
1

1

System and Language Support
for Timing Constraints

Sebastian Fischmeister
sfischme@seas.upenn.edu

Department of Computer and Information Science
University of Pennsylvania

Modified by Insup Lee for CIS 480/899, Spring 2009

CIS700-2 S. Fischmeister 2

Goals

  Understand different concepts about temporal
constraints.

  Understand how temporal constraints can be
incorporated into a programming language.

  Discuss how you would design your language.

2

3

Overview of Temporal Constraints

CIS700-2 S. Fischmeister 4

Why Temporal Constraints?

  A number of control applications puts temporal constraints
on the control software.
o  Engine simulation: 1kHz recording frequency over a distributed

system
o  Clock synchronization: down to 1 nanosecond
o  Industrial process control
o  Drive-by-wire
o  Anti-lock brakes
o  Pacemakers
o  Helicopter control

  200 Hz pilot stick, 400 Hz sensors, 200 Hz flight control, 1kHz actuator
electronics

o  Heating control: 10 seconds

3

CIS700-2 S. Fischmeister 5

Temporal Constraints

  Real-time is about producing the correct result at
the right time.

  Temporal constraints are a way to specify, when the
value is on time.

Value Timing Result

Wrong Too late Failure

Wrong On time Failure

Correct Too late Failure

Correct On time Ok

CIS700-2 S. Fischmeister 6

Types of Temporal Constraints

  Absolute temporal constraints
o  Measured with respect to a global clock
o  Xmas tree should light up between 5pm and 7am from November

27th 2006 until December 27th 2006

  Relative temporal constraints
o  Measured with respect to a local clock
o  The ventilation task should restart in five seconds

  Timing violation
o  Occurs when a temporal constraint is violated

4

CIS700-2 S. Fischmeister 7

Types of Temporal Constraints

  Hard temporal constraints
  Soft temporal constraints
  Firm temporal constraints

  Deterministic temporal constraints

CIS700-2 S. Fischmeister 8

Soft Temporal Constraints

  A soft real-time system is one where the response time is
normally specified as an average value. This time is normally
dictated by the business or market.

  A single computation arriving late is not significant to the
operation of the system, though many late arrivals might be.

  Ex: Airline reservation system - If a single computation is
late, the system’s response time may lag. However, the only
consequence would be a frustrated potential passenger.

5

CIS700-2 S. Fischmeister 9

Hard Temporal Constraints

  A hard real-time system is one where the response time
is specified as an absolute value. This time is normally
dictated by the environment.

  A system is called a hard real-time if tasks always must finish
execution before their deadlines or if message always can be
delivered within a specified time interval.

  Hard real-time is often associated with safety critical
applications. A failure (e.g. missing a deadline) in a safety-
critical application can lead to loss of human life or severe
economical damage.

CIS700-2 S. Fischmeister 10

Firm Temporal Constraints

  In a firm real-time system timing requirements
are a combination of both hard and soft ones.
Typically the computation will have a shorter soft
requirement and a longer hard requirement.

  Ex: Ventilator – The system must ventilate a patient
so many times within a given time period. But a few
second delay in the initiation of the patient’s breath
is allowed, but not more.

6

CIS700-2 S. Fischmeister 11

Deterministic Temporal Constraints

  In a temporal deterministic real-time system timing
requirements are a deterministic. An external observer can
tell the temporal state at any time.

  A system with deterministic temporal constraints finishes
execution exactly at the deadline (not before [hard] and not
about [soft]).

  Ex. Similar to hard real-time systems, however, temporal
determinism simplifies guaranteeing compositionality.

CIS700-2 S. Fischmeister 12

Real-Time Spectrum

User
interface

Computer
simulation

Internet
video, audio

Cruise
control

Tele
communication

Flight
control

Electronic
engine

Soft RT Hard RT No RT

7

13

Terminology of Temporal
Constraints

CIS700-2 S. Fischmeister 14

Tasks, Job

  A task is a piece of code that can be executed many times
with different input data. (thread or process)

  A job is an instance of a task.

computation

release time

start time

finishing time

deadline

job

8

CIS700-2 S. Fischmeister 15

Parameters

  Release or Arrival Time (ri)
o  is the time at which the task becomes ready for execution.

  Computation time (Ci)
o  is the time necessary to the processor for executing the task without

interruption.

  Deadline (di)
o  is the time before which a task should be complete to avoid damage

to the system.
o  Relative Deadline (Di): Di = di - ri

  Start time (si)
o  is the time at which the task starts its execution.

CIS700-2 S. Fischmeister 16

Parameters

  Finishing time (fi)
o  is the time at which the task finishes its execution.

  Laxity (Slack time) (Xi)
o  Xi = di - ri - Ci is the maximum time a task can be delayed on its

activation to complete within its deadline.

ri fi si di

Ci

t

Di

Xi

9

CIS700-2 S. Fischmeister 17

Jitter

  Jitter refers to the temporal variation of a periodic event
  E.g. Absolute Finishing

 Jitter = maxk (fi,k- ri,k) – mink(fi,k - ri,k)
  E.g. Relative Finishing

 Jitter = maxk |(fi,k - ri,k) – (fi,k-1 - ri,k-1)|

fi,1

t
fi,2 fi,3

CIS700-2 S. Fischmeister 18

Jitter Types

  Start Jitter

  Completion Jitter, I/O Jitter
si,1

t
si,2 si,3

si,1

t
si,2 si,3 fi,1 fi,2 fi,3

10

CIS700-2 S. Fischmeister 19

Sampling

  Sample rejection
  Vacant sampling

t

Process 1

Process 2

Rejection Vacant

t

CIS700-2 S. Fischmeister 20

Revisiting RT Types

Type Jitter Sampling
Soft RT Positive and negative Rejection and vacant

sampling

Hard RT Only negative Rejection

Firm RT Soft DL: pos. and neg.
Hard DL: only negative

Soft DL: rej. and vac. s.
Hard DL: vacant s.

Deterministic
RT

None None

11

21

Temporal Constraint Specifications

CIS700-2 S. Fischmeister 22

Task Types

  A periodic task has invocations within regular time
intervals.
o  E.g., reading a heat sensor.

  A sporadic task has unknown arrival times, but have
bounds such as maximum frequency.
o  E.g., routinely memory status check.

  An aperiodic task has an unknown arrival time.
o  E.g., an emergency shutoff.

12

CIS700-2 S. Fischmeister 23

Frequency, Period

  Period, frequency:
o  T1: Period=10ms, Frequency=2

  Period:
o  T2: Period=10ms

  Frequency
o  T3: Frequency=400Hz

t [ms] 0 5 10 15

T1

T2

T3

CIS700-2 S. Fischmeister 24

Additional Terms

  Execution time: total time of execution of a specific
task

  Elapse time: the task’s execution time + all delays

  Maximum time constraint: no more than t time units
will elapse

  Minimum time constraint: no less than t time units
will elapse

13

CIS700-2 S. Fischmeister 25

Hyper-Period

  Hyper-Period is the time span after which the
system repeats its behavior.
o  T1: Period=10ms, Frequency=2
o  T2: Period=10ms
o  T3: Frequency=400Hz

o  Hyper period = 10ms

CIS700-2 S. Fischmeister 26

Basic Model

14

27

Example

CIS700-2 S. Fischmeister 28

 T1
 T2
 T3

 T4

1 2 4 6 :

T1: P=1s
T2: P=10s
T3: P=60s
T4: P=3600s

Idependent-Digit Clock

  Consider a clock with each
digit as an independent task.

15

CIS700-2 S. Fischmeister 29

Properties

  Timliness is key
o  Invalid time value displayed

  Jitter accumulates and causes incorrect display.

  Value outputs need to be synchronized.

  Nearly no computation required.

30

Implicit Temporal Control

16

CIS700-2 S. Fischmeister 31

Foreground/Background System

  Using super-loops as the main routine with two levels: the
task level and the interrupt level.
o  Task level (aka background): executes modules
o  Interrupt level (aka foreground): handles asynchronous evens via ISRs.

  Foreground can preempt the background, thus:
o  Critical tasks must be in the foreground part.
o  Task level response = an ISR prepares data for the super-loop.

  Used for small devices (e.g., microcontrollers in microwaves,
washers, dryers, radio)

CIS700-2 S. Fischmeister 32

Foreground/Background System
Foreground
(Interrupt level)

Background
(Task level)

ISR

ISR

ISR

t

Super-loop

17

CIS700-2 S. Fischmeister 33

Foreground/Background Model

CIS700-2 S. Fischmeister 34

Code for the Example

void main(void) {
 unsigned short val; unsigned int i;

 while (1) {
 val = get_curr_sec();
 val++;
 update_display_seconds(val);

 if (val%60 == 0) {
 // update tens

 }
 ...
 // may have nested loops, if too short
 i=WHILE_INSTRUCTIONS_PER_SECOND
 while(--i);
 }
}

18

CIS700-2 S. Fischmeister 35

Foreground/Background Properties

  Simple system/low overhead
o  No maintenance, basically no “system” at all

  Difficult to specify temporal behavior
o  F/B systems require hand tuning to meet a timing criteria; if the

system is not responsive enough, then the developer will optimize the
super-loop.

  Sensitive to changes
o  Changing a module constantly changes the timing of the super-loop.
o  Changing code in an ISR changes may change the overall timing

behavior.

36

Programming-Language  
Timing Control

19

CIS700-2 S. Fischmeister 37

Type of Specification

  Program-based temporal constraints
o  Programmed in the target language.
o  Often mix program logic and temporal behavior

  Specification-based temporal constraints
o  Temporal constraints are specified in a separate language

(=> Coordination language)
o  Can be high-level, e.g., task A frq 0.2

38

Temporal Scopes

20

CIS700-2 S. Fischmeister 39

Temporal Scopes

  Source: [Lee1985], the Distributed Programming System (DPS).
  Temporal scopes and DPS describes a system to specify generic temporal

constraints at the statement level.
  The main goals for temporal scopes are:

o  Provide language constructs for specifying timing constraints,
o  Apt for distributed systems,
o  Extend an existing language, and
o  Run-time monitoring and exception handling.

  Its properties are:
o  The program is configured offline.
o  All processes are created before start-up.

  No dynamic create of RT processes.
o  The system has two modes: initialization and operation.

  Timing support is specification-based.

CIS700-2 S. Fischmeister 40

Timing Specification

  Deadline. The latest time in which the execution of a
temporal scope can be completed.

  Minimum delay. The minimum amount of time that
should pass before starting the execution of a temporal
scope.

  Maximum delay. the maximum amount of time that
should pass before starting the execution of a temporal
scope.

  Maximum execution time. The maximum computation
time necessary for the execution of a temporal scope.
Maximum elapse time. The maximum execution time
plus all user-defined delay during the execution of a
temporal scope.

21

CIS700-2 S. Fischmeister 41

Timing Specification

Release exe1 Deadline
t exe2

Min. delay

Max. delay

Gap

Max. elapse time

Max. execution time = WCET

CIS700-2 S. Fischmeister 42

The Temporal Scope

  start <delay-part> [<exe-part>] [<dl-part>]
do
 <start-body>
 [<exceptions>]
end

  <delay-part>:==new|at <abs-time>|after <rel-time>
  <exe-part>:==execute <rel-time>|elapse <rel-time>
  <dl-part>:==by <abs-time>|within <rel-time>

  Examples:
  Start after 10 sec do … end
  Start at (9h:00m) within 10 sec do … end

22

CIS700-2 S. Fischmeister 43

Repetitive Temporal Scope

  from <start_time> to <end time> every <period>
execute <exec_time> within <deadline> do
<stmts>
[<exceptions>]
end

  Example:
  from (8h:00m) to (18h:00m) every (0h:30m)
within 10 sec do

 relax_eyes()
end

CIS700-2 S. Fischmeister 44

Consecutive Temporal Scope

  cstart <delay1> [<execute1>] [<deadline1>] do
 <stmts1>
 [<exceptions1>]

  cstart <delay2> [<execute2>] [<deadline2>] do
 <stmts2>
 [<exceptions2>]

  cstart <delayn> [<executen>] [<deadlinen>] do
 <stmtsn>
 [<exceptionsn>]

  end

  Example:
  cstart within 2 sec do fill_glass_with_water()

cstart after 2 sec do empty_glass() end

23

CIS700-2 S. Fischmeister 45

Temporal Scopes Task Life Cycle

CIS700-2 S. Fischmeister 46

Temporal Scopes Example

from 00:00 to 59:59 every 10s execute 20ms within 1s
do
 var ctr;
 ctr=get_cur_tsecs();
 ctr=(ctr+1)%6;
 set_cur_tsecs(ctr);

 exception
 display_warning_light();
end

24

47

PEARL

CIS700-2 S. Fischmeister 48

PEARL Overview

  Acronym for Process Automation Real-time Language
  Aimed to be a high-level programming language with elaborate constructs

for programming temporal constraints.

  Developed at the same time as PASCAL, so both share similar syntax.
  PEARL forbids recursive procedures to eliminate out-of-memory errors.
  Strong emphasis on the I/O part, because of its target domain.

  Standardized as DIN 66253
  PEARL-90 is the revised version

25

CIS700-2 S. Fischmeister 49

PEARL Task Life Cycle

CIS700-2 S. Fischmeister 50

Timing Specification

Examples:
  ALL 0.00005 SEC ACTIVATE Highspeedcontroller;
  AT 12:00 ALL 4 SEC UNTIL 12:30 ACTIVATE lunchhour;
  WHEN fire ACTIVATE extinguish;

26

CIS700-2 S. Fischmeister 51

PEARL Example

WHEN start ALL 1 sec UNTIL stop ACTIVATE clock_sec;
WHEN start ALL 10 sec UNTIL stop ACTIVATE clock_tsec;
WHEN start ALL 60 sec UNTIL stop ACTIVATE clock_min;
WHEN start ALL 600 sec UNTIL stop ACTIVATE clock_tmin;

clock_tsec:TASK PRIO 2;
 DCL ctr INTEGER;
BEGIN
 GET ctr FROM DISPLAY_T_ONES;
 ctr := (ctr+1)%6;
 PUT ctr TO DISPLAY_T_ONES;
END

52

The ARTS Kernel &
The Time Fence Protocol

27

CIS700-2 S. Fischmeister 53

Time Fence in the ARTS Kernel

  Source: [Tokuda, Mercer,1998].
  The time-fence protocol allows for temporal constraints in a

distributed real-time system. The time-fence protocol is built
into the ARTS kernel.

  The ARTS kernel aims at distributed real-time systems.

  The artsobject is the abstraction for computation:
o  The artsobject has a WCET.
o  The artsobject minimizes inter-module dependence.
o  It provides time-encapsulation (however, the designer must guarantee

this).

  Timing support is specification-based.

CIS700-2 S. Fischmeister 54

Thread Life Cycle

28

CIS700-2 S. Fischmeister 55

Function Life Cycle

CIS700-2 S. Fischmeister 56

Specification

// An example of a real-time thread
Thread Sample._Artobject::RT_Thread()

//# priority, stack_size, wcet, period, phase, delay

{ //thread body …
 ThreadExit();

}

The implementation also allows for object methods:
type opt1 (type arg);//# within time except opr()

29

CIS700-2 S. Fischmeister 57

Stopwatch Example

Thread Minutes::RT_Thread() //# 2, _, 10ms, 10s, 0, 0s
{
 //thread body
 int tens_seconds = get_cur_tens_seconds();
 tens_seconds= (tens_seconds + 1) % 6;
 set_cur_seconds(tens_seconds);

 ThreadExit(); //reincarnate this thread
}

CIS700-2 S. Fischmeister 58

The Time Fence Protocol

  The system scheduler checks for transient overloads (not
enough CPU cycles) and rejects tasks in case of such an
overload.

  Each RT computation has a WCET.
  The time fence uses the deadline to set a timer.
  The scheduler checks schedulability using the time fence and

the WCET.

  Comm can include communication overhead for the
distributed system.

Calleewrtv < Callerctv - 2*comm+clockdrift

30

59

Esterel

CIS700-2 S. Fischmeister 60

Synchronous Model

Event Event

Synchronous
Computation

Synchronous Model

Event Deadline

Scheduled
Computation

Scheduled Model

Response
Time

31

CIS700-2 S. Fischmeister 61

Synchronous Model

Synchronous Implementation

Event Deadline

Scheduled Implementation

Response
Time

Event Event

Response
Time

CIS700-2 S. Fischmeister 62

Basic Concepts

  Specification language has been specialized for reactive systems.
  Reactive system:

o  In continuous interaction with its environment.
o  A reaction begins when the system receives an input event and ends when it

generates the corresponding output event.
  Black-box approach

o  Inputs produce outputs, continuously.

o  Only define relationships between input and output events.
o  A task may be complex, but: you don‘t care.

Reactive System Input
Events

Output
Events

Task A Input
Events

Output
Events

Task B

32

CIS700-2 S. Fischmeister 63

Basic Concepts

  Based on synchronous model of time (synchrony hypothesis)
o  The underlying machine is infinitely fast and, hence, the reaction of the system

to an input event is instantaneous; in between reactions, the system is idle.
o  No reaction intervals  only reaction instants  reactions do not overlap.
o  The synchrony hypothesis simplifies the behavioral specification of reactive

systems (see the example later on).
o  Looks flawed, but the machine must

react to an input event before the
next input event arrives.

Event Event

Response
Time

CIS700-2 S. Fischmeister 64

Basic Concepts

  Determinism
o  A non-deterministic system does not have a unique response to a

given input event  the external observer cannot predict the
response.

o  Example:
  Waiting for 60 seconds and then(??) signal “minute”.
  Broadcasting the signal, timing delays.

o  Esterel guarantees determinism
  All statements and constructs are well defined (syntax and semantics).
  A compiler checks the program and ensures determinism.

loop
 delay 60; B.MINUTE; (C.MINUTE)
end

33

CIS700-2 S. Fischmeister 65

Signal Handling: Example

  Example program:

pause;
emit A;
emit B;
present B then emit C; end
pause;
emit C; A

B
C

C

CIS700-2 S. Fischmeister 66

Example StopWatch

module SW1:
input START, STOP, MS;
output TIME(integer);
relation START # STOP;

var count := 0 : integer

in

 await immediate START;
% weak abort
 abort
 every immediate MS do
 count := count + 1;
 emit TIME(count);
 end
 when STOP
% pause;
 sustain TIME(count);

end var

end module

St
T1 T2 T3

Sp
T3

%T4
T3

%T4

34

67

Programmable Logic Controllers

CIS700-2 S. Fischmeister 68

Introduction

  Source: [Bliesener, Ebel, Loeffler, … 1998]
  Created in 1968 by General Motors with the following goals

in mind:
o  Replace relays,
o  Simple programming (no CS required),
o  Software instead of hard wiring,
o  Smaller, cheaper, more reliable than relays, and
o  Simple and cheap maintenance.

  5 standardized languages (IEC_61131-3):
o  FBD (Function Block Diagram), LD (Ladder Diagram), ST (Structured

Text, Pascal type language), IL (Instruction List) and SFC (Sequential
Function Chart)

35

CIS700-2 S. Fischmeister 69

The Look of an PLC

  Internals are similar to a workstation.

CIS700-2 S. Fischmeister 70

Operation of an PLC

  Inputs, which are shorter than one
cycle, are omitted.

  A reaction to an input can be two
cycles late.

  The PLC program executes
sequentially, so the instructions’
ordering is relevant.

  Some new PLCs support direct value
access.

Buffer Inputs
(Process image)

PLC Program

Buffer Outputs

36

CIS700-2 S. Fischmeister 71

Sequential Function Charts

SFC Selection Branch SFC Simultaneous Branch

SFC Sequential configuration

Q. Var. Label

Action

Contents

CIS700-2 S. Fischmeister 72

Action Qualifiers
N Nonstored. Terminate when the step becomes inactive.
S Set (stored). Continue after the step is deactivated, until the action is reset.
R Reset. Terminate the execution of an action previously started with the S, SD,

SL, or DS qualifier.
L Time Limited. Start when step becomes active and continue until the step

goes inactive or a set time passes.
D Time Delayed. Start a delay timer when the step becomes active. If the step

is still active after the time delay, the action starts and continues until
deactivated.

P Pulse. Start when the step becomes Active/Deactive and execute the action
only once.

SD Stored and time Delayed Action starts after time delay, continues until reset.
DS Delayed & Stored. If step is still active, action starts after time delay,

continues until reset.
SL Stored & timeLimited. Action starts when step becomes active, continues for

a set time or until reset.

37

CIS700-2 S. Fischmeister 73

Timing Specification

S %QX12

Step
%QX12

N %QX12

Step
%QX12

CIS700-2 S. Fischmeister 74

Timing Specification

P %QX12

Step
%QX12

L
T#10s %QX12

Step
%QX12

10s

38

CIS700-2 S. Fischmeister 75

Timing Specification

DS
T#10s %QX12

Step
%QX12

10s 10s

SD
T#10s %QX12

Step
%QX12

10s

CIS700-2 S. Fischmeister 76

Timing Specification

SL
T#20s %QX12

Step
%QX12

20s 20s

39

77

Time-Triggered Message-Triggered
Object

CIS700-2 S. Fischmeister 78

Introduction

  Source: [K.H. Kim, 1999]
  Developed in the early 1990s.
  Vision: Future RT computing must be realized in the form of

a generalization of the non-RT computing, rather than in a
form looking like an esoteric specialization. (=> same as
RTSJ)

  Uses object orientation for strong modularity characteristics.
  Specification-based timing constraints.
  Side note: started with H. Kopetz (TT domain)

40

CIS700-2 S. Fischmeister 79

Overview

  TMO = (ODS, EAC, SpM, SvM)
 ODS … object-data-store section sec.
 EAC … environment access-capability sec.
 SpM … spontaneous-method sec.
 SvM … service-method sec.

  Interesting for this discussion:
o  SpM … time-triggered execution by the RT system
o  SvM … event-triggered (e.g., service request msg)
o  TMO incorporates deadlines; the designer guarantees and advertises

ET windows by start time and completion time

CIS700-2 S. Fischmeister 80

Overview
P

ic
tu

re
 ta

ke
n

fro
m

 c
ne

tia
.c

om
.

41

CIS700-2 S. Fischmeister 81

Time-Triggered Actions

  Time-constraint specification

  Examples
o  {“start-during (10am, 10:05am) finish-by 10:10am”,

“start-during (10:30am, 10:35am) finish-by 10:40am”}
o  for t = from 10am to 10:50am every 30min

start-during (t,t+5min) finish-by t+10min

ab “timing specification begin”
 for <time-var> = from <activation-time>
 to <deactivation-time>
 [every <period>]
 start-during (<earliest-start-time, latest-start-time)
 finish-by <deadline>
ae “timing specification end”

CIS700-2 S. Fischmeister 82

Time-Triggered Actions

  Possible computations can be:
o  Statements,
o  Blocks,
o  Function & procedures, and
o  Object methods

  TMO implementations so far only handle SpM’s and
SvM’s (I.e., object methods).

42

83

Real-Time Specification for Java
(RTSJ)

CIS700-2 S. Fischmeister 84

Introduction

  The correct name is: Real-Time Specification for Java (RTSJ).
  Started in 1999 as Sun Microsystems' Java Community Process under Real-Time

for Java Expert Group (RTJEG).
  Guiding Principles:

o  Applicability to Java Environments: The RTSJ shall not include specifications that
restrict its use to particular Java environments.

o  Backward Compatibility: The RTSJ shall not prevent existing, properly written, non-
real-time Java programs from executing on implementations of the RTSJ.

o  Write Once, Run Anywhere.
o  Current Practice vs. Advanced Features: The RTSJ should address current real-

time system practice as well as allow future implementations to include advanced
features.

o  Predictable Execution: The RTSJ shall hold predictable execution as first priority in
all trade-offs.

o  No Syntactic Extension.
o  Allow Variation in Implementation Decisions.

43

CIS700-2 S. Fischmeister 85

Overview

  RT Java consists of an RTJVM and the RTSJ class library.
  RTSJ-compliant JVMs can be considered Real-Time Java

Virtual Machines (RTJVMs).
  Resides in the package javax.realtime with modifications to

the non RT Java such as
o  A RT Thread class extending java.lang.Thread
o  Sophisticated scheduling support
o  No mandatory RT garbage collection, instead memory partitioning
o  Raw memory access for device drivers

CIS700-2 S. Fischmeister 86

Handling of Time

  Clock:
o  A clock marks the passing of time.
o  System.getRealtimeClock() for singletons.
o  Can have an arbitrary resolution (see RelativeTime).

  Based on the clock, a number of classes dealing with time exist:
o  HighResolutionTime: is an abstract class and the base class for all time-

related classes. Used to express time with nanosecond accuracy.
o  AbsoluteTime: represents a specific point in time given by milliseconds plus

nanoseconds past some point in time fixed by the clock.
o  RationalTime: represents a time interval that is divided into subintervals by

some frequency. Used to periodic events, threads, and feasibility analysis.
o  RelativeTime: is generally used to represent a time relative to now

  All time objects must maintain nanosecond precision.

44

CIS700-2 S. Fischmeister 87

Real-Time Threads

  Two types of threads:
o  NoHeapRealtimeThread
o  RealtimeThread

  Release parameters specify the thread’s behavior in the time
domain:
o  PeriodicParameters: indicates that the schedulable object is

released on a regular basis.
o  SporadicParameters: notes that the associated schedulable

object's run method will be released aperiodically but with a minimum
time between releases.

o  AperiodicParameters: characterizes a schedulable object that may
be released at any time.

CIS700-2 S. Fischmeister 88

Task Life Cycle

45

CIS700-2 S. Fischmeister 89

Stopwatch Example
public class TSec extends RealTimeThread {
 public void run() {
 while (true) {
 int val = getCurrentTSecValue();
 val=(val+1)%6;
 setCurrentTSecValue(val);
 waitForNextPeriod();
 } }

 TMin createInstance() {
 ...
 PeriodicParameters pp = new PeriodicParameters(offset,
 new RelativeTime(10.0*SECONDS), // the period
 new RelativeTime(5.0), // the cost
 new RelativeTime(10.0*SECONDS), // the deadline
 null, null);

 return new TSec(priority, pp);
 }}

90

Giotto

46

CIS700-2 S. Fischmeister 91

Overview

  Source: [T. Henzinger et al, 2002]

  One of the main issues was to create verifiable RT programs.

  Rigid control of the system’s behavior.
o  Input/output values are buffered in ports

(similar to the process image with PLCs)
o  Value determinism
o  Time determinism

  An embedded machine controls the task’s execution.

CIS700-2 S. Fischmeister 92

Logical Execution Time

R e l e a s e T e r m i n a t e

L o g i c a l e x e c u t i o n t i m e = L o g i c a l c o m p u t a t i o n t i m e

R e a d i n g
i n p u t
p o r t s

W r i t i n g
o u t p u t
p o r t s

t t + T

T a s k t

S u s p e n S t a r t d R e s u m S t o p e

47

CIS700-2 S. Fischmeister 93

Task Life Cycle

CIS700-2 S. Fischmeister 94

Example

Task

Q Q

t+10ms t+10ms

P

S
lid

e
by

 C
.M

.K
irs

ch
 e

t a
l.

48

CIS700-2 S. Fischmeister 95

Runtime Environment

off-line

on-line

Application
object code

calls

E code

executes

Actuator Sensor

Driver Driver

Environment

Platform

E machine

runs on

CIS700-2 S. Fischmeister 96

E-Code

lbl1: call d [t1]
 call d [t2]
 schedule t1
 schedule t2
 future, 200, lbl2
 return

lbl2: call d[t2]
 schedule t2
 future, 200, lbl1
 return

  E-Code controls the execution behavior

  Call: executes drivers
  Schedule: enqueues tasks
  Future: schedules a resume
  Return: exists the interpreter

49

CIS700-2 S. Fischmeister 97

Timing Specification

mode Flight () period 10ms
 {
 actfreq 1 do Actuator (actuating) ;
 taskfreq 1 do Control (input) ;
 taskfreq 2 do Navigation (sensing) ;
 }

  Only allows periodic tasks.
  Defined by period and frequency.
  Each mode has a period.
  Each task has a frequency within the mode.

CIS700-2 S. Fischmeister 98

Stopwatch Example

 start Started {

 mode Started() period 3600 {
 actfreq 3600 do act_sec(a_sec_driver);
 taskfreq 3600 do comp_sec(sec_driver);

 actfreq 60 do act_tsec(a_tsec_driver);
 taskfreq 60 do comp_tsec(tsec_driver);

 actfreq 10 do act_min(a_min_driver);
 taskfreq 10 do comp_min(min_driver);

 actfreq 1 do act_tmin(a_tmin_driver);
 taskfreq 1 do comp_tmin(tmin_driver);
 }
}

50

99

Timed Atomic Commitment

CIS700-2 S. Fischmeister 100

Overview

  Source: [Davidson et al. 1991]
  Motivation: Atomic commitment is necessary for a

number of applications. For real-time systems, time
constraints need to be part of the algorithm.

  Example: Two robot arms together lift defective
containers from a conveyor belt.

  Timing specification bases on temporal scopes.

51

CIS700-2 S. Fischmeister 101

Overview

  Three possible outcomes:
o  Commit: action done
o  Abort: no action done
o  Exception: something done, need recovery function

  TAC has the following correctness criteria:
o  TAC1: All participants, which reach a decision, reach the same one.
o  TAC2: The decision is to commit only if all participants vote YES.
o  TAC3: At the deadline, the local state either reflects the completed action or

is EXCEPTION.
o  TAC4: (minimum success criterion)

  All participants reach a decision.
  If all participants vote YES, then the decision is to commit.
  All participants complete the decided-upon action by the deadline.
  At the deadline, the local state reflects the completed action.

CIS700-2 S. Fischmeister 102

Two Algorithms

S

Generate votes

Start Vote

Wait and
decide

Do action

Decision Local state

Determine
result Coordinator

Participant

Centralized Timed 2 Phase Commit (CT2PC)

S

Generate votes

Start Vote

Wait and
decide Do action

Local state

Determine
result

* Vote
Coordinator

Participant

Distributed Timed 2 Phase Commit (DT2PC)

52

CIS700-2 S. Fischmeister 103

Summary

CIS700-2 S. Fischmeister 104

Take Away Messages

  Timing constraints in programming languages are a topic since at least
1968.
o  What are the right abstractions?

(Modules, tasks, statements)
o  What is the right notion of time?

(Zero, continuous, discrete time)
o  Who checks timing constraints?

(Offline, online)
o  How do you specify timing?

(Specification-based vs. programming)
o  How to ensure timing constraints?

(Verification, runtime checking, offline, online)

53

CIS700-2 S. Fischmeister 105

Summary
Name Abstraction

level
Type Guarantee Enforcement Note

F/B Sys Superloop Prog. None None Simple

Temporal
Scopes

Statement level Spec. Impl. Runtime Exceptions

Time Fences Thread/Op level Spec. Impl. Runtime Simpler
temporal
scopes

Esterel Stmt. Prog. Exact Compiler Toolchain

PLC Block Spec Best eff. Runtime Commercial

TMO Method Spec. Best eff. Runtime

RTSJ Thread Prog. Best eff. Runtime By popular
demand

Giotto Thread Spec. Exact (??) By constr. E-Code

TAC Transaction Spec Impl. Runtime Bases on
temporal sc.

CIS700-2 S. Fischmeister 106

Personal Note & Observations

  PLCs & Sequential Function Charts are a rock solid method,
sold billion times, defeats many theoretic and academic
models.

  Synchronous languages are about to become a huge industry-
strength concept: Airbus uses SCADE.

  Temporal scopes present a general abstraction, but did not
catch on.

  Simple, but effective solutions - or - a complete tool chain.
  Retrofitting does not work - it did not for security, it will not

for RT systems.

54

CIS700-2 S. Fischmeister 107

Bibliography

  [1] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers, 2000.

  [2] C. M. Kirsch. Principles of real-time programming. In A. Sangiovanni-Vincentelli and J.

Sifakis, editors, Proc. of the Second International Conference on Embedded Software
(EMSOFT), volume 2491 of LNCS, pages 61ﾐ75. Springer, 2002.

  [3] S. Fischmeister and K. Winkler. Non-blocking deterministic replacement of functionality,
timing, and data-flow for hard real-time systems at runtime. In Proc. of the Euromicro Conference
on Real-Time Systems (ECRTSﾕ05), 2005.

  [4] Jean J. Labrosse. MicroC OS II: The Real Time Kernel. CMP Books, 2002. 3

  [5] A. Burns and A.J. Wellings. Real-Time Systems and Programming Languages: ADA 95, Real-

Time Java, and Real-Time POSIX. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

  [8] I. Lee and V. Gehlot. Language constructs for distributed real-time programming. In Proc. of
the IEEE Real-time Systems Symposium (RTSSﾕ85), 1985.

  [9] G. Berry. The Esterel v5 Language Primer. Centre de Mathematiques Appliquees, Ecole des
Mines and INRIA, 2004 Route des Lucioles, 06565 Sophia-Antipolis, version 5.21 release 2.0
edition, April 1999. [

  10] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1997.

  [11] H. Tokuda and C. W. Mercer. Arts: a distributed real-time kernel. SIGOPS Oper. Syst. Rev.,

23(3):29ﾐ53, 1989.

  [12] L. Frevert. Echtzeit-Praxis mit PEARL. Teubner, 1985.

CIS700-2 S. Fischmeister 108

Bibliography

  [14] A. Wellings. Concurrent and real-time programming in Java. Wiley, 2004.

  [16] K.H. Kim. Real-time object-oriented distributed software engineering and the TMO scheme.

Int. Journal of Software Engineering & Knowledge Engineering, 2:251ﾐ276, 1999.

  [17] S.B. Davidson, V. Wolfe, and I. Lee. Timed atomic commitment. IEEE Trans. Comput.,

40(5):573ﾐ 583, 1991.

  [20] R. Bliesener. Speicherprogrammierbare Steuerungen. Springer, 1997.

  [21] T. A. Henzinger, C. M. Kirsch, and B. Horowitz. Giotto: A time-triggered language for

embedded programming. In T. A. Henzinger and C. M. Kirsch, editors, Proc. of the 1st
International Workshop on Embedded Software (EMSOFT), number 2211 in LNCS. Springer,
October 2001.

  [22] T.A. Henzinger, C.M. Kirsch, M.A.A. Sanvido, and W. Pree. From control models to real-time
code using Giotto. IEEE Control Systems Magazine, February 2003. 4

  [26] Yutaka Ishikawa and Hideyuki Tokuda. Object-oriented real-time language design:
constructs for timing constraints. In OOPSLA/ECOOP ﾕ90: Proceedings of the European
conference on object- oriented programming on Object-oriented programming systems,
languages, and applications, pages 289ﾐ298, New York, NY, USA, 1990. ACM Press.

  [27] Jozef Hooman and Onno Van Roosmalen. An approach to platform independent real-time
programming: (1) formal description. Real-Time Syst., 19(1):61ﾐ85, 2000.

