Novel Task Definition

- **Motivation** – current search tools are insufficient
 - Prior knowledge of document contents is required to construct a query
 - Structure indicating relationships among returned documents is missing

- **Proposed Task** – select high-quality set of diverse threads in data graph
 - Node size indicates quality, edge length indicates node dissimilarity
 - Goal: select compact, high-quality paths that are well-separated

- **Example** – data elements are nodes
 - Related threading work
 - Selecting a single thread (D. Shahaf and C. Guastri, KDD 2010)
 - Constructing diverse topic threads (A. Ahmed and E. Xing, UAI 2010)

Approach: Structured Determinantal Point Processes

- Decompose thread quality and similarity
 - Score a set of threads \(Y \) via structured determinantal point process (SDPP)
 - SDPP: defines a distribution over sets \(Y \)
 - \(L_Y = \frac{\det(L_Y)}{\det(L + 1)} \)
 - \(P(Y) = \frac{\det(L_Y)}{\sum_{Y \subseteq \{1, \ldots, n\}} \det(L_Y)} \)
 - \(Y = \{i\} \rightarrow P(Y) \propto q(y_i)^2 \)
 - \(Y = \{i, j\} \rightarrow P(Y) \propto q(y_i)^2 q(y_j)^2 (1 - (\phi(y_i)^T \phi(y_j))^2) \)

- k-SDPPs: fix \(k \) # of points in \(Y \) to \(k \) (A. Kulesza and B. Taskar, ICML 2011)

- Sampling from k-SDPPs can be done in \(O(TmD^2 + D^3) \)

Random Projection for Tractability

- Complexity \(D^3 \) can be prohibitively large, so we project \(D \) down to \(d \)

- **Theorem** – Given \(\tilde{P}^k(Y) \) distribution after projecting \(D \) to \(d = O(\max(1/k, (\log(1/\epsilon) + \log N)/\epsilon^2)) \), error is bounded by:
 \[
 \| P^k - \tilde{P}^k \|_1 \leq e^{6\epsilon k} - 1 \approx 6\epsilon k
 \]
 with probability at least \(1 - \delta \)

Geographical Paths

- **Data** – Cora, a large collection of computer science papers
- **Graph** – edges are citations
- **Figure** – example threads from a 4-SDPP with thread length \(T = 5 \); beside each thread are a few of its maximum-tfidf words
- **Baselines** – k-means clustering on time slices, dynamic topic model (DTM) (D. Blei and J. Lafferty, ICML 2006)

How Det Balances Diversity and Quality

- \(\det(x_1, x_2) \)
 - \(\begin{align*}
 \det(x_1, x_2) &= 3 & 1 \\
 1 & 2 & 4 \\
 2 & 2 & 4 \\
 1 & 3 & 4 \\
 3 & 1 & 8 \\
 1 & 3 & 8
 \end{align*} \)

- \(\det(x_2, x_3) \)
 - \(\begin{align*}
 \det(x_2, x_3) &= 5 & 5 \\
 1 & 3 & 10 \\
 5 & 5 & 10 \\
 1 & 3 & 10 \\
 3 & 1 & 8 \\
 1 & 3 & 8
 \end{align*} \)

New York Times Timelines

- **Data** – six 6-month NYT article sets
- **Graph** – edges are tfid cosine scores
- **Baselines** – k-means clustering on time slices, dynamic topic model (DTM)

<table>
<thead>
<tr>
<th>Intra-sim</th>
<th>Inter-sim</th>
<th>Human-sim</th>
<th>Precision/Recall</th>
<th>Vocab Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-means</td>
<td>8.28</td>
<td>2.01</td>
<td>4.32</td>
<td>11.23</td>
</tr>
<tr>
<td>DTM</td>
<td>14.47</td>
<td>0.71</td>
<td>3.78</td>
<td>8.06</td>
</tr>
<tr>
<td>k-SDPP</td>
<td>21.21</td>
<td>7.99</td>
<td>8.26</td>
<td>14.42</td>
</tr>
<tr>
<td>2D</td>
<td>8.06 / 2.18</td>
<td>19.443</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Intrinsic evaluation. Intra-sim: Within-thread similarity (lower is better). Inter-sim: Between-thread similarity (lower is better). Human summary comparison. Human-sim: Cosine similarity. Precision: For each of the 10% highest-tfidf words in a filtered corpus, precision is \# words found in both divided by \# found in the threads.