
The Evolution of Real-Time Programming

Christoph M. Kirsch
Department of Computer Sciences

University of Salzburg
E-mail: ck@cs.uni-salzburg.at

Raja Sengupta
Department of Civil Engineering
University of California, Berkeley

E-mail: raja@ce.berkeley.edu

October 26, 2006

1 Introduction

Real-time programming has always been one of the most challenging programming disciplines. Real-time
programming requires comprehensive command of sequential programming, concurrency, and, of course,
time. Real-time programming has many application domains. In this chapter, however, we structure our
discussion around digital control systems for the following two reasons. Firstly, digital control systems
represent a large portion of real-time software in a diverse set of industries. Examples include automotive
power train control systems, aircraft flight control systems, electrical drive systems in paper mills, or process
control systems in power plants and refineries. Many of these systems distribute their components over
networks with significant communication delays. Therefore, we also discuss networked real-time programming
(Section 7). The second reason is pedagogical. Digital control is defined by a set of abstractions that are
real-time programmable and mathematically tractable in the context of the dynamics of physio-chemical
processes. The abstractions clearly define what application engineers (control engineers) expect of real-time
programming. These abstractions therefore constitute a precise definition of the real-time programming
problem (Section 2).

Control engineers design in difference equations and often use modeling tools such as Simulink1 to simulate
and validate their control models. The part of Simulink most commonly used to specify digital control, i.e.,
discrete-time with the discrete fixed-step solver and mode:auto, is well-explained by the so-called synchronous
semantics [7, 38]. The key abstraction, we call the synchronous abstraction, is that any computation and
component interaction happens instantaneously in zero time or with a delay that is exactly the same at each
invocation. For example, if a controller computes every 20 msec, either the controller is assumed to read its
inputs, compute its control, and write the corresponding outputs instantaneously at the beginning of each
period in zero time, or to read its inputs instantaneously at the beginning of the period, compute during
the period, and write the corresponding output exactly 20 msec (one period) later. In control parlance,
these are the causal and strictly causal cases, respectively. Systems of difference equations can directly
be expressed and structured in this model. The inclusion of strictly causal components (components with
delays of a period or more) is typically required to break feedback loops and to account for the unavoidable
computation or communication delays that will be present in the real control system.

Real-time programmers design in interrupt handlers, device drivers, and schedulers, which are concepts
on levels of abstraction that are obviously unrelated to difference equations. The result is a conceptual and
technical disconnect between control model and real-time code that bedevils many control building projects.
The control engineer specifies a Simulink design the real-time programmer finds unimplementable. The real-
time programmer then fills in gaps to produce an implementation the control engineer finds uncontrollable.
The process of interaction as the two iterate to produce a correct design is prolonged by the different
backgrounds of control engineers and real-time programmers. This gap explains many of today’s problems
in real-time software design for digital control such as high validation and maintainance overhead as well as
limited potential for reusability and scalability.

1www.mathworks.com

1

1 INTRODUCTION 2

However, during the last two decades real-time programming has come closer and closer to the computing
abstractions of digital control. This convergence is visible in the form of an increasingly automated real-time
programming tool chain able to generate real-time code from high-level specifications produced by control
engineer for even large and complex control systems. We tell this story by tracing how real-time programming
methodologies have evolved from early, so-called physical-execution-time (PET) and bounded-execution-time
(BET) programming [5] to high-level programming models that incorporate abstract notions of time such
as synchronous reactive or zero-execution-time (ZET) programming [13] and logical-execution-time (LET)
programming [17].

PET programming had been developed to program control systems on to processor architectures with
simple instructions that have constant execution times such as many microcontrollers and signal processors.
The control engineer had to specify a sequence of instructions, sometimes in an assembly language. One could
not declare concurrent, multi-component designs in the dataflow. While this forced the control engineer to
work in a low-level language, it resulted in temporally accurate programs and a precise accounting of input-
output delay.

The emergence of operating systems and real-time scheduling led to PET programming being replaced
by BET programming. BET programming aimed to handle concurrency and real time. A control engineer
could express design in terms of multiple concurrently executing components, i.e, tasks in BET terminology.
Each task could have a deadline, the period of the controller being the typical example of a deadline. This
captured another essential aspect of the computing abstraction desired by the control engineer. Real-time
programmers built real-time operating systems that then brought the advances of real-time scheduling theory
to bear on the correct temporal execution of these concurrent programs. Each component was expected to
execute in the worst case before its deadline or at the correct rate. Earliest-deadline-first (EDF) scheduling
and rate-monotonic scheduling [27] emerged as the most successful scheduling disciplines in the context of
the BET model. The BET model is still the most widely used real-time programming model. It is supported
by a large variety of real-time operating systems and development tools.

The emergence of ZET programming has been motivated by a critical weakness of the BET model with
regard to what we call I/O compositionality. While BET schedulability analysis techniques check that a
collection of tasks with deadlines, when composed, will all execute before their respective deadlines, the
same is not true of functional or temporal I/O behavior. The addition of new tasks in parallel to a set of
old tasks can change the behavior of the old tasks even if the new tasks have no input-output interactions
with the old tasks and the entire task collection continues to meet all deadlines. This is because the order
and times when the old tasks interact are not necessarily maintained when a system is augmented. Thus
the BET model lacks I/O compositionality.

ZET programming is based on the so-called synchronous semantics in the sense that the semantics of ZET
programs are in terms of a zero computing time abstraction. Well-known examples of ZET programming
languages are Lustre [14] and Esterel [3]. ZET programs are I/O-compositional in the sense that if new tasks
are added to old tasks as previously discussed, the I/O behavior of the old tasks will remain unchanged. This
is guaranteed by ZET compilers, which accept concurrent, multi-component control designs but produce
a sequential program to be executed by the operating system. Thus ZET compilers take no advantage
of the scheduling facilities of real-time operating systems. Thus, while ZET programming brought I/O
compositionality to programming real-time control, it lost the BET connection with real-time scheduling.

The most recent of the real-time computing abstractions is the LET model. The notion of LET program-
ming was introduced with Giotto [17]. A LET program is assumed to take a given, strictly positive amount
of logical time called the LET of the program, which is measured from the instant when input is read to the
instant when output is written. The time the program actually computes between reading input and writing
output may be less than the LET. The LET compilation process reproduces the I/O compositionality of the
ZET model in its first-stage of compilation. This produces code composed of multiple tasks with their I/O
times specified to ensure a concurrent execution that is restricted only to the extent necessary to be consis-
tent with the I/O dependencies between the tasks [16]. This multi-task code with its I/O specifications can
be handled by a real-time operating system thereby leveraging the strengths of real-time scheduling during
execution.

Both the ZET and LET models close the semantical gap between digital control design and implemen-
tation, and have been shown to integrate well with simulation environments such as Simulink [7, 21]. The
LET model is closer in the sense that it tries to handle input and output exactly at times modeled in the

2 THE COMPUTING ABSTRACTIONS OF CONTROL ENGINEERING 3

G(x(kT))
y1

u2

u1

um

...

y2

yp

...
...

...

u = (u1, u2, . . . , um)
y = (y1, y2, . . . , yp)
x = (x1, x2, . . . , xn)
k = 0, 1, 2, . . .

x((k + 1)T) = F (x(kT), u(kT))

y(kT) =

Figure 1.1: Basic type of component in a control system

control system, e.g., at the beginning and the end of the controller period. This corresponds exactly to the
assumptions made by digital control as discussed in Section 2. ZET programs may produce output before the
end of the period, but in the case of strictly causal designs, can conform to the digital control abstraction by
buffering the output until the end of the period. The other difference between the two is the use of real-time
scheduling and operating systems [21]. Only the buffered, i.e., LET portions of ZET programs have recently
been shown to utilize real-time scheduling services such as EDF [37]. Recent research discussed in Section 7
shows the ZET and LET models also extend to some control systems distributed over networks.

In our discussion, we show how the evolution of real-time programming enables modern control software
engineering. In the following section, we begin by describing the computing abstractions of control engi-
neering. Then, we continue by covering the previously mentioned four real-time programming models in
detail. The final section provides an overview of the most recent work on control software engineering for
distributed architectures using deterministic and non-deterministic communication channels.

2 The Computing Abstractions of Control Engineering

In this section, we explain the dominant abstraction in control engineering for the specification of digital
control. Figure 1.1 shows the basic kind of component in a control system. Control engineers design digital
control in difference equations. The component in the figure has two equations, the first being called the
output equation and the second the state equation. The input signals u are typically measurements from
sensors, commands from operators, or commands from other controllers. The output signals y are typically
commands to actuators, commands to other controllers, or information displayed to operators. x, called
the state in control parlance, is the memory of the component. T is the period of the component. At each
expiration of the period T , the component

1. reads its inputs u,

2. computes its outputs y, and

3. updates its state x.

Thus the control engineers assumption about real-time behavior is as illustrated by Figure 1.2. On expiration
of each period T , a read and write operation with the environment is expected to occur. It is not expected
to occur earlier or later. Thus it is expected that the embedded computing environment will produce an
execution that conforms to the idealization as closely as possible. The red arrows indicate that the output
values expected at the end of the period depend on the input values read at its beginning. The component
has a so-called one-step delay. The intervening time T makes it possible to implement embedded computing
processes that conform to the assumptions of the control engineer. Often, the different input and output
signals constituting u and y will have different periods or frequencies. If so, the period or frequency of the
component will be the highest common factor or the lowest common multiple of the period or frequency

2 THE COMPUTING ABSTRACTIONS OF CONTROL ENGINEERING 4

time

read u(0)

0

write y(0)

T 2T

write y(1) write y(2)

read u(1) read u(2)

Figure 1.2: Basic timing behavior of a controller

z
u

w((k + 1)T) = F1(w(kT), u(kT))

z(kT) = G1(w(kT), u(kT))

x((k + 1)T) = F2(x(kT), z(kT))

y(kT) = G2(x(kT))
y

Figure 1.3: A two-component control system

respectively. For example, if the component in Figure 1.1 were to have 2 Hz and 3 Hz input and output
signals, the component would compute at 6 Hz, i.e., T would be 1/6 seconds.

Control engineers design large control systems compositionally. The rules of composition are also rea-
sonably well established. Figure 1.3 illustrates a two-component control system. The real-time behavior of
each component will be assumed to be similar to Figure 1.2. Note that the first component has no one-step
delay, i.e., the output at time T depends on the input at time T . However, this is not a problem if the
signal z is internal to the program and only signals u and y interact with the environment. One can see by
working through the equations that the dependence between u and y is still delayed by one period. Thus if
the embedded computing environment is able to compute the equations in both components within period T
it will be able to conform to the control engineers timing assumptions at the interface with the environment,
which is all that matters for the correct control of the environment.

Figure 1.4 illustrates a three-component control system to clarify another aspect of the rules of compo-
sition. To see this in a simple fashion, we have dropped the state equations and assumed the periods of the
three components in Figure 1.4 are the same.

Figure 1.5 illustrates a behavior of the three-component control system. At each expiration of the period,
the system would be expected to execute the following actions in the following order:

1. read u,

2. execute block A to output y and z using the new value of u,

3. execute block B to output w using the new value of z, and

4. execute block C to output v based on the new values of w and y.

Thus the data dependencies between components as indicated by the arrows between components constrain
the order in which the components are to be executed. In general, the components in the system have to be

w

u v
A: y = 2u

z = u/2 C: v = y − w

B: w = 2z

y

z

Figure 1.4: A three-component control system

3 PHYSICAL-EXECUTION-TIME PROGRAMMING 5

clock 0 1 2 3 4
u 2 4 2 4 2
y (= 2u) 4 8 4 8 4
z (= u/2) 1 2 1 2 1
w (= 2z) 2 4 2 4 2
v (= y − w) 2 4 2 4 2

Figure 1.5: Behavior of the three-component control system

w((k + 1)T)

=y(kT) H(x(kT), u(kT), z(kT))

=x((k + 1)T) F (x(kT), u(kT), z(kT))

u
y

z

E(w(kT), y(kT))=z(kT)

G(w(kT), y(kT))=

Figure 1.6: A feedback control system

linearized in an order consistent with the arrows inter-connecting the components [38]. Figure 1.5 shows the
values of the variables that should be obtained at four consecutive sample times if u were to be as shown in
the figure and execution were to conform to the above semantics.

Finally, control engineers connect components in feedback as illustrated by Figure 1.6. In such a case,
the signal y is expected to solve the equation

y(kT) = H(x(kT), u(kT), E(w(kT), y(kT)))

Without restrictions on H or E, it is difficult to provide real-time guarantees on the time required to find
a solution. The restriction most commonly assumed is to require at least one of the components in the
feedback loop to have a one-step delay. For example, if we assume z(kT) = E(w(kT)), the equation above
becomes

y(kT) = H(x(kT), u(kT), E(w(kT)))

The problem now becomes similar to that of computing any other block. In general, a multi-component
system with feedback loops having a one-step delay can be handled as before by linearizing the components
in any order consistent with the input-output data dependencies.

3 Physical-Execution-Time Programming

read u ;
compute x := F (x, u) ;
compute y := G(x) ;
write y ;

Program 1.1: A task t

Real-time systems interact with the physical world. Despite functional correctness, temporal accuracy and
precision of I/O are therefore particularly relevant properties. Early real-time programmers have addressed

4 BOUNDED-EXECUTION-TIME PROGRAMMING 6

real time
210 1083 4 5 6 7 9

task t

starts

read u

completes

write y

physical execution time

Figure 1.7: The execution of Program 1.1

the challenge of programming such systems by taking the execution times of machine code into account.
As an example, consider Program 1.1, which shows an implementation of a task t, and Figure 1.7, which
depicts the execution of t. Throughout this chapter, we assume that a task is code that reads some input
u, then computes from the input (and possibly some private state x) some output y (and new state), and
finally writes the output. A task does not communicate during computation except through its input and
output. In Figure 1.7, task t is reading input for one time unit from time instant 0 to 1, and then starts
computing for eight time units. At time instant 9, t completes computing and is writing its output for one
time unit from time instant 9 to 10. Thus the physical execution time of task t, i.e., the amount of real time
from input to output, which is the only physically relevant time, is ten time units. Here, the intention of the
programmer is to have t write its output exactly after eight time units have elapsed since t read its input
in order to achieve a physical execution time of ten time units. In other words, the implementation of t is
correct only if t computes its output in exactly eight time units. We call this method physical-execution-time
(PET) programming .

PET programming only works on processor architectures where execution times of instructions are con-
stant and programs can have exclusive access to the processor. Widely used architectures enjoy these
properties, e.g., many microcontrollers and signal processors. PET programming results in cycle-accurate
real-time behavior and enables high I/O throughput. However, a critical drawback of the PET model is the
lack of compositionality. Integrating multiple PET programs on the same processor or distributing PET
programs on multiple processors with non-trivial communication latencies is difficult. In the evolution of
real-time programming, the following bounded-execution-time model (or scheduled model [24]) can be seen
as an attempt to address the lack of compositionality and support for other, less predictable processor and
system architectures.

4 Bounded-Execution-Time Programming

i n i t i a l i z e x ;
int n := 0 ;
while (true) {

wait f o r n−th c l o ck t i c k ;
read u ;
compute x := F (x, u) ;
compute y := G(x) ;
write y ;
n := n + period ;

}

Program 1.2: A periodic task t

Real-time systems interact with the physical world. Handling multiple concurrent tasks in real time is
therefore an important requirement on such systems. This challenge has traditionally been addressed by

4 BOUNDED-EXECUTION-TIME PROGRAMMING 7

released

task t

210 1083 4 5 6 7 9

periodperiod

11 12 13 14 15 16 17 18 19 20
real time

starts completesstarts

read u write yread u write y

resumed

preempted

completes

preempted

resumed

preempted

released released

Figure 1.8: The execution of Program 1.2 in the presence of other tasks

imposing real-time bounds on the execution times of tasks. As an example, consider Program 1.2, which
shows an implementation of a periodic task t, and Figure 1.8, which depicts the execution of t in the presence
of other tasks. At time instant 0, t is released but does not read its input before time instant 2 because other
tasks are executing. Task t is reading input for one time unit and then starts computing until time instant
4 at which t is preempted by some other task. Only two time units later, the execution of t is resumed. At
time instant 7, t completes computing and immediately starts writing its output for one time unit until time
instant 8. At this point, t loops around in its while loop and waits for time instant 10. In the example, the
period of t is ten time units. At time instant 10, t is released again but executes differently now because
of different interference from other tasks. This time t starts reading input already after one time unit has
elapsed since t was released. Moreover, t gets preempted three times instead of just one time, and t needs
one time unit more to compute. As a result, compared to t’s previous invocation, t starts writing output
one time unit later with respect to the time t was released. Nevertheless, as long as t completes reading,
computing, and writing before it is released again, i.e., within its bounded execution time, the while loop of
t will execute correctly. In the example, the bounded execution time of t is equal to t’s period, i.e., ten time
units. In other words, the implementation of t is correct only if t reads input, computes state and output,
and writes output in less than its bounded execution time. We call this method bounded-execution-time
(BET) programming .

BET programming works on processor architectures for which upper bounds on execution times of indi-
vidual tasks can be determined, and runtime support is available that handles concurrent tasks according to
scheduling schemes for which upper bounds on execution times of concurrent tasks can be guaranteed. An
upper bound on the execution time of an individual task is commonly referred to as the worst-case execution
time (WCET) of the task. WCET analysis is a difficult problem, depending on the processor architecture
and the task implementation [15]. For example, memory caches and processor pipelines often improve aver-
age performance significantly but are inherently context-sensitive concepts and therefore complicate WCET
analyses, in particular, if tight WCET bounds are needed. If loops are present in the task implementation,
WCET analysis usually requires programmers to provide upper bounds on the number of loop iterations
because of the undecidability of the halting problem.

Many real-time operating systems today provide the necessary runtime support for BET programming.
The problem of scheduling concurrent real-time tasks has been studied extensively [6]. There is a large variety
of real-time scheduling algorithms and schedulability tests, many of which have been implemented in state-of-
the-art real-time operating systems and tools. The most widely used scheduling algorithms in BET systems
are probably rate-monotonic (RM) and earliest-deadline-first (EDF) scheduling [27]. The main advantage of
BET programming is compositionality with respect to bounded execution times, a property that effectively
rests on real-time scheduling theory. A system of BET tasks can be extended by a new task provided the
extended system is still schedulable. In this case, all tasks in the extended system will still execute within
their bounded execution times. While BET programming is compositional in the sense that the bounds
on execution times of individual tasks do not change, testing schedulability usually is not, i.e., testing the
extended system may involve reconsidering the entire original system. So-called compositional scheduling
aims at reducing the need to reconsider already scheduled tasks. Compositional scheduling techniques have

4 BOUNDED-EXECUTION-TIME PROGRAMMING 8

only recently received more attention [32][20][11]. The ZET model also benefits from the results in scheduling
hybrid sets of real-time and non-real-time tasks [6], which have also made it into real-time operating systems.

i n i t i a l i z e x ;
int n := 0 ;
while (true) {

wait f o r n−th c l o ck t i c k ;
read u ;
compute x := F (x, u) ;
lock s ;
share x ;
unlock s ;
compute y := G(x) ;
write y ;
n := n + period ;

}

Program 1.3: A periodic task h sharing its state using a mutex s

The BET model is probably the most widely supported real-time programming model. Many real-time
programmers are familiar with this model. Since enabling BET programming is essentially a matter of
adequate operating system support, existing programming languages can easily be utilized in developing
BET programs. Moreover, there are many real-time programming languages [5] that are based on the BET
model such as Ada and PEARL. Recently, a real-time Java specification (RTSJ), which is also based on the
BET model, has been proposed and implemented. Real-time scheduling theory even provides results on how
to schedule processes and threads in real time that share data through potentially blocking mechanisms such
as semaphores and mutexes. In other words, the BET task model may even be and has been extended to,
e.g., standard process and thread models. As an example, consider Program 1.3, which shows a periodic
task h that shares its state with other, possibly periodic tasks using a mutex s, and Figure 1.9, which depicts
an execution of h sharing its state with a task l. At time instant 0, tasks h and l are released where h
has a period of ten time units and l has a period of, say, thirty time units. The example shows an EDF
schedule of both tasks, i.e., h is scheduled to execute first. We assume in this example that deadlines are
equal to periods. The first attempt of h to lock s at time instant 2 succeeds immediately because no other
task holds the lock on s. At time instant 6, h has completed writing its output and l is scheduled to execute
next. At time instant 9, l’s attempt to lock s succeeds, again immediately because no other task holds the
lock on s. At time instant 10, however, h is released again and scheduled to execute next because h has an
earlier deadline than l. As a consequence, l is preempted while holding the lock on s. At time instant 12,
h attempts to lock s but is blocked because l still holds the lock on s. Since l is the only unblocked task, l
is scheduled to execute next. One time unit later, l unlocks s. As a result, h is unblocked and immediately
receives the lock on s. Then, h is scheduled to execute next because h has an earlier deadline than l. Finally,
h unlocks s at time instant 15 and completes writing its output at time instant 18. Here, the interesting
system anomaly is from time instant 12 to 13, which is traditionally called priority inversion because a task
with lower priority (task l, which has a later deadline) is scheduled to execute in the presence of a task with
higher priority (task h, which has an earlier deadline). Priority inversion is problematic because it gives
tasks, which may even never attempt to lock s, the chance to prevent both task h and l from executing. For
example, if a task m is released during priority inversion and m has a priority that is less than h’s priority
but greater than l’s priority, then m is scheduled to execute instead of l. Therefore, m may not only prevent
l from ever unlocking s again but also, as a result, prevent h from ever executing again although m has a
lower priority than h. Priority inversion is often explained using all three tasks l, m, and h at once. However,
priority inversion itself merely requires h and l whereas m is only necessary to explain the danger of priority
inversion. In other words, only in the presence of tasks such as m, priority inversion may be harmful and
needs to be avoided using techniques such as priority inheritance or priority ceiling [31]. For example, with
priority inheritance, l would inherit the priority of h from time instant 12 to 13 and thus prevent m from
being scheduled to execute during that time.

5 ZERO-EXECUTION-TIME PROGRAMMING 9

inversion

task h

210 1083 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20
real time

locks unlocks

task l

released

released released

unlockslocks

releasedlocks
attempts to lock

unlocks

resumed

preempted

period period

preempted

Figure 1.9: The execution of Program 1.3 sharing its state with a task l

Instead of blocking mechanisms such as semaphores and mutexes, BET tasks may also utilize non-blocking
communication techniques such as the non-blocking write protocol (NBW) [26] or extensions thereof [23] in
order to avoid priority inversion. For example, with NBW techniques, write attempts always succeed while
read attempts may have to be repeated because write attempts were in progress. In any case, there remains
the burden of showing that all task executions stay within their bound execution times. Blocking techniques
require that the time to communicate is bounded using scheduler extensions such as, e.g., priority inheritance.
Non-blocking techniques require that the number of retries to communicate is bounded, which is possible if
the maximum amount of time needed to communicate is considerably shorter than the minimum amount of
time between any two communication attempts.

The main drawback of the BET model is the lack of compositionality with respect to I/O behavior,
which is a semantically stronger concept than compositionality with respect to bounded execution times.
A system of BET tasks may change its I/O behavior, i.e., output values and times, as soon as tasks are
added or removed, the scheduling scheme changes, or the processor speed or utilization are modified, even
though the modified system might still be schedulable. Real-time programmers therefore frequently use the
infamous expression “priority-tweaking” to refer to the BET programming style because it is often necessary
to modify scheduling decisions manually to obtain the required I/O behavior. Once a BET system has been
released, it is hard to change it again because of the system-wide scheduling effects. As a consequence, BET
systems are often expensive to build, maintain, and reuse, in particular, on a large scale. The following
zero-execution-time model (or synchronous model [24]) can be seen as an evolutionary attempt to address
the lack of semantically stronger notions of compositionality in the BET model.

5 Zero-Execution-Time Programming

i n i t i a l i z e x ;
while (true) {

read u at next occur rence o f event ;
compute x := F (x, u) ;
compute y := G(x) ;
write y ;

}

Program 1.4: A synchronous reactive task t

Real-time systems interact with the physical world. Designing and implementing such systems in a way
that is compositional with respect to I/O behavior is therefore an important challenge. Compositionality in
this sense requires that a real-time program always produces the same sequence of output values and times

5 ZERO-EXECUTION-TIME PROGRAMMING 10

11

task t

0 1081 2 9 18 19 20
logical time

read u write y

0

event

read u write y read u

eventevent

1210

Figure 1.10: The logical semantics of Program 1.4

read u

task t

210 1083 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20
real time

write y write y

event event

read u read u

starts

resumedevent

preempted

completes starts

resumed

preempted preempted

completes

resumed

Figure 1.11: An execution of Program 1.4 in real time

for the same sequence of input values and times, even when running in the possibly changing presence of other
programs, or on different processors or operating systems. We say that a program, i.e., its I/O behavior,
is input-determined if, for all sequences I of input values and times, the program produces, in all runs,
unique sequences f(I) of output values and times. So-called synchronous reactive programming [13] aims
at designing and implementing input-determined real-time programs. Note that we deliberately avoid the
term “deterministic” here because it has been used with very different meanings in different communities.
BET communities such as the real-time scheduling and real-time operating systems communities call a
real-time program deterministic if the program always runs with bounded execution times. Language-
oriented communities such as the synchronous reactive programming community call a real-time program
deterministic if the I/O behavior of the program is fully specified by the program. In other words, the term
“input-determined” is related to the term “deterministic” in the sense of the language-oriented communities.

The key abstraction of the synchronous reactive programming model is to assume that tasks have logically
zero execution time. As an example, consider Program 1.4, which shows an implementation of a synchronous
reactive task t, and Figure 1.10, which depicts the semantics of t based on some logical clock. At the
occurrence of the first event at time instant 0, t reads its input, computes state and output, and writes its
output logically in zero time. The same happens at the occurrence of the next event that triggers t at time
instant 10, and so on. In other words, each iteration of t’s while loop is completed instantaneously before
any other event can occur. In terms of the logical clock, task t is therefore an input-determined program.
In terms of real time, Figure 1.11 depicts an execution of t that approximates the logical semantics in the
sense that t’s output values are still input-determined while the time instants at which t writes its output
are only bounded by the duration between the current and next event, i.e., by ten time units in the example.
Therefore, we also say that the synchronous reactive programming model is compositional with respect to
bounded I/O behavior. Note that for t’s output values to be input-determined, it is necessary that t reads
its input as soon as the event occurs that triggered t while the actual computation of t may be preempted
at any time. For example, t is preempted at time instant 1 right after t read its input, or at time instant 16
right after t completed computing before writing its output. As a consequence, output may be written with
latency and jitter. In the example, the output jitter is one time unit. In other words, the implementation of
t is correct if t reads input at the occurrences of the triggering events but then computes state and output,
and writes output only some time before the next event occurs. Despite synchronous reactive programming,
we also call this method figuratively zero-execution-time (ZET) programming .

Similar to BET programming, ZET programming works on processor architectures for which WCETs of

6 LOGICAL-EXECUTION-TIME PROGRAMMING 11

individual tasks can be determined. The runtime support required for ZET programming is often simpler
than for BET programming because ZET tasks are usually compiled into a single sequential program that
implements some form of finite state machine. As a consequence, a ZET runtime system may only provide
mechanisms for event handling and buffering of input values. Shifting complexity from ZET compilers to
runtime systems by utilizing dynamic scheduling schemes such as EDF at runtime has only recently received
more attention. The challenge is to minimize the amount of memory (buffers) required to preserve the logical
semantics of ZET tasks when using dynamic schedulers. Similar to BET programming, the advantage
is potentially more effective processor utilization but possibly at the expense of temporal accuracy and
precision of I/O. There is a large variety of ZET programming languages. Esterel [4] and Lustre [14] are
probably the most widely used languages. Programming in Esterel is similar to imperative programming
while programming in Lustre is more declarative and oriented towards data rather than control flow.

ZET programming has several advantages. The ZET semantics is close to the semantics of modeling tools
such as Simulink , which are used to develop and simulate controller designs. ZET programming therefore
enables model-based design of embedded control systems in the sense that control models may directly be
translated into executable ZET programs [29]. Moreover, ZET programs may be verified for functional
correctness because most ZET programming languages have formal semantics. ZET-based implementations
of embedded control systems are thus suitable for mission- and safety-critical applications and have already
been deployed successfully by railway and avionics companies.

The ZET model also has several disadvantages. Firstly, ZET programming distributed systems with
non-negligible communication latencies is complex but has been shown to be possible on platforms with [7]
and without built-in clock synchronization [2]. In the presence of unreliable communication channels, the
problem is even more difficult, see Section 7 for more details. Secondly, in contrast to the BET model, most
ZET programming languages are self-contained, i.e., offer combined timing and functional primitives, and
thus have often not been integrated with standard programming languages. This may not be an inherent
problem of the ZET model but still an economical obstacle. Thirdly, ZET programs are typically compiled
into static executables with no support for dynamic changes at runtime. In other words, while the ZET
model is compositional with respect to bounded I/O behavior, the compositionality may only be utilized at
design time. The following logical-execution-time model (or timed model [24]) is a recent attempt to address
these issues.

6 Logical-Execution-Time Programming

i n i t i a l i z e x ;
int n := 0 ;
while (true) {

int k := n + offset ;
read u at k−th c l o ck t i c k ;
compute x := F (x, u) ;
compute y := G(x) ;
k := k + let ;
write y at k−th c l o ck t i c k ;
n := n + period ;

}

Program 1.5: An LET task t

Real-time systems interact with the physical world. The I/O behavior of such systems and, in particular,
the timing of I/O is therefore an important aspect, which has recently received more attention in the latest
evolutionary attempt at defining real-time programming models. We call this method logical-execution-time
(LET) programming . The key abstraction of the LET model can be phrased in a computation-oriented and
an I/O-oriented way. In the LET model, a task computes logically, i.e., from reading input to writing output,
for some given, positive amount of time called its logical execution time. Equivalently, the input and output

6 LOGICAL-EXECUTION-TIME PROGRAMMING 12

released
task t

210 1083 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20
logical time

let

offset
let

offset

period period

read u write y read u write y

released released

Figure 1.12: The logical semantics of Program 1.5

of a task in the LET model is read and written, respectively, at some given instants of time, independently
of when and for how long the task actually computes. As an example, consider Program 1.5, which shows an
implementation of an LET task t, and Figure 1.12, which depicts the semantics of t based on some logical
clock. At time instant 0, task t is released but only reads its input with an offset of one time unit at time
instant 1. Then, t is computing for eight time units. At time instant 9, t writes its output. Thus the logical
execution time of t is eight time units. At time instant 10, t is released again and repeats the same behavior.
Similar to the ZET model, an LET task such as t is therefore an input-determined program in terms of
the logical clock. In terms of real time, Figure 1.13 depicts an execution of t that approximates the logical
semantics in the sense that t’s output values are still input-determined while the time instants at which t
writes its output are only bounded by the amount of time needed to perform I/O of other tasks at the same
time instants. For example, if there is another task u that needs to write its output at time instant 9, then
either u’s or t’s output gets delayed by the amount of time it takes to write the output of the other task.
Therefore, similar to the ZET model, we say that the LET model is compositional with respect to bounded
I/O behavior but, unlike the ZET model, the output times are bounded by the overall I/O load rather than
the duration between events. In the LET model, if I/O load is low, which is true for sensor and actuator
I/O in many control applications, then temporal accuracy and precision of I/O may be close to hardware
performance. Note that the input times can in fact not be arbitrarily accurate and precise as well but are
also just bounded by the overall I/O load. The ZET model is affected by the same phenomenon. We omitted
this observation in the section on the ZET model to simplify the discussion. Figure 1.13 shows that the
actual times when task t computes do not affect the times when t reads input and writes output. During t’s
first invocation, t starts computing with a delay of one time unit at time instant 3, is preempted once at time
instant 4, and requires two time units to compute. During the second invocation, t starts computing right
after reading its input, is preempted once at time instant 13, and requires three time units to compute. Note
that even though t completes computing early, t waits until time instants 8 and 18 to start writing output in
order to approximate its logical execution time as close as possible. In other words, the implementation of
t is correct if t starts computing some time after t completes reading its input, and t completes computing
some time before t starts writing its output. In this case, we say that t’s implementation is time-safe [18].

LET programming works on processor architectures for which WCETs of individual tasks can be de-
termined. The runtime support required for LET programming is a combination of the runtime support
necessary for BET and ZET programming. LET tasks need to be scheduled to execute, like BET tasks,
according to some real-time scheduling strategy such as, e.g., RM or EDF scheduling. Accurate and pre-
cise timing of task I/O requires mechanisms for event handling similar to the mechanisms needed for ZET
programming. There are four LET programming languages, called Giotto [17], xGiotto [12], HTL [11],
and TDL [36]. The notion of LET programming was introduced with Giotto, which supports the possibly
distributed implementation of periodic tasks whose logical execution times must be equal to their periods.
Giotto also supports switching modes, i.e., switching from one set of tasks to another. xGiotto extends
Giotto with support for event-triggered tasks. TDL extends a subclass of Giotto with a module concept.
HTL is the most recent language, which supports LET programming of tasks with logical execution times
less than their periods. All four languages are timing languages, which still require another programming

6 LOGICAL-EXECUTION-TIME PROGRAMMING 13

period

task t

210 1083 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20
real time

preempted

starts completes

released released releasedresumed

read u write y read u write y

starts completes

resumed

preempted

let

offset
let

offset

period

Figure 1.13: An execution of Program 1.5 in real time

language for the implementation of the tasks. For example, Giotto programs only determine when tasks
are released, read input, and write output but not what and how the tasks compute. The existing LET
languages are all compiled into so-called E code, which is executed by a virtual machine called the Embedded
Machine [16]. E code is low-level timing code that determines when tasks are released, read input, and
write output. The Embedded Machine still requires, e.g., an EDF scheduler to execute the tasks. Note that
the execution of LET tasks may also be scheduled at compile time using so-called schedule-carrying code
(SCC) [19], which is E code extended by instructions that explicitly dispatch tasks to execute. With SCC,
no runtime scheduler is needed to execute LET programs.

LET programming has several advantages that are rooted in the compositionality of the LET model.
Real-time programs written in the LET model are predictable, portable, and composable in terms of their
I/O behavior. For example, Program 1.5 will show the same I/O behavior modulo I/O load on any platforms
and in any contexts as long as the program executes in a time-safe fashion. Thus LET programming can be
seen as a generalization of the early PET programming style to handle concurrent tasks while maintaining
temporal accuracy and precision of the individual tasks’ I/O. Note that LET programs may also implement
conditional timing behavior while still being input-determined such as, e.g., changing the frequencies of tasks
or even replacing tasks by others at runtime [11]. An important advantage of Giotto is that time safety of
Giotto programs can be checked in polynomial time with respect to the size of the programs although there
might be exponentially many conditional timing behaviors [18]. Checking time safety of programs written
in more general LET languages such as HTL may only be approximated with less than an exponential
effort [11]. The LET semantics is abstract in the sense that platform details such as actual execution
times and scheduling strategies are hidden from the programmer. Similar to ZET programs, modeling tools
such as Simulink can be used to develop and simulate LET programs. LET programming therefore also
enables model-based design in the sense that models may directly be translated into semantically equivalent
executable programs [21]. Finally, LET programs written in Giotto [20], HTL [11], and TDL [9] have been
shown to run on distributed systems with support for clock synchronization.

LET programming also has several disadvantages. A LET task may not take advantage of available pro-
cessor time in order to compute and write output faster than its logical execution time. Unused processor
time may only be used by other tasks. With the LET philosophy, getting a faster processor or better sched-
uler, or optimizing the implementations of tasks does not result in faster I/O behavior but in more processor
availability to do other work. While this can be seen as a strength for certain applications including control,
it can also be seen as a weakness for other applications. Nevertheless, the essence of LET programming
is to program explicitly how long computation takes or, equivalently, when I/O is done. So far, with the
exception of xGiotto, only real-time clock ticks have been used to determine the LET of tasks although other
types of events may be used. LET programming is the most recent style of real-time programming and still
immature compared to the more established concepts. LET programming languages and development tools
are mostly prototypical, and have not been used in industrial applications.

7 NETWORKED REAL-TIME SYSTEMS 14

Figure 1.14: Control performance over Ethernet [10]

7 Networked Real-time Systems

This section provides an overview of the most recent work on control software engineering for distributed
architectures using deterministic and non-deterministic communication channels. Recall the two- and three-
block control systems illustrated by Figures 1.3 and 1.4, respectively. It is usually assumed the inter-
component data flows represented by the arrows between the blocks are instantaneous. Here, we discuss the
real-time programming of systems in which these dataflows take time. Within the control community this
class of systems has come to be called Networked Control Systems (NCS).

Well-established NCS examples include systems of many controllers connected over a field bus in a process
plant, or controllers communicating over a CAN2 bus in a car. The networking revolution is also driving an
efflorescence of new control systems for new domains like tele-surgery, smart cars, unmanned air vehicles, or
autonomous underwater vehicles, distributed over the Internet or wireless LANs. This surge in NCS has led
to new techniques for networked real-time programming.

We sub-divide networked real-time systems into two categories distinguished by the determinism of the
network inter-connecting components. We call the categories deterministically networked real-time systems
(DNRTS) and non-deterministically networked real-time systems (NNRTS). The DNRTS category abstracts
systems in which inter-component communications over the network are highly reliable. The loss of messages
is rare enough and jitter in the inter-message time interval is small enough to be treated as exceptions or
faults that are specially handled. Control systems inter-connected over TTA [25], or lightly-loaded CAN3

or Ethernets are usually in this category. The NNRTS category abstracts systems where loss or jitter in
inter-controller communications is so frequent that it must be viewed as part of normal operation. In this
category are systems in which inter-controller communications flow over TCP connections on the Internet,
as UDP messages over wireless LANs like Wi-Fi4 or Bluetooth5, and well-utilized Ethernet or CAN.

Figures 1.14, 1.15, and 1.16 illustrate the impact of network losses on real-time control over Ethernet,
CAN, and a token passing network. The figures are reproduced from [10]. The vertical axis of the figures
shows the performance of a three-axis machine tool under real-time control. Performance gets worse up the
axis. There are three controllers that aim to position the machine tool as desired on the X, Y , and Z-axes.
The controllers send their commands to and receive their measurements from the machine tool over a shared
network. In all other respects, they are decoupled from each other. The horizontal axis shows the sampling
rate. The sampling rate increases to the right. Figure 1.14 shows performance when the machine is controlled

2CAN standard ISO 11898-1
3CAN Standard ISO 11898-1
4http://standards.ieee.org/getieee802/802.11.html
5http://www.bluetooth.com

7 NETWORKED REAL-TIME SYSTEMS 15

Figure 1.15: Control performance over CAN [10]

Figure 1.16: Control performance over Wired Token Network [10]

7 NETWORKED REAL-TIME SYSTEMS 16

Figure 1.17: Channel access jitter

over an Ethernet. Initially, the Ethernet is under-utilized. As the sampling rate is increased performance
improves. When there is too much traffic on the Ethernet, messages are lost, and performance deteriorates.
Figure 1.15 shows performance when the controllers communicate over a CAN network. Like Ethernet, CAN
is a contention access network. Any node with a message to send may contend for the bus if it detects the
bus is idle. Therefore, one observes a performance pattern similar to Figure 1.14. However, unlike Ethernet,
each CAN message can have a priority level. When multiple messages contend for the bus at the same time,
the higher priority wins. Here, the Z-axis controller has the highest priority and the X-axis controller has
the lowest priority. The figure shows the performance of the low priority control system deteriorates first,
followed by the medium and high priority control systems. Thus Ethernet and CAN at low utilization can
be viewed as DNRTS. At high utilization we view them as NNRTS.

Figure 1.16 shows performance when the controllers share the channel using a token-passing protocol.
The network has a token that passes in a fixed order through the controllers with each vehicle receiving the
token at fixed periods. On receiving the token it sends its data while the others are silent. This ensures
each controller sends and receives all its data as long as the total channel data rate is not exceeded. The
performance will remain good until the channel data rate is exceeded at which point it will cease to function.
Token-passing protocols represent a way to realize DNRTS for real-time control over wired networks. They
are an alternative to the time-division multiple-access (TDMA) approach followed by TTA. They also improve
the determinism of delay over wireless networks though not as greatly.

Figure 1.17 is an example of jitter in channel access delays associated with a wireless token passing
protocol [8]. The protocol is configured to give controllers access at 50 Hz, i.e., every 20 msec. The control
system is activated three times as represented by the three bursts near 20 msec. Most access delays are
clustered around 20 msec. However, as one can see, there is considerable jitter. The data is in UDP
broadcast packets. The broadcasts are either received almost immediately or not at all as illustrated by the
Erasure/Loss line in Figure 1.20.

More recently, the TTA architecture has been fused with CAN to create TTCAN6 for wired commu-
nication. This is more suitable as a networking environment for DNRTS. Other networking environments
such as the token bus (IEEE 802.4) or polling protocols can deliver deterministic access delays to network
nodes. These work well when all components at a node send messages with the same period. However, when
network nodes have control components computing at multiple rates, TTA provides the best support.

6TTCAN standard ISO 11898-4

7 NETWORKED REAL-TIME SYSTEMS 17

u → 2,4, . , . , . , 2, 4, ., 2, ...
y → 4,8,4, . , . , 8, 4, ., . , ...
z → 1, . , 2, 1, 2, 1, . , ., . , ...
w → 2,4, . , 2, . , 4, . , ., . , ...

Figure 1.18: Logical behavior of the three-block control system

blocked for

u v
A: y = 2u

z = u/2 C: v = y − w

B: w = 2z

y

z w

Figure 1.19: A compilation scheme to preserve the logical semantics over FIFO channels

7.1 DNRTS

Research over the last decade indicates engineers should be able to use high-level tools like Simulink or
Lustre to program DNRTS. We explain this abstractly in terms of the computing semantics of digital control
in Section 2. For each variable in a program and a sequence of values for each of its input variables, the
semantics gives us the sequence of values taken by the variable and the timing of each value (see, for example,
Figure 1.5). We will refer to the set of value sequences as the logical aspect of the semantics and the timing as
the real-time aspect of the semantics. Preserving the logical aspect in a distributed environment is now well
understood [38, 1]. It turns out to be possible under pretty weak assumptions on the network. Preserving
the real-time aspect is not as well understood and appears challenging. We will discuss this in the context of
the Time-Triggered Architecture (TTA) and comment briefly on other networking environments. Amongst
current networking environments, this one may be the best suited for DNRTS.

Suppose we have a three-block control system as shown in Figure 1.4. Assume each block is on a
computing node and the input-output connections between the blocks, denoted by the arrows, need to be
network channels. This sort of control schematic is easily specified in Simulink without the network channels.
In Simulink, each block will also have a period at which it reads and writes its outputs. The literature gives
insight into the following questions:

• What sort of channels can enable us to preserve the logical aspect of the semantics?

• What sort of channels can enable us to preserve the real-time aspect of the semantics?

It turns out the logical aspect can be supported by many channels. For example, any reliable First in
First Out (FIFO) channel works. In other words, a TCP channel can do the job.

Figure 1.18 illustrates the logical aspect of the semantics in Figure 1.5. We care only about the sequence
of values for each variable but not about the vector of values represented by the columns in Figure 1.5. An
execution that preserves the logical aspect of the semantics will be one that preserves the sequence of values
for each variable. It may not preserve any ordering of values across the variables, i.e, the vector.

If the components are connected by reliable FIFO channels, there is a conceptually simple compilation
scheme able to preserve the logical semantics. This is illustrated by Figure 1.19 in the context of the three-
block example. Basically, each component must be compiled to block until it receives the right number of
inputs on each channel. Since all blocks in Figure 1.19 are assumed to have the same rate, this means block
C should block until it receives the first inputs on both the y and w ports, compute the first value of v as
soon as it does so, and then block until it receives another pair of inputs. If the second value on port w is
delayed relative to the second value on port C, then C must block for w.

Locally, each program is required to behave exactly like the usual synchronous program illustrated by
Program 1.4. Components on different network nodes can be driven entirely by the arrival of messages on

7 NETWORKED REAL-TIME SYSTEMS 18

the input-output channels. Thus there is no global clock or scheduler, rendering the architecture Globally
Asynchronous and Locally Synchronous, abbreviated GALS by Benveniste et.al. [1]. If the synchronous
subsystem on each network node is compiled to accept its inputs in any order, this kind of compilation
is also modular. Any change to the program on a network node, will require re-compilation of that node
alone. It may also be noted that the same scheme has been shown to work for programs with feedback loops
provided each loop has a delay or is strictly causal. In other words, each loop should include at least one
component whose output at time k depends only on inputs up to time k − 1.

Synchronous programming languages like Esterel subsume asynchronous programming by permitting
signals to be either present or absent at each execution of the program. If one seeks to distribute such
programs without controlling execution with respect to one master clock, the potential for signals to be
absent poses a conundrum. The absence of a signal may be meaningless without the master clock. While
all such programs cannot be distributed in a GALS architecture, a sub-class identified as the isochronous
programs can be distributed without a master clock. An isochronous program pair is one where in any
state pair from the two programs, unification of the two states over the present common variables implies
unification over the entire set of common variables [1]. In other words, the values of signals supplied by the
environment is sufficient to determine the absence of the other signals thus rendering any checking of signal
presence with respect to any master clock unnecessary.

We now turn to our second question, i.e., preservation of the real-time aspect. Meeting periodic execu-
tion deadlines in DNRTS requires two kinds of schedulability. Computation must be schedulable at each
computing node and communication must be schedulable between nodes. Not only must the inter-controller
channels be reliable and FIFO, they must also provide access to computing nodes at scheduled times. Alter-
natively, the communication channels between computing nodes must be under-utilized enough to support
a zero communication time abstraction, i.e., a node communicates its output to the others as soon as it is
ready. A high bandwidth wired Ethernet may support such an abstraction. In this case, the compilation
problem may be the same as that discussed in Sections 5 and 6.

The joint scheduling of computation and communication has been investigated over TTA [7]. TTA is well
suited to the computing abstractions of digital control. It supports distributed implementations built upon a
synchronous bus delivering to computing nodes a global fault-tolerant clock. Each computing node connects
to the bus using a network card running the Time-Triggered Protocol (TTP). The bus is required to have
a communication schedule determined a priori. This is called the Message Description List (MEDL). It
specifies which network node will transmit which message at which time on a common global timeline. The
timeline is divided into cycles. The cycle is the unit of periodic operation, i.e., the composition of each cycle
is the same. The MEDL specifies the composition of the cycle. Within a cycle there are rounds of identical
length. Each round is composed of slots. These can have different lengths. Each slot is given to a network
node. Within the slot, the node sends a frame composed of one or more messages. Thus the objective of
communication scheduling when distributing over TTA is specification of the MEDL.

The approach in [7] compiles both Simulink and Lustre over TTA. Simulink programs are handled by
translating them to Lustre. The control engineer is assumed to specify the allocation of components or
blocks to nodes. One or more components at each node may have input-output connections to components
on other computing nodes. The compilation process starts with components annotated with deadlines, worst-
case execution time assumptions, and the real-time equivalents of the logical clocks driving the component.
The deadlines are relative. For example, if a component has an output y and an input u, a deadline would
specify the maximum time that may elapse between the availability of u and the availability of y. The
compilation process can be thought of as a two-step process with the first step handling the logical aspect
and the second the real-time aspect.

The first step of compilation, called the Analyzer [7], builds the syntax tree and global partial order
across all the components in all the nodes in the system. This partial order accounts for all the dataflow
dependencies between components and represents constraints that will preserve the logical aspect of the
semantics. The results of this stage of compilation with the annotations previously mentioned and the
partial order constraints can be passed to the next compiler called the Scheduler because it generates the
computing schedule at each node and the MEDL for the bus. The scheduling problem is a Mixed Integer
Linear Program (MILP) and computationally difficult. To reduce complexity, the developers allow the fine-
grain partial order over all components to be lumped into coarser grain super-components that include
some of the original components as sub-components. The Scheduler then works with the super-components,

7 NETWORKED REAL-TIME SYSTEMS 19

Figure 1.20: Message reception processes in NNRTS

moving progressively smaller super-components, if the coarser representations are not schedulable.

7.2 NNRTS

In this subsection, we discuss networked real-time systems in which inter-component dataflows experience
frequent jitter, or loss. We emphasize jitter because the problems arise because of the variability of delay.
DNRTS also have delay but the delay is predictable. When controllers communicate over the Internet or local
wireless channels, there are no techniques to eliminate both losses and jitter. Essentially, in such networks,
one must choose between loss and jitter. One cannot eliminate both. Protocols preventing loss do so by
re-transmission which creates variable delay or jitter.

The situation is illustrated by Figure 1.20, which shows the different kinds of NNRTS channels encoun-
tered in practice. A controller may output a periodic message stream. However, the corresponding message
process observed at the input port of the receiving controller may be asynchronous. If the messages arrive
through a TCP channel they may experience different delays though all messages will be received in the right
order. The TCP channel is FIFO. Alternatively if the messages arrive through a UDP channel in a one-hop
wireless LAN, some may be lost while those that arrive do so with delays small enough to be abstracted away.
This combination of loss and negligible delay has received wide attention in the information theory literature,
where it is referred to as the erasure channel. The fourth line in the figure illustrates the Last In First Out
(LIFO) channel with delays. When messages report sensor measurements or the actuator commands of other
controllers, the most recent values are generally more useful than earlier ones. Therefore, it makes sense to
have the network give priority to delivery of the information generated most recently instead of enforcing
a first in first out order. Finally, if communication were analog, one might assume a distorted version of
the transmitted signal is always received without loss or delay. While this formulation is of considerable
theoretical interest [28, 35], we will not discuss it further because control with analog communication is so
uncommon in current engineering practice.

When inter-component dataflow is jittery even the logical aspect of the semantics assumed by digital
control cannot be preserved in the manner used for DNRTS. Suppose we were controlling one truck to follow
another at some safe distance as illustrated in Figure 1.21. The control commands of the following truck
would be functions of quantities like the position, velocity, or acceleration of the truck in front (see [34]),
information we assume flows over a network. If we were to compile and distribute the program as prescribed
for DNRTS, the module controlling the following vehicle would block until every message from the leading

7 NETWORKED REAL-TIME SYSTEMS 20

Figure 1.21: Two-vehicle control system schematic

Figure 1.22: Controlling in the face of network losses

vehicle module is received. Since the blocking time would be as jittery as the access delay in Figure 1.17,
the following vehicle would issue actuator commands at irregular intervals. Blocking real-time controllers
for unpredictable durations is usually unacceptable.

Having recognized the impact of the loss or delay on control performance, control theory has moved
away from the perfect inter-controller channel abstraction discussed in Section 2. It has introduced the
physicality of inter-controller links into its semantics and produced design techniques to account for the
losses or delays. As yet, it remains unclear how real-time programming might produce tools to facilitate
embedded programming in these new semantics. Engineers work at a low level with C, UDP or TCP sockets,
and OS system calls, rather than at the high level envisaged in the Simulink to Lustre to TTA chain described
for DNRTS.

A new semantics for NNRTS is illustrated by Figure 1.22. Developments in control theory show perfor-
mance is considerably enhanced by abandoning the simplified inter-controller connection abstraction in Fig-
ure 1.21 for the more sophisticated scheme in Figure 1.22 when there is a non-deterministic inter-component
dataflow. The three-vehicular system examples we have discussed all use this scheme. One puts a component
at the receiver end that receives an intermittent asynchronous message stream from the UDP socket at its
input but produces a periodic synchronous signal at its output. At the most basic level, this component is
as an asynchronous-to-synchronous converter. It enables the entire system downstream, for example, the
warning or control systems, to be designed in the classical way, e.g., as a digital control system computing,
in this case, at 50 Hz.

In Figure 1.22, we refer to this converter component as an Estimator. This is because of control theory
showing it is wise to give it semantics richer than that of just an asynchronous-to-synchronous converter.

7 NETWORKED REAL-TIME SYSTEMS 21

Figure 1.23: Performance obtained by using an estimator

For example, the component output may compute or approximate, at each time, the expected value of the
message that might be received over the channel at the time conditioned on all past received values. In many
cases, this is a type of Kalman Filter [22, 30, 33], aptly named by Sinopoli et.al. as a ”Kalman Filter with
Intermittent Observations”. Since messages in these systems report on the state of dynamical systems, and
the state is correlated, this is a viable approach. The purpose of this converter is to help the receiver deal
with the channel distorting the output of the sender.

Figure 1.23 [30] is a quantification of the performance robustness obtained by using the scheme in Fig-
ure 1.22. It is computed for one car following another. The vehicle model is a linear approximation of the
demonstration vehicles. The objective of control is to maintain constant spacing between the cars. The spac-
ing deviates from the desired constant value because of acceleration or deceleration by the leading vehicle.
The following vehicle takes some time to speed up or slow down which leads to spacing errors. The vertical
axis in the figure plots:

spacing error

leading vehicle acceleration

One would like this ratio to be small. The horizontal axis plots the loss probability in the inter-controller
communication channel. It is assumed the loss process is Bernoulli, i.e, each packet is lost with probability
p or received with probability 1 − p. The figure shows that as p gets larger the gain gets larger, i.e., the
performance deteriorates. The control system computes an estimate of what might have been received
whenever a message is lost and uses it to compute the actuator command. The value of doing this appears
in the shape of the blue line in the figure. The performance remains good for a long time and breaks down
only at high loss rates.

Control is developing effective methods for NNRTS by breaking away from its established computing
abstractions as presented in Section 2. The new abstractions are still debated and will take time to settle.
Nevertheless, as the class of control systems distributed over the Internet or wireless LANs is growing, the
real-time programming community should accelerate its effort to produce a tool chain for the clean and
correct real-time programming of NNRTS.

REFERENCES 22

References

[1] A. Benvenieste A., B. Caillaud, and P. Le Guernic. Compositionality in dataflow synchronous languages:
specification and distributed code generation. Information and Computation, 163(1):125–71, 2000.

[2] A. Benveniste, P. Caspi, P. Guernic, H. Marchand, J. Talpin, and S. Tripakis. A protocol for loosely time-
triggered architectures. In Proc. International Workshop on Embedded Software (EMSOFT), volume
2211 of LNCS. Springer, 2001.

[3] G. Berry. The Esterel Language Primer, version v5 91. http://www.esterel-
technologies.com/technology/scientific-papers/, 1991.

[4] G. Berry. The foundations of Esterel. In C. Stirling G. Plotkin and M. Tofte, editors, Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[5] A. Burns and A. Wellings. Real-Time Systems and Programming Languages. Addison Wesley, 2001.

[6] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications.
Springer, 2005.

[7] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From Simulink to SCADE/Lus-
tre to TTA: a layered approach for distributed embedded applications. In Proc. ACM SIGPLAN Con-
ference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 153–162. ACM
Press, 2003.

[8] M. Ergen, D. Lee, , R. Sengupta, and P. Varaiya. Wireless token ring protocol. IEEE transactions on
Vehicular Technology, 53(6):1863–1881, November 2004.

[9] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent distribution of real-time components based
on logical execution time. In Proc. ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, pages 31–39. ACM Press, 2005.

[10] L. Feng-Li, J. Moyne, and D. Tilbury. Network design consideration for distributed control systems.
IEEE Transactions on Control Systems Technology, 10(2):297–307, March 2002.

[11] A. Ghosal, T.A. Henzinger, D. Iercan, C.M. Kirsch, and A.L. Sangiovanni-Vincentelli. A hierarchi-
cal coordination language for interacting real-time tasks. In Proc. ACM International Conference on
Embedded Software (EMSOFT). ACM Press, 2006.

[12] A. Ghosal, T.A. Henzinger, C.M. Kirsch, and M.A.A. Sanvido. Event-driven programming with log-
ical execution times. In Proc. International Workshop on Hybrid Systems: Computation and Control
(HSCC), volume 2993 of LNCS, pages 357–371. Springer, 2004.

[13] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1993.

[14] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming language
Lustre. Proceedings of the IEEE, 79(9), 1991.

[15] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The influence of processor architecture on
the design and the results of WCET tools. Proceedings of the IEEE, 91(7), July 2003.

[16] T.A. Henzinger and C.M. Kirsch. The Embedded Machine: predictable, portable real-time code. In Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 315–
326, 2002.

[17] T.A. Henzinger, C.M. Kirsch, and B. Horowitz. Giotto: A time-triggered language for embedded
programming. Proceedings of the IEEE, 91(1):84–99, January 2003.

[18] T.A. Henzinger, C.M. Kirsch, R. Majumdar, and S. Matic. Time safety checking for embedded programs.
In Proc. International Workshop on Embedded Software (EMSOFT), volume 2491 of LNCS, pages 76–92.
Springer, 2002.

REFERENCES 23

[19] T.A. Henzinger, C.M. Kirsch, and S. Matic. Schedule-carrying code. In Proc. International Conference
on Embedded Software (EMSOFT), volume 2855 of LNCS, pages 241–256. Springer, 2003.

[20] T.A. Henzinger, C.M. Kirsch, and S. Matic. Composable code generation for distributed Giotto. In
Proc. ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES). ACM Press, 2005.

[21] T.A. Henzinger, C.M. Kirsch, M.A.A. Sanvido, and W. Pree. From control models to real-time code
using Giotto. IEEE Control Systems Magazine, February 2003.

[22] R. Kalman. A new approach to liner filtering and prediction problems. Transactions of the ASME,
Journal of Basic Engineering, 82D:34–45, March 1960.

[23] K. H. Kim. A non-blocking buffer mechanism for real-time event message communication. Real-Time
Systems, 32(3):197–211, 2006.

[24] C.M. Kirsch. Principles of real-time programming. In Proc. International Workshop on Embedded
Software (EMSOFT), volume 2491 of LNCS, pages 61–75. Springer, 2002.

[25] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer,
1997.

[26] H. Kopetz and J. Reisinger. NBW: A non-blocking write protocol for task communication in real-time
systems. In Proc. IEEE Real-Time Systems Symposium (RTSS), 1993.

[27] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1), 1973.

[28] A. Sahai. Anytime Information Theory. PhD thesis, Massachusetts Institute of Technology, 2001.

[29] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and translating a ”safe”
subset of Simulink/Stateflow into Lustre. In Proc. ACM International Conference on Embedded Software
(EMSOFT), pages 259–268. ACM Press, 2004.

[30] P. Seiler and R. Sengupta. An h-infinity approach to networked control. IEEE Transactions on Auto-
matic Control, 50(3):356–364, 2005.

[31] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers, 39(9):1175–1185, 1990.

[32] I. Shin and I. Lee. Compositional real-time scheduling framework. In Proc. IEEE Real-Time Systems
Symposium (RTSS), pages 57–67, 2004.

[33] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S.S. Sastry. Kalman filtering
with intermittent observations. IEEE Transactions on Automatic Control, 49(9):1453–1464, September
2004.

[34] D. Swaroop. String Stability of Interconnected Systems: An Application to Platooning in Automated
Highway Systems. PhD thesis, University of California at Berkeley, 1994.

[35] S. Tatikonda. Control Under Communication Constraints. PhD thesis, Massachusetts Institute of
Technology, 2000.

[36] J. Templ. TDL specification and report. Technical Report T004, Department of Computer Sciences,
University of Salzburg, November 2004.

[37] S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi. Semantics-preserving and memory-efficient implemen-
tation of inter-task communication on static-priority or edf schedulers. In Proc. ACM International
Conference on Embedded Software (EMSOFT), pages 353–360. ACM Press, 2005.

[38] M. Zennaro and R. Sengupta. Distributing synchronous programs using bounded queues. In Proc. ACM
International Conference on Embedded Software (EMSOFT). ACM Press, 2005.

