Identifying maximal rigid components in bearing-based localization

Ryan Kennedy
Oleg Naroditsky
Kostas Dandiilidis
Camillo J. Taylor

University of Pennsylvania
Network localization

- Low-cost sensors are becoming more available

- Used in many monitoring applications
 - Environmental (floods, pollution, climate change, etc.) (Hart and Martinez, 2006)
 - Surveillance (He et al., 2006)

- Useless without location of sensors
 - GPS can be expensive/unreliable
Camera network localization

- Each camera can see a subset of others
- Camera can only measure \textit{angles}, not distance
- What can we say about the \textit{global} layout of cameras based on \textit{local} measurements?
Two situations

1. Global coordinate frame (e.g., each node has a compass)

2. No global coordinate frame
Two questions

1. Based on only local angle measurements can we determine the possible ways that network is organized?

2. Solutions may not be unique; can we find subnetworks which have a unique (up to scale and translation) solution?

• We can find a unique solution for these subnetworks

• Tells us where we need to add more constraints
Global coordinate frame

- All nodes have access to a **global reference frame**
- Angles are measured with respect to this reference
Global coordinate frame

- Each angle measurement can be written as a **linear constraint**
 \[a_i^T x = 0 \]

- All such constraints can be written as
 \[Ax = 0 \]

- **Solution**: any vector in the **null space** of \(A \)

- (Brand et. al, 2004) showed that with noise, the optimal solution is given by the eigenvectors corresponding to the smallest eigenvalues of \(A \)
Solution may not be unique

- Multiple connected components
- Co-linear constraints:
Solution may not be unique

• Can we determine which subproblems are rigidly-constrained?

• Such subnetworks have a unique solution (up to scale and translation)

• Tells us where to add more constraints
Finding rigid components

1. Find null space of the constraint matrix
 - Represents all possible solutions

2. Which nodes must be scaled together to still be a solution?
 - We show this can be done by manipulating the null space matrix
Rigidly-constrained subproblems

- **Scenario I**: Random points in the plane

- **Scenario II**: Quadrotor formations
Rigidly-constrained subproblems

Fixed visibility radius

Walls

Pillars

Random points

Quadrotor formations
Rigidly-constrained subproblems
No global coordinate frame

- Nodes don’t know which way they’re facing
- Angles are measured relative to other nodes
No global coordinate frame

• Each angle measurement gives a **quadratic** constraint (not linear like before)

\[x^T M_i x = 0 \quad \forall \quad i \in \{1, \ldots, n\} \]

• Can’t just find null space of constraint matrix

• Why not? Constraint matrices are **not** **positive semi-definite**

• If they were, optimization is convex and we could find a solution easily
Triangle constraints

- **Scenario**: each node in a triangle can see the other two

![Diagram of a triangle with angles θ_i, θ_j, and θ_k.]

- **Constraints**: M_i, M_j, M_k

- **Claim**: it is possible to combine these into a **single** constraint which is **p.s.d.**
Triangle constraints

• **Scenario**: each node in a triangle can see the other two

• **Constraints**: M_i, M_j, M_k

• **Claim**: it is possible to combine these into a **single** constraint which is **p.s.d.**

\[
x^T M_i x = 0
\]
\[
x^T M_j x = 0 \quad \iff \quad x^T M x = 0, \text{ } M \text{ is p.s.d.}
\]
\[
x^T M_k x = 0
\]
Triangle constraints

- **Scenario**: each node in a triangle can see the other two

- **Constraints**: M_i, M_j, M_k

- **Claim**: it is possible to combine these into a single constraint which is p.s.d.

\[
\begin{align*}
x^T M_i x &= 0 \\
x^T M_j x &= 0 \\
x^T M_k x &= 0
\end{align*}
\]

\[
M = \sin \theta_i M_i + \sin \theta_j M_k + \sin \theta_k M_k
\]
Triangle constraints

- Are triangle constraints common?
 - Yes!

- In Euclidean space, if one node can see two others, they are likely to be close enough to see each other as well

- In our experiments with quadrotor formations, 60-99% of all constraints were triangular
Experiments

Random configurations (20 nodes)

<table>
<thead>
<tr>
<th>Noise ($^\circ$)</th>
<th>4m</th>
<th>walls</th>
<th>pillars</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}(-1, 1)$</td>
<td>2.265 ± 0.384 mm</td>
<td>69.04 ± 255.6 mm</td>
<td>19.45 ± 133.6 mm</td>
</tr>
<tr>
<td>$\mathcal{N}(0, 0.5^2)$</td>
<td>1.952 ± 0.302 mm</td>
<td>79.59 ± 285.9 mm</td>
<td>7.747 ± 26.16 mm</td>
</tr>
<tr>
<td>$\mathcal{N}(0, 0.3^2)$</td>
<td>1.172 ± 0.187 mm</td>
<td>8.576 ± 28.97 mm</td>
<td>1.901 ± 1.932 mm</td>
</tr>
<tr>
<td>$\mathcal{N}(0, 0.1^2)$</td>
<td>0.379 ± 0.052 mm</td>
<td>10.60 ± 91.33 mm</td>
<td>0.802 ± 1.289 mm</td>
</tr>
</tbody>
</table>

| Proportion triangular | 0.98 | 0.84 | 0.80 |

Quadrotor configurations

<table>
<thead>
<tr>
<th>Noise ($^\circ$)</th>
<th>4m</th>
<th>walls</th>
<th>pillars</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}(-1, 1)$</td>
<td>2.720 ± 0.747 mm</td>
<td>16.25 ± 73.45 mm</td>
<td>10.71 ± 53.41 mm</td>
</tr>
<tr>
<td>$\mathcal{N}(0, 0.5^2)$</td>
<td>2.337 ± 0.701 mm</td>
<td>20.25 ± 80.02 mm</td>
<td>7.949 ± 38.75 mm</td>
</tr>
<tr>
<td>$\mathcal{N}(0, 0.3^2)$</td>
<td>1.408 ± 0.403 mm</td>
<td>11.68 ± 58.78 mm</td>
<td>2.918 ± 5.136 mm</td>
</tr>
<tr>
<td>$\mathcal{N}(0, 0.1^2)$</td>
<td>0.470 ± 0.139 mm</td>
<td>1.793 ± 4.961 mm</td>
<td>1.099 ± 3.271 mm</td>
</tr>
</tbody>
</table>

| Proportion triangular | 0.99 | 0.86 | 0.85 |
Heterogeneous networks?

• What if only some nodes have a shared coordinate frame?

• Triangle constraints = p.s.d. quadratic constraints

• We can write our p.s.d. quadratic constraints as linear constraint! Just like before

• Can potentially combine constraints from nodes with and without a global coordinate frame to optimize heterogeneous networks
Summary

• **Global coordinate frame**: can identify components that are rigidly-constrained

• **No global coordinate frame**: can efficiently find solutions for sets of triangular constraints

• **Heterogeneous networks**: can be solved by combining both types of linear constraints