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Quick History

® Formalizing the rules of logic goes back to
the Greek.

® Axioms and Syllogisms (Aristotle, 384
BC-322 BC)
- All humans are mortal
- Socrates is 2 human
- Socrates is mortal.

® Modus Ponens: If (P implies Q) holds
and P holds, then Q holds.
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Types of Proofs

Proof by intimidation
Proof by seduction
Proof by interruption
Proof by misconception
Proof by obfuscation
Proof by confusion

Proof by exhaustion
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More Types of Proofs

Proof by passion

Proof by example

Proof by vigorous handwaving
Proof by cumbersome notation
Proof by omission

Proof by funding

Proof by personal communication

Proof by metaproof, etc.




Proof by
intimidation!
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Quick History

Cantor (1845-1918) and the
birth of set theory

Paradoxes and the “crisis of
foundations”’.

Sets that are too big or
defined by self-reference

Russell’s paradox (1902)

There is no set of all sets

10
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Truth and Proofs

|deally, we would like to know what is truth

From the point of view of logic, truth has to
do with semantics, i.e., the meaning of
statements

Peter Andrew’s motto: Truth is elusive”
" To truth through proof”

Provable implies true. Easier to study proofs

11



Hilbert

David Hilbert (1862-1943)
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Hilbert Systems

Hilbert systems have many axioms and few
inference rules

The axioms are very unnatural!

That’s because they are chosen to yield the
deduction theorem

Unfriendly system for humans.

Proofs in Hilbert systems are very far from
proofs that a human would write
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Gentzen’s Systems

Gerhard Gentzen (1909-1945)

Introduced natural deduction
systems and sequent calculi

Trivial axioms, natural rules”

The rules formalize informal
rules of reasoning

Symmetry of the rules

Introduction/Elimination

14
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Proofs and Deductions

A proof of a proposition, P, does not
depend on any assumptions (premises).

When we construct a proof, we usually
introduce extra premises which are later
closed (dismissed, discharged).

Such an " unfinished” proof is a deduction.

We need a mechanism to keep track of
closed (discharged) premises (the others
are open).




Natural Deduction Rules

A proof is a tree labeled with propositions

To prove an implication,P = @, from a list
of premises, I' = (P,..., P,), do this:

Add P to the list T and prove @ from T
and P.

When this deduction is finished, we obtain
a proof of P = (Q which does not depend
on P, so the premise P needs to be
discharged (closed).




Natural Deduction Rules

The axioms and inference rules for implicational logic are:

Axioms:

The =-elimination rule:

| B

P =Q
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Natural Deduction Rules

The = -introduction rule:

I', P*
(
P =Q

In the introduction rule, the tag x indicates which
rule caused the premise, P, to be discharged.
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Natural Deduction Rules

The = -introduction rule:

I', P*
(
P =Q

In the introduction rule, the tag x indicates which
rule caused the premise, P, to be discharged.

Every tag is associated with a unique rule but
several premises can be labeled with the same
tag and all discharged in a single step.
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Examples of Proofs

Pw
P
P=P

T

So, P = P is provable; this is the least we should expect from our proof
system!

(b)

(P = Q)? P*

P=R
(Q=R)= (P=R)

()

z

(P=Q)= (Q=R)=(P=R))

19



Examples of proofs

(c) In the next example, the two occurrences of A labeled x are discharged
simultaneously.

(A= (B=(C))~? A” (A= B)Y A®
B=CC B
C

A= C
(A= B)= (A= C)

(A= (B=0C))= (A= B)=(A=0))

20



More Examples of Proofs

(d) In contrast to Example (c), in the proof tree below the two occurrences
of A are discharged separately. To this effect, they are labeled differently.

(A= (B= C))? A” (A= B)Y Al
B=C B
C

A=C
(A= B)= (A= C)

(A= (B=0))= (A= B)= (A= ()

A:>((A:>(B:>C)):>((A:>B):>(A:>C))>

21



Wow, | landed it! (the proof)




Natural Deduction in Sequent-Style

® A different way of keeping track of open
premises (undischarged) in a deduction

® The nodes of our trees are now sequents of
the form I' — P, with

I'=x1: P1,...,2: P,

® The variables are pairwise distinct but the
premises may be repeated

® We can view the premise P; as the type of
the variable x;!




Natural Deduction in Sequent-Style

The axioms and rules for implication in Gentzen-sequent style:

I''e: P— P

I''z: P — ()
' - P=(Q

(=-intro)

' —-P=¢ I' - P
I' = Q)

(=-elim)
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Redundant Proofs
Proof Normalization

(R=R) = Q)” (R= R)Y
« ot R~
(R=R)=Q)=Q y R
(R=R)=((R=R)=0Q) = Q) R=R

(R=R)=Q)=Q




Redundant Proofs
Proof Normalization

® When an elimination step immediately
follows an introduction step, a proof can be
normalized (simplified)

(R=R) = Q)” (R= R)Y

« x R
(R=R)=Q)=Q y R
(R=R)=((R=R)=0Q) = Q) R=R

(R=R)=Q)=Q




Proof Normalization

® A simpler (normalized) proof:

Ll
R
(R=R)= Q)" R=R
Q
(R=R)=Q)=Q

z

£
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Pointing at a bad
proof!
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Normalization and Strong
Normalization of Proofs

® |n the sixties, Dag Prawitz gave reduction
rules.

® He proved that every proof can be reduced
to a normal form (normalization).

® |n |971, he proved that every reduction
sequence terminates (strong normalization)
and that every proof has a unique normal

form.
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Propositions as types and proofs as
simply-typed lambda terms

I''e: P—ax: P

I'N'e: P— M: Q
' > Xe: P-M: P=(Q
' M:P=¢ I' >N:P
I'— MN:Q

(=-intro)

(=-elim)
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The Curry-Howard Isomorphism

® Howard (1969) observed that proofs can be
represented as terms of the simply-typed
lambda-calculus (Church).

® Propositions can be viewed as types.

® Proof normalization corresponds to
lambda-conversion.

(Az: 0 - M)N —3 M[N/z]

® Strong normalization (SN) in the typed
lambda-calculus implies SN of proofs.




Adding the connectives and, or, not

® TJo deal with negation, we introduce falsity
(absurdum), the proposition always false:

L

® We view — P, the negation of P, as an
abbreviation for P =1




Rules for and

The A-wntroduction rule:

I' A
PoQ
PANQ
The A-elimination rule:
I' I
PANQ PAQ
P Q

33



Rules for or

The V-introduction rule:

I'
P
PV Q
The V-elimination rule:
T A, P?
PV Q R

< | Q| H

A, QY

R

34



Rules for negation

The —-introduction rule:

The —-elimination rule:

35



The Quantifier Rules

V-introduction:
I
Plu/t]
Vi P

Here, u must be a variable that does not occur free in any of the propositions
in I" or in V¢ P; the notation P|u/t] stands for the result of substituting u for all
free occurrences of ¢ in P.

Y-elimination:

I

VtP
P[r/t

Here 7 is an arbitrary term and it is assumed that bound variables in P have
been renamed so that none of the variables in 7 are captured after substitution.

36



The Quantifier Rules

d-introduction:

T
P[r/t
3tP

As in V-elimination, 7 is an arbitrary term and the same proviso on bound
variables in P applies.

d-elimaination:

T A, Plu/t]*

JtP C
C

Here, u must be a variable that does not occur free in any of the propositions
in A, 3tP, or C', and all premises P|u/t| labeled x are discharged.

37



I”

The Controversial ”’ Rules

The 1 -elimination rule:

I'
L
P

The proof-by-contradiction rule (also known as
reductio ad absurdum rule, for short RAA):

I, —P?
1

S X

P

38
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Problems With Negation

The 1-elimination rule is not so bad.

It says that once we have reached an
absurdity, then everything goes!

RAA is worse! | allows us to prove double
negation elimination and the law of the
excluded middle:

=P = P -PV P

Constructively, these are problematic!
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Lack of Constructivity

® The provability of -——P = Pand -P Vv P is
equivalent to RAA.

® RAA allows proving disjunctions (and
existential statements) that may not be
constructive; this means thatif AV B s
provable, in general, it may not be possible
to give a proof of A or a proof of B

® This lack of constructivity of classical logic
led Brouwer to invent intuitionistic logic

40
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That’s too abstract, give me
something concrete!
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A non-constructive proof

Claim: There exist two reals numbers, a, b,
both irrational, such that ab is rational.

Proof:We know thatv2 is irrational. Either
(1) \/5\/5 is rational: a = b = \@, or
(2) ﬂﬁ is irrational; a = \/5\/5, b= 2
In (2), we use (ﬂﬁ)ﬁ =2

Using the law of the excluded mlddle our
claim is proved! But, what is vaY?

42



Non-constructive Proofs

The previous proof is non-constructive.

It shows that a and b must exist but it
does not produce an explicit solution.

This proof gives no mformatlon as to the
|rrat|onallty of \/_

In fact, v2"~ is irrational, but this is very
hard to prove!

A ““better” solution: a = V2, b = log, 9

43



Existence proofs are often
non-constructive

® Fixed-points Theorems often only assert
the existence of a fixed point but provide
no method for computing them.

® For example, Brouwer’s Fixed Point
Theorem.

® [hat’s too bad, this theorem is used in the
proof of the Nash Equilibrium Theorem!
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(1881-1966)
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Intuitionism (Brouwer, Heyting)

e L E]JBrouwer
(1881-1966)

® Founder of intuitionism

(1907)

® Also important work in
topology
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Heyting

A

46



® Arend Heyting
(1898-1980)
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® Arend Heyting
(1898-1980)

® Heyting algebras
(semantics for
intuitionistic logic)

46



Intuitionistic Logic

® |n intuitionistic logic, it is forbidden to use
the proof by contradiction rule (RAA)

® As a consequence, ——P no longer implies P
and —P V P is no longer provable (in
general)

® The connectives, and, or, implication and
negation are independent

® No de Morgan laws

47



Intuitionistic Logic

Fewer propositions are provable (than in
classical logic) but proofs are more
constructive.

If a disjunction, PV (), is provable, then a
proof of P or a proof of () can be found.

Similarly, if ¢t P is provable, then there is a
term, 7, such that P|7/t| is provable.

However, the complexity of proof search is
higher.
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Intuitionistic Logic and Typed
lambda-Calculi
Proofs in intuitionistic logic can be

represented as certain kinds of lambda-
terms.

We now have conjunctive, disjunctive,
universal and existential types.

Falsity can be viewed as an " “error type”

Strong Normalization still holds, but some
subtleties with disjunctive and existential
types (permutative reductions)
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RHigher-order Intuitionistic Logic

® We allow quantification over functions.
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RHigher-order Intuitionistic Logic

® We allow quantification over functions.

® The corresponding lambda-calculus is a
polymorphic lambda calculus (first invented
by ].Y. Girard, systems F and F-omega, 1971)

® System F was independently discovered by
J. Reynolds (1974) for very different
reasons.

® | ater, even richer typed calculi, the theory
of construction (Coquand, Huet)
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Proof Search

Some rules (or-elim, exists-elim) violate the
subformula property

This makes searching for proofs very
expansive

Natural deduction systems are not well
suited for (automated) proof search

Gentzen sequent calculi are much better
suited for proof search.
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Pelikans Proof Searching

52



Proof Search (Sequent Calculi)

® A Gentzen sequent is a pair of sets of
formulae, I' — A, where

F:{Pl,...,Pm} A:{QlaaQn}

® The intuitive idea is that if all the
propositions in |’ hold, then some
proposition in A should hold.

® The rules of a Gentzen system break the
formulae P; and (@;into subformulae that
may end up on the other side of the arrow




Proof Search (Sequent Calculi)

® |n intuitionistic logic, /A has at most one
formula

® |n classical propositional logic, every search
strategy terminates.

® |n intuitionistic propositional logic, there is
a search strategy that always terminates.

® |n first-order logic (classical, intuitionistic),
there is no general search procedure that
always terminates (Church’s Theorem).

54
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What about Semantics?

For classical propositional logic: truth
values semantics ({true, false}).

For intuitionistic propositional logic:
Heyting algebras, Kripke models.

For classical first-order logic: first-order
structures (Tarskian semantics).

For intuitionistic first-order logic: Kripke
models.
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Soundness and Completeness

Soundness: Every provable formula is valid
(has the value true for all interpretations).

A proof system must be sound or else it is
garbage!

Completeness: Every valid formula is
provable.

Completeness is desirable but not always
possible.
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Completeness: Good News

The systems | presented are all sound and
complete.

Godel (completeness theorem for classical
logic)

Kripke (completeness theorem for
intuitionistic logic)

Classical Propositional validity: decidable.

Intuitionistic Propositional validity: decidable
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Completeness: Bad News!

® Complexity of classical prop. validity: co-NP
complete (Cook, Karp, 1970)

® Complexity of intuitionistic prop. validity:
P-space complete! (Statman, |979)

® The decision problem (validity problem) for
first-order (classical) logic is undecidable

(Church, 1936)

® Decision problem for intuitionistic logic also
undecidable (double negation translation)




Kurt Godel (1906-1978)
(Right: with A. Einstein)
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Alonzo Church
(1903-1995)
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® Herbrand’s idea: Reduce the provability of a
first-order formula to the provability of a
quantifier-free conjunction of substitution
instances of this formula.
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Proof Search in Classical Logic

® Herbrand’s idea: Reduce the provability of a
first-order formula to the provability of a

quantifier-free conjunction of substitution
instances of this formula.

® Normal forms become crucial: conjunctive
normal form (cnf), negation normal form

(nnf)

® Nice formulation of Herbrand’s Theorem for
formulae in nnf due to Peter Andrews
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Substitutions, Unification

® Roughly speaking, compound instances are
obtained by recursively substituting terms
for variables in subformulae.

® |t turns out that the crux of the method is
to find substitutions so that

o(P;) = o(Fj)

® where P;, P, are atomic formulae
occurring with opposite signs
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Unification Procedures

Such substitutions are called unifiers

For efficiency reasons, it is important to
find most general unifiers (mgu’s)

mgu’s always exist. There are efficient
algorithms for finding them (Martelli-
Montanari, Paterson and VWWegman)

Higher-order unification is also of great
interest, but undecidable in general!
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Some Theorem Provers and Proof
Assistants

® |sabelle

o COQ (Benjamin Pierce is writing two
books that make use of COQ)

® TPS

e NUPRL
® PVS

® Agda

® [welf
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premise can be used as many times as
needed.
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® One will note that in a deduction (natural
or Gentzen sequent style), the same
premise can be used as many times as
needed.

® Girard (and Lambeck earlier) had the idea
to restrict the use of premises (charge for
multiple use).

® This leads to logics where the connectives
have a double identity: additive or
multiplicative.
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Finer Logics: Linear Logic, ...

linear logic, invented by Girard, achieves
much finer control over the use of
premises.

The notion of proof becomes more general:

proof nets (certain types of graphs)

linear logic can be viewed as an attempt to
deal with resources and parallelism

Negation is an involution
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Special Purpose Logics: Temporal, ...

® From a practical point of view, it is very
fruitful to design logics with intented
semantics, such as time, concurrency, ...

® [emporal logic deals with time (A. Pnueli)
® Process logic (Manna, Pnueli)
® Dynamic logic (Harel, Pratt)

® The world of logic is alive and well!
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Searching for that proof!




