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Quick History

• Formalizing the rules of logic goes back to 
the Greek. 

• Axioms and Syllogisms  (Aristotle, 384 
BC-322 BC)                                                  
- All humans are mortal                              
- Socrates is a human                                 
- Socrates is mortal.

• Modus Ponens:  If (P implies Q) holds      
and P holds, then Q holds.
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Types of Proofs

• Proof by intimidation

• Proof by seduction

• Proof by interruption

• Proof by misconception

• Proof by obfuscation

• Proof by confusion

• Proof by exhaustion
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More Types of Proofs

• Proof by passion

• Proof by example

• Proof by vigorous handwaving

• Proof by cumbersome notation

• Proof by omission

• Proof by funding

• Proof by personal communication

• Proof by metaproof, etc.
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Proof by 
intimidation!
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Quick History

• Cantor (1845-1918) and the                                      
birth of set theory 

• Paradoxes and the “crisis of                                             
foundations’’. 

• Sets that are too big or                                                     
defined by self-reference

• Russell’s paradox (1902)

• There is no set of all sets
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do with semantics, i.e., the meaning of 
statements 
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Truth and Proofs

• Ideally, we would like to know what is truth

• From the point of view of logic, truth has to 
do with semantics, i.e., the meaning of 
statements 

• Peter Andrew’s motto: ``Truth is elusive’’

• ``To truth through proof’’

• Provable implies true. Easier to study proofs
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Truth and Proofs

A ^B

• The logical connectives (and, or, 
implication, negation, etc.) carry some 
intuitive semantics

• For example,            (    and    ) means 
that both      and      are true

• But what is the meaning of                 
(   implies    )?  

A B

A B

A ) B

A B
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What is a proof?

• What is a proof of              ?

• More generally, what is a proof?

• Basically, most people don’t know!

• Unfortunately, there is more than one 
formalism to define the notion of proof

• Hilbert systems, natural deduction, sequent 
calculus, categorical logic, etc.

A ) B
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Hilbert 

David Hilbert (1862-1943)
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Hilbert Systems

• Hilbert systems have many axioms  and few  
inference rules

•  The axioms are very unnatural!

• That’s because they are chosen to yield the 
deduction theorem 

• Unfriendly system for humans. 

• Proofs in Hilbert systems are very far from 
proofs that a human would write
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Gentzen’s  Systems

• Gerhard Gentzen (1909-1945)

• Introduced natural deduction                                      
systems and sequent calculi

• Trivial axioms, ``natural rules’’

• The rules formalize informal                     r                          
rules of reasoning

• Symmetry of the rules

• Introduction/Elimination              
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Proofs and Deductions

• A proof of a proposition, P, does not 
depend on any assumptions (premises).

• When we construct a proof, we usually 
introduce extra premises which are later 
closed (dismissed, discharged).

• Such an ``unfinished’’ proof is a deduction.

• We need a mechanism to keep track of 
closed (discharged) premises (the others 
are open).
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Natural Deduction Rules

• A proof is a tree labeled with propositions

• To prove an implication,           ,  from a list 
of premises,                        , do this:

• Add    to the list     and prove    from      
and    . 

• When this deduction is finished, we obtain 
a proof of             which does not depend 
on    , so the premise      needs to be 
discharged (closed).

Γ = (P1, . . . , Pn)

P ⇒ Q

ΓP Q

P

P ⇒ Q

P

Γ

P
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Natural Deduction Rules

The axioms and inference rules for implicational logic are:

Axioms:

Γ, P

P

The ⇒-elimination rule:

Γ

P ⇒ Q

∆

P

Q
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Natural Deduction Rules

xIn the introduction rule, the tag    indicates which 
rule caused the premise,    , to be discharged.                          P

The ⇒-introduction rule:

Γ, P x

Q
x

P ⇒ Q
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Natural Deduction Rules

xIn the introduction rule, the tag    indicates which 
rule caused the premise,    , to be discharged.                          P

The ⇒-introduction rule:

Γ, P x

Q
x

P ⇒ Q

Every tag is associated with a unique rule but 
several premises can be labeled with the same 

tag and all discharged in a single step.
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Examples of Proofs
(a)

P x

P
x

P ⇒ P

So, P ⇒ P is provable; this is the least we should expect from our proof
system!

(Q ) R)y

(P ) Q)z P x

Q

(b)
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Examples of Proofs

(Q ) R)y

(P ) Q)z P x

Q

R

(Q ) R)y

(P ) Q)z P x

Q

R
x

P ) R
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Example of Proofs

(Q ) R)y

(P ) Q)z P x

Q

R
x

P ) R
y

(Q ) R) ) (P ) R)
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Example of Proofs

(Q ) R)y

(P ) Q)z P x

Q

R
x

P ) R
y

(Q ) R) ) (P ) R)
z

(P ) Q) ) ((Q ) R) ) (P ) R))
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Examples of proofs

(c) In the next example, the two occurrences of A labeled x are discharged
simultaneously.

(A ⇒ (B ⇒ C))z Ax

B ⇒ C

(A ⇒ B)y Ax

B

C
x

A ⇒ C
y

(A ⇒ B) ⇒ (A ⇒ C)
z

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)
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More Examples of Proofs

(d) In contrast to Example (c), in the proof tree below the two occurrences
of A are discharged separately. To this effect, they are labeled differently.

(A ⇒ (B ⇒ C))z Ax

B ⇒ C

(A ⇒ B)y At

B

C
x

A ⇒ C
y

(A ⇒ B) ⇒ (A ⇒ C)
z

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)

t

A ⇒

(

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)

)
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Wow, I landed it! (the proof)
Friday, February 22, 13



Natural Deduction in Sequent-Style 

• A different way of keeping track of open 
premises (undischarged) in a deduction

• The nodes of our trees are now sequents of 
the form             ,  with

• The variables are pairwise distinct but the 
premises may be repeated

• We can view the premise     as the type of 
the variable     !

Γ → P

Γ = x1 : P1, . . . , xm : Pm

Pi

xi
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Natural Deduction in Sequent-Style

The axioms and rules for implication in Gentzen-sequent style:

Γ, x : P → P

Γ, x : P → Q

Γ → P ⇒ Q
(⇒-intro)

Γ → P ⇒ Q Γ → P

Γ → Q
(⇒-elim)
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Redundant Proofs
Proof Normalization

((R ⇒ R) ⇒ Q)x (R ⇒ R)y

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q
y

(R ⇒ R) ⇒ (((R ⇒ R) ⇒ Q) ⇒ Q)

Rz

R
z

R ⇒ R

((R ⇒ R) ⇒ Q) ⇒ Q
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Redundant Proofs
Proof Normalization

• When an elimination step immediately 
follows an introduction step, a proof can be 
normalized (simplified)

((R ⇒ R) ⇒ Q)x (R ⇒ R)y

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q
y

(R ⇒ R) ⇒ (((R ⇒ R) ⇒ Q) ⇒ Q)

Rz

R
z

R ⇒ R

((R ⇒ R) ⇒ Q) ⇒ Q
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Proof Normalization

• A simpler (normalized) proof:

((R ⇒ R) ⇒ Q)x

Rz

R
z

R ⇒ R

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q
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Where is that simpler proof?
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Normalization and Strong 
Normalization of Proofs
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Normalization and Strong 
Normalization of Proofs

• In the sixties, Dag Prawitz gave reduction 
rules.

• He proved that every proof can be reduced 
to a normal form (normalization).

• In 1971, he proved that every reduction  
sequence terminates (strong normalization) 
and that every proof has a unique normal 
form.
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Propositions as types and proofs as 
simply-typed lambda terms

Γ, x : P → x : P

Γ, x : P → M : Q

Γ → λx : P · M : P ⇒ Q
(⇒-intro)

Γ → M : P ⇒ Q Γ → N : P

Γ → MN : Q
(⇒-elim)
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lambda-calculus (Church).

• Propositions can be viewed as types.

• Proof normalization corresponds to 
lambda-conversion.                                          

• Strong normalization (SN) in the typed 
lambda-calculus implies SN of proofs.

Friday, February 22, 13



The Curry-Howard Isomorphism

• Howard (1969) observed that proofs can be 
represented as terms of the simply-typed 
lambda-calculus (Church).

• Propositions can be viewed as types.

• Proof normalization corresponds to 
lambda-conversion.                                          

• Strong normalization (SN) in the typed 
lambda-calculus implies SN of proofs.

(λx : σ · M)N −→β M [N/x]
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Adding the connectives and, or, not 

• To deal with negation, we introduce falsity 
(absurdum), the proposition always false:

• We view      ,  the negation of    ,  as an 
abbreviation for 

⊥

¬P P

P ⇒⊥
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Rules for and

The ∧-introduction rule:

Γ

P

∆

Q

P ∧ Q

The ∧-elimination rule:

Γ

P ∧ Q

P

Γ

P ∧ Q

Q
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Rules for or

The ∨-introduction rule:

Γ

P

P ∨ Q

Γ

Q

P ∨ Q

The ∨-elimination rule:

Γ

P ∨ Q

∆, P x

R

Λ, Qy

R
x,y

R
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Rules for negation

The ¬-introduction rule:

Γ, P x

⊥
x

¬P

The ¬-elimination rule:

Γ

¬P

∆

P

⊥
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The ``Controversial ’’ Rules

The ⊥-elimination rule:

Γ

⊥

P

The proof-by-contradiction rule (also known as
reductio ad absurdum rule, for short RAA):

Γ,¬P x

⊥
x

P
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Problems With Negation

• The                      rule is not so bad.

• It says that once we have reached an 
absurdity, then everything goes!

• RAA is worse! I allows us to prove double 
negation elimination and the law of the 
excluded middle:

•                           

•  Constructively, these are problematic!

⊥-elimination

¬¬P ⇒ P ¬P ∨ P
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Lack of Constructivity

• The provability of                and             is  
equivalent to RAA.

• RAA allows proving disjunctions (and 
existential statements) that may not be 
constructive; this means that if              is 
provable, in general, it may not be possible 
to give a proof of       or a proof of

• This lack of constructivity of classical logic 
led Brouwer to invent intuitionistic logic

¬¬P ⇒ P ¬P ∨ P

A ∨ B

A B
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That’s too abstract, give me 
something concrete!
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A non-constructive proof

•  Claim: There exist two reals numbers,      ,    
both irrational, such that         is rational.

• Proof: We know that      is irrational. Either

• (1)            is rational;                      ,  or

• (2)            is irrational; 

• In (2),  we use                        

• Using the law of the excluded middle, our 
claim is proved! But, what is           ?

a, b
a

b

√

2

√

2

√

2

√

2

√

2

√

2

a = b =
√

2

a =
√

2

√

2

, b =
√

2

(
√

2
√

2

)
√

2 = 2

√

2
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Non-constructive Proofs

• The previous proof is non-constructive.

• It shows that      and      must exist but it 
does not produce an explicit solution.

• This proof gives no information as  to the 
irrationality of 

• In fact,           is irrational, but this is very 
hard to prove!

• A ``better’’ solution: 

√

2

√

2

a b

√

2

√

2

a =
√

2, b = log2 9
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Existence proofs are often 
non-constructive

• Fixed-points Theorems often only assert 
the existence of a fixed point but provide 
no method for computing them.

• For example, Brouwer’s Fixed Point 
Theorem.

• That’s too bad, this theorem is used in the 
proof of the Nash Equilibrium Theorem!
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(1907)
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Intuitionism (Brouwer, Heyting)

• L E J 
Brouwer(1881-1966)

• Founder of intuitionism 
(1907)

• Also important work in 
topology
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A. Heyting
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A. Heyting

• Arend Heyting 
(1898-1980)
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A. Heyting

• Arend Heyting 
(1898-1980)

• Heyting algebras 
(semantics for 
intuitionistic logic)
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Intuitionistic Logic

• In intuitionistic logic, it is forbidden to use 
the proof by contradiction rule (RAA)

• As a consequence,         no longer implies 
and               is no longer provable (in 
general)

• The connectives, and, or, implication and 
negation are independent

• No de Morgan laws

¬¬P P

¬P ∨ P
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Intuitionistic Logic

• Fewer propositions are provable (than in 
classical logic) but proofs are more 
constructive.

• If a disjunction,           ,  is provable, then a 
proof of     or a proof of       can be found.

• Similarly, if         is provable, then there is a 
term,    , such that             is provable.

• However, the complexity of proof search is 
higher.

P ∨ Q

P Q

∃tP

τ P [τ/t]
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Intuitionistic Logic and Typed 
lambda-Calculi
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Intuitionistic Logic and Typed 
lambda-Calculi

• Proofs in intuitionistic logic can be 
represented as certain kinds of lambda-
terms.
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universal and existential types.
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Intuitionistic Logic and Typed 
lambda-Calculi

• Proofs in intuitionistic logic can be 
represented as certain kinds of lambda-
terms.

• We now have conjunctive, disjunctive, 
universal and existential types.

• Falsity can be viewed as an ``error type’’

• Strong Normalization still holds, but some 
subtleties with disjunctive and existential 
types (permutative reductions)
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Higher-order Intuitionistic Logic
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Higher-order Intuitionistic Logic

• We allow quantification over functions.
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Friday, February 22, 13



Higher-order Intuitionistic Logic

• We allow quantification over functions.

•  The corresponding lambda-calculus is a 
polymorphic lambda calculus (first invented 
by J. Y. Girard, systems F and F-omega, 1971)

• System F was independently discovered by 
J. Reynolds (1974) for very different 
reasons.
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Higher-order Intuitionistic Logic

• We allow quantification over functions.

•  The corresponding lambda-calculus is a 
polymorphic lambda calculus (first invented 
by J. Y. Girard, systems F and F-omega, 1971)

• System F was independently discovered by 
J. Reynolds (1974) for very different 
reasons.

• Later, even richer typed calculi, the theory 
of construction (Coquand, Huet)
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• Proofs can be very informal (loosely defined 
rules, premises and steps omitted).

• Proofs can be completely formal, using 
clearly defined rules and premises. Such 
proofs are usually processed or produced 
by proof checkers and theorem provers.

• A human prover evolves in a spectrum of 
formality!
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Formal and Informal Proofs

• It is practically impossible to write formal 
proofs. 

• This would be extremely tedious and time-
consuming, and these proofs would be 
huge, thus very hard to read.

• In principle, it is possible to write 
formalized proofs.

• This is desirable if we want to have 
absolute confidence in a proof.
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The Need for Proofs

• Pieces of code controlling critical systems 
such as flight control, nuclear reactors, 
nuclear anything, should be verified.

• It is important to build tools to check or 
construct proofs.

• Even if we never write formal proofs, it is 
important to understand clearly what are 
the rules of reasoning that we use when we 
construct informal proofs.

Friday, February 22, 13



Proof Checking; Recent  Success

Friday, February 22, 13



Proof Checking; Recent  Success

• Georges Gonthier’s group (MSR and 
INRIA) just completed a formalization in 
Coq of the Odd Order theorem (Feit and 
Thompson, 1962-1963)

Friday, February 22, 13



Proof Checking; Recent  Success

• Georges Gonthier’s group (MSR and 
INRIA) just completed a formalization in 
Coq of the Odd Order theorem (Feit and 
Thompson, 1962-1963)

• The theorem says that every finite group of 
odd order is solvable. This implies that a 
nonabelian simple group has even order.

Friday, February 22, 13



Proof Checking; Recent  Success

• Georges Gonthier’s group (MSR and 
INRIA) just completed a formalization in 
Coq of the Odd Order theorem (Feit and 
Thompson, 1962-1963)

• The theorem says that every finite group of 
odd order is solvable. This implies that a 
nonabelian simple group has even order.

• Feit and Thompson’s paper is 255 pages 
long.
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FEIT-THOMPSON TRUE
Feit-Thompson theorem has been totally checked in Coq
Thursday 20 September 2012, 18:16. We received following mail from Georges Gonthier (see below).
It concludes the proof in Coq of the Feit-Thompson theorem. This theorem, also named the Odd Order Theorem, is the first main result in the 
classification of finite groups.
This work was achieved by the team formed by addressees of Georges' mail, team strongly led by Georges Gonthier. It is the end of a 6-year 
long research effort (almost fulltime work) started in May 2006. After the Four Color theorem, this is the second impressive mathematical 
theorem totally proved in the Coq proof assistant.
More info can be found in this mail by Laurent Théry.

From Laurent Théry 
Date: Thursday 20 September 2012, 20:24
Re: [Coqfinitgroup-commits] r4105 - trunk
Hi,

Just for fun

Feit Thompson statement in Coq:

Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) : odd #|G| -> solvable G.

How is it proved?

You can see only green lights there:

http://ssr2.msr-inria.inria.fr/~jenkins/current/progress.html

and the final theory graph at:

http://ssr2.msr-inria.inria.fr/~jenkins/current/index.html

How big it is:

Number of lines ~ 170 000
Number of definitions ~15 000
Number of theorems ~ 4 200
Fun ~ enormous!

-- Laurent
Friday, February 22, 13
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Proposition coprime_Hall_trans A G H1 H2 :
    A \subset 'N(G) -> coprime #|G| #|A| -> solvable G ->
    pi.-Hall(G) H1 -> A \subset 'N(H1) ->
    pi.-Hall(G) H2 -> A \subset 'N(H2) ->
  exists2 x, x \in 'C_G(A) & H1 :=: H2 :^ x.

 A complement to the above: 'C(A) acts on 'Nby(A)  
Lemma norm_conj_cent A G x : x \in 'C(A) ->
  (A \subset 'N(G :^ x)) = (A \subset 'N(G)).

 Strongest version of the centraliser lemma -- not found in textbooks!  
 Obviously, the solvability condition could be removed once we have the 
 Odd Order Theorem.                                                      
Lemma strongest_coprime_quotient_cent A G H :
      let R := H :&: [~: G, A] in
      A \subset 'N(H) -> R \subset G -> coprime #|R| #|A| ->
      solvable R || solvable A ->
  'C_G(A) / H = 'C_(G / H)(A / H).

 A weaker but more practical version, still stronger than the usual form 
 (viz. Aschbacher 18.7.4), similar to the one needed in Aschbacher's     
 proof of Thompson factorization. Note that the coprime and solvability  
 assumptions could be further weakened to H :&: G (and hence become      
 trivial if H and G are TI). However, the assumption that A act on G is  
 needed in this case.                                                     

A very small piece of the code
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Soundness and Completeness

• Soundness: Every provable formula is valid 
(has the value true for all interpretations).

• A proof system must be sound or else it is 
garbage!

• Completeness: Every valid formula is 
provable.

• Completeness is desirable but not always 
possible. 
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Completeness: Bad News!

• Complexity of classical prop. validity: co-NP 
complete (Cook, Karp, 1970)

• Complexity of intuitionistic prop. validity:   
P-space complete! (Statman, 1979)

• The decision problem (validity problem) for 
first-order (classical) logic is undecidable 
(Church, 1936)

• Decision problem for intuitionistic logic also 
undecidable (double negation translation)
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Kurt Godel (1906-1978)
(Right: with A. Einstein)
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Alonzo Church 
(1903-1995)
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Other Logics?

• One will note that in a deduction (natural 
or Gentzen sequent style), the same 
premise can be used as many times as 
needed.

• Girard (and Lambeck earlier) had the idea 
to restrict the use of premises (charge for 
multiple use).

• This leads to logics where the connectives 
have a double identity: additive or 
multiplicative.
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Finer Logics: Linear Logic, ...

• linear logic, invented by Girard, achieves 
much finer control over the use of 
premises.

• The notion of proof becomes more general: 
proof nets (certain types of graphs)

• linear logic can be viewed as an  attempt to 
deal with resources and parallelism

• Negation is an involution
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Special Purpose Logics: Temporal, ...

• From a practical point of view, it is very 
fruitful to design logics with intended 
semantics, such as time, concurrency, ...

• Temporal logic deals with time (A. Pnueli)

• Process logic (Manna, Pnueli) 

• Dynamic logic (Harel, Pratt)

• The world of logic is alive and well!
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Searching for that proof!
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The proof is hard to reach
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