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Methods discussed here are applicable to
general real-time embedded systems
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Inside the box...
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A complete system
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1. Streaming application tasks

Application

1QDCT

Luminance

Color
Conversion

Run-Level

Encoding

Chrominance

1QDCT

DCT : Discrete Cosine Transform and Quantisation
IQDCT : Inverse Quantisation Discrete Consine Transform




2. Heterogeneous computing
and memory resources

Application
RTOS-APIs
RTOS
Drivers
Core Timers [Image Coprocessor} [DSPJ
I/0 Int Bus

IS

[ CAN Interface }




3. Heterogeneous RTOS scheduling
and synchronization protocols

Application
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4. Heterogeneous communication resources

Application
RTOS-APIs
RTOS
Drivers
I/0 Int Bus

 Topology (ring, mesh, star)
» Switching strategies (packet, circuit)

* Routing strategies
(static, dynamic, reconfigurable)

« Arbitration policies (dynamic, TDM, CDMA)
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The Design Problem

Build a system from subsystems
| that satisfy the application’s

Applicatit

TZII‘Dget Pi requirements and resource

(e constraints
Image C«
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RISC

[ CAN Interface } Dynamic Static @
Fixed Priority
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The Design Process

Application Architecture
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The Performance Analysis Problem

Application Architecture
TN
Allocation
Mapping :'
i Scheduling
! * ¢ Compute/verify the
performance
Vo Performance | | properties of the
oo Analysis
Vo ¢ ) system model
™ Design Space
Exploration
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e.g. Architecture of a Picture-in-Picture App.

PE
PE; >
. . , b, B,
input video @ s’ )
— > > >
stream s, IQ .
Output
b B Device
input video @ S5 2 2
— > — —
stream s, IQ ‘
PE,

Maximum fill-level (backlog) of the buffers?
Maximum end-to-end delay of the stream?
Characteristics of the output stream?

Characteristics of the remaining resource?
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Key Challenges: Complex Event Streams
PE3
input video s’ b1 B )
streams; | _’@ — _’ ’
Output
@

PE,

input video - b B2 Device
streams, | . ‘e —> _’ 1
PE>
* Infinite sequence of items (events)
* Highly bursty
* Events of multiple types interleaving
* Varied memory and execution demands
* Historically dependent or dynamically controlled
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Key Challenges: Complex Tasks &
Architectures

* Complex processing semantics
— fill-level of the buffers
— execution of an internal automaton
— synchronization between different streams

* Heterogeneous computing and communication
resources

* Various scheduling policies
— EDF, Fixed-Priority, TDMA, etc.
— complex state-dependent scheduling schemes

&



Complex Trade-offs
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Throughput e Memory Size

Computational

Demand
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Two Categories of Performance Analysis

An input trace ——

Simulation

Analysis bound

L

» An output trace

e.g. A set of input traces

1 1

An abstract
input model

Hybrid of
Simulation &
Formal Analysis

Formal
Analysis

» Analysis bound
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Simulation vs Formal Analysis

analysis bound

>

Our focus!

actual worst case

Real
System

actual best case
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Formal Analysis Overview
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Formal Analysis Overview
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Resource Model
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Processing
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How event streams arrive

and its characteristics
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Formal Analysis Overview
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Formal Analysis Overview
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Input Streams Output Streams
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Concrete System

Performance Model

Resource Model
(input)

Processing
Model
How events are Resource Model
scheduled and pr0cessed (remaining)
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Formal Models and Analysis Methods

] Standard Event Models (SEM)

— periodic, periodic with jitter/burst and
variations

é’ Simple, easy to analyze
@ Unrealistic assumptions

($ Too restrictive
($ Overly pessimistic results
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2 Real-Time Calculus (RTC)
— streams & resources: count-based abstraction

— analysis: (min,+) algebra

é’ Capture burstiness of streams &
resource availability

& Highly efficient

@ Cannot model state-dependencies
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3 Timed Automata
— model streams at very detailed level

= capture exact arrival time of each event

é’ Models state-dependencies

é’ Highly accurate

$ Too detailed = large models

($ Large systems = inefficient
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4 Event Count Automata (ECA)

— syntax: similar to Timed Automata
— semantics: count-based abstraction

= capture #events in an interval of time

é’ Models state-dependencies
é’ Highly accurate

($ Large systems = inefficient
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5 Hybrid Models and Methods
— RTC + SEM
-~ RTC + ECA
— Multi-Mode RTC

é’ Good accuracy-efficiency trade-off
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The rest of the talk...

Formal Analysis using

Real-Time Calculus
(RTC)
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RTC Background

* QOriginated from Network Calculus in computer
networks domain

— extended for real-time embedded systems

* Worst-case deterministic formal analysis

— variant of classical queuing theory
* Abstract models: count-based abstraction

* Analysis: min-plus / max-plus algebra
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RTC Performance Model
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Input Streams Output Streams

Concrete System

Performance Model

Resource Model
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. Processin
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An Arrival Pattern

# events
A
R(t) = number of events that arrive in [0,1)

10 |

- R(t)

ﬁ I
5 |

» 1

T T T

#events that arrive in [t, t+A) is: R(t+A) - R(f)
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Count-based Abstraction

sliding window size

Lower Upper A set of arrival patterns

bound bound

"1, | 4 ot ottty

> 3 | & tr mrr trt,

e

concrete time instant

—>
A=1
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Load Model: Arrival Functions
o = (a!,aY)

A set of arrival patterns

t t f t#Ht
Mt tfr,
- 3

An arrival pattern R(t) satisfies o iff
o(A) = R(t+A) - R(t) = a4(A)
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A Service Pattern

# ev§nts
- C(f) = number of events that
- can be processed in [0,t)
10 {
- C(?)
i [
51

T

#events that can be processed in [t, t+A) is: C(t+A) - C(f)
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Service Model: Service Functions

B=(p' B")
A set of service patterns

t t f t#Ht
it ot frr,

A service pattern C(t) satisfies f3 iff
BI(A) = C(t+A) - C(t) < B4(A)
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Units of Arrival and Service Functions

* [R(f), a(A)] and [C(©), B(A)] can also be specified
In terms of the number of resource units

— processor cycles, transmiting bit, etc.

* Should always convert to the same unit before

performing analysis
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