Schedulability Analysis
of
AADL Models

Insup Lee
University of Pennsylvania
Duncan Clarke
Fremont Associates

Overview

+ AADL modeling language

- Why is it useful and what it has
* Formal schedulability analysis

- Introduction fo ACSR

- Modeling task sets
* Translating AADL into ACSR

2/16/09 E@E WPDRTS 2006 RTE

Embedded system architectures

* Both hardware and software aspects are
important

- Increasingly distributed and heterogeneous
* Analysis is important
- Fast design space exploration

- Some behavioral information needed for
analysis

- Tight resource and timing constraints
* Multimodal behaviors
- E.g., fault recovery

2/16/09 E@% WPDRTS 2006 RTE

AADL — ADL for embedded systems

* Architecture Analysis and Design Language

* Oriented towards modeling embedded and real-
Time systems

- Hardware and software components
* Threads, data, processors, buses, memory

- Control, data, and access connections

- Semi-formal execution semantics in terms of
hybrid automata

« SAE standard AS-5506

2/16/09 Eémé WPDRTS 2006 RTE

Component interfaces (types)

- Features

- Points for external connections
- E.g., data ports

* Flows
- End-to-end internal connections
- Properties
- Attributes useful for analysis

2/16/09 @ WPDRTS 2006 RTE

Component implementations

* Internal structure of the component
- Subcomponents are type references
- Connections conform with flows in the type

- External features
conform with the
type

- Internal features
conform with
subcomponent
types

2/16/09 E@E WPDRTS 2006 RTE

Features and connections

- Communication
- Ports and port groups
- Port connections

+ Resource access
- Required and provided access

- Access connections
« Control : i E :

- Subprogram features
- Parameter connections

I

2/16/09 E@% WPDRTS 2006 RTE

Thread components

* Thread represents a sequential flow of control
- Can have only data as subcomponents
* Threads are executable components

- Execution goes through a number of states
* Active or inactive

- Behaviors are specified by hybrid automata

2/16/09 Eémé WPDRTS 2006 RTE

Thread states

Thread

InitializeComplete:

itMode:

~

Dispatch-

Suspended
Complete;

Recovered:

ver

Courtesy Peter Feiler

0
Terminate:
D Thread State
Thread State with Finalize | Fi Thread
Source Code
Execution
Lo

2/16/09 WPDRTS 2006

executing

unblock on
releaseResourcp

bort
iProces

Awaiting
resource
de=0

running
de=1

error

on all outgoing edges:
assert ¢= Deadline

2/16/09 WPDRTS 2006

&

Auwvaiting call server % Max(Exeoution_Time) Gntocteq
return suhnornmram
8e=0 ackground
exit(Mode)
Awaiting
resume 7 ¢ = Min(Efecution_Time)
Ge=0
complete

Thread dispatch

* Periodic threads are dispatched periodically
- Event arrivals are queued

* Non-periodic threads are dispatched by
incoming events
* Pre-declared ports
- Event in port Dispatch
* If connected, all other events are queued
- Event out port Complete
Can implement precedence ! Dispat hl' 2 ",

f Complete

-_——

2/16/09 E@% WPDRTS 2006 RTE

Component properties

* Thread
- Dispatch protocol
« periodic, aperiodic, sporadic, or background
- Period
* For periodic and sporadic threads
- Execution time range and deadline

« for all execution states separately
(initialize, compute, activate, etc.)

* Processor
- Scheduling protocol

2/16/09 Eémé WPDRTS 2006 RTE

Component bindings

- Software components are bound fo platform
components

* Binding mechanism:
- Properties specify allowed and actual
bindings

+ Allows for exploration of design alternatives

A/
processor ‘

2/16/09 @ WPDRTS 2006 RTE

Formal schedulability analysis

« Translation of AADL model into ACSR

 R——

State space
(— —— 7 | Scheduling_protocol => exploration

["processor ||| eor

2/16/09 E@E WPDRTS 2006 RTE

Modeling basics: events and actions

* Process: a modeling unit
- Steps of a process
- (Logically) instantaneous events
- Timed actions
* Events are used for communication
- Inputs, outputs, and internal: a? b! ©
» Actions require resource access
- Take one or more units of time

2/16/09 E@% WPDRTS 2006 RTE

Modeling basics: processes

« Sequential execution 20

- P, performs an event o °
and becomes P;’;

P, performs an action

{compute}
and becomes P,
* Choice of steps
. ?
- P, can input an event i
or idle ‘o‘a
{3
{compute}

2/16/09 E@E WPDRTS 2006 RTE

Modeling basics: time progress

» Timing model
- Time is global

- All concurrent processes need fo pass time
together

- Passing time is an explicit choice
* P; cannot pass time, but P, can

go? go?
E 3 {1 ‘
{compute} {compute}
2/16/09 E@ﬁ WPDRTS 2006 RTE

Timeouts and interrupts

» Execution can be abandoned by time progress
or external events

gO? bnax °
{compute} .

2/16/09 E@E WPDRTS 2006 RTE

Task skeleton

A preemptable task T with execution time
[Cminfcmax]

Ty

{
Await_
Dispatch

| (opua

2/16/09 @ WPDRTS 2006 *¥RTE

Task skeleton

* A non-preemptable task T with execution time
[Cminrcmax]

{}
T dispatch?

e=0,t=0
Await_
Dispatch

[(epud

2/16/09 @ WPDRTS 2006 *RTE

10

Task activation

* An activator process invokes the task and
keeps track of deadlines

- Periodic activation dispatch!

with period p and
deadline = period m O

- Aperiodic activation by the completion of
task T with deadline d

{ } complete,? dispatch! ‘ 0
o e
0

2/16/09 WPDRTS 2006 RTE

34

Parallel composition

+ Event synchronization

go!
[
Crar)—
- Time synchronization

{cpu} {bus}
[
@ {cpu,bus} @

WPDRTS 2006 RTE

go?

2/16/09

3

11

Resource conflicts

- Resources are used exclusively

GG 1 OGO

X

- Alfernatives must be provided

{cpu}
||
H {cpu,bus} @

b
Mus} @
2/16/09 E@ﬁ oS 2006 RTE

{bus}

{epuj

Priorities and preemption

- Access to resources in action steps and to
event channels is controlled by priorities:

{(r1.p)(r2P2)} (e?,p)
* Preemption relation on events and actions -

- {(Cpual)a(busaz)} - {(cpu,Z)}
— {(cpu,1),(bus,2)} - (7,1)

e CONRE D O

))

@ {(cpu,2)} @

2/16/09 E@E WHDRTS 2006 RTE

Scheduling with priorities

* Priorities in a task reflect scheduling policy
- Static or dynamic priorities
- A task with EDF priorities:

t=t+1 {}

e<c,. 1
Computeeyt -

t=t+le=e+l

’ dispatch?

{
Await
Dispatch

{epu }
complete,!
{cp1}
2/16/09 E@% WPDRTS 2006 RTE

Enforcing progress: resource closure

* Resource-constrained progress
- Processes should not wait unnecessarily

* Ina closed system, processes have exclusive
use of system resources

{(cpu, 1)} {(cpu,2)}
@G | -
{} {}
{(cpu2)}
R = Yo

T (epu0)}

2/16/09 Eémé WPDRTS 2006 RTE

13

Schedulability analysis

- Detect two kinds of problems:

- Resource conflicts

- Timing violations
* Schedulable systems are deadlock-free
* Analysis method:

- Deadlock detection

- Efficient methods for state-space
exploration exist

- Execution trace to a deadlocked state is
produced

2/16/09 E@% WPDRTS 2006 RTE

Translation of AADL into ACSR

* For each thread
- generate skeleton
* thread states
* resources and dependencies (thread connections)
- populate skeleton
* timing: period, deadlines (thread properties)
- events to raise (out event connections)
- generate activator (dispatch policy property)

* For each processor
- generate priorities for mapped threads
« scheduling policy (processor property)

2/16/09 Eémé WPDRTS 2006 RTE

14

Summary

+ AADL models hardware/software
architectures for embedded systems

* Formal modeling based on ACSR allows
schedulability analysis of different task models
and scheduling approaches

- Complicated precedence constraints

- Static and dynamic priorities, priority
inheritance, etc.

- End-to-end timing constraints

2/16/09 E@% WPDRTS 2006 RTE

15

