the closed man-

ifold P0, and the map (y, z) 7→ yz from K0 × P0 to G0 is a diffeomorphism.

Example 9.5. If G = SL(n,C), g = sl(n,C), Gu = SU(n,C), and gu = su(n,C), and
c0(X) = X, as in Example 9.2, we have

G0 = SL(n,R), K0 = SO(n), k0 = so(n), p0 = s(n) = {X ∈ Mn(R) | X> = X},

and P0 = expG0
(p0) is the manifold of symmetric positive definite matrices with determinant

+1. The factorization SL(n,R) = SO(n)P0 is the polar form for matrices in SL(n,R).

Thus G0 is a real, noncompact, semi-simple, connected Lie group, diffeomorphic to the
product of a compact semi-simple Lie group K0 and some RN . It can be shown that the
group K0 is a maximal compact subgroup of G0, is connected, but in general not semi-simple
nor simply-connected.

Definition 9.18. Given a complex, semi-simple, connected, simply-connected Lie group G, a
real, semi-simple, connected, simply-connected, compact Lie group Gu such that g = gu⊕igu
(g is the complexification of the gu) is called a compact form of G. The real, semi-simple,
connected Lie group G0 corresponding to σ0 as above is a real form of G.
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The pair (G0, K0) is a Gelfand pair, but not with respect to the involution σ0, because σ0 is
the identity on P0. However, there is also a unique involutive automorphism σu : G|R → G|R
such that d(σu)e = cu, and this involution makes (G0, K0) a Gelfand pair.

Since k0 ⊆ gu and since gu is the set of fixed points of cu, the Lie group K0 is a set of fixed
points of σu. Similarly, since p0 ⊆ igu, and since cu(ix) = −ix for all x ∈ gu, we see that
σu(expG0

(ix)) = expG0
(cu(ix)) = expG0

(−ix) = (expG0
(ix))−1 for all ix ∈ p0, so σu(s) = s−1

for all s ∈ P0 (since P0 = expG0
(p0)).

Proposition 9.15. We have G0 = K0P0, σu(s) = s for all s ∈ K0, and σu(s) = s−1 for all
s ∈ P0. The group K0 is the set of fixed points of σu,

K0 = {s ∈ G0 | σu(s) = s}.

Proof. Since every s ∈ G0 = K0P0 can be written as s = xy with x ∈ K0 and y ∈ P0, we
have σu(s) = s iff σu(xy) = xy, but then

xy = σu(xy) = σu(x)σu(y) = xy−1,

so we deduce that

y2 = e.

However, y ∈ P0 = expG0
(p0), so for y = expG0

(w) we have y2 = expG0
(2w) = e, and since

expG0
is a diffeomorphism on p0, we must have w = 0, and thus y = e.

In summary, since K0 is compact, we proved that (G0, K0) is a Gelfand pair with invo-
lution σu.

The real, semi-simple, connected Lie group G0 is called a real form of the complex, semi-
simple, connected, simply-connected Lie group G because its real Lie algebra g0 is a real
form of the complex Lie algebra g of G.

There are other real, semi-simple, connected Lie groups having g0 as Lie algebra, and
they can all be found (up to isomorphism) as follows; see Dieudonné [11] (Chapter XXI, no.
21.18.8–21.18.12).

Proposition 9.16. Let G̃0 be the universal cover of G0, π : G̃0 → G0 be the covering map,
and K̃0 = π−1(K0). Then K̃0 is isomorphic to the universal cover of the compact Lie group

K0, the exponential map expG̃0
is a diffeomorphism of p0 onto a closed submanifold P̃0 of

G̃0, such that K̃0 ∩ P̃0 = {e}, and the map (x, y) 7→ xy is a diffeomorphism of K̃0 × P̃0 onto

G̃0. The center Z of G̃0 is a discrete subgroup contained in the center of K̃0.

If K0 is not semi-simple, then Z is not equal to the center of K̃0, and K̃0 is not compact.
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Theorem 9.17. Every real, semi-simple, connected Lie group G1 having g0 as real Lie
algebra is of the form G1 = G̃0/D, where D is a (discrete) subgroup of the center Z of

G̃0. The center C1 of G1 is given by C1 = Z/D. The Lie group K1 = K̃0/D is a connected
subgroup of G1 which contains C1 (in general, C1 is not equal to the center of G1), and whose
Lie algebra is k0. The Lie group K1 is compact iff C1 is finite. The exponential map expG1

is a diffeomorphism of p0 onto a closed submanifold P1 of G1, such that K1 ∩ P1 = {e}, and
the map (x, y) 7→ xy is a diffeomorphism of K1 × P1 onto G1.

Definition 9.19. The factorization G1 = K1P1 is called a Cartan decomposition of G1.

The Cartan decomposition is a generalization of the polar form for invertible matrices.

It can also be shown that K1 is isomorphic to the product of a compact Lie group with
some Rm. Thus, G1 is diffeomorphic to the product of a compact Lie group with some RM

(in fact, this compact group is maximal in G1).

The reasoning in the proof of Proposition 9.15 involving the conjugation σu can be used
to show that the conjugation σu on G̃0, such that d(σu)e = cu induces a conjugation on

G1 = G̃0/D by passing to the quotient, and because Z is contained in K̃0, that

K1 = {s ∈ G1 | σu(s) = s},

and that σu(s) = s−1 for all s ∈ P1. Using the proof of Proposition 21.18.8 in Dieudonné
[11], we can show that if the center C1 of G1 is finite, then K1 is compact, and so (G1, K1)
is a Gelfand pair with involution σu.

9.7 Examples of Gelfand Pairs

There are three important cases for which Gelfand’s theorem (Theorem 9.2) applies.

(1) Let G be a compact, connected real Lie group, and σ be an involutive automorphism
of G (σ 6= idG); see Dieudonné [11] (Chapter XXI, no. 21.18.13). Let Gσ be the closed
(thus compact) Lie subgroup of G consisting of the fixed points of σ,

Gσ = {s ∈ G | σ(s) = s}.

The derivative θ = dσe of σ is an involution of the Lie algebra g of G. Then as in
Section 9.3, we know by linear algebra that

g = g1 ⊕ g−1,

where g1 and g−1 are the real eigenspaces of θ given by

g1 = {x ∈ g | θ(x) = x}, g−1 = {x ∈ g | θ(x) = −x}.
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Let Gσ
0 be the connected component of e in Gσ. For any closed subgroup K (thus com-

pact) such that Gσ
0 ⊆ K ⊆ Gσ, using some differential geometry, it can be shown that

g1 is the Lie algebra of K; see O’Neill [54] or Gallier and Quaintance [27] (Proposition
23.33). Let P = exp(g−1). Then σ(s) = s for all s ∈ K and σ(s) = s−1 for all s ∈ P
(since θ(x) = −x for all x ∈ g−1). It remains to prove that G = KP . For this, again
we use some differential geometry.

Since K is compact, G/K has some G-invariant metric. In fact, G/K is a naturally
reductive homogeneous space. Since G is compact, G/K is compact, and by Hopf–
Rinov, it is geodesically complete. But since G/K is naturally reductive, the tangent
space Te(G/K) ∼= g−1, and every geodesic γx through e with initial velocity x ∈ g−1 is
given by

γx(t) = π(expG(tx));

see Proposition 23.27 in Gallier and Quaintance [27]. Consequently, π(P ) = G/K, or
equivalently, G = PK. But since P = exp(g−1), we see that P is closed under the
map s 7→ s−1, and since G = PK, for every s ∈ G, we have s = xy with x ∈ P and
y ∈ K, so s−1 = y−1x−1 ∈ KP , and since this holds for any s ∈ G, we have G = KP .
Therefore, (G,K) is a Gelfand pair for the involution σ.

If the compact Lie group G is also semi-simple, then its Killing form is negative definite,
so G/K is a symmetric space of compact type.

(2) Let Gu be a real, compact, semi-simple, connected, simply-connected Lie group, gu be
its Lie algebra, g = gu⊕ igu be the complexification of gu, and G be the complex, semi-
simple, connected, simply-connected Lie group with Lie algebra g. For any conjugation
c0 : g→ g that commutes with the conjugation cu associated with gu, let g0 be the real
form of g induced by c0. For any real form G1 of G with Lie algebra g0, let σu be the
involution of G1, such that d(σu)e = cu, as explained in Section 9.6. If the center C1

of G1 is finite, then K1 = {s ∈ G1 | σu(s) = s} is a compact subgroup of G1, such that
(G1, K1) is Gelfand pair. The space G1/K1 is a symmetric space of non-compact type.

A typical example is given by G = SL(n,C), Gu = SU(n), G1 = SL(n,R), and
K1 = SO(n,R); the maps c0, cu, and σ0, are given by c0(X) = X, cu(X) = −X∗,
σ0(X) = X, σu(X) = −X∗.

(3) The group G is unimodular and contains

(a) A closed commutative, normal subgroup A such that s2 = e implies s = e for all
s ∈ A, and

(b) A compact subgroup K such that the mapping (t, s) 7→ ts from K × A to G is a
homeomorphism. This implies that G is a semi-direct product of K and A, with
A the normal factor. But beware that due to the order of the factors, since every
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element g ∈ G = KA is written uniquely as g = ka with k ∈ K and a ∈ A, the
multiplication in G = KA is given by

(k1a1)(k2a2) = (k1k2)([k−1
2 a1k2]a2),

where k1, k2 ∈ K and a1, a2 ∈ A. So K acts on A by conjugation on the right .
See Section 7.4 and Gallier and Quaintance [27], Section 19.5, Definition 19.20
and the remarks that follow. A typical example is G = SE(n,R).

Let σ be given by σ(ts) = ts−1, for all t ∈ K and all s ∈ A. Obviously σ is continuous,
and we have

σ2(ts) = σ(ts−1) = ts,

so σ2 = idG. For t, t ∈ K and s, s′ ∈ A, since A is a normal subgroup of G and s ∈ A,
we have t′−1s−1t′ ∈ A, and since s′ ∈ A, so we also have t′−1st′s′ ∈ A, and we have

σ(tst′s′) = σ((tt′)(t′−1st′s′)) = tt′(s′−1t′−1s−1t′),

and

σ(ts)σ(t′s′) = ts−1t′s′−1 = tt′(t′−1s−1t′s′−1).

Since from above t′−1s−1t′ ∈ A, and since A is abelian, t′−1s−1t′s′−1 = s′−1t′−1s−1t′, and
so σ(tst′s′) = σ(ts)σ(t′s′). Thus, σ is an involutive automorphism of G. By definition,
K = {t ∈ G | σ(t) = t}, and σ(s) = s−1 for s ∈ A. Therefore, (G,K) is a Gelfand pair.

Example 9.6. Assume the group G is compact. If (G,K) is a Gelfand pair, then the
closure L2(K\G/K) of K(K\G/K) in L2(G) is commutative, which corresponds to the
situation considered in Proposition 6.21. Furthermore, the restriction of every character of
L1(K\G/K) to L2(K\G/K) is a (continuous) character of the algebra L2(K\G/K). We
know that the direct sum

B =
⊕

(ρ:σ0)=1

Cωρ

is a dense algebra in L2(K\G/K), and it is easy to see that the only homomorphisms from
B to C different from the zero function are the maps of the form f 7→ (f, ωρ), which shows
that the spherical functions of G relative to K are the partial traces ωρ for all ρ ∈ R(G),
such that (ρ : σ0) = 1 (see Definition 6.16 and Proposition 6.21). Since ωρ ∈ L1(G), the
set of functions f ∈ L∞(G) such that |(f − ωρ, ωρ)| ≤ 1

2
is a neighborhood of ωρ in the

weak ∗-topology of L∞(G). Since (ωρ, ωρ) = 1 and (ωρ′ , ωρ) = 0 when ρ 6= ρ′, we conclude
that the space S(G/K) is discrete.

The Grassmannians constitute a very good example. Let G = SO(n) (with n ≥ 2), let

Ik,n−k =

(
Ik 0
0 −In−k

)
,
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where Ik is the k × k-identity matrix, and let σ be given by

σ(P ) = Ik,n−kPIk,n−k, P ∈ SO(n).

It is clear that σ is an involutive automorphism of G. Let us find the set Gσ of fixed points
of σ. If we write

P =

(
Q U
V R

)
, Q ∈Mk,k(R), U ∈Mk,n−k(R), V ∈Mn−k,k(R), R ∈Mn−k,n−k(R),

then P = Ik,n−kPIk,n−k iff(
Q U
V R

)
=

(
Ik 0
0 −In−k

)(
Q U
V R

)(
Ik 0
0 −In−k

)
,

iff (
Q U
V R

)
=

(
Q −U
−V R

)
,

so U = 0, V = 0, Q ∈ O(k) and R ∈ O(n − k). Since P ∈ SO(n), we conclude that
det(Q) det(R) = 1, so

Gσ =

{(
Q 0
0 R

) ∣∣∣∣ Q ∈ O(k), R ∈ O(n− k), det(Q) det(R) = 1

}
;

that is,
Gσ = S(O(k)×O(n− k)).

We also have
Gσ

0 = SO(k)× SO(n− k).

For K = Gσ, the homogeneous space

G/K = SO(n)/(S(O(k)×O(n− k)))

is the Grassmannian G(k, n) of k-subspaces in Rn. For K = SO(k) × SO(n − k), the
homogeneous space

G/K = SO(n)/(SO(k)× SO(n− k))

is the Grassmannian G0(k, n) of oriented k-subspaces in Rn. In particular, for k = 1,
G0(1, n− 1) = Sn−1 and G(1, n− 1) = RPn−1.

Example 9.7. Let G be a real, semi-simple, connected, noncompact Lie group with finite
center and K be a maximal compact subgroup of K, so that (G,K) is a Gelfand pair, as in
(2) above. Note that we are now denoting G1 as G and K1 as K, we hope that this does not
cause any confusion.

We showed that G = KP where P is closed manifold in G, and P is closed under the
map s 7→ s−1, but in general is not a group. However, it is known that there is closed
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solvable subgroup S of G such that G = KS, and that the map (x, y) 7→ xy from K × S to
G is a diffeomorphism; for the definition of a solvable lie algebra and a solvable Lie group,
see Gallier and Quaintance [27], Section 21.5, Definition 21.12. This is a corollary of the
Iwasawa decomposition, which is a generalization of the QR-decomposition for invertible
matrices; see Dieudonné [11] (Chapter XXI, no. 21.21.10). Since (yx)−1 = x−1y−1, the map
(y, x) 7→ yx from S × K to G is also a diffeomorphism since it is the composition of the
diffeomorphisms (y, x) 7→ (x−1, y−1) from S×K to K ×S, the map (x, y) 7→ xy from K ×S
to G, and the map s 7→ s−1 from G to G. A way to construct spherical functions goes as
follows.

Suppose we have a continuous homomorphism α : S → C∗ (called an exponential of S).
Then we can extend α to G as follows:

α(st) = α(s), for all s ∈ S and all t ∈ K. (∗)

We claim that the following properties hold

α(xt) = α(x), for all x ∈ G and all t ∈ K
α(sx) = α(s)α(x), for all s ∈ S and all x ∈ G.

Since for x ∈ G, we can write x = st′ with s ∈ S and t′ ∈ K, by (∗), we have

α(xt) = α(st′t) = α(s) = α(st′) = α(x).

Similarly, we can write x = s′t with s′ ∈ S and t ∈ K, so by (∗), we have

α(sx) = α(ss′t) = α(ss′) = α(s)α(s′) = α(s)α(s′t) = α(s)α(x).

Define the function ω : G→ C by

ω(x) =

∫
K

α(tx) dλK(t). (†4)

The function ω is continuous, and we claim that if it is bounded, then it is a spherical
function. By the remark just after Theorem 9.6, it suffices to prove that the equation∫

K

ω(xt′y) dλK(t′) = ω(x)ω(y), for all x, y ∈ G (s1)

holds. The left-hand side of this equation is∫
K

ω(xt′y) dλK(t′) =

∫
K

∫
K

α(txt′y) dλK(t) dλK(t′).

We can also write for every fixed x ∈ G and all t ∈ K, tx = s(t)u(t), with s(t) ∈ S and
u(t) ∈ K, where s and u are continuous in t ∈ K, and using Fubini, the invariance of λK ,
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and the equations just after (∗),∫
K

∫
K

α(txt′y) dλK(t) dλK(t′) =

∫
K

∫
K

α(s(t)u(t)t′y) dλK(t) dλK(t′)

=

∫
K

∫
K

α(s(t)t′y) dλK(t) dλK(t′)

=

∫
K

∫
K

α(s(t))α(t′y) dλK(t) dλK(t′)

=

∫
K

∫
K

α(s(t)u(t))α(t′y) dλK(t) dλK(t′)

=

∫
K

∫
K

α(tx)α(t′y) dλK(t) dλK(t′) = ω(x)ω(y).

Harish–Chandra has shown that all continuous solutions of the functional equation (s1)
are given by (†4). Such functions may be called generalized spherical functions. He also
determined explicitly the exponentials α : S → C∗ of S by a very deep study of the Lie
algebra of G. One also knows exactly when the generalized spherical functions are bounded,
and thus the spherical functions are completely known.

Example 9.8. Consider the groups G = SL(2,R), K = SO(2), and

S = S0 =

{(
a b
0 a−1

) ∣∣∣∣ a, b ∈ R, a > 0

}
,

from Example 6.5. We know that G = SL(2,R) acts transitively on the upper half plane
P = {z = x+ iy ∈ C | y > 0} by the action given by

X · z =

(
a b
c d

)
· z =

az + b

cz + d
, z = x+ iy ∈ P,

and that the stabilizer of i is SO(2). Given any z = x + iy ∈ P , there is a unique coset
XSO(2) ⊆ SL(2,R) (where X ∈ SL(2,R)) that maps i to z, and in view of the unique
factorization of a matrix X in SL(2,R) as X = st with s ∈ S0 and t ∈ K, we can pick as a
representative of this coset XSO(2) the matrix sz ∈ S0, such that

sz · i = z = x+ iy,

namely

sz =

(√
y x/

√
y

0 1/
√
y

)
.

We will show that the functions f in C(K\G/K) are those which may be written as
f(1/2(a2 + b2 + c2 + d2)), where f is a continuous function defined on the interval [1,+∞).
The proof is fairly tedious and involves a geometric argument which identifies a double
coset KXK (with X ∈ SL(2,R)) as a circle, the orbit of a point ir on the imaginary axis



658 CHAPTER 9. HARMONIC ANALYSIS ON GELFAND PAIRS

(0 < r ≤ 1) under the action of K. We will also determine the exponentials α in terms of
the continuous homomorphisms from R∗+ to C∗.

Since every coset XK (with X ∈ SL(2,R)) corresponds to a unique point z ∈ P in the
upper half plane, and since there is a unique matrix sz ∈ S0 such that sz · i = z = x + iy,
the coset XK is uniquely represented by the matrix sz ∈ S0. It follows that the double
coset KXK is uniquely determined by the set of matrices Ksz, and geometrically this set
of matrices corresponds to the orbit in P of the (left) action of K = SO(2) on the point
z. Although this is not obvious, such an orbit is a circle centered on the y-axis. To show
this, we will prove that it suffices to prove that the orbit of a point ir on the imaginary axis
(0 < r ≤ 1) under the action of K is a circle of center iv and radius R, with

v =
1

2

(
r +

1

r

)
, R =

1

2

∣∣∣∣1r − r
∣∣∣∣ ;

see Figure 9.1.

/2

v
i

i

i

Figure 9.1: The orbit of i/2 is the red circle with center iv = 5i/4 and radius R = 3/4.

If so, the equation of this circle is x2 + (y − v)2 = R2, that is,

x2 + y2 − 2yv = R2 − v2.

But

v2 − 1 =
1

4
r2 +

1

2
+

1

4r2
− 1 =

1

4
r2 − 1

2
+

1

4r2
=

(
1

2

(
1

r
− r
))2

= R2,

so R2 − v2 = −1, and the equation of our circle is

x2 + y2 + 1 = 2yv. (∗1)
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We also showed that R =
√
v2 − 1.

We can now prove that the orbit of any point z = x + iy in the upper half plane under
the action of K is a circle centered on the y-axis, which is also the orbit of a point ir with
0 < r ≤ 1 under the action of K. See Figure 9.2.

v
i
i

iv

iv

z

Figure 9.2: The upper half plane partitioned into the circular orbits of ir, for 0 < r ≤ 1. If
r = 1, the orbit is the single point i. When r is close to zero, the radius of the orbit is very
large.

Observe that since R =
√
v2 − 1, R > 0 and v > 0, we have v ≥ 1. We have to find

r > 0, such that

r +
1

r
= 2v,

that is
r2 − 2vr + 1 = 0,

and the zeros of this equation are

r = v ±
√
v2 − 1.

If r = v−
√
v2 − 1, then 0 < r ≤ 1. Therefore, we found that z ∈ P is on the circle of center

iv and radius R, the orbit of ir by the action of K, with

v =
x2 + y2 + 1

2y
, R =

√
v2 − 1, r = v −

√
v2 − 1 = v −R.
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It remains to prove that the orbit of the point ir with 0 < r ≤ 1 under the action of K
is the circle of center iv and radius R, with

v =
1

2

(
r +

1

r

)
, R =

√
v2 − 1.

Since a rotation in K = SO(2) is of the form

tθ =

(
cos θ − sin θ
sin θ cos θ

)
,

the orbit of ir consists of the points xθ + iyθ = tθ · ir, with

xθ + iyθ =
ir cos θ − sin θ

ir sin θ + cos θ
. (∗2)

From (∗2), we have

xθ + iyθ =
ir cos θ − sin θ

ir sin θ + cos θ
=
ir cos θ − sin θ

ir sin θ + cos θ
× −ir sin θ + cos θ

−ir sin θ + cos θ

=
(r2 − 1) sin θ cos θ + ir

r2 sin2 θ + cos2 θ
=

(r2−1)
2

(2 sin θ cos θ) + ir

(1− r2) cos2 θ + r2

=
(r2−1)

2
sin 2θ + ir

(1−r2)
2

(2 cos2 θ − 1) + r2 + 1−r2
2

=
−(1− r2) sin 2θ + i2r

(1− r2) cos 2θ + r2 + 1
.

Let us compute xθ + iyθ − iv. We have

xθ + iyθ − iv =
−(1− r2) sin 2θ + i2r

(1− r2) cos 2θ + r2 + 1
− i(r2 + 1)

2r

=
−2r(1− r2) sin 2θ + i4r2 − i(r2 + 1)((1− r2) cos 2θ + r2 + 1)

2r((1− r2) cos 2θ + r2 + 1)

=
−2r(1− r2) sin 2θ + i4r2 − i(r2 + 1)2 − i(r2 + 1)(1− r2) cos 2θ

2r((1− r2) cos 2θ + r2 + 1)

=
(1− r2)(−2r sin 2θ − i(1− r2 + (r2 + 1) cos 2θ))

2r((1− r2) cos 2θ + r2 + 1)
.

The numerator of |xθ + i(yθ − v)|2 is

N = (1− r2)2(4r2 sin2 2θ + (1− r2)2 + 2(1− r2)(r2 + 1) cos 2θ + (r2 + 1)2 cos2 2θ)

= (1− r2)2(4r2(1− cos2 2θ) + (1− r2)2 + 2(1− r2)(r2 + 1) cos 2θ + (r2 + 1)2 cos2 2θ)

= (1− r2)2((1− r2)2 cos2 2θ + 2(1− r2)(r2 + 1) cos 2θ + (1 + r2)2)

= (1− r2)2((1− r2) cos 2θ + (1 + r2))2.
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The denominator of |xθ + i(yθ − v)|2 is

4r2((1− r2) cos 2θ + (1 + r2))2.

Therefore

|xθ + i(yθ − v)|2 =
(1− r2)2

4r2
=

(
1

2

(
1

r
− r
))2

= R2 = v2 − 1,

or equivalently
x2
θ + (yθ − v)2 = v2 − 1,

which confirms our claim that the point xθ + iyθ is on the circle of center v and radius
R =

√
v2 − 1.

Therefore the matrices of the double class KXK are exactly the matrices tsθ, where
t ∈ K = SO(2) and sθ ∈ S0 is the matrix

sθ =

(√
yθ xθ/

√
yθ

0 1/
√
yθ

)
corresponding to the point xθ + iyθ = tθ · ir in (∗2). The matrices sθ satisfy the property

tr(s>θ sθ) =
x2
θ + y2

θ + 1

yθ
= 2v,

which characterizes them. Now one has (tsθ)
>(tsθ) = s>θ t

>tsθ = s>θ sθ, so we get

tr((tsθ)
>(tsθ)) = tr(s>θ sθ).

We deduce that the matrices

X =

(
a b
c d

)
∈ G = SL(2,R), with X = tsθ,

which form the double class KXK, are exactly those for which

tr(X>X) = a2 + b2 + c2 + d2 = 2v,

with v ≥ 1. Hence the functions f ∈ C(K\G/K) are those which may be written as
f(1/2(a2 + b2 + c2 + d2)), where f is a continuous function defined on the interval [1,+∞).

We can also determine the exponentials α : S → C∗ of S. Given any group G, recall that
for any two elements a, b ∈ G, the element a−1b−1ab is the commutator of a and b, and that
the subgroup of G generated by the commutators is called the commutator subgroup of G and
is denoted by DG. If α : S → C∗ is a (continuous) homomorphism, then obviously α has the
value 1 on the commutator subgroup DS of S (since α(a−1b−1ab) = α(a−1)α(b−1)α(a)α(b) =
α(a)−1α(b)−1α(a)α(b) = 1). But since(

a1 b1

0 a−1
1

)(
a2 b2

0 a−1
2

)
=

(
a1a2 a1b2 + b1a

−1
2

0 a−1
1 a−1

2

)
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for any two matrices in S, and(
a1 b1

0 a−1
1

)−1

=

(
a−1

1 −b1

0 a1

)
,

we see that

DS =

{(
1 b
0 1

) ∣∣∣∣ b ∈ R
}
.

Furthermore, every matrix X ∈ S can be factored as

X =

(
a b
0 a−1

)
=

(
a 0
0 a−1

)(
1 a−1b
0 1

)
,

with a > 0, so the homomorphism α is determined by its restriction to the subgroup{(
a 0
0 a−1

) ∣∣∣∣ a > 0

}
∼= R∗+,

and thus it corresponds to a continuous homomorphism from R∗+ to C∗, which is well-known
to be of the form t 7→ tλ = eλ log t, for some λ ∈ C. This is because the map x 7→ ex is a
continuous homomorphism from (R,+) to R∗+, and every continuous homomorphism from
(R,+) to C∗ is of the form x 7→ eλx for some λ ∈ C, as the proof of Vol I, Proposition 10.9(4)
shows. We showed earlier (see (∗2) and the calculations that follow) that

x+ iy =
ir cos θ − sin θ

ir sin θ + cos θ

=
(r2 − 1) sin θ cos θ + ir

r2 sin2 θ + cos2 θ
,

so we get
1

y
= r sin2 θ +

1

r
cos2 θ.

Using the fact that

v =
1

2

(
r +

1

r

)
,

we get

1

y
= r sin2 θ +

1

r
cos2 θ

= v + r sin2 θ − 1

2
r +

1

r
cos2 θ − 1

2r
= v +

r

2
(2 sin2 θ − 1) +

1

2r
(2 cos2 θ − 1)

= v +
r

2
(1− 2 cos2 θ) +

1

2r
(2 cos2 θ − 1) = v +

1

2

(
1

r
− r
)

cos 2θ

= v +
√
v2 − 1 cos 2θ.
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Since

X =

(√
y x/

√
y

0 1/
√
y

)
,

the above reasoning shows that

α(XU) = α(X) = eλ log(
√
y) = e

1
2
λ log y,

for some complex number λ ∈ C, where U ∈ SO(2). However, it is more convenient to
express α(X) in terms of 1/y, so we write

α(X) = e−ρ log y = y−ρ,

with ρ = −1
2
λ, so finally, the generalized spherical function given by (†4) is

Pρ(v) =
1

2π

∫ 2π

0

(v +
√
v2 − 1 cosϕ)ρ dϕ, v ≥ 1, ρ ∈ C.

The function Pρ a Legendre function of (complex) index ρ. When ρ is a positive integer n,
it can be shown that up to a constant, Pn is a Legendre polynomial.

In order for the function Pρ to be bounded when v ≥ 1, some conditions must be imposed
on ρ. If ρ is purely imaginary, then Pρ is bounded, but if ρ is a positive real, then it is not
bounded.

One can check that the functional equation (s1) becomes

1

2π

∫ 2π

0

Pρ(cosh t coshu+ sinh t sinhu cosϕ) dϕ = Pρ(cosh t)Pρ(coshu)

for all t, u ∈ R.

Example 9.9. Let us now consider case (3) above, where G is a unimodular group containing
an abelian normal subgroup A and a compact subgroup K, such that the map (t, s) 7→ ts is
a homeomorphism from K × A to G. Let α : A → C∗ be a continuous homomorphism (an
exponential of A). By analogy with Example 9.7, define the function ω : G→ C by

ω(x) =

∫
K

α(usu−1) dλK(u), x = ts, t ∈ K, s ∈ A. (†5)

The function ω is continuous, and we claim that if ω is bounded, then it is a spherical
function for (G,K). For this, we verify that the functional equation (s1) holds.

Let x = t1s1, y = t2s2, with t1, t2 ∈ K, s1, s2 ∈ A. For v ∈ K, we may write

xvy = t1s1vt2s2 = (t1vt2)(((vt2)−1s1(vt2))s2),
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with t1vt2 ∈ K and ((vt2)−1s1(vt2))s2 ∈ A, because A is normal, so (vt2)−1s1(vt2) ∈ A, and
((vt2)−1s1(vt2))s2 ∈ A. Consequently, since α is a homomorphism of A, the subgroup A is a
normal subgroup, and by Fubini, we have∫

K

ω(xvy) dλK(v) =

∫
K

∫
K

α(u((vt2)−1s1(vt2))s2u
−1) dλK(u) dλK(v)

=

∫
K

∫
K

α(((vt2u
−1)−1s1(vt2u

−1))(us2u
−1)) dλK(u) dλK(v)

=

∫
K

∫
K

α((vt2u
−1)−1s1(vt2u

−1))α(us2u
−1) dλK(u) dλK(v)

=

∫
K

α(us2u
−1)

∫
K

α((vt2u
−1)−1s1(vt2u

−1)) dλK(v) dλK(u).

But since K is unimodular, we have∫
K

α((vt2u
−1)−1s1(vt2u

−1)) dλK(v) =

∫
K

α(v−1s1v) dλK(v) =

∫
K

α(vs1v
−1) dλK(v) = ω(x),

and thus∫
K

ω(xvy) dλK(v) =

∫
K

α(us2u
−1)

∫
K

α((vt2u
−1)−1s1(vt2u

−1)) dλK(v) dλK(u)

=

∫
K

α(us2u
−1)ω(x) dλK(u) = ω(x)ω(y),

as claimed.

Conversely, it can be shown that all spherical functions are given by (†5). A proof is
sketched in Dieudonné [10] (Chapter 16).

Example 9.10. Consider the example G = SE(2,R) of the group of rigid motions of R2.
Since we view this group as the semi-direct product of SO(2) and R2 (instead of R2 and
SO(2)), we want a matrix representation in which every rigid motion is written as the
product of a rotation and a translation, so we view SE(2,R) as

SE(2,R) =


 cos θ sin θ 0
− sin θ cos θ 0
a b 1

 ∣∣∣∣∣∣ a, b ∈ R, 0 ≤ θ < 2π

 ,

instead of cos θ − sin θ a
sin θ cos θ b

0 0 1

 .

Clearly,  cos θ sin θ 0
− sin θ cos θ 0
a b 1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

1 0 0
0 1 0
a b 1

 ,
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so SE(2,R) = KA, where K (the rotations) is isomorphic to SO(2) and A (the translations)
is isomorphic to R2. Note that in this representation of SE(2,R2), we use matrices

s =

(
Q> 0
u> 1

)
with u ∈ R2 and Q ∈ SO(2), and we have the right action given by

x · s = x>s = x>Q> + u> = (Qx+ u)>, x ∈ R2,

which corresponds to the matrix equation

(
y> 1

)
=
(
x> 1

)(Q> 0
u> 1

)
.

The choice of this representation forces everything to be transposed. In particular, if we
denote the matrix (

Q> 0
u> 1

)
by (Q>, u>), since the product of the matrices

s =

(
Q> 0
u> 1

)
, t =

(
R> 0
v> 1

)
is

st =

(
Q>R> 0

u>R> + v> 1

)
,

the multiplication operation is given by

(Q>, u>)(R>, v>) = (Q>R>, v> + u>R>) = ((RQ)>, (v +Ru)>).

When SE(2,R) is viewed as the semi-direct product of R2 and SO(2), we use the represen-
tation (u,Q), and multiplication is given by

(v,R)(u,Q) = (v +Ru,RQ),

which corresponds to (Q>, u>)(R>, v>) by transposition, but note the reversal of the ar-
guments in the multiplication (which must take place since transposition of a product of
matrices switches the order of the arguments).

For any matrix s ∈ SE(2,R) and any matrices t1, t2 ∈ SO(2), if we write

s =

(
R> 0
u> 1

)
, t1 =

(
Q>1 0
0 1

)
, t2 =

(
Q>2 0
0 1

)
, Q1, Q2, R ∈ SO(2), u ∈ R2,
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then we have

t1st2 =

(
Q>1 0
0 1

)(
R> 0
u> 1

)(
Q>2 0
0 1

)
=

(
Q>1 R

> 0
u> 1

)(
Q>2 0
0 1

)
=

(
Q>1 R

>Q>2 0
u>Q>2 1

)
.

If we pick Q1 = (Q2R)>, then we see that the matrix(
I 0

u>Q>2 1

)
belongs to the class KsK. Since SO(2) acts transitively on R2, it follows that the matrix(

I 0
v> 1

)
also belongs to the double class KsK for any vector v, such that ‖v‖ = ‖u‖ = r2 (r ≥ 0).
Therefore, every double class KsK corresponds bijectively to some r ∈ R with r ≥ 0. We
can also view such a double class KsK as any vector (a, b) for which a2 + b2 = r2 for a fixed
r ≥ 0 in R; see Figure 9.3. The functions in C(K\G/K) are those of the form ψ(r), where

(a,b)

ra
di

us
 r

Figure 9.3: The partition of R into circular orbits, each of which corresponds to a double
coset.

ψ : [0,+∞) → C is any continuous function. We showed in Vol I, Corollary 10.11 that the
continuous homomorphisms α : R2 → C∗ are of the form

α(a, b) = eλa+µb, λ, µ ∈ C.
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For any u ∈ K and any s ∈ A, we have

usu−1 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

1 0 0
0 1 0
a b 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


=

 cos θ sin θ 0
− sin θ cos θ 0
a b 1

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

 1 0 0
0 1 0

a cos θ + b sin θ −a sin θ + b cos θ 1

 .

For a = r cosϕ and b = r sinϕ, so that a2 + b2 = r2, we have

usu−1 =

 1 0 0
0 1 0

r cos(ϕ− θ) r sin(ϕ− θ) 1

 .

Consequently, according to (†5), for

x = ts = t

 1 0 0
0 1 0

r cosϕ r sinϕ 1

 , t ∈ K,

we have

ω(x) =

∫
K

α(usu−1) dλK(u)

=
1

2π

∫ 2π

0

er(λ cos(ϕ−θ)+µ sin(ϕ−θ)) dθ =
1

2π

∫ 2π

0

er(λ cos θ+µ sin θ) dθ.

It follows that the generalized spherical functions are the continuous functions on [0,+∞)
given by

ψ(r) =
1

2π

∫ 2π

0

er(λ cos θ+µ sin θ) dθ

for any λ, µ ∈ C. For λ and µ imaginary, these functions are bounded, hence they really are
spherical functions. In the special case where λ = 0 and µ = i, the function ψ is the Bessel
function J0. By a change of variable, if both λ and µ are imaginary, the function ψ becomes
J0.

The irreducible unitary representations of SE(2,R) are completely determined; see Sec-
tion 7.4 and Vilenkin [70] (Chapter IV, Section 2). The matrix elements of these representa-
tions can be expressed by means of Bessel functions; see Vilenkin [70] (Chapter IV, Section
3).

In the general case where G = SE(n,R), with K = SO(n) and A = Rn, with

SE(n,R) =

{(
Q> 0
w> 1

) ∣∣∣∣ Q ∈ SO(n), w ∈ Rn

}
,
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the irreducible unitary representations of SE(n,R) are also completely determined; see Sec-
tion 7.4. One can also determine the generalized spherical functions, and they are now
expressed in terms of the Bessel functions J(n−2)/2; see Vilenkin [70] (Chapter XI).

In general, if G is a connected unimodular Lie group and K is a compact subgroup of G
such that (G,K) is a Gelfand pair, it can be shown that the spherical functions are not only
continuous but also smooth. The proof is not difficult but not that informative, so we omit
it. This proof can be found in Dieudonné [10] (Chapter 12).

It is also possible to figure out how a differential operator on G that is invariant by left
translations by G and invariant by right translations by K operates on spherical functions.
In this case, the spherical functions are eigenfunctions of all such differential operators. If
G is also semi-simple, then more can be said (there are elliptic operators, in particular,
the Casimir operator), but will not go into this right now. These topics are discussed in
Dieudonné [13] (Chapter XXIII, Sections 36 and 37).

9.8 The Fourier Transform

Again, let (G,K) be a Gelfand pair. Recall from Definition 9.7 that every spherical function
ω ∈ S(G/K) defines the character ζω ∈ X0(A) given by

ζω(f) = (f, ω) =

∫
G

f(x)ω(x) dλG(x), f ∈ L1(K\G/K),

where A = L1(K\G/K)⊕ Cδe, a commutative, involutive, unital Banach algebra. By The-
orem 9.7, the map ω 7→ ζω is a homeomorphism of S(G/K) equipped with the induced
topology of Fréchet space of C(G) onto X0(A) equipped with the topology induced by the
weak ∗-topology of the dual A′ of A.

It follows that the restriction of the Gelfand transform to X0(A) of an element f ∈
L1(K\G/K) can be identified with the function Ff : S(G/K)→ C given by

(Ff)(ω) = (f, ω) =

∫
G

f(x)ω(x) dλG(x).

The above can be viewed as the Fourier cotransform of f . Thus, we are led to the following
definition.

Definition 9.20. Let (G,K) be a Gelfand pair (recall that G is unimodular). For every
function f ∈ L1(K\G/K), the Fourier cotransform Ff of f is the function Ff : S(G/K)→
C given by

(Ff)(ω) = (f, ω) =

∫
G

f(x)ω(x) dλG(x), ω ∈ S(G/K),
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and the Fourier transform Ff of f is the function Ff : S(G/K)→ C given by

(Ff)(ω) = (f̌ , ω) =

∫
G

f(x−1)ω(x) dλG(x)

= (f, ω̌) =

∫
G

f(x)ω(x−1) dλG(x), ω ∈ S(G/K).

Observe that
Ff = F f̌ .

It is also clear that Ff and Ff depend only on the equivalence class [f ] ∈ L1(K\G/K), so
the Fourier transform and the Fourier cotransform are also defined on L1(K\G/K).

Definition 9.20 also applies to arbitrary functions f ∈ L1(G). By (∗∗) of Section 9.2,
namely

(f ], ψ) =

∫
G

f ](x)ψ(x) dλG(x) =

∫
G

f(x)ψ](x) dλG(x) = (f, ψ]), (∗∗)

for all f ∈ K(G) and all ψ ∈ C(G), since ω] = ω, we obtain

Ff = F(f ]), Ff = F(f ]), for all f ∈ L1(G).

The Fourier transform and the Fourier cotransform are also defined on L1(G).

As a consequence of the properties of the Gelfand transform, we have the following results.

Proposition 9.18. Let (G,K) be a Gelfand pair. For every function f ∈ L1(G), the Fourier
transform Ff and the Fourier cotransform Ff are continuous functions that tend to zero at
infinity. For all f, g ∈ L1(K\G/K), we have

F(f ∗ g) = (Ff)(Fg), 1 F(f ∗ g) = (Ff)(Fg).2 (∗)

For all f ∈ L1(G), we have

‖Ff‖ ≤ ‖f‖1 ,
∥∥Ff∥∥ ≤ ‖f‖1 .

Therefore, F and F are continuous linear maps from L1(G) to C0(S(G/K);C).

Beware that the equations in (∗) generally fail if f, g ∈ L1(G). Also, in general, even if
f ∈ KC(G), the functions Ff and Ff do not have compact support. However, we have the
following properties (see Dieudonné [12] (Chapter XXII, Proposition 22.6.4.7).

Proposition 9.19. Let f and g be two functions in L1(G). If either f ∈ L1(G/K) or
g ∈ L1(K\G), then

F(f ∗ g) = (Ff)(Fg) and F(f ∗ g) = (Ff)(Fg).

1Here, (Ff)(Fg) is the pointwise multiplication of the functions Ff and Fg.
2Similarly, (Ff)(Fg) is the pointwise multiplication of the functions Ff and Fg.
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Proof. We prove the first equation assuming that f ∈ L1(G/K), the proof of the other
equations being similar. By left-invariance, we have

F(f ∗ g)(ω) =

∫
G

∫
G

ω(x−1)f(s)g(s−1x) dλG(s) dλG(x)

=

∫
G

∫
G

ω(x−1s−1)f(s)g(x) dλG(s) dλG(x),

and by right-invariance, since f(st−1) = f(s) for all t ∈ K, λK(K) = 1, the fact that
F(f ∗ g)(ω) is independent of t, and by (s1) of Theorem 9.6, we have

F(f ∗ g)(ω) =

∫
G

∫
G

ω(x−1s−1)f(s)g(x) dλG(s) dλG(x)

=

∫
G

∫
G

ω(x−1ts−1)f(st−1)g(x) dλG(s) dλG(x)

=

∫
G

∫
G

ω(x−1ts−1)f(s)g(x) dλG(s) dλG(x)

=

∫
G

∫
G

∫
K

ω(x−1ts−1) dλK(t)f(s)g(x) dλG(s) dλG(x)

=

∫
G

∫
G

ω(x−1)ω(s−1)f(s)g(x) dλG(s) dλG(x)

=

∫
G

ω(s−1)f(s) dλG(s)

∫
G

ω(x−1)g(x) dλG(x) = (Ff)(ω)(Fg)(ω),

as claimed.

In general, F(f ∗ g) 6= (Ff)(Fg) if f /∈ L1(G/K) and g /∈ L1(K\G).

The following properties also hold.

Proposition 9.20. Let (G,K) be a Gelfand pair. For every function f ∈ L1(K\G), every
s ∈ G, and every ω ∈ S(G/K), we have

F(λsf)(ω) = ω(s−1)(Ff)(ω), F(λsf)(ω) = ω(s)(Ff)(ω),

and for every function f ∈ L1(G/K), every s ∈ G, and every ω ∈ S(G/K), we have

F(ρsf)(ω) = ω(s)(Ff)(ω), F(ρsf)(ω) = ω(s−1)(Ff)(ω).

Proof. We prove that F(λsf)(ω) = ω(s)(Ff)(ω), the proof for the other formulae being
similar. Since f(tx) = f(x) for all t ∈ K and almost all x ∈ G, and since λG is left-invariant,
we have

F(λsf)(ω) =

∫
G

f(s−1x)ω(x) dλG(x) =

∫
G

f(x)ω(sx) dλG(x)

=

∫
G

f(tx)ω(stx) dλG(x) =

∫
G

f(x)ω(stx) dλG(x).
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Then, since the rightmost integral above is independent of t because F(λsf)(ω) is inde-
pendent of t, F(λsf)(ω) is independent of t, by (s1) (from Theorem 9.6) and Fubini, we
have ∫

G

f(x)ω(stx) dλG(x) =

∫
G

∫
K

f(x)ω(stx) dλG(x) dλK(t)

=

∫
G

f(x)

∫
K

ω(stx) dλK(t) dλG(x)

= ω(s)

∫
G

f(x)ω(x) dλG(x) = ω(s)(Ff)(ω),

as claimed.

In the next section ,we try to generalize Fourier inversion.

9.9 The Plancherel Transform

As in the previous section, let (G,K) be a Gelfand pair. If G is compact, then by Example
9.6 and Proposition 6.21, the spherical functions in S(G/K) are of positive type (recall
Definition 3.17). However, when G is not compact, the spherical functions in S(G/K) are
not necessarily of positive type. The subspace of spherical functions of positive type is deeply
related to the measures of positive type (recall Definition 3.21) and is the domain of certain
positive measures that yield a kind of Fourier inversion. The reader may want to review
Section 2.9 before proceeding with this section.

Definition 9.21. The subset of S(G/K) consisting of the spherical functions of positive type
is denoted by Z(G/K). This space is equipped with the induced topology of Fréchet space
of C(G).

In view of Theorem 3.22(b), the space Z(G/K) is closed in S(G/K), and thus it is locally
compact.

Given a measure of positive type µ on G (see Definition 3.21), recall from Section 3.7
that the linear map ϕµ : KC(G)→ C given by

ϕµ(f) =

∫
f(s) dµ(s)

is a positive linear form in the sense of Definition 2.10. As in Section 3.5, the set

n = {f ∈ KC(G) | ϕµ(f ∗ ∗ f) = 0}

is a left ideal in KC(G), and H0 = KC(G)/n is a hermitian space with the hermitian inner
product

〈π(f), π(g)〉µ = ϕµ(g∗ ∗ f) =

∫
(g∗ ∗ f)(s) dµ(s), (†6)
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where π : KC(G)→ KC(G)/n is the quotient map. Since∫
(g∗ ∗ f)(s) dµ(s) =

∫ ∫
g(t−1)f(t−1s) dλ(t) dµ(s)

=

∫ ∫
g(t)f(ts) dλ(t) dµ(s),

we have

〈π(f), π(g)〉µ = ϕµ(g∗ ∗ f) =

∫ ∫
g(t)f(ts) dλ(t) dµ(s). (†7)

The hermitian space H0 = KC(G)/n is separable, and we let Hµ be the Hilbert space which
is the completion of H0. By Theorem 3.30, the measure of positive type µ defines a unitary
representation Uµ : G→ U(Hµ), where Uµ(s) ∈ U(Hµ) is the extension of the map Uµ(s) ∈
U(H0) defined by

Uµ(s)(π(f)) = π(δs ∗ f), for all s ∈ G and all f ∈ KC(G).

By Theorem 3.17, the unitary representation Uµ : G→ U(Hµ) extends to a non-degenerate
algebra representation (Uµ)ext : L1(G)→ L(Hµ).

The map γ defined on K(G)×K(G) via (†6) by

γ(g, h) = ϕµ(h∗ ∗ g)

satisfies the conditions (U) and (N) of Section 2.9, and thus the restriction of γ to the
involutive and commutative subalgebra K(K\G/K) is a bitrace (see Definition 2.13), which
also satisfies condition (U). Actually, this bitrace also satisfies condition (N). This can be
shown using a regularization argument that we omit. For details, see Dieudonné [12] (Chapter
XXII, Section 7). Then K(K\G/K) and π(K(K\G/K)) are commutative Hilbert algebras.

Let Hµ be the closure of π(K(K\G/K)) in Hµ. Then the map f 7→ (Uµ)ext(f)|Hµ is a
representation of K(K\G/K) in the separable Hilbert space Hµ that we denote Vµ. Thus,
we have

Vµ(f)(π(g)) = π(f ∗ g), f, g ∈ K(K\G/K),

and by Proposition 3.15, we have

‖Vµ(f)‖ ≤ ‖f‖1 .

This means that Vµ is a continuous algebra homomorphism from K(K\G/K) (with the
topology induced by the topology of L1(K\G/K)) to the algebra L(Hµ) of continuous linear
operators of Hµ. Since L1(G) is a separable Banach algebra, we deduce that the closure Aµ
of Vµ(K\G/K) is a C∗ commutative separable subalgebra of L(Hµ).

Thus we see that the bitrace obtained by restricting the bitrace γ to K(K\G/K) satisfies
all the hypotheses of the Plancherel–Godement theorem (Theorem 2.43). To be more specific,
in terms of the notations of Theorem 2.43, we have A = K(K\G/K), g = γ, Ug = Vµ,
Hg = Hµ, and Ag = Aµ. The Plancherel–Godement theorem yields the following result.
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Theorem 9.21. (Plancherel Transform Theorem) Let (G,K) be a Gelfand pair. For every
measure of positive type µ on G, there is a unique (positive) Radon measure µ4 defined on
the locally compact space Z(G/K) of spherical functions of positive type, such that for every
function f ∈ K(K\G/K), the Fourier cotransform Ff belongs to L2

µ4(Z(G/K);C), and for

any two functions f, g ∈ K(K\G/K), we have∫
G

(g∗ ∗ f)dµ =

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dµ4(ω).

The map Φ: f 7→ [Ff ] from K(K\G/K) to L2
µ4(Z(G/K);C) factors as

Φ = T0 ◦ π,

with T0 : π(K(K\G/K))→ L2
µ4(Z(G/K);C)∩C0(Z(G/K);C), and T0 extends to an isomor-

phism T between the Hilbert space Hµ and the Hilbert space L2
µ4(Z(G/K);C), as illustrated

below:

K(K\G/K) π //

Φ **

π(K(K\G/K))

T0
��

//Hµ

T
��

L2
µ4(Z(G/K);C) ∩ C0(Z(G/K);C) // L2

µ4(Z(G/K);C).

The only points which need clarification are the facts that the space Sg of Theorem 2.43

is homeomorphic to Z(G/K) and that the map f 7→ f̂ , with f ∈ A = K(K\G/K), is
simply the Fourier cotransform F(f). The details require some knowledge of the proof of
the Plancherel–Godement theorem and are omitted. The reader is referred to Dieudonné
[12] (Chapter XXII, Section 7, Theorem 22.7.4).

Definition 9.22. Let (G,K) be a Gelfand pair. For every complex measure µ of positive
type on G, the (positive) Radon measure µ4 on Z(G/K) given by Theorem 9.21 is called
the Plancherel transform of µ.

It is also useful to define the projection of a complex measure µ ∈ CM1(G) onto the
subspace CM1(K\G/K) of complex measures invariant by left and right translations by
elements of K.

First, assume that µ is a positive finite measure. We define the linear functional Φ]
µ by

Φ]
µ(f) =

∫
G

f ] dµ, f ∈ K(G).

Since µ is a positive measure, the functional Φ]
µ is positive, so by Radon–Riesz I (Vol I,

Theorem 7.8), there is a unique σ-Radon measure µ], such that∫
f dµ] =

∫
f ] dµ, f ∈ K(G).
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Going back to an arbitrary complex measure µ and expressing it as µ = µ+
1 −µ−1 + i(µ+

2 −
µ−2 ), where the four measures on the right-hand side are positive, we obtain a complex
measure µ], such that ∫

f dµ] =

∫
f ] dµ, f ∈ K(G). (∗])

Definition 9.23. Given any complex measure µ ∈ CM1(G), the complex measure µ] ∈
CM1(K\G/K) defined by (∗]) is called the projection of µ.

Consequently, we see that

λtµ
] = ρtµ

] = µ], for all t ∈ K.

Conversely, the above equations imply that µ = µ]. Thus, the map µ 7→ µ] is a projection
of CM1(G) onto the subspace CM1(K\G/K).

The following result is not hard to prove.

Proposition 9.22. If µ is a measure of positive type on G, then for every f ∈ K(G), we
have ∫

G

(f ∗ ∗ f)] dµ ≥ 0.

Proposition 9.22 is proven in Dieudonné [12] (Chapter XXII, Section 7, Lemma 22.7.4.3).
Using Proposition 9.22, we see that if µ is of positive type, then so is µ]. Also, µ] = 0 means
that µ vanishes on the subspace K(K\G/K) of K(G). Thus by the uniqueness clause in
Theorem 9.21, we have the following result.

Proposition 9.23. If µ is a measure of positive type on G, then (µ])4 = µ4. For any two
measures of positive type µ and ν, we have µ4 = ν4 iff µ] = ν].

Proposition 9.24. For all ω ∈ Z(G/K) and for every f ∈ K(K\G/K), we have

(Ff)(ω) = (Ff)(ω).

Proof. By Theorem 3.22(3), if p is a function of positive type, then p̌ = p, so ω̌ = ω for all
ω ∈ Z(G/K), and for every f ∈ K(K\G/K), we have

(Ff)(ω) =

∫
f(x)ω(x) dλG(x) =

∫
f(x)ω(x−1) dλG(x)

=

∫
f(x)ω(x−1) dλG(x) = (Ff)(ω).

Therefore,

(Ff)(ω) = (Ff)(ω),

as claimed.
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In general, given a function f ∈ K(K\G/K), by Theorem 9.21, Ff ∈ L2
µ4(Z(G/K)), but

Ff /∈ L1
µ4(Z(G/K)). However, if g is another function in K(K\G/K), then Theorem 9.21

also shows that F(f ∗ g) = (Ff)(Fg) ∈ L1
µ4(Z(G/K)).

Proposition 9.25. For all f, g ∈ K(K\G/K), for any measure µ of positive type, we have∫
G

(f ∗ g) dµ =

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dµ4(ω).

Consequently, F(f ∗ g) = (Ff)(Fg) ∈ L1
µ4(Z(G/K)).

Proof. Since Fg = Fg and Fg = F ǧ, we have F g = Fg and F ǧ = Fg, and so

Fg∗ = F ǧ = F ǧ = Fg.

If we recall that K(K\G/K) is a commutative algebra (under convolution), from Theorem
9.21 with g replaced by g∗, we deduce that∫

G

(f ∗ g) dµ =

∫
G

(g ∗ f) dµ =

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dµ4(ω),

as claimed.

Example 9.11. One of the main examples of Plancherel transform is the Dirac measure
µ = δe. As a corollary of Proposition 3.28, the Dirac measure δe is of positive type.

Definition 9.24. The Plancherel transform δ4e of the Dirac measure δe is called the canonical
measure on Z(G/K) and is denoted mZ.

Because G is unimodular, we have∫
G

(g∗ ∗ f) dδe = (g∗ ∗ f)(e) =

∫
G

f(s−1)g(s−1) dλG(s) =

∫
G

f(s)g(s) dλG(s),

and for any two functions f, g ∈ K(K\G/K), by Theorem 9.21, we have∫
G

f(s)g(s) dλG(s) =

∫
G

g∗ ∗ f dδe =

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dmZ(ω). (†8)

Write f = f1 + if2 and g = g1 + ig2, where f1, f2, g1, g2 are all real-valued. Then (since
conjugation has no effect on real-valued functions), we have∫

Z(G/K)

(Ff)(ω)(Fg)(ω) dmZ(ω) =

∫
Z(G/K)

(Ff1)(ω)(Fg1)(ω) dmZ(ω)

+

∫
Z(G/K)

(Ff2)(ω)(Fg2)(ω) dmZ(ω)

− i
∫
Z(G/K)

(Ff1)(ω)(Fg2)(ω) dmZ(ω)

+ i

∫
Z(G/K)

(Fg1)(ω)(Ff2)(ω) dmZ(ω).
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Since (Ff)(ω) = (Ff)(ω), and since f1, f2, g1, g2 are real-valued, we have∫
G

f1g1 dλG =

∫
Z(G/K)

(Ff1)(ω)(Fg1)(ω) dmZ(ω) =

∫
Z(G/K)

(Ff1)(ω)(Fg1)(ω) dmZ(ω)∫
G

f2g2 dλG =

∫
Z(G/K)

(Ff2)(ω)(Fg2)(ω) dmZ(ω) =

∫
Z(G/K)

(Ff2)(ω)(Fg2)(ω) dmZ(ω)∫
G

f1g2 dλG =

∫
Z(G/K)

(Ff1)(ω)(Fg2)(ω) dmZ(ω) =

∫
Z(G/K)

(Ff1)(ω)(Fg2)(ω) dmZ(ω)∫
G

g1f2 dλG =

∫
Z(G/K)

(Fg1)(ω)(Ff2)(ω) dmZ(ω) =

∫
Z(G/K)

(Fg1)(ω)(Ff2)(ω) dmZ(ω),

because the left integrals are real, and thus∫
G

f(s)g(s) dλG(s) =

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dmZ(ω) (∗1)

=

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dmZ(ω). (∗2)

Observe that the above integrals are inner products. As a consequence, we have the
following result.

Proposition 9.26. For any two functions f, g ∈ K(K\G/K), we have∫
G

f(s)g(s) dλG(s) =

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dmZ(ω)

=

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dmZ(ω).

The linear maps f 7→ Ff and f 7→ Ff , with f, g ∈ K(K\G/K), are isometries, and by
Theorem 9.21, these maps extend to isomorphisms from the Hilbert space L2(K\G/K) onto
the Hilbert space L2

mZ
(Z(G/K)).

We can further extend these maps to linear maps of L2(G) onto L2
mZ

(Z(G/K)), by setting

F([f ]) = F([f ]]) and F([f ]) = F([f ]]). The equation F([f ]) = F([f ]) holds. By abuse of
notations, we write Ff (resp. Ff) for any function in the class F([f ]) (resp, F([f ])). With
these notation, (∗1) and (∗2) hold for f, g ∈ L2(K\G/K).

Proposition 9.26 is a generalization of the Plancherel theorem (Vol I, Theorem 10.27), as
we will see in Example 9.12.

Example 9.12. Another important example is the case where G is commutative and K =
{e}. In this case, the functional equation (s1) characterizing spherical functions reduces to

ω(xy) = ω(x)ω(y),
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so ω : G → C∗ is a continuous homomorphism such that (see Theorem 9.4) ω(e) = 1 and
|ω(x)| ≤ 1 for all x ∈ G. Since ω(x−1) = ω(x)−1, we conclude that |ω(x)| = 1 for all x ∈ G,
which means that ω is a group character . The function ω is of positive type. This is because
ω(y−1x) = ω(y)ω(x), so for every function f ∈ K(G), we have∫

G

(f ∗ ∗ f)ω dλG =

∫
G

∫
G

f ∗(y)f(y−1x)ω(x) dλG(y) dλG(x)

=

∫
G

∫
G

f(y−1)f(y−1x)ω(x) dλG(y) dλG(x)

=

∫
G

∫
G

f(y)f(x)ω(y−1x) dλG(y) dλG(x)

=

∫
G

∫
G

f(y)ω(y)f(x)ω(x) dλG(y) dλG(x)

=

∣∣∣∣∫
G

f(x)ω(x) dλG(x)

∣∣∣∣2 ,
so ∫

G

(f ∗ ∗ f)ω dλG =

∣∣∣∣∫
G

f(x)ω(x) dλG(x)

∣∣∣∣2 ≥ 0.

Consequently, S(G/{e}) = Z(G/{e}) is the space of group characters of G, and this space
is homeomorphic to X0(A), where A = L1(G)⊕ Cδe.

The topological space Ĝ = S(G/{e}) of group characters is a group, and it can be shown
that the topology of S(G/{e}) is compatible with the group structure; see Dieudonné [12]

(Chapter XXII, Section 10, Lemma 22.10.2). Therefore, Ĝ is a commutative topological
group which is locally compact, metrizable and separable. Given a (left) Haar measure λG
on G, it can be shown that the Plancherel transform λĜ = mZ = δ4e is a (left) Haar measure

on Ĝ; see Dieudonné [12] (Chapter XXII, Section 10, Lemma 22.10.5).

Definition 9.25. The Haar measure λĜ on Ĝ and the Haar measure λG on G are said to
be associated .

If λG is replaced by aλG with a > 0, then λĜ is replaced by a−1λĜ.

Proposition 9.26 shows that the equation∫
G

f(s)g(s) dλG(s) =

∫
Ĝ

(Ff)(ω)(Fg)(ω) dλĜ(ω)

holds, and that F has an extension which is an isometry from L2(G) to L2(Ĝ), providing
another proof of the Plancherel theorem, Vol I, Theorem 10.27.

We now return to an arbitrary locally compact group G (metrizable, separable, and
unimodular). For any function ω ∈ Z(G/K) of positive type, the measure ω dλG is a measure
of positive type. It can be shown that

(ω dλG)4 = δω,
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the Dirac measure at ω; see Dieudonné [12] (Chapter XXII, Section 7, Lemma 22.7.6.1). The
result is a sort of Fourier inversion formula.

Proposition 9.27. If µ is a measure of positive type on G, then for every function f ∈
K(K\G/K), if the Fourier cotransform Ff belongs to L1

µ4(Z(G/K)), then∫
G

f dµ =

∫
Z(G/K)

(Ff)(ω) dµ4(ω).

Proposition 9.27 is proven in Dieudonné [12] (Chapter XXII, Section 7, Lemma 22.7.8).

In general, given a function f ∈ K(K\G/K), by Theorem 9.21, Ff ∈ L2
µ4(Z(G/K)),

but Ff /∈ L1
µ4(Z(G/K)). Using Proposition 9.25, the proof of Proposition 9.27 can be

adapted to use the technique of regularization. If (gn) is a sequence of positive functions in
K(K\G/K) having a compact support that tends to {e}, and such that

∫
gn dµ = 1, then∫

(f ∗ gn)dµ tends to
∫
fdµ, and we have∫

G

fdµ = lim
n7→∞

∫
G

(f ∗ gn)dµ = lim
n 7→∞

∫
Z(G/K)

(Ff)(ω)(Fgn)(ω)dµ4(ω).

In particular, if we apply the above formula to µ = δe, if we compute
∫
G

(λsf) dδe =
f(s−1), using Proposition 9.20, we find that for every f ∈ K(K\G/K), we have

f(s) = lim
n 7→∞

∫
Z(G/K)

ω(s−1)(Ff)(ω)(Fgn)(ω) dmZ(ω).

The above process for the inversion of the Fourier cotransform is usually used when G is
abelian and K = {e}.

We now take a closer look at the space P+(K\G/K) of functions in C(K\G/K) which
are of positive type.

Proposition 9.28. The map p 7→ (p λG)4 is a bijection between the space P+(K\G/K) of
functions in C(K\G/K) which are of positive type onto the space M1

+(Z(G/K)) of bounded

positive measures on Z(G/K). The inverse F ′ of the above map (p 7→ (p λG)4) is given by

(F ′µ)(x) =

∫
Z(G/K)

ω(x) dµ(ω), µ ∈M1
+(Z(G/K)).

For every f ∈ L1(G), we have∫
G

f(x)(F ′µ)(x) dλG(x) =

∫
Z(G/K)

(Ff)(ω) dµ(ω).
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Proposition 9.28 is proven in Dieudonné [12] (Chapter XXII, Section 7, Lemma 22.7.10).
The proof uses the Bochner–Godement theorem (Theorem 2.44).

In the special case where G is commutative and K = {e}, the space P+(G) is the set
of all continuous functions of positive type on G, and Proposition 9.28 implies that every
function p of positive type can be written uniquely as

p(x) =

∫
Ĝ

ω(x) dµ(ω)

for some positive measure µ on Ĝ, a result known as Bochner’s theorem; see also Folland
[22], Chapter 4, Theorem 4.18.

We conclude with three remarks.

1. If the Haar measure λG on G is replaced by aλG with a > 0, then the space S(G/K) of
spherical functions is unchanged. The Fourier transform and the Fourier cotransform
are multiplied by a, and the Plancherel transform (see Definition 9.22) is multiplied by
a−1.

2. If (G,K) is a Gelfand pair and if G is compact, then by Example 9.6, Proposition 6.17,
and Proposition 6.21, all spherical functions are of positive type. However, if G is not
compact, this is generally false. For instance, the functions Pρ of Example 9.7 do not
satisfy the property ω̌ = ω unless <ρ = −1/2. It can be shown that these functions
are of positive type if <ρ = −1/2.

3. If G is compact, then we saw that the space S(G/K) is discrete and in bijection with
the subset of R(G) (of irreducible representations of G) consisting of those ρ ∈ R(G)
such that (ρ : σ0) = 1. We can view the Fourier transform Ff of a function f ∈ L1(G)
as the family (

cρ =
1

nρ
〈f,m(ρ)

11 〉
)
ρ∈S(G/K)

.

The Fourier transform and the Plancherel measures are discussed from a different point
of view for symmetric spaces in Helgason [34] (Chapter 4) and Helgason [33] (Chapter 3,
especially Section 12).

9.10 Extension of the Plancherel Transform;

P(G) and P′(Z) ~

The purpose of this section is to extend the Plancherel transform to a bigger set of measures
and to define the notion of Fourier transform of a measure. The reader may want to refer to
Vol I, Chapter 7 for some of the measure-theoretic definitions. Let X be a locally compact
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space. Recall that the space of σ-Radon measures on X is denoted by M+
σ (X) (see Vol

I, Definition 7.5) and the space of Radon measures on X is denoted M+(X) (see Vol I,
Definition 7.7). The space of complex measures on X is denoted by CM1(X) and is called
the space of bounded measures . The space of regular complex Borel measures is denoted by
M1(X) (which is an abbreviation for M1

reg,C(X)) (see Vol I, Definition 7.22). The space
CM1(X) contains the space of positive bounded Borel measures, and of course, M1(X) ⊆
CM1(X).

Let G be a locally compact, metrizable, separable, and unimodular group.

Definition 9.26. The complex vector space spanned by the union of the complex measures
and the σ-Radon measures is denoted by MC(G). Let P+(G) be the set of measures of
positive type, and P(G) be the complex subspace of MC(G) spanned by P+(G), which
consists of all combinations µ1 − µ2 + iµ3 − iµ4, where the µi belong to P+(G).

As a general rule, the subscript + indicates that we are dealing with functions or measures
of positive type, and the suppression of the subscript + that we are considering the vector
space spanned by that set.

It is easy to check that if µ ∈ P(G), then µ] ∈ P(G). The image of P(G) by the map
µ 7→ µ] is P(G) ∩MC(K\G/K).

Let (G,K) be a Gelfand pair. The Plancherel transform µ 7→ µ4 is a map from P+(G)
toM+(Z(G/K)), the space of positive measures on Z(G/K). We have (µ+ ν)4 = µ4+ ν4

and (cµ)4 = cµ4, for any c > 0. From this, it is easy to show that for any combination
µ = µ1−µ2 + iµ3− iµ4 of measures µi ∈ P+(G), the sum µ41 −µ

4
2 + iµ43 − iµ

4
4 is a measure

on Z(G/K) that depends only on µ and not on its decomposition.

Definition 9.27. The C-linear map µ 7→ µ4 from P(G) toMC(Z(G/K)) is also called the
Plancherel transform.

It is clear that Proposition 9.25 also applies to measures in P(G); that is, for any µ ∈
P(G), we have∫

G

(f ∗ g) dµ =

∫
Z(G/K)

(Ff)(ω)(Fg)(ω) dµ4(ω), for all f, g ∈ K(K\G/K).

By regularization, it can be shown that for any two measures µ, ν ∈ P(G)∩MC(K\G/K),
if µ4 = ν4, then µ = ν. But µ = µ] and ν = ν], so it follows that the kernel of the Plancherel
transform is the subspace of measures µ ∈ P(G) such that µ] = 0.

Definition 9.28. The image of P(G) (or P(G)∩MC(K\G/K)) by the Plancherel transform
is denoted by P′(Z). Let P(G) be the complex vector space spanned by the functions of
positive type on G.

The space P(G) is a subspace of both L∞(G) and P(G), by viewing f ∈ P(G) as f dλG.
By Proposition 9.28, the image of P(G) by the Plancherel transform is CM1(Z(G/K)), the
space of bounded measures on Z(G/K). Consequently, we obtain the following result.



9.10. EXTENSION OF THE PLANCHEREL TRANSFORM; P(G) AND P′(Z) ~ 681

Proposition 9.29. Let P(K\G/K) be the subspace of P(G) consisting of the functions
invariant by left and right translations by elements of K. Then the map f 7→ (fλG)4 is a

linear bijection between P(K\G/K) and CM1(Z(G/K)). The inverse map is denoted by F ′

and is given by the formula

(F ′µ′)(x) =

∫
Z(G/K)

ω(x) dµ′(ω), µ′ ∈ CM1(Z(G/K)).

We also have ∥∥∥F ′µ′∥∥∥ ≤ ‖µ′‖ ,
since |ω(x)| ≤ 1 for all x ∈ G and all ω ∈ Z(G/K).

Thus, the linear map F ′ from CM1(Z(G/K)) to P(K\G/K) is continuous for the topol-
ogy of the Banach space Cb(G). However, in general, P(K\G/K) is not closed in Cb(G).

Unfortunately, no convenient characterizations of the spaces P(G) and P′(Z) are known,
besides their definition. There are necessary or sufficient conditions, but no necessary and
sufficient conditions known. For example, a necessary condition for a measure µ′ on Z(G/K)
to belong to P′(Z) is that the Fourier cotransforms Ff of functions f ∈ K(K\G/K) belong
to L2

|µ′|(Z(G/K)), but there are counter-examples showing that this condition is not suffi-

cient. Also, we showed (see Proposition 9.28) that CM1(Z(G/K)) ⊆ P′(Z), but there are

unbounded measures in P′(Z) (for example, the Haar measure on Ĝ, when G is a commuta-
tive noncompact locally compact group).

The following result holds.

Proposition 9.30. For every measure µ′ ∈ P′(Z), and every function g′ ∈ L2
|µ′|(Z(G/K)),

we have g′ dµ′ ∈ P′(Z). If ν ∈ P(G) is a measure such that ν4 = g′ dµ′, then for every
f ∈ K(K\G/K), we have ∫

G

f dν =

∫
Z(G/K)

(Ff)(ω)g′(ω) dµ′(ω).

Proposition 9.30 is proven in Dieudonné [12] (Chapter XXII, Section 8, Lemma 22.8.3).

In particular, if we take µ′ to be the canonical measure mZ, then we obtain the following
corollary.

Proposition 9.31. The space L2
mZ

(Z(G/K)) (viewed as a subspace of MC(Z(G/K))) us-
ing the embedding ω 7→ ωdmZ is contained in P′(Z). The restriction to L2(K\G/K) ⊆
P(G) of the Plancherel transform is identical to the extension of the Fourier transform
F from L2(K\G/K) to L2

mZ
(Z(G/K)) given by Proposition 9.26. In particular, for any

f ∈ L2(K\G/K), we have (f dλG)4 = (Ff) dmZ.
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Proposition 9.31 is proven in Dieudonné [12] (Chapter XXII, Section 8, Lemma 22.8.4).

Remark: It is possible that there is some positive measure µ′ ∈ P′(Z), yet there are positive
measures ν ′ with 0 ≤ ν ′ ≤ µ′, and ν ′ /∈ P′(Z).

Here are more results about the space CM1(G) of bounded measures on G.

Proposition 9.32. The space CM1(G) of bounded measures on G is contained in P(G).
For every µ ∈ CM1(G), we have

µ4 = (Fµ) dmZ,

where Fµ is a continuous bounded function on S(G/K) given by

(Fµ)(ω) =

∫
G

ω(x−1) dµ(x).

Furthermore, for every function f ∈ L1(K\G/K) (resp. f ∈ L2(K\G/K)), we have
µ ∗ f, f ∗ µ ∈ L1(G) (resp. L2(G)), and

F(µ ∗ f) = F(f ∗ µ) = (Ff)(Fµ)

almost everywhere w.r.t. mZ.

Proposition 9.32 is proven in Dieudonné [12] (Chapter XXII, Section 8, Lemma 22.8.5).
The following definition generalizes Vol I, Definition 10.4.

Definition 9.29. If µ ∈ CM1(G) is a bounded measure, then the function Fµ (defined on
S(G/K)) given by

(Fµ)(ω) =

∫
G

ω(x−1) dµ(x)

is called the Fourier transform of µ. We define the Fourier cotransform Fµ of µ as F µ̌; that
is,

(Fµ)(ω) =

∫
G

ω(x−1) dµ̌(x) =

∫
G

ω(x) dµ(x).

For every function f ∈ L1(G), we have Ff = F(f dλG), which justifies the terminology.
We have

(Fδx)(ω) = ω(x−1), (Fδx)(ω) = ω(x).

It is clear that ‖Fµ‖ ≤ ‖µ‖, so F is a continuous linear map from the Banach space
CM1(G) to the Banach space Cb(S(G/K)) of continuous bounded functions on S(G/K).
However, in general, the bounded function Fµ does not tend to zero at infinity, as shown by
µ = δe, for which Fδe is the constant 1.

As a corollary of Proposition 9.32, since CM1(G) is contained in P(G), we have

L1(G) ∩ L2(G) = CM1(G) ∩ L2(G),

and by Proposition 9.31, the class of the Fourier transform Ff of a function f ∈ L1(G) ∩
L2(G) is identical to the class F [f ] as in Definition 9.20.
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Proposition 9.33. For any two functions f, g ∈ L2(K\G/K), the bounded continuous
function f ∗ g belongs to P(K\G/K) and we have

((f ∗ g)dλG)4 = (Ff)(Fg) dmZ.

Proposition 9.33 is proven in Dieudonné [12] (Chapter XXII, Section 8, Lemma 22.8.8).

In general, f ∗ g is not integrable for the measure λG so its Fourier transform is not
definable by the formula of Definition 9.20.

Definition 9.30. Define the spaces P1(K\G/K) and P2(K\G/K) by

P1(K\G/K) = P(K\G/K) ∩ L1(K\G/K)

P2(K\G/K) = P(K\G/K) ∩ L2(K\G/K).

Since for any function f ∈ L∞(G) ∩ L1(G), we have |f(x)|2 ≤ ‖f‖∞ |f(x)| almost every-
where, we conclude that f ∈ L2(G). Since the functions in P(G) are bounded, we have the
inclusions

P1(K\G/K) ⊆ P2(K\G/K) ⊆ P(K\G/K).

Proposition 9.34. The image of P2(K\G/K) (as a subspace of CM1(K\G/K)) under the
Plancherel transform is the subspace L1

mZ
(Z(G/K))∩L2

mZ
(Z(G/K)) of CM1(Z(G/K)). For

every function f ∈ P2(K\G/K), we have the Fourier inversion formula

f = F ′((Ff) dmZ),

where F ′ is defined in Proposition 9.29. Moreover, if we also have f ∈ P1(K\G/K), then
we have the Fourier inversion formula

f(x) =

∫
Z(G/K)

ω(x)

(∫
G

f(y)ω(y−1) dλG(y)

)
dmZ(ω).

Proposition 9.34 is proven in Dieudonné [12] (Chapter XXII, Section 8, Lemma 22.8.10).

One should be cautious that in general, f is not integrable, so we can’t use the formula
of Definition 9.20 to define Ff . If f ∈ P1(K\G/K), then we have the formula above, but
the two integrals cannot be replaced by the double integral∫ ∫

G×Z(G/K)

ω(x)ω(y−1)f(y) dλG(y) dmZ(ω)

because this integral is not defined in general.

Remark: The spaces P(K\G/K),P1(K\G/K),P2(K\G/K) are generally not closed in
Cb(G), but P1(K\G/K) is dense in L1(K\G/K), and P2(K\G/K) is dense in L2(K\G/K).
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Example 9.13. In the special case where G is commutative and K = {e}, we know that

S(G/{e}) = Ĝ, and by Pontrjagin duality (Vol I, Theorem 10.30),
̂̂
G and G can be identified,

and then the transform F ′ from CM1(Ĝ) to P(G) defined in Proposition 9.29 is identified

with the Fourier cotransform F onM1(Ĝ). The Haar measure λ ̂̂
G

is also identified with the
Haar measure λG. Then Proposition 9.26 and Proposition 9.34 yields the Fourier inversion
formula

f = F(Ff)

for every function f ∈ P2(G), and since P2(G) is dense in L2(G), the above formula actually
holds for all f ∈ L2(G). This gives another proof of the inversion formula of the Pontrjagin
duality theorem, Vol I, Theorem 10.30.

By Proposition 9.31 and Proposition 9.32, for any f ∈ L2(G) and any µ ∈ CM1(G), we
have

(f dλG)4 = (Ff) dλĜ, µ4 = (Fµ) dλĜ.

9.11 Spherical Functions of Positive Type and

Irreducible Representations

Let (G,K) be a Gelfand pair (with G a locally compact, metrizable, separable, unimodular
group). From Theorem 3.22, every spherical function of positive type ω ∈ Z(G/K) induces a
cyclic unitary representation Uω : G→ U(Hω) of G in a separable Hilbert space Hω. Recall
that the map ϕω given by

ϕω(µ) =

∫
G

ω(s) dµ, µ ∈M1(G)

is a positive linear form, and so is its restriction to the unital involutive subalgebra A =
L1(G)⊕ Cδe. If

n = {µ ∈ A | ϕω(µ∗ ∗ µ) = 0},
then n is a left ideal in A, and H0 = A/n is a hermitian space with the inner product

〈π(µ), π(ν)〉 = ϕω(ν∗ ∗ µ) =

∫
G

ω(s) d(ν∗ ∗ µ)(s), (†9)

where π : A→ A/n is the quotient map (and µ∗ = µ̌). If Hω is the separable Hilbert space,
which is the completion of H0 = A/n, then the unitary representation Uω : G → U(Hω) is
completely determined by

Uω(s)(π(µ)) = π(δs ∗ µ), µ ∈ A, s ∈ G.

The unique unitary non-degenerate (algebra) representation (Uω)ext : A→ L(Hω) extending
Uω is completely determined by

((Uω)ext(µ))(π(ν)) = π(µ ∗ ν), µ, ν ∈ A.

The vector x0 = π(δe) is a cyclic vector for both representations.
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Theorem 9.35. Let (G,K) be a Gelfand pair.

(1) For every spherical function of positive type ω ∈ Z(G/K), the cyclic unitary represen-
tation Uω : G→ U(Hω) (with cyclic vector x0) is irreducible, and its restriction to the
compact group K contains the trivial representation of K, which means that

F = {x ∈ Hω | Uω(t)(x) = x for all t ∈ K} 6= {0}.

In fact, the cyclic vector x0 belongs to F .

(2) Conversely, every unitary representation U : G → U(H) whose restriction to K con-
tains the trivial representation of K is equivalent to one of the representations Uω with
ω ∈ Z(G/K), and the multiplicity of the trivial representation of K in U is 1.

Theorem 9.35 is proven in Dieudonné [12] (Chapter XXII, Section 9, Lemma 22.9.2). To
prove that Uω is irreducible, it suffices to show that P = (Uω)ext(χKλG) is the orthogonal
projection of Hω onto the one-dimensional subspace Cx0. Indeed (also making use of Theo-
rem 3.17) if F is a closed subspace of Hω invariant under Uω, and if F is not orthogonal to
x0, then P (F ) ⊆ F and x0 ∈ F , so F = Hω since x0 is a cyclic vector. On the other hand,
if F is orthogonal to x0, then its orthogonal complement F⊥ is also invariant under Uω and
contains x0, and since x0 is a cyclic vector F⊥ = Hω, and thus F = (0).

The proof of Theorem 9.35 makes use of the following proposition.

Proposition 9.36. For every irreducible representation V : A → L(H) of an involutive
commutative algebra A in a separable Hilbert space H, if V (A) is separable, then V is a
representation in a one-dimensional subspace (of H).

Proposition 9.36 is proven in Dieudonné [12] (Chapter XXII, Section 9, Lemma 22.9.2.2).

Unlike the case where G is compact, there may not be any closed subspace F of L2(G/K),
invariant under the canonical representation (see Definition 6.13), and such that the sub-
representation of the canonical representation to F is equivalent to some representation of
the form Uω. However, we have the following results.

Proposition 9.37. Given a linear map f : E → E, if f has rank 1, which means that
dim(f(E)) = 1, then there is a linear form ϕ ∈ E∗ and some nonzero vector u ∈ E, such
that

f(x) = ϕ(x)u, for all x ∈ E.

Proof. This fact is immediately obtained by picking a basis (eα)α∈I in E. Since f has rank
1, we can pick a nonzero vector u ∈ f(E), and then f(eα) = λαu for some λα ∈ C, so we
can let ϕ be the linear form given by ϕ(eα) = λα. If u is replaced by cu with c 6= 0, then ϕ
is replaced by c−1ϕ.
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In the situation of Proposition 9.37, we define the trace of f as

tr(f) = ϕ(u),

which is independent of the choice of u. If g : E → E is any other linear map, then it is easy
to see that f ◦ g and g ◦ f have rank 1, and that tr(f ◦ g) = tr(g ◦ f).

Proposition 9.38. The following properties hold.

(1) For every function f ∈ L1(G/K), the linear map (Uω)ext(f) ∈ L(Hω) has rank 1, and
we have

((Uω)ext(f))(z) = 〈z, x0〉((Uω)ext(f))(x0), z ∈ Hω,

where x0 is the cyclic vector x0 = π(δe). The trace of (Uω)ext(f) is given by

tr((Uω)ext(f)) = Ff(ω).

(2) For any two functions f, g ∈ L1(G/K) ∩ L2(G/K), we have

tr((Uω)ext(f) ◦ (Uω)ext(g)∗) = F(g∗ ∗ f)(ω),

an integrable function for the canonical measure mZ on Z(G/K), and∫
G

f(s)g(s) dλG(s) =

∫
Z(G/K)

tr((Uω)ext(f) ◦ (Uω)ext(g)∗) dmZ(ω).

(3) For every continuous and bounded function f ∈ L1(G/K), such that for all s ∈ G, the
function F(δs ∗ f) is integrable for mZ, we have

f(s) =

∫
Z(G/K)

F(δs ∗ f)(ω) dmZ(ω) =

∫
Z(G/K)

tr(Uω(s) ◦ (Uω)ext(f)) dmZ(ω).

Proposition 9.38 is proven in Dieudonné [12] (Chapter XXII, Section 9, Lemma 22.9.4).

Remark: Using Proposition 9.19, it can be shown that if g, h ∈ K(G/K), then f = g ∗ h
satisfies the hypothesis of Proposition 9.38(3), namely, F(δs∗f) is integrable for mZ. Indeed,

F(δs ∗ f) = F(δs ∗ (g ∗ h)) = F((δs ∗ g) ∗ h) = (F(δs ∗ g))(Fh),

with both factors in L2
mZ

(Z(G/K)), so F(δs ∗ f) is mZ-integrable. We also have f = g ∗ h ∈
K(G/K).

In the special case where G is a commutative locally compact metrizable and separable
group, we have the following results about unitary representations.
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Proposition 9.39. Let G be a commutative locally compact metrizable and separable group.
Every unitary cyclic representation U : G → U(H) of G in a separable Hilbert space H is

equivalent to a representation M : G → U(L2
µ(Ĝ)), where µ is a positive bounded measure

on Ĝ (the dual of G), and for every s ∈ G, the linear operator M(s) is defined so that for

every g ∈ L2
µ(Ĝ), M(s)(g) is the class of the function in L2

µ(Ĝ) given by

χ 7→ χ(s)g(χ), χ ∈ Ĝ.

The proof of Proposition 9.39 is proven in Dieudonné [12] (Chapter XXII, Section 9,
Lemma 22.15.1). The proof uses Bochner’s theorem (see Proposition 9.28).

If G = R, there is a more precise result due to Stone.

Theorem 9.40. (Stone) Every unitary representation of the (additive) group R in a sepa-
rable Hilbert space H is of the form

t 7→ eitA,

where A is a self-adjoint operator of H, not necessarily bounded. Conversely, for every self-
adjoint not necessarily bounded operator A of H, the map t 7→ eitA is a unitary representation
of R in H.

Theorem 9.40 is proven in Dieudonné [12] (Chapter XXII, Section 9, Lemma 22.15.3).

9.12 Problems

Problem 9.1. Let G be a locally compact, metrizable, separable and unimodular group,
and K be a compact subgroup of G. Let π : G→ G/K be the projection map.

(i) Show that the map f 7→ f ◦ π is a bijection between K(G/K) and K(G) ∩ C(G/K).

(ii) Construct a bijection between K(K\G) and the space K(G) ∩ C(K\G).

(iii) Construct a bijection between K(K\G/K) and the space K(G) ∩ C(K\G/K).

(iv) Show that K(G/K) is a left ideal in K(G), that K(K\G) is a right ideal in K(G), and

that the involution f 7→ f̌ maps K(G/K) onto K(K\G).

(v) Show that K(K\G/K) is an involutive subalgebra of K(G).

Problem 9.2. Recall the projection map from C(G) onto C(K\G/K) given by

f ](s) =

∫
K

∫
K

f(tst′) dλK(t) dλK(t′), s ∈ G,

for any f ∈ C(G); see Definition 9.1.
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(i) Check that if f ∈ C(G), then f ](t1st
′
1) = f ](s) for all t1, t

′
1 ∈ K.

(ii) Check that for all f ∈ C(K\G/K) and for all g ∈ C(G),

(fg)] = fg].

Problem 9.3. Complete the proof of Proposition 9.1.

Problem 9.4. Let fσ be the function given by

fσ(s) = f(σ(s)) = f(σ−1(s)), s ∈ G;

see the proof of Theorem 9.2. Check that the map σ̂ : K(G)→ K(G) given by σ̂(f) = fσ is
an involutive automorphism of the vector space K(G). Also show that σ̂ : K(G)→ K(G) is
an automorphism of the algebra K(G) (under convolution).

Problem 9.5. Prove Proposition 9.3.

Hint . See Dieudonné [12], Chapter XXII, Section 6.

Problem 9.6. (Advanced Exercise) Prove part (1) of Theorem 9.7.

Hint . See Dieudonné [12], Chapter XXII, Section 6, no. 22.6.9.

Problem 9.7. Let c and cu be the conjugations defined in Theorem 9.12. Consider the map
h = c ◦ cu. Show that h is a linear and an automorphism of the Lie bracket.

Problem 9.8. Recall from Example 9.1 that

su(n) = {X ∈ Mn(C) | X∗ = −X, tr(X) = 0},

and that
sl(n,C) = su(n)⊕ isu(n).

Thus, the conjugation cu of sl(n,C) associated with su(n) is given by cu(X) = −X∗.

(i) Consider the conjugation c0 of sl(n,C) given by c0(X) = X. Show that c0 commutes
with cu and that the restriction of c0 to gu = su(n) is also c0.

(ii) Now let c0 : sl(n,C)→ sl(n,C) be the conjugation given by

c0(X) = −Ip,n−pX∗Ip,n−p,

where

Ip,n−p =

(
Ip 0p,n−p

0n−p,p −Ip,n−p

)
,

with 1 ≤ p ≤ n− 1. Show that c0 commutes with cu. Also show that the restriction of
c0 to su(n) is given by c0(X) = Ip,n−pXIp,n−p.
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Problem 9.9. Consider the real Lie algebra gu = su(n) of n × n complex skew-hermitian
matrices with zero trace and its complexification g = sl(n,C). Assume that n = 2m, and let
c0 : sl(n,C)→ sl(n,C) be the conjugation given by

c0(X) = −JmXJm,

with

Jm =

(
0m Im
−Im 0m

)
.

(i) Show that the conjugation c0 commutes with cu, where cu(X) = −X∗.

(ii) The real Lie group SU∗(2m) is defined by

SU∗(2m) =

{(
U V
−V U

)
∈ SL(2m,C)

∣∣∣∣ U, V ∈ Mm(C)

}
;

see Definition 9.13. Show that its real lie algebra is given by

su∗(2m) =

{(
U V
−V U

) ∣∣∣∣ U, V ∈ Mm(C), tr(U) + tr(U) = 0

}
.

(iii) Verify that su∗(2m) = k0 ⊕ p0, where

k0 = {X ∈ su(2m,C) | X = −JmXJm},

and
ip0 = {X ∈ su(2m,C) | X = JmXJm}.

(iv) Show that the map ϕ : Mm(H)→ M2m(C) given by

ϕ(U + V j) =

(
U V
−V U

)
is an injective R-algebra homomorphism.

Problem 9.10. (Advanced Exercise for readers familiar with Lie groups) Prove Proposition
9.14.

Hint . See Dieudonné [16], Proposition 21.18.5.1.

Problem 9.11. (Advanced Exercise for readers familiar with Lie groups) Prove Theorem
9.17.

Hint . The reasoning in the proof of Proposition 9.15 can be used to show that the conju-
gation σu on G̃0, such that d(σu)e = cu induces a conjugation on G1 = G̃0/D. Then apply
Proposition 21.18.8 in Dieudonné [11].
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Problem 9.12. The Legendre function of (complex) index ρ, denoted Pρ, is defined as

Pρ(v) =
1

2π

∫ 2π

0

(v +
√
v2 − 1 cosϕ)ρ dϕ, v ≥ 1, ρ ∈ C.

(i) When ρ is a positive integer n, show that modulo a constant, Pn is a Legendre poly-
nomial; see Definition 5.15.

(ii) If ρ is purely imaginary, show that Pρ is bounded.

(iii) If ρ is a positive real number, show that Pρ is unbounded.

(iv) Check that Pρ satisfies the functional equation

1

2π

∫ 2π

0

Pρ(cosh t coshu+ sinh t sinhu cosϕ) dϕ = Pρ(cosh t)Pρ(coshu),

for all t, u ∈ R.

Problem 9.13. Recall the generalized spherical function of Example 9.10, namely

ψ(r) =
1

2π

∫ 2π

0

er(λ cos θ+µ sin θ) dθ,

for any λ, µ ∈ C.

(i) For λ and µ imaginary, show that ψ(r) is bounded.

(ii) For the special case where λ = 0 and µ = i, the function ψ is the Bessel function J0.
Using a change of variable, if both λ and µ are imaginary, show that the function ψ
becomes J0.

Problem 9.14. Prove Proposition 9.18.

Problem 9.15. Complete the proof of Proposition 9.19 by showing that if either f ∈
L1(G/K) or g ∈ L1(K\G), then

F(f ∗ g) = (Ff)(Fg).

Problem 9.16. Complete the proof of Proposition 9.20 by verifying the following three
identities, namely that for f ∈ L1(K\G), every s ∈ G, and every ω ∈ S(G/K)

F(λsf)(ω) = ω(s−1)(Ff)(ω),

and that for every function f ∈ L1(G/K), every s ∈ G, and every ω ∈ S(G/K),

F(ρsf)(ω) = ω(s)(Ff)(ω), F(ρsf)(ω) = ω(s−1)(Ff)(ω).
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Problem 9.17. (Advanced Exercise) Read Dieudonné [12], Chapter XXII, Section 7, The-
orem 22.7.4, and write a proof of Plancherel Transform Theorem, Theorem 9.21.

Problem 9.18. Prove Proposition 9.22.

Hint . See Dieudonné [12], Chapter XXII, Section 7, Lemma 22.7.4.3.

Problem 9.19. Prove Proposition 9.27.

Hint . See Dieudonné [12], Chapter XXII, Section 7, Lemma 22.7.8.

Problem 9.20. (Advanced Exercise) Prove Proposition 9.28.

Hint . See Dieudonné [12], Chapter XXII, Section 7, Lemma 22.7.10.

Problem 9.21. If the Haar measure λG on G is replaced by aλG with a > 0, show that the
space S(G/K) of spherical functions is unchanged. Show that the Fourier transform and the
Fourier cotransform are multiplied by a, and that the Plancherel transform (see Definition
9.22) is multiplied by a−1.

Problem 9.22. (Advanced Exercise) Prove Proposition 9.30.

Hint . See Dieudonné [12], Chapter XXII, Section 8, Lemma 22.8.3.

Problem 9.23. Prove Proposition 9.32.

Hint . See Dieudonné [12], Chapter XXII, Section 8, Lemma 22.8.5.

Problem 9.24. Prove Proposition 9.33.

Hint . See Dieudonné [12], Chapter XXII, Section 8, Lemma 22.8.8.

Problem 9.25. (Advanced Exercise) Prove Theorem 9.35.

Hint . See Dieudonné [12], Chapter XXII, Section 9, Lemma 22.9.2.

Problem 9.26. Prove Proposition 9.38.

Hint . See Dieudonné [12], Chapter XXII, Section 9, Lemma 22.9.4.

Problem 9.27. Prove Proposition 9.39.

Hint . See Dieudonné [12], Chapter XXII, Section 9, Lemma 22.15.1.

Problem 9.28. Prove Stone’s theorem, Theorem 9.40.

Hint . See Dieudonné [12], Chapter XXII, Section 9, Lemma 22.15.3.
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[12] Jean Dieudonné. Éléments d’Analyse, Tome VI. Analyse Harmonique. Edition Jacques
Gabay, first edition, 2003.

693



694 BIBLIOGRAPHY
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E(Ĝ)0, 276
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adjoint representation, 143
algebra

center, 84
idempotent, 67

associated Legendre polynomials, 350
atomic measure, 170

Bessel function, 667
bitrace, 54
Bochner’s theorem, 679
Bochner–Godement theorem, 96

canonical decomposition
U : G→ U(E), 223

canonical measure on Z(G/K), 675
canonical system of imprimitivity, 487
Cartan decomposition

Lie group, 652
real Lie algebra, 635

Casimir operator, 318
Cauchy–Schwarz inequality, 41
central function, 195

centralizer, 136
character, 289, 295–297, 302, 378

associated with aρ, 208
compact group, 208
representation V , 222

class 1, 418
Clebsch–Gordan Coefficient, 191
Clebsch–Gordan coefficients, 15, 20, 229, 296,

381, 382
Wigner symbol, 385

cocycle
set of representatives

master equation, 402
cocycle of a group G, 397
commutant, 136
commutator, 661
commutator subgroup, 661
compact form

complex Lie group, 650
compact group

abelian characters, 213
character, 208
linear representation

complete reducibility, 138
trivial character, 208

compact operator, 59
complete reducibility, 326
complete set irreducible representations, 219
complex homogeneous polynomial

spin, 140
complex Lie group

compact form, 650
real form, 650

707
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complex measure
positive type, 176
projection, 674

complex symplectic group, 648
complexification

Lie algebra, 320
conjugation

complex Lie algebra, 631
continuous function

positive type, 167
contragredient representation, 235
convex set

extreme point, 174
coordinate functions

for Mρ, 280
correlation kernel, 519, 528
correlation operator, see cross-correlation op-

erator
countably separated, 483, 489
cross-correlation, 519

equivariant
under translation, 520

lifted correlation, 522, 525
cross-correlation operator, 528
cyclic vector

algebra representation, 51

direct image
measure, 162

direct sum, 47
double classes, 439
double cosets, see double classes
double-valued representations of SO(3), 342
dual representation, 235

eigenspace, 101
eigenvalue, 101
equilinear action, 396, see equivariant, 450
equivariant, 126, 136
equivariant G-kernels, 593
equivariant X-kernels, 32, 516, 604
equivariant Xin-kernels, 599
equivariant action, 449

equivariant linear map, 319, 593
ergodic, 480
Euler angles

rotation matrix, 308
unit quaternion, 306

Euler’s finite difference formula, 340
exponential of S, 656

family of Fourier coefficients feature fields,
567

family of steerable feature fields, 567
feature field, 563

steerable, 567
type, 563

feature fields, 25, 394, 451
fields of quantities on sphere, 373
finite group

conjugacy class, 213
conjugate element, 213

Fourier coefficients feature field, see steerable
feature field

Fourier cotransform
compact group, 281
Gelfand pair, 668
inversion formula, 678

Fourier cotransform of µ, 682
Fourier series

compact group, 281
Fourier transform

compact group, 273
Gelfand pair, 669

Fourier transform of µ, 682
Frobenius norm, 276

Gelfand pair, 616
Fourier cotransform, 668
Fourier transform, 669

Gelfand–Raikov Theorem, 175
generalized Fourier coefficients

compact group, 275
group action

equilinear, 396
equivariant, 449
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free, 460
regular, 489

group algebra, 213
group representation

induce by σ and β, 402
operator factor, 404

Haar measure, 530
associated, 677
dual measure, 677
left, 530
right, 530

harmonic polynomials, 299
Hermite polynomials, 547
hermitian G-bundle, 456

finite rank, 456
hermitian G-vector bundle, 463

(local) trivializations, 463
hermitian form, 41

positive, 41
positive definite, 41

hermitian inner product, 41
hermitian space, 41
hermitian vector bundle, 462

(local) trivializations, 462
frame, 463
transition maps, 462
trivializing cover

compatible with, 462
equivalent, 462

highest weight, 323
Hilbert algebra

master decomposition theorem, 77
regular representation, 68

Hilbert basis, 41
Hilbert space, 41

automorphism, 44
Hilbert sum, 45, 46
isomorphism, 44
orthogonal projector, 50
orthonormal family, 41
Parseval identity, 48

separable, 42
unitary map, 44

Hilbert sum, 45, 46
algebra representations, 45, 50

Hilbert–Schmidt norm, 276
Hilbert–Schmidt operator, 58, 60
homogeneous polynomials

degree k, 299
degree m, 124
one variable

homogenizing, 312
two variables

dehomogenizing, 311

induced representation
SE(3), 413
SE(n) into L2

λ(S
n−1;C), 416

Blattner’s method, 443
canonical representation, 420
Folland method without cocycle, 420
via cocycle, 413

L2
λ(G;E), 419

inner automorphism, 210
intertwining operator, 136
invariant subspace

algebra representation, 49
involutive algebra

bitrace, 54
Hilbert algebra, 56
positive Hilbert form, 54
positive linear form, 52
self-adjoint, 67
self-adjoint idempotent

irreducible, 71
reducible, 71

trace, 54
involutive algebra representation, 42

cyclic subspace, 51
cyclic vector, 51
equivalent, 45
essential subspace, 51
faithful, 42
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Hilbert sum, 45, 50
invariant subspace, 49
nondegenerate, 51
representation space, 42
subrepresentation, 49
topologically cyclic, 51
topologically irreducible, 50
totalizer, 51
totalizing vector, 51

irreducible components of representation V ,
220

irreducible representation
O(2), 498
O(2m+ 1), 233
SE(2), 498
SE(3), 498
SE(n), 497
SU(2)

field of quantities, 373
partial trace, 434

irreducible representation Mρ

contained in V , 220
multiplicity dρ, 220

Jacobi polynomials, 349

kernel
equivariance constraint, 31, 514, 588

kernel operators, 33, 517, 605
Kronecker product, 227

Laplace spherical harmonics, 354
Laplacian, 299
left ideal

minimal, 72
left regular representation, 130

left shift, 130
left regular representation of L1(G), 160
left regular representation of G, 159
Legendre function of (complex) index ρ, 663
Legendre polynomials, 350

associated, 350
Lie algebra

Cartan decomposition, 635
complexification, 320
semi-simple, 631
simple, 290, 318
weight, 321

Lie algebra (complex)
conjugation, 631

Lie algebra representation, 319, 329
equivalent, 319
irreducible, 319
map or morphism, 319
primitive, 321

Lie group
semi-simple, 631

lifted correlation, 522, 525
linear form

positive, 52
linear map

equivariant, 319
linear representation of G

induced by cocyle α, 397
linear representation of G in EX , 397
little group, 491, 492
locally compact group

G-map, 126
equivalent representations, 126
irreducible linear representation, 127
irreducible unitary representation, 136
linear representation

degree n, 121
dimension n, 121
invariant subspace, 127
matrix form, 122
special functions, 123

morphism of representations, 126
representation space, 121
G-module, 121

subrepresentation, 127
trivial representation, 122
type I, 232
unitary representation, 121, 135
G-map, 136
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cyclic subspace, 136
cyclic vector, 136
equivalent, 136
invariant subspace, 136
morphism, 136
subrepresentation, 136
topologically cyclic, 136
totalizer, 136
totalizing vector, 136
weak integral, 153

Mackey’s Imprimitivity Theorem, 488
master decomposition for nondegenerate rep-

resentations, 84
matrix coefficients

compact group, 280
measure

atomic, 170
direct image, 162
positive type, 176
projection-valued, 107
quasi-invariant, 422
support of, 168

modular function, 531
modulus of an automorphism, 531
morphism of representations of Lie group, 126

negligible f ∈ L2
µ(X;E), 410

norm topology, 104

operator norm, see norm topology, 276
orbit

countably separated, 483, 489
orbit space, 556
oriented Grassmanian, 655

Parseval identity, 48
partial trace, 434
Pauli spin matrices, 304
Peter–Weyl theorem, I, 196
Peter–Weyl theorem, II, 215
Plancherel transform, 680
Plancherel transform of µ, 673
Plancherel Transform Theorem, 673

Plancherel’s theorem
compact group, 280

Plancherel–Godement theorem, 94
positive Hilbert form, 54

bitrace, 54
positive semidefinite function, 175
pre-G-bundle, 450
pre-Hilbert space, see hermitian space
primitive of weight λ, 321
principal H-bundle, 459

local trivializations, 459
transition map, 461
trivializing cover

compatible with, 461
equivalent, 461

projection
complex measure, 674

projection-valued measure, 107
pure quaterions, 143

quasi-invariant measure, 422
rho-function, 422

quaternions, 142
pure, 143
pure quaternions, 143

Radon–Nikodym derivative, 424
real form

complex Lie group, 650
Real Grassmannian, 655
regular representation

S3, 124
finite group, 129, 130
Hilbert algebra, 68

representation
SE(n)

quasi-regular, 416
Lie algebra, 319

representation of Lie group
G-map, 126
equivalent, 126
invariant subspace, 127
irreducible, 127
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representation space
G-module, 122

special functions, 123
subrepresentation, 127
trivial representation, 122

representations of SL(2,R)
discrete series, 431
principal series, 427

rho-function, 422
Riesz representation theorem, 151
right regular representation, 130

right shift, 130
ring of linear representations of G, 230

Schur’s lemma for irreducible representations,
133

Schur’s lemma for unitary representations, 145
section, 399

of a surjective map, 447
self-conjugate representation, 244
semi-direct product, 405, 459, 491, 509, 514,

522, 524–526, 530, 538, 562, 563, 599,
603, 604, 608, 613, 653, 664

semilinear form, 151
semilinear map, 227
sesquilinear form, 41
sesquilinear map, 227
set of representatives, 399
singular values, 275
skew Hermitian matrix

zero trace, 143
skew-hermitian, 329
solid harmonics, see harmonic polynomials
special functions, 123
spectral measure, 103
Spectral theorems

normal bounded operator, I, 100
normal bounded operators, II, 111
Spectral Theorem, I, 99
Spectral Theorem, II, 110
Spectral Theorem, III, 112
Spectral Theorem, IV, 113

spherical functions, 353, 622

U relative to H, 418
positive type, 671
zonal, 355, 418

spherical harmonics, 299
Laplace, 354

stable subspace, see invariant subspace
standard representation

S3, 128
steerable basis, 544
steerable family, 28, 509, 539, 541, 544

weights, 539
steerable feature field, 567
Stone’s theorem for representations, 687
strong operator topology, see pointwise con-

vergence, 106
strongly quasi-invariant measure, 422
symmetric space

compact type, 653
non-compact type, 653

system of imprimitivity
equivalent, 488
transitive, 484

system of imprimitivity, version 1, 484
system of imprimitivity, version 2, 485

tame, see regular action
template kernel, see correlation kernel
template matching, 517

correlation kernel, 519, 528
cross-correlation, 519
cross-correlation operator, 528
data augmentation, 522
feature maps, 527
lifted correlation, 522, 525

tensor product
linear maps, 226
unitary representation, 228, 230
universal mapping property, 226
vector spaces, 226

totalizer
algebra representation, 51

trace, 54
trivial character, 208
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trivial ideal
of L2(G), 203

trivial representation, 122

unitary representation, 42
class 1 relative to H, 418
irreducible

class, 229
locally compact group, 121
master decomposition theorem, 84
primary, 232
tensor product, 228, 230

universal mapping property, 226

von Neumann algebra, 136
von Neumann norm, 275

weak integral, 105, 153, 271
weak operator topology, 104
weak pointwise convergence, 105
weak ∗-topology

L∞(G), 174
weights

steerable family, 539
Weyl’s Unitarian Trick, 326
Weyl, H., 342
Wigner symbol

Clebsch–Gordan coefficients, 385
Wigner’s D-matrices, 342
Wigner’s d-matrices, 342
Wigner, E., 341
Wigner–Eckart theorem for steerable kernels,

33, 517, 607

zonal spherical functions, 355, 418, 440, see
spherical functions


