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EFSM: A Keyboard Example
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default

capsLocked

CAPS_LOCK CAPS_LOCK

ANY_KEY / generate lowercase code

keystrokes++

ANY_KEY / generate uppercase code

keystrokes++

ANY_KEY [keystrokes > 100,000]

ANY_KEY [keystrokes > 100,000]

initial 

transition

self 

transition trigger action list

state

state 

transition

guard

final 

state variable

variable

guard

EFSM: Definitions

 An EFSM consists of

o Extended States, Guards, Events, Actions, and Transitions.

 A state is a situation or condition of a system 

during which 

o some (usually implicit) invariant holds,

o the system performs some activity, or

o the system waits for some external event.

 An extended state is a state with “memory”

o E.g., using 100,000 states to count 100,000 key strokes; 

or, using one extended state with a variable “count”.
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States vs Extended States
Example: Counting Number of Keystrokes (<= 100,000)

States

 One state represents one 

number

 Needs 100,000 states

Extended States

 One state represents all

 Needs one state with one 

variable
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Keystrokes=1

Keystrokes=2

Keystrokes=100,000

No concept of variable „keystrokes‟, using 

different states to represent them.

….key key key key

key / keystrokes++

One state and one variable to 

represent all.

EFSM: Definitions

 Guards are

o boolean conditions on extended state variables which 

enables or disables certain operations (e.g., change of 

states).

o evaluated dynamically based on the extended state 

variable values.

o immediate consequence of using extended state variables.

 An event 

o is an occurrence in time and space that has significance to 

the system.

o may also be parametric which conveys quantitative info.
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EFSM: Definitions

 Actions

o are performed when an event instance is dispatched.

o include 

 changing a variable;

 performing I/O;

 invoking a function;

 generating another event instance; or

 changing to another state (state transition).

 Transitions

o can be triggered by events.

o can also have a guard.
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EFSM Variants: An Example

 Two Communicating EFSMs

o with event channel “press”

 How to model “pressing twice fast”?

o need time variables – timed automata
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EFSM: Variants

 Input/output Variables

o can serve as enhanced messages in communicating EFSMs

 Communicating EFSMs

o input/output events are properly defined to convey info

o EFSMs communicate by sending and receiving events via channels

 Timed Automata

o “clock” variables are added, increasing automatically as 

 clock ticks (discrete) or 

 time elapses (continuous)

 Hierarchical EFSMs

o inside a state, the system behavior is also like an EFSM
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STATE MACHINE CODING 

SCHEMES



State Machine Coding Schemes

 State Machine Interface

 A Running Example

 Coding Schemes

o Nested Switch Statement

o State Table

o Object-oriented State Design Pattern

o Multiple-threaded Implementation

 Tradeoffs between EFSM Implementations

State Machine Interface

 Three methods

o init() – take a top-level initial transition 

o dispatch() – dispatch an event to the state machine

o tran() – take an arbitrary state transition

 Each coding scheme virtually implements these

 To use an EFSM in the main logic of the code

o create an EFSM instance

o invoke init() once 

o call dispatch()

 repetitively in a loop

 or sporadically based on detected events

o dispatch() will then call the corresponding trans() function

Spring '10 CIS 541 17



The C Comment Parser Example

 A comment in the C language: /* comments */

code

star slash

comment

CHAR, 

SLASH

STAR

SLASH SLASH

CHAR, 

SLASH

CHAR

STAR
STAR

CHAR

The Nested Switch Statement

 Nest switch statement with

o a scalar state variable in the first level for states,

o an event signal in the second level, and 

o transition logic (actions) in the innermost level

 Two alternatives

o Switch with events first and then states

o Use one switch that combines both.
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The Nested Switch Statement: Example

enum Signal {                                  // enumeration for CParser signals

CHAR_SIG, STAR_SIG, SLASH_SIG

};

enum State {                                    // enumeration for CParser states 

CODE, SLASH, COMMENT, STAR

};

class CParser1 {

private:

State myState;                                    // the scalar state-variable

long myCommentCtr;                                // comment character counter

/* ... */                                         // other CParser1 attributes

public: 

void init() { myCommentCtr = 0; tran(CODE); }             // default transiton

void dispatch(unsigned const sig);

void tran(State target) { myState = target; }

long getCommentCtr() const { return myCommentCtr; }

};
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state machine interface

The Nested Switch Statement: Example

void CParser1::dispatch(unsigned const sig) {

switch (myState) {

case CODE:

switch (sig) {

case SLASH_SIG:

tran(SLASH); // transition to SLASH

break;

}

break;

case SLASH:

switch (sig) {

case STAR_SIG:

myCommentCtr += 2; 

tran(COMMENT);               

break;

case CHAR_SIG:

case SLASH_SIG:

tran(CODE);                    

break;

}

break;
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case COMMENT:

switch (sig) {

case STAR_SIG:

tran(STAR); 

break;

case CHAR_SIG:

case SLASH_SIG:

++myCommentCtr; 

break; 

}

break;

first switching the states

then switch signals inside each state

then switch signals inside each state

then switch signals inside each state

finally the 

business 

logic



The Nested Switch Statement: Example

case STAR:

switch (sig) {

case STAR_SIG:

++myCommentCtr;                     // count STAR as comment

break;

case SLASH_SIG:

myCommentCtr += 2;            // count STAR-SLASH as comment

tran(CODE);                            // transition to CODE

break;

case CHAR_SIG:

myCommentCtr += 2;                // count STAR-? as comment

tran(COMMENT);                         // go back to COMMENT

break;

}

break;

}

}
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one more time, for state STAR

The Nested Switch Statement

 Nest switch statement with

o a scalar state variable in the first level for states,

o an event signal in the second level, and 

o transition logic (actions) in the innermost level

 Advantages

o Simple and straightforward – just enumeration of stats and triggers

o Small memory footprint – only a state variable necessary

 Disadvantages

o Does not promote code reuse

 all elements of an EFSM must be coded specifically for problem at hand.

o Manual code is prone to errors

 when logic becomes complex

o Difficult to maintain in view of design change
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State Table

 A table of arrays of transitions for each state

o function pointers are stored for easy management

o fast event dispatching

 store states and signals as integers, then calculate with pointer offsets
trans *t = tableAddress + state * numSignals + sig;
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CHAR_SIG STAR_SIG SLASH_SIG

code doNothing(),

slash

slash doNothing(),

code

a2(),

comment

doNothing(),

code

comment a1(),

comment

doNothing(),

star

a1(),

comment

star a2(),

comment

a1(),

star

a2(),

code

Signals 

S
ta

te
s
 

* a1() and a2() are respective action functions

State Table

 Advantages

o Direct mapping from a tabular representation of an EFSM

o Fast event dispatching

o Code reuse of the “generic event dispatching process”

 Disadvantages

o Table maybe large

and wasteful
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CHAR_SIG STAR_SIG SLASH_SIG

code doNothing(),

slash

slash doNothing(),

code

a2(),

comment

doNothing(),

code

comment a1(),

comment

doNothing(),

star

a1(),

comment

star a2(),

comment

a1(),

star

a2(),

code

Signals 

S
ta

te
s
 

* a1() and a2() are respective action functions



State Table: Example
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class StateTable {

public:

typedef void (StateTable::*Action)();

struct Tran {

Action action;

unsigned nextState;

};

StateTable(Tran const *table, unsigned nStates, unsigned nSignals)

: myTable(table), myNsignals(nSignals), myNstates(nStates) {}

virtual ~StateTable() {}                          // virtual xctor

void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig; 

(this->*(t->action))();

myState = t->nextState;

}

void doNothing() {}

protected:

unsigned myState;

};

private:

Tran const *myTable;

unsigned myNsignals;

unsigned myNstates;

struct for transitions 

struct for transitions 

a generic state table class

fast dispatching

State Table: Example
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// specific Comment Parser state machine ...

enum Event { CHAR_SIG, STAR_SIG, SLASH_SIG, MAX_SIG };

enum State { CODE, SLASH, COMMENT, STAR, MAX_STATE };

class CParser2 : public StateTable {                    // CParser2 state machine

public:

CParser2() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}

void init() { myCommentCtr = 0; myState = CODE; }              // initial tran

long getCommentCtr() const { return myCommentCtr; }

private:

void a1() { myCommentCtr += 1; }                              // action method

void a2() { myCommentCtr += 2; }                              // action method

private:

static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];

long myCommentCtr;                                // comment character counter

};

table size

constructing

customized state 

table

business logic 

implemented as 

private functions 

of the table
static field 

holding the 

state table



State Table: Example
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#include "cparser2.h"

StateTable::Tran const CParser2::myTable[MAX_STATE][MAX_SIG] = {

{{&StateTable::doNothing, CODE },

{&StateTable::doNothing, CODE },

{&StateTable::doNothing, SLASH}},

{{&StateTable::doNothing, CODE },

{static_cast<StateTable::Action>(&CParser2::a2), COMMENT },

{&StateTable::doNothing, CODE }},

{{static_cast<StateTable::Action>(&CParser2::a1), COMMENT },

{&StateTable::doNothing,STAR },

{static_cast<StateTable::Action>(&CParser2::a1), COMMENT }},

{{static_cast<StateTable::Action>(&CParser2::a2), COMMENT },

{static_cast<StateTable::Action>(&CParser2::a1), STAR },

{static_cast<StateTable::Action>(&CParser2::a2), CODE }}

};

filling out the table 

statically

State Design Pattern [Gamma+ 95, Douglass 99]

 An abstract state class

o defines a common interface for handling events

o each event corresponds to a virtual method

 Concrete states are subclasses of an abstract state class

 A context class delegates all events for processing to the 

current state object (myState variable)

 State transitions are explicit and are accomplished by 

reassigning the (myState variable)

 Adding new events corresponds adding it to the abstract 

state class

 Adding new states is to subclass the abstract state class
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State Design Pattern [Gamma+ 95, Douglass 99]
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(1)

(1) A class for abstract states, contains all possible 

signals as virtual methods.

State Design Pattern [Gamma+ 95, Douglass 99]
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(2)

(2) A state in an EFSM is an object of a subclass of the 

CParserState. (CodeState, SlashState, etc.)



State Design Pattern [Gamma+ 95, Douglass 99]
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(3)

(3) The parser has exactly one object for each concrete 

state class (e.g., myCodeState, mySlashState, etc.)…

State Design Pattern [Gamma+ 95, Douglass 99]
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(4)

(4) … as well as a myState variable, which can points to 

any of them.



State Design Pattern [Gamma+ 95, Douglass 99]
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(5)

(5) State transition is just reassigning myState variable.

State Design Pattern [Gamma+ 95, Douglass 99]
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(6)

(6) Event dispatching relies on C++ virtual function 

dispatching rules. (If concrete class has the method, use 

it; otherwise use the virtual methods.) – Fast dispatching.



State Design Pattern: Example
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class CParserState {                                // abstract State

public:

virtual void onCHAR(CParser3 *context, char ch)  {}

virtual void onSTAR(CParser3 *context) {}

virtual void onSLASH(CParser3 *context) {}

};

class CodeState : public CParserState {      // concrete State "Code"

public:

virtual void onSLASH(CParser3 *context);

};

class SlashState : public CParserState {    // concrete State "Slash"

public:

virtual void onCHAR(CParser3 *context, char ch);

virtual void onSTAR(CParser3 *context);

};

class CommentState : public CParserState { //concrete State "Comment"

....

};

class StarState : public CParserState {      // concrete State "Star"

....

};

The same story 

once more, in code.

(1) A class for abstract states, 

contains all possible signals as 

virtual methods.

(2) A state in an EFSM is an object of 

a subclass of the CParserState. 

(CodeState, SlashState, etc.)

State Design Pattern: Example
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class CParser3 {                                     // Context class

friend class CodeState;

friend class SlashState;

friend class CommentState;

friend class StarState;

static CodeState myCodeState;

static SlashState mySlashState;

static CommentState myCommentState;

static StarState myStarState;

CParserState *myState;

long myCommentCtr;

public:

void init() { myCommentCtr = 0; tran(&myCodeState); }

void tran(CParserState *target) { myState = target; }

long getCommentCtr() const { return myCommentCtr; }

void onCHAR(char ch) { myState->onCHAR(this, ch); }

void onSTAR() { myState->onSTAR(this);  }

void onSLASH() { myState->onSLASH(this); }

};

The same story 

once more, in code.

(3) The parser has exactly 

one object for each concrete 

state class (e.g., 

myCodeState, mySlashState, 

etc.)…(4) … as well as a myState

variable, which can points to 

any of them.(5) State transition is just 

reassigning myState variable.(6) Event dispatching relies 

on C++ virtual function 

dispatching rules. (If concrete 

class has the method, use it; 

otherwise use the virtual 

methods.) – Fast dispatching.



State Design Pattern: Example
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#include "cparser3.h“

CodeState CParser3::myCodeState;

SlashState CParser3::mySlashState;

CommentState CParser3::myCommentState;

StarState CParser3::myStarState;

void CodeState::onSLASH(CParser3 *context) {

context->tran(&CParser3::mySlashState);

}

void SlashState::onCHAR(CParser3 *context, char ch) {

context->tran(&CParser3::myCodeState);

}

....

void StarState::onSTAR(CParser3 *context) {

context->myCommentCtr++;

}

void StarState::onSLASH(CParser3 *context) {

context->myCommentCtr += 2;

context->tran(&CParser3::myCodeState);

}

The same story 

once more, in code.

(7) Implementation of 

individual actions are writing 

transition functions on need. 

(Default behavior is 

doNothing() as in the 

virtual function.)

State Design Pattern [Gamma+ 95, Douglass 99]

 Advantages

o It localizes state specific behavior in separate (sub)classes.

o Efficient state transition – reassigning a pointer.

o Fast event dispatching – using C++ mechanism for function look up.

o Parameterized events made easy – passing function parameters.

o No need for enumeration of states or events beforehand.

 Disadvantages

o Adding states requires creating subclasses.

o Adding new events requires adding handlers to state interface.

o In some situations where C++ or Java is not supported (e.g., some 

embedded systems), mockups of OO design maybe an overkill.
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Multiple-threaded Implementation

 Approach I

o Each EFSM is implemented inside one thread.

o Threads run simultaneously, scheduled in round-robin.

o EFSMs share variables in the process.

 Advantage

o Straightforward transformation from model.

o EFSM communication easily implemented with thread messages.

 Disadvantage

o In some situations, no ready thread support in specific platform.

o Related analysis (progressiveness if semaphores are used, timing 

properties, etc) may be difficult.
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Multiple-threaded Implementation

 Approach II

o Event detectors are implemented in threads.

o Transition actions are implemented in functions.

o Location information is stored with a variable.

o When event detector threads detects, calls corresponding functions 

and switching locations.

 Advantage

o Easy adaption to model changes.

 Disadvantage

o In some situations, no ready thread support in specific platform.

o Code may be unstructured/unreadable.
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Multiple-threaded Implementation: Example 

(Approach II)

 A transition logic is written inside a 

function

o Wait for semaphore for triggering 

signal.

o If succeeded, check state 

(WAIT_VRP) and guard (TRUE).

o Execute updates.

 Print out timer value (for debugging)

 Reset timer value

 Change state

 All threads initialized and run in main
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void *trans3(void *ptr) {

int t;

while(1) {

sem_wait(&Sense);

if(current==WAIT_VRP && TRUE) {

t=getTimer(&v_x);

printf("Sense:%d\n", t);

clearTimer(&v_x);

current=ST_IDLE;

sem_post(&ST_IDLE);

} 

}

}

int main(int argc, char *argv[]) {

pthread_t thread1, thread2,thread3;

// ... initilization code ...

pthread_create( &thread1, NULL, trans1, NULL);

pthread_create( &thread2, NULL, trans2, NULL);

pthread_create( &thread3, NULL, trans3, NULL);

pthread_join( thread1, NULL);

return 0; 

}

Optimal EFSM Implementation

 Does there exist one?

 A trade off based on 

o platform (available libraries? languages to use?)

o purpose of coding

 just for implementation or for analysis? 

 what type of analysis? etc.

o efficiency requirement

o possibility of model changes
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THE EFSM TOOLSET

The EFSM Toolset

 Introduction

 The EFSM Language

 Checking for Non-determinism and Totality

 Translations to Other Languages

 Test Generation from EFSMs

 Script Generation

 Code Generation

 Simulation



Introduction to EFSM Toolset

 Targets designers and engineers without specialized 

training in formal methods

 Uses easily human-readable languages in description

 Features

o based on communicating EFSMs

o using communication channels as well as shared variables

o with input, output, and local variables
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The EFSM Language

 Example
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SYSTEM LampSystem:

Channel: press, sync, B;

EFSM Lamp {

States: off, low, bright;

InitialState: off;

LocalVars:

bint[0..5] y =0,

boolean x = false;

Transition: From off to low when true==true do press ? x , y =0;

Transition: From low to off when y>=5 do press ? x;

Transition: From low to bright when y<5 do press ? x;

Transition: From bright to off when true==true do press ? x;

}

EFSM User {

States: idle;

InitialState: idle;

LocalVars:

boolean x = false;

Transition: From idle to idle when true==true do press ! x;

}



The EFSM Language: Channels

 Specification: Channel: <name>, <type>, <r/w/b>;

o <type> maybe “sync” or “async”

 “sync”: one-to-one, blocking synchronization of two EFSMs

 “async”: one-writer-to-many-readers, non-blocking for writer, non-

consuming from the readers, asynchronous

o <r/w/b> – reader channel, writer channel, or both

 Communication action: <channel name> <action> <arg>

o <action> can be !, ?, !!, ??

 ! means writing, ? means reading

 single mark means synchronous; double marks means asynchronous

o <arg> is a typeless value
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Non-determinism and Totality

 Definitions

o An EFSM is non-determinism if there exists some state 

with two or more outgoing transitions which maybe 

enabled at the same time.

o An EFSM is total (or complete) if at any state S, there is at 

least one outgoing edge enabled.

 Checking Non-determinism and Totality

o The EFSM Toolset utilizes the satisfiability checker zChaff

 systematically transform logic formula over guards to DIMACS 

(zChaff accepted format)

 feed into zChaff and interpret the result
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Non-determinism and Totality

 Example: A system with a bounded integer x in [1..5] and

(1) From start to discard if x<=4;

(2) From start to use if x>3;

(3) From start to redo if x==5;

 To check for non-determinism for the “start” state, we need to check

(a) (x<=4) ∧ (x>3)

(b) (x<=4) ∧ (x==5)

(c) (x>3) ∧ (x==5)

which are transformed to (xk means x==k is true)

(a) (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x4 ∨ x5)

(b) (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x5)

(c) (x4 ∨ x5) ∧ (x5)

 (a), (c) are satisfied, which means there are non-determinisms between

o the first and the second transitions, and 

o the second and the third transitions
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Translations to Other Languages

 Table – CSV format most Spreadsheet programs can open

 Text – Human readable text file

 Dotty – Input format of the “dot” program for drawing

 Promela – The Spin model checker input language

o systems with only synchronous channels are supported now

o setting channel buffer size to 0 in Promela

 Uppaal – The Uppaal model checker XML format

o systems with only synchronous channels are supported now

o value passing must take place through shared variables

 SMV format – the NuSMV model checker

o currently supports systems without communication channels

o shared variables are supported

o can utilize the verification results from NuSMV for test case generation
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Test Generation from EFSMs

 Test Generation

o create a set of traces through the EFSM

o for testing an implementation of the system

o coverage criteria

 state coverage – go through each state at least once

 transition coverage – ensures that every transition is take once

 definition-use coverage – makes a trace from every definition of a 

variable to each of its subsequent uses

 Output of Test Generation

o a sequence of assignments of variable values

o necessary to lead the EFSM to take particular paths
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Test Generation from EFSMs

 Model Based Approach using NuSMV

 Direct Test Generation Algorithm

o DFS algorithm to discover set of paths covering all states

o It keeps track of constraints and assignments along the path.

o A transition can be added to the path if compatible with other constraints.

o The algorithm starts with initial state and a set of constraints corresponding 

to the initial assignments of variables.

o If a transition can be added (compatible), add it and make a recursive call. 

o Can keep a snapshot of visited states to guarantee termination.

o Need to use a satisfiability checker.
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Script Generation

 Script Generation

o takes a set of traces (from test generation)

o makes a set of scripts

o which can be run on an implementation

 Approach
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Code Generation

 Allows mapping state machine variables to arbitrary input/output 

functions

o input function is called each time the variable is read

 condition like x==2 will be translated to readX()==2

o output function is called each time the variable is written

 assignment like x:=y-2 will become writeX(y-2)

 C

o limited to single EFSM model without communication channels

o repeatedly executing a series of if-else statements like

 if (state==X and condition==c) { doSomething(); … }

 Java

o supports multiple communicating machines, utilizing JCSP library

o each EFSM is run inside a thread, and they are all run in parallel

o scheduled round-robin
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Example: Generated Code Snippet in C
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while (transition_taken) {

transition_taken=0;

if ((currentState==1)&&(current < getNumBots())) {

PRE_TRANSITION_HOOK;

current=current+1;

currentState=2;

transition_taken=1;

//printf("rolling:From:incrementTo:check

//Guard:current <=numBotsAction:current=current+1\n");

POST_TRANSITION_HOOK;

}

....

if ((currentState==2)&&(getSwitch()==1)) {

PRE_TRANSITION_HOOK;

setAllAngles(1);

currentState=1;

transition_taken=1;

//printf("rolling:From:checkTo:increment

//Guard:switchValue==trueAction:setAngles=true \n");

POST_TRANSITION_HOOK;

}

}

Example: Generated Code Snippet in Java
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import jcsp.lang.*;

public class gaitThread implements CSProcess {

private final String name="gaitThread"; ....

public gaitThread() {}

public void run() {

final Skip skip= new Skip(); ....

while ( true ) {

switch (alt.priSelect()) {

case 0:

if ((currentState.equals("footArming")) & (TwoSecondDelay == true )) {

currentState="spineArming";

System.out.println("gait: From: footArming

To:spineArming

Guard:TwoSecondDelay== true

Action:spine=-20");

}

if ((currentState.equals("spineArming")) & (TwoSecondDelay == true)) {

....

} ....

....

}

}

}

}



Simulation with the EFSM Toolset

 Simulator generates Java code 

which walks through the EFSM 

model. 

 At each step, it asks the user for 

input variable values, if any.

 Example screen on the right.

o Either choose variables to set value and 

“Step”, or

o Auto with “Probabilistic”.

 Simulator reports error message if 

no transitions available.
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Thank you!
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