
1 

1 

System and Language Support 
for Timing Constraints 

Sebastian Fischmeister 
sfischme@seas.upenn.edu 

Department of Computer and Information Science 
University of Pennsylvania 

Modified by Insup Lee for CIS 480/899, Spring 2009 

CIS700-2 S. Fischmeister 2 

Goals 

  Understand different concepts about temporal 
constraints. 

  Understand how temporal constraints can be 
incorporated into a programming language. 

  Discuss how you would design your language.  
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Overview of Temporal Constraints 

CIS700-2 S. Fischmeister 4 

Why Temporal Constraints? 

  A number of control applications puts temporal constraints 
on the control software. 
o  Engine simulation: 1kHz recording frequency over a distributed 

system 
o  Clock synchronization: down to 1 nanosecond 
o  Industrial process control 
o  Drive-by-wire 
o  Anti-lock brakes 
o  Pacemakers 
o  Helicopter control 

  200 Hz pilot stick, 400 Hz sensors, 200 Hz flight control, 1kHz actuator 
electronics 

o  Heating control: 10 seconds 
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Temporal Constraints 

  Real-time is about producing the correct result at 
the right time. 

  Temporal constraints are a way to specify, when the 
value is on time. 

Value Timing Result 

Wrong Too late Failure 

Wrong On time Failure 

Correct Too late Failure 

Correct On time Ok 
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Types of Temporal Constraints 

  Absolute temporal constraints 
o  Measured with respect to a global clock 
o  Xmas tree should light up between 5pm and 7am from November 

27th 2006 until December 27th 2006 

  Relative temporal constraints 
o  Measured with respect to a local clock 
o  The ventilation task should restart in five seconds 

  Timing violation 
o  Occurs when a temporal constraint is violated   
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Types of Temporal Constraints 

  Hard temporal constraints 
  Soft temporal constraints 
  Firm temporal constraints 

  Deterministic temporal constraints 
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Soft Temporal Constraints 

  A soft real-time system is one where the response time is 
normally specified as an average value. This time is normally 
dictated by the business or market.  

  A single computation arriving late is not significant to the 
operation of the system, though many late arrivals might be. 

  Ex:  Airline reservation system - If a single computation is 
late, the system’s response time may lag.  However, the only 
consequence would be a frustrated potential passenger. 
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Hard Temporal Constraints 

  A hard real-time system is one where the response time 
is specified as an absolute value. This time is normally 
dictated by the environment.  

  A system is called a hard real-time if tasks always must finish 
execution before their deadlines or if message always can be 
delivered within a specified time interval. 

  Hard real-time is often associated with safety critical 
applications. A failure (e.g. missing a deadline) in a safety-
critical application can lead to loss of human life or severe 
economical damage. 
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Firm Temporal Constraints 

  In a firm real-time system timing requirements 
are a combination of both hard and soft ones.  
Typically the computation will have a shorter soft 
requirement and a longer hard requirement. 

  Ex:  Ventilator – The system must ventilate a patient 
so many times within a given time period.  But a few 
second delay in the initiation of the patient’s breath 
is allowed, but not more. 
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Deterministic Temporal Constraints 

  In a temporal deterministic real-time system timing 
requirements are a deterministic. An external observer can 
tell the temporal state at any time. 

  A system with deterministic temporal constraints finishes 
execution exactly at the deadline (not before [hard] and not 
about [soft]). 

  Ex. Similar to hard real-time systems, however, temporal 
determinism simplifies guaranteeing compositionality. 
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Real-Time Spectrum 

User 
interface 

Computer  
simulation 

Internet 
video, audio 

Cruise 
control 

Tele 
communication 

Flight 
control 

Electronic  
engine 

Soft RT Hard RT No RT 
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Terminology of Temporal 
Constraints 
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Tasks, Job 

  A task is a piece of code that can be executed many times 
with different input data. (thread or process) 

  A job is an instance of a task. 

computation 

----------- 
--------------- 
-------------- 
-------------- 

release time 

start time 

finishing time 

deadline 

job 
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Parameters 

  Release or Arrival Time (ri)  
o  is the time at which the task becomes ready for execution. 

  Computation time (Ci)  
o  is the time necessary to the processor for executing the task without 

interruption. 

  Deadline (di)   
o  is the time before which a task should be complete to avoid damage 

to the system. 
o  Relative Deadline (Di): Di = di - ri 

  Start time (si)  
o  is the time at which the task starts its execution. 
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Parameters 

  Finishing time (fi)  
o  is the time at which the task finishes its execution. 

  Laxity (Slack time) (Xi)  
o  Xi = di - ri - Ci is the maximum time a task can be delayed on its 

activation to complete within its deadline. 

ri fi si di 

Ci 

t 

Di 

Xi 
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Jitter 

  Jitter refers to the temporal variation of a periodic event 
  E.g. Absolute Finishing  

  Jitter = maxk (fi,k- ri,k) – mink(fi,k - ri,k)  
  E.g. Relative Finishing  

  Jitter = maxk |(fi,k - ri,k) – (fi,k-1 - ri,k-1)| 

fi,1 

t 
fi,2 fi,3 
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Jitter Types 

  Start Jitter 

  Completion Jitter, I/O Jitter 
si,1 

t 
si,2 si,3 

si,1 

t 
si,2 si,3 fi,1 fi,2 fi,3 
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Sampling 

  Sample rejection 
  Vacant sampling 

t 

Process 1 

Process 2 

Rejection Vacant 

t 
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Revisiting RT Types 

Type Jitter Sampling 
Soft RT Positive and negative Rejection and vacant 

sampling 

Hard RT Only negative Rejection 

Firm RT Soft DL: pos. and neg. 
Hard DL: only negative 

Soft DL: rej. and vac. s. 
Hard DL: vacant s. 

Deterministic 
RT 

None None 
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Temporal Constraint Specifications 
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Task Types 

  A periodic task has invocations within regular time 
intervals. 
o  E.g., reading a heat sensor. 

  A sporadic task has unknown arrival times, but have 
bounds such as maximum frequency. 
o  E.g., routinely memory status check. 

  An aperiodic task has an unknown arrival time. 
o  E.g., an emergency shutoff. 
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Frequency, Period 

  Period, frequency: 
o  T1: Period=10ms, Frequency=2 

  Period: 
o  T2: Period=10ms 

  Frequency 
o  T3: Frequency=400Hz 

t [ms] 0 5 10 15 

T1 

T2 

T3 
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Additional Terms 

  Execution time: total time of execution of a specific 
task 

  Elapse time: the task’s execution time + all delays  

  Maximum time constraint: no more than t time units 
will elapse 

  Minimum time constraint: no less than t time units 
will elapse 
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Hyper-Period 

  Hyper-Period is the time span after which the 
system repeats its behavior. 
o  T1: Period=10ms, Frequency=2 
o  T2: Period=10ms 
o  T3: Frequency=400Hz 

o  Hyper period = 10ms 
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Basic Model 
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Example 
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 T1 
 T2 
 T3 

 T4 

1 2 4 6 : 

T1: P=1s 
T2: P=10s 
T3: P=60s 
T4: P=3600s 

Idependent-Digit Clock 

  Consider a clock with each 
digit as an independent task. 
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Properties 

  Timliness is key 
o  Invalid time value displayed 

  Jitter accumulates and causes incorrect display. 

  Value outputs need to be synchronized. 

  Nearly no computation required. 

30 

Implicit Temporal Control 
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Foreground/Background System 

  Using super-loops as the main routine with two levels: the 
task level and the interrupt level. 
o  Task level (aka background): executes modules 
o  Interrupt level (aka foreground): handles asynchronous evens via ISRs. 

  Foreground can preempt the background, thus: 
o  Critical tasks must be in the foreground part. 
o  Task level response = an ISR prepares data for the super-loop. 

  Used for small devices (e.g., microcontrollers in microwaves, 
washers, dryers, radio) 
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Foreground/Background System 
Foreground 
(Interrupt level) 

Background 
(Task level) 

ISR 

ISR 

ISR 

t 

Super-loop 
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Foreground/Background Model 
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Code for the Example 

void main(void) { 
  unsigned short val;  unsigned int i; 

  while ( 1 ) {              
    val = get_curr_sec(); 
    val++; 
    update_display_seconds(val); 

    if (val%60 == 0 ) { 
 // update tens 

    } 
    ... 
    // may have nested loops, if too short 
    i=WHILE_INSTRUCTIONS_PER_SECOND 
    while( --i );   
  } 
} 
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Foreground/Background Properties 

  Simple system/low overhead 
o  No maintenance, basically no “system” at all 

  Difficult to specify temporal behavior 
o  F/B systems require hand tuning to meet a timing criteria; if the 

system is not responsive enough, then the developer will optimize the 
super-loop. 

  Sensitive to changes 
o  Changing a module constantly changes the timing of the super-loop. 
o  Changing code in an ISR changes may change the overall timing 

behavior. 

36 

Programming-Language  
Timing Control
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Type of Specification 

  Program-based temporal constraints 
o  Programmed in the target language. 
o  Often mix program logic and temporal behavior 

  Specification-based temporal constraints 
o  Temporal constraints are specified in a separate language 

(=> Coordination language) 
o  Can be high-level, e.g., task A frq 0.2 

38 

Temporal Scopes 
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Temporal Scopes 

  Source: [Lee1985], the Distributed Programming System (DPS). 
  Temporal scopes and DPS describes a system to specify generic temporal 

constraints at the statement level. 
  The main goals for temporal scopes are: 

o  Provide language constructs for specifying timing constraints, 
o  Apt for distributed systems, 
o  Extend an existing language, and 
o  Run-time monitoring and exception handling. 

  Its properties are:  
o  The program is configured offline. 
o  All processes are created before start-up. 

  No dynamic create of RT processes. 
o  The system has two modes: initialization and operation. 

  Timing support is specification-based. 
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Timing Specification 

  Deadline. The latest time in which the execution of a 
temporal scope can be completed. 

  Minimum delay. The minimum amount of time that 
should pass before starting the execution of a temporal 
scope.  

  Maximum delay. the maximum amount of time that 
should pass before starting the execution of a temporal 
scope.  

  Maximum execution time. The maximum computation 
time necessary for the execution of a temporal scope. 
Maximum elapse time. The maximum execution time 
plus all user-defined delay during the execution of a 
temporal scope. 
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Timing Specification 

Release exe1 Deadline 
t exe2 

Min. delay 

Max. delay 

Gap 

Max. elapse time 

Max. execution time = WCET 
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The Temporal Scope 

  start <delay-part> [ <exe-part> ] [ <dl-part> ] 
do  
   <start-body> 
   [<exceptions>] 
end 

  <delay-part>:==new|at <abs-time>|after <rel-time> 
  <exe-part>:==execute <rel-time>|elapse <rel-time> 
  <dl-part>:==by <abs-time>|within <rel-time> 

  Examples: 
  Start after 10 sec do … end 
  Start at (9h:00m) within 10 sec do … end 
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Repetitive Temporal Scope 

  from <start_time> to <end time> every <period> 
execute <exec_time> within <deadline> do 
<stmts> 
[<exceptions>] 
end 

  Example: 
  from (8h:00m) to (18h:00m) every (0h:30m) 
within 10 sec do 

 relax_eyes() 
end 
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Consecutive Temporal Scope 

  cstart <delay1> [<execute1>] [<deadline1>] do 
  <stmts1> 
  [<exceptions1>] 

  cstart <delay2> [<execute2>] [<deadline2>] do 
  <stmts2> 
  [<exceptions2>] 

  cstart <delayn> [<executen>] [<deadlinen>] do 
  <stmtsn> 
  [<exceptionsn>] 

  end 

  Example: 
  cstart within 2 sec do fill_glass_with_water() 

cstart after 2 sec do empty_glass() end  
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Temporal Scopes Task Life Cycle 
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Temporal Scopes Example 

from 00:00 to 59:59 every 10s execute 20ms within 1s 
do 
  var ctr; 
  ctr=get_cur_tsecs(); 
  ctr=(ctr+1)%6; 
  set_cur_tsecs(ctr); 

  exception 
    display_warning_light(); 
end 
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PEARL 
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PEARL Overview 

  Acronym for Process Automation Real-time Language 
  Aimed to be a high-level programming language with elaborate constructs 

for programming temporal constraints. 

  Developed at the same time as PASCAL, so both share similar syntax. 
  PEARL forbids recursive procedures to eliminate out-of-memory errors. 
  Strong emphasis on the I/O part, because of its target domain. 

  Standardized as DIN 66253 
  PEARL-90 is the revised version 
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PEARL Task Life Cycle 
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Timing Specification 

Examples: 
  ALL 0.00005 SEC ACTIVATE Highspeedcontroller; 
  AT 12:00 ALL 4 SEC UNTIL 12:30 ACTIVATE lunchhour; 
  WHEN fire ACTIVATE extinguish; 
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PEARL Example 

WHEN start ALL 1 sec UNTIL stop ACTIVATE clock_sec; 
WHEN start ALL 10 sec UNTIL stop ACTIVATE clock_tsec; 
WHEN start ALL 60 sec UNTIL stop ACTIVATE clock_min; 
WHEN start ALL 600 sec UNTIL stop ACTIVATE clock_tmin; 

clock_tsec:TASK PRIO 2; 
  DCL ctr INTEGER; 
BEGIN 
  GET ctr FROM DISPLAY_T_ONES; 
  ctr := (ctr+1)%6; 
  PUT ctr TO DISPLAY_T_ONES; 
END 

52 

The ARTS Kernel & 
The Time Fence Protocol 
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Time Fence in the ARTS Kernel 

  Source: [Tokuda, Mercer,1998]. 
  The time-fence protocol allows for temporal constraints in a 

distributed real-time system. The time-fence protocol is built 
into the ARTS kernel. 

  The ARTS kernel aims at distributed real-time systems. 

  The artsobject is the abstraction for computation: 
o  The artsobject has a WCET. 
o  The artsobject minimizes inter-module dependence. 
o  It provides time-encapsulation (however, the designer must guarantee 

this). 

  Timing support is specification-based. 
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Thread Life Cycle 



28 

CIS700-2 S. Fischmeister 55 

Function Life Cycle 
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Specification 

// An example of a real-time thread  
Thread Sample._Artobject::RT_Thread( ) 

//# priority, stack_size, wcet, period, phase, delay  

{ //thread body … 
 ThreadExit( ); 

}  

The implementation also allows for object methods:  
type opt1 (type arg .... );//# within time except opr() 
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Stopwatch Example 

Thread Minutes::RT_Thread( ) //# 2, _, 10ms, 10s, 0, 0s 
{ 
  //thread body 
  int tens_seconds = get_cur_tens_seconds(); 
  tens_seconds= (tens_seconds + 1) % 6; 
  set_cur_seconds(tens_seconds); 

  ThreadExit( ); //reincarnate this thread 
} 
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The Time Fence Protocol 

  The system scheduler checks for transient overloads (not 
enough CPU cycles) and rejects tasks in case of such an 
overload. 

  Each RT computation has a WCET. 
  The time fence uses the deadline to set a timer. 
  The scheduler checks schedulability using the time fence and 

the WCET. 

  Comm can include communication overhead for the 
distributed system. 

Calleewrtv < Callerctv - 2*comm+clockdrift 
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Esterel 
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Synchronous Model 

Event Event 

Synchronous 
Computation 

Synchronous Model 

Event Deadline 

Scheduled 
Computation 

Scheduled Model 

Response 
Time 
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Synchronous Model 

Synchronous Implementation 

Event Deadline 

Scheduled Implementation 

Response 
Time 

Event Event 

Response 
Time 
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Basic Concepts 

  Specification language has been specialized for reactive systems. 
  Reactive system:  

o  In continuous interaction with its environment. 
o  A reaction begins when the system receives an input event and ends when it 

generates the corresponding output event. 
  Black-box approach 

o  Inputs produce outputs, continuously. 

o  Only define relationships between input and output events. 
o  A task may be complex, but: you don‘t care. 

Reactive System Input 
Events 

Output 
Events 

Task A Input 
Events 

Output 
Events 

Task B 
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Basic Concepts 

  Based on synchronous model of time (synchrony hypothesis) 
o  The underlying machine is infinitely fast and, hence, the reaction of the system 

to an input event is instantaneous; in between reactions, the system is idle. 
o  No reaction intervals  only reaction instants  reactions do not overlap. 
o  The synchrony hypothesis simplifies the behavioral specification of reactive 

systems (see the example later on). 
o  Looks flawed, but the machine must  

react to an input event before the  
next input event arrives. 

Event Event 

Response 
Time 
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Basic Concepts 

  Determinism 
o  A non-deterministic system does not have a unique response to a 

given input event  the external observer cannot predict the 
response. 

o  Example: 
  Waiting for 60 seconds and then(??) signal “minute”. 
  Broadcasting the signal, timing delays. 

o  Esterel guarantees determinism 
  All statements and constructs are well defined (syntax and semantics). 
  A compiler checks the program and ensures determinism. 

loop 
  delay 60; B.MINUTE;   (C.MINUTE) 
end 
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Signal Handling: Example 

  Example program: 

pause; 
emit A; 
emit B; 
present B then emit C; end 
pause; 
emit C; A

B 
C 

C 

CIS700-2 S. Fischmeister 66 

Example StopWatch 

module SW1: 
input START, STOP, MS; 
output TIME(integer); 
relation START # STOP; 

var count := 0 : integer 

in 

  await immediate START; 
% weak abort 
  abort 
    every immediate MS do 
       count := count + 1; 
       emit TIME(count); 
    end 
   when STOP 
% pause; 
  sustain TIME(count); 

end var 

end module 

St
T1 T2 T3 

Sp 
T3 

%T4 
T3 

%T4 
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Programmable Logic Controllers 
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Introduction 

  Source: [Bliesener, Ebel, Loeffler, … 1998] 
  Created in 1968 by General Motors with the following goals 

in mind: 
o  Replace relays, 
o  Simple programming (no CS required), 
o  Software instead of hard wiring, 
o  Smaller, cheaper, more reliable than relays, and 
o  Simple and cheap maintenance. 

  5 standardized languages (IEC_61131-3): 
o  FBD (Function Block Diagram), LD (Ladder Diagram), ST (Structured 

Text, Pascal type language), IL (Instruction List) and SFC (Sequential 
Function Chart) 
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The Look of an PLC 

  Internals are similar to a workstation. 
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Operation of an PLC 

  Inputs, which are shorter than one 
cycle, are omitted. 

  A reaction to an input can be two 
cycles late. 

  The PLC program executes 
sequentially, so the instructions’ 
ordering is relevant. 

  Some new PLCs support direct value 
access. 

Buffer Inputs 
(Process image) 

PLC Program 

Buffer Outputs 
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Sequential Function Charts 

SFC Selection Branch SFC Simultaneous Branch 

SFC Sequential configuration 

Q. Var. Label 

Action 

Contents 
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Action Qualifiers 
N Nonstored. Terminate when the step becomes inactive. 
S Set (stored). Continue after the step is deactivated, until the action is reset. 
R Reset. Terminate the execution of an action previously started with the S, SD, 

SL, or DS qualifier. 
L Time Limited. Start when step becomes active and continue until the step 

goes inactive or a set time passes. 
D Time Delayed. Start a delay timer when the step becomes active. If the step 

is still active after the time delay, the action starts and continues until 
deactivated. 

P Pulse. Start when the step becomes Active/Deactive and execute the action 
only once. 

SD Stored and time Delayed Action starts after time delay, continues until reset. 
DS Delayed & Stored. If step is still active, action starts after time delay, 

continues until reset. 
SL Stored & timeLimited. Action starts when step becomes active, continues for 

a set time or until reset. 
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Timing Specification 

S %QX12 

Step 
%QX12 

N %QX12 

Step 
%QX12 
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Timing Specification 

P %QX12 

Step 
%QX12 

L 
T#10s %QX12 

Step 
%QX12 

10s 
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Timing Specification 

DS 
T#10s %QX12 

Step 
%QX12 

10s 10s 

SD 
T#10s %QX12 

Step 
%QX12 

10s 
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Timing Specification 

SL 
T#20s %QX12 

Step 
%QX12 

20s 20s 
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Time-Triggered Message-Triggered 
Object 
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Introduction 

  Source: [K.H. Kim, 1999] 
  Developed in the early 1990s. 
  Vision: Future RT computing must be realized in the form of 

a generalization of the non-RT computing, rather than in a 
form looking like an esoteric specialization. (=> same as 
RTSJ) 

  Uses object orientation for strong modularity characteristics. 
  Specification-based timing constraints. 
  Side note: started with H. Kopetz (TT domain) 
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Overview 

  TMO = (ODS, EAC, SpM, SvM) 
 ODS … object-data-store section sec. 
 EAC … environment access-capability sec. 
 SpM … spontaneous-method sec. 
 SvM … service-method sec. 

  Interesting for this discussion: 
o  SpM … time-triggered execution by the RT system 
o  SvM … event-triggered (e.g., service request msg) 
o  TMO incorporates deadlines; the designer guarantees and advertises 

ET windows by start time and completion time 
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Overview 
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Time-Triggered Actions 

  Time-constraint specification 

  Examples 
o  {“start-during (10am, 10:05am) finish-by 10:10am”, 

“start-during (10:30am, 10:35am) finish-by 10:40am”} 
o  for t = from 10am to 10:50am every 30min 

start-during (t,t+5min) finish-by t+10min 

ab  “timing specification begin” 
  for <time-var> = from <activation-time> 
  to <deactivation-time> 
  [every <period>] 
  start-during (<earliest-start-time, latest-start-time) 
  finish-by <deadline> 
ae  “timing specification end” 
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Time-Triggered Actions 

  Possible computations can be: 
o  Statements, 
o  Blocks,  
o  Function & procedures, and 
o  Object methods 

  TMO implementations so far only handle SpM’s and 
SvM’s (I.e., object methods). 
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Real-Time Specification for Java 
(RTSJ) 
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Introduction 

  The correct name is: Real-Time Specification for Java (RTSJ). 
  Started in 1999 as Sun Microsystems' Java Community Process under Real-Time 

for Java Expert Group (RTJEG). 
  Guiding Principles: 

o  Applicability to Java Environments: The RTSJ shall not include specifications that 
restrict its use to particular Java environments. 

o  Backward Compatibility: The RTSJ shall not prevent existing, properly written, non-
real-time Java programs from executing on implementations of the RTSJ. 

o  Write Once, Run Anywhere. 
o  Current Practice vs. Advanced Features: The RTSJ should address current real-

time system practice as well as allow future implementations to include advanced 
features. 

o  Predictable Execution: The RTSJ shall hold predictable execution as first priority in 
all trade-offs. 

o  No Syntactic Extension. 
o  Allow Variation in Implementation Decisions. 
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Overview 

  RT Java consists of an RTJVM and the RTSJ class library. 
  RTSJ-compliant JVMs can be considered Real-Time Java 

Virtual Machines (RTJVMs). 
  Resides in the package javax.realtime with modifications to 

the non RT Java such as 
o  A RT Thread class extending java.lang.Thread 
o  Sophisticated scheduling support 
o  No mandatory RT garbage collection, instead memory partitioning 
o  Raw memory access for device drivers 
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Handling of Time 

  Clock: 
o  A clock marks the passing of time. 
o  System.getRealtimeClock() for singletons. 
o  Can have an arbitrary resolution (see RelativeTime). 

  Based on the clock, a number of classes dealing with time exist: 
o  HighResolutionTime: is an abstract class and the base class for all time-

related classes. Used to express time with nanosecond accuracy.  
o  AbsoluteTime: represents a specific point in time given by milliseconds plus 

nanoseconds past some point in time fixed by the clock. 
o  RationalTime: represents a time interval that is divided into subintervals by 

some frequency. Used to periodic events, threads, and feasibility analysis. 
o  RelativeTime: is generally used to represent a time relative to now 

  All time objects must maintain nanosecond precision. 
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Real-Time Threads 

  Two types of threads: 
o  NoHeapRealtimeThread 
o  RealtimeThread 

  Release parameters specify the thread’s behavior in the time 
domain: 
o  PeriodicParameters: indicates that the schedulable object is 

released on a regular basis. 
o  SporadicParameters: notes that the associated schedulable 

object's run method will be released aperiodically but with a minimum 
time between releases. 

o  AperiodicParameters: characterizes a schedulable object that may 
be released at any time. 
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Task Life Cycle 
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Stopwatch Example 
public class TSec extends RealTimeThread { 
   public void run() { 
    while (true) {    
      int val = getCurrentTSecValue(); 
      val=(val+1)%6; 
      setCurrentTSecValue(val); 
      waitForNextPeriod();       
    }  } 

  TMin createInstance() { 
    ... 
    PeriodicParameters pp = new PeriodicParameters(offset, 
      new RelativeTime(10.0*SECONDS),   // the period 
      new RelativeTime(5.0),            // the cost 
      new RelativeTime(10.0*SECONDS),   // the deadline 
      null, null);                                         

    return new TSec(priority, pp); 
    }} 

90 

Giotto 



46 

CIS700-2 S. Fischmeister 91 

Overview 

  Source: [T. Henzinger et al, 2002] 

  One of the main issues was to create verifiable RT programs. 

  Rigid control of the system’s behavior. 
o  Input/output values are buffered in ports  

(similar to the process image with PLCs) 
o  Value determinism 
o  Time determinism 

  An embedded machine controls the task’s execution. 

CIS700-2 S. Fischmeister 92 

Logical Execution Time 

R e l e a s e T e r m i n a t e 

L o g i c a l e x e c u t i o n t i m e = L o g i c a l c o m p u t a t i o n t i m e 

R e a d i n g 
i n p u t 
p o r t s 

W r i t i n g 
o u t p u t 
p o r t s 

t t + T 

T a s k t 

S u s p e n S t a r t d R e s u m S t o p e 



47 

CIS700-2 S. Fischmeister 93 

Task Life Cycle 
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Example 
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Runtime Environment 

off-line 

on-line 

Application  
object code 

calls 

E code 
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Driver Driver 

Environment 

Platform 

E machine 

runs on 
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E-Code 

lbl1:  call d [ t1 ] 
 call d [ t2 ] 
 schedule t1 
 schedule t2 
 future, 200, lbl2 
 return 

lbl2:  call d[ t2 ] 
 schedule t2 
 future, 200, lbl1 
 return 

  E-Code controls the execution behavior 

  Call: executes drivers 
  Schedule: enqueues tasks 
  Future: schedules a resume 
  Return: exists the interpreter  
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Timing Specification 

mode Flight ( ) period 10ms  
   {  
        actfreq 1 do Actuator ( actuating ) ;  
        taskfreq 1 do Control ( input ) ;  
        taskfreq 2 do Navigation ( sensing ) ;  
   }  

  Only allows periodic tasks. 
  Defined by period and frequency. 
  Each mode has a period. 
  Each task has a frequency within the mode. 
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Stopwatch Example 

 start Started { 

  mode Started() period 3600 { 
    actfreq 3600 do act_sec(a_sec_driver); 
    taskfreq 3600 do comp_sec(sec_driver); 

    actfreq 60 do act_tsec(a_tsec_driver); 
    taskfreq 60 do comp_tsec(tsec_driver); 

    actfreq 10 do act_min(a_min_driver); 
    taskfreq 10 do comp_min(min_driver); 

    actfreq 1 do act_tmin(a_tmin_driver); 
    taskfreq 1 do comp_tmin(tmin_driver); 
  } 
} 
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Timed Atomic Commitment 
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Overview 

  Source: [Davidson et al. 1991] 
  Motivation: Atomic commitment is necessary for a 

number of applications. For real-time systems, time 
constraints need to be part of the algorithm. 

  Example: Two robot arms together lift defective 
containers from a conveyor belt. 

  Timing specification bases on temporal scopes. 
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Overview 

  Three possible outcomes: 
o  Commit: action done 
o  Abort: no action done 
o  Exception: something done, need recovery function 

  TAC has the following correctness criteria: 
o  TAC1: All participants, which reach a decision, reach the same one. 
o  TAC2: The decision is to commit only if all participants vote YES. 
o  TAC3: At the deadline, the local state either reflects the completed action or 

is EXCEPTION. 
o  TAC4: (minimum success criterion) 

  All participants reach a decision. 
  If all participants vote YES, then the decision is to commit. 
  All participants complete the decided-upon action by the deadline. 
  At the deadline, the local state reflects the completed action. 
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Two Algorithms 
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Summary 

CIS700-2 S. Fischmeister 104 

Take Away Messages 

  Timing constraints in programming languages are a topic since at least 
1968. 
o  What are the right abstractions?  

(Modules, tasks, statements) 
o  What is the right notion of time?  

(Zero, continuous, discrete time) 
o  Who checks timing constraints?  

(Offline, online) 
o  How do you specify timing? 

(Specification-based vs. programming) 
o  How to ensure timing constraints?  

(Verification, runtime checking, offline, online) 
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Summary 
Name Abstraction 

level 
Type Guarantee Enforcement Note 

F/B Sys Superloop Prog. None None Simple 

Temporal 
Scopes 

Statement level Spec. Impl. Runtime Exceptions 

Time Fences Thread/Op level Spec. Impl. Runtime Simpler 
temporal 
scopes 

Esterel Stmt. Prog. Exact Compiler Toolchain 

PLC Block Spec Best eff. Runtime Commercial 

TMO Method Spec. Best eff. Runtime 

RTSJ Thread Prog. Best eff. Runtime By popular 
demand 

Giotto Thread Spec. Exact (??) By constr. E-Code 

TAC Transaction Spec Impl. Runtime Bases on 
temporal sc. 
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Personal Note & Observations 

  PLCs & Sequential Function Charts are a rock solid method, 
sold billion times, defeats many theoretic and academic 
models. 

  Synchronous languages are about to become a huge industry-
strength concept: Airbus uses SCADE. 

  Temporal scopes present a general abstraction, but did not 
catch on. 

  Simple, but effective solutions - or - a complete tool chain. 
  Retrofitting does not work - it did not for security, it will not 

for RT systems. 
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