
1

Schedulability Analysis
of

AADL Models

Oleg Sokolsky Insup Lee
University of Pennsylvania

Duncan Clarke
Fremont Associates

2/16/09 WPDRTS 2006

Overview
•  AADL modeling language

– Why is it useful and what it has
•  Formal schedulability analysis

–  Introduction to ACSR
– Modeling task sets

•  Translating AADL into ACSR

2

2/16/09 WPDRTS 2006

Embedded system architectures
•  Both hardware and software aspects are

important
–  Increasingly distributed and heterogeneous

•  Analysis is important
–  Fast design space exploration

•  Some behavioral information needed for
analysis

•  Tight resource and timing constraints
•  Multimodal behaviors

–  E.g., fault recovery

2/16/09 WPDRTS 2006

AADL – ADL for embedded systems
•  Architecture Analysis and Design Language
•  Oriented towards modeling embedded and real-

time systems
– Hardware and software components

•  Threads, data, processors, buses, memory
–  Control, data, and access connections

•  Semi-formal execution semantics in terms of
hybrid automata

•  SAE standard AS-5506

3

2/16/09 WPDRTS 2006

Component interfaces (types)
•  Features

–  Points for external connections
•  E.g., data ports

•  Flows
–  End-to-end internal connections

•  Properties
–  Attributes useful for analysis

2/16/09 WPDRTS 2006

Component implementations

•  Internal structure of the component
–  Subcomponents are type references
–  Connections conform with flows in the type
–  External features

conform with the
type

–  Internal features
conform with
subcomponent
types

4

2/16/09 WPDRTS 2006

Features and connections

•  Communication
–  Ports and port groups
–  Port connections

•  Resource access
–  Required and provided access
–  Access connections

•  Control
–  Subprogram features
–  Parameter connections

2/16/09 WPDRTS 2006

Thread components
•  Thread represents a sequential flow of control

–  Can have only data as subcomponents
•  Threads are executable components

–  Execution goes through a number of states
•  Active or inactive

–  Behaviors are specified by hybrid automata

5

2/16/09 WPDRTS 2006

Suspended

Initialized
Thread

Inactive

Uninitialized
Thread

Active

DeactivateComplete:

ActiveIn
NewMode:

Terminate:

Terminated
Thread

Dispatch:

Complete:

Fault:
Recovered:

InitializeComplete:

ActiveInInitMode: InactiveInInitMode:

InactiveInNewMode:

ActivateComplete:

FinalizeComplete: Thread State with
Source Code
Execution

Initialize

Activate

Deactivate

Finalize

Compute

Recover

Thread State

Repaired:

Thread states

Courtesy Peter Feiler

2/16/09 WPDRTS 2006

Thread Hybrid Automata

6

2/16/09 WPDRTS 2006

•  Periodic threads are dispatched periodically
–  Event arrivals are queued

•  Non-periodic threads are dispatched by
incoming events

•  Pre-declared ports
–  Event in port Dispatch

•  If connected, all other events are queued
–  Event out port Complete

•  Can implement precedence
T2 T1

Thread dispatch

Complete

Dispatch 100ms

2/16/09 WPDRTS 2006

Component properties
•  Thread

–  Dispatch protocol
•  periodic, aperiodic, sporadic, or background

–  Period
•  For periodic and sporadic threads

–  Execution time range and deadline
•  for all execution states separately

(initialize, compute, activate, etc.)
•  Processor

–  Scheduling protocol

7

2/16/09 WPDRTS 2006

Component bindings
•  Software components are bound to platform

components
•  Binding mechanism:

–  Properties specify allowed and actual
bindings
•  Allows for exploration of design alternatives

data

memory

thread

processor bus

2/16/09 WPDRTS 2006

Formal schedulability analysis
•  Translation of AADL model into ACSR
•  Search for deadlocks in ACSR model

processor

T1

T2

T3

Scheduling_protocol =>
EDF

10ms

10ms

State space
exploration

8

2/16/09 WPDRTS 2006

Modeling basics: events and actions
•  Process: a modeling unit
•  Steps of a process

–  (Logically) instantaneous events
–  Timed actions

•  Events are used for communication
–  Inputs, outputs, and internal: a? b! τ

•  Actions require resource access
–  Take one or more units of time

2/16/09 WPDRTS 2006

Modeling basics: processes
•  Sequential execution

–  P1 performs an event
and becomes P1’;
P1’ performs an action
and becomes P1

•  Choice of steps
–  P2 can input an event

or idle

P1 P1’

go?

{compute}

P2 P2’

go?

{compute}
{ }

9

2/16/09 WPDRTS 2006

Modeling basics: time progress
•  Timing model

–  Time is global
– All concurrent processes need to pass time

together
–  Passing time is an explicit choice

•  P1 cannot pass time, but P2 can

P1 P1’

go?

{compute}

P2 P2’

go?

{compute}
{ }

2/16/09 WPDRTS 2006

Timeouts and interrupts
•  Execution can be abandoned by time progress

or external events

P2 P2’

go?

{compute}
{ }

Pt

Pi

stop?

tmax

10

2/16/09 WPDRTS 2006

Task skeleton
•  A preemptable task T with execution time

[cmin,cmax]

2/16/09 WPDRTS 2006

Task skeleton
•  A non-preemptable task T with execution time

[cmin,cmax]

11

2/16/09 WPDRTS 2006

Task activation
•  An activator process invokes the task and

keeps track of deadlines
–  Periodic activation

with period p and
deadline = period

– Aperiodic activation by the completion of
task T’ with deadline d

2/16/09 WPDRTS 2006

Parallel composition
•  Event synchronization

•  Time synchronization

P1 P1’
go!

P2 P2’
go?

||

P1||P2 P1’||P2’
τ

P1 P1’
{cpu}

P2 P2’
{bus}

||

P1||P2 P1’||P2’
{cpu,bus}

12

2/16/09 WPDRTS 2006

Resource conflicts
•  Resources are used exclusively

•  Alternatives must be provided

P1 P1’
{cpu}

P2

P2’
{bus}

||

P1||P2

P1’||P’2 {cpu,bus}

P1 P1’
{cpu}

P2 P2’
{cpu}

||

X

P2’’ {cpu} { }

P1||P2’’

P1||P’2
{cpu}

{bus}

2/16/09 WPDRTS 2006

Priorities and preemption
•  Access to resources in action steps and to

event channels is controlled by priorities:
{(r1,p1),(r2,p2)} (e?,p)

•  Preemption relation on events and actions -
–  {(cpu,1),(bus,2)} - {(cpu,2)}
–  {(cpu,1),(bus,2)} - (τ,1)

P1 P1’
{(cpu,1)}

||
{ }

P2 P2’
{(cpu,2)}

{ }

P1||P2 P1||P2’
{(cpu,2)}

{ }

13

2/16/09 WPDRTS 2006

Scheduling with priorities
•  Priorities in a task reflect scheduling policy
•  Static or dynamic priorities

– A task with EDF priorities:

2/16/09 WPDRTS 2006

Enforcing progress: resource closure
•  Resource-constrained progress

–  Processes should not wait unnecessarily
•  In a closed system, processes have exclusive

use of system resources

P1 P1’
{(cpu,1)}

||
{ }

P2 P2’
{(cpu,2)}

{ }

P1||P2 P1||P2’
{(cpu,2)}

{(cpu,0)}

[]{cpu}

[]{cpu}

14

2/16/09 WPDRTS 2006

Schedulability analysis
•  Detect two kinds of problems:

–  Resource conflicts
–  Timing violations

•  Schedulable systems are deadlock-free
•  Analysis method:

–  Deadlock detection
–  Efficient methods for state-space

exploration exist
–  Execution trace to a deadlocked state is

produced

2/16/09 WPDRTS 2006

Translation of AADL into ACSR
•  For each thread

–  generate skeleton
•  thread states
•  resources and dependencies (thread connections)

–  populate skeleton
•  timing: period, deadlines (thread properties)
•  events to raise (out event connections)

–  generate activator (dispatch policy property)
•  For each processor

–  generate priorities for mapped threads
•  scheduling policy (processor property)

15

2/16/09 WPDRTS 2006

Summary
•  AADL models hardware/software

architectures for embedded systems
•  Formal modeling based on ACSR allows

schedulability analysis of different task models
and scheduling approaches
–  Complicated precedence constraints
–  Static and dynamic priorities, priority

inheritance, etc.
–  End-to-end timing constraints

