Expectation-Maximization for Learning Determinantal Point Processes

Jennifer Gillenwater
jing@cis.upenn.edu

Alex Kulesza
kulesza@umich.edu

Emily Fox
ebfox@cs.washington.edu

Ben Taskar
taskar@cs.washington.edu

TASK: SUBSET SELECTION

Example: product recommendation

Two goals: relevance and diversity.

SIMILARITY KERNEL

$K = \begin{pmatrix} 0.5 & 0.0 & 0.0 \\ 0.38 & 0.4 & 0.0 \\ 0.0 & 0.0 & 0.3 \end{pmatrix}$

PARAMETRIC KERNEL

K assumed Gaussian, poly etc.

Affandi et al. (ICML 2014)

DETERMINANTAL POINT PROCESS

$Y \sim DPP(K) \implies P(Y \subseteq Y) = \det(K_Y)$

BASELINE: PROJECTED GRADIENT

Gradient: $\frac{\partial \log L(K)}{\partial K} \propto \sum_{i=1}^{T} (K - I_T)^{-1}$

GENERATIVE DPP SAMPLING

Eigendecompose $K = |\Lambda| V^T$

Sample hidden eigenvectors J

GENERATIVE DPP SAMPLING

$Y \sim DPP(K)$

EXPECTATION-MAXIMIZATION

Main idea: Exploit hidden variable J to develop EM-style optimization.

PRIOR WORK

Quality learning

Learn weight for each row of K (Kulesza and Taskar (ICML 2011))

IMPLEMENTATION

DPP max likelihood learning is (conjectured) NP-hard

NP-METHOD

LOG-LIKELIHOOD IS NON-CONCAVE

Training data: $\bullet \bullet \bullet$

LOG-LIKELIHOOD RESULTS

PRODUCT RECOMMENDATION DATASET

SUM-OF-EXPERTS MODEL

Weighted sum of fixed DPPs (Kulesza and Taskar (ICML 2011))

RELEVANCE SAMPLING

Marginalization:

$DPP(Y) \propto \prod_{i=1}^{N} \prod_{j \in Y} \log(p_{ij})$