TCOM 370

NOTES 99-9B

Further Notes on Cyclic Codes

Cyclic Shift of Length N Binary Words as Multiplication "mod(X^N+1)"

Consider the polynomial representation T(X) for a length-N codeword.

$$T(X) = c_{N-1}X^{N-1} + c_{N-2}X^{N-2} + \dots + c_1X + c_0$$

• Now XT(X) is a degree-N polynomial in general (is monic if $c_{N-1}=1$).

(monic polynomial of degree N \rightarrow coefficient of X^N is 1)

• Dividing XT(X) by $(X^{N}+1)$ will produce the result c_{N-1} with a *remainder term*. This remainder term will be the polynomial corresponding to the *one-unit cyclic left shift* of the original codeword!

Thus, a cyclic left-shift of a codeword produces codeword corresponding to

remainder $\{\frac{XT(X)}{X^{N}+1}\}$ which is usually written as **XT(X)** "mod(**X**^N+1)"

Generator Polynomial

- Let G(X) be a monic polynomial of degree (N-k), of the form $X^{N-k} + ... + 1$
- Let G(X) divide $X^{N}+1$ without remainder.

Then G(X) generates a linear cyclic (N,K) block code with codewords (using our previous notation)

Q(X)=G(X)M(X)

Here M(X) is a message polynomial of max. degree (k-1).

Proof:

If Q(X)=G(X)M(X) is a codeword generated this way, consider

 $XQ(X) = c_{N-1}(X^{N}+1) + S(X)$

where S(X) is the remainder in dividing the left side XQ(X) by $(X^{N}+1)$, and hence is a cyclic left-shift of the codeword Q(X). But the left side above is divisible by G(X) without remainder, and so is $(X^{N}+1)$ on the right side. Therefore S(X) must be divisible by G(X), hence it is a codeword.

The linearity is obvious from the definition of the codewords as multiplications.

Systematic Code

The cyclic code generated above is not necessarily systematic, because codewords G(X)M(X) do not necessarily produce the message bits in the first k positions of the word. However, we will see that the set of codewords generated this way contain all possible combinations of k bits in their first k positions, and so it is possible to re-assign codewords in a systematic way to message words.

Consider polynomial $Q_1(X) = X^{N-k} M_1(X) + R_1(X)$ where $R_1(X)$ is the remainder upon dividing $X^{N-k} M_1(X)$ by G(X). This polynomial consists of the message bits in the first k positions. We claim this is a codeword of the cyclic code, for which we have to show it is divisible by G(X) But this is easy to see, because of the way $R_1(X)$ is defined as a remainder. Thus $Q_1(X)=G(X)M_2(X)$ for some $M_2(X)$. We find therefore that the distinct 2^k codewords of the form $Q_1(X)$ are codewords generated through the operation G(X)M(X) defining our original cyclic code.

CRC Codes

Note that the generator polynomials G(X) of degree (N-k) (usually 12, 16, or 32) used for the common CRC codes for error detection correspond to cyclic codes for specific values of N=N₀; remember that $X^{N}+1$ has to be divisible by G(X), and these CRC polynomials correspond to very large values of such N₀ (by design, to have good error detection capability). However, in practice they can be used with shorter codeword lengths N so that they are not exactly cyclic codes. Nonetheless, their implementation remains simple and they inherit the error detection characteristics of the cyclic codes.

A definition: G(X) is a primitive polynomial of degree m means that G(X) divides $X^{N} + 1$ for $N=2^{m}-1$ and not for any smaller value of N.

The CRC polynomials are often of the form (1+X) times a primitive polynomial; for example, the 12-bit CRC polynomial is $(X^{11}+X^2+1)(X+1)$. The first factor is a primitive polynomial and produces a cyclic code with N=2¹¹-1=2047.

The extra factor (X+1) in the polynomial makes the FCS of length 12 rather than 11, with the same N=2047 so that k=2035. The 12-bit CRC polynomial also exactly divides $X^{N}+1$ for N=2047, because (X+1) always divides any $X^{N}+1$.