GRAPH-BASED POSTERIOR REGULARIZATION FOR SEMI-SUPERVISED STRUCTURED PREDICTION

Luheng He Jennifer Gillenwater Ben Taskar
University of Pennsylvania University of Washington
GRAPH-BASED LEARNING
GRAPH-BASED LEARNING
GRAPH-BASED LEARNING
GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.
Labels: verb (V), noun (N), etc.

they run over

blood run cold

we run out

luck run out

a run for

ninth run for

a run along
GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.

they run over

blood run cold

we run out

luck run out

a run for

ninth run for

a run along
GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.

they run over

blood run cold

we run out

luck run out

ninth run for

a run for

a run along
GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.

they run over

blood run cold

we run out

luck run out

ninth run for

a run for

a run along

\[
|| \text{N} \ - \
\text{V} ||^2 \leq \frac{2}{2}
\]
GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.

they run over

blood run cold

we run out

luck run out

ninth run for

a run for

a run along

0.3 || N V - V N || 2/2
GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.

They run over

Blood run cold
We run out

Luck run out

A run for

Ninth run for

A run along

\[w_{ab} \| q_a - q_b \|_2^2 \]
GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.

Lap(q) = \sum_{ab} w_{ab} \|q_a - q_b\|_2^2
Labels: verb (V), noun (N), etc.

\[
\text{Lap}(q) = \sum_{a=1}^{N} \sum_{b=L+1}^{N} w_{ab} \| q_a - q_b \|_2^2
\]
STRUCTURED PREDICTION

ninth run for
ninth run for
The soldiers of the ninth run for cover

\[f(y_t) \]
The soldiers of the ninth run for cover

\[f(y_t, y_{t-1}) \]
x = The soldiers of the ninth run for cover

\[f(y_t, y_{t-1}, x) \]
\[x = \text{The soldiers of the ninth run for cover} \]

\[f(y_t, y_{t-1}, x) \]

\[p\text{-factor} \]
Structured Prediction

\[x = \text{The soldiers of the ninth run for cover} \]

\[p_\theta(y \mid x) = \frac{1}{Z_\theta(x)} \exp \left[\sum_{t=1}^{T} \theta^\top f(y_t, y_{t-1}, x) \right] \]

\[p \text{-factor} \]
STRUCTURED PREDICTION

\[x = \text{The soldiers of the ninth run for cover} \]

CRF

\[
p_\theta(y \mid x) = \frac{1}{Z_\theta(x)} \exp \left[\sum_{t=1}^{T} \theta^\top f(y_t, y_{t-1}, x) \right]
\]

\[
\text{NLLik}(p_\theta) = - \sum_{i=1}^{\ell} \log p_\theta(y^i \mid x^i)
\]
The soldiers of the cover

\[
x = \begin{array}{c}
\text{The soldiers of the} \\
\text{cover}
\end{array}
\]

\[
\text{CRF} \quad y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_5 \quad y_7 \quad y_8
\]

\[
p_\theta(y_t \mid x)
\]
WHY COMBINE?

Each type of learning incorporates different information
WHY COMBINE?

Each type of learning incorporates different information

- **graph-propagation**
- **CRF estimation**

- ninth run for
- y_5
- y_7
WHY COMBINE?

Each type of learning incorporates different information

- Graph-propagation
- CRF estimation

<table>
<thead>
<tr>
<th>Data</th>
<th>unlabeled</th>
<th>labeled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WHY COMBINE?

Each type of learning incorporates different information

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>unlabeled</td>
<td></td>
<td>trigram</td>
</tr>
<tr>
<td>labeled</td>
<td></td>
<td>sentence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>graph-propagation</th>
<th>CRF estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ninth run for</td>
<td></td>
<td>ninth run for</td>
</tr>
<tr>
<td></td>
<td>y_5</td>
<td>y_7</td>
</tr>
</tbody>
</table>
PRIOR WORK
Lap\((q)\) graph-propagation

ninth run for
PRIOR WORK

\[\text{Lap}(q) \text{ graph-propagation} \quad + \quad \text{CRF estimation} \quad \text{NLik}(p_\theta) \]
PRIOR WORK

Subramanya et al. (EMNLP 2010)

\[\text{Lap}(q) \text{ graph-propagation} + \text{CRF estimation} \quad \text{NLik}(p_\theta) \]
PRIOR WORK

Subramanya et al. (EMNLP 2010)

\[\text{Lap}(q) \text{ graph-propagation} \quad + \quad \text{CRF estimation} \quad \text{NLik}(\theta) \]

ninth run for

ninth run for
PRIOR WORK

Subramanya et al. (EMNLP 2010)

\[\text{Lap}(q) \text{ graph-propagation } + \text{CRF estimation } \text{NLik}(p_{\theta}) \]

This work: retains efficiency while optimizing an extendible, joint objective.
JOINT OBJECTIVE
JOINT OBJECTIVE

ninth run for

\text{Lap}(q)
JOINT OBJECTIVE

\[\text{Lap}(q) + \text{NLik}(p_{\theta}) \]
Joint Objective

\[J(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) \]
$\mathcal{J}(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) + \text{KL}(q \parallel p_\theta)$
\[J(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) + \text{KL}(q \parallel p_\theta) \]

The soldiers of the ninth run for cover
\[J(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) + \text{KL}(q \parallel p_\theta) \]

The soldiers of the ninth run for cover

\[(\# \text{ tags})^8 \]

\[\begin{array}{cccccccc}
\end{array} \]

\ldots
The soldiers of the ninth run for cover.

\[J(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) + \text{KL}(q \parallel p_\theta) \]
The soldiers of the ninth run for cover.

\[J(q, \theta) = \text{Lap}(q) + \text{NLik}(\theta) + \text{KL}(q \parallel \theta) \]
OPTIMIZATION

\[
\min_{q, \theta} J(q, p_\theta)
\]
OPTIMIZATION

$$\min_{q, \theta} \mathcal{J}(q, p_\theta)$$

unconstrained
OPTIMIZATION

\[
\min_{q, \theta} \mathcal{J}(q, p_\theta)
\]

\[\Delta\]

unconstrained
OPTIMIZATION

\[\min_{q, \theta} J(q, p_{\theta}) \]

update:

\[p \] update:

\[\theta' = \theta - \eta \frac{\partial J(q, p_{\theta})}{\partial \theta} \]
OPTIMIZATION

\[
\min_{q, \theta} J(q, p_{\theta})
\]

\[\Delta \quad \text{unconstrained}\]

\[p \text{ update:}\]

\[\theta' = \theta - \eta \frac{\partial J(q, p_{\theta})}{\partial \theta}\]

Next 3 slides: Why several common techniques don’t work for updating \(q\)
OPTIMIZATION

\[
\min_{q, \theta} J(q, p_\theta)
\]
OPTIMIZATION

$$\min_{q, \theta} \mathcal{J}(q, p_{\theta})$$

q update:

$$q_y' = q_y - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q^i_y}$$
OPTIMIZATION

\[
\min_{q, \theta} \mathcal{J}(q, p_\theta)
\]

\textbf{q} \textbf{ update:}

\[
q_y' = \text{proj}_\Delta \left(q_y - \eta \frac{\partial \mathcal{J}(q, p_\theta)}{\partial q_y} \right)
\]
OPTIMIZATION

\[\min_{q, \theta} \mathcal{J}(q, p_{\theta}) \]

\(q \) update:

\[q^i_y' = \text{proj}_\Delta \left(q^i_y - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q^i_y} \right) \]

\(q^i \in \Delta \) of dimension (\# tags)\(^{(i's \ length)}\)
OPTIMIZATION

$$\min_{q, \theta} \mathcal{J}(q, p_\theta)$$

q update:

$$q^i_y' = \text{proj}_\Delta\left(q^i_y - \eta \frac{\partial \mathcal{J}(q, p_\theta)}{\partial q^i_y} \right)$$

$q^i \in \Delta$ of dimension ($\#\ tags$)(i’s length)

-Problem 1: projection is hard $q^i \not\in \Delta$
OPTIMIZATION

\[
\min_{q, \theta} \mathcal{J}(q, p_\theta)
\]

q update:

\[
q^{'i}_y = \text{proj}_\Delta \left(q^i_y - \eta \frac{\partial \mathcal{J}(q, p_\theta)}{\partial q^i_y} \right)
\]

\(q^i \in \Delta \) of dimension (\# tags)(i’s length)

- Problem 1: projection is hard
 \(q^i \not\in \Delta\)

- Problem 2: no compact form
 (\# tags)(i’s length) values
OPTIMIZATION

\[
\min_{q, \theta} J(q, p_{\theta})
\]

\[q\]\text { update:}

\[q^i_y' = \text{proj} \left(q^i_y - \eta \frac{\partial J(q, p_{\theta})}{\partial q^i_y} \right)\]

\[q^i \in \Delta \text{ of dimension } (\# \text{ tags})^{(i\text{'s length})}\]

-Problem 1: projection is hard
-Problem 2: no compact form
DUAL OPTIMIZATION

\[J(q, p_\theta) \]
DUAL OPTIMIZATION

\[\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{y} q_{y}^{i} - 1 \right) \]
DUAL OPTIMIZATION

\[\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{y} q_{y}^{i} - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)
DUAL OPTIMIZATION

\[J(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: \textbf{Lap}(q)
DUAL OPTIMIZATION

\[\mathcal{J}(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: \textbf{Lap}(q) \quad \rightarrow \quad \text{Standard PR: simpler}
DUAL OPTIMIZATION

\[\mathcal{J}(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: \text{Lap}(q) \quad \rightarrow \quad \text{Standard PR: simpler}

\[p \text{-factors} \]

\[y_t, y_{t-1}, x \]
DUAL OPTIMIZATION

\[J(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: Lap(q) → Standard PR: Linear(m)
DUAL OPTIMIZATION

\[J(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: Lap(q) → Standard PR: Linear(m)
DUAL OPTIMIZATION

\[J(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: \textbf{Lap}(q) \quad \rightarrow \quad \text{Standard PR: Linear}(m)
DUAL OPTIMIZATION

\[\mathcal{J}(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: \(\text{Lap}(q) \) → Standard PR: \(\text{Linear}(m) \)
DUAL OPTIMIZATION

\[J(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: Lap(q) → Standard PR: Linear(m)

Lap(m), a quadratic function
DUAL OPTIMIZATION

\[\mathcal{J}(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: \(\text{Lap}(q) \) \quad \text{Standard PR:} \quad \text{Linear}(m) \)

\(\text{Lap}(m) \), a quadratic function
Dual of quadratic requires:

\[
\begin{pmatrix}
1 & 2 & \cdots & N \\
1 & 2 & \cdots & N \\
\vdots & \vdots & \ddots & \vdots \\
1 & 2 & \cdots & N \\
\end{pmatrix}^{-1}
\]
Posterior Regularization (PR) uses dual
Ganchev et al. (JMLR 2010)

This work: \(\text{Lap}(q) \rightarrow \) Standard PR: \(\text{Linear}(m) \)

\[J(q, p_\theta) + \gamma \left(\sum_y q_y^i - 1 \right) \]

Lap\((m)\), a quadratic function
Dual of quadratic requires:
\[
\begin{pmatrix}
1 & 2 & \cdots & N \\
1 & 2 & \cdots & N \\
\vdots & & \ddots & \\
1 & 2 & \cdots & N
\end{pmatrix}^{-1}
\]
EXPONENTIATED GRADIENT
EXPONENTIATED GRADIENT

\[q_i' \propto q_i \exp \left[-\eta \frac{\partial \mathcal{J}(q,p_\theta)}{\partial q_i} \right] \]
EXPONENTIATED GRADIENT

\[q_y' \propto q_y \exp \left[-\eta \frac{\partial \mathcal{J}(q,p\theta)}{\partial q_y} \right] \]

Collins et al. (JMLR 2008): Exponentiated gradient for CRFs
EXPONENTIATED GRADIENT

\[q^i_y' \propto q^i_y \exp \left[-\eta \frac{\partial \mathcal{I}(q,p_\theta)}{\partial q^i_y} \right] \]

\[\exp \left[-\eta \frac{\partial \mathcal{I}(q,p_\theta)}{\partial q^i_y} \right] = \]
EXPONENTIATED GRADIENT

\[q^i_y' \propto q^i_y \exp \left[-\eta \frac{\partial J(q,p_\theta)}{\partial q^i_y} \right] \]

\[\exp \left[-\eta \frac{\partial J(q,p_\theta)}{\partial q^i_y} \right] = \]

\[\exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m^i_y)}{\partial m^i_{t,y_t,y_{t-1}}} \right] \]
EXPONENTIATED GRADIENT

\[q^i_y' \propto q^i_y \exp \left[-\eta \frac{\partial \mathcal{J}(q,p\theta)}{\partial q^i_y} \right] \]

\[
\exp \left[-\eta \frac{\partial \mathcal{J}(q,p\theta)}{\partial q^i_y} \right] = \exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m^i_y)}{\partial m^i_{t,y_t,y_{t-1}}} \right]
\]

product of p-factors
EXPONENTIATED GRADIENT

\[q_y^i' \propto q_y^i \exp \left[-\eta \frac{\partial \mathcal{J}(q,p)}{\partial q_y^i} \right] \]

\[
\exp \left[-\eta \frac{\partial \mathcal{J}(q,p)}{\partial q_y^i} \right] =
\exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m^i_y)}{\partial m^i_{t,y_t,y_{t-1}}} \right] p_{\theta}(y \mid x^i)^\eta(q_y^i)^{-\eta e}
\]

product of p-factors
EXPONENTIATED GRADIENT

\[q^i_y' \propto q^i_y \exp \left[-\eta \frac{\partial \mathcal{J}(q,p\theta)}{\partial q^i_y} \right] \]

\[\exp \left[-\eta \frac{\partial \mathcal{J}(q,p\theta)}{\partial q^i_y} \right] = \]

\[\exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m^i_y)}{\partial m^i_{y_t, y_{t-1}}} \right] p_\theta(y \mid x^i) \eta(q^i_y)^{-\eta \epsilon} \]

product of p-factors
EXPONENTIATED GRADIENT

\(q_y^i' \propto q_y^i \exp \left[-\eta \frac{\partial J(q,p_\theta)}{\partial q_y^i} \right] \)

\[
\exp \left[-\eta \frac{\partial J(q,p_\theta)}{\partial q_y^i} \right] = \\
\exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m_y^i)}{\partial m_{t,y_t,y_{t-1}}^i} \right] \frac{p_\theta(y | x^i)^{\eta(q_y^i)}}{-\eta e} \]

product of p-factors
EXPONENTIATED GRADIENT

\[q^i_y' \propto q^i_y \exp \left[-\eta \frac{\partial \mathcal{I}(q,p_{\theta})}{\partial q^i_y} \right] \]

\[
\exp \left[-\eta \frac{\partial \mathcal{I}(q,p_{\theta})}{\partial q^i_y} \right] = \exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m^i_{y})}{\partial m^i_{t,y_t,y_{t-1}}} \right] p_{\theta}(y \mid x^i) \eta(q^i_y)^{-\eta e} \]

product of p-factors

\[\text{proj}_{\Delta} \]
EXPONENTIATED GRADIENT

\[q_y^i' \propto q_y^i \exp \left[-\eta \frac{\partial \mathcal{I}(q,p_{\theta})}{\partial q_y^i} \right] \]

\[\exp \left[-\eta \frac{\partial \mathcal{I}(q,p_{\theta})}{\partial q_y^i} \right] = \exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m_y^i)}{\partial m_{y_t, y_{t-1}}^i} \right] p_{\theta}(y | x^i) \eta(q_y^i)^{-\eta e} \]

product of p-factors

\[\text{proj}_\Delta \rightarrow Z_q(x^i) \]
EXPONENTIATED GRADIENT

\[q_y^i' \propto q_y^i \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_\theta)}{\partial q_y^i} \right] \]

\[
\exp \left[-\eta \frac{\partial \mathcal{J}(q, p_\theta)}{\partial q_y^i} \right] = \\
\exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m_y^i)}{\partial m_{t,y_t,y_{t-1}}^i} \right] p_\theta(y | x^i) \eta(q_y^i)^{-\eta e}
\]

product of p-factors

proj_{\Delta} \rightarrow Z_q(x^i), \text{ computable via forward-backward}
\[I(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) + \text{KL}(q \| p_\theta) \]
SUMMARY

\[\mathcal{I}(q, p_{\theta}) = \text{Lap}(q) + \text{NLik}(p_{\theta}) + \text{KL}(q \parallel p_{\theta}) \]

\[\theta' = \theta - \eta \frac{\partial \mathcal{I}(q, p_{\theta})}{\partial \theta} \]
\[\mathcal{J}(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) + \text{KL}(q \parallel p_\theta) \]

\[\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_\theta)}{\partial \theta} \]

\[q_y'^i = \frac{1}{Z_q(x^i)} q_y^i \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_\theta)}{\partial q_y^i} \right] \]

\[J(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) + \text{KL}(q \parallel p_\theta) \]

M-step: \[\theta' = \theta - \eta \frac{\partial J(q, p_\theta)}{\partial \theta} \]

E-step: \[q^i_{y} = \frac{1}{Z_q(x^i)} q^i_{y} \exp \left[-\eta \frac{\partial J(q, p_\theta)}{\partial q^i_{y}} \right] \]
SUMMARY

\[\mathcal{J}(q, p_{\theta}) = \text{Lap}(q) + \text{NLik}(p_{\theta}) + \text{KL}(q \parallel p_{\theta}) \]

M-step: \[\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta} \]

E-step: \[q_{y}^{i}' = \frac{1}{Z_{q}(x^{i})} q_{y}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{y}^{i}} \right] \]

Theorem:
Converges to a local optimum of \[\mathcal{J}(q, p_{\theta}) \]
\[J(q, p_\theta) = \text{Lap}(q) + \text{NLik}(p_\theta) + \text{KL}(q \parallel p_\theta) \]

M-step: \[\theta' = \theta - \eta \frac{\partial J(q, p_\theta)}{\partial \theta} \]

E-step: \[q_y' = \frac{1}{Z_q(x^i)} q_y^i \exp \left[-\eta \frac{\partial J(q, p_\theta)}{\partial q_y^i} \right] \]

Theorem:
Converges to a local optimum of \(J(q, p_\theta) \)
graph-propagation

ninth run for
ninth run for graph-propagation

POS Tagging Error

Language

EN DE ES PT DA SL SV EL IT NL Avg

GP
ninth run for

graph-propagation

POS Tagging Error

Language
EN DE ES PT DA SL SV EL IT NL Avg

GP 100 labeled sentences
ninth run for

GP → CRF

POS Tagging Error

Language

EN DE ES PT DA SL SV EL IT NL Avg

GP

GP → CRF
ninth run for

Language

POS Tagging Error

GP

GP → CRF

CRF
KL

POS Tagging Error

Language

EN DE ES PT DA SL SV EL IT NL Avg

GP GP → CRF CRF J

28% avg relative gain
QUESTIONS?
QUESTIONS?

Code: https://code.google.com/p/pr-graph/