Modeling & Analysis of Timed Systems

Wang Yi
Uppsala University, Sweden

CUGS May 15-16, 2007

Modified by Insup Lee for CIS 480, Spring 2009

OUTLINE

= Model checking
» Timed automata and verification problems
= UPPAAL tutorial: data stuctures & algorithms

Main references (Papers)

= Temporal Logics (CTL,LTL)

Automatic Verification of Finite State Concurrent Systems Using Temporal Logic
Specifications: A Practical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla,
POPL 1983: 117-126, also as "Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2): 244-263 (1986) "

An Automata-Theoretic Ay roach to Automatic Program Verification, Moshe Y. Vardi,

Pierre Wolper: LICS 1986: 332-344. Also as ” Reasoning About Infinite Computations. Inf. Comput.
115(1): 1-37 (1994)”

= Timed Systems (Timed Automata, TCTL)

?1;5"?)9'” of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235

Symbolic Model Checking for Real-Time Systems, Thomas A. Henzinger, Xavier Nicollin,
Joseph Sifakis, and Sergio Yovine. Information and Computation 111:193-244, 1994.

UPPAAL in a Nutshell. Kim Guldstrand Larsen, Paul Pettersson, Wang Yi. STTT 1(1-2): 134-152
(1997)

Timed Automata — Semantics, Algorithms and Tools, a tutorial on timed automata Johan
Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).

Main references (Books)

= Edmund M. Clarke, Orna Grumberg and Doron A. Peled, Model Checking

= G.J. Holzmann, Prentice Hall 1991, Design and Validation of Computer Protocols (new book: The SPIN
MODEL CHECKER Primer and Reference Manual , 2003)

= Joost-Pieter Katoen, Concepts, Algorithms, and Tools for Model Checking (draft book on the web)

Lecture 1
Motivation and Sketch of Verification History

History: Model-checking invented in 70’s/80s

[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

Restrict attention to finite-state programs

= Control skeleton + boolean (finite-domain) variables

= Found in hardware design, communication protocols, process control
= Temporal logic specification of ‘e.g., synchronization pattern

= There are algorithms to check that MODEL of program satisfies: SPEC
- e.g. Alternating Bit Protocol skeleton, around 140 states, 1984
= BDD-based symbolic technique [Bryant 86]
= SMV 1990 Clarke, McMillan et al, state-space 1020
= Now powerful tools used in processor design
= On-the-fly enumerative technique [Holzman 89]
= SPIN, COSPAN, CAESAR , KRONOS, UPPAAL etc
= SAT-based techniques [Clarke et al, McMillan, ...]

History: Model checking for real time systems, started in the 80s/90s

= Extension of model checking to consider time quantities
Models, specfications, and algorithms can be extended

= Timed automata, timed process algebras
[Alur&Dill 1990]

= Tools
KRONOS, Hytech, 1993-1995, IF 2000’s
TAB 1993, UPPAAL 1995, TIMES 2002

Model Checking

Promela

Model: M 1 .
- % Yes! WX
H — 4 Model —T7

el > Checker — T~

>

Property: @ u No!

N\ / Error trace
Promela/ SPIN

Temporal Logic

Merits of this simpler approach

Checking simple properties (e.g. deadlock freeness) is already extremely useful!

= The goal is no longer seen as proving that a system is completely, absolutely and
undoutedly correct (bug-free)

= The objective is to have tools that can help a developer find errors and gain
confidence in her/his design. That is achievable

= Now widely used in hardware design, protocol design, and hopefully soon,
embedded systems!

Why testing not good enough

» Testing/simulation: coverage problems, difficult to deal
with non-determinism and concurrent computation

= Formal verification/Model-Checking (= exhaustive
testing of software and hardware design) provides 100%
coverage

10

Traditional software development

The Waterfall Model

Problem

Area Analysis

Design\A
Impleqe@ation

Testing

11

Introducing, Detecting and Correcting errors

Analysis Cg:;:”' Programming Design Test System Test Opemtion
e 25 kDM
- detected T - e
immduced errots (in®) - . costef
0% errors (in %) . . corection T 20 kDM
7 pereror
_ S (inDM)
30% 1 J TLoEbm
o f'
20% 4 L J 4 -+ L0 kDM
o)l "
. ,) .
0% - “... TSEDM
of Ml . B — | , 0DM
4 30-50% of development time/money for testing Time (ron-linear)

¢ Errors detected: the late the more expensive 12

Model-Checking may complement testing to
find (design) Bugs as early as possible

13

Motivation: Model Verification

Requirements

: i Build model of the design.
High level design Analyze it thoroughly

Detailed design

coding Testing concentrates
more on low-level
testing issues
And conformance to

model
deployment

14

Problems that can be addresed by Model Checking

Checking correctness of

= Communication protocols

= Distributed Algorithms

= Controllers

= Hardware circuits

= Parallel and distributed software

= Embedded and real-time systems and software

e.g., Absence of race conditions, proper synchronization,

Model checking is the appropriate technique

when there are many many different scenarios of
interaction between components in a system

15

Reachable?

) (bug?)
An “abstract’ version of a fieled bus protocol

16

Model-Checking

in a Nutshell

17

EXAMPLE: Petersson’s algorithm

turn, flagl, flag2: shared variable

Process 1

loop

flagl:=1; turn:=2

while (flag2 & turn=2) wait

= Process 2
= loop
= flag2:=1; turn:=1

cs1 = while (flagl & turn=1) wait
flagl:=0 = Cs2
end loop = flag2:=0

= end loop

Question: can both run in CS simultaneusly ?

18

Example: Fischer’s Protocol
[J
[J
° . /
v
8 li Criticial Section

Init X<100V:=1 X:=0 X>100v=1
Y<100v-—2 Y:=0 >100V 5 ‘
A2 = B2 =
@ ° N2
([J

19

U PPAAL A model checker for real-time systems

System Model No!

(Design)k J (Debugging Information)
UPPAAL | —

Questions Yes
(specification) (Debugging Information)

20

10

MODELING

How to construct Model ?

21

Program as State Machine!

Input
ports

Control states

Output
ports

22

11

A Light Controller

press?

press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

23

A Light Controller (with timer)

press?
press? X:=0 @ X<=3 press? Bright

press? X>3

Solution: Add real-valued clock x

24

12

Modeling Real Time Systems

= Events
= synchronization
= interrupts

= Timing constraints

dAUlomaton = specifying event arrivals

Time

X:=0

= e.g. Periodic and sporadic

25

Modeling Real Time Systems

= Events
= synchronization
= interrupts

= Timing constraints

x>10 && v==100 d Automaton = specifying event arrivals

! = e.g. Periodic and sporadic
a Time

’Ml = Data variables & C-subset
X:=0 ; V++ i” ”’ = Guards

= assignments

26

13

of

(u

Model
environment
ser-supplied)

Construction of Models: Concurrency

Plant Controller Program
Continuous Sensors Discrete

Model

of

tasks
(automatic)

actuators

\ UPPAAL Model /

Cear
RegNewGear?
imer:=0

Enabled Transitions SysTime

(GearControl.trans17, Clutch.trans1)

GCTis =250
(GearControl trans18, Engine transs) ReqZeroTorque! GponClutc

GCTimer:=0 GCTimes

CluichlsOpen?
CheckCluichZ

CheckTorque 'ClutchOpen2
CCTi

CTimerc250 CCTimer-150,
TorqueZero? GCTimer<=200

RegNeuGear

[on [o [vomet |

Simulation Trace

0 CCTimer=200,

GCTimer=200,
GCTimer==250 i 2

GCTimer<=250,

w2
(Gear, GearN, Initial, Neutral, Closed) s 5 GCTimer<=250
(GearControl trans24, Interface.trans11)

(Initiate, chkGearNR, Initial, Neutral, Closed GCTimer»150, GearNeu?

(GearControl trans27) ToGear==(), ReqSyncSpeed GCTimer==200
ToGear=0

(RegSyncSpeed, chkGearNR, Initial, Neutral

(GearControl trans32, Engine transg)
(CH i

CCTimer==150
OpenClutch!

Cluichls Open?
0~CheckClutch

CluichOpen RegSetGear2

CheckSyncSpeed GCTime

GCTimer<=155 CCTimer<=200
GCTimer<150 ToGear=0
SpeedSet? RegSet!

CCTimer:=0

RegSetGear RegSet!

GCTimer=300,
GCTimer<=350

GCTimer=300,
GCTimer<=350

GCTimer:=0

GSetError CheckGearSei2 ToGear==0
CCTimer<=350 GCTimer<=350
prev | 1on | Re | CTimer \
| Py GearSet? CloseClutch! CearSet? CloseClutch!
| Load H Save H Rznunml G:-\ ClutchlsClosed? o GCTimer:=0 CCTimens
— ReqTorqueC CheckCluichClosed CluichClose :
CCTimer<=200
— GCTimer=150,
Slow Fast edfongues GCTimer<=200 GCTimer=150,

28

14

SPECIFICATION

How to ask questions: Specs ?

29

Specification=Requirement, Lamport 1977

= Safety

= Something (bad) will not happen
= Liveness

= Something (good) must happen

30

15

Specification=Requirement [Lamport 1977]

= Safety

= Something (bad) will not happen
= Liveness

= Something (good) must happen

= Realizability (for systems with limited resources)
= Schedulability, enough resources?

31

Specification: Examples

= Safety
= AG -(P1.CS1 & P2.CS2) Always Globally
= AG (m< 100)
= EF (5<6) Possibly in Future

construct the whole state space

Report deadlocks etc.
» EF (vikingl.safe & viking2.safe & viking3.safe & viking4.safe)
» AG (time>60 imply viking4.safe)

= Liveness
= AF (m>100) Eventually
= AG (P1.try imply AF P1.CS1) Leads to

32

16

VERIFICATION

Model meets Specs ?

33

(Formal) Verification
= Semantics of a system
= all states + state transitions

(all possible executions)

» Verification
= state space exploration + examination

34

17

Verificatioin = Searching

State-Space of a system

(1) SAFETY:
-- Is it possible to fire the bombs?
-- Is it possible to go from A to B within 10 sec?
(2) LIVENESS:
-- Will B be executed eventually (no time bound given)?

35

Approaches to Verification

= Manual: Proof systems, paper and pen
* Find invariants (difficult !)
= Induction: Assume nth-state OK, check (n+1)th OK
= Boring ® (more fun with programming)
= Semi-automatic: Theorem proving
= Use theorem provers to prove the induction step
= e.g. PVS, HOL, ALF
= Require too much expertise ®
= Automatic: Model-Checking ©
= State-Space Exploration and Examination
= e.g. SPIN, SMV, UPPAAL

36

18

Two basic verification algorithms

= Reachability analysis

= Checking safety properties

= Loop detection

= Checking liveness properties

37

Modelling in UPPAAL

: example

Pl :: while True do
Tl : wait(turn=1)
Cl : CSl; turn:=0
endwhile

P2 :: while True do
T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

process Proc2

process Proc1

turn :=0

Mutual Exclusion Program

Is it possible that P1 and P2 run C1 and C2 simultaneously?

38

19

Verification: example

(c1,c2) is not reachable!

39

UPPAAL Demo

40

20

* Problem with verification: *

‘State Explosion’

All combinations = exponential in no. of components 4

EXAMPLE

13 components and each with 1 clock & 10 states

of states = 10,000,000,000,000 =10,000 G
Each needs (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >>4,000,000GB

21

Time (s)
8
S

T T T
Audio with Collision —e—
Q -+
Dacapo 3 -8--
Fischer 6 —--

A Protocol by Philips for Audio Products

-6 months for manual proof in 1993
-24 hours for Hytech in 1994

-50 sec for Uppaal in 1995
-0.2 sec for Uppaal now!

Every 9 month 10 times better performance!

as compiler theory

0 2.00 2.02 2.04 2.06 2.08 2.10 212 2.I1 4 2.16 2-.18
Version
Dec’96 Sep’98
43
The dream goes on

» Model Checking, a useful and applicable technique

End of introduction

44

22

