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After a bad proof!
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Finally, Reillag (young)
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Quick History

• Formalizing the rules of logic goes back to 
the Greek. 

• Axioms and Syllogisms  (Aristotle, 384 
BC-322 BC)                                                  
- All humans are mortal                              
- Socrates is a human                                 
- Socrates is mortal.

• Modus Ponens:  If (P implies Q) holds      
and P holds, then Q holds.
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• Proof by intimidation

• Proof by seduction

• Proof by interruption

• Proof by misconception

• Proof by obfuscation

• Proof by confusion

• Proof by exhaustion
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More Types of Proofs

• Proof by passion

• Proof by example

• Proof by vigorous handwaving

• Proof by cumbersome notation

• Proof by omission

• Proof by funding

• Proof by personal communication

• Proof by metaproof, etc.
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Proof by 
intimidation!
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Quick History

• Cantor (1845-1918) and the                                      
birth of set theory 

• Paradoxes and the “crisis of                                             
foundations’’. 

• Sets that are too big or                                                     
defined by self-reference

• Russell’s paradox (1902)

• There is no set of all sets
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Truth and Proofs

• Ideally, we would like to know what is truth

• From the point of view of logic, truth has to 
do with semantics, i.e., the meaning of 
statements 

• Peter Andrew’s motto: ``Truth is elusive’’

• ``To truth through proof’’

• Provable implies true. Easier to study proofs
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Hilbert 

David Hilbert (1862-1943)
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Hilbert Systems

• Hilbert systems have many axioms  and few  
inference rules

•  The axioms are very unnatural!

• That’s because they are chosen to yield the 
deduction theorem 

• Unfriendly system for humans. 

• Proofs in Hilbert systems are very far from 
proofs that a human would write
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Gentzen’s  Systems

• Gerhard Gentzen (1909-1945)

• Introduced natural deduction                                      
systems and sequent calculi

• Trivial axioms, ``natural rules’’

• The rules formalize informal                     r                          
rules of reasoning

• Symmetry of the rules

• Introduction/Elimination              

14
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Proofs and Deductions

• A proof of a proposition, P, does not 
depend on any assumptions (premises).

• When we construct a proof, we usually 
introduce extra premises which are later 
closed (dismissed, discharged).

• Such an ``unfinished’’ proof is a deduction.

• We need a mechanism to keep track of 
closed (discharged) premises (the others 
are open).
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Natural Deduction Rules

• A proof is a tree labeled with propositions

• To prove an implication,           ,  from a list 
of premises,                        , do this:

• Add    to the list     and prove    from      
and    . 

• When this deduction is finished, we obtain 
a proof of             which does not depend 
on    , so the premise      needs to be 
discharged (closed).

Γ = (P1, . . . , Pn)

P ⇒ Q

ΓP Q

P

P ⇒ Q

P

Γ

P
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Natural Deduction Rules

The axioms and inference rules for implicational logic are:

Axioms:

Γ, P

P

The ⇒-elimination rule:

Γ

P ⇒ Q

∆

P

Q

17



Natural Deduction Rules

xIn the introduction rule, the tag    indicates which 
rule caused the premise,    , to be discharged.                          P

The ⇒-introduction rule:

Γ, P x

Q
x

P ⇒ Q
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Natural Deduction Rules

xIn the introduction rule, the tag    indicates which 
rule caused the premise,    , to be discharged.                          P

The ⇒-introduction rule:

Γ, P x

Q
x

P ⇒ Q

Every tag is associated with a unique rule but 
several premises can be labeled with the same 

tag and all discharged in a single step.
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Examples of Proofs
(a)

P x

P
x

P ⇒ P

So, P ⇒ P is provable; this is the least we should expect from our proof
system!

(b)

(Q ⇒ R)y

(P ⇒ Q)z P x

Q

R
x

P ⇒ R
y

(Q ⇒ R) ⇒ (P ⇒ R)
z

(P ⇒ Q) ⇒ ((Q ⇒ R) ⇒ (P ⇒ R))

19



Examples of proofs

(c) In the next example, the two occurrences of A labeled x are discharged
simultaneously.

(A ⇒ (B ⇒ C))z Ax

B ⇒ C

(A ⇒ B)y Ax

B

C
x

A ⇒ C
y

(A ⇒ B) ⇒ (A ⇒ C)
z

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)
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More Examples of Proofs

(d) In contrast to Example (c), in the proof tree below the two occurrences
of A are discharged separately. To this effect, they are labeled differently.

(A ⇒ (B ⇒ C))z Ax

B ⇒ C

(A ⇒ B)y At

B

C
x

A ⇒ C
y

(A ⇒ B) ⇒ (A ⇒ C)
z

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)

t

A ⇒

(

(

A ⇒ (B ⇒ C)
)

⇒

(

(A ⇒ B) ⇒ (A ⇒ C)
)

)
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Wow, I landed it! (the proof)

22



Natural Deduction in Sequent-Style 

• A different way of keeping track of open 
premises (undischarged) in a deduction

• The nodes of our trees are now sequents of 
the form             ,  with

• The variables are pairwise distinct but the 
premises may be repeated

• We can view the premise     as the type of 
the variable     !

Γ → P

Γ = x1 : P1, . . . , xm : Pm

Pi

xi
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Natural Deduction in Sequent-Style

The axioms and rules for implication in Gentzen-sequent style:

Γ, x : P → P

Γ, x : P → Q

Γ → P ⇒ Q
(⇒-intro)

Γ → P ⇒ Q Γ → P

Γ → Q
(⇒-elim)

24



Redundant Proofs
Proof Normalization

((R ⇒ R) ⇒ Q)x (R ⇒ R)y

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q
y

(R ⇒ R) ⇒ (((R ⇒ R) ⇒ Q) ⇒ Q)

Rz

R
z

R ⇒ R

((R ⇒ R) ⇒ Q) ⇒ Q
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Redundant Proofs
Proof Normalization

• When an elimination step immediately 
follows an introduction step, a proof can be 
normalized (simplified)

((R ⇒ R) ⇒ Q)x (R ⇒ R)y

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q
y

(R ⇒ R) ⇒ (((R ⇒ R) ⇒ Q) ⇒ Q)

Rz

R
z

R ⇒ R

((R ⇒ R) ⇒ Q) ⇒ Q
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Proof Normalization

• A simpler (normalized) proof:

((R ⇒ R) ⇒ Q)x

Rz

R
z

R ⇒ R

Q
x

((R ⇒ R) ⇒ Q) ⇒ Q

26



Where is that simpler proof?

27



Pointing at a bad 
proof!
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Normalization and Strong 
Normalization of Proofs

• In the sixties, Dag Prawitz gave reduction 
rules.

• He proved that every proof can be reduced 
to a normal form (normalization).

• In 1971, he proved that every reduction  
sequence terminates (strong normalization) 
and that every proof has a unique normal 
form.
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Propositions as types and proofs as 
simply-typed lambda terms

Γ, x : P → x : P

Γ, x : P → M : Q

Γ → λx : P · M : P ⇒ Q
(⇒-intro)

Γ → M : P ⇒ Q Γ → N : P

Γ → MN : Q
(⇒-elim)
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The Curry-Howard Isomorphism

• Howard (1969) observed that proofs can be 
represented as terms of the simply-typed 
lambda-calculus (Church).

• Propositions can be viewed as types.

• Proof normalization corresponds to 
lambda-conversion.                                          

• Strong normalization (SN) in the typed 
lambda-calculus implies SN of proofs.

(λx : σ · M)N −→β M [N/x]
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Adding the connectives and, or, not 

• To deal with negation, we introduce falsity 
(absurdum), the proposition always false:

• We view      ,  the negation of    ,  as an 
abbreviation for 

⊥

¬P P

P ⇒⊥

32



Rules for and

The ∧-introduction rule:

Γ

P

∆

Q

P ∧ Q

The ∧-elimination rule:

Γ

P ∧ Q

P

Γ

P ∧ Q

Q

33



Rules for or

The ∨-introduction rule:

Γ

P

P ∨ Q

Γ

Q

P ∨ Q

The ∨-elimination rule:

Γ

P ∨ Q

∆, P x

R

Λ, Qy

R
x,y

R
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Rules for negation

The ¬-introduction rule:

Γ, P x

⊥
x

¬P

The ¬-elimination rule:

Γ

¬P

∆

P

⊥

35



The Quantifier Rules
∀-introduction:

Γ

P [u/t]

∀tP

Here, u must be a variable that does not occur free in any of the propositions
in Γ or in ∀tP ; the notation P [u/t] stands for the result of substituting u for all
free occurrences of t in P .

∀-elimination:

Γ

∀tP

P [τ/t]

Here τ is an arbitrary term and it is assumed that bound variables in P have
been renamed so that none of the variables in τ are captured after substitution.
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The Quantifier Rules
∃-introduction:

Γ

P [τ/t]

∃tP

As in ∀-elimination, τ is an arbitrary term and the same proviso on bound
variables in P applies.

∃-elimination:

Γ

∃tP

∆, P [u/t]x

C
x

C

Here, u must be a variable that does not occur free in any of the propositions
in ∆, ∃tP , or C, and all premises P [u/t] labeled x are discharged.

37



The ``Controversial ’’ Rules

The ⊥-elimination rule:

Γ

⊥

P

The proof-by-contradiction rule (also known as
reductio ad absurdum rule, for short RAA):

Γ,¬P x

⊥
x

P

38



Problems With Negation

⊥-elimination

¬¬P ⇒ P ¬P ∨ P
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Problems With Negation

• The                      rule is not so bad.

• It says that once we have reached an 
absurdity, then everything goes!

• RAA is worse! I allows us to prove double 
negation elimination and the law of the 
excluded middle:

•                           

•  Constructively, these are problematic!

⊥-elimination

¬¬P ⇒ P ¬P ∨ P

39



Lack of Constructivity

• The provability of                and             is  
equivalent to RAA.

• RAA allows proving disjunctions (and 
existential statements) that may not be 
constructive; this means that if              is 
provable, in general, it may not be possible 
to give a proof of       or a proof of

• This lack of constructivity of classical logic 
led Brouwer to invent intuitionistic logic

¬¬P ⇒ P ¬P ∨ P

A ∨ B

A B

40



That’s too abstract, give me 
something concrete!
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A non-constructive proof

•  Claim: There exist two reals numbers,      ,    
both irrational, such that         is rational.

• Proof: We know that      is irrational. Either

• (1)            is rational;                      ,  or

• (2)            is irrational; 

• In (2),  we use                        

• Using the law of the excluded middle, our 
claim is proved! But, what is           ?

a, b
a

b

√

2

√

2

√

2

√

2

√

2

√

2

a = b =
√

2

a =
√

2

√

2

, b =
√

2

(
√

2
√

2

)
√

2 = 2

√

2
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Non-constructive Proofs

• The previous proof is non-constructive.

• It shows that      and      must exist but it 
does not produce an explicit solution.

• This proof gives no information as  to the 
irrationality of 

• In fact,           is irrational, but this is very 
hard to prove!

• A ``better’’ solution: 

√

2

√

2

a b

√

2

√

2

a =
√

2, b = log2 9
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Existence proofs are often 
non-constructive

• Fixed-points Theorems often only assert 
the existence of a fixed point but provide 
no method for computing them.

• For example, Brouwer’s Fixed Point 
Theorem.

• That’s too bad, this theorem is used in the 
proof of the Nash Equilibrium Theorem!
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Intuitionism (Brouwer, Heyting)

• L E J Brouwer
(1881-1966)

• Founder of intuitionism 
(1907)

• Also important work in 
topology
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A. Heyting

• Arend Heyting 
(1898-1980)
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A. Heyting

• Arend Heyting 
(1898-1980)

• Heyting algebras 
(semantics for 
intuitionistic logic)
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Intuitionistic Logic

• In intuitionistic logic, it is forbidden to use 
the proof by contradiction rule (RAA)

• As a consequence,         no longer implies 
and               is no longer provable (in 
general)

• The connectives, and, or, implication and 
negation are independent

• No de Morgan laws

¬¬P P

¬P ∨ P
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Intuitionistic Logic

• Fewer propositions are provable (than in 
classical logic) but proofs are more 
constructive.

• If a disjunction,           ,  is provable, then a 
proof of     or a proof of       can be found.

• Similarly, if         is provable, then there is a 
term,    , such that             is provable.

• However, the complexity of proof search is 
higher.

P ∨ Q

P Q

∃tP

τ P [τ/t]
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Intuitionistic Logic and Typed 
lambda-Calculi

• Proofs in intuitionistic logic can be 
represented as certain kinds of lambda-
terms.

• We now have conjunctive, disjunctive, 
universal and existential types.

• Falsity can be viewed as an ``error type’’

• Strong Normalization still holds, but some 
subtleties with disjunctive and existential 
types (permutative reductions)
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Higher-order Intuitionistic Logic

• We allow quantification over functions.

•  The corresponding lambda-calculus is a 
polymorphic lambda calculus (first invented 
by J. Y. Girard, systems F and F-omega, 1971)

• System F was independently discovered by 
J. Reynolds (1974) for very different 
reasons.

• Later, even richer typed calculi, the theory 
of construction (Coquand, Huet)

50
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Proof Search

• Some rules (or-elim, exists-elim) violate the 
subformula property

• This makes searching for proofs very 
expansive

• Natural deduction systems are not well 
suited for (automated) proof search

• Gentzen sequent calculi are much better 
suited for proof search.
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Pelikans Proof  Searching

52



Proof Search (Sequent Calculi)

• A Gentzen sequent is a pair of sets of 
formulae,             ,  where

• The intuitive idea is that if all the 
propositions in      hold, then some 
proposition in      should hold.

• The rules of a Gentzen system break the 
formulae     and      into subformulae that 
may end up on the other side of the arrow

Γ → ∆

Γ = {P1, . . . , Pm} ∆ = {Q1, . . . , Qn}

Γ

Pi Qj

∆
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Proof Search (Sequent Calculi)

• In intuitionistic logic,       has at most one 
formula

• In classical propositional logic, every search 
strategy terminates.

• In intuitionistic propositional logic, there is 
a search strategy that always terminates.

• In first-order logic (classical, intuitionistic), 
there is no general search procedure that 
always terminates (Church’s Theorem).

∆
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Triumph Proof Searching
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Soundness and Completeness

• Soundness: Every provable formula is valid 
(has the value true for all interpretations).

• A proof system must be sound or else it is 
garbage!

• Completeness: Every valid formula is 
provable.

• Completeness is desirable but not always 
possible. 
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• The systems I presented are all sound and 
complete.

• Godel (completeness theorem for classical 
logic)

• Kripke (completeness theorem for 
intuitionistic logic) 

• Classical Propositional validity: decidable.

• Intuitionistic Propositional validity: decidable

58



Completeness: Bad News!

59



Completeness: Bad News!

• Complexity of classical prop. validity: co-NP 
complete (Cook, Karp, 1970)

59



Completeness: Bad News!

• Complexity of classical prop. validity: co-NP 
complete (Cook, Karp, 1970)

• Complexity of intuitionistic prop. validity:   
P-space complete! (Statman, 1979)

59



Completeness: Bad News!

• Complexity of classical prop. validity: co-NP 
complete (Cook, Karp, 1970)

• Complexity of intuitionistic prop. validity:   
P-space complete! (Statman, 1979)

• The decision problem (validity problem) for 
first-order (classical) logic is undecidable 
(Church, 1936)

59



Completeness: Bad News!

• Complexity of classical prop. validity: co-NP 
complete (Cook, Karp, 1970)

• Complexity of intuitionistic prop. validity:   
P-space complete! (Statman, 1979)

• The decision problem (validity problem) for 
first-order (classical) logic is undecidable 
(Church, 1936)

• Decision problem for intuitionistic logic also 
undecidable (double negation translation)
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Kurt Godel (1906-1978)
(Right: with A. Einstein)
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Alonzo Church 
(1903-1995)
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Proof Search in Classical Logic

• Herbrand’s idea: Reduce the provability of a 
first-order formula to the provability of a 
quantifier-free conjunction of substitution 
instances of this formula.

• Normal forms become crucial: conjunctive 
normal form (cnf),  negation normal form 
(nnf)

• Nice formulation of Herbrand’s Theorem for 
formulae in nnf due to Peter Andrews
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Substitutions, Unification

• Roughly speaking, compound instances are 
obtained by recursively substituting terms 
for variables in subformulae.

• It turns out that the crux of the method is 
to find  substitutions so that

• where               are atomic formulae 
occurring with opposite signs

σ(Pi) = σ(Pj)

Pi, Pj
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Unification Procedures

• Such substitutions are called unifiers

• For efficiency reasons, it is important to 
find most general unifiers (mgu’s)

• mgu’s always exist. There are efficient 
algorithms for finding them (Martelli-
Montanari, Paterson and Wegman)

• Higher-order unification is also of great 
interest, but undecidable in general!
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Some Theorem Provers and Proof 
Assistants

• Isabelle

• COQ (Benjamin Pierce is writing two 
books that make use of COQ)

• TPS

• NUPRL

• PVS

• Agda

• Twelf
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Other Logics?

• One will note that in a deduction (natural 
or Gentzen sequent style), the same 
premise can be used as many times as 
needed.

• Girard (and Lambeck earlier) had the idea 
to restrict the use of premises (charge for 
multiple use).

• This leads to logics where the connectives 
have a double identity: additive or 
multiplicative.
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Finer Logics: Linear Logic, ...

• linear logic, invented by Girard, achieves 
much finer control over the use of 
premises.

• The notion of proof becomes more general: 
proof nets (certain types of graphs)

• linear logic can be viewed as an  attempt to 
deal with resources and parallelism

• Negation is an involution
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Special Purpose Logics: Temporal, ...

• From a practical point of view, it is very 
fruitful to design logics with intented 
semantics, such as time, concurrency, ...

• Temporal logic deals with time (A. Pnueli)

• Process logic (Manna, Pnueli) 

• Dynamic logic (Harel, Pratt)

• The world of logic is alive and well!
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Searching for that proof!
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