The Logic of Rotations
Lie Groups and Homogeneous Spaces

Jean Gallier
CIS Department
University of Pennsylvania
jean@cis.upenn.edu

December 3, 2013
All cats have four legs.
I have four legs.
Therefore, I am a cat.

Figure: Dog Logic
(Thanks to Anne for the cute graphics!)
1. Formalizing Motions and Deformations

In the previous cartoon, we have a sequence of objects

\[B_0 = B, B_1, B_2, \ldots, B_m, \]

where \(B \) is the starting object.
1. Formalizing Motions and Deformations

In the previous cartoon, we have a sequence of objects

\[B_0 = B, B_1, B_2, \ldots, B_m, \]

where \(B \) is the starting object.

The \(B_i \) can be moving objects (robots, aircrafts, ...), shapes (brains, lungs, ...), or deformable bodies.
1. Formalizing Motions and Deformations

In the previous cartoon, we have a sequence of objects

\[B_0 = B, B_1, B_2, \ldots, B_m, \]

where \(B \) is the starting object.

The \(B_i \) can be moving objects (robots, aircrafts, ...), shapes (brains, lungs, ...), or deformable bodies.

Some transformation \(D_i \) takes \(B \) to \(B_i \).
1. Formalizing Motions and Deformations

In the previous cartoon, we have a sequence of objects

\[B_0 = B, \ B_1, \ B_2, \ldots, \ B_m, \]

where \(B \) is the starting object.

The \(B_i \) can be moving objects (robots, aircrafts, ...), shapes (brains, lungs, ...), or deformable bodies.

Some transformation \(D_i \) takes \(B \) to \(B_i \).

It is convenient to assume that the transformations \(D_i \) are invertible and belong to some group \(G \) (nothing “catastrophic” happens).
Motions and Deformations

Then, the motion and deformation of a body (rigid or not) can be described by a *curve* in a *group G of transformations* of a space E (say \mathbb{R}^n, $n = 2, 3, ...$).

Jean Gallier (Upenn)

The Logic of Rotations

December 3, 2013
Then, the motion and deformation of a body (rigid or not) can be described by a *curve* in a *group* G of *transformations* of a space E (say \mathbb{R}^n, $n = 2, 3, \ldots$).

Given an *initial shape* $B \in E$, a *deformation* of B is a (smooth enough) curve

$$D: [0, T] \to G.$$
Motions and Deformations

Then, the motion and deformation of a body (rigid or not) can be described by a curve in a group G of transformations of a space E (say \mathbb{R}^n, $n = 2, 3, ...$).

Given an initial shape $B \in E$, a deformation of B is a (smooth enough) curve

$$D : [0, T] \rightarrow G.$$

The (moved and) deformed body B_t at time t is given by

$$B_t = D(t)(B).$$
If $G = \text{SO}(3)$, then we are modeling *rotations of a rigid body* (in \mathbb{R}^3).
If \(G = \text{SO}(3) \), then we are modeling \textit{rotations of a rigid body} (in \(\mathbb{R}^3 \)).

Recall that \(\text{SO}(n) \) is the group of \textit{direct isometries} of \(\mathbb{R}^n \).
If $G = \text{SO}(3)$, then we are modeling *rotations of a rigid body* (in \mathbb{R}^3).

Recall that $\text{SO}(n)$ is the group of *direct isometries* of \mathbb{R}^n.

If $\langle -, - \rangle$ denotes the *Euclidean inner product* on \mathbb{R}^n, then $\text{SO}(n)$ consists of all invertible linear maps $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ that preserve $\langle -, - \rangle$:

$$\langle f(x), f(y) \rangle = \langle x, y \rangle, \quad \text{for all } x, y \in \mathbb{R}^n.$$

Furthermore, $\det(f) = +1$.
If \(G = \text{SO}(3) \), then we are modeling \textit{rotations of a rigid body} (in \(\mathbb{R}^3 \)).

Recall that \(\text{SO}(n) \) is the group of \textit{direct isometries} of \(\mathbb{R}^n \).

If \(\langle - , - \rangle \) denotes the \textit{Euclidean inner product} on \(\mathbb{R}^n \), then \(\text{SO}(n) \) consists of all invertible linear maps \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) that preserve \(\langle - , - \rangle \):

\[
\langle f(x), f(y) \rangle = \langle x, y \rangle, \quad \text{for all } x, y \in \mathbb{R}^n.
\]

Furthermore, \(\det(f) = +1 \).

The elements of \(\text{SO}(n) \) are \textit{rotations} (of \(\mathbb{R}^n \)). With respect to any orthonormal basis, every rotation is represented by an \textit{orthogonal matrix} \(R \), which means that

\[
RR^\top = R^\top R = I
\]

\[
\det(R) = 1.
\]
If $G = \text{SE}(3)$, then we are modeling the *motion of a rigid body* (in \mathbb{R}^3).
If $G = \text{SE}(3)$, then we are modeling the *motion of a rigid body* (in \mathbb{R}^3).

This means that the rigid body B rotates and translates in space.
If $G = \mathbf{SE}(3)$, then we are modeling the motion of a rigid body (in \mathbb{R}^3).

This means that the rigid body \mathcal{B} rotates and translates in space.

The group $\mathbf{SE}(n)$ consists of all invertible affine maps $\rho : \mathbb{R}^n \to \mathbb{R}^n$, such that

$$\rho(x) = f(x) + u, \quad x \in \mathbb{R}^n,$$

with $f \in \mathbf{SO}(n)$ and $u \in \mathbb{R}^n$ (the translation component). The elements of $\mathbf{SE}(n)$ are the (direct) rigid motions (or \mathbb{R}^n).
If $G = \text{SE}(3)$, then we are modeling the \textit{motion of a rigid body} (in \mathbb{R}^3).

This means that the rigid body B rotates and translates in space.

The group $\text{SE}(n)$ consists of all invertible \textit{affine maps} $\rho : \mathbb{R}^n \rightarrow \mathbb{R}^n$, such that

$$\rho(x) = f(x) + u, \quad x \in \mathbb{R}^n,$$

with $f \in \text{SO}(n)$ and $u \in \mathbb{R}^n$ (the \textit{translation component}). The elements of $\text{SE}(n)$ are the \textit{(direct) rigid motions} (or \mathbb{R}^n).

The standard trick is to represent ρ by an $(n+1) \times (n+1)$ matrix

$$\begin{pmatrix} R & u \\ 0 & 1 \end{pmatrix} \quad R \in \text{SO}(n), \ u \in \mathbb{R}^n,$$

where $x \in \mathbb{R}^n$ becomes $\begin{pmatrix} x \\ 1 \end{pmatrix} \in \mathbb{R}^{n+1}$.
If $G = \text{SIM}(3)$, then we are modeling a *simple deformation* of a (nonrigid) body (in \mathbb{R}^3).
If $G = \text{SIM}(3)$, then we are modeling a *simple deformation* of a (nonrigid) body (in \mathbb{R}^3).

In addition to rotating and translating, the body \mathcal{B} can grow and shrink in a uniform fashion (by a homothety).
If $G = \text{SIM}(3)$, then we are modeling a *simple deformation* of a (nonrigid) body (in \mathbb{R}^3).

In addition to rotating and translating, the body B can grow and shrink in a uniform fashion (by a homothety).

The group $\text{SIM}(n)$ is defined by matrices of the form

$$\begin{pmatrix} \alpha R & u \\ 0 & 1 \end{pmatrix}, \quad R \in \text{SO}(n), \ u \in \mathbb{R}^n, \alpha > 0.$$
If $G = \text{SIM}(3)$, then we are modeling a simple deformation of a (nonrigid) body (in \mathbb{R}^3).

In addition to rotating and translating, the body \mathcal{B} can grow and shrink in a uniform fashion (by a homothety).

The group $\text{SIM}(n)$ is defined by matrices of the form

$$
\begin{pmatrix}
\alpha R & u \\
0 & 1 \\
\end{pmatrix}
R \in \text{SO}(n), \ u \in \mathbb{R}^n, \alpha > 0.
$$

Other kinds of nonrigid deformations are considered in medical imaging (image registration).
If $G = \text{SIM}(3)$, then we are modeling a *simple deformation* of a (nonrigid) body (in \mathbb{R}^3).

In addition to rotating and translating, the body B can grow and shrink in a uniform fashion (by a homothety).

The group $\text{SIM}(n)$ is defined by matrices of the form

$$
\begin{pmatrix}
\alpha R & u \\
0 & 1
\end{pmatrix} \quad R \in \text{SO}(n), \ u \in \mathbb{R}^n, \ \alpha > 0.
$$

Other kinds of nonrigid deformations are considered in *medical imaging* (image registration).

We can consider more complicated groups G, as long as they are *Lie groups*. From now on, we will consider groups of matrices.
2. Interpolation

The *interpolation problem* is the following:
given a sequence \(g_0, \ldots, g_m \) of deformations \(g_i \in G \), with \(g_0 = \text{id} \), find a (reasonably smooth) curve \(c: [0, m] \to G \) such that

\[
c(i) = g_i, \quad i = 0, \ldots, m.
\]
2. Interpolation

The *interpolation problem* is the following: given a sequence \(g_0, \ldots, g_m \) of deformations \(g_i \in G \), with \(g_0 = \text{id} \), find a (reasonably smooth) curve \(c: [0, m] \to G \) such that

\[
c(i) = g_i, \quad i = 0, \ldots, m.
\]

Unfortunately, the naive solution which consists in performing an interpolation

\[
(1 - t)g_i + tg_{i+1} \quad (0 \leq t \leq 1)
\]

between \(g_i \) and \(g_{i+1} \) does not work, because \((1 - t)g_i + tg_{i+1} \) does not belong to \(G \) (in general).
2. Interpolation

The *interpolation problem* is the following:
given a sequence \(g_0, \ldots, g_m \) of deformations \(g_i \in G \), with \(g_0 = \text{id} \), find a (reasonably smooth) curve \(c: [0, m] \to G \) such that

\[
c(i) = g_i, \quad i = 0, \ldots, m.
\]

Unfortunately, the naive solution which consists in performing an interpolation

\[
(1 - t)g_i + tg_{i+1} \quad (0 \leq t \leq 1)
\]

between \(g_i \) and \(g_{i+1} \) does not work, because \((1 - t)g_i + tg_{i+1} \) does not belong to \(G \) (in general).

For example, the affine interpolant of two rotations is *not* a rotation.
2. Interpolation

The *interpolation problem* is the following: given a sequence \(g_0, \ldots, g_m \) of deformations \(g_i \in G \), with \(g_0 = \text{id} \), find a (reasonably smooth) curve \(c: [0, m] \rightarrow G \) such that

\[
c(i) = g_i, \quad i = 0, \ldots, m.
\]

Unfortunately, the naive solution which consists in performing an interpolation

\[
(1 - t)g_i + tg_{i+1} \quad (0 \leq t \leq 1)
\]

between \(g_i \) and \(g_{i+1} \) does not work, because \((1 - t)g_i + tg_{i+1} \) does not belong to \(G \) (in general).

For example, the affine interpolant of two rotations is *not* a rotation.

So, what can we do?
Figure: The power of abstraction
3. Lie Groups to The Rescue

The groups $\textbf{SO}(n), \textbf{SE}(n), \textbf{SIM}(n)$, etc. are not just groups; they are \textit{Lie groups}.

Jean Gallier (Upenn)
3. Lie Groups to The Rescue

The groups $\textbf{SO}(n)$, $\textbf{SE}(n)$, $\textbf{SIM}(n)$, etc. are not just groups; they are *Lie groups*.

This means that they are also *manifolds*. Roughly speaking, locally they “look” like \mathbb{R}^m (for some m), and at every point g of the group G, there is a *tangent space*, $T_g G$.

Jean Gallier (Upenn)
3. Lie Groups to The Rescue

The groups $\text{SO}(n)$, $\text{SE}(n)$, $\text{SIM}(n)$, etc. are not just groups; they are Lie groups.

This means that they are also manifolds. Roughly speaking, locally they “look” like \mathbb{R}^m (for some m), and at every point g of the group G, there is a tangent space, $T_g G$.

The tangent space at I (the identity element of G), denoted \mathfrak{g}, has a special structure. It is a Lie algebra. This means that there is a funny multiplication $[−, −]$ on \mathfrak{g}, the Lie bracket.
3. Lie Groups to The Rescue

The groups $\text{SO}(n)$, $\text{SE}(n)$, $\text{SIM}(n)$, etc. are not just groups; they are Lie groups.

This means that they are also manifolds. Roughly speaking, locally they “look” like \mathbb{R}^m (for some m), and at every point g of the group G, there is a tangent space, T_gG.

The tangent space at I (the identity element of G), denoted \mathfrak{g}, has a special structure. It is a Lie algebra. This means that there is a funny multiplication $[-,-]$ on \mathfrak{g}, the Lie bracket.

In the case of matrix groups,

$$[X, Y] = XY - YX.$$
The Lie algebra $\mathfrak{so}(n)$ of $\text{SO}(n)$ consists of all $n \times n$ skew symmetric matrices; matrices B such that

$$B^\top = -B.$$
The Lie algebra $\mathfrak{so}(n)$ of $\mathbf{SO}(n)$ consists of all $n \times n$ skew symmetric matrices; matrices B such that

$$B^\top = -B.$$

The Lie algebra $\mathfrak{se}(n)$ of $\mathbf{SE}(n)$ consists of all $(n+1) \times (n+1)$ matrices of the form

$$\begin{pmatrix} B & u \\ 0 & 0 \end{pmatrix} \quad B \in \mathfrak{so}(n), \ u \in \mathbb{R}^n.$$

The Lie algebra $\mathfrak{sim}(n)$ of $\mathbf{SIM}(n)$ consists of all $(n+1) \times (n+1)$ matrices of the form

$$\begin{pmatrix} \lambda I_n + B & u \\ 0 & 0 \end{pmatrix} \quad B \in \mathfrak{so}(n), \ u \in \mathbb{R}^n, \ \lambda > 0.$$
We can think of the Lie algebra \mathfrak{g} as a *linearization* of G. There is a map $\exp: \mathfrak{g} \to G$ (the *exponential map*) that brings us back into G. For matrix groups, it is simply

$$\exp(X) = e^X = I + \frac{X}{1!} + \frac{X^2}{2!} + \frac{X^3}{3!} + \cdots + \frac{X^k}{k!} + \cdots$$

Fortunately, for all the groups we just considered, the exponential map is *surjective*. This means that we have a logarithm function (actually, a multi-valued function) $\log : G \to \mathfrak{g}$, such that $e^{\log A} = A$, $A \in G$.
We can think of the Lie algebra \(\mathfrak{g} \) as a *linearization* of \(G \). There is a map \(\exp: \mathfrak{g} \rightarrow G \) (the *exponential map*) that brings us back into \(G \). For matrix groups, it is simply

\[
\exp(X) = e^X = I + \frac{X}{1!} + \frac{X^2}{2!} + \frac{X^3}{3!} + \cdots + \frac{X^k}{k!} + \cdots
\]

Fortunately, for all the groups we just considered, the exponential map is *surjective*.
We can think of the Lie algebra \(\mathfrak{g} \) as a *linearization* of \(G \). There is a map \(\exp: \mathfrak{g} \to G \) (the *exponential map*) that brings us back into \(G \). For matrix groups, it is simply

\[
\exp(X) = e^X = I + \frac{X}{1!} + \frac{X^2}{2!} + \frac{X^3}{3!} + \cdots + \frac{X^k}{k!} + \cdots
\]

Fortunately, for all the groups we just considered, the exponential map is *surjective*.

This means that we have a *logarithm function* (actually, a multi-valued function) \(\log: G \to \mathfrak{g} \), such that

\[
e^{\log A} = A, \quad A \in G.
\]
4. Interpolation in Lie Groups

We can use the maps \(\log : G \to g \) and \(\exp : g \to G \) to interpolate in \(G \) as follows: Given the sequence of “snapshots”

\[
g_1, g_2, \ldots, g_m, \quad \text{in } G
\]
4. Interpolation in Lie Groups

We can use the maps \(\log: G \to \mathfrak{g} \) and \(\exp: \mathfrak{g} \to G \) to interpolate in \(G \) as follows: Given the sequence of “snapshots”

\[g_1, g_2, \ldots, g_m, \quad \text{in } G \]

1. Compute logs

\[X_1 = \log g_1, \ X_2 = \log g_2, \ldots, \ X_m = \log g_m, \quad \text{in } \mathfrak{g} \]

2. Find an interpolating curve \(X: [0, m] \to \mathfrak{g}, \quad \text{in } \mathfrak{g} \)

3. Exponentiate, to get the curve

\[c(t) = e^{X(t)}, \quad \text{in } G. \]
Since \mathfrak{g} is a vector space (with an inner product), interpolating in \mathfrak{g} can be done easily using spline curves.

Two problems remain:

1. Computing the logarithm of a matrix.
2. Computing the exponential of a matrix.

Fortunately, we are dealing with special kinds of matrices, and for matrices X in $\mathfrak{so}(3)$, $\mathfrak{se}(3)$, and $\mathfrak{sim}(3)$, there are explicit formulae to compute e^X.

For $\mathfrak{so}(3)$, this is the Rodrigues formula (1840). For $\mathfrak{se}(3)$, there is a variant of Rodrigues formula. Both can be generalized to any $n \geq 2$ (J.G. and Dianna Xu). There is also a formula for $\mathfrak{sim}(3)$.
Since \mathfrak{g} is a \textit{vector space} (with an inner product), interpolating in \mathfrak{g} can be done easily using \textit{spline curves}.

Two problems remain:

1. Computing the logarithm of a matrix.
2. Computing the exponential of a matrix.
Since \mathfrak{g} is a \textit{vector space} (with an inner product), interpolating in \mathfrak{g} can be done easily using \textit{spline curves}.

Two problems remain:

1. Computing the logarithm of a matrix.
2. Computing the exponential of a matrix.

Fortunately, we are dealing with special kinds of matrices, and for matrices X in $\mathfrak{so}(3)$, $\mathfrak{se}(3)$, and $\mathfrak{sim}(3)$, there are explicit formulae to compute e^X.

Jean Gallier (Upenn)

The Logic of Rotations

December 3, 2013 16 / 31
Since \mathfrak{g} is a vector space (with an inner product), interpolating in \mathfrak{g} can be done easily using spline curves.

Two problems remain:

1. Computing the logarithm of a matrix.
2. Computing the exponential of a matrix.

Fortunately, we are dealing with special kinds of matrices, and for matrices X in $\mathfrak{so}(3)$, $\mathfrak{se}(3)$, and $\mathfrak{sim}(3)$, there are explicit formulae to compute e^X.

For $\mathfrak{so}(3)$, this is the Rodrigues formula (1840). For $\mathfrak{se}(3)$, there is a variant of Rodrigues formula. Both can be generalized to any $n \geq 2$ (J.G. and Dianna Xu). There is also a formula for $\mathfrak{sim}(3)$.

Logarithms can be computed for matrices A in $\text{SO}(3)$, $\text{SE}(3)$, and $\text{SIM}(3)$, but we get a multi-valued function and the eigenvalue -1 causes a little bit of trouble.
Logarithms can be computed for matrices A in $\text{SO}(3)$, $\text{SE}(3)$, and $\text{SIM}(3)$, but we get a multi-valued function and the eigenvalue -1 causes a little bit of trouble.

In general, if A is a real matrix, it may not have a \textit{real} log (but it always has a complex log). Sufficient conditions that guarantee the existence of real logs are known, and used in medical imaging. Here is such a condition.
Logarithms can be computed for matrices A in $\text{SO}(3)$, $\text{SE}(3)$, and $\text{SIM}(3)$, but we get a multi-valued function and the eigenvalue -1 causes a little bit of trouble.

In general, if A is a real matrix, it may not have a real log (but it always has a complex log). Sufficient conditions that guarantee the existence of real logs are known, and used in medical imaging. Here is such a condition.

Let $S(n)$ be the set of real matrices whose eigenvalues $\lambda + i\mu$ lie in the horizontal strip $-\pi < \mu < \pi$. Then, $\exp: S(n) \rightarrow \exp(S(n))$ is a bijection onto the set of real matrices with no negative eigenvalues.
Logarithms can be computed for matrices A in $\text{SO}(3)$, $\text{SE}(3)$, and $\text{SIM}(3)$, but we get a multi-valued function and the eigenvalue -1 causes a little bit of trouble.

In general, if A is a real matrix, it may not have a real log (but it always has a complex log). Sufficient conditions that guarantee the existence of real logs are known, and used in medical imaging. Here is such a condition.

Let $S(n)$ be the set of real matrices whose eigenvalues $\lambda + i\mu$ lie in the horizontal strip $-\pi < \mu < \pi$. Then, $\exp: S(n) \rightarrow \exp(S(n))$ is a bijection onto the set of real matrices with no negative eigenvalues.

There are efficient algorithms for computing such logs using inverse scaling and squaring methods.
5. Metrics on Lie Groups

We often find the need to say *how close* are two elements of a group G; for example, how close are two rotations?
5. Metrics on Lie Groups

We often find the need to say *how close* are two elements of a group G; for example, how close are two rotations?

This can be done by giving $g = T_I G$ an inner product. Then, because G is a group, this metric can be propagated to the tangent space $T_g G$ at any point $g \in G$. We get a *Riemannian metric*.
5. Metrics on Lie Groups

We often find the need to say *how close* are two elements of a group G; for example, how close are two rotations?

This can be done by giving $g = T_I G$ an inner product. Then, because G is a group, this metric can be propagated to the tangent space $T_g G$ at any point $g \in G$. We get a *Riemannian metric*.

In the case $G = \text{SO}(n)$, we can use the inner product on $\mathfrak{so}(n)$ given by

$$\langle X, Y \rangle = -\frac{1}{2} \text{tr}(XY) = \frac{1}{2} \text{tr}(X^\top Y).$$
Given a curve \(\gamma: [0, 1] \to G \), the \textit{length} \(L(\gamma) \) of \(\gamma \) is defined by

\[
L(\gamma) = \int_0^1 \langle \gamma'(t), \gamma'(t) \rangle^{\frac{1}{2}} dt.
\]
Given a curve $\gamma: [0, 1] \to G$, the *length* $L(\gamma)$ of γ is defined by

$$L(\gamma) = \int_0^1 \langle \gamma'(t), \gamma'(t) \rangle^{\frac{1}{2}} dt.$$

A *geodesic* through I is a curve $\gamma(t)$ in G such that $\gamma(0) = I$, and the acceleration $\gamma''(t)$ is normal to the tangent space $T_{\gamma(t)} G$ for all t (rigorously, we would need the connection on G induced by the metric).
Given a curve $\gamma: [0, 1] \to G$, the length $L(\gamma)$ of γ is defined by

$$L(\gamma) = \int_0^1 \langle \gamma'(t), \gamma'(t) \rangle^{\frac{1}{2}} dt.$$

A geodesic through I is a curve $\gamma(t)$ in G such that $\gamma(0) = I$, and the acceleration $\gamma''(t)$ is normal to the tangent space $T_{\gamma(t)} G$ for all t (rigorously, we would need the connection on G induced by the metric).

It turns out that for every $X \in so(n)$, there is a unique geodesic through I such that $\gamma'(0) = X$; namely,

$$\gamma(t) = e^{tX}.$$
Furthermore, for every $A \in G = \text{SO}(n)$, there is some geodesic from I to A.

We define the distance $d(I, A)$ between I and A as $d(I, A) = \inf_{\gamma} \{ L(\gamma) | \gamma$ joins I and $A \}$.

For any $A, B \in G$, we have $d(A, B) = d(I, A^{-1}B) = d(I, A^{\top}B)$.

Since there is always a geodesic from I to A, $d(I, A) = \inf_{\gamma} \{ L(\gamma) | \gamma$ is a geodesic joining I and $A \}$.
Furthermore, for every $A \in G = \textbf{SO}(n)$, there is some geodesic from I to A.

We define the distance $d(I, A)$ between I and A as

$$d(I, A) = \inf_{\gamma} \{ L(\gamma) \mid \gamma \text{ joins } I \text{ and } A \}.$$

For any $A, B \in G$, we have

$$d(A, B) = d(I, A^{-1}B) = d(I, A^\top B).$$
Furthermore, for every \(A \in G = \text{SO}(n) \), there is some geodesic from \(I \) to \(A \).

We define the \textit{distance} \(d(I, A) \) between \(I \) and \(A \) as

\[
d(I, A) = \inf_{\gamma} \{ L(\gamma) \mid \gamma \text{ joins } I \text{ and } A \}.\]

For any \(A, B \in G \), we have

\[
d(A, B) = d(I, A^{-1}B) = d(I, A^\top B).\]

Since there is always a geodesic from \(I \) to \(A \),

\[
d(I, A) = \inf_{\gamma} \{ L(\gamma) \mid \gamma \text{ is a geodesic joining } I \text{ and } A \}.\]
Theorem 1

The distance between any two rotations $A, B \in \text{SO}(n)$ is

$$d(A, B) = \sqrt{\theta_1^2 + \cdots + \theta_m^2},$$

where $e^{\pm i\theta_1}, \ldots, e^{\pm i\theta_m}$ are the eigenvalues ($\neq 1$) of $A^\top B$, with $0 < \theta_i \leq \pi$.
Theorem 1

The distance between any two rotations $A, B \in \text{SO}(n)$ is

$$d(A, B) = \sqrt{\theta_1^2 + \cdots + \theta_m^2},$$

where $e^{\pm i\theta_1}, \ldots, e^{\pm i\theta_m}$ are the eigenvalues ($\neq 1$) of $A^\top B$, with $0 < \theta_i \leq \pi$.

What about $\text{SE}(n)$?
Figure: Metric Clock
We can still define a Riemmanian metric on $\mathfrak{se}(n)$ as before:

$$\langle X, Y \rangle = \frac{1}{2} \text{tr}(X^\top Y).$$
We can still define a Riemmanian metric on $\mathfrak{se}(n)$ as before:

$$\langle X, Y \rangle = \frac{1}{2} \text{tr}(X^\top Y).$$

However, for $\text{SO}(n)$, the above metric is both \textit{left and right invariant}, but for $\text{SE}(n)$, it is only \textit{left invariant}. In fact, there are \textit{no} left and right invariant metrics on $\text{SE}(n)$. I don’t know of any formula for $d(A, B)$. An unfortunate consequence is that not all geodesics in $\text{SE}(n)$ are given by the exponential. Part of the problem is that $\text{SE}(n)$ is not compact and not semisimple (the Killing form is degenerate). New ideas are needed!
We can still define a Riemmanian metric on $\mathfrak{se}(n)$ as before:

$$\langle X, Y \rangle = \frac{1}{2} \text{tr}(X^\top Y).$$

However, for $\text{SO}(n)$, the above metric is both \textit{left and right invariant}, but for $\text{SE}(n)$, it is only \textit{left invariant}. In fact, there are \textit{no} left and right invariant metrics on $\text{SE}(n)$. I don’t know of any formula for $d(A, B)$.

An unfortunate consequence is that not all geodesics in $\text{SE}(n)$ are given by the exponential.
We can still define a Riemmanian metric on $se(n)$ as before:

$$\langle X, Y \rangle = \frac{1}{2} \text{tr}(X^\top Y).$$

However, for $SO(n)$, the above metric is both \textit{left and right invariant}, but for $SE(n)$, it is only \textit{left invariant}. In fact, there are \textit{no} left and right invariant metrics on $SE(n)$. I don’t know of any formula for $d(A, B)$.

An unfortunate consequence is that not all geodesics in $SE(n)$ are given by the exponential.

Part of the problem is that $SE(n)$ is not compact and not semisimple (the Killing form is degenerate). New ideas are needed!
6. Manifolds induced by Actions of $\text{SO}(n)$

The set of all subspaces W of \mathbb{R}^n having a fixed dimension k comes up in computer vision and machine learning. This space is the Grassmannian, $G(k, n)$.
6. Manifolds induced by Actions of $\text{SO}(n)$

The set of all subspaces W of \mathbb{R}^n having a fixed dimension k comes up in computer vision and machine learning. This space is the Grassmannian, $G(k, n)$.

In particular, when $k = 1$, we have all lines through the origin in \mathbb{R}^n; this is the real projective space \mathbb{RP}^{n-1}.

Jean Gallier (Upenn)
The Logic of Rotations
December 3, 2013 24 / 31
6. Manifolds induced by Actions of $\text{SO}(n)$

The set of all subspaces W of \mathbb{R}^n having a fixed dimension k comes up in computer vision and machine learning. This space is the Grassmannian, $G(k, n)$.

In particular, when $k = 1$, we have all lines through the origin in \mathbb{R}^n; this is the real projective space \mathbb{RP}^{n-1}.

What do we mean by the distance $d(V, W)$ between two subspaces? Can we give a formula?
6. Manifolds induced by Actions of $\text{SO}(n)$

The set of all subspaces \mathcal{W} of \mathbb{R}^n having a fixed dimension k comes up in computer vision and machine learning. This space is the Grassmannian, $G(k, n)$.

In particular, when $k = 1$, we have all lines through the origin in \mathbb{R}^n; this is the real projective space \mathbb{RP}^{n-1}.

What do we mean by the distance $d(V, \mathcal{W})$ between two subspaces? Can we give a formula?

The solution is to make $\text{SO}(n)$ act on $G(k, n)$.

Jean Gallier (Upenn)
A k-dimensional subspace V is specified by k orthonormal vectors in V, and these vectors constitute a $n \times k$ matrix A with \textit{orthogonal columns} ($A^\top A = I_k$).
A k-dimensional subspace V is specified by k orthonormal vectors in V, and these vectors constitute a $n \times k$ matrix A with orthonormal columns ($A^\top A = I_k$).

A rotation $R \in \text{SO}(n)$ acts on V by rotating every vector in V; that is, R is applied to the matrix A representing V:

$$(R, A) \mapsto RA,$$

where RA consists of k orthogonal vectors.
A k-dimensional subspace V is specified by k orthonormal vectors in V, and these vectors constitute a $n \times k$ matrix A with *orthogonal columns* ($A^\top A = I_k$).

A rotation $R \in \textbf{SO}(n)$ acts on V by rotating every vector in V; that is, R is applied to the matrix A representing V:

$$(R, A) \mapsto RA,$$

where RA consists of k orthogonal vectors.

The action $\cdot : \textbf{SO}(n) \times G(k, n) \to G(k, n)$ is *transitive* (which means that for any two subspaces $V, W \in G(k, n)$, there is some rotation R such that $R \cdot V = W$).
In such a situation, we look for the stabilizer of any subspace V in $G(k, n)$. This is the subgroup K of $\text{SO}(n)$ such that $R \cdot V = V$ for all $R \in K$.
In such a situation, we look for the *stabilizer* of any subspace \(V \) in \(G(k, n) \). This is the subgroup \(K \) of \(\text{SO}(n) \) such that \(R \cdot V = V \) for all \(R \in K \).

Then, it can be shown that \(G(k, n) \) is *isomorphic to the quotient space* \(\text{SO}(n)/K \), consisting of all cosets \(RK \), with \(R \in \text{SO}(n) \) (\(R_1 \equiv R_2 \) iff \(R_1^{-1}R_2 \in K \)). Let \(\pi: G \to \text{SO}(n)/K \) be the canonical projection.
In such a situation, we look for the *stabilizer* of any subspace V in $G(k, n)$. This is the subgroup K of $\text{SO}(n)$ such that $R \cdot V = V$ for all $R \in K$.

Then, it can be shown that $G(k, n)$ is *isomorphic to the quotient space* $\text{SO}(n)/K$, consisting of all cosets RK, with $R \in \text{SO}(n)$ ($R_1 \equiv R_2$ iff $R_1^{-1}R_2 \in K$). Let $\pi: G \to \text{SO}(n)/K$ be the canonical projection.

We find that the stabilizer of $V = $ the first k columns of I_n is $K = \text{S}(\text{O}(k) \times \text{O}(n - k))$; that is,

$$K = \left\{ \mqty(P & 0 \\ 0 & Q) \bigg| P \in \text{O}(k), \ Q \in \text{O}(n - k), \ \det(P) \det(Q) = 1 \right\},$$

whose Lie algebra \mathfrak{k} is

$$\mathfrak{k} = \left\{ \mqty(S & 0 \\ 0 & T) \bigg| S \in \text{so}(k), \ T \in \text{so}(n - k) \right\}.$$
The tangent space $T_{\text{SO}(n)} = \mathfrak{so}(n)$ splits as a direct sum

$$\mathfrak{so}(n) = \mathfrak{k} \oplus \mathfrak{m},$$

with

$$\mathfrak{m} = \left\{ \begin{pmatrix} 0 & -A^T \\ A & 0 \end{pmatrix} \mid A \in M_{n-k,k} \right\}. $$
The tangent space $T_{\text{SO}(n)} = \mathfrak{so}(n)$ splits as a direct sum

$$\mathfrak{so}(n) = \mathfrak{k} \oplus \mathfrak{m},$$

with

$$\mathfrak{m} = \left\{ \begin{pmatrix} 0 & -A^T \\ A & 0 \end{pmatrix} \Bigg| A \in \mathbb{M}_{n-k,k} \right\}.$$

The tangent vectors $X \in \mathfrak{k}$ are *vertical tangent vectors*, and the tangent vectors $X \in \mathfrak{m}$ are *horizontal tangent vectors*.
The tangent space $T_{I} \mathbf{SO}(n) = \mathfrak{so}(n)$ splits as a direct sum

$$\mathfrak{so}(n) = \mathfrak{k} \oplus \mathfrak{m},$$

with

$$\mathfrak{m} = \left\{ \begin{pmatrix} 0 & -A^\top \\ A & 0 \end{pmatrix} \mid A \in M_{n-k,k} \right\}.$$

The tangent vectors $X \in \mathfrak{k}$ are \textit{vertical tangent vectors}, and the tangent vectors $X \in \mathfrak{m}$ are \textit{horizontal tangent vectors}.

It turns out that \textit{the tangent space $T_{o}(\mathbf{SO}(n)/K)$ to $\mathbf{SO}(n)/K$ at o (= the coset K) is isomorphic to \mathfrak{m}}.
(In the above Figure, $G = \textbf{SO}(n)$, $K \leftrightarrow H$, $\mathfrak{t} \leftrightarrow \mathfrak{h}$, $M = \textbf{SO}(n)/K$).
Furthermore with the metric on $\mathfrak{so}(n)$ given by

$$\langle X, Y \rangle = -\frac{1}{2} \text{tr}(XY) = \frac{1}{2} \text{tr}(X^\top Y),$$

the spaces \mathfrak{k} and \mathfrak{m} are orthogonal complements. $\text{SO}(n)/K$ is a naturally reductive homogeneous space. In fact, it is a symmetric space (Élie Cartan).
Furthermore with the metric on $\mathfrak{so}(n)$ given by

$$\langle X, Y \rangle = -\frac{1}{2} \text{tr}(XY) = \frac{1}{2} \text{tr}(X^\top Y),$$

the spaces \mathfrak{k} and \mathfrak{m} are orthogonal complements. $\text{SO}(n)/K$ is a naturally reductive homogeneous space. In fact, it is a symmetric space (Élie Cartan).

Geodesics in $G(k, n) \cong \text{SO}(n)/K$ are projections of horizontal geodesics in $\text{SO}(n)$ (geodesics with initial velocity $X \in \mathfrak{m}$).
Theorem 2

The distance between any two subspaces $U, V \in G(k, n)$ specified by two $n \times k$ matrices A, B with orthogonal columns is

$$d(U, V) = \sqrt{\theta_1^2 + \cdots + \theta_k^2},$$

where $(\cos \theta_1, \ldots, \cos \theta_k)$ are the singular values of $A^T B$, with $0 \leq \theta_i \leq \pi/2$.
Theorem 2

The distance between any two subspaces $U, V \in G(k, n)$ specified by two $n \times k$ matrices A, B with orthogonal columns is

$$d(U, V) = \sqrt{\theta_1^2 + \cdots + \theta_k^2},$$

where $(\cos \theta_1, \ldots, \cos \theta_k)$ are the singular values of $A^\top B$, with $0 \leq \theta_i \leq \pi/2$.

The angles $\theta_1, \ldots, \theta_k$ are also known as the principal angles of the subspaces U and V (Camille Jordan).
Other interesting manifolds, such as $\text{SPD}(n)$ (symmetric, positive, definite matrices) are presented as homogeneous spaces; for example, $\text{SPD}(n) \cong \text{GL}^+(n)/\text{SO}(n)$.
Other interesting manifolds, such as $\text{SPD}(n)$ (symmetric, positive, definite matrices) are presented as homogeneous spaces; for example, $\text{SPD}(n) \cong \text{GL}^+(n)/\text{SO}(n)$.

Geodesics can be computed, but an explicit formula for the distance $d(A, B)$ between two SPD matrices involves a nasty integral.
Other interesting manifolds, such as $\text{SPD}(n)$ (symmetric, positive, definite matrices) are presented as homogeneous spaces; for example, $\text{SPD}(n) \cong \text{GL}^+(n)/\text{SO}(n)$.

Geodesics can be computed, but an explicit formula for the distance $d(A, B)$ between two SPD matrices involves a nasty integral.

The ability to compute explicity geodesic on the Grassmannian $G(k, n)$ (also the Stiefel manifolds $S(k, n)$) allows the generalization of optimization methods such as gradient descent and conjugate gradient to $G(k, n)$, $S(k, n)$, $\text{SO}(n)$.

Dealing with $\text{SE}(n)$ and the Grassmannian of affine subspaces remains an open problem.
Other interesting manifolds, such as $\text{SPD}(n)$ (symmetric, positive, definite matrices) are presented as homogeneous spaces; for example, $\text{SPD}(n) \cong \text{GL}^+(n)/\text{SO}(n)$.

Geodesics can be computed, but an explicit formula for the distance $d(A, B)$ between two SPD matrices involves a nasty integral.

The ability to compute explicitly geodesics on the Grassmannian $G(k, n)$ (also the Stiefel manifolds $S(k, n)$) allows the generalization of optimization methods such as gradient descent and conjugate gradient to $G(k, n), S(k, n), \text{SO}(n)$.

Dealing with $\text{SE}(n)$ and the Grassmannian of affine subspaces remains an open problem.