
1

TCOM 370 NOTES 99-7

DIGITAL DATA TRANSMISSION

Synchronization and Related Topics

DIGITAL DATA TRANSMISSION (BASEBAND)

• "Data" in general is a sequence of binary digits. It may represent a
sequence of alphanumeric characters or text, it may be the contents of a
binary file, or it could be digitized voice or video.

We have discussed how pulses representing binary digits (M-level pulses)
can modulate a carrier frequency for efficient transmission through a
limited-bandwidth link such as the analog telephone line.We will now
discuss some details of binary data transmission over links using baseband
techniques (no carrier-frequency modulation, electrical pulses transmitted
directly, usually as two-level pulses carrying one bit per pulse).

These are useful in many applications involving the use of high-bandwidth
cables such as in ISDN connections over twisted pair, PCM voice or data at
1.544 Mbps and higher rates on special cables, and local area networks (e.g.
twisted pair or coaxial cable in ethernet).

The key issues that we will consider here are synchronization and line
coding.

• Synchronization is concerned with techniques to allow receivers to
work in timing synchronism with transmitters.

• Line coding is used to generate special types of electrical pulse
sequences to help in synchronization as well as to match the pulse
sequence signal to the characteristics of the transmission line.

(In a subsequent set of notes we will discuss the important topics of error
control and compression of digital data streams, which will take us into
data link layer and higher layers of the communication protocol
architecture.)

2

ASCII – American Standard Code for Information Interchange

To transmit characters for standard text and associated control characters
(e.g. "return", "backspace", "delete", "start-of-text", etc.), ASCII defines a 7-
bit code word for 27=128 characters in the set. A subset of these are the
standard printable characters (upper/lower case alphabet, numerals,
punctuation and special symbols), the rest are control characters for
formatting or used to control transmission.

(We may add an 8-th redundant bit to provide a degree of error control.
The 8-th bit may be defined to give the resulting 8-bit byte "even" parity,
say, so that the number of binary 1's in the word is an even number. "Odd"
parity may also be used, or a dummy 8-th bit may be inserted.)

If the data is already in binary format (e.g. computer object code in a file)
we may think of it as occurring as a sequence of 8-bit octets or bytes,
although this is not always necessary. Note that for a binary data file,
combinations of bits may occur which may not occur in an ASCII
representation of printable characters. This must be taken into account in a
transmission scheme, as we will see.

SYNCHRONIZATION

A sequence of binary digits transmitted at some regular rate over a link in
the form of an electrical signal (pulse sequence) has to be recovered at the
receiver from the electrical signal.

• The important consideration here is that of clocking or timing of the
instants at which the receiver will be looking for individual bits. If the
receiver clock is running at a rate different from that of the transmitter,
or if there is an offset between the two clocks even when they are
running at the same rate, we will not be able to recover the bits properly.

How does the receiver obtain the necessary timing information? Sending a
separate clock signal is possible but not preferred because it takes away
transmission resources.

There are two approaches.

3

• In asynchronous transmission the receiver has a free-running clock
that is running nominally at a fixed multiple of the transmitter clock
rate (e.g. transmitter running at 9600 clock cycles/sec, receiver clock
running at 8 times this rate, nominally 76,800 cycles/sec). Short bit
sequences are emitted with framing bits that allow the receiver to know
when to start looking for bits. For each short sequence, provided the
receiver starts at approximately the correct time, it can maintain
approximately correct timing for the duration.

• In synchronous transmission, transmit clock information has to be
embedded within the bit stream, so that the receiver can either extract
a clock signal for its use or can use the embedded clock information to
fine-tune its own local clock to keep it in synchronism with the
transmitter clock.

ASYNCHRONOUS TRANSMISSION

Bits are represented by one of two electrical states on the line, say two
different voltage levels.

Suppose the line is in "idle" condition (in logic "high" or "1" state, say.
This means that the electrical state of the line is that corresponding to bit
"1" on the line. An idle line has to be in some electrical state.) Then one 7
or 8 bit data group is to be sent. These bits are preceded by a "start bit'
(logic "low" or 0) and followed by one to two "stop" bits (logic "high" or 1).

The receiver operates by looking for the first transition from "high" to
"low" after its previous idle or "stop" bits; it continuously samples at rate
nominally N times the transmit clock rate. Upon finding the first transition
from high to low, it sets the next sampling instant to be at N/2 receive clock
samples (nominally half of transmit clock period) after the first transition;
this should be near the center of the "start" bit. It then samples at multiples
of N receiver clock pulses after this for the required number of data bits.
The ending stop bits return the line to logic high (idle state value), so that
the next character or byte will again produce a high to low transition with its
start bit.

4

The receiver works better (samples more nearly at the center of the bit
intervals) if N is larger; receiver clocks with N=8 or 16 are typical. This is
because the faster the receiver clock is, the sooner after the actual transition
from "high" to "low" it will discover it. The circuits that provide this type
of transmitter and receiver function are called UARTS (Universal
Asynchronous Receive/ Transmit).

The main point here is that the receiver clock does not actually extract a
clock signal from the incoming signal, nor does it try to synchronize its own
clock with the transmitter clock. It assumes that its clock is reasonably
accurate to maintain approximately correct timing over short spans of a few
bits. This scheme is useful up to about several tens of Kbps

Frame Synchronization in Asynchronous Transmission:

If a block of characters is to be sent and received as one frame of data, we
need a means to signal to the receiver the beginning and end of a frame.

This can be accomplished by sending special characters "STX" (start of
text) and "ETX" (end of text) when transmitting printable ASCII characters
(because these special characters do not occur in the middle of such data).

To transmit arbitrary binary digits, this needs to be modified, because any of
the special control characters may occur within the data itself. For this we
can use character stuffing. The special DLE control character (data link
escape) is used to precede the STX and ETX characters marking frame start
and stop. The receiver looks for these two-character combinations to
determine frame boundaries. During the transmission, the transmitter
inspects the outgoing bytes for the DLE character. Whenever this is found,
a second DLE is stuffed in before the next byte. At the receiver, any pair of
DLE's after frame start is decoded as a single DLE. The DLE-ETX pair of
course denotes end of frame.

5

idle start 1 1 1 10 0 0 0

t

t

t

transmsitter clock pulses

receiver clock pulses

idle stop stop

transition
from idle
to start
found

Receive Clock with N=2

receiver
sampling points
(offset from
ideal)

ASYNCHRONOUS TRANSMISSION (START/STOP)

Notes:

"Direction of transmission" labels in figures like the above in the book
always point in the opposite direction of "time". Earlier events are seen at
the receiver before later events; thus the data bits above arrive at the
receiver as 11001010. We could have shown a "direction of transmission"
as an arrow pointing to the left. Sometimes (even more confusing) time is
shown as increasing to the left and direction of arrival points to the right.

The transmitter and receiver clock waveforms generated by the timing
circuits are usually a periodic square-wave at the clock frequency. The
actual sampling instants are derived from the clock waveform by looking
only at the rising edges or only at the falling edges (transitions) of the clock
waveform, which occur once each clock cycle, of course. In the figure above
we displayed only the narrow timing pulses that mark these events.

6

SYNCHRONOUS TRANSMISSION

Asynchronous transmission is inefficient (extra overhead bits needed; start
bit, stop bits) and cannot be used at high transmission rates because of the
increasing sensitivity to differences between transmit and receive clocks as
the rate increases.

• In synchronous transmission, we tailor the way in which binary data is
encoded onto the electrical signal to endow the signal with properties
that the receiver can exploit to obtain receiver clock information.

The representation of a binary data stream as a baseband electrical signaling
waveform (some type of pulse sequence) that travels on the link is called
line coding.

Clock Extraction by Special Line Coding

In polar Return to Zero (RZ) line coding there is always a "transition" in
the signal level in the middle of every bit interval (this is also called
"bipolar" in the book, but avoid using this terminology for this line coding
scheme). These transitions are from positive or negative level to zero. This
can be exploited by the receiver to generate its own clock signal. (The
receiver looks for transitions to and from zero level; pulses generated at
these transition points constitute the clock signal. These pulses are shifted
back by 1/4 clock period to get the sampling points in the centers of the first
halves of the bit intervals. A circuit to implement this can be built easily).

The disadvantage of this method is (i) extra bandwidth, the actual pulse
being half the size of the bit interval; (ii) wasted power in sending a three-
level signal (iii) possible presence of a dc level which needs to be received
(a continuous stream of all 1's or all 0's may be present in the data).

Manchester coding also always produces transitions at the bit centers, but
they are between two levels only (high-low or low-high). This is also a
polar code (two polarities are used). Each "1" bit has a transition from low
electrical level to high electrical level, and each "0" bit the other type. The
presence of transitions at periodic locations allows a clock extraction circuit
to obtain timing information.

7

This code has no dc component, an advantage. It is a two-level code.
However, it also needs extra bandwidth compared to straight two-level
coding with no transitions in the centers of bit intervals.

[In straight two-level coding (also called NRZ, non-return to zero) the pulse
width is the same as the bit interval, not one-half of the bit interval. Please
do not use NRZ to refer to Manchester coding, as the book does.]

Differential Manchester Code. Here the encoding of each bit is basically
like the Manchester code, except that the type of the transition (high to low
or low to high) for a bit is determined not only by its logic state (1 or 0) but
also by the preceding bit. Thus, the type of the transition for the bit being
transmitted stays the same as that of the preceding one if the current bit is a
0, and switches if the current bit is a 1. The advantage of differential coding
is that once the starting bit is known, all the bits following can be obtained
even if the entire waveform is inverted (for example by reversal of the leads
in a connector).

Note that with differential Manchester coding, there is always a transition at
the beginning of a bit interval for bit "0", and no such transition for bit "1".
This forms the basis of the decoder, once timing has been extracted from the
transitions which are always present in the centers of the bit intervals.

• Manchester and Differential Manchester coding is used in local area
networks, specifically in ethernet LANs and token-ring LANs,
respectively.

Receiver Clock Synchronization

The above line coding schemes require higher bandwidths, as explained for
the polar RZ case. We can get better bandwidth efficiency by using other
line coding techniques. The clock recovery process is then usually based on
the use of some local clock at the receiver that is pulled into synchronism
by exploiting some basic clocking information in the signal, as opposed to
being generated by the received signal.

The polar NRZ (non-Return to Zero) code is a very simple two-level code,
however it does not have good properties. It can have a dc component, and
is poor from the point of view of timing recovery.

8

The NRZ-I (the book's version of this is actually NRZ-S for NRZ-Space)
has inversions in the following way: each 0 is signaled as a change in level
from the previous one. So it is a differential code. Since 0's will cause
transitions, if we have a scheme that ensures that 0's are present at some
minimum frequency in the data stream, clock synchronization at the
receiver can be accomplished. Note that here we are talking about
synchronizing an existing fairly stable clock that requires small adjustments
to keep it locked to the transmit clock, so that we have some more slack in
the line code's clock-carrying information. The actual synchronizing is done
by a digital phase locked-loop (DPLL).

The AMI code (alternate mark inversion, also known as "bipolar") encodes
1's with alternating polarity pulses and sends 0's with a zero level. (The
opposite version of this sends 0's with alternate polarities; it is called
"pseudo-ternary". It is essentially the same.). Thus there are transitions in
AMI if the number of consecutive 0's is somehow limited.

The B8ZS code (bipolar 8 zero substitution) code is one modification of the
AMI code achieving this. For this code, every sequence of 8 consecutive 0's
is transmitted as 000VB0VB, where V is a bipolar violation pulse amplitude
and B is a conforming pulse amplitude. (A violation means that two
consecutive non-zero pulses of the same polarity occur in a signal with zero
amplitude pulses in between). This scheme retains the zero dc balance and
ensures a minimum rate of transitions in the signal.

Other interesting codes are the HDB3 and 4B3T (Read p. 119-120 in
Halsall).

Hybrid schemes employ both Manchester-type codes and DPLL to get better
performance.

9

Frame Synchronization in Synchronous Transmission

We have discussed the bit-synchronization techniques for synchronous
transmission above. We now consider briefly the situation with respect to
frame synchronization, which allows the receiver to know where the frame
boundaries are.

Character-Oriented:

Frame starts with a number of SYN characters and a STX character.

SYN characters allow the receiver to gain bit synch, and then find the SYN
characters, hence establishing character boundaries. The STX character
then signifies start of frame.

Data transparency for binary data is obtained with DLE-STX, DLE-ETX
and DLE-DLE characters.

Bit-Oriented:

Start and End of frame: 8-bit "flag" 01111110.

Idle bytes: 01111111 repeatedly sent when idling to allow bit synch to be
maintained.

Flag pattern should not occur in data; use 0 bit stuffing following a
sequence of five data 1's.

Other schemes:

Preamble 101010---10 ("10" pairs)
followed by
Start-of Frame byte;
Fixed header (address); two length bytes (number of bytes in frame
contents)

Frame tail or end of frame contents may contain error detection and
correction bits.

