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Figure 1: Dog Logic
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1. Graph Clustering

Given a set of data, the goal of clustering is to partition the data into
different groups according to their similarities.

15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Figure 2: A weighted graph and its partition into two clusters.
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When the data is given in terms of a similarity graph G , where the weight
wi j between two nodes vi and vj is a measure of similarity of vi and vj , the
problem can be stated as follows:

Find a partition (A1, . . . ,AK ) of the set of nodes V into different groups
such that the edges between different groups have very low weight (which
indicates that the points in different clusters are dissimilar), and the edges
within a group have high weight (which indicates that points within the
same cluster are similar).

The above graph clustering problem can be formalized as an optimization
problem, using the notion of cut.
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Example in computer vision: finding contours in an image.

Figure 3: Images with top 20 contours extracted
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Typically, the following steps are followed:

1 Formulate the discrete optimization problem in matrix form.

2 The discrete problem is often very hard (NP-hard, ...). Relax the
problem (drop some constraints and look for continuous solutions).

3 Find a discrete solution as close as possible to a continuous solution.

Step (2) often reduces to some kind of eigenvalue problem.

Step (3) is usually the hardest step.
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2. Weigted Graphs, Cuts, Laplacians

15

Encode Pairwise Relationships as a Weighted Graph

Figure 4: A weighted graph.

The thickness of an edge corresponds to the magnitude of its weight.
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Given the weight matrix

W =


0 3 6 3
3 0 0 3
6 0 0 3
3 3 3 0

 ,

with node set V = {v1, v2, v3, v4}, the corresponding graph G is:

v1

v2

v3

v4

Figure 5: The weighted graph corresponding to W .
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For every node vi ∈ V , the degree d(vi ) of vi is the sum of the weights of
the edges adjacent to vi :

d(vi ) =
m∑
j=1

wi j .

Note that in the above sum, only nodes vj such that there is an edge
{vi , vj} have a nonzero contribution. Such nodes are said to be adjacent
to vi .

The degree matrix D is defined by D = diag(d(v1), . . . , d(vm)).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 10 / 102



For every node vi ∈ V , the degree d(vi ) of vi is the sum of the weights of
the edges adjacent to vi :

d(vi ) =
m∑
j=1

wi j .

Note that in the above sum, only nodes vj such that there is an edge
{vi , vj} have a nonzero contribution. Such nodes are said to be adjacent
to vi .

The degree matrix D is defined by D = diag(d(v1), . . . , d(vm)).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 10 / 102



For every node vi ∈ V , the degree d(vi ) of vi is the sum of the weights of
the edges adjacent to vi :

d(vi ) =
m∑
j=1

wi j .

Note that in the above sum, only nodes vj such that there is an edge
{vi , vj} have a nonzero contribution. Such nodes are said to be adjacent
to vi .

The degree matrix D is defined by D = diag(d(v1), . . . , d(vm)).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 10 / 102



Given any subset of nodes A ⊆ V , we define the volume vol(A) of A as
the sum of the weights of all edges adjacent to nodes in A:

vol(A) =
∑
vi∈A

d(vi ) =
∑
vi∈A

m∑
j=1

wi j .

18

Degree of a node:
di = ¦j Wi,j

Degree matrix:
Dii = ¦j Wi,j

Figure 6: Degree and volume.
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Observe that vol(A) = 0 if A consists of isolated vertices (wi j = 0 for all
vi ∈ A). Thus, it is best to assume that G does not have isolated vertices.

Given any two subset A,B ⊆ V (not necessarily distinct), we define
links(A,B) by

links(A,B) =
∑

vi∈A,vj∈B
wi j .

Since the matrix W is symmetric, we have

links(A,B) = links(B,A).
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The quantity links(A,A) = links(A,A), where A = V − A denotes the
complement of A in V , measures how many links escape from A (and A),
and the quantity links(A,A) measures how many links stay within A itself.

The quantity
cut(A) = links(A,A)

is often called the cut of A.
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Figure 7: A Cut involving the set of nodes in the center and the nodes on the
perimeter.
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We now define the most important concept of this talk: The Laplacian
matrix of a graph. Actually, as we will see, it comes in several flavors.

Definition 1

Given any weighted graph G = (V ,W ) with V = {v1, . . . , vm}, the
(unnormalized) graph Laplacian L(G ) of G is defined by

L(G ) = D(G )−W ,

where D(G ) = diag(d1, . . . , dm) is the degree matrix of G (a diagonal
matrix), with

di =
m∑
j=1

wi j .
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Consider the weight matrix

W =


0 3 6 3
3 0 0 3
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v1

v2

v3

v4

Figure 8: The weighted graph corresponding to W .
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The degree matrix (diag(sum(W))) is

D(G ) =


12 0 0 0
0 6 0 0
0 0 9 0
0 0 0 9

 ,

and the Laplacian is

L = D(G )−W =


12 −3 −6 −3
−3 6 0 −3
−6 0 9 −3
−3 −3 −3 9

 .

The eigenvalues of L are: 0, 6.8038, 12, 17.1962.
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The vector 1 is the nullspace of L, but it is less obvious that L is positive
semidefinite.

Proposition 1

For any m ×m symmetric matrix W , if we let L = D −W where D is the
degree matrix of W = (wij), then we have

x>Lx =
1

2

m∑
i ,j=1

wi j(xi − xj)
2 for all x ∈ Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if
wi j ≥ 0 for all i , j ∈ {1, . . . ,m}, then L is positive semidefinite.
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Proposition 1 immediately implies the following facts: For any weighted
graph G = (V ,W ),

1 The eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λm of L are real and
nonnegative, and there is an orthonormal basis of eigenvectors of L.

2 The smallest eigenvalue λ1 of L is equal to 0, and 1 is a
corresponding eigenvector.

Normalized variants of the graph Laplacian are needed, especially in
applications to graph clustering.
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These variants make sense only if G has no isolated vertices. In this case,
the degree matrix D contains positive entries, so it is invertible and D−1/2

makes sense; namely

D−1/2 = diag(d
−1/2
1 , . . . , d

−1/2
m ).

Definition 2

Given any weighted directed graph G = (V ,W ) with no isolated vertex
and with V = {v1, . . . , vm}, the (normalized) graph Laplacian Lsym is
defined by

Lsym = D−1/2LD−1/2 = I − D−1/2WD−1/2
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Proposition 2

Let G = (V ,W ) be a weighted graph without isolated vertices. The graph
Laplacians L and Lsym satisfy the following properties:

(1) The normalized graph Laplacian Lsym has a spectrum
(0 = ν1 ≤ ν2 ≤ . . . ≤ νm ≤ 2).

(2) The graph Laplacians L and Lsym are symmetric, positive,
semidefinite.
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Figure 9: Are you my mother?
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3. Back to Graph Clustering

If we want to partition V into K clusters, we can do so by finding a
partition (A1, . . . ,AK ) that minimizes the quantity

cut(A1, . . . ,AK ) =
1

2

K∑
1=1

cut(Ai ).

For K = 2, the mincut problem is a classical problem that can be solved
efficiently, but in practice, it does not yield satisfactory partitions.

Indeed, in many cases, the mincut solution separates one vertex from the
rest of the graph. What we need is to design our cost function in such a
way that it keeps the subsets Ai “reasonably large” (reasonably balanced).
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A way to get around this problem is to normalize the cuts by dividing by
some measure of each subset Ai .

One possibility is to use the size (the number of elements) of Ai .

Another is to use the volume vol(Ai ) of Ai . A solution using the second
measure (the volume) (for K = 2) was proposed and investigated in a
seminal paper of Shi and Malik.

Subsequently, Stella Yu (in her dissertation) and Yu and Shi extended the
method to K > 2 clusters.
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The idea is to minimize the cost function

Ncut(A1, . . . ,AK ) =
K∑
i=1

links(Ai ,Ai )

vol(Ai )
=

K∑
i=1

cut(Ai ,Ai )

vol(Ai )
.

We proceed directly to the case K > 2 which is the most interesting case,
and is harder to handle.
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Figure 10: Newton goes to Wharton
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4. K -Way Clustering Using Normalized Cuts

Two crucial issues need to be addressed:

1 The choice of a matrix representation for partitions on the set of
vertices.

It is important that such a representation be scale-invariant.

It is also necessary to state necessary and sufficient conditions for
such matrices to represent a partition.

2 The choice of a metric to compare solutions.
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We describe a partition (A1, . . . ,AK ) of the set of nodes V by an N × K
matrix X = [X 1 · · ·XK ] whose columns X 1, . . . ,XK are indicator vectors
of the partition (A1, . . . ,AK ).

We assume that the vector X j is of the form

X j = (x j1, . . . , x
j
N),

where x ji ∈ {aj , 0} for j = 1, . . . ,K and i = 1, . . . ,N, and with aj 6= 0.

x ji = aj means that node vi belongs to cluster Kj .
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When N = 10 and K = 4, an example of a matrix X representing the
partition of V = {v1, v2, . . . , v10} into the four blocks

{A1,A2,A3,A4} = {{v2, v4, v6}, {v1, v5}, {v3, v8, v10}, {v7, v9}},

is shown below:

X =



0 a2 0 0
a1 0 0 0
0 0 a3 0
a1 0 0 0
0 a2 0 0
a1 0 0 0
0 0 0 a4
0 0 a3 0
0 0 0 a4
0 0 a3 0


.
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Let d = 1>D1 and αj = vol(Aj), so that α1 + · · ·+ αK = d .

Then, vol(Aj) = d − αj , and we find that

cut(Aj ,Aj)

vol(Aj)
=

(X j)>LX j

(X j)>DX j
j = 1, . . . ,K .

This gives us a matrix expression for the cost

Ncut(A1, . . . ,AK ) =
K∑
i=1

cut(Ai ,Ai )

vol(Ai )
.

We also denote Ncut(A1, . . . ,AK ) as µ(X 1, . . . ,XK ).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 30 / 102



Let d = 1>D1 and αj = vol(Aj), so that α1 + · · ·+ αK = d .

Then, vol(Aj) = d − αj , and we find that

cut(Aj ,Aj)

vol(Aj)
=

(X j)>LX j

(X j)>DX j
j = 1, . . . ,K .

This gives us a matrix expression for the cost

Ncut(A1, . . . ,AK ) =
K∑
i=1

cut(Ai ,Ai )

vol(Ai )
.

We also denote Ncut(A1, . . . ,AK ) as µ(X 1, . . . ,XK ).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 30 / 102



Let d = 1>D1 and αj = vol(Aj), so that α1 + · · ·+ αK = d .

Then, vol(Aj) = d − αj , and we find that

cut(Aj ,Aj)

vol(Aj)
=

(X j)>LX j

(X j)>DX j
j = 1, . . . ,K .

This gives us a matrix expression for the cost

Ncut(A1, . . . ,AK ) =
K∑
i=1

cut(Ai ,Ai )

vol(Ai )
.

We also denote Ncut(A1, . . . ,AK ) as µ(X 1, . . . ,XK ).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 30 / 102



Let d = 1>D1 and αj = vol(Aj), so that α1 + · · ·+ αK = d .

Then, vol(Aj) = d − αj , and we find that

cut(Aj ,Aj)

vol(Aj)
=

(X j)>LX j

(X j)>DX j
j = 1, . . . ,K .

This gives us a matrix expression for the cost

Ncut(A1, . . . ,AK ) =
K∑
i=1

cut(Ai ,Ai )

vol(Ai )
.

We also denote Ncut(A1, . . . ,AK ) as µ(X 1, . . . ,XK ).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 30 / 102



If we let

X =
{

[X 1 . . . XK ] | X j = aj(x
j
1, . . . , x

j
N), x ji ∈ {1, 0}, aj ∈ R, X j 6= 0

}
then our optimization problem is:

K -way Clustering of a graph using Normalized Cut, Version 1:
Problem PNC1

minimize µ(X 1, . . . ,XK ) =
K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0, 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1, X ∈ X .

Let’s ignore the second technical contraint for now.
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The solutions that we are seeking are K -tuples (X 1 : · · · : XK ) of points in
projective space RPN−1 determined by their homogeneous coordinates
X 1, . . . ,XK .

Our original formulation (PNC1) can be converted to a more convenient
form, by chasing the denominators in the Rayleigh ratios, and by
expressing the objective function in terms of the trace of a certain matrix.
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K -way Clustering of a graph using Normalized Cut, Version 1:
Problem PNC1

minimize µ(X 1, . . . ,XK ) =
K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0, 1 ≤ i , j ≤ K , i 6= j ,

X ∈ X .

K -way Clustering of a graph using Normalized Cut, Version 2:
Problem PNC2

minimize tr(X>LX )

subject to X>DX = I ,

X ∈ X .
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Problem PNC2 is equivalent to problem PNC1 if we view the solutions as
homogeneous coordinates (up to a nonzero scalar).

The main problem in finding a good relaxation of problem PNC2 is that it
is very difficult to enforce the condition X ∈ X .

The first natural relaxation of problem PNC2 is to drop the condition that
X ∈ X , and we obtain
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Problem (∗2)

minimize tr(X>LX )

subject to X>DX = I .

Actually, since the discrete solutions X ∈ X that we are ultimately seeking
are solutions of problem PNC1, the preferred relaxation is the one
obtained from problem PNC1 by dropping the condition X ∈ X , and
simply requiring that X j 6= 0, for j = 1, . . . ,K :
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Problem (∗1)

minimize

K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0,X j 6= 0 1 ≤ i , j ≤ K , i 6= j .

Problem (∗2)

minimize tr(X>LX )

subject to X>DX = I , X j 6= 0 1 ≤ j ≤ K .
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Proposition 3

For any orthogonal K × K matrix R, any symmetric N × N matrix A, and
any N × K matrix X = [X 1 · · · XK ], the following properties hold:

(1) µ(X ) = tr(Λ−1X>LX ), where

Λ = diag((X 1)>DX 1, . . . , (XK )>DXK ).

(2) If (X 1)>DX 1 = · · · = (XK )>DXK = α2, then

µ(X ) = µ(XR) =
1

α2
tr(X>LX ).

(3) The condition X>AX = α2I is preserved if X is replaced by XR.

(4) The condition X (X>X )−1X>1 = 1 is preserved if X is replaced by
XR.

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 37 / 102



Every solution Z of problem (∗2) yields a family of solutions of problem
(∗1); namely, all matrices of the form ZRΛ, where R ∈ O(K ) and Λ is a
diagonal invertible matrix.

We will take advantage of this fact in looking for a discrete solution X
“close” to a solution Z of the relaxed problem (∗2).

Observe that a matrix is of the form RΛ with R ∈ O(K ) and Λ a diagonal
invertible matrix iff its columns are nonzero and pairwise orthogonal.
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If we make the change of variable Y = D1/2X or equivalently
X = D−1/2Y , we get

Problem (∗∗2)

minimize tr(Y>D−1/2LD−1/2Y )

subject to Y>Y = I .

We recognize Lsym = D−1/2LD−1/2.

We pass from a solution Y of problem (∗∗2) to a solution Z of problem
(∗2) by Z = D−1/2Y .

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 39 / 102



If we make the change of variable Y = D1/2X or equivalently
X = D−1/2Y , we get

Problem (∗∗2)

minimize tr(Y>D−1/2LD−1/2Y )

subject to Y>Y = I .

We recognize Lsym = D−1/2LD−1/2.

We pass from a solution Y of problem (∗∗2) to a solution Z of problem
(∗2) by Z = D−1/2Y .

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 39 / 102



If we make the change of variable Y = D1/2X or equivalently
X = D−1/2Y , we get

Problem (∗∗2)

minimize tr(Y>D−1/2LD−1/2Y )

subject to Y>Y = I .

We recognize Lsym = D−1/2LD−1/2.

We pass from a solution Y of problem (∗∗2) to a solution Z of problem
(∗2) by Z = D−1/2Y .

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 39 / 102



It is not a priori obvious that the minimum of tr(Y>LsymY ) over all
N × K matrices Y satisfying Y>Y = I is equal to the sum ν1 + · · ·+ νK
of the first K eigenvalues of Lsym = D−1/2LD−1/2.

Fortunately, the Poincaré separation theorem guarantees that the sum of
the K smallest eigenvalues of Lsym is a lower bound for tr(Y>LsymY ).

Furthermore, the minimum of problem (∗∗2) is achieved by any K unit
eigenvectors (u1, . . . , uK ) associated with the smallest eigenvalues

0 = ν1 ≤ ν2 ≤ . . . ≤ νK
of Lsym.
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We may assume that ν2 > 0, namely that the underlying graph is
connected (otherwise, we work with each connected component), in which
case Y 1 = D1/21/

∥∥D1/21
∥∥
2
, because 1 is in the nullspace of L.

Theorem 3

The matrix Z = D−1/2Y where Y = [u1 . . . uK ] is the matrix of unit
eigenvectors associated with the K smallest eigenvalues of Lsym yields a
minimum of our relaxed problem (∗1)
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Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 42 / 102



In practice the matrix W can be too large to use SVD.

We can use randomized algorithms to compute a partial matrix
decomposition. There are fast approximate SVD algorithms due to Halko,
Martinsson and Tropp.

Finding a discrete solution close to a continuous approximation is
nontrivial. Yu and Shi proposed a method that we have generalized.
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5. Signed Graphs

Intuitively, in a weighted graph, an edge with a positive weight denotes
similarity or proximity of its endpoints.

For many reasons, it is desirable to allow edges labeled with negative
weights, the intuition being that a negative weight indicates dissimilarity or
distance.

Weighted graphs for which the weight matrix is a symmetric matrix in
which negative and positive entries are allowed are called signed graphs.
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Such graphs (with weights (−1, 0,+1)) were introduced as early as 1953
by Harary, to model social relations involving disliking, indifference, and
liking.

The problem of clustering the nodes of a signed graph arises naturally as a
generalization of the clustering problem for weighted graphs.
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Given the signed matrix

W =



0 1 0 1 0 0 0 0 0
1 0 −1 −1 1 0 0 1 0
0 −1 0 0 1 1 0 0 0
1 −1 0 0 −1 0 1 1 0
0 1 1 −1 0 1 0 −1 1
0 0 1 0 1 0 0 −1 1
0 0 0 1 0 0 0 1 0
0 1 0 1 −1 −1 1 0 −1
0 0 0 0 1 1 0 −1 0


the corresponding signed graph is
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Figure 12: A signed graph G .
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The first obstacle is that the degree matrix may now contain zero or
negative entries.

As a consequence, the Laplacian L may no longer be positive semidefinite,
and worse, D−1/2 may not exist.

A simple remedy is to use the absolute values of the weights in the degree
matrix!

This idea applied to signed graph with weights (−1, 0, 1) occurs in Hou.
Kolluri, Shewchuk and O’Brien take the natural step of using absolute
values of weights in the degree matrix in their original work on surface
reconstruction from noisy point clouds.
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Kunegis et al. appear to be the first to make a systematic study of
spectral methods applied to signed graphs.

However, it should be noted that only 2-clustering is considered in the
above papers.

The trick of using absolute values of weights in the degree matrix allows
the whole machinery that we have presented to be used to attack the
problem of clustering signed graphs using normalized cuts.

This requires a modification of the notion of normalized cut. Degrees and
volumes use absolute values of weights, but not the cuts.
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volumes use absolute values of weights, but not the cuts.
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If (V ,W ) is a signed graph, where W is an m ×m symmetric matrix with
zero diagonal entries and with the other entries wij ∈ R arbitrary, for any
node vi ∈ V , the signed degree of vi is defined as

d i = d(vi ) =
m∑
j=1

|wij |,

and the signed degree matrix D as

D = diag(d(v1), . . . , d(vm)).

For any subset A of the set of nodes V , let

vol(A) =
∑
vi∈A

d i .
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For any two subsets A and B of V , define links+(A,B), links−(A,B), and
cut(A,A) by

links+(A,B) =
∑

vi∈A,vj∈B
wij>0

wij

links−(A,B) =
∑

vi∈A,vj∈B
wij<0

−wij

cut(A,A) =
∑

vi∈A,vj∈A
wij 6=0

|wij |.

Note that
cut(A,A) = links+(A,A) + links−(A,A).
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Then, the signed Laplacian L is defined by

L = D −W ,

and its normalized version Lsym by

Lsym = D
−1/2

LD
−1/2

= I − D
−1/2

WD
−1/2

.

For a graph without isolated vertices, we have d(vi ) > 0 for i = 1, . . . ,m,

so D
−1/2

is well defined.

The signed Laplacian is symmetric positive semidefinite.
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The signed Laplacian of the matrix W given earlier is

L =



2 −1 0 −1 0 0 0 0 0
−1 5 1 1 −1 0 0 −1 0
0 1 3 0 −1 −1 0 0 0
−1 1 0 5 1 0 −1 −1 0
0 −1 −1 1 6 −1 0 1 −1
0 0 −1 0 −1 4 0 1 −1
0 0 0 −1 0 0 2 −1 0
0 −1 0 −1 1 1 −1 6 1
0 0 0 0 −1 −1 0 1 3


.

The eigenvalues of L are

0.5175, 1.5016, 1.7029, 2.7058, 3.7284, 4.9604, 5.6026, 7.0888, 8.1921.

The matrix L is actually positive definite!
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For any real λ ∈ R, define sgn(λ) by

sgn(λ) =


+1 if λ > 0

−1 if λ < 0

0 if λ = 0.

Proposition 4

For any m ×m symmetric matrix W = (wij), if we let L = D −W where
D is the signed degree matrix associated with W , then we have

x>Lx =
1

2

m∑
i ,j=1

|wij |(xi − sgn(wij)xj)
2 for all x ∈ Rm.

Consequently, L is positive semidefinite.
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6. Signed Normalized Cuts

As before, given a partition of V into K clusters (A1, . . . ,AK ), if we
represent the jth block of this partition by a vector X j such that

X j
i =

{
aj if vi ∈ Aj

0 if vi /∈ Aj ,

for some aj 6= 0, then we have the following result.

Proposition 5

For any vector X j representing the jth block of a partition (A1, . . . ,AK ) of
V , we have

(X j)>LX j = a2j (cut(Aj ,Aj) + 2links−(Aj ,Aj)).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 55 / 102



6. Signed Normalized Cuts

As before, given a partition of V into K clusters (A1, . . . ,AK ), if we
represent the jth block of this partition by a vector X j such that

X j
i =

{
aj if vi ∈ Aj

0 if vi /∈ Aj ,

for some aj 6= 0, then we have the following result.

Proposition 5

For any vector X j representing the jth block of a partition (A1, . . . ,AK ) of
V , we have

(X j)>LX j = a2j (cut(Aj ,Aj) + 2links−(Aj ,Aj)).

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 55 / 102



With the revised definition of vol(Aj), we deduce that

(X j)>LX j

(X j)>DX j
=

cut(Aj ,Aj) + 2links−(Aj ,Aj)

vol(Aj)
.

The calculations of the previous paragraph suggest the following definition.
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Definition 4

The signed normalized cut
sNcut(A1, . . . ,AK ) of the partition (A1, . . . ,AK ) is defined as

sNcut(A1, . . . ,AK ) =
K∑
j=1

cut(Aj ,Aj)

vol(Aj)
+ 2

K∑
j=1

links−(Aj ,Aj)

vol(Aj)
.

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 57 / 102



Based on previous computations, we have

sNcut(A1, . . . ,AK ) =
K∑
j=1

(X j)>LX j

(X j)>DX j
,

where X is the N × K matrix whose jth column is X j .

Therefore, this is the same problem as in the unsigned case, with L
replaced by L and D replaced by D.
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Observe that minimizing sNcut(A1, . . . ,AK ) amounts to

1 minimizing the number of positive and negative edges between
clusters, and also

2 minimizing the number of negative edges within clusters.

This second minimization captures the intuition that nodes connected by a
negative edge should not be together (they do not “like” each other; they
should be far from each other).

The method has been applied by Joao Sedoc to semantic world clustering,
where there are synonyms and antonyms
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Figure 13: Just the right tech
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7. What if the weight matrix is very large?

Given a n × n matrix W for n ≈ 105, we want to find a rank-k
approximation, with k � n (where k ∼ the number of clusters ),

W ≈ E F>.

n × n n × k k × n

The columns of E and F are required to be orthogonal.

This problem requires algorithms for computing the
Singular Value Decomposition (SVD).
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What if the weight matrix is very large?

We use randomized algorithms that compute partial matrix
decompositions (Halko, Martinsson, Tropp).

For a dense input matrix, randomized algorithms require
O(mn log(k)) floating-point operations in contrast with O(mnk) for
classical algorithms.

randomized techniques require only a constant number of passes over
the data.

probabilistic bound on accuracy.

We want to find A ≈ UΣkV
>.
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Fast SVD

Given an m× n matrix A and integers ` and q, this algorithm computes an
m × ` orthonormal matrix Q whose range approximates the range of A.

Algorithm 1 Computing SVD using Randomized Algorithm

1: Draw an n × ` Gaussian random matrix Ω.
2: Form the m × ` matrix Y = (AA>)qAΩ via alternating application of

A and A>.
3: Construct an m× ` matrix Q whose columns form an orthonormal basis

for the range of Y , e.g., via the QR factorization Y = QR.
4: Form B = Q>A.
5: Compute an SVD of the small matrix: B = ŨΣV>.
6: Set U = QŨ.
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Probabilistic Bounds

What is the error ek =
∥∥A− UΣkV

>∥∥?

Theorem 5

Eckart-Young Theorem: ek is bounded from below by the (k + 1)th
singular value σk+1 of A.

We want ek to be close to σk+1, but this is not true.
The expectation of ek

σk+1
is large with high variance.

However, using oversampling where we compute k + p where p = k solves
this issue.
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Probabilistic Bounds

Theorem 6

Suppose that A is a real m × n matrix. Select an exponent q and a target
number k of singular vectors, where 2 ≤ k ≤ 0.5 min{m, n}. Randomized
SVD algorithm to obtain a rank-2k factorization UΣV>. Then

E
[
‖A− UΣkV

>‖
]
≤

[
1 + 4

√
2 min{m, n}

k − 1

]1/(2q+1)

σk+1,

where E denotes expectation with respect to the random test matrix and
σk+1 is the (k + 1)th singular value of A. (Halko, Martinsson, Tropp 2011)
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Bound Example
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Figure 14: Beethoven and Twitter
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8. Finding a Discrete Solution Close to a Continuous
Approximation

The next step is to find an exact solution
(P(X 1), . . . ,P(XK )) ∈ P(K) which is the closest (in a suitable sense) to
our approximate solution (Z 1, . . . ,ZK ).

Since the solutions ZQ of (∗1) are all equivalent (they yield the same
minimum for the normalized cut), it makes sense to look for a discrete
solution X closest to one of these ZQ.
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If we use the Riemannian metric on RPN−1 induced by the Euclidean
metric on RN and the product distance on (RPN−1)K given by

d
(
(P(X 1), . . . ,P(XK )), (P(Z 1), . . . ,P(ZK ))

)
=

K∑
j=1

d(P(X j),P(Z j)),

it can be shown that minimizing the distance
d
(
(P(X 1), . . . ,P(XK )), (P(Z 1), . . . ,P(ZK ))

)
in (RPN−1)K

is equivalent to minimizing

K∑
j=1

∥∥X j − Z j
∥∥
2
, subject to

∥∥X j
∥∥
2

=
∥∥Z j

∥∥
2

(j = 1, . . . ,K ).
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We are not aware of any optimization method to solve the above problem,
which seems difficult to tackle due to constraints

∥∥X j
∥∥
2

=
∥∥Z j

∥∥
2

(j = 1, . . . ,K ).

Therefore, we drop these constraints and attempt to minimize

‖X − Z‖2F =
K∑
j=1

∥∥X j − Z j
∥∥2
2
,

the Frobenius norm of X − Z . This is implicitly the choice made by Yu.
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Inspired by Yu and the previous discussion, given a solution Z of problem
(∗2), we look for pairs (X ,Q) with X ∈ X and where Q is a K ×K matrix
with nonzero and pairwise orthogonal columns, with ‖X‖F = ‖Z‖F , that
minimize

ϕ(X ,Q) = ‖X − ZQ‖F .

Yu and Shi consider the special case where Q ∈ O(K ).

We consider the more general case where Q = RΛ, with R ∈ O(K ) and Λ
is a diagonal invertible matrix.
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The key to minimizing ‖X − ZQ‖F rests on the following result:

‖X − ZQ‖2F = ‖X‖2F − 2tr(Q>Z>X ) + tr(Z>ZQQ>).

Therefore, since ‖X‖F = ‖Z‖F is fixed, minimizing ‖X − ZQ‖2F is
equivalent to

minimizing −2tr(Q>Z>X ) + tr(Z>ZQQ>).

This is a hard problem because it is a nonlinear optimization problem
involving two matrix unknowns X and Q.
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To simplify the problem, we proceed by alternating steps during which

1 we minimize ϕ(X ,Q) = ‖X − ZQ‖F with respect to X holding Q
fixed, and

2 steps during which we minimize ϕ(X ,Q) = ‖X − ZQ‖F with respect
to Q holding X fixed.

This second step in which X is held fixed has been studied, but it is still a
hard problem for which no closed–form solution is known. Consequently,
we further simplify the problem.

Since Q is of the form Q = RΛ where R ∈ O(K ) and Λ is a diagonal
invertible matrix, we minimize ‖X − ZRΛ‖F in two stages.

1 We set Λ = I and find R ∈ O(K ) that minimizes ‖X − ZR‖F .

2 Given X , Z , and R, find a diagonal invertible matrix Λ that minimizes
‖X − ZRΛ‖F .
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In stage 1, the matrix Q = R is orthogonal, so QQ> = I , and since Z and
X are given, the problem reduces to minimizing −2tr(Q>Z>X ); that is,
maximizing tr(Q>Z>X ).

This is a standard result:

Proposition 6

For any two fixed N × K matrices X and Z, the minimum of the set

{‖X − ZR‖F | R ∈ O(K )}

is achieved by R = UV>, for any SVD decomposition UΣV> = Z>X of
Z>X.
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The following proposition takes care of stage 2.

Proposition 7

For any two fixed N × K matrices X and Z, where Z has no zero column,
there is a unique diagonal matrix Λ = diag(λ1, . . . , λK ) minimizing
‖X − ZΛ‖F given by

λj =
(Z>X )jj

‖Z j‖22
j = 1, . . . ,K .

It should be noted that Proposition 7 does not guarantee that Λ is
invertible.

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 75 / 102



The following proposition takes care of stage 2.

Proposition 7

For any two fixed N × K matrices X and Z, where Z has no zero column,
there is a unique diagonal matrix Λ = diag(λ1, . . . , λK ) minimizing
‖X − ZΛ‖F given by

λj =
(Z>X )jj

‖Z j‖22
j = 1, . . . ,K .

It should be noted that Proposition 7 does not guarantee that Λ is
invertible.

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 75 / 102



We now deal with step 1, where Q = RΛ is held fixed.

For fixed Z and Q, we would like to find some X ∈ K with ‖X‖F = ‖Z‖F
so that ‖X − ZQ‖F is minimal.

Without loss of generality, we may assume that the entries a1, . . . , aK
occurring in the matrix X are positive and all equal to some common
value a 6= 0.

Recall that a matrix X ∈ X has the property that every row contains
exactly one nonzero entry, and that every column is nonzero.

The problem is to decide for each row, which column contains the nonzero
entry.
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After having found X , we rescale its columns so that ‖X‖F = ‖Z‖F .

For example, consider the following continuous solution and the discrete
solution X :

0.00 −10.31 30.40 6.36
0.00 −1.37 22.27 −6.15
−32.73 −32.60 −1.29 2.58

0.00 −1.37 22.27 −6.15
0.00 8.95 8.03 −23.86
−23.14 −20.55 −5.00 −9.39
32.73 −32.60 −1.29 2.58
23.14 −20.55 −5.00 −9.39
−0.00 −1.75 −7.20 −25.67


X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0


.

We keep the leftmost largest entry on every row and set the others entries
to 0.
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Unfortunately, the matrix X may not be a correct solution, because the
above prescription does not guarantee that every column of X is nonzero.

When this happens, we reassign certain nonzero entries in columns having
“many” nonzero entries to zero columns, so that we get a matrix in K.
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If we apply the method to the graph associated with the the matrix W1

shown in Figure 15 for K = 4 clusters, the algorithm converges in 3 steps
and we find the clusters shown in Figure 16.

Figure 15: Underlying graph of the matrix W1.
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Figure 16: Four blocks of a normalized cut for the graph associated with W1 .
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The solution Z of the relaxed problem is

Z =



−21.3146 −0.0000 19.4684 −15.4303
−4.1289 0.0000 16.7503 −15.4303
−21.3146 32.7327 −19.4684 −15.4303
−4.1289 −0.0000 16.7503 −15.4303
19.7150 0.0000 9.3547 −15.4303
−4.1289 23.1455 −16.7503 −15.4303
−21.3146 −32.7327 −19.4684 −15.4303
−4.1289 −23.1455 −16.7503 −15.4303
19.7150 −0.0000 −9.3547 −15.4303


.

We find the following sequence for Q,Z ∗ Q,X :
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Q =


0 0.6109 −0.3446 −0.7128

−1.0000 0.0000 0.0000 −0.0000
0.0000 0.5724 0.8142 0.0969
−0.0000 0.5470 −0.4672 0.6947

 ,

which is the initial Q obtained by method 1;
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Z ∗ Q =



0.0000 −10.3162 30.4065 6.3600
0.0000 −1.3742 22.2703 −6.1531
−32.7327 −32.6044 −1.2967 2.5884

0.0000 −1.3742 22.2703 −6.1531
0.0000 8.9576 8.0309 −23.8653
−23.1455 −20.5505 −5.0065 −9.3982
32.7327 −32.6044 −1.2967 2.5884
23.1455 −20.5505 −5.0065 −9.3982
−0.0000 −1.7520 −7.2027 −25.6776


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X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0


;
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Q =


−0.0803 0.8633 −0.4518 −0.2102
−0.6485 0.1929 0.1482 0.7213
−0.5424 0.0876 0.5546 −0.6250
−0.5281 −0.4581 −0.6829 −0.2119


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Z ∗ Q =



−0.6994 −9.6267 30.9638 −4.4169
−0.6051 4.9713 21.6922 −6.3311
−0.8081 −6.7218 14.2223 43.5287
−0.6051 4.9713 21.6922 −6.3311
1.4913 24.9075 6.8186 −6.7218
2.5548 6.5028 6.5445 31.3015

41.6456 −19.3507 4.5190 −3.6915
32.5742 −2.4272 −0.3168 −2.0882
11.6387 23.2692 −3.5570 4.9716


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X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0


;
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Q =


−0.3201 0.7992 −0.3953 −0.3201
−0.7071 −0.0000 0.0000 0.7071
−0.4914 −0.0385 0.7181 −0.4914
−0.3951 −0.5998 −0.5728 −0.3951


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Z ∗ Q =



3.3532 −8.5296 31.2440 3.3532
−0.8129 5.3103 22.4987 −0.8129
−0.6599 −7.0310 3.2844 45.6311
−0.8129 5.3103 22.4987 −0.8129
−4.8123 24.6517 7.7629 −4.8123
−0.7181 6.5997 −1.5571 32.0146
45.6311 −7.0310 3.2844 −0.6599
32.0146 6.5997 −1.5571 −0.7181
4.3810 25.3718 −5.6719 4.3810


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X =



0 0 1 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0


.

During the next round, the exact same matrices are obtained and the
algorithm stops.
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Any matrix obtained by flipping the signs of some of the columns of a
solution ZR of problem (∗2) is still a solution.

Moreover, all entries in X are nonnegative. It follows that a “good”
solution ZQp (that is, close to a discrete solution) should have the
property that the average of each of its column is nonnegative.

We found that the following heuristic is quite helpful in finding a better
discrete solution X :

Given a solution ZR of problem (∗2), we compute ZQp, defined such that
if the average of column (ZR)j is negative, then (ZQp)j = −(ZR)j , else
(ZQp)j = (ZR)j .
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Figure 17 shows a graph (on the left) and the graph drawings X and Z ∗R
obtained by applying our method for three clusters.

The rows of X are represented by the red points along the axes, and the
rows of Z ∗ R by the green points (on the right).

The original vertices corresponding to the rows of Z are represented in
blue.
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Figure 17: A graph and its drawing to find 3 clusters.
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We can see how the two red points correspond to an edge, the three red
points correspond to a triangle, and the four red points to a quadrangle.

These constitute the clusters.
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It remains to initialize Q∗ to start the process, and then steps (1) (holding
Q fixed) and (2) (holding X fixed) are iterated, starting with step (1).

Actually, what we really need is a “good” initial X ∗, but to find it, we
need an initial R∗.

Method 1. One method is to use an orthogonal matrix denoted R1, such
that distinct columns of ZR1 are simultaneously orthogonal and
D-orthogonal.

The matrix R1 can be found by diagonalizing Z>Z as Z>Z = R1ΣR>1 , as
we explained earlier. We write Z2 = ZR1.
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Method 2. The method advocated by Yu is to pick K rows of Z that are
as orthogonal to each other as possible and to make a matrix R whose
columns consist of these rows normalized to have unit length.

The intuition behind this method is that if a continuous solution Z can be
sent close to a discrete solution X by a rigid motion, then many rows of Z
viewed as vectors in RK should be nearly orthogonal.

This way, ZR should contain at least K rows well aligned with the
canonical basis vectors, and these rows are good candidates for some of
the rows of the discrete solution X .

We also have implemented various methods for improving the initial X .

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 95 / 102



Method 2. The method advocated by Yu is to pick K rows of Z that are
as orthogonal to each other as possible and to make a matrix R whose
columns consist of these rows normalized to have unit length.

The intuition behind this method is that if a continuous solution Z can be
sent close to a discrete solution X by a rigid motion, then many rows of Z
viewed as vectors in RK should be nearly orthogonal.

This way, ZR should contain at least K rows well aligned with the
canonical basis vectors, and these rows are good candidates for some of
the rows of the discrete solution X .

We also have implemented various methods for improving the initial X .

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 95 / 102



Method 2. The method advocated by Yu is to pick K rows of Z that are
as orthogonal to each other as possible and to make a matrix R whose
columns consist of these rows normalized to have unit length.

The intuition behind this method is that if a continuous solution Z can be
sent close to a discrete solution X by a rigid motion, then many rows of Z
viewed as vectors in RK should be nearly orthogonal.

This way, ZR should contain at least K rows well aligned with the
canonical basis vectors, and these rows are good candidates for some of
the rows of the discrete solution X .

We also have implemented various methods for improving the initial X .

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 95 / 102



Method 2. The method advocated by Yu is to pick K rows of Z that are
as orthogonal to each other as possible and to make a matrix R whose
columns consist of these rows normalized to have unit length.

The intuition behind this method is that if a continuous solution Z can be
sent close to a discrete solution X by a rigid motion, then many rows of Z
viewed as vectors in RK should be nearly orthogonal.

This way, ZR should contain at least K rows well aligned with the
canonical basis vectors, and these rows are good candidates for some of
the rows of the discrete solution X .

We also have implemented various methods for improving the initial X .

Jean Gallier (Upenn) Normalized Graph Cuts November 4, 2016 95 / 102



9. Semantic Word Clusters

Finding sets of similar words is important for various Natural Language
Processing (NLP) tasks. The desired similarity can be part-of-speech,
tense, etc. and in our case we want closest semantic equivalence. For
tasks such as machine translation, considering antonyms as equivalent is
extremely problematic.

This is akin to thesaurus sets, but given the fact that language changes
rapidly be changes in meaning, new words or spellings (especially for
twitter), as well as multitudes of languages, we aim to have data driven
clusters.
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Semantic Word Cluster Problem

Figure 18: Thesaurus based (left) versus data-driven (right) clusters for “hot”. It
is important to note cool on the right.
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Representing Words as Vectors

For word representations the initial obvious vector representation is a
“one-hot” representations where word i is represented by a vector having
all zeros for the size of our vocabulary aside from position i which is 1.

hot =
(
0 0 0 · · · 0 1 0 · · · 0 0

)>
scorching =

(
0 0 0 · · · 0 0 0 · · · 1 0

)>
However, in this representation all words are orthogonal, which is highly
undesirable.
Instead, we use so called word embeddings, which are dense vector
representations in RD where D is much smaller than the vocabulary.
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Representing Words as Vectors
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Representing Words as Vectors

The distributional hypothesis is that similar words are used in similar
context (Harris 1954). Many vector popular representations (Eigenwords,
GloVe, and word2vec) use adjacent words. However often antonyms such
as “hot” and “cold” occur in similar contexts and thus have similar
representations.

I meant... do I have time to fix you a hot lunch?

Tossing the hot pan holder on the counter, she untied the apron

He sipped the hot liquid and grimaced.

Her face felt hot again.

”Aren’t you cold?” he asked

But, unfortunately, I struck my foot on a rock and fell forward
into the cold water.

Table 1: “hot” and “cold” in sentence contexts 1 .

1from http://sentence.yourdictionary.com/
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Embedding into Graph

We define the distance between two words wordi and wordj as
dist(wordi ,wordj) = ‖wordi − wordj‖.
For the edge weight between two words

Wij =

0 if e−
dist(wordi ,wordj )

2

σ < thresh

e−
dist(wordi ,wordj )

2

σ otherwise
.

We can represent the thesaurus as a matrix where

Tij =


1 if words i and j are synonyms

−1 if words i and j are antonyms

0 otherwise

.

We can write the weight matrix of the signed graph as Ŵij = TijWij or in

matrix form Ŵ = T �W where � denotes element-wise multiplication.
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Embedding into Graph
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