
1

Architecture
Modeling and Analysis

for
Embedded Systems

Oleg Sokolsky

CIS700
Fall 2005

9/19/2005 Architecture modeling with AADL 2 of 40

Overview

•  Background
–  Architecture description languages
–  Embedded and real-time systems

•  AADL: ADL for embedded systems
•  Analysis of embedded systems with AADL

2

9/19/2005 Architecture modeling with AADL 3 of 40

Architecture vs. behavior

•  How it is constructed vs. what does it do?

•  Traditionally, behavior was considered more important

9/19/2005 Architecture modeling with AADL 4 of 40

Software and hardware architectures

•  Software architecture:
–  fundamental organization of a system,

embodied in its components,
–  their relationships to each other and the

environment, and
–  principles governing its design and evolution

•  Hardware architecture:
–  Interfaces for attaching devices
–  Instruction set architecture

3

9/19/2005 Architecture modeling with AADL 5 of 40

Components, ports, and connections

•  Components are boxes with interfaces
•  Component interfaces described by ports:

–  Control
–  Data
–  Resources

•  Connections establish control and data flows
•  The nature of components may be abstracted

– Hardware or software, or hybrid

9/19/2005 Architecture modeling with AADL 6 of 40

Software ADLs

•  Wright
–  Connector-based: CSP connector semantics
–  Configuration and evolution support

•  ACME
–  Interchange format: weak semantics or

constraint enforcement, little analysis
•  MetaH

–  Strong component semantics
–  Specification of non-functional properties

4

9/19/2005 Architecture modeling with AADL 7 of 40

Overview

•  Background
–  Architecture description languages
–  Embedded and real-time systems

•  AADL: ADL for real-time systems
•  Analysis of embedded systems with AADL

9/19/2005 Architecture modeling with AADL 8 of 40

Embedded system architectures

•  Both hardware and software aspects are
important
–  Increasingly distributed and heterogeneous

•  Tight resource and timing constraints
•  Multimodal behaviors

–  Some components are active only in certain
circumstances
•  E.g., fault recovery

•  Analysis is important

5

9/19/2005 Architecture modeling with AADL 9 of 40

Real-time systems

•  The science of system development under
resource and timing constraints
–  System is partitioned into a set of

communicating tasks
–  Tasks communicate with sensors, other

tasks, and actuators
•  Impose precedence constraints

s
s

s

Task 1

Task 2

Task 3

Task 4

a

a

9/19/2005 Architecture modeling with AADL 10 of 40

Task execution

•  Tasks are invoked periodically or by events
– Must complete by a deadline

•  Tasks are mapped to processors
•  Tasks compete for shared resources

–  Resource contention can violate timing
constraints

dormant
running preempted

blocked invoked

invoke

complete

6

9/19/2005 Architecture modeling with AADL 11 of 40

Real-time scheduling
•  Processor scheduling

–  Task execution is preemptable
–  Tasks assigned to the same processor are

selected according to priorities
–  Priorities are assigned to satisfy deadlines

•  Static or dynamic
•  Resource scheduling

– Mutual exclusion
• Often non-preemptable

–  Correlated with processor scheduling

9/19/2005 Architecture modeling with AADL 12 of 40

Overview

•  Background
–  Architecture description languages
–  Embedded and real-time systems

•  AADL: ADL for real-time systems
•  Analysis of embedded systems with AADL

7

9/19/2005 Architecture modeling with AADL 13 of 40

AADL highlights

•  Architecture Analysis and Design Language
•  Oriented towards modeling embedded and real-

time systems
– Hardware and software components
–  Control, data, and access connections

•  Formal execution semantics in terms of hybrid
automata

•  SAE standard AS-5506

9/19/2005 Architecture modeling with AADL 14 of 40

Platform components
•  Processor

•  Memory

•  Bus

•  Device

AADL components

Software components
•  Thread

•  Thread group

•  Data

•  Subprogram

•  Process System components
•  System process

System

data

device

bus

processor

memory
thread group

subroutine

thread

8

9/19/2005 Architecture modeling with AADL 15 of 40

Component interfaces (types)

•  Features
–  Points for external connections

•  E.g., data ports

•  Flows
–  End-to-end internal connections

•  Properties
–  Attributes useful for analysis

9/19/2005 Architecture modeling with AADL 16 of 40

Component implementations

•  Internal structure of the component
–  Subcomponents are type references
–  Connections conform with flows in the type
–  External features

conform with the
type

–  Internal features
conform with
subcomponent
types

9

9/19/2005 Architecture modeling with AADL 17 of 40

Features and connections

•  Communication
–  Ports and port groups
–  Port connections

•  Resource access
–  Required and provided access
–  Access connections

•  Control
–  Subprogram features
–  Parameter connections

9/19/2005 Architecture modeling with AADL 18 of 40

Ports and port groups

•  Ports are typed
–  Data component types

•  Ports are directional
–  Input, output, or bi-directional

•  Synchronous or asynchronous communication
–  Event, data, or event data ports

•  Input event and event data ports have queues
•  Input data ports have status flags for new data

10

9/19/2005 Architecture modeling with AADL 19 of 40

Data components

•  Data component types represent data types
•  Data component type can have subprogram

features that represent access methods
•  Data component implementations can have data

subcomponents that represent internal data of
an object

•  Data component types can also be used as types
of data ports and connections

9/19/2005 Architecture modeling with AADL 20 of 40

Thread components

•  Thread represents a sequential flow of control
–  Can have only data as subcomponents

•  Threads are executable components
–  Execution goes through a number of states

•  Active or inactive
–  Behaviors are specified by hybrid automata

11

9/19/2005 Architecture modeling with AADL 21 of 40

Suspended

Initialized
Thread

Inactive

Uninitialized
Thread

Active

DeactivateComplete:

ActiveIn
NewMode:

Terminate:

Terminated
Thread

Dispatch:

Complete:

Fault:
Recovered:

InitializeComplete:

ActiveInInitMode: InactiveInInitMode:

InactiveInNewMode:

ActivateComplete:

FinalizeComplete: Thread State with
Source Code
Execution

Initialize

Activate

Deactivate

Finalize

Compute

Recover

Thread State

Repaired:

Active
Member of current

mode

Inactive
Not member of
current mode

Thread states

9/19/2005 Architecture modeling with AADL 22 of 40

Thread Hybrid Automata

12

9/19/2005 Architecture modeling with AADL 23 of 40

Thread properties

•  Dispatch protocol
–  periodic, aperiodic, sporadic, or background

•  Period
–  For periodic and sporadic threads

•  Execution time range and deadline
–  for all execution states separately

(initialize, compute, activate, etc.)

9/19/2005 Architecture modeling with AADL 24 of 40

•  Periodic threads are dispatched periodically
–  Event arrivals are queued

•  Non-periodic threads are dispatched by
incoming events

•  Pre-declared ports
–  Event in port Dispatch

•  If connected, all other events are queued
–  Event out port Complete

•  Can implement precedence T2 T1

Thread dispatch

Complete

Dispatch 100ms

13

9/19/2005 Architecture modeling with AADL 25 of 40

Subprograms

•  Data subprograms are features of data
components

•  Server subprograms are features of threads
•  Represent entry points in executable code
•  No static data

–  External data access through parameter and
access connections

•  Data subprograms are called within a process
•  Server subprograms are called remotely

9/19/2005 Architecture modeling with AADL 26 of 40

Other software components

•  Process
–  Represents virtual address space
–  Provides memory protection

•  Thread group
– Organization of threads within a process
–  Can be recursive

•  Subprogram
–  Represents entry points in executable code
–  Calls can be local or remote

14

9/19/2005 Architecture modeling with AADL 27 of 40

Platform components

•  Processor
–  Abstraction of scheduling and execution
– May contain memory subcomponents
–  Scheduling protocol, context switch times

•  Memory
–  Size, memory protocol, access times

•  Bus
–  Latency, bandwidth, message size

9/19/2005 Architecture modeling with AADL 28 of 40

Port connections revisited

•  Event connections support n-n connectivity
•  Data connection support 1-n connectivity

– One incoming,
multiple outgoing

15

9/19/2005 Architecture modeling with AADL 29 of 40

Port connections revisited

•  Semantic port connection
–  Ultimate source to ultimate destination

•  Thread, processor, or device
•  Type checking of connections

–  Directions and types must match

9/19/2005 Architecture modeling with AADL 30 of 40

Immediate and delayed connections

•  Data connections between periodic threads

T1 T2
10ms 10ms

T1 T2
10ms 10ms

T2

T1

T2

T1

16

9/19/2005 Architecture modeling with AADL 31 of 40

Component bindings

•  Software components are bound to platform
components

•  Binding mechanism:
–  Properties specify allowed and actual

bindings
•  Allows for exploration of design alternatives

data

memory

thread

processor bus

9/19/2005 Architecture modeling with AADL 32 of 40

Putting it all together: systems

•  Hierarchical collection of components

memory
processor

processor
bus

17

9/19/2005 Architecture modeling with AADL 33 of 40

Putting it all together: systems

•  A different perspective on the same system

memory
processor

processor

bus

9/19/2005 Architecture modeling with AADL 34 of 40

Modes

•  Mode: Subset of components, connections, etc.
•  Modes represent alternative configurations

Compute

Estimate

fault

recover

Nominal

Degraded

recover fault

18

9/19/2005 Architecture modeling with AADL 35 of 40

Mode Switch

•  Mode switch can be the ultimate source of an
event connection

•  Switch effects:
–  Activate and deactivate threads
–  Reroute connections

•  Switch can also be local to a thread
–  Change thread parameters

•  Switch takes time:
–  Threads need to be in a legal state
–  Activation and deactivation take time

9/19/2005 Architecture modeling with AADL 36 of 40

Overview

•  Background
–  Architecture description languages
–  Embedded and real-time systems

•  AADL: ADL for real-time systems
•  Analysis of embedded systems with AADL

19

9/19/2005 Architecture modeling with AADL 37 of 40

Static architectural analysis

•  Type checking
–  Types of connected ports
–  Allowed bindings
–  Do all connections have ultimate sources and

destinations
•  Constraint checking

–  Does the size of a memory component
exceed the sizes of data components bound
to it?

9/19/2005 Architecture modeling with AADL 38 of 40

Dynamic architectural analysis

•  Relies on thread semantics
•  Processor scheduling

processor

T1

Scheduling_protocol => RM

Period => 100ms
Compute_Deadline => 100ms
Compute_Execution_Time => [2ms,7ms]

T2

T3

Period => 35ms
Compute_Deadline => 35ms
Compute_Execution_Time => [1ms,5ms]

Period => 20ms
Compute_Deadline => 20ms
Compute_Execution_Time => [200us,500us]

RMA
tool

20

9/19/2005 Architecture modeling with AADL 39 of 40

Dynamic architectural analysis

•  Advanced processor scheduling

processor

T1

T2

T3

Scheduling_protocol =>
Slack_Server

10ms

10ms

State space
exploration

9/19/2005 Architecture modeling with AADL 40 of 40

Summary

•  Architectural modeling and analysis
–  aids in design space exploration
–  records design choices
–  enforces architectural constraints

•  AADL
–  Targets embedded systems
–  Builds on well-established theory of RTS
–  As a standard, encourages tool development

