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TCOM 370  NOTES 99-2B

FOURIER SERIES (PART II)

1. AMPLITUDE AND PHASE SPECTRUM OF
PERIODIC WAVEFORM

We have discussed how for a periodic function x(t) with period T and
fundamental frequency f0=1/T,  the Fourier series  is a representation of the
function in terms of sine and cosine functions as follows:

x(t) = a0  + 
n=

∞

∑
1

an cos(2πnf0t) +  
n=

∞

∑
1

bn sin(2πnf0t) (1)

Here the an and bn are coefficients defined as integrals in terms of the specific
x(t).

[As an example, we considered the periodic rectangular pulse train v(t) of width-τ 
pulses repeated every T sec., for which the fundamental frequency is f0=1/T.  We

obtained for it the result that the "dc" or average value a0=
A

T

τ  and  an =
2

n

A

π
sin(πnf0τ).  For this example,  bn =0 for all n.]

• Note that a cosine term ancos(2ππnf0t) and a sine term bnsin(2ππnf0t) (of the
same frequency nf0 ) may be viewed as a single cosine waveform of
frequency nf0 :

ancos(2πnf0t) + bnsin(2πnf0t) = An cos(2πnf0t + φn) (2)

where the amplitude An= a bn n
22 +  and the phase angle

φn = −tan
−1

( bn

na
).



2

This follows easily from the identity

cos(2πnf0t + φn) = cos(φn) cos(2πnf0t ) − sin(φn) sin(2πnf0t),

because φn = −tan
−1

( bn

na
) implies that   sin(φn) =

−

+

b

a b
n

n n
2 2

  and  cos(φn)=

a

a b
n

n n
2 2+

    (consider a right triangle with sides  −bn,  an, and a bn n
22 +  )

Thus we may alternatively write Eq.(1) as

x(t) = a0  +   
n=

∞

∑
1

An cos(2πnf0t + φn) (3)

• In any Fourier series for a real periodic function, each pair of an and bn

coefficients leads to a single cosine with frequency nf0.  The phase φφn of
each cosine may be different, just as the non-negative amplitudes An are
generally different.  The phase relationships are important because they
correspond to having different amounts of "time shifts" or "delays" for
each of the sinusoidal waveforms relative to a zero-phase waveform.

Illustrating the importance of phase, in the figure below are shown two
waveforms,

x1(t) = cos(2π2f0t) – 0.5cos(2π3f0t + π/4)  

=cos(2π2f0t) + 0.5cos(2π3f0t + 5π/4)
and

x2(t) = cos(2π2f0t) – 0.5cos(2π3f0t)

= cos(2π2f0t) + 0.5cos(2π3f0t + π)

with f0= 0.5 Hz.
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Thus each waveform is a combination of 1 Hz and 1.5 Hz cosine terms, with
the same amplitudes (1 and 0.5) for each,  but with the phase of the second
cosine differing by π/4 in the two waveforms.  The waveforms are
significantly different from each other.
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For any periodic waveform, the Fourier spectrum  is the set of An

coefficients together with their respective phases φn, where the index
n=0,1,2,... of course corresponds to frequency nf0.  Note that the dc term a0 
is the average value of the periodic function, and may be considered to be the

zero-frequency (n=0) term; we define A0 =|a0|    (there is no b0 term).

The amplitude spectrum refers only to the amplitudes An.  It may be plotted
as a function of n.  Similarly, the phase spectrum is the phase φn as a function
of n.
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2. AMPLITUDE SPECTRUM OF
RECTANGULAR PULSE TRAIN

Consider again the example of the rectangular pulse train,   and let  T=1,

τ=0.25 and pulse amplitudes A=1.  Then we have An= a bn n
22 +  = an

2  = |an|

=
2 A

n π
 |sin(πnf0τ)| = 2

n π
 |sin(πn 1

4
)|  for n ≥ 1.  Note that the amplitude  An is

always ≥ 0.  Evaluating the An for this example, we get the following plot of
An vs. n:
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Such a plot helps us decide the highest frequency that we need for a good
approximation to the original periodic function, in this case for the pulse train.
From the plot above we may decide that beyond frequency 4 Hz, none of the
Fourier coefficients have significant magnitude and may be neglected.

For this example, the term  |sin(πnf0τ)| is always  between +1 and –1, whereas

2A/π is a constant.  The 1
n

 part therefore makes An decrease in value with n.

In general, for index n beyond some integer N the An amplitudes remain
small in magnitude and may be neglected to get a good finite-term
representation of the periodic function.  For such an approximation the
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highest frequency used is Nf0.  We say that the bandwidth of the periodic
function is Nf0.

Of course, the larger f0 is the larger this highest frequency Nf0 is that we need
in the approximate representation of the periodic function.  This also means
that if we are transmitting the waveform over a communication link, the link
has to be able to deliver to the receiver all frequencies between 0 and Nf0
without significant change.  We say that the channel bandwidth  needs to be
Nf0.

We have already noted the importance of the phase values of each cosine or
sine frequency in preserving the shape of the waveform.  Thus in order to
preserve the shape of a periodic waveform that is transmitted over some
communication link, the channel has to be able to transmit each frequency
within the signal bandwidth without significant attenuation (amplitude
change) and with no significant  phase shift (delay).

3. SINGLE RECTANGULAR PULSE OF DURATION τ

In communication systems we are generally interested in transmitting
sequences of some particular pulse shape, say with amplitudes that are
different from pulse to pulse, rather than a periodic repetition of the pulse.
We therefore have to consider what frequencies are present in representing a
single  pulse of duration τ.

• This situation is approached if we take our periodic  pulse train and let the

repetition period T  go to ∞.

We already have the Fourier series representation of the pulse train with

period T, so let's see what happens when we let T approach ∞.
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For the rectangular pulse train, we have

an  = 2 A

n π
 sin(πnf0τ)

=  2Af0τ 
sin( nf )

nf
π τ

π τ
0

0
  for n ≥ 1

Consider a fixed width τ for the pulse and let T approach ∞.  As T becomes
larger and f0 becomes smaller, the product nf0 becomes a multiple of a smaller
and smaller quantity f0.  With n taking on all integer values starting from 1,

the quantity nf0 acts as a continuous variable between 0 and ∞ , because it
actually takes on a whole range of very finely spaced values.

The amplitude spectrum for the pulse train is |an| = 2Aτf0 
sin( nf )

nf
π τ

π τ
0

0
 as a

function of the frequency nf0; but nf0 acts as a continuous variable f, so that
the amplitude spectrum can be interpreted as the function

2Aτf0
sin( f )

f
π τ

π τ
  of  f.  Note that  the part 2Aτf0 is a constant, even though it

becomes very small as f0 decreases. (Each frequency has a very small
amplitude, but then there are a very large number of individual frequencies
present.)  The shape  of the amplitude spectrum is determined by the function
sin( f )

f
π τ

π τ
 .

(We may also argue that the amplitude an is that of a sinusoid at frequency nf0
and that since the frequency spacing is f0, dividing the amplitude spectrum by
f0 gives us the amplitude density  (per unit of frequency width).  In this way
we can remove the vanishingly small f0 from the amplitude spectrum and get
the amplitude spectral density.)
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In any case, we find that

•  the single rectangular pulse of width ττ  contains all  frequencies

between 0 and ∞.  

•  the relative amplitudes (ignoring the overall amplitude factor) of

these frequencies is given by the function    
sin( f )

f
π τ

π τ
.

The plot below depicts this function  
sin( f )

f
π τ

π τ  as a function of f.
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From this we may conclude that the highest frequency we need in the
representation of a single rectangular pulse of width τ is approximately
1

τ
, because roughly speaking the significant frequencies are those

below this limit (the others have relatively low amplitudes).
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Now by packing duration-τ rectangular pulses right next to each other, and
making their amplitudes take on values of +1 or -1 (or +A and −A) in
accordance with some data bit sequence, we can transmit a waveform which
is a sequence of rectangular pulses with apparently random amplitudes.  Each

such pulse requires the channel to have a bandwidth of W= 1
τ

 Hz.  Note that

the actual pulse amplitude A does not affect the relative Fourier amplitude
spectrum, and a succession of pulses with random amplitudes will pass
through a channel if the channel has sufficient bandwidth to pass any one of
the pulses through.

• This leads to the idea that if we have a channel model with
bandwidth W, then we may send rectangular pulses of minimum

duration τ= 1
W

 packed close to each other, i.e. at a rate of 1 pulse

every 1
W

 sec. or W pulses per second, and reconstruct a good

approximation of pulse amplitudes and the pulse sequence at the
receiver.  Thus the pulse amplitudes may be used to carry data bit
values and provide a data rate of W bits/sec.

4. SINGLE ROUNDED-OFF PULSE

If we round-off the edges of the rectangular pulse of width τ, we get a pulse
like that shown in the figure below.
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The less abrupt rise and fall in this pulse leads to it having its Fourier

amplitude spectrum more concentrated within 0 and 1
τ

 on the frequency axis,

with smaller components outside this range, compared to the rectangular
pulse.  Such pulses are desirable in keeping the transmitted power more

tightly within the "bandwidth" of 1
τ

.  While there is some time-domain

overlap in transmitting such pulses at rate 1
τ

 pulses per sec., if the overlap is

not too large then decisions about the individual pulse amplitudes in a train of
pulses can still be made at the receiver.

• The theoretical maximum "Nyquist" rate at which we are able to
transmit pulses over a channel with bandwidth W is 2W pulses per
sec., if we require that the pulse amplitudes be exactly recoverable by
sampling at the receiver.  This can be achieved with a very special type
of non-rectangular "spread-out" pulse that is very hard to use in
practice.  This theoretical Nyquist pulse (not shown) is a special pulse

with all its amplitude spectrum strictly within the limit of 1
τ

 , and if

used at the rate of 1
τ

  pulses/sec. this pulse overlaps with other pulses

in such a way that individual pulse amplitudes can still be recovered
perfectly (in theory!)

---------------------------------------------------------------------------------------------------
[5.  Significance of Negative Frequencies

Each real sinusoid  in the general Fourier Series representation may be written as a sum of
complex exponentials, i.e.

An cos(2πnf0t + φn) =  
An
2

 [ej(2πnf0t + φn) + e–j(2πnf0t + φn)]

Thus each real cosine frequency nf0 may be viewed in the domain of complex exponentials
as being composed of a positive frequency nf0 and a negative frequency −nf0, each with an
amplitude which is one-half of An (and corresponding phase angles φn and −φn). We may
therefore think of the Fourier spectrum for real periodic signals (or individual real pulses)
as being symmetrically placed around the origin, with one-half the amplitudes An at both
negative and positive values of each frequency.]


