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TCOM 370  NOTES 99-4

BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY
OF COMMUNICATION LINKS

1.  Bandwidth:

The bandwidth of a communication link, or in general any system, was
loosely defined as the width of the frequency interval such that input
sinusoidal frequencies within this interval will appear at the output without
significant amplitude or phase change.

Bandwidth is related to maximum pulse transmission rate and hence data
transmission rate for the link, and is clearly an important characteristic.

• A more precisely defined characteristic incorporating bandwidth
information is the frequency response of the link or system.

In defining the frequency response, we will first take a more careful look at
sinusoidal signal transmission.

Basic Questions:

To begin with, how do we know that a single sinusoid cos(2πf0t) at
the input to a communication channel will produce a sinusoid, and
not some other output, and moreover a sinusoid at the same
frequency as the input frequency?

Even if this is so, how do we know that a sum of  individual
sinusoids at the input will appear at the output as a  sum of
sinusoids, each output sinusoid depending only on the
corresponding input sinusoid?
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Sinusoids through Linear Systems:

When signals travel through fixed (time-invariant) electrical systems
(transmission media, amplifiers, filters, etc.) they can get changed by the
action of the system on the signal.

Often a good mathematical model for this type of system is the time-
invariant linear system model.  Linearity means that if an input signal x(t)
produces output y(t), and x1(t) results in output y1(t) and another input x2(t)
yields output y2(t), then always

• input α x(t) produces output α y(t),  (α is any amplitude
scale factor)

• input x1(t) + x2(t) yields output y1(t) + y2(t) (superposition)

Further, time-invariance means that

• the behavior of the system does not change with time, it is fixed.

These are reasonable behaviors, obtained by design or found to hold for
communication channels under normal conditions.  Furthermore, electronic
systems that are used to process input and output signals in communications
are usually designed to operate as fixed linear systems.

 x (t) + x (t)

Linear
System

y(t)

α y(t)

1 2
 y (t) + y (t)

1 2

α x(t)

x(t)

INPUT OUTPUT



3

• Now it can be proved that a sinusoidal input to a fixed real linear system
is always reproduced at the output as a sinusoid at the same frequency
(with amplitude and phase possibly altered).

A proof is given below for those interested.  It may be skipped.
                                                                                                                                    
Proof:
Consider the complex exponential time-function ej2πf t [a component of cos(2πf t) ] at the
input of a time-invariant (fixed) linear system, and suppose the output is yf(t).   The sub f
indicates that the output time function depends on f.

Now consider the input  ej2πf  (t-d), a version of the original input delayed by d.  Because
of time-invariance, the output is now the delayed original output,

yf(t-d).  But  ej2πf  (t-d) is also  e-j2πf d ej2πf t, an amplitude scaled version of the original

input.  Thus the output is also  e-j2πf d yf(t) = yf(t-d).

In the last equation, set d=t and take e-j2πf t to the other side, yielding

yf(t)=  yf(0) ej2πf t.

Thus we see that the output due to  ej2πf t at the input produces an amplitude scaled

version of  ej2πf t , where the amplitude scaling is some constant [yf(0)] which is generally

complex valued [Aejφ], depends on f, and effects an amplitude and phase change.
The cosine function cos(2πf t) is itself a combination of two complex exponentials with
oppositely signed frequencies.  The component  e-j2πf t of the cosine will also similarly

produce output  y-f(t)= y-f(0) e-j2πf t, and because the system is real the output this time is a
complex conjugate of the original output since the input is a complex conjugate of the

original input.  Thus  y-f(0)=Ae-jφ and it follows that yf (t) is now Acos(2πf t + φ )]
                                                                                                                                                

The result that was stated (and proved) above for a fixed linear system,
together with the second condition defining linearity, addresses the basic
questions asked on page 1.

We now know how to analyze for the effect of any linear communication
medium (e.g. twisted-wire pair) or system on a signal ; decompose the input
into its different frequencies using Fourier series or its limiting form, then
each frequency is reproduced at the output either essentially unaltered
(within the transmission bandwidth) or attenuated (outside the transmission
bandwidth) or somewhat altered (intermediate situation).  Larger system
bandwidths will allow narrower pulses to be preserved at the output.  If we
use narrow pulses at the input of a low-bandwidth system, only some of the
frequencies will pass through and the output pulse will get wider.  This
distortion  of the pulse shape is caused by the limited bandwidth.
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Bandwidth depends only on the width of the supported frequency band, not
on its absolute location.  A medium allowing frequencies between 1 and 2
GHz to be transmitted has the same bandwidth as one allowing frequencies
between 20 and 21 GHz.   (We will see later how the use of modulation
allows any frequency band to be used for pulse sequence transmission.)  In
practice, high bandwidth is obtained by operating at high frequencies.  The
ratio of actual max. to min. operating frequencies for a fixed bandwidth at a
low center frequency is much larger than at higher operating frequencies (2-
to-1 vs. 1.05-to-1 in the examples above).  The smaller range (max./min.
ratio) of frequencies at which equipment has to operate makes larger
bandwidths more feasible at higher frequencies.

2.  Frequency Response of a Linear Transmission Channel:

The frequency response  characteristic of a transmission medium or any
other system modeled as a linear system gives a more detailed picture of the
action of the channel on input sinusoids.

• It is a ratio of output to input as a function of frequency for sinusoids.

Since for sinusoids the output frequency is the same as the input frequency,
the quantities that appear in the ratio are the amplitudes and the phases.

When  x(t)=cos(2πf t)  (at frequency f) is applied at the input, let the output
be   A cos(2πf t + φ).  Note that A and φ depend on the frequency f, and are
more explicitly written as functions A(f) and φ(f).

• The two functions  A(f) and φ(f)  constitute the frequency response of the
linear system. (They are called the amplitude response and phase
response, respectively).

• More generally the frequency response is written as a complex-valued
function of f, denoted by  H(f).  Its amplitude part is A(f), the output-to-
input amplitude ratio as a function of f, and the phase or angle part φ(f) is
the phase of the output relative to the phase of the input as a function of

frequency (output phase minus input phase).  Thus H(f)=A(f)e
jφ(f)

(This compact form of the frequency response is seen to be the ratio of output

A(f) e 
j

 
[2πf t + φ(f)]  to the input complex frequency e 

j
 
2πf t ).
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• An amplitude response A(f)=|H(f)| that is flat  over a band of frequencies
gives rise to no amplitude distortion from selective attenuation over this
band of frequencies. All input frequency components in this band are
equally affected in amplitude.   

• A phase function  φ(f)=arg{H(f)} that is a linear function of f
[say φ(f)= −βf]  results in no delay distortion through different relative
phase shifts imparted to different frequency components.

This is because higher frequencies are shifted by larger phases
proportionally, so that all frequencies are delayed by the same time
delays.  Not having delay distortion means that any delay that exists is
the same for all frequencies.

Note very carefully that for no delay distortion of a signal due to different
phase shifts imparted to its different frequency components, the phase
should be a linear function of frequency of the form   φ(f)= (constant) x f

Example Frequency Response
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On the previous page an example is shown of an amplitude and phase
response of a low-frequency channel (the amplitude response is
approximately that of a single telephone channel).  For this channel, we find
that there is no amplitude distortion over the band [500, 3000] Hz, and there
is no delay distortion over the band [2000, 4000] Hz.  Note that in the other
portions of the phase response, even though the phase function has straight
line segments, none of the lines pass through the origin. They are not "linear
phase".)

For this example the only range of frequencies over which there is no
amplitude or delay distortion is the band from 2000 to 3000 Hz.

(It is possible to have frequency responses with multiple separate bands over
which distortionless transmission is possible.)

• A channel that is non-distorting  over a certain band of frequencies has a
flat amplitude response and a linear phase response over the band.

Linear Phase and Constant Delay

Figure 1

Frequency =1 Hz

Showing time delay
caused by -π/2 phase
shift

Figure 2.
Frequency =2 Hz

Showing time delay
caused by -π/2 phase
shift (delay is half
that in Figure 1)
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Consider a sinusoid frequency x(t)=cos(2πf t) and its phase shifted version
y(t)=cos(2πf t − φ).  We can write y(t) as

y(t)= cos(2πf [t − φ
π2 f

] )

and we see that it is a delayed version x(t− φ
π2 f

) of  x(t).  The amount of

delay is φ
π2 f

.  Note that this delay is inversely proportional to frequency for

fixed phase shift −φ .  We find that to get a constant delay for all
frequencies, we must have phase shifts that increase linearly with f.
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3.  Attenuation

This refers to the overall decrease in signal amplitude as it passes through a
transmission medium or system.  Attenuation by itself  only results in lower
signal amplitudes; these can be brought back up by ordinary amplifiers.  Any
overall attenuation factor in a transmission medium does not distort the
signal; all frequencies are affected in the same way, and signal shapes are
preserved.  However from a practical point of view, since input power is
constrained, we cannot tolerate too much attenuation because once the signal
gets weaker than the random noise and interference that are always adding to
it, amplification will not work (noise is also amplified).  Thus if the medium
has large overall attenuation per unit of transmission distance, it cannot be
used for physically long links without the use of line repeaters.  These are
inserted at intervals along a long link to bring back signal amplitudes to
reasonable levels and regenerate the data before further transmission.

• Signal attenuation is measured in units called "decibels".  If over a
transmission link the ratio of output power to input power is Po/Pi , the
attenuation is said to be −10 log10(Po/PI ) = 10 log10(Pi/P0 )dB.  In
cascaded links, the attenuation in dB is simply a sum of the individual
attenuations in dB.  Attenuation per unit length is obtain by dividing
overall dB attenuation by the length of the link.

Note that selective attenuation of some frequencies relative to others results
in signal distortion, as we have discussed.   Sometimes we can use
equalizers  to correct such signal distortion across a band of frequencies in a
transmission band.  In addition to amplitude distortion due to selective
attenuation, different frequencies may be reproduced at the output with
different delays because of non-ideal phase response.   An equalizer is a
device that compensates for the amplitude and delay distortions in a band of
frequencies.  It is usually inserted at the receiving end. Equalizer are
ubiquitous in  modems allowing data transmission over non-ideal telephone
channels.  They can be designed to automatically compensate for non-ideal
channel characteristics.
(Note that the band of frequencies over which equalizers have a chance of
working effectively is that band over which the amplitude attenuation is not
very severe, otherwise we face the problem of low signal-to-noise power
ratio.)
Repeaters may also include some form of equalization.
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4.  Noise and Interference

Noise is always present as an impediment to achieving reliable (i.e. error
free) communication.  Noise is present in the form of random motion of
electrons in conductors, devices and electronic systems (due to thermal
energy), and can also be picked up from external sources (atmospheric
disturbances, ignition noise, etc.).  Interference generally refers to the
unwanted, stray signals picked up by a communication link due to other
transmissions taking place in adjacent frequency bands or in physically
adjacent transmission lines.

Noise is often modeled as a random process having a fixed power in each
Hz of the transmission band.  (This model is known as white noise).  We use
the notation N0 to denote the amount of noise in each Hz of the transmission
band; the units of N0 are watts/Hz.  In practice,  N0 values of 10-7 to 10-21

watts/Hz may be encountered.

Noise is the other main limiting factor (in addition to bandwidth) in
obtaining high performance from a communication system.  It is actually the
ratio of signal power to noise power (S/N ratio or SNR) that we normally
use in addition to bandwidth as the two main determinants of performance.

Signal-to-noise power ratio is often expressed in decibels (dB's):

SNR = 10 log10(
S
N) dB

where 
S
N  is the actual signal power to noise power ratio.
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Summary:

The key considerations for data transmission media are:

• Bandwidth and Frequency Response
•  Attenuation and Distance Limit
• Interference and Noise

(these lead to data-rate/capacity limitations, and
 minimum signal power requirement)
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5.    Signaling Rate and Bit Rate

In signaling with pulses to represent data, the rate at which pulses are
transmitted is known as the signaling rate or the baud rate.  The transmitted
bit rate  may be different if each pulse can carry more than one bit of data
(or sometimes less than one bit of data).  For example, if two-level (bipolar)
pulses are used, each pulse carries one bit of information.  However, we may
use one of four different amplitudes for each pulse, in which case 2 bits of
information are carried on each pulse and the bit rate is twice the signaling
rate.

6.    Some Fundamental Limits

Nyquist Signaling Criterion

For an ideal (flat amplitude response, no delay distortion) transmission
channel of bandwidth W, with no noise, a maximum signaling rate of 2W
pulses per second  is possible (with the right type of pulses) if individual
pulse amplitudes are to be recovered perfectly by sampling at the pulse
centers at the channel output.

The bandwidth determines the highest pulse rate at which pulse overlapping
at pulse centers can be avoided and individual pulse amplitudes can be
recovered from the output.

Note that if each pulse can carry one of M different amplitude levels, then
each pulse conveys log2M bits of information.

• Thus maximum bit rate  in this case is 2W log2M  bps.

As we have stated earlier, a more practical rate of pulsing over a
bandwidth-W channel is W pulses per second and therefore the practical
data rate is W log2M  bps.

• The bandwidth efficiency  B achieved by a transmission scheme is the
ratio of bit rate R it provides to the bandwidth W used.  Its maximum
value is 2log2M if the scheme uses M-level pulses.
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Channel Capacity

Note that according to the above, in theory we can get arbitrarily high bit
rates from a finite bandwidth channel by allowing lots of different
amplitude levels for each pulse (large M)!  However, if noise is present, then
the levels cannot be too close together otherwise it will not be possible to
distinguish between adjacent levels with high accuracy.

Thus to be able to use large M, we need to keep the amplitude level spacing
above a minimum value and this implies use of large maximum pulse
amplitudes.  But this requires large signal power!  If the signal power is
constrained (as is the case in practice), then in the presence of noise,
arbitrarily high data rates are not possible over a finite bandwidth channel.

A very famous result due to Shannon (1948) states that the maximum
possible transmission rate  or capacity  of a link of bandwidth W Hz and

received signal-to-noise ratio  
S
N ,  is (under certain conditions on the nature

of the noise, which often hold)

C = W log2(1 + 
S
N)  bps

This is a theoretical limit and is not easy to come close to in practice.

Example:

The V.34 telephone line modem transmits on a telephone line bandwidth of
approximately 3400 Hz.  The signal-to-noise (power) ratio for received
signals with such modems is of the order of 35 dB under good conditions.

Thus the actual S/N ratio is, from  10 log10(S/N) = 35,

S/N= 103.5 = 3162

According to Shannon's formula, the capacity should be   3400 log2(3163)
which is approximately 3400x11.7=40,000 bps.  The modem achieves a
maximum bit rate of 33,400 bps.
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7.  Performance Measure for Data Communication

In actual systems the communication quality for data transmission is stated
as a probability of bit error or bit error rate.  Theoretically, we can get up
to C bps with zero error rate.  In practice, the actual bit error rate is always
non-zero; the typical range is 10-3-10-9.  For any particular type of
transmission technique over a bandwidth W, the bit error rate Pe is a
function of the SNR.

[ We can obtain a quantity related to the SNR in the following way:

Let the bit rate achieved be R bps over a bandwidth W Hz in the presence of
white noise with power density N0 watts/Hz, and let the received signal
power be S watts .  Then each bit takes 1/R secs. to transmit, so the energy
expended per bit is Eb=S/R watt-secs or joules (note that power is the rate of
expenditure of energy).  The total noise power in the communication band is

N0W watts.  Thus the signal-to-noise power ratio 
S
N = 

EbR
N0W.

Thus  
S
N = 

Eb

N0
 x [bandwidth efficiency].  For a given scheme with a given

bandwidth efficiency, the signal-to-noise ratio is proportional to  
Eb

N0
   and

hence the error probability Pe depends on 
Eb

N0
. ]

(You are not required to memorize this result! This is for your overall
appreciation of the importance of signal to noise ratio in determining
performance.)


