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Figure: Dog Logic
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(Thanks to Anne for the cute graphics!)
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1. Formalizing Motions and Deformations

In the previous cartoon, we have a sequence of objects

B0 = B, B1, B2, . . . , Bm,

where B is the starting object.

The Bi can be moving objects (robots, aicrafts, ...), shapes (brains, lungs,
...), or deformable bodies.

Some transformation Di takes B to Bi .

It is convenient to assume that the transformations Di are invertible and
belong to some group G (nothing “catastrophic” happens).
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Motions and Deformations

Then, the motion and deformation of a body (rigid or not) can be
described by a curve in a group G of transformations of a space E (say
Rn, n = 2, 3, ...).

Given an initial shape B ∈ E , a deformation of B is a (smooth enough)
curve

D : [0,T ]→ G .

The (moved and) deformed body Bt at time t is given by

Bt = D(t)(B).
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If G = SO(3), then we are modeling rotations of a rigid body (in R3).

Recall that SO(n) is the group of direct isometries of Rn.

If 〈−,−〉 denotes the Euclidean inner product on Rn, then SO(n) consists
of all invertible linear maps f : Rn → Rn that preserve 〈−,−〉:

〈f (x), f (y)〉 = 〈x , y〉, for all x , y ∈ Rn.

Furthermore, det(f ) = +1.

The elements of SO(n) are rotations (of Rn). With respect to any
orthonormal basis, every rotation is represented by an orthogonal matrix
R, which means that

RR> = R>R = I

det(R) = 1.
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If G = SE(3), then we are modeling the motion of a rigid body (in R3).

This means that the rigid body B rotates and translates in space.

The group SE(n) consists of all invertible affine maps ρ : Rn → Rn, such
that

ρ(x) = f (x) + u, x ∈ Rn,

with f ∈ SO(n) and u ∈ Rn (the translation component). The elements of
SE(n) are the (direct) rigid motions (or Rn).

The standard trick is to represent ρ by an (n + 1)× (n + 1) matrix(
R u
0 1

)
R ∈ SO(n), u ∈ Rn,

where x ∈ Rn becomes

(
x
1

)
∈ Rn+1.
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If G = SIM(3), then we are modeling a simple deformation of a (nonrigid)
body (in R3).

In addition to rotating and translating, the body B can grow and shrink in
a uniform fashion (by a homothety).

The group SIM(n) is defined by matrices of the form(
αR u
0 1

)
R ∈ SO(n), u ∈ Rn, α > 0.

Other kinds of nonrigid deformations are considered in medical imaging
(image registration).

We can consider more complicated groups G , as long as they are Lie
groups. From now on, we will consider groups of matrices.
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2. Interpolation

The interpolation problem is the following:
given a sequence g0, . . . , gm of deformations gi ∈ G , with g0 = id, find a
(reasonably smooth) curve c : [0,m]→ G such that

c(i) = gi , i = 0, . . . ,m.

Unfortunately, the naive solution which consists in performing an
interpolation

(1− t)gi + tgi+1 (0 ≤ t ≤ 1)

between gi and gi+1 does not work, because (1− t)gi + tgi+1 does not
belong to G (in general).

For example, the affine interpolant of two rotations is not a rotation.

So, what can we do?
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Figure: The power of abstraction
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3. Lie Groups to The Rescue

The groups SO(n), SE(n), SIM(n), etc. are not just groups; they are Lie
groups.

This means that they are also manifolds. Roughly speaking, locally they
“look” like Rm (for some m), and at every point g of the group G , there is
a tangent space, TgG .

The tangent space at I (the identity element of G ), denoted g, has a
special structure. It is a Lie algebra. This means that there is a funny
multiplication [−,−] on g, the Lie bracket.

In the case of matrix groups,

[X ,Y ] = XY − YX .

Jean Gallier (Upenn) The Logic of Rotations April 18, 2014 12 / 31



3. Lie Groups to The Rescue

The groups SO(n), SE(n), SIM(n), etc. are not just groups; they are Lie
groups.

This means that they are also manifolds. Roughly speaking, locally they
“look” like Rm (for some m), and at every point g of the group G , there is
a tangent space, TgG .

The tangent space at I (the identity element of G ), denoted g, has a
special structure. It is a Lie algebra. This means that there is a funny
multiplication [−,−] on g, the Lie bracket.

In the case of matrix groups,

[X ,Y ] = XY − YX .

Jean Gallier (Upenn) The Logic of Rotations April 18, 2014 12 / 31



3. Lie Groups to The Rescue

The groups SO(n), SE(n), SIM(n), etc. are not just groups; they are Lie
groups.

This means that they are also manifolds. Roughly speaking, locally they
“look” like Rm (for some m), and at every point g of the group G , there is
a tangent space, TgG .

The tangent space at I (the identity element of G ), denoted g, has a
special structure. It is a Lie algebra. This means that there is a funny
multiplication [−,−] on g, the Lie bracket.

In the case of matrix groups,

[X ,Y ] = XY − YX .

Jean Gallier (Upenn) The Logic of Rotations April 18, 2014 12 / 31



3. Lie Groups to The Rescue

The groups SO(n), SE(n), SIM(n), etc. are not just groups; they are Lie
groups.

This means that they are also manifolds. Roughly speaking, locally they
“look” like Rm (for some m), and at every point g of the group G , there is
a tangent space, TgG .

The tangent space at I (the identity element of G ), denoted g, has a
special structure. It is a Lie algebra. This means that there is a funny
multiplication [−,−] on g, the Lie bracket.

In the case of matrix groups,

[X ,Y ] = XY − YX .

Jean Gallier (Upenn) The Logic of Rotations April 18, 2014 12 / 31



The Lie algebra so(n) of SO(n) consists of all n × n skew symmetric
matrices; matrices B such that

B> = −B.

The Lie algebra se(n) of SE(n) consists of all (n + 1)× (n + 1) matrices of
the form (

B u
0 0

)
B ∈ so(n), u ∈ Rn.

The Lie algebra sim(n) of SIM(n) consists of all (n + 1)× (n + 1)
matrices of the form(

λIn + B u
0 0

)
B ∈ so(n), u ∈ Rn, λ ∈ R.
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We can think of the Lie algebra g as a linearization of G . There is a map
exp: g→ G (the exponential map ) that brings us back into G . For matrix
groups, it is simply

exp(X ) = eX = I +
X

1!
+

X 2

2!
+

X 3

3!
+ · · ·+ X k

k!
+ · · ·

Fortunately, for all the groups we just considered, the exponential map is
surjective.

This means that we have a logarithm function (actually, a multi-valued
function) log : G → g, such that

e logA = A, A ∈ G .
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4. Interpolation in Lie Groups

We can use the maps log : G → g and exp: g→ G to interpolate in G as
follows: Given the sequence of “snapshots”

g0, g1, . . . , gm, in G

1 Compute logs

X0 = log g0, X1 = log g1, . . . , Xm = log gm, in g

2 Find an interpolating curve X : [0,m]→ g, in g

3 Exponentiate, to get the curve

c(t) = eX (t), in G .
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Since g is a vector space (with an inner product), interpolating in g can be
done easily using spline curves.

Two problems remain:

1 Computing the logarithm of a matrix.

2 Computing the exponential of a matrix.

Fortunately, we are dealing with special kinds of matrices, and for matrices
X in so(3), se(3), and sim(3), there are explicit formulae to compute eX .

For so(3), this is the Rodrigues formula (1840). For se(3), there is a
variant of Rodrigues formula. Both can be generalized to any n ≥ 2 (J.G.
and Dianna Xu). There is also a formula for sim(3).
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Logarithms can be computed for matrices A in SO(3), SE(3), and
SIM(3), but we get a multi-valued function and the eigenvalue −1 causes
a little bit of trouble.

In general, if A is a real matrix, it may not have a real log (but it always
has a complex log). Sufficient conditions that garantee the existence of
real logs are known, and used in medical imaging. Here is such a
condition.

Let S(n) be the set of real matrices whose eigenvalues λ+ iµ lie in the
horizontal strip −π < µ < π. Then, exp: S(n)→ exp(S(n)) is a bijection
onto the set of real matrices with no negative eigenvalues.

There are efficient algorithms for computing such logs using inverse scaling
and squaring methods.
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5. Metrics on Lie Groups

We often find the need to say how close are two elements of a group G ;
for example, how close are two rotations?

This can be done by giving g = TIG an inner product. Then, because G is
a group, this metric can be propagated to the tangent space TgG at any
point g ∈ G . We get a Riemannian metric.

In the case G = SO(n), we can use the inner product on so(n) given by

〈X ,Y 〉 = −1

2
tr(XY ) =

1

2
tr(X>Y ).
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Given a curve γ : [0, 1]→ G , the length L(γ) of γ is defined by

L(γ) =

∫ 1

0
〈γ′(t), γ′(t)〉

1
2 dt.

A geodesic through I is a curve γ(t) in G such that γ(0) = I , and the
acceleration γ′′(t) is normal to the tangent space Tγ(t)G for all t
(rigorously, we would need the connection on G induced by the metric).

It turns out that for every X ∈ so(n), there is a unique geodesic through I
such that γ′(0) = X ; namely,

γ(t) = etX .
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Furthermore, for every A ∈ G = SO(n), there is some geodesic from I to
A.

We define the distance d(I ,A) betwen I and A as

d(I ,A) = inf
γ
{L(γ) | γ joins I and A}.

For any A,B ∈ G , we have

d(A,B) = d(I ,A−1B) = d(I ,A>B).

Since there is always a geodesic from I to A,

d(I ,A) = inf
γ
{L(γ) | γ is a geodesic joining I and A}.
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Theorem 1

The distance between any two rotations A,B ∈ SO(n) is

d(A,B) =
√
θ21 + · · ·+ θ2m,

where e±iθ1 , . . . , e±iθm are the eigenvalues (6= 1) of A>B, with 0 < θi ≤ π.

What about SE(n)?
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We can still define a Riemmanian metric on se(n) as before:

〈X ,Y 〉 =
1

2
tr(X>Y ).

However, for SO(n), the above metric is both left and right invariant, but
for SE(n), it is only left invariant. In fact, there are no left and right
invariant metrics on SE(n). I don’t know of any formula for d(A,B).

An unfortunate consequence is that not all geodesics in SE(n) are given by
the exponential.

Part of the problem is that SE(n) is not compact and not semisimple (the
Killing form is degenerate). New ideas are needed!
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6. Manifolds induced by Actions of SO(n)

The set of all subspaces W of Rn having a fixed dimension k comes up in
computer vision and machine learning. This space is the Grassmannian,
G (k , n).

In particular, when k = 1, we have all lines through the origin in Rn; this is
the real projective space RPn−1.

What do we mean by the distance d(V ,W ) between two subspaces? Can
we give a formula?

The solution is to make SO(n) act onG (k , n).
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A k-dimensional subspace V is specified by k orthonormal vectors in V ,
and these vectors constitute a n × k matrix A with orthogonal columns
(A>A = Ik).

A rotation R ∈ SO(n) acts on V by rotating every vector in V ; that is, R
is applied to the matrix A representing V :

(R,A) 7→ RA,

where RA consists of k orthogonal vectors.

The action · : SO(n)× G (k , n)→ G (k , n) is transitive (which means that
for any two subspaces V ,W ∈ G (k, n), there is some rotation R such that
R · V = W ).
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In such a situation, we look for the stabilizer of any subspace V in G (k , n).
This is the subgroup K of SO(n) such that R · V = V for all R ∈ K .

Then, it can be shown that G (k , n) is isomorphic to the quotient space
SO(n)/K, consisting of all cosets RK, with R ∈ SO(n) (R1 ≡ R2 iff
R−11 R2 ∈ K ). Let π : G → SO(n)/K be the canonical projection.

We find that the stabilizer of V = the first k columns of In is
K = S(O(k)×O(n − k)); that is,

K =

{(
P 0
0 Q

) ∣∣∣∣ P ∈ O(k), Q ∈ O(n − k), det(P) det(Q) = 1

}
,

whose Lie algebra k is

k =

{(
S 0
0 T

) ∣∣∣∣ S ∈ so(k), T ∈ so(n − k)

}
.
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The tangent space TISO(n) = so(n) splits as a direct sum

so(n) = k⊕m,

with

m =

{(
0 −A>
A 0

) ∣∣∣∣ A ∈ Mn−k,k

}
.

The tangent vectors X ∈ k are vertical tangent vectors, and the tangent
vectors X ∈ m are horizontal tangent vectors

It turns out that the tangent space To(SO(n)/K ) to SO(n)/K at o (=
the coset K) is isomorphic to m.
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Figure: Reductive homogeneous space, from O’Neill

(In the above Figure, G = SO(n), K 7→ H, k 7→ h, M = SO(n)/K ).
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Furthermore with the metric on so(n) given by

〈X ,Y 〉 = −1

2
tr(XY ) =

1

2
tr(X>Y ),

the spaces k and m are orthogonal complements. SO(n)/K is a naturally
reductive homogeneous space. In fact, it is a symmetric space (Élie
Cartan).

Geodesics in G (k , n) ∼= SO(n)/K are projections of horizontal geodesics in
SO(n) (geodesics with initial velocity X ∈ m).
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Cartan).

Geodesics in G (k , n) ∼= SO(n)/K are projections of horizontal geodesics in
SO(n) (geodesics with initial velocity X ∈ m).

Jean Gallier (Upenn) The Logic of Rotations April 18, 2014 29 / 31



Theorem 2

The distance between any two subspaces U,V ∈ G (k , n) specified by two
n × k matrices A,B with orthogonal columns is

d(U,V ) =
√
θ21 + · · ·+ θ2k ,

where (cos θ1, . . . , cos θk) are the singular values of A>B, with
0 ≤ θi ≤ π/2.

The angles θ1, . . . , θk are also known as the principal angles of the
subspaces U and V (Camille Jordan).
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Other interesting manifolds, such as SPD(n) (symmetric, positive, definite
matrices) are presented as homogeneous spaces; for example,
SPD(n) ∼= GL+(n)/SO(n).

Geodesics can be computed, but an explicit formula for the distance
d(A,B) between two SPD matrices involves a nasty integral.

The ability to compute expliciyly geodesic on the Grassmannian G (k , n)
(also the Stiefel manifolds S(k , n)) allows the generalization of
optimization methods such as gradient descent and conjugate gradient to
G (k , n), S(k , n), SO(n).

Dealing with SE(n) and the Grassmannian of affine subspaces remains an
open problem.
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