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Introduction

o A very old problem(dating back to 70's)

o Problem definition
o Shape recovery from a single image
o Many other assumptions




Shading image formulation
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o I(p) intensity

o o albedo

o 1 light source direction
o n(p) surface normals




Different assumptions

o Classical assumptions o Recent concerns
e | ambertian © Perspective view

e Point light source at o 1/r? Effect

infinity, known e With shadows
e Orthogonal view

e Smooth surface
¢ No shadows

o Real image conditions(difficulties!)
o Multiple light sources, diffuse e Shadows
o |ight directions unknown © Occluding contours
o Albedo unknown




Previous methods
o Minimization
o A whole family of methods...
° Propagation
© Characteristic strip

e Fast marching
o Viscosity solutions for PDE

o Others
© Spectral graph
o Belief propagation...
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Fast marching algorithm

o Shading image formulation z |

I(p)=pl1 n(p)
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o [f 1=(0,0,1)"  this reduces to
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Fast marching algorithm

o How to solve this Partial Derivative Equation
(PDE)?

! : 1
||?:||=,\/:g+:§:¥fﬁ_1

° Propagate from a singular point

° This is equivalent to computing the shortest
path from the singular point, with weight /1
on every node. (g
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The shortest path
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2(r) — z(r + As) < As||Vz(r)||




Fast marching algorithm

o What if the light source is not vertial?
© Assume Iy =10
© Propagate in the new coordinate system

I=(0,0,1)7.5=(%7) = (—3F+17, y). 7= hz+132
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Local uncertainties

° Fast marching is good, but not solving everything
° VVenus' nose




Local uncertainties

o Different results...




Local uncertainties

o \What remains unknown after shortest path?
- How far you can travel?
- Are you going up or down?
- Convex or concave?

o Common problems for propagation methods,
not just for fast marching

o | et's see some simple cases...




Local uncertainties

o How far you can travel?
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o Left orright?




Local uncertainties
° Are you going up or down?
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o Left orright?




Local uncertainties

e Convex or concave?
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Local uncertainties

o \What remains unknown after shortest path?
- How far you can travel?
- Are you going up or down?
- Convex or concave”?

o Unsolvable locally!
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Exploiting global constraints

o Global integrability constraints
- Continuous surface, no sudden 'jumps'’
- Local estimation of height differences
- Integration along a loop must q
be O, or different paths should
have the same height
difference.

o Smoothness constraints
- Use propagation to generate local patches
- Boundaries between patches must be smooth
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Proposed approach
o Configuration graph G=(V, E, W)

- V Singular points n=|V|
- E Edges connecting neighboring vertices m = |E|
- W Height difference estimation by fast marching
W = diag(wy, ws, ...,y |
o Representing configurations
d +1/-1 defined on edges

d=(dy,dy,...d,)T withd, = +1(i = 1,2,...,m)
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Configuration graph

o How do d solve the local uncertainties?
- Are you going up or down?
- easy, simply +1 for up, -1 for down
- Convex or concave?
- peaks: all edges going out +1, convex
- valleys: all edges going out -1, concave
- How far you can travel?
- only start from peaks
- always go down as far as you can
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Constraints on the graph

o A little more definition
- A Adjacency matrix A € R™*"

S (v, v ) for some &
Ai=4 -1 e =(vp,v;) for some k
0 otherwise

%,

+ H Heights at vertices  h = (hy,hg, ..., by )T

& Penn



Constraints on the graph

o Height difference constraints

Ah=Wd
o \What are the constraints doing?
- Check triangles & loops Vi
- Assume edge monotonous V)
- V2 should not be a peak or 3
a valley A/2

- Why?
- Global integrability constraints!
- Check for every loop

V3
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Optimal configuration
o Optimize ||4h—Wd||,

opt — r d - W
dii arglé]:JEHQh V|l

o Forafixedd h=AtWd At =[a"4"147
° Finally

dopt arglﬂigl ||AfR — Wl
= argmin d' Ed

E=W'AAT —I) (A4t — D)W
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Max-cut problem
o Optimizing 4" Ed is simply a Max-cut!

d'Ed = Yodid, 1 Eijdid; + ) 44,1 Bijdid; =
2) By =X ad=—15i
arg mind’ Ed = arg max E;;
¢ i dyd;=—1
° Min-cut, N-cut is polynomial %5
o Max-cut is NP-hard
o But the graph is small...




Numerical approach
o Semi-Definite Programming(SDP)

minummze ir(CX)
subjectto tr(A;X )=b;, 1=12 ..,p
X 5%

o Our problem

X = ddT

minimize d Ed = tr(EX)
subjectto X, = tr| d,ffj =1,
XecSt. A=« T

i=12 ..
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Shape recovery

o We Know dep: then h = AT Wd,,:
o Also know which vertices are peaks 7

o Build patches around peaks
- Fast marching

o Stitch the patches together

z(q) = max{z(p) — D(p.q)}

pcP

o \Why does this work?




Shape recovery




Shape recovery




Shape recovery




Shape recovery




Algorithm overview

o Singular point detection
° Fast marching

o Graph formulation

- Delaunay triangulation

- Remove invalid edges
o Optimize 4" Ed by SDP
o Postprocessing

- Identify peaks

o Shape recovery
« Combine patches
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Preliminary results
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Ground truth Reconstruction
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Matlab PEAKS
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Preliminary results
Vase

Ground truth Reconstruction
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Preliminary results

Venus Reconstructions




Preliminary results

Ancient woman Reconstructions




Preliminary results

Relief of Athena Reconstruction
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Conclusion

o Global constraints are important and powerful

o Pros & Cons of our approach
+ Address ambiguities directly
+ Make decisions on structures, not pixels
+ Also solve the self-shadow problem
+ Simple and fast
- Smoothness not in the framework
- Mixing little peaks with global, big peaks
- Relying on singular points




Future work

e Work on real images
o Consider multiple light sources

e Combine with shadows and occluding
contours

o Combine with object models




Shape from Shading

Comments...




