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Figure 1: Dog Logic
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1. Graph Clustering

Given a set of data, the goal of clustering is to partition the data into
different groups according to their similarities.

15

Encode Pairwise Relationships as a Weighted Graph

16

Cut the graph into two pieces 

Figure 2: A weighted graph and its partition into two clusters.
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When the data is given in terms of a similarity graph G , where the weight
wi j between two nodes vi and vj is a measure of similarity of vi and vj , the
problem can be stated as follows:

Find a partition (A1, . . . ,AK ) of the set of nodes V into different groups
such that the edges between different groups have very low weight (which
indicates that the points in different clusters are dissimilar), and the edges
within a group have high weight (which indicates that points within the
same cluster are similar).

The above graph clustering problem can be formalized as an optimization
problem, using the notion of cut.
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2. Weigted Graphs, Cuts , Laplacians

Definition 1

A weighted graph is a pair G = (V ,W ), where V = {v1, . . . , vm} is a set
of nodes or vertices, and W is a symmetric matrix called the weight
matrix , such that wi j ≥ 0 for all i , j ∈ {1, . . . ,m}, and wi i = 0 for
i = 1, . . . ,m. We say that a set {vi , vj} is an edge iff wi j > 0. The
corresponding (undirected) graph (V ,E ) with E = {{vi , vj} | wi j > 0}, is
called the underlying graph of G .

We can think of the weight wi j of an edge {vi , vj} as a degree of similarity
(or affinity) in an image, or a cost in a network.
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15

Encode Pairwise Relationships as a Weighted Graph

Figure 3: A weighted graph.

The thickness of an edge corresponds to the magnitude of its weight.
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For every node vi ∈ V , the degree d(vi ) of vi is the sum of the weights of
the edges adjacent to vi :

d(vi ) =
m∑
j=1

wi j .

Note that in the above sum, only nodes vj such that there is an edge
{vi , vj} have a nonzero contribution. Such nodes are said to be adjacent
to vi .

The degree matrix D is defined by D = diag(d(v1), . . . , d(vm)).
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Given any subset of nodes A ⊆ V , we define the volume vol(A) of A as
the sum of the weights of all edges adjacent to nodes in A:

vol(A) =
∑
vi∈A

d(vi ) =
∑
vi∈A

m∑
j=1

wi j .

The notions of degree and volume are illustrated in Figure 4.

18

Degree of a node:
di = ¦j Wi,j

Degree matrix:
Dii = ¦j Wi,j

19

Volume of a set
vol(A) =¦

i � A
di

Figure 4: Degree and volume.
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Observe that vol(A) = 0 if A consists of isolated vertices, that is, if
wi j = 0 for all vi ∈ A. Thus, it is best to assume that G does not have
isolated vertices.

Given any two subset A,B ⊆ V (not necessarily distinct), we define
links(A,B) by

links(A,B) =
∑

vi∈A,vj∈B
wi j .

Since the matrix W is symmetric, we have

links(A,B) = links(B,A).

Jean Gallier (Upenn) Normalized Graph Cuts January 25, 2014 9 / 64



Observe that vol(A) = 0 if A consists of isolated vertices, that is, if
wi j = 0 for all vi ∈ A. Thus, it is best to assume that G does not have
isolated vertices.

Given any two subset A,B ⊆ V (not necessarily distinct), we define
links(A,B) by

links(A,B) =
∑

vi∈A,vj∈B
wi j .

Since the matrix W is symmetric, we have

links(A,B) = links(B,A).

Jean Gallier (Upenn) Normalized Graph Cuts January 25, 2014 9 / 64



Observe that vol(A) = 0 if A consists of isolated vertices, that is, if
wi j = 0 for all vi ∈ A. Thus, it is best to assume that G does not have
isolated vertices.

Given any two subset A,B ⊆ V (not necessarily distinct), we define
links(A,B) by

links(A,B) =
∑

vi∈A,vj∈B
wi j .

Since the matrix W is symmetric, we have

links(A,B) = links(B,A).

Jean Gallier (Upenn) Normalized Graph Cuts January 25, 2014 9 / 64



The quantity links(A,A) = links(A,A), where A = V − A denotes the
complement of A in V , measures how many links escape from A (and A),
and the quantity links(A,A) measures how many links stay within A itself.

The quantity
cut(A) = links(A,A)

is often called the cut of A, and the quantity

assoc(A) = links(A,A)

is often called the association of A.

Clearly,
cut(A) + assoc(A) = vol(A).
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The notions of cut is illustrated in Figure 5.

20

Weight of a cut:
cut(A,B) =¦i � A, j � B Wi,j

Figure 5: A Cut involving the set of nodes in the center and the nodes on the
perimeter.
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We now define the most important concept of this talk: The Laplacian
matrix of a graph. Actually, as we will see, it comes in several flavors.

Definition 2

Given any weighted graph G = (V ,W ) with V = {v1, . . . , vm}, the
(unnormalized) graph Laplacian L(G ) of G is defined by

L(G ) = D(G )−W ,

where D(G ) = diag(d1, . . . , dm) is the degree matrix of G (a diagonal
matrix), with

di =
m∑
j=1

wi j .

As usual, unless confusion arises, we write L instead of L(G ).
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It is clear that each row of L sums to 0, so the vector 1 is the nullspace of
L, but it is less obvious that L is positive semidefinite. An easy way to
prove this is to evaluate the quadratic form x>Lx .

Proposition 1

For any m ×m symmetric matrix W , if we let L = D −W where D is the
degree matrix of W = (wij), then we have

x>Lx =
1

2

m∑
i ,j=1

wi j(xi − xj)
2 for all x ∈ Rm.

Consequently, x>Lx does not depend on the diagonal entries in W , and if
wi j ≥ 0 for all i , j ∈ {1, . . . ,m}, then L is positive semidefinite.
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Proposition 1 immediately implies the following facts: For any weighted
graph G = (V ,W ),

1 The eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λm of L are real and
nonnegative, and there is an orthonormal basis of eigenvectors of L.

2 The smallest eigenvalue λ1 of L is equal to 0, and 1 is a
corresponding eigenvector.

It turns out that the dimension of the nullspace of L (the eigenspace of 0)
is equal to the number of connected components of the underlying graph
of G .

Normalized variants of the graph Laplacian are needed, especially in
applications to graph clustering.
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These variants make sense only if G has no isolated vertices, which means
that every row of W contains some strictly positive entry. In this case, the
degree matrix D contains positive entries, so it is invertible and D−1/2

makes sense; namely

D−1/2 = diag(d
−1/2
1 , . . . , d

−1/2
m ).

Definition 3

Given any weighted directed graph G = (V ,W ) with no isolated vertex
and with V = {v1, . . . , vm}, the (normalized) graph Laplacians Lsym and
Lrw of G are defined by

Lsym = D−1/2LD−1/2 = I − D−1/2WD−1/2

Lrw = D−1L = I − D−1W .
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Proposition 2

Let G = (V ,W ) be a weighted graph without isolated vertices. The graph
Laplacians, L, Lsym, and Lrw satisfy the following properties:

(1) The matrix Lsym is symmetric, positive, semidefinite. In fact,

x>Lsymx =
1

2

m∑
i ,j=1

wi j

(
xi√
di
−

xj√
dj

)2

for all x ∈ Rm.

(2) The normalized graph Laplacians Lsym and Lrw have the same
spectrum (0 = ν1 ≤ ν2 ≤ . . . ≤ νm), and a vector u 6= 0 is an
eigenvector of Lrw for λ iff D1/2u is an eigenvector of Lsym for λ.

(3) The graph Laplacians, L, Lsym, and Lrw are symmetric, positive,
semidefinite.
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Proposition (continued)

(4) A vector u 6= 0 is a solution of the generalized eigenvalue problem
Lu = λDu iff D1/2u is an eigenvector of Lsym for the eigenvalue λ iff
u is an eigenvector of Lrw for the eigenvalue λ.

(5) The graph Laplacians, L and Lrw have the same nullspace.

(6) The vector 1 is in the nullspace of Lrw, and D1/21 is in the nullspace
of Lsym.
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Figure 6: Are you my mother?
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3. Back to Graph Clustering

If we want to partition V into K clusters, we can do so by finding a
partition (A1, . . . ,AK ) that minimizes the quantity

cut(A1, . . . ,AK ) =
1

2

K∑
1=1

cut(Ai ).

For K = 2, the mincut problem is a classical problem that can be solved
efficiently, but in practice, it does not yield satisfactory partitions.

Indeed, in many cases, the mincut solution separates one vertex from the
rest of the graph. What we need is to design our cost function in such a
way that it keeps the subsets Ai “reasonably large” (reasonably balanced).
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A way to get around this problem is to normalize the cuts by dividing by
some measure of each subset Ai .

One possibility is to use the size (the number of elements) of Ai .

Another is to use the volume vol(Ai ) of Ai . A solution using the second
measure (the volume) (for K = 2) was proposed and investigated in a
seminal paper of Shi and Malik.

Subsequently, Stella Yu (in her dissertation) and Yu and Shi extended the
method to K > 2 clusters.
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The idea is to minimize the cost function

Ncut(A1, . . . ,AK ) =
K∑
i=1

links(Ai ,Ai )

vol(Ai )
=

K∑
i=1

cut(Ai ,Ai )

vol(Ai )
.

We begin with the case K = 2, which is easier to handle.
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4. 2-Way Clustering Using Normalized Cuts

Our goal is to express our optimization problem in matrix form.

In the case of two clusters, a single vector X can be used to describe the
partition (A1,A2) = (A,A).

It is desirable to choose the structure of this vector in such a way that

Ncut(A,A) =
X>LX

X>DX

(the Rayleigh ratio).

It is also important to pick a vector representation which is invariant under
multiplication by a nonzero scalar, because the Rayleigh ratio is
scale-invariant, and it is crucial to take advantage of this fact to make the
denominator go away.
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Let N = |V | be the number of nodes in the graph G . In view of the desire
for a scale-invariant representation, it is natural to assume that the vector
X is of the form

X = (x1, . . . , xN),

where xi ∈ {a, b} for i = 1, . . . ,N, for any two distinct real numbers a, b.

This is an indicator vector in the sense that, for i = 1, . . . ,N,

xi =

{
a if vi ∈ A

b if vi /∈ A.
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The correct interpretation is really to view X as a representative of a point
in the real projective space RPN−1, namely the point P(X ) of
homogeneous coordinates (x1 : · · · : xN).

Therefore, from now on, we view X as a vector of homogeneous
coordinates representing the point P(X ) ∈ RPN−1.

Let d = 1>D1 and α = vol(A). Then, vol(A) = d − α, and using
Proposition 1, we find that

X>LX = (a− b)2 cut(A,A)

X>DX = αa2 + (d − α)b2

Ncut(A,A) =
d

α(d − α)
cut(A,A).
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I proved that

Ncut(A,A) =
X>LX

X>DX

iff we have the condition

aα + b(d − α) = 0. (†)

Note that condition (†) applied to a vector X whose components are a or
b is equivalent to the fact that X is orthogonal to D1.
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Various choices for a choice of scale factor appear in the literature.

von Luxburg picks

a =

√
d − α
α

, b = −
√

α

d − α
.

Shi and Malik use

a = 1, b = − α

d − α
= − k

1− k
,

with
k =

α

d
.

Belkin and Niyogi use

a =
1

α
, b = − 1

d − α
.
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However, there is no need to restrict solutions to be of either of these
forms.

So, let

X =
{

(x1, . . . , xN) | xi ∈ {a, b}, a, b ∈ R− {0}, a 6= b
}
,

so that our solution set is

K =
{
X ∈ X | X>D1 = 0

}
.

Actually, to be perfectly rigorous, we are looking for solutions in RPN−1,
so our solution set is really

P(K) =
{

(x1 : · · · : xN) ∈ RPN−1 | (x1, . . . , xN) ∈ K
}
.
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Consequently, our minimization problem can be stated as follows:

Problem PNC1

minimize
X>LX

X>DX

subject to X>D1 = 0, X ∈ X .

It is understood that the solutions are points P(X ) in RPN−1.
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Since the Rayleigh ratio and the constraints X>D1 = 0 and X ∈ X are
scale-invariant, we are led to the following formulation of our problem:

Problem PNC2

minimize X>LX

subject to X>DX = 1, X>D1 = 0, X ∈ X .

Problem PNC2 is equivalent to problem PNC1 in the sense that if X is
any minimal solution of PNC1, then X/(X>DX )1/2 is a minimal solution
of PNC2 (with the same minimal value for the objective functions), and if
X is a minimal solution of PNC2, then λX is a minimal solution for PNC1
for all λ 6= 0 (with the same minimal value for the objective functions).

Equivalently, problems PNC1 and PNC2 have the same set of minimal
solutions as points P(X ) ∈ RPN−1 given by their homogeneous
coordinates X .
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Unfortunately, this is an NP-complete problem, as shown by Shi and
Malik.

As often with hard combinatorial problems, we can look for a relaxation of
our problem, which means looking for an optimum in a larger continuous
domain.

After doing this, the problem is to find a discrete solution which is close to
a continuous optimum of the relaxed problem.

The natural relaxation of this problem is to allow X to be any nonzero
vector in RN , and we get the problem:

minimize X>LX subject to X>DX = 1, X>D1 = 0.
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As usual, let Y = D1/2X , so that X = D−1/2Y .

We obtain the problem:

minimize Y>D−1/2LD−1/2Y subject to Y>Y = 1, Y>D1/21 = 0.

Because L1 = 0, the vector D1/21 belongs to the nullspace of the
symmetric Laplacian Lsym = D−1/2LD−1/2.

By the Rayleigh–Ritz theorem, minima are achieved by any unit
eigenvector Y of the second eigenvalue ν2 of Lsym.

Then, Z = D−1/2Y is a solution of our original relaxed problem.
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The next question is to figure how close is Z to an exact solution in X .

Actually, because solutions are points in RPN−1, the correct statement of
the question is:

Find an exact solution P(X ) ∈ P(X ) which is the closest (in a suitable
sense) to the approximate solution P(Z ) ∈ RPN−1.

However, because X is closed under the antipodal map, it can be shown
that minimizing the distance d(P(X ),P(Z )) on RPN−1 is equivalent to
minimizing the Euclidean distance ‖X − Z‖2 (if we use the Riemannian
metric on RPN−1 induced by the Euclidean metric on RN).
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We may assume b < 0, in which case a > 0.

If all entries in Z are nonzero, due to the projective nature of the solution
set, it seems reasonable to say that the partition of V is defined by the
signs of the entries in Z .

Thus, A will consist of nodes those vi for which xi > 0. Elements
corresponding to zero entries can be assigned to either A or A, unless
additional information is available.
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Figure 7: Newton goes to Wharton
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5. K -Way Clustering Using Normalized Cuts

We describe a partition (A1, . . . ,AK ) of the set of nodes V by an N × K
matrix X = [X 1 · · ·XK ] whose columns X 1, . . . ,XK are indicator vectors
of the partition (A1, . . . ,AK ).

Inspired by what we did in Section 4, we assume that the vector X j is of
the form

X j = (x j1, . . . , x
j
N),

where x ji ∈ {aj , bj} for j = 1, . . . ,K and i = 1, . . . ,N, and where aj , bj are
any two distinct real numbers.

The vector X j is an indicator vector for Aj in the sense that, for
i = 1, . . . ,N,

x ji =

{
aj if vi ∈ Aj

bj if vi /∈ Aj .
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Let d = 1>D1 and αj = vol(Aj), so that α1 + · · ·+ αK = d .

Then, vol(Aj) = d − αj , and as in Section 4, we have

(X j)>LX j = (aj − bj)
2 cut(Aj ,Aj),

(X j)>DX j = αja
2
j + (d − αj)b

2
j .

Since

Ncut(A1, . . . ,AK ) =
K∑
j=1

cut(Aj ,Aj)

vol(Aj)
,

we would like to choose aj , bj so that

cut(Aj ,Aj)

vol(Aj)
=

(X j)>LX j

(X j)>DX j
j = 1, . . . ,K .
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We find that there are two possibilities:

1 bj = 0.

2 bj 6= 0, which yields

aj =
2αj − d

2αj
bj .

The second choice is more complicated, so we opt for the choice bj = 0,
j = 1, . . . ,K .

von Luxburg and Yu and Shi pick bj = 0 and

aj =
1
√
αj

=
1√

vol(Aj)
, j = 1, . . . ,K .
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When N = 10 and K = 4, an example of a matrix X representing the
partition of V = {v1, v2, . . . , v10} into the four blocks

{A1,A2,A3,A4} = {{v2, v4, v6}, {v1, v5}, {v3, v8, v10}, {v7, v9}},

is shown below:

X =



0 a2 0 0
a1 0 0 0
0 0 a3 0
a1 0 0 0
0 a2 0 0
a1 0 0 0
0 0 0 a4
0 0 a3 0
0 0 0 a4
0 0 a3 0


.
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We now consider the problem of finding necessary and sufficient conditions
for a matrix X to represent a partition of V .

When bj = 0, the pairwise disjointness of the Ai is captured by the
orthogonality of the X i :

(X i )>X j = 0, 1 ≤ i , j ≤ K , i 6= j . (∗)

Now, because D is a diagonal matrix with positive entries and because the
nonzero entries in each column of X have the same sign, for any i 6= j , the
condition

(X i )>X j = 0

is equivalent to
(X i )>DX j = 0. (∗∗)

These conditions turn out to be more convenient.
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Each Aj is nonempty iff X j 6= 0, and the fact that the union of the Aj is V
is captured by the fact that each row of X must have some nonzero entry
(every vertex appears in some block).

It is not obvious how to state conveniently this condition in matrix form.

Unltimately, we found that the following scale-invariant equation works:

X (X>X )−1X>1 = 1. (†)

Note that because the columns of X are linearly independent,
(X>X )−1X> is the pseudo-inverse of X . Consequently, condition (†), can
also be written as

XX+1 = 1.
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If we let

X =
{

[X 1 . . . XK ] | X j = aj(x
j
1, . . . , x

j
N), x ji ∈ {1, 0}, aj ∈ R, X j 6= 0

}
then the set of matrices representing partitions of V into K blocks is

K =
{
X = [X 1 · · · XK ] | X ∈ X ,

(X i )>DX j = 0, 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1
}
.

As in the case K = 2, to be rigorous, the solution are really K -tuples of
points in RPN−1, so our solution set is really

P(K) =
{

(P(X 1), . . . ,P(XK )) | [X 1 · · · XK ] ∈ K
}
.
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K -way Clustering of a graph using Normalized Cut, Version 1:
Problem PNC1

minimize

K∑
j=1

(X j)>LX j

(X j)>DX j

subject to (X i )>DX j = 0, 1 ≤ i , j ≤ K , i 6= j ,

X (X>X )−1X>1 = 1, X ∈ X .

As in the case K = 2, the solutions that we are seeking are K -tuples
(P(X 1), . . . ,P(XK )) of points in RPN−1 determined by their homogeneous
coordinates X 1, . . . ,XK .
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Our original formulation (PNC1) can be converted to a more convenient
form, by chasing the denominators in the Rayleigh ratios, and by
expressing the objective function in terms of the trace of a certain matrix.

Let

µ(X 1, . . . ,XK ) =
K∑
j=1

(X j)>LX j

(X j)>DX j
.
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Proposition 3

For any orthogonal K × K matrix R, any symmetric N × N matrix A, and
any N × K matrix X = [X 1 · · · XK ], the following properties hold:

(1) µ(X ) = tr(Λ−1/2X>LXΛ−1/2), where

Λ = diag((X 1)>DX 1, . . . , (XK )>DXK ).

(2) If (X 1)>DX 1 = · · · = (XK )>DXK = α2, then µ(X ) = µ(XR).

(3) The condition X>AX = α2I is preserved if X is replaced by XR.

(4) The condition X (X>X )−1X>1 = 1 is preserved if X is replaced by
XR.
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K -way Clustering of a graph using Normalized Cut, Version 2:
Problem PNC2

minimize tr(X>LX )

subject to X>DX = I ,

X (X>X )−1X>1 = 1, X ∈ X .

Problem PNC2 is equivalent to problem PNC1 in the sense that for every
minimal solution (X 1, . . . ,XK ) of PNC1,
(((X 1)>DX 1)−1/2X 1, . . . , ((XK )>DXK )−1/2XK ) is a minimal solution of
PNC2 (with the same minimum for the objective functions), and that for
every minimal solution (Z 1, . . . ,Z k) of PNC2, (λ1Z

1, . . . , λKZ
K ) is a

minimal solution of PNC1, for all λi 6= 0, i = 1, . . . ,K (with the same
minimum for the objective functions).
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The main problem in finding a good relaxation of problem PNC2 is that it
is very difficult to enforce the condition X ∈ X .

Also, the solutions X are not preserved under arbitrary rotations, but only
by very special rotations which leave X invariant (they exchange the axes).

The first natural relaxation of problem PNC2 is to drop the condition that
X ∈ X , and we obtain
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Problem (∗1)

minimize tr(X>LX )

subject to X>DX = I ,

X (X>X )−1X>1 = 1.

By Proposition 3, for every orthogonal matrix R ∈ O(K ) and for every X
minimizing (∗1), the matrix XR also minimizes (∗1).
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As a consequence, we can view the solutions of problem (∗1) as elements
of the Grassmannian G (N,K ), as explained next.

Recall that the Stiefel manifold St(k , n) consists of the set of orthogonal
k-frames in Rn, that is, the k-tuples of orthonormal vectors (u1, . . . , uk)
with ui ∈ Rn (St(n, n) = O(n)).

For 1 ≤ n ≤ n − 1, the group SO(n) acts transitively on St(k, n), and
St(k, n) is isomorphic to the coset manifold SO(n)/SO(n − k).

The Grassmann manifold G (k , n) consists of all (linear) k-dimensional
subspaces of Rn.

Again, the group SO(n) acts transitively on G (k, n), and G (k , n) is
isomorphic to the coset manifold SO(n)/S(SO(k)× SO(n − k)).
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The group O(k) acts on the right on the Stiefel manifold St(k, n) (by
multiplication), and the orbit manifold St(k, n)/O(k) is isomorphic to the
Grassmann manifold G (k , n).

Furthermore, both St(k, n) and G (k , n) are naturally reductive
homogeneous manifolds (for the Stiefel manifold, when n ≥ 3), and
G (k , n) is even a symmetric space.

The upshot of all this is that to a large extent, the differential geometry of
these manifolds is completely determined by some subspace m of the Lie
algebra so(n), such that we have a direct sum

so(n) = m⊕ h,

where h = so(n − k) in the case of the Stiefel manifold, and
h = so(k)× so(n − k) in the case of the Grassmannian manifold (some
additional condition on m is required).
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Figure 8: Reductive homogeneous space, from O’Neill

(In the above Figure, G = SO(n), M = SO(n)/H).
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In particular, the geodesics in both manifolds can be determined quite
explicitly, and thus we obtain closed form formulae for distances, etc.

The Stiefel manifold St(k , n) can be viewed as the set of all n × k
matrices X such that

X>X = Ik .

In our situation, we are considering N × K matrices X such that

X>DX = I .

This is not quite the Stiefel manifold, but if we write Y = D1/2X , then we
have

Y>Y = I ,

so the space of matrices X satisfying the condition X>DX = I is the
image D(St(K ,N)) of the Stiefel manifold St(K ,N) under the linear map
D given by

D(X ) = D1/2X .
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Now, the right action of O(K ) on D(St(K ,N)) yields a coset manifold
D(St(K ,N))/O(K ) which is obviously isomorphic to the Grassmann
manidold G (K ,N).

Therefore, the solutions of problem (∗1) can be viewed as elements of the
Grassmannian G (N,K ).

We can take advantage of this fact to find a discrete solution of our
original optimization problem PNC2 approximated by a continuous
solution of (∗1).
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Using the linear map D, we get the equivalent problem

Problem (∗∗1)

minimize tr(Y>D−1/2LD−1/2Y )

subject to Y>Y = I ,

YY>D1/21 = D1/21.

This time, the matrices Y satisfying condition Y>Y = I do belong to the
Stiefel manifold St(K ,N), and again, we view the solutions of problem
(∗∗1) as elements of the Grassmannian G (K ,N).
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We pass from a solution Y of problem (∗∗1) in G (K ,N) to a solution Z of
of problem (∗1) in G (K ,N) by the linear map D−1; namely,
Z = D(Y ) = D−1/2Y .

The Rayleigh–Ritz Theorem tells us that if we temporarily ignore the
second constraint, minima of problem (∗∗1) are obtained by picking any K
unit eigenvectors (u1, . . . , uk) associated with the smallest eigenvalues

0 = ν1 ≤ ν2 ≤ . . . ≤ νK
of Lsym = D−1/2LD−1/2.
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We may assume that ν2 > 0, namely that the underlying graph is
connected (otherwise, we work with each connected component), in which
case Y 1 = D1/21/

∥∥D1/21
∥∥
2
, because 1 is in the nullspace of L.

Since Y 1 = D1/21/
∥∥D1/21

∥∥
2
, the vector D1/21 is in the range of Y , so

the condition
YY>D1/21 = D1/21

is also satisfied.

Then, Z = D−1/2Y with Y = [u1 . . . uK ] yields a minimum of our relaxed
problem (∗1) (the second constraint is satisfied because 1 is in the range
of Z ).
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Then, Z = D−1/2Y with Y = [u1 . . . uK ] yields a minimum of our relaxed
problem (∗1) (the second constraint is satisfied because 1 is in the range
of Z ).
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Figure 9: Try and try again
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The next step is to find an exact solution (P(X 1), . . . ,P(XK )) ∈ P(K)
which is the closest (in a suitable sense) to our approximate solution
(Z 1, . . . ,ZK ) ∈ G (K ,N).

The set K is not necessarily closed under all orthogonal transformations in
O(K ), so we can’t view K as a subset of the Grassmannian G (K ,N).

However, we can think of K as a subset of G (K ,N) by considering the
subspace spanned by (X 1, . . . ,XK ) for every [X 1 · · ·XK ] ∈ K.

Then, we have two choices of distances.
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(1) We view K as a subset of (RPN−1)K . Because K is closed under the
antipodal map, as minimizing the distance d(P(X j),P(Z j)) on
RPN−1 is equivalent to minimizing the Euclidean distance∥∥X j − Z j

∥∥
2
, for j = 1, . . . ,K (if we use the Riemannian metric on

RPN−1 induced by the Euclidean metric on RN).

Then, minimizing the distance d(X ,Z ) in (RPN−1)K is equivalent to
minimizing ‖X − Z‖F , where

‖X − Z‖2F =
K∑
j=1

∥∥X j − Z j
∥∥2
2

is the Frobenius norm. This is implicitly the choice made by Yu.
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(2) We view K as a subset of the Grassmannian G (K ,N). In this case,
we need to pick a metric on the Grassmannian, and we minimize the
corresponding Riemannian distance d(X ,Z ). A natural choice is the
metric on so(n) given by

〈X ,Y 〉 = tr(X>Y ).

This choice remains to be explored.
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Figure 10: Just Checking!
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6. Finding a Discrete Solution Close to a Continuous
Approximation

Inspired by Yu and the previous section, given a solution Z0 of problem
(∗1), we look for pairs (X ,R) ∈ K ×O(K ) (where R is a K × K

orthogonal matrix), with
∥∥X j

∥∥ =
∥∥∥Z j

0

∥∥∥ for j = 1, . . . ,K , that minimize

ϕ(X ,R) = ‖X − Z0R‖F .

The key to minimizing ‖X − ZR‖F rests on the following equation:

‖X − ZR‖2F = tr(X>X )− 2tr(R>Z>X ) + tr(Z>Z ).

Therefore, minimizing ‖X − ZR‖2F is equivalent to maximizing
tr(R>Z>X ).
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This can be done by alternating steps during which we minimize
ϕ(X ,R) = ‖X − ZR‖F with respect to X holding R fixed , and steps
during which we minimize ϕ(X ,R) = ‖X − ZR‖F with respect to R
holding X fixed.

For this second step, we use the following (known) proposition.

Proposition 4

For any n × n matrix A and any orthogonal matrix Q, we have

max{tr(QA) | Q ∈ O(n)} = σ1 + · · ·+ σn,

where σ1 ≥ · · · ≥ σn are the singular values of A. Furthermore, this
maximum is achieved by Q = VU>, where A = UΣV> is any SVD for A.
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As a corollary of Proposition 4 (with A = Z>X and Q = R>), we get the
following (known) result:

Proposition 5

For any two fixed N × K matrices X and Z, the minimum of the set

{‖X − ZR‖F | R ∈ O(K )}

is achieved by R = UV>, for any SVD decomposition UΣV> = Z>X of
Z>X.

Maximizing tr(R>Z>X ) = tr(X (ZR)>) holding R fixed can be done using
a method of nonmaximal suppression, but some issues remain to be
resolved.
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Figure 11: Just the right tech
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