Resource-bound process algebras for Schedulability and Performance Analysis of Real-Time and Embedded Systems

Insup Lee¹, Oleg Sokolsky¹, Anna Philippou²

¹ RTG (Real-Time Systems Group)
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA

² Department of Computer Science
University of Cyprus
Nicosia, CY

Outline

• Real-Time and Embedded systems
• Resource-bound computation
• Resource-bound formalisms
 - ACSR (Algebra of communicating shared resources)
 - Schedulability Analysis Problem
 - PACSR (Probabilistic ACSR)
 - Schedulability analysis for soft real-time systems
 - Design framework for embedded systems
 - P²ACSR (Probabilistic ACSR with power consumption)
 - Scheduling synthesis and parametric schedulability analysis
 - ACSR-VP (ACSR with Value-Passing)

• Conclusions
Real-time, Embedded Systems

• Difficulties
 - Increasing complexity
 - Decentralized
 - Safety critical
 - End-to-end timing constraints
 - Resource constrained
 • Non-functional: power, size, etc.
• Development of trustworthy (i.e., reliable, robust, safe, secure, etc.) embedded software

Properties of embedded systems

• Adherence to safety-critical properties
• Meeting timing constraints
• Satisfaction of resource constraints
• Confinement of resource accesses
• Supporting fault tolerance
• Domain specific requirements
 - Mobility
 - Software configuration
Real-time Behaviors

- Correctness and reliability of real-time systems depend on
 - Functional correctness
 - Temporal correctness
 - End-to-end temporal constraints
- Factors that affect temporal behavior are
 - Synchronization and communication
 - Resource limitations and availability/failures
 - Scheduling algorithms
 - Interaction with physical world
- An integrated framework to bridge the gap between concurrency theory and real-time scheduling

Scheduling Problems

- Priority Assignment Problem
- Schedulability Analysis Problem
 - Compositional analysis
 - Hierarchical system
- Soft timing/performance analysis (Probabilistic Performance Analysis)
- End-to-end Design Problem
 - Parametric Analysis
 - End-to-end constraints, intermediate timing constraints
 - Execution Synchronization Problem
 - Start-time Assignment Problem with Inter-job Temporal Constraints
- Fault tolerance: dealing with failures, overloads
Scheduling Factors

- Static priority vs dynamic priority
 - Cyclic executive, RM (Rate Monotonic)
 - EDF (Earliest Deadline First)
- Priority inversion problem
- Independent tasks vs. dependent tasks
- Single processor vs. multiple processors
- Communication delays
- Uncertainty in execution times
- Resource use tradeoffs
- End-to-end timing requirements

Example: Simple Scheduling Problem

- (period, [e-, e+]), where e- and e+ are the lower and upper bound of execution time, respectively.
- Goal is to find the priority of each job so that jobs are schedulable
- Considering only worst case leads to scheduling anomaly
Let $J_{1,1} > J_{2,1}$ and $J_{2,2} > J_{3,1}$
Consider worst case execution time for all jobs, i.e.,
Execution time $E_{1,1} = 2$, $E_{2,1} = 3$, $E_{2,2} = 2$, $E_{3,1} = 3$

With same priorities, $J_{1,1} > J_{2,1}$ and $J_{2,2} > J_{3,1}$
Let execution time $E_{1,1} = 1$, $E_{3,1} = 1$, $E_{2,2} = 2$, $E_{3,1} = 3$

So with the priority assignment of $J_{1,1} > J_{2,1}$ and $J_{2,2} > J_{3,1}$,
jobs cannot be scheduled and scheduling problems are in general NP-hard
End-to-end Design Problem

- Given a task set with end-to-end constraints on inputs and outputs
 - Freshness from input X to output Y (\(F(Y|X)\)) constraints: bound time from input X to output Y
 - Correlation between input X1 and X2 (\(C(Y|X1,X2)\)) constraints: max time-skew between inputs to output
 - Separation between output Y (\(u(Y)\) and \(l(Y)\)) constraints: separation between consecutive values on a single output Y
- Derive scheduling for every task
 - Periods, offsets, deadlines
 - Priorities
- Meet the end-to-end requirements
- Subject to
 - Resource limitations, e.g., memory, power, weight, bandwidth

Example: Start-time Problem

Start-time Assignment Problem with Inter-job Temporal Constraints

Goal is to statically determine the range of start times for each job so that jobs are schedulable and all inter-job temporal constraints are satisfied.
Example: power-aware RT scheduling

• Dynamic Voltage Scaling allows tradeoffs between performance and power consumption
• Problem is how to minimize power consumption while meeting timing constraints.
• Example: three tasks with probabilistic execution time distribution

<table>
<thead>
<tr>
<th>Task</th>
<th>Worst-case execution time</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>14</td>
</tr>
</tbody>
</table>

Our approach and objectives

• Design formalisms for real-time and embedded systems
 - Resource-bound real-time process algebras
 - Executable specifications
 - Logic for specifying properties
• Design analysis techniques
 - Automated verification techniques
 - Parameterized end-to-end schedulability analysis
• Toolset implementation
Resource-bound computation

- Computational systems are always constrained in their behaviors
- Resources capture physical constraints
- Resources should be supported as a first-class notion in modeling and analysis
- Resource-bound computation is a general framework of wide applicability

Resources

- Resources capture constraints on executions
- Resources can be
 - Serially reusable:
 - processors, memory, communication channels
 - Consumable
 - power
- Resource capacities
 - Single-capacity resources
 - Multiple-capacity resources
 - Time-sliced, etc.
Process Algebras

- Process algebras are abstract and compositional methodologies for concurrent-system specification and analysis.

- "Design methodology which systematically allows to build complex systems from smaller ones" [Milner]

Process Algebras

- A process algebra consists of
 - a set of operators and syntactic rules for constructing processes
 - a semantic mapping which assigns meaning or interpretation to every process
 - a notion of equivalence or partial order between processes
 - a set of algebraic laws that allow syntactic manipulation of processes.

- Ancestors
 - CCS, CSP, ACP,...
 - focus on communication and concurrency
Advantages of Process Algebra

A large system can be broken into simpler subsystems and then proved correct in a modular fashion.

1. A hiding or restriction operator allows one to abstract away unnecessary details.
2. Equality for the process algebra is also a congruence relation; and thus, allows the substitution of one component with another equal component in large systems.
ACSR

- ACSR (Algebra of Communicating Shared Resource)
 - A real-time process algebra which features discrete time, resources, and priorities
 - Timeouts, interrupts, and exception handling
 - Two types of actions:
 - Instantaneous events
 - Timed actions

Events

- Events represent non-time consuming activities
 - events are instantaneous: crash
 - point-to-point synchronization
Events

- Events
 - have priorities: \((\text{job}, 10^{10})\)
 - have input and output capabilities
 or
 \[(e, p_1) (\bar{e}, p_2)
 (e? , p_1) (e! , p_2)\]

Actions

- **Actions** represent activities that
 - take time
 - require access to resources
 - each resource usage has priority of access
 \[A = \{ (r_1, p_1), (r_2, p_2) \}\]
 - each resource can be used at most once
 - resources of action \(A\): \(\rho(A)\)
 - idling action: \(\emptyset\)

- Examples:
 \[\{(\text{cpu}, 2)\}, \{(\text{cpu}_1, 3), (\text{cpu}_2, 4)\}, \{(\text{semaphore}, 5)\}\]
Syntax for ACSR processes

- **Process terms**

 \[P ::= \]

 - \(NIL \)
 - \(A : P \)
 - \((a,n).P \)
 - \(P + P \)
 - \(P \parallel P \)
 - \(P\Delta_i(Q,R,S) \)
 - \([P]_i\)
 - \(P \setminus F \)
 - \(b \rightarrow P \)
 - \(C \)

- **Process names**

\[C = P \]

Constant and Nil

\[C = P \]

C is a constant that represents the process algebra expression P

\[P = NIL \]

P does nothing
Prefix Operators

\[P = A : Q \]
- P performs timed action A and then behaves as Q

\[P = (a,n).Q \]
- P performs event (a,n) and then behaves as Q

EXAMPLE

```text
\texttt{def}
Operator = (\texttt{ring},1).(\texttt{pickup},1).\texttt{Talk}
Talk = \{(\texttt{phone},2)\} : (\texttt{hangup},1).\texttt{Operator}
```

Choice

\[P = Q + R \]
- P can choose nondeterministically to behave like Q or R

EXAMPLE

```
def
CAR = (\texttt{golef} \downarrow).CAR' + (\texttt{goright},1).CAR''
```
Parallel Composition

\[P = Q \parallel R \]

P is composed by Q and R that may synchronize on events and must synchronize on timed actions.

EXAMPLE

\[
\begin{align*}
\text{def} & \quad \text{Operator} = (\text{ring}, \text{?}, 1).\{(\text{phone}, 2)\} \\
& \quad \quad \quad \quad : (\text{hangup}, \text{?}, 1).\text{Operator} \\
\text{def} & \quad \text{Caller} = (\text{ring}, \text{!}, 2).\{(\text{phone}, 3)\} \\
& \quad \quad \quad \quad : (\text{hangup}, \text{!}, 1).\text{Caller} \\
\text{def} & \quad \text{Converse} = \text{Operator} \parallel \text{Caller}
\end{align*}
\]

Scope

\[P = Q \leftarrow (R, S, T) \]

Q may execute for at most t time units. If message a is produced, control is delegated to R, else control is delegated to S. At any time T may interrupt.

EXAMPLE

\[
\begin{align*}
\text{def} & \quad \text{Runner} = \text{Run} \leftarrow \text{finish} (\text{GoForCoffee}, \\
& \quad \quad \quad \quad \text{GoToWork,} \\
& \quad \quad \quad \quad \text{BeepedToWork}) \\
\text{def} & \quad \text{Run} = \{(\text{run}, 1)\} : \text{Run} + \text{finish}.\text{NIL}
\end{align*}
\]
Hiding/Restriction

- $P = [Q]_I$
 P behaves just as Q but resources in I are no longer visible to the environment

- $P = Q \setminus F$
 P behaves just as Q but labels in F are no longer visible to the environment

EXAMPLE

```
Caller || PayPhone || [Home]_phone
```

ACSR semantics

- *Gives an unambiguous meaning to language expressions.*
- *Semantics is operational, given by a set of semantic rules.*

- Example of a labeled transition system:

 $P_0 \xrightarrow{\emptyset} P_1 \xrightarrow{NC} P_2 \xrightarrow{(gate, train)} P_3 \xrightarrow{(gate, train)} P_4 \xrightarrow{IC} ...$
ACSR semantics

- Two-level semantics:
 - A collection of inference rules gives the unprioritized transition relation:
 \[P \xrightarrow{\alpha} P' \]
 - A preemption relation on actions and events disables some of the transitions, giving a prioritized transition relation:
 \[P \xrightarrow{\alpha, \pi} P' \]

Unprioritized transition relation

- Prefix operators
 - \textbf{ActT}:
 \[A: P \xrightarrow{\delta} P \]
 - \textbf{ActI}:
 \[(a, p): P \xrightarrow{(a, p)} P \]
- Choice
 - \textbf{ChoiceL}:
 \[P \xrightarrow{\alpha} P' \]
 \[P + Q \xrightarrow{\alpha} P' \]
- Parallel
 - \textbf{ParIL}:
 \[P \xrightarrow{(a, p)} P' \]
 \[P \parallel Q \xrightarrow{(a, p)} P' \parallel Q \]
Unprioritized transition relation (II)

- Resource-constrained execution

\[\text{ParT} \quad P \xrightarrow{\Delta} P' \quad Q \xrightarrow{\Delta} Q' \quad P \parallel Q \xrightarrow{\Delta \cup \Delta} P' \parallel Q' \quad \rho(A_1) \cap \rho(A_2) = \emptyset \]

- Priority-based communication

\[\text{ParCom} \quad P \xrightarrow{(r,r_1)} P' \quad Q \xrightarrow{(r,r_2)} Q' \quad P \parallel Q \xrightarrow{(r,r_1 + r_2)} P' \parallel Q' \]

- Resource closure

\[\text{CloseT} \quad P \xrightarrow{\Delta} P' \quad [P]_I \xrightarrow{\Delta \cup \Delta} [P']_I \quad A_2 = \{(r,0) \mid r \in I - A_1\} \]

Examples

- Resource conflict

\[P = \{(r,1)\} : P' \quad Q = \{(r,2)\} : Q' \quad P \parallel Q \sim N:\emptyset \]

- Processes must provide for preemption

\[P = \{(r,1)\} : P' + \emptyset : P \quad Q = \{(r,2)\} : Q' + \emptyset : Q \]

- Unprioritized transitions:

\[\emptyset \xrightarrow{\{(r,1)\}} P \parallel Q \xrightarrow{\{(r,2)\}} P' \parallel Q' \]

\[P \parallel Q \xrightarrow{\{(r,1)\}} P' \parallel Q' \]

\[P \parallel Q \xrightarrow{\{(r,2)\}} P' \parallel Q' \]
Unprioritized transition relation (III)

\[
\begin{align*}
\text{ScopeCT} & : \quad P \xrightarrow{A} P' \\
& \quad PΔ_i^a(Q, R, S) \xrightarrow{A} P'Δ_i^a(Q, R, S) \\
& \quad (t > 0) \\
\text{ScopeCI} & : \quad P \xrightarrow{e} P' \\
& \quad PΔ_i^e(Q, R, S) \xrightarrow{e} P'Δ_i^e(Q, R, S) \\
& \quad (l(e) \neq a, t > 0) \\
\text{ScopeE} & : \quad P \xrightarrow{(a, \rho)} P' \\
& \quad PΔ_i^e(Q, R, S) \xrightarrow{(a, \rho)} Q \\
& \quad (t > 0) \\
\text{ScopeT} & : \quad R \xrightarrow{\alpha} R' \\
& \quad PΔ_i^\alpha(Q, R, S) \xrightarrow{\alpha} R' \\
& \quad (t = 0) \\
\text{ScopeI} & : \quad S \xrightarrow{\alpha} S' \\
& \quad PΔ_i^\alpha(Q, R, S) \xrightarrow{\alpha} S' \\
& \quad (t > 0)
\end{align*}
\]

Example

- A Scheduler

\[
\text{Sched} = \phi : \text{Sched} + (tc, l)\phi^\infty : \Delta_{\text{max}}^\infty(NIL \text{ kill } \text{Sched}, rc \text{Sched})
\]
Preemption relation

• To take priorities into account in the semantics we define the relation α is preempted by β: $\alpha < \beta$

• An action β preempts an action α iff
 - no lower priorities: $\forall r \in \rho(\alpha), \pi_r(\alpha) \leq \pi_r(\beta)$
 - some higher priorities: $\exists r \in \rho(\beta), \pi_r(\alpha) < \pi_r(\beta)$
 - it contains fewer resources $\rho(\beta) \subseteq \rho(\alpha)$
 e.g. $\{(r_1,3),(r_2,5)\} < \{(r_1,7),(r_2,5)\}$

• An event preempts another event iff
 - same label, higher priority e.g. $(a!,1) < (a!,3)$

• An event preempts an action iff
 - τ with non-zero priority preempts all actions
 e.g. $\{(r,4)\} < (\tau,1)$

Prioritized transition relation

• We define

$$P \xrightarrow{\alpha}^\pi P'$$

when
- there is an unprioritized transition

$$P \xrightarrow{\alpha} P'$$

- there is no $P \xrightarrow{\beta} P''$ such that $\alpha < \beta$

• Compositional
Example

• Unprioritized and prioritized transitions:

\[P = \{(r,1)\} : P' + \emptyset : P \quad Q = \{(r,2)\} : Q' + \emptyset : Q \]

Example (cont.)

• Resource closure enforces progress

\[\{(r,0)\} \]

\[\{(r,1)\} \]

\[\{(r,2)\} \]

\[\{(r,0)\} \]

\[\{(r,1)\} \]

\[\{(r,2)\} \]

\[\{(r,0)\} \]

\[\{(r,1)\} \]
Compositionality of preemption relation

- Given

\[
P_1 = (a,2).S_1 + (b,1).S_2
\]

\[
P_2 = (a,2).S_1
\]

\[
Q_1 = (\overline{a},3).T_1 + (\overline{b},5).T_2
\]

\[
Q_2 = (\overline{a},3).T_1 + (\overline{b},2).T_2
\]

\[
R_1 = (b,2).S_1 + (b,1).S_2
\]

\[
R_2 = (b,2).S_1
\]

- Given \(P_1\) and \(P_2\), can they be treated as equivalent?

That is, for all \(Q\), \(P_1 \parallel Q = P_2 \parallel Q\)?

- How about \(R_1\) and \(R_2\)?

Bisimulation

- Observational equivalence is based on the idea that two equivalent systems exhibit the same behavior at their interfaces with the environment.

- This requirement was captured formally through the notion of bisimulation, a binary relation on the states of systems.

- Two states are bisimilar if for each single computational step of the one there exists an appropriate matching (multiple) step of the other, leading to bisimilar states.
Prioritized strong equivalence

- An equivalence relation is congruence when it is preserved by all the operators of the language.
- This implies that replacement of equivalent components in any complex system leads to equivalent behavior.

\[P \xrightarrow{\alpha} P' \] is a congruence relation with respect to the ACSR operators.

Equational Laws

- Equational laws are a set of axioms on the syntactic level of the language that characterize the equivalence relation.
- They may be used for manipulating complex systems at the level of their syntactic (ACSR) description.
- There is a set of laws that is complete for finite state ACSR processes:

\[
\begin{align*}
P + \text{NIL} &= P \\
P + P &= P \\
P + Q &= Q + P \\
(P \parallel Q) \parallel R &= P \parallel (Q \parallel R)
\end{align*}
\]

...
Equational Laws

- **ACSR-specific laws for scope and resource closure:**

\[
A : P \Delta^e_t (Q,R,S) = A \left(P \Delta^e_t (Q,R,S) \right) + S \quad \text{if } t > 0
\]

\[
e.P \Delta^e_t (Q,R,S) = e \left(P \Delta^e_t (Q,R,S) \right) + S \quad \text{if } t > 0 \land \overline{I(e)} \neq a
\]

\[
e.P \Delta^u_t (Q,R,S) = \left(r, \pi(e) \right) Q + S \quad \text{if } t > 0 \land \overline{I(e)} = a
\]

\[
P \Delta^u_0 (Q,R,S) = \begin{cases}
R & A_1 : P \\
[e.P] & e.P
\end{cases}
\]

\[
A_2 = \{ (r,0) \mid r \in I - \rho(A_i) \}
\]

Laws (1)

- **Choice(1)** \(P + \text{NIL} = P \)
- **Choice(2)** \(P + P = P \)
- **Choice(3)** \(P + Q = Q + P \)
- **Choice(4)** \((P + Q) + R = P + (Q + R) \)
- **Choice(5)** \(\alpha P + \beta Q = \beta Q \) if \(\alpha < \beta \)
- **Part(1)** \(P \parallel Q = Q \parallel P \)
- **Part(2)** \((P \parallel Q) \parallel R = P \parallel (Q \parallel R) \)
- **Part(3)** \[
\sum_{A : P, Q : S} (A : B_k : (P_k \parallel R_k)) + \sum_{e_j : Q_j} \left(\sum_{k \in \text{e}_j} B_k : R_k + \sum_{k \in \text{f}_j} S_j \right)
\]

\[
= \sum_{e_j : Q_j} \left(\sum_{k \in \text{e}_j} A_k : P_k + \sum_{k \in \text{f}_j} Q_j \right) + \sum_{f_j : S_j} (r, \pi(e_j) + \pi(f_j)) (Q_j \parallel S_j)
\]
Laws (2)

Scope(1) \(A : R^n_t(Q,R,S) = A : (R^n_{t+1}(Q,R,S)) + S \) if \(t > 0 \)

Scope(2) \(e.R^n_t(Q,R,S) = e.(R^n_{t+1}(Q,R,S)) + S \) if \(t > 0 \) and \(\overline{\tau(e)} \neq b \)

Scope(3) \(e.R^n_t(Q,R,S) = (r,\pi(e)) Q + S \) if \(t > 0 \) and \(\overline{\tau(e)} = b \)

Scope(4) \(R^n_0(Q,R,S) = R \)

Scope(5) \(P_1 + P_2)_t(Q,R,S) = P_1 R^n_t(Q,R,S) + P_2 R^n_t(Q,R,S) \)

Scope(6) \(NIL R^n_t(Q,R,S) = S \) if \(t > 0 \)

Res(1) \(NIL \setminus F = NIL \)

Res(2) \((P + Q) \setminus F = (P \setminus F) + (Q \setminus F) \)

Res(3) \((A : P) \setminus F = A : (P \setminus F) \)

Res(4) \(((a,n),P) \setminus F = (a,n), (P \setminus F) \) if \(a \notin F \)

Res(5) \(((a,n),P) \setminus F = NIL \) if \(a \notin F \)

Res(6) \(P \setminus E \setminus F = P \setminus E \setminus F \)

Res(7) \(P \setminus \emptyset = P \)

Laws (3)

Close(1) \([NIL]_i = NIL\]

Close(2) \([P + Q]_i = [P]_i + [Q]_i\]

Close(3) \([A_i : P]_i = (A_i \cup A_i) : [P]_i\) where \(A_i = \{(r,0) \mid r \in I - \rho(A_i)\}\)

Close(4) \([e.P]_i = e[P]_i\]

Close(5) \([i[P_i]_i = [P]_{0,i}\]

Close(6) \([P]_g = P\]

Close(7) \([P \setminus E]_i = [P]_i \setminus E\]

Rec(1) \(rec X.P = P[rec X.P / X]\)

Rec(2) If \(P = Q[P / X]\) and \(X \) is guarded in \(Q \) then \(P = rec X.Q\)

Rec(3) \(rec X.(P + \sum_{i \in I} [X \setminus E_i]_{i}) = rec X.(\sum_{i \in I} [P \setminus E_i]_{i})\)

where \(E_j = \bigcup_{i \in I} E_i, U_j = \bigcup_{i \in I} U_i, I \) is finite and \(X \) is guarded in \(P\)
Soundness of the laws

• Theorem:

\[\text{if } P = Q \text{ then } P \sim_\pi Q \]

• Proof approach:
 - Construct the set of prioritized derivations for each \(P \)
 - Prove that if \(P = Q \), then the sets of derivations are the same

Completeness of the laws

• Theorem:

\[\text{if } P \text{ and } Q \text{ are finite-state processes and } P \sim_\pi Q \text{ then } P = Q \]
Schedulability Analysis

- Can all real-time tasks meet their deadlines?
- Factors include
 - Delay caused by synchronization between tasks
 - Delay caused by precedence between tasks
 - Delay caused by resource constraints
 - Scheduling disciplines and synchronization protocols
Outline

- ACSR-VP: ACSR with value-passing and dynamic priorities
- Specifying real-time systems using ACSR-VP
 - Specifying task models
 - Specifying scheduling disciplines
- Analyzing real-time systems using bisimulation
 - Specification correctness
 - Schedulability analysis
- Schedulability analysis using VERSA (ACSR Toolkit)

ACSR (Algebra of Communicating Shared Resources)

- A timed process algebra based on CCS with notions of time, resources and priorities
- Discrete time and dense time
- Static priorities
- Actions: Instantaneous Events + Timed Actions
 - Timed action: a set of (resource, priority) pairs
 \(\{(cpu, 4), (data, 3)\}, \{(cpu_1, 2), (cpu_2, 3)\}, \emptyset \)
 - Instantaneous event: (event, priority) pair
 \((signal, 2), (chan, 2) (\tau, 3) \)
- Real-time operators for timeout, interrupt, exception
- Graphical specification language (GCSR)
- Toolkit (VERSA)
- No value passing communication, no variables for priorities
ACSR-VP (ACSR with Value Passing)

- Extends ACSR with variables and value passing communications
- Values can be specified using expressions
 - Timed Actions:
 \{ (cpu, x), (data, y + 1) \}
 - Instantaneous events:
 \{ signal ! 8, x \} - output
 \{ chan ? y, 2 \} - input
- Dynamic priorities
- Exchange priority information without global variables

ACSR-VP Syntax

\[
P ::= \text{NIL} \quad \text{process that does nothing} \\
| \quad A : P \quad \text{timed action prefix} \\
| \quad e.P \quad \text{instantaneous event prefix} \\
| \quad be \rightarrow P \quad \text{conditional process} \quad (be : \text{boolean expression}) \\
| \quad P_1 + P_2 \quad \text{choice} \\
| \quad P_1 \parallel P_2 \quad \text{parallel composition} \\
| \quad [P]_t \quad \text{resource close} \\
| \quad P \setminus F \quad \text{event restriction} \\
| \quad P \setminus I \quad \text{resource hiding} \\
| \quad C(x) \quad \text{process name defined to be a process} \\
\]

\[C(x) = P \]
ACSR-VP Example

Preemptable and Non-preemptable Jobs

- Both jobs execute c time units on cpu with priority π
- Non-preemptable job: once it acquires cpu, it executes to completion

$$\begin{align*}
\text{Job}_1 & \overset{\text{def}}{=} \emptyset : \text{Job}_1 + \text{Exec}_1(0) \\
\text{Exec}_1(s) & = (s < c) \rightarrow \{(cpu, \pi)\} : \text{Exec}_1(s + 1)
\end{align*}$$

- Preemptable job: its execution can be preempted by actions on cpu of other jobs with higher priorities

$$\begin{align*}
\text{Job}_2 & \overset{\text{def}}{=} \emptyset : \text{Job}_2 + \text{Exec}_2(0) \\
\text{Exec}_2(s) & = (s < c) \rightarrow \{(cpu, \pi)\} : \text{Exec}_2(s + 1) \\
& + \emptyset : \text{Exec}_2(s)
\end{align*}$$

Unprioritized Operational Semantics

<table>
<thead>
<tr>
<th>Act</th>
<th>A : $P \xrightarrow{\Delta} P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act1</td>
<td>$(P {x \leftarrow v}, v).P \xrightarrow{(x[v/x])} \mathcal{P} n / x$</td>
</tr>
<tr>
<td>Act2</td>
<td>$(P {v \leftarrow \emptyset}, v).P \xrightarrow{(v[v/\emptyset])} \mathcal{P}$</td>
</tr>
<tr>
<td>Act3</td>
<td>$(\tau, v).P \xrightarrow{\tau[v/\emptyset]} P$</td>
</tr>
<tr>
<td>ParT</td>
<td>$P \xrightarrow{\Delta} P', Q \xrightarrow{\delta} Q' (\rho(A_1) \cap \rho(A_2) = \emptyset)$</td>
</tr>
<tr>
<td>ParC2</td>
<td>$P \xrightarrow{(x[v/\emptyset])} \mathcal{P}, Q \xrightarrow{(x[v/\emptyset])} \mathcal{Q}$</td>
</tr>
</tbody>
</table>
Unprioritized Operational Semantics

\[
\begin{align*}
\text{CloseT} &: P \xrightarrow{\delta \cup \delta_s} P' \\
\text{CloseI} &: P \xrightarrow{\epsilon} P' \\
\text{HideT} &: P \xrightarrow{\delta} P' \\
\text{HideI} &: P \xrightarrow{\epsilon} P'
\end{align*}
\]

\[
\begin{align*}
(A_2 = \{(r,0) \mid r \in I - \rho(A_i)\}) \\
(P \xrightarrow{\delta} P') \quad (\{(r,p) \in A \mid r \notin I\})
\end{align*}
\]

Preemption

A preemption relation is defined for two any actions \(\alpha \) and \(\beta \), denoted \(\alpha \prec \beta \), read \(\beta \) preempts \(\alpha \).

Examples:
- \(\{(r_1,2), (r_2,5)\} \prec \{(r_1,7), (r_2,5)\} \)
- \(\{(r_1,2), (r_2,5)\} \not\prec \{(r_1,7), (r_2,3)\} \)
- \(\{(r_1,2), (r_2,0)\} \prec \{(r_1,7)\} \)
- \(\{(r_1,2), (r_2,1)\} \not\prec \{(r_1,7)\} \)
- \((a,2) \prec (a,5) \)
- \((a,1) \not\prec (b,2) \)
- \((\tau,1) \prec (\tau,2) \)
- \(\{(r_1,2), (r_2,5)\} \prec (\tau,2) \)
Prioritized Operational Semantics

The operational semantics of ACSR-VP, the prioritized transition relation $\xrightarrow{\pi,\alpha}$, is defined as follows:

$P \xrightarrow{\alpha} P'$ iff

1. $P \xrightarrow{\alpha} P''$
2. there is no $P \xrightarrow{\beta} P'''$ such that $\alpha < \beta$

\[\text{Example: } P = \{(cpu,2)\} : P_1 + \{(cpu,3)\} : P_2 \]

- Unprioritized transition:
 \[\begin{align*}
P & \xrightarrow{\{(cpu,2)\}} P_1 \\
P & \xrightarrow{\{(cpu,3)\}} P_2
\end{align*}\]

- Prioritized transition:
 \[\begin{align*}
P & \xrightarrow{\{(cpu,3)\}\pi} P_2
\end{align*}\]

Modeling a Real-Time System

- A real-time system consists of a set of tasks running in parallel under a specific scheduling discipline.
- A task is a process composed of a sequence of jobs executed serially.
 - A task can be
 - Independent or dependent
 - Preemptable or non-preemptable
 - Periodic or aperiodic
- Possible timing constraints of a task are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Starting time</td>
</tr>
<tr>
<td>c, d</td>
<td>Execution time and deadline</td>
</tr>
<tr>
<td>p</td>
<td>Period for periodic task</td>
</tr>
<tr>
<td>p_1, p_2</td>
<td>Minimum and maximum inter - arrival times for aperiodic task</td>
</tr>
</tbody>
</table>
Specification of a real-Time System

A real-time system is specified by the process RTS:

$$\text{RTS} = [\text{Job}_1 \parallel \text{Activator}_1 \parallel \cdots \parallel \text{Job}_n]$$

Tasks are specified by the processes Job_i:

$$\text{Job}_i = (\text{Activator}_i \parallel \text{Activator}_i) \setminus \{\text{start, end}\}$$

- Process Job_i: internal characteristics, e.g.,
 - resource requirements
 - synchronization
- Process Activator_i: external timing attributes, e.g.,
 - periodic or aperiodic
 - period and deadline
- Events start, end are synchronization events:
 - start: activate jobs
 - end: mark deadlines of jobs – deadlock if unsuccessful

Sample Activators

Activator 1. A periodic task with (b, d, p)

$$\text{Activator} = \emptyset^b : \text{Activator}'$$
$$\text{Activator}' = (\text{start}!, 1)\emptyset^d : (\text{end}! , 2).$$
$$\emptyset^{p-d} : \text{Activator}'$$

Activator 2. An aperiodic task with (b, d, p_1, p_2)

$$\text{Activator} = \emptyset^b : \text{Activator}'$$
$$\text{Activator}' = (\text{start}!, 1)\emptyset^d : (\text{end}! , 2).$$
$$\emptyset^{p_1-d, p_2-d} : \text{Activator}'$$

where

$$\emptyset^n = \emptyset : \cdots : \emptyset$$ \hspace{1cm} (idling for n time units)

$$\emptyset^{m-n} = \emptyset^m + \emptyset^{m+1} + \cdots + \emptyset^n$$
Sample Jobs

Job 1
- preemptable, independent jobs running on cpu
 priority π and execution time c:
 \[
 \text{Job} \overset{\text{def}}{=} \emptyset : \text{Job} + (\text{start},1)\cdot\text{Exec}(0,0) \\
 \text{Exec}(s,t) = \begin{cases}
 (s < c) \rightarrow ((c\text{pu},\pi)) : \text{Exec}(s+1,t+1) \\
 (s = c) \rightarrow \text{Wait}
 \end{cases} \\
 \text{Wait} \overset{\text{def}}{=} \emptyset : \text{Wait} + (\text{end},1)\cdot\text{Job}
 \]
 - s for accumulated execution time
 - t for the elapsed time
 - Job can response to end event only when its current execution is finished

Sample Jobs

Job 2
- nonpreemptable, independent jobs on multiprocessors $c\text{pu}_1, \ldots, c\text{pu}_k$
 with priorities π_1, \ldots, π_k and execution time c:
 \[
 \text{Job} \overset{\text{def}}{=} \emptyset : \text{Job} + (\text{start},1)\cdot\text{Exec} \\
 \text{Exec} = \sum_{1 \leq i \leq k} \{(c\text{pu}_i,\pi_i)^c : \text{Wait}) \\
 \text{Wait} \overset{\text{def}}{=} \emptyset : \text{Wait} + (\text{end},1)\cdot\text{Job}
 \]
 - A job can be executed on any of the processors
 - Once a processor is assigned to a job, the job executes on that processor until completion
Sample Jobs

Job 3

• dependent jobs on processor cpu with priority \(\pi \) and execution time \(c \) on resource data (with priority \(\pi' \) after at \(c' \) time units execution:

<table>
<thead>
<tr>
<th>Event</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job</td>
<td>(\preceq) : Job + ((start),1).Exec(0,0)</td>
</tr>
</tbody>
</table>
| Exec | \(s < c \wedge (s+c') \rightarrow (\text{cpu,},\pi) \) : Exec(s+1,t+1) + \(s+c' \rightarrow (p,0).CS(x,t) \)
| Wait | \(s = c \rightarrow \text{Wait} \) |
| CS(x,t) | \(s < c+cs \rightarrow ((\text{cpu,},\pi) : \text{CS}(s+1,t+1) + \text{Wait} : \text{CS}(s,t+1)) \)
| P | \(\text{P?} \) V \(\text{?} \) V \(\text{?} \) V |
| V | \(\text{V?} \) P \(\text{?} \) V \(\text{?} \) V |

- P and V operations are modeled by the processes P and V with events (\(p?,0\)) and (\(v?,0\))
- When \(s \) equals \(c' \), Exec waits for (\(p?,0\)) to enter the critical section CS(s,t)

Scheduling Disciplines

Earliest Deadline First

• Tasks \(T_i \) = Job 1 + Activator 1
• Priority \(\pi_i = d_{max} - (d_i - t) \)

where \(d_{max} = (1 \max (d_1, \ldots, d_n)) \)

<table>
<thead>
<tr>
<th>Event</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDFSys</td>
<td>(T_1 \parallel T_2 \parallel \cdots \parallel T_{\text{num}})</td>
</tr>
<tr>
<td>Job_i</td>
<td>(\varnothing : \text{Job}_i + (\text{start},1).\text{Exec}(0,0))</td>
</tr>
</tbody>
</table>
| Exec(s,t) | \(s < c \rightarrow ((\text{cpu,},d_{max} - (d_i - t)) : \text{Exec}(s,t+1) + \text{Wait} : \text{Exec}(s,t+1)) \)
| Wait_i | \(\varnothing : \text{Wait}_i + (\text{end},1).\text{Job}_i \) |
| Activator | \((\text{start},1) \parallel \varnothing : (\text{end},2) \parallel \varnothing : \text{Activator} \) |
Other Time-Driven Scheduling Disciplines

<table>
<thead>
<tr>
<th>Discipline</th>
<th>(\pi_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline Monotonic</td>
<td>(\pi_i = d_{\text{max}} - d_i)</td>
</tr>
<tr>
<td>Shortest Remaining Time First</td>
<td>(\pi_i = c_{\text{max}} - (c_i - s))</td>
</tr>
<tr>
<td>Least Laxity First</td>
<td>(\pi_i = d_{\text{max}} - (d_i - r) - (c_i - s))</td>
</tr>
</tbody>
</table>

where \(c_{\text{max}} = 1 + \max \{c_1, \ldots, c_n\} \)

The Priority Inversion Problem

Without priority inheritance

With priority inheritance

5/27/08 Korea University
Task parameters

<table>
<thead>
<tr>
<th>Resources:</th>
<th>cpu</th>
<th>processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ready time</td>
<td>$r_1 = 5$</td>
<td>$r_2 = 10$</td>
</tr>
<tr>
<td>comp. time</td>
<td>$c_1 = 6$</td>
<td>$c_2 = 8$</td>
</tr>
<tr>
<td>deadline</td>
<td>$d_1 = 30$</td>
<td>$d_2 = 30$</td>
</tr>
<tr>
<td>start time of CS</td>
<td>$cs_1 = 3$</td>
<td>$cs_2 = 5$</td>
</tr>
<tr>
<td>length of CS</td>
<td>$c'_1 = 2$</td>
<td>$c'_2 = 2$</td>
</tr>
<tr>
<td>priority</td>
<td>$\pi_1 = 3$</td>
<td>$\pi_2 = 2$</td>
</tr>
<tr>
<td>max priority</td>
<td>$\pi_{max} = 4$</td>
<td></td>
</tr>
</tbody>
</table>

Priority Inheritance Protocol

$$T_c = \text{Job} \equiv \text{Activator1 + Priority - Passing Events}$$

$$\text{PISys} = \{\text{Job} \equiv \text{Activator0, } (\text{start, end})\}$$

$$\text{Job}_0 = \emptyset : \text{Job}_0 = (\text{start, end}) : \text{Job}_0$$

$$\text{Exec}_p(s) = (s < c, s < cs) \rightarrow ((\text{cpu, run}) : \text{Exec}(s + 1))$$

$$\text{Wait} = \emptyset : \text{Wait} = (\text{stop, start}) : \text{Job}_0$$

$$\text{Req}_p(s) = (p < c, s < cs) \rightarrow ((\text{cpu, run}) : \text{Req}(s + 1))$$

$$\text{CS}(s, c) = (s < c, s < cs) \rightarrow ((\text{cpu, run}) : \text{CS}(s + 1))$$

$$\text{Activator} = \emptyset : (\text{start}) : \emptyset : (\text{end, stop}) : \emptyset$$

$$\text{P} = (p < c, s, \text{max}) \rightarrow (p < c, s, \text{max})$$

$$\text{V}(\text{max}) = (c, s) : \text{P} : \text{V}(\text{max})$$

Parameters of T_c
- Priority c
- Execution time of a job c_s
- Time for entering critical section c'_s
- Execution time in critical section c'_s
Traces of tasks

<table>
<thead>
<tr>
<th>Time</th>
<th>Process 1</th>
<th>Process 2</th>
<th>Process 3</th>
<th>Process P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>P</td>
</tr>
</tbody>
</table>

0	[x]	[y]	[z]	[P]
1	[y]	[z]	[x]	[P]
2	[z]	[x]	[y]	[P]
3	[x]	[y]	[z]	[P]
4	[y]	[z]	[x]	[P]
5	[z]	[x]	[y]	[P]
6	[x]	[y]	[z]	[P]
7	[y]	[z]	[x]	[P]
8	[z]	[x]	[y]	[P]
9	[x]	[y]	[z]	[P]
10	[y]	[z]	[x]	[P]
11	[z]	[x]	[y]	[P]
12	[x]	[y]	[z]	[P]
13	[y]	[z]	[x]	[P]
14	[z]	[x]	[y]	[P]
15	[x]	[y]	[z]	[P]
16	[y]	[z]	[x]	[P]
17	[z]	[x]	[y]	[P]
18	[x]	[y]	[z]	[P]
19	[y]	[z]	[x]	[P]
20	[z]	[x]	[y]	[P]
21	[x]	[y]	[z]	[P]
22	[y]	[z]	[x]	[P]
23	[z]	[x]	[y]	[P]
24	[x]	[y]	[z]	[P]
25	[y]	[z]	[x]	[P]
26	[z]	[x]	[y]	[P]

*: in critical section

Weak Bisimulation

Def. If $t \in D^*$, then $\bar{t} \in (D - \{\tau\})^*$ is the sequence derived by deleting all occurrences of τ from t.

Def. If $t = \alpha_1 \ldots \alpha_n \in D^*$, then $E \bar{t} E'$ if

$$P(\bar{t}) \rightarrow^* \alpha_1 \rightarrow^*(\bar{t}) \rightarrow^* \ldots \rightarrow^* (\bar{t}) \rightarrow^* \alpha_n \rightarrow^*(\bar{t}) \rightarrow^* P',$$

where "_" in $(\bar{t}, _)$ represents arbitrary integer.

Def. For a given transition system \rightarrow_s, any binary relation r is a weak bisimulation if, for $(P, Q) \in r$ and for any action $\alpha \in D$,

1. if $P \rightarrow_s^+ P'$, then, for some $Q', Q \rightarrow_s Q'$ and $(P', Q') \in r$, and

2. if $Q \rightarrow_s Q'$, then, for some $P', P \rightarrow_s P'$ and $(P', Q') \in r$.

Def. \rightarrow_s is the largest weak bisimulation over \rightarrow_s. It is an equivalence relation (though not a congruence) for ACSR.
Analyzing Real-Time Systems in ACSR-VP

• Two types of analyses
 – Validation
 – Schedulability analysis

• Basic idea
 – Checking weak bisimulation \(\approx \)
 – Searching deadlocked states

• Practical Issues
 – Ensure that the EDFSys and PIPSys processes are finite state
 – Translate ACSR-VP processes to ACSR processes and use VERSA, the toolkit for ACSR

Validating the EDFSys Specification

Construct a correctness specification, EDFSpec, that is sequential and easy to inspect

Verify that \(\text{EDFSys} \approx \pi \text{EDFSpec} \)

\[
\text{EDFSpec} = [S(0, \ldots, 0, 0)]_{c}^{def}
\]

\[
S(s_1, t_1, \ldots, s_n) = \sum_{\text{trans}} \left\{ \begin{array}{l}
 (s_i = c_i \land t_i = p_i) \\
 \rightarrow (r, 1).S(\ldots, s_{i-1}, t_{i-1}, 0, 0, s_{i+1}, t_{i+1}, \ldots) \\
 +
 \ (s_i < c_i \land t_i = d_i) \\
 \rightarrow (r, 1).\text{NIL} \\
 +
 \ (s_i = c_i \land t_i < p_i) \\
 \rightarrow \emptyset : S(\ldots, s_{i-1}, t_{i-1} + 1, s_i, t_i + 1, s_{i+1}, t_{i+1} + 1, \ldots) \\
 +
 \ (s_i < c_i \land t_i < d_i) \\
 \rightarrow \{(cpu, d_{\max} - (d_i - t)) \} : S(\ldots, s_{i-1}, t_{i-1} + 1, s_i + 1, t_i + 1, s_{i+1}, t_{i+1} + 1, \ldots)
\end{array} \right.
\]
Schedulability Analysis

Lemma 1 If \textbf{EDFSys} is deadlock free, then it is schedulable.

Lemma 2 If

$\textbf{EDFSys} \setminus \{cpu\} = \emptyset$,

then \textbf{EDFSys} is deadlock free.

Lemma 3 If \textbf{PIPSys} is deadlock free, then it is schedulable.

Lemma 4 If

$\textbf{PIPSys} \setminus \{cpu\} = \emptyset$,

then \textbf{PIPSys} is deadlock free.

Example 1

• Consider an instance \textbf{EDFSys}_1 of \textbf{EDFSys} where:

 Task T_1: $c_1 = 1, d_1 = 2, p_1 = 3$
 Task T_2: $c_2 = 2, d_2 = 3, p_2 = 3$

• The following sufficient condition for schedulability from [Liu and Lay 73] is not satisfied:

$\frac{c_1}{d_1} + \frac{c_2}{d_2} \leq 1$

• The following equation

$\textbf{EDFSys} \setminus \{cpu\} = \emptyset$,

is satisfied, i.e., the task system is schedulable.

More specifically, we have

$\textbf{EDFSys}_1 \xrightarrow{(r,2)} \pi \xrightarrow{(r,2)} \pi \xrightarrow{((cpu,2))} \pi \xrightarrow{((cpu,3))} \pi \xrightarrow{(r,3)} \pi \xrightarrow{((cpu,3))} \pi \xrightarrow{(r,3)} \pi \xrightarrow{\pi} \textbf{EDFSys}_1$
Example 2

Consider another instance EDFSys\textsubscript{2} of EDFSys where:

- Task T\textsubscript{1}: c\textsubscript{1} = 2, d\textsubscript{1} = 2, p\textsubscript{1} = 3
- Task T\textsubscript{2}: c\textsubscript{2} = 2, d\textsubscript{2} = 3, p\textsubscript{2} = 3

The equivalence

\[
\text{EDFSys}_{2} \setminus \{\text{cpu}\} =_{\pi} \emptyset^{\omega},
\]

is false and the task system is therefore not schedulable.

More specifically, we have

\[
\begin{align*}
\text{EDFSys}_{2} &\xrightarrow{(\tau, 2)} \pi \xrightarrow{(\tau, 2)} \pi \xrightarrow{(\text{cpu}, 2)} \pi \xrightarrow{(\text{cpu}, 2)} \pi \xrightarrow{(\tau, 3)} \pi \\
&\xrightarrow{(\text{cpu}, 3)} \pi \text{NIL}
\end{align*}
\]

Summary

- The ACSR paradigm:
 - Formalism for modular specification of real-time systems along with scheduling disciplines
 - Formal characterization of the schedulability analysis in process algebra
- Automated schedulability analysis
 - Provide techniques for detecting timing anomalies before an implementation is developed
 - Integrate into a methodology for engineering reliable real-time systems
- Tools:
 - GCSR (Graphical ACSR)
 - XVERSA: VERSA and GCSR