Cyber-Physical Systems for Material Handling

Jun Seo, Mark Yim, and Vijay Kumar
GRASP Laboratory and Dept. of Mechanical Engineering and Applied Mechanics
University of Pennsylvania
Material Handling?

“From raw material to finished goods”

Economic standpoint:
The logistics side of material handling already accounts for $1,300,000,000,000 (8.5% of GDP in the US) and handles 18,000,000,000,000kg of materials and goods valued at $16,000,000,000,000 per year.

Technical standpoint:
A wide range of involved problems in material handling (for example, assembling or grasping parts) can be addressed by cyber-physical systems (CPS) approach: physical plant + control algorithm.
Material Handling - Proposed Research

For the “Material” side:
Autonomous Robotic Assembly

One important issue here is the **feasibility** of the resultant assembly plan.

An intermediate state that can be problematic

The intermediate state eventually results in peg-in-hole assembly that can be tricky

A target shape

For the “Handling” side:
Autonomous Robotic Grasping

One important issue here is the **stability** of the resultant grasp.

A planar grasp in a stable equilibrium on the triangle by the three point end-effectors

A planar grasp not in a stable equilibrium on the triangle by the three point end-effectors
Material Handling – Our Approach

For the “Material” side:

Autonomous Robotic Assembly

- Identical, modular building blocks docked in a common brick wall pattern

- LEGO-style docking
 - common brick wall pattern that is geometrically complete and structurally sound

- Assembly planning for feasibility
 - free of peg-in-hole assembly scenarios
 - further supports distributed assembling

For the “Handling” side:

Autonomous Robotic Grasping

- Effector with concavity
 - All objects can be immobilized and caged by at most three concave effectors shown above.

- Grasp planning for stability
 - no need for instantaneous situational awareness.

Two examples of target shapes

Two examples of target grasps
Potential Impacts on Research and Industry

- Wearable Robot
 - Beattie et al.
- Bacteria-propelled sys.
 - Wong et al.
- Self-assembly
 - Eckenstein et al.
- Healthcare
- Manufacturing
 - Eckenstein et al.
- Outer space
- Aerial, Dynamic grasping by quadrotor
 - Thomas et al.
- Disaster response
- Military