Code Generation from Extended
Finite State Machines

i 0
()

&

Insup Lee
Department of Computer and Information Science

University of Pennsylvania

Originally prepared by Shaohui VWang
Modified by Insup Lee for CIS 541, Spring 2010

Outline

= Definition of Extended Finite State Machines

= General Code Generation Schemes

= |ntroduction to The EFSM Toolset

EXTENDED FINITE STATE
MACHINES

Extended Finite State Machines

= A Keyboard Example

= Formal Definitions

= Variants

EFSM: A Keyboard Example

initial self
transition transition trigger action list

ANY_KEY / generate lowercase code
keystrokes++ guard

state

default ANY_KEY [keystrokes|> 100,000

6

final
state variable
CAPS_LOCK
variable
state capsLocked ANY_KEY |keystrokes > 100,000]
transition
guard
ANY_KEY / generate uppercase code
keystrokes++
Spring '10 CIS 541

EFSM: Definitions

= An EFSM consists of
o Extended States, Guards, Events, Actions, and Transitions.
= A state is a situation or condition of a system
during which
o some (usually implicit) invariant holds,
o the system performs some activity, or
o the system waits for some external event.
= An extended state is a state with “memory”

o E.g., using 100,000 states to count 100,000 key strokes;
or, using one extended state with a variable “count”.

Spring '10 CIS 541

States vs Extended States

Example: Counting Number of Keystrokes (<= 100,000)

States Extended States
= One state represents one = One state represents all
number = Needs one state with one
= Needs 100,000 states variable
r A)

ke ke ke . kez .

Keystrokes=100,000

key / keystrokes++

Keystrokes=2

Keystrokes=1

No concept of variable ‘keystrokes’, using One state and one variable to
different states to represent them. represent all.

EFSM: Definitions

= Guards are

o boolean conditions on extended state variables which
enables or disables certain operations (e.g., change of
states).

o evaluated dynamically based on the extended state
variable values.

o immediate consequence of using extended state variables.

= An event

o is an occurrence in time and space that has significance to
the system.

o may also be parametric which conveys quantitative info.

EFSM: Definitions

= Actions
o are performed when an event instance is dispatched.

o include
* changing a variable;
* performing I/O;
* invoking a function;
* generating another event instance; or

* changing to another state (state transition).
* Transitions
o can be triggered by events.

o can also have a guard.

EFSM Variants: An Example

* Two Communicating EFSMs

o with event channel “press”

press?

O press? Y press?
OFF ON— BRIGHT

* How to model “pressing twice fast™?

o need time variables — timed automata

EFSM: Variants

Input/output Variables
o can serve as enhanced messages in communicating EFSMs
* Communicating EFSMs
o input/output events are properly defined to convey info
o EFSMs communicate by sending and receiving events via channels

Timed Automata

o “clock” variables are added, increasing automatically as
* clock ticks (discrete) or

* time elapses (continuous)

Hierarchical EFSMs

o inside a state, the system behavior is also like an EFSM

STATE MACHINE CODING
SCHEMES

State Machine Coding Schemes

State Machine Interface

A Running Example

Coding Schemes

o Nested Switch Statement

o State Table

o Object-oriented State Design Pattern

o Multiple-threaded Implementation

Tradeoffs between EFSM Implementations

State Machine Interface

* Three methods
o init() — take a top-level initial transition
o dispatch() — dispatch an event to the state machine
o tran() — take an arbitrary state transition
= Each coding scheme virtually implements these
* To use an EFSM in the main logic of the code

create an EFSM instance

o

(e}

invoke init() once
call dispatch()

* repetitively in a loop

o

¢ or sporadically based on detected events

o

dispatch() will then call the corresponding trans() function

The C Comment Parser Example

= A comment in the C language: /* comments */

comment

CHAR,
SLASH

The Nested switch Statement

= Nest switch statement with
o a scalar state variable in the first level for states,
o an event signal in the second level, and

o transition logic (actions) in the innermost level
= Two alternatives

o Switch with events first and then states
o Use one switch that combines both.

Spring '10 CIS 541

19

The Nested switch Statement: Example

enum Signal { // enumeration for CParser signals
CHAR_SIG, STAR_SIG, SLASH_SIG
bi

enum State { // enumeration for CParser states
CODE, SLASH, COMMENT, STAR
}i

class CParserl {
private:
State myState; // the scalar state-variable

long myCommentCtr; comment character counter

state machine interface

/* o0 %/ other CParserl attributes
public:
void init() { myCommentCtr = 0; tran(CODE); } // default transiton

void dispatch (unsigned const sig);

void tran(State target) { myState = target; }

long getCommentCtr () const { return myCommentCtr; }
bi

Spring '10 CIS 541 20

The Nested switch Statement: Example

first switching the states

void CParserl::dispatch (urte=s i —
switch (myState) { then switch signals inside each state
case CODE:
switch (sig) { finally the
case SLASH SIG: business
tran(SLASH); // transition to SLASH :
break; |Og|C
}
break; then switch signals inside each state
case SLASH: erere—ofrfLNT ©
switch (sig) { syitch (sig) {
case STAR_SIG: Casg STAR_SIG:
myCommentCtr += 2; tran (STAR) ;
tran (COMMENT) ; * ak;
break; then switch signals inside each state ar stc:
case CHAR_SIG: case SLASH_SIG:
case SLASH_SIG: ++myCommentCtr;
tran (CODE) ; break;
break; }
} break;
break;

Spring '10 CIS 541 21

The Nested switch Statement: Example

one more time, for state STAR
case STAR:

switch (sig) {
case STAR_SIG:

++myCommentCtr; // count STAR as comment
break;

case SLASH_SIG:
myCommentCtr += 2; // count STAR-SLASH as comment
tran (CODE) ; // transition to CODE
break;

case CHAR_SIG:

myCommentCtr += 2; // count STAR-? as comment
tran (COMMENT) ; // go back to COMMENT
break;

}

break;

The Nested switch Statement

= Nest switch statement with
o ascalar state variable in the first level for states,
o an event signal in the second level, and
o transition logic (actions) in the innermost level
= Advantages
o Simple and straightforward — just enumeration of stats and triggers
o Small memory footprint — only a state variable necessary
= Disadvantages

o Does not promote code reuse
¢ all elements of an EFSM must be coded specifically for problem at hand.
o Manual code is prone to errors

¢ when logic becomes complex

o Difficult to maintain in view of design change

State Table

= A table of arrays of transitions for each state
o function pointers are stored for easy management

o fast event dispatching

* store states and signals as integers, then calculate with pointer offsets
trans *t = tableAddress + state * numSignals + sig;

Signals »>
CHAR SIG STAR_SIG SLASH_SIG
m code doNothing (),
% slash
0 slash doNothing (), a2(), doNothing (),
N code comment code
comment al(), doNothing (), al(),
comment star comment
star a2(), al(), a2(),
comment star code

*al() and a2() are respective action functions

State Table

= Advantages
o Direct mapping from a tabular representation of an EFSM
o Fast event dispatching
o Code reuse of the “generic event dispatching process”

= Disadvantages

ignals >
o Table maybe large Signals
CHAR SIG STAR_SIG SLASH_SIG
and wasteful
Q code doNothing (),
Q slash
[¢)
O | slash doNothing (), a2(), doNothing (),
J code comment code
comment al(), doNothing (), al(),
comment star comment
star az2(), al(), az(),
comment star code

*al() and a2() are respective action functions

State Table: Example

a generic state table class

class |StateTable|{

public: struct for transitions
typedef void (StateTable::* .

struct Tran ({
Action action; struct for transitions
unsigned nextState;

}i

StateTable (Tran const *table, unsigned nStates, unsigned nSignals)

fast dispatching

: myTable (table), myNsignals (nSignals), myNstates (ng
virtual ~StateTable() {} Vi
void dispatch (unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;
(this->* (t->action)) ();

myState = t->nextState;

}

void doNothing () {} private:
protected: Tran const *myTable;
unsigned myState; unsigned myNsignals;

Y unsigned myNstates;

Spring '10 CIS 541 26

State Table: Example

table size
// specific Comment Parser state machine
enum Event { CHAR SIG, STAR SIG, SLASH SIG, MAX SIG }; constructing
enum State { CODE, SLASH, COMMENT, STAR, |MAX STATE } | customized state
table
class CParser2 : public StateTable ({ // CPak
public:
|CParser2() : StateTable (émyTable[0] [0], MAX STATE, MAX SIG) ;;_1
void init() { myCommentCtr = 0; myState = CODE; } // initial tran
long getCommentCtr () const { return myCommentCtr; }
private:
void al() { myCommentCtr += 1; } // action method
void a2() { myCommentCtr += 2; } // action method
private:
static StateTable::Tran const myTable[MAX =" s
long myCommentCtr; business Togic character counter

bi implemented as
private functions

static field of the table

holding the
state table

Spring '10 CIS 541 27

State Table: Example

filling out the table
statically

#include "cparser2.h"

StateTable::Tran const CParser2::myTable[MAX STATE] [MAX SIG] = {
{{&StateTable::doNothing, CODE },
{&StateTable::doNothing, CODE },
{&StateTable: :doNothing, SLASH}},

{{&StateTable::doNothing, CODE },
{static_cast<StateTable::Action>(&CParser2::a2), COMMENT },
{&StateTable::doNothing, CODE }},

{{static_cast<StateTable::Action>(&CParser2::al), COMMENT },
{&StateTable: :doNothing, STAR },
{static_cast<StateTable::Action>(&CParser2::al), COMMENT }},

{{static_cast<StateTable::Action>(&CParser2::a2), COMMENT },
{static_cast<StateTable::Action>(&CParser2::al), STAR },
{static_cast<StateTable::Action>(&CParser2::a2), CODE }}

State DESign Pattel"n [Gammat 95, Douglass 99]

An abstract state class
o defines a common interface for handling events
o each event corresponds to a virtual method

= Concrete states are subclasses of an abstract state class

= A context class delegates all events for processing to the
current state object (myState variable)

= State transitions are explicit and are accomplished by
reassigning the (myState variable)

= Adding new events corresponds adding it to the abstract
state class

= Adding new states is to subclass the abstract state class

Sta.te DeSign Pa.ttel'n [Gamma+ 95, Douglass 99]

abstract | CPa,rserStateﬁ
| State Pattern |- —a
Wy 7 ONCHARY() l] [virtual T
| onSTAR() |7 thods
~ context . B 1}onSLASH()/ _ Rilizaicil
| CParser3 /[concrete .
delegation .myState i e]
myState->onCHAR() T; .myCommentCtr CodéStail \ I CommentState | ‘
L "' onCHAR() R i
[nyStateonSTARY, :r-fongTAgg ‘ | Slashstate| | StarState |
myState->onSLASH() |5 fnr.l't()"A b
" myState = target “\Q‘T‘ # tran() \

(1) A class for abstract states, contains all possible
signals as virtual methods.

Spring '10 CIS 541 30

State DeSign Pattern [Gammat 95, Douglass 99]

abstract | CParserState
| State Pattern T state \“— — |
. | onCHAR) | | T
7 onSTAR() 17 mathods
Scontext 7 1 onsiasH)) | e |
| CParser3 /7 zoncrets %
delegation ‘myState S l
i t 3
myState->onCHAR() L, | MyCommentCt CodeState | | | CommentState | ‘
= —_ "= onCHAR()
myState->0nSTAR AN N ‘ 7]
(O o onSTAR | Stashstate| | Starstate
myState->onSLASH() [7 %’i‘t() 0
m = target 7\4‘1* i tran() \

(2) A state in an EFSM is an object of a subclass of the
CParserState. (CodeState, SlashState, etc.)

Spring '10 CIS 541

Sta.te DeSign Pa.ttel'n [Gamma+ 95, Douglass 99]

. abstract | CPa,rserStateﬁ
. State Pattern | Tdate E—
- 1 onCHAR() ° ‘ [virtial D\
(| onSTAR() "1 mathods
o contety . 7 Viensiashp) | LT |
‘ CParser3 /. Eoncrete A)
delegation .myState salee T 1 =
myState->onCHAR() T; RSO NI CodeState \1CommentState\ ‘
= ———1_ [° onCHAR() o =
| myState-=onSTAR() :I'fongTAgg ‘ | Slashstate| | StarState |
myState->onSLASH() | i?\ri]t ()LA 0
myState = target “\g‘f it tran() |

(3) The parser has exactly one object for each concrete
state class (e.g., myCodeState, mySlashState, etc.)...

Spring '10 CIS 541

State DeSign Pattern [Gammat 95, Douglass 99]

abstract | CParserState
. State Pattern | iate ‘ ———
_, ONCHAR() TS
| onSTAR() [~ methodsj
Coeontexty . 7 Vlonstasyp) |
‘ CParser3 v ./ é\oncre.t‘e A\
delegation, .m?tate" stales
L t !
myState->onCHAR() L, | MyCommentCt CodeState | | | CommentState | ‘
B X I\ [?onCHAR() . |
| myState->onSTARD __Y-loonsTAR(| SlashState | | StarState_‘

myState->onSLASH() | "[* ONSLASH()

I init()
™ Ti#tran() |

%A

myState = target

(4) ... as well as a myState variable, which can points to
any of them.

Spring '10 CIS 541

w
@

Sta.te DESigI‘I Pa.ttel'n [Gamma+ 95, Douglass 99]

.l " abstract CParserState |
| State Pattern |- e
_ el -4 onCHARY() t ‘ [virtual |
.~ onSTAR() [~ thods
context *, —,/ . } onSLASH() = —]
| CParser3 /[concrete
delegation .myState i e !
S [N [— |
myState ->0nCHAR() o L4 | CodeState | ‘ CommentState |
— <"1 onCHAR() -
myState->onSTAR() AN ‘
y ARD s onSTAR() ; snashSt@ | gt_aLStatg

myState >0nSLASH() ‘_1 IC;]T%LASHO

myState = target AT # tran() \

(5) State transition is just reassigning myState variable.

Spring '10 CIS 541 34

State DeSign Pattel"n [Gammat 95, Douglass 99]

. abstract CParserState |
. State Pattern |00 \— ——
B el = O”gHAR() t Mvirtual |
7 onSTAR()
context™, . 71 }oZSLAsQl() memOdsj
| CParser3 /7 “toncrete A
delegation . myState states . =
-
myState->onCHAR() P | myﬁ@“ entC_r_ | CodeState ‘ CommentState |
= ————————— "2 onCHAR
myStatesonsTAR) 1 |- st ‘

|SlashStaita ‘ StarState_‘

myState->onSLASH() | ° %’;%'—ASHO

' myState = target \‘%‘Ti # tran() \

(6) Event dispatching relies on C++ virtual function
dispatching rules. (If concrete class has the method, use

it; otherwise use the virtual methods.) — Fast dispatching.
Spring '10 CIS 541

35

State Design Pattern: Example

The same story
once more, in code.

class CParserState { // abstract State
public:

virtual void onCHAR (CParser3 *context, char ch) {}

virtual void onSTAR(CParser3 *context) {}

virtual void onSLASH (CParser3 *context) {}
bi
class CodeState : public CParserState { (I)A Class for abstract StateS,

public:

virtual void onSLASH (CParser3 *conte ContaInS a” POSSIble Slgnals as
bi H
class SlashState : public CParserState VIrtuaI methOdS.
public:

virtual void onCHAR(CParser3 *context, char ch);

virtual void onSTAR(CParser3 *context);

bi
class CommentState : public CParserState (2) A state in an EFSM is an object of

b a subclass of the CParserState.

ciass StarState : public CParserState ({ (COdeState SIaShState etC)
’ ’ .
bi

State Design Pattern: Example

The same story
once more, in code.

class CParser3 { // Context class
friend class CodeState;
friend class SlashState; (3) The Parser ha‘s exa’Ctly
friend class CommentState; one object for each concrete
friend class StarState;
static CodeState myCodeState; State Class (e.g.,

static SlashState mySlashState;
static CommentState| myCommentState;

static StarState myStarState; (4) ... as We” as a mystate

variahla whirh Fcan naintc tn

mul AdaQeata muCQlachQeata

CParserState *myState;
long myCommentCtr; (5) State tranSItlon IS]USt

public:

void init () { myCommentCtr = 0; tran(&myCodeS (6) Event dispatching r'e|ieS
void tran(CParserState *target) [{ myState = t on C++ Virtual funCtion

long getCommentCtr () const { return myComment

void onCHAR (char ch) { myState->onCHAR (this, dispatching rules- (If concrete
void onSTAR() { myState->onSTAR(this); } .
void onSLASH() { myState->onSLASH(this); } class has the methOd, use It;
b otherwise use the virtual

methods.) — Fast dispatching.

State Design Pattern: Example

The same story
once more, in code.

#include "cparser3.h"“

CodeState CParser3::myCodeState;
SlashState CParser3::mySlashState;
CommentState CParser3::myCommentState;
StarState CParser3::myStarState;

void CodeState::onSLASH (CParser3 *context) ({
| context->tran (&CParser3::mySlashState) ; |

}

void SlashState::onCHAR (CParser3 *context, char ch) {
| context->tran (&CParser3::myCodeState) ; |

) (7) Implementation of

v01d StarState::onSTAR (CParser3 *context) { IndIVIduaI aCtlons are ertlng
} context->myCommentCtr+; | transition functions on need.
void StarState::onSLASH(CParser3 *context) { (DEfault behaViOI" |S

context->myCommentCtr += 2;

context->tran (&CParser3::myCodeState) ; dONOthing () a's in the
: virtual function.)

State DESign Pattel"n [Gammat 95, Douglass 99]

= Advantages
It localizes state specific behavior in separate (sub)classes.
Efficient state transition — reassigning a pointer.

o
o
o Fast event dispatching — using C++ mechanism for function look up.
o Parameterized events made easy — passing function parameters.

o

No need for enumeration of states or events beforehand.

= Disadvantages
o Adding states requires creating subclasses.
o Adding new events requires adding handlers to state interface.

o In some situations where C++ or Java is not supported (e.g., some
embedded systems), mockups of OO design maybe an overkill.

Multiple-threaded Implementation

= Approach |
o Each EFSM is implemented inside one thread.
o Threads run simultaneously, scheduled in round-robin.
o EFSMs share variables in the process.

= Advantage
o Straightforward transformation from model.
o EFSM communication easily implemented with thread messages.

= Disadvantage
o In some situations, no ready thread support in specific platform.

o Related analysis (progressiveness if semaphores are used, timing
properties, etc) may be difficult.

Multiple-threaded Implementation

= Approach I
o Event detectors are implemented in threads.
o Transition actions are implemented in functions.
o Location information is stored with a variable.
o When event detector threads detects, calls corresponding functions
and switching locations.
= Advantage
o Easy adaption to model changes.
* Disadvantage

o In some situations, no ready thread support in specific platform.
o Code may be unstructured/unreadable.

Multiple-threaded Implementation: Example
(Approach II)

void *trans3(void *ptr) {

et = A transition logic is written inside a
in H
while (1) { function

sem_wait (&Sense) ;

o Wait for semaphore for triggering
if (current==WAIT_VRP && TRUE) {

t=getTimer (&v_x); signal.

printf ("Sense:%d\n", t); o If succeeded, check state
clearTimer (&v_x); (WAIT_VRP) and guard (TRUE).
current=ST_IDLE;

sem_post (ST_IDLE) ; o Execute updates.

* Print out timer value (for debugging)
}

¢ Reset timer value

}
int main(int argc, char *argv[]) {

pthread t threadl, thread?,thread3; ® All threads initialized and run in main

// ... initilization code ...

pthread create(&threadl, NULL, transl, NULL);

pthread_create(&thread2, NULL, trans2, NULL);

pthread_create(&thread3, NULL, trans3, NULL);

pthread join(threadl, NULL);

return 0;

* Change state

Optimal EFSM Implementation

= Does there exist one!?
= A trade off based on

o platform (available libraries? languages to use?)
o purpose of coding

* just for implementation or for analysis?

* what type of analysis? etc.
o efficiency requirement

o possibility of model changes

THE EFSM TOOLSET

The EFSM Toolset

" |ntroduction

* The EFSM Language

* Checking for Non-determinism and Totality
* Translations to Other Languages

" Test Generation from EFSMs

= Script Generation

= Code Generation

= Simulation

Introduction to EFSM Toolset

= Targets designers and engineers without specialized

training in formal methods

= Uses easily human-readable languages in description

= Features

o based on communicating EFSMs

o using communication channels as well as shared variables

o with input, output, and local variables

Spring '10 CIS 541

46

The EFSM Language

= Example

SYSTEM LampSystem:
press, sync, B;
EFSM Lamp {
States: off, low, bright;
InitialState: off;
LocalVars:
bint[0..5] y =0,
boolean x = false;
Transition: From off to low when true==true do, y =0;
Transition: From low to off when y>=5 do press ? x;
Transition: From low to bright when y<5 do press ? x;
Transition: From bright to off when true==true do press ? x;
}
EFSM User {
States: idle;
InitialState: idle;

LocalVars:
boolean x = false;
Transition: From idle to idle when true==true do press ! x;

}

Spring '10 CIS 541

The EFSM Language: Channels

= Specification: Channel: <name>, <type>, <r/w/b>;
o <type> maybe “sync” or “async”
* “sync”: one-to-one, blocking synchronization of two EFSMs

* “async’: one-writer-to-many-readers, non-blocking for writer, non-
consuming from the readers, asynchronous

o <r/w/b> —reader channel, writer channel, or both
= Communication action: <channel name> <action> <arg>
o <action> canbe!, 2, I, 77

* ! means writing, ! means reading

* single mark means synchronous; double marks means asynchronous

o <arg> is a typeless value

Non-determinism and Totality

= Definitions

o An EFSM is non-determinism if there exists some state
with two or more outgoing transitions which maybe
enabled at the same time.

o An EFSM is total (or complete) if at any state S, there is at
least one outgoing edge enabled.
* Checking Non-determinism and Totality
o The EFSM Toolset utilizes the satisfiability checker zChaff

* systematically transform logic formula over guards to DIMACS
(zChaff accepted format)

¢ feed into zChaff and interpret the result

Non-determinism and Totality

= Example: A system with a bounded integer x in [I..5] and
(1) From start to discard if x<=4;
(2) From start to use if x>3;
(3) From start to redo if x==5;
= To check for non-determinism for the “start” state, we need to check
(@) (x<=4) A (x>3)
(b) (x<=4) A (x==5)
() (x>3) A (x==5)
which are transformed to (xk means x==k is true)
(@) (xI VX2V x3Vx4)A (x4V x5)
(b) (xI V x2 V x3 V x4) A (X5)
(c) (x4 V x5) A (x5)
= (a), (c) are satisfied, which means there are non-determinisms between
o the first and the second transitions, and
o the second and the third transitions

Translations to Other Languages

= Table — CSV format most Spreadsheet programs can open
= Text — Human readable text file
= Dotty — Input format of the “dot” program for drawing
= Promela — The Spin model checker input language
o systems with only synchronous channels are supported now
o setting channel buffer size to 0 in Promela
= Uppaal — The Uppaal model checker XML format
o systems with only synchronous channels are supported now
o value passing must take place through shared variables
= SMV format — the NuSMV model checker
o currently supports systems without communication channels
o shared variables are supported
o can utilize the verification results from NuSMV for test case generation

Test Generation from EFSMs

* Test Generation
o create a set of traces through the EFSM
o for testing an implementation of the system

O coverage criteria
* state coverage — go through each state at least once
* transition coverage — ensures that every transition is take once

* definition-use coverage — makes a trace from every definition of a
variable to each of its subsequent uses

= Qutput of Test Generation

o a sequence of assignments of variable values

o necessary to lead the EFSM to take particular paths

Test Generation from EFSMs

= Model Based Approach using NuSMV

Boverage Setof OTL
Criteria Farmulas
EFSM Entrector cfﬁff i Parser/ Set of
Model H e Converor Tests
examples
EFSM to SMV SMY
Translater Mod el

= Direct Test Generation Algorithm

o DFS algorithm to discover set of paths covering all states

[e]

It keeps track of constraints and assignments along the path.
A transition can be added to the path if compatible with other constraints.

o

The algorithm starts with initial state and a set of constraints corresponding
to the initial assignments of variables.

o

o If a transition can be added (compatible), add it and make a recursive call.
o Can keep a snapshot of visited states to guarantee termination.
o Need to use a satisfiability checker.

Script Generation

= Script Generation
o takes a set of traces (from test generation)
o makes a set of scripts
o which can be run on an implementation

= Approach

Test Setof
EFSM :
Generation Traces “\
Script Setof F
. Gererator T'?St Implemantation
Application Scripts

Specific
Script
Library L2
FPass/ Fail
Resuft

Code Generation

= Allows mapping state machine variables to arbitrary input/output
functions
o input function is called each time the variable is read
e condition like x==2 will be translated to readX()==2
o output function is called each time the variable is written
* assignment like x:=y-2 will become writeX(y-2)
= C
o limited to single EFSM model without communication channels
o repeatedly executing a series of if-else statements like
* if (state==X and condition==c) { doSomething(); ... }
= Java
o supports multiple communicating machines, utilizing JCSP library
o each EFSM is run inside a thread, and they are all run in parallel

o scheduled round-robin

Example: Generated Code Snippet in C

while (transition_taken) {

transition_taken=0;

if ((currentState==1)&& (current < getNumBots())) {
PRE_TRANSITION_ HOOK;
current=current+1;
currentState=2;
transition_taken=1;
//printf ("rolling:From:incrementTo:check
//Guard:current <=numBotsAction:current=current+l\n");
POST_TRANSITION_HOOK;

if ((currentState==2)&& (getSwitch()==1)) {
PRE_TRANSITION_HOOK;
setAllAngles (1) ;
currentState=1;
transition_taken=1;
//printf ("rolling:From:checkTo:increment
//Guard:switchValue==trueAction:setAngles=true \n");
POST_TRANSITION_HOOK;

Spring '10 CIS 541 56

Example: Generated Code Snippet in Java

import jcsp.lang.*;

public class gaitThread implements CSProcess {
private final String name="gaitThread";
public gaitThread() {}
public void run() {

final Skip skip= new Skip();

while (true) {
switch (alt.priSelect()) {
case 0:
if ((currentState.equals ("footArming")) & (TwoSecondDelay == true)) {

currentState="spineArming";
System.out.println("gait: From: footArming
To:spineArming
Guard:TwoSecondDelay== true
Action:spine=-20");
}
if ((currentState.equals ("spineArming")) & (TwoSecondDelay == true)) {

}
§pring '10 CIS 541 57

Simulation with the EFSM Toolset

E Simulator
= Simulator generates Java code Current
Wthh WaIkS through the EFSM Choose values for these variables:
1 0n
model.
) OfF
= At each step, it asks the user for 7 Set Dose #
input variable values, if any. L
. 1 Set dose +
= Example screen on the right. 3 Srar Dellvery
o Either choose variables to set value and on
“Step”, or L off
T e e sy) Set Dose #
o Auto with “Probabilistic”.)
{_) Srop Delivery
* Simulator reports error message if > Set dose +
no transitions available. (2 Start Dellvery

[Z] Probabalistic
| Step

References

= Miro Samek, Practical Statecharts in C/C++,
CMPBooks, 2002
o Source code available online
o http://www.state-machine.com/psicc/

= David Arney, EFSM Toolbox Manual, University of
Pennsylvania, 2009

Thank you!

Spring '10

CIS 541

6l

