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OUTLINE

= Model checking
» Timed automata and verification problems
= UPPAAL tutorial: data stuctures & algorithms
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Lecture 1
Motivation and Sketch of Verification History

History: Model-checking invented in 70’s/80s

[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

Restrict attention to finite-state programs

= Control skeleton + boolean (finite-domain) variables

= Found in hardware design, communication protocols, process control
= Temporal logic specification of ‘e.g., synchronization pattern

= There are algorithms to check that MODEL of program satisfies: SPEC
- e.g. Alternating Bit Protocol skeleton, around 140 states, 1984
= BDD-based symbolic technique [Bryant 86]
= SMV 1990 Clarke, McMillan et al, state-space 1020
= Now powerful tools used in processor design
= On-the-fly enumerative technique [Holzman 89]
= SPIN, COSPAN, CAESAR , KRONOS, UPPAAL etc
= SAT-based techniques [Clarke et al, McMillan, ...]




History: Model checking for real time systems, started in the 80s/90s

= Extension of model checking to consider time quantities
Models, specfications, and algorithms can be extended

= Timed automata, timed process algebras
[Alur&Dill 1990]

= Tools
KRONOS, Hytech, 1993-1995, IF 2000’s
TAB 1993, UPPAAL 1995, TIMES 2002
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Merits of this simpler approach

Checking simple properties (e.g. deadlock freeness) is already extremely useful!

= The goal is no longer seen as proving that a system is completely, absolutely and
undoutedly correct (bug-free)

= The objective is to have tools that can help a developer find errors and gain
confidence in her/his design. That is achievable

= Now widely used in hardware design, protocol design, and hopefully soon,
embedded systems!

Why testing not good enough

» Testing/simulation: coverage problems, difficult to deal
with non-determinism and concurrent computation

= Formal verification/Model-Checking (= exhaustive
testing of software and hardware design) provides 100%
coverage
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Traditional software development

The Waterfall Model
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Model-Checking may complement testing to
find (design) Bugs as early as possible
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Motivation: Model Verification

Requirements

: i Build model of the design.
High level design Analyze it thoroughly

Detailed design

coding Testing concentrates
more on low-level
testing issues
And conformance to

model
deployment
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Problems that can be addresed by Model Checking

Checking correctness of

= Communication protocols

= Distributed Algorithms

= Controllers

= Hardware circuits

= Parallel and distributed software

= Embedded and real-time systems and software

e.g., Absence of race conditions, proper synchronization, ....

Model checking is the appropriate technique

when there are many many different scenarios of
interaction between components in a system

15

Reachable?

) (bug?)
An “abstract’ version of a fieled bus protocol
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Model-Checking

in a Nutshell
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EXAMPLE: Petersson’s algorithm

turn, flagl, flag2: shared variable

Process 1

loop

flagl:=1; turn:=2

while (flag2 & turn=2) wait

= Process 2
= loop
= flag2:=1; turn:=1

cs1 = while (flagl & turn=1) wait
flagl:=0 = Cs2
end loop = flag2:=0

= end loop

Question: can both run in CS simultaneusly ?
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Example: Fischer’s Protocol
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U PPAAL A model checker for real-time systems
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MODELING

How to construct Model ?

21

Program as State Machine!

Input
ports

Control states

Output
ports

22
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A Light Controller

press?

press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.
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A Light Controller (with timer)

press?
press?  X:=0 @ X<=3 press? Bright

press? X>3

Solution: Add real-valued clock x

24
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Modeling Real Time Systems

= Events
= synchronization
= interrupts

= Timing constraints

dAUlomaton = specifying event arrivals

Time

X:=0

= e.g. Periodic and sporadic

25

Modeling Real Time Systems

= Events
= synchronization
= interrupts

= Timing constraints

x>10 && v==100 d Automaton = specifying event arrivals

! = e.g. Periodic and sporadic
a Time

’Ml = Data variables & C-subset
X:=0 ; V++ i” ”’ = Guards

= assignments

26
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SPECIFICATION

How to ask questions: Specs ?

29

Specification=Requirement, Lamport 1977

= Safety

= Something (bad) will not happen
= Liveness

= Something (good) must happen

30
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Specification=Requirement [Lamport 1977]

= Safety

= Something (bad) will not happen
= Liveness

= Something (good) must happen

= Realizability (for systems with limited resources)
= Schedulability, enough resources?
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Specification: Examples

= Safety
= AG -(P1.CS1 & P2.CS2) Always Globally
= AG (m< 100)
= EF (5<6) Possibly in Future

construct the whole state space

Report deadlocks etc.
» EF (vikingl.safe & viking2.safe & viking3.safe & viking4.safe)
» AG (time>60 imply viking4.safe)

= Liveness
= AF (m>100) Eventually
= AG (P1.try imply AF P1.CS1) Leads to

32
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VERIFICATION

Model meets Specs ?

33

(Formal) Verification
= Semantics of a system
= all states + state transitions

(all possible executions)

» Verification
= state space exploration + examination

34
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Verificatioin = Searching

State-Space of a system

(1) SAFETY:
-- Is it possible to fire the bombs?
-- Is it possible to go from A to B within 10 sec?
(2) LIVENESS:
-- Will B be executed eventually (no time bound given)?
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Approaches to Verification

= Manual: Proof systems, paper and pen
* Find invariants (difficult !)
= Induction: Assume nth-state OK, check (n+1)th OK
= Boring ® (more fun with programming)
= Semi-automatic: Theorem proving
= Use theorem provers to prove the induction step
= e.g. PVS, HOL, ALF
= Require too much expertise ®
= Automatic: Model-Checking ©
= State-Space Exploration and Examination
= e.g. SPIN, SMV, UPPAAL

36
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Two basic verification algorithms

= Reachability analysis

= Checking safety properties

= Loop detection

= Checking liveness properties
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Modelling in UPPAAL

: example

Pl :: while True do
Tl : wait(turn=1)
Cl : CSl; turn:=0
endwhile

P2 :: while True do
T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

process Proc2

process Proc1

turn :=0

Mutual Exclusion Program

Is it possible that P1 and P2 run C1 and C2 simultaneously?

38
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Verification: example

(c1,c2) is not reachable!

39

UPPAAL Demo

40
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* Problem with verification: *

‘State Explosion’

All combinations = exponential in no. of components 4

EXAMPLE

13 components and each with 1 clock & 10 states

# of states = 10,000,000,000,000 =10,000 G
Each needs (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >>4,000,000GB

21
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A Protocol by Philips for Audio Products

-6 months for manual proof in 1993
-24 hours for Hytech in 1994

-50 sec for Uppaal in 1995
-0.2 sec for Uppaal now!

Every 9 month 10 times better performance!

as compiler theory
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The dream goes on ... ...

» Model Checking, a useful and applicable technique

End of introduction

44
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