
Code Generation from Extended 

Finite State Machines

Insup Lee
Department of Computer and Information Science

University of Pennsylvania

Originally prepared by Shaohui Wang

Modified by Insup Lee for CIS 541, Spring 2010

Spring '10 CIS 541 2

Outline

 Definition of Extended Finite State Machines

 General Code Generation Schemes

 Introduction to The EFSM Toolset



EXTENDED FINITE STATE 

MACHINES

Extended Finite State Machines

 A Keyboard Example

 Formal Definitions

 Variants



EFSM: A Keyboard Example

Spring '10 CIS 541 6

default

capsLocked

CAPS_LOCK CAPS_LOCK

ANY_KEY / generate lowercase code

keystrokes++

ANY_KEY / generate uppercase code

keystrokes++

ANY_KEY [keystrokes > 100,000]

ANY_KEY [keystrokes > 100,000]

initial 

transition

self 

transition trigger action list

state

state 

transition

guard

final 

state variable

variable

guard

EFSM: Definitions

 An EFSM consists of

o Extended States, Guards, Events, Actions, and Transitions.

 A state is a situation or condition of a system 

during which 

o some (usually implicit) invariant holds,

o the system performs some activity, or

o the system waits for some external event.

 An extended state is a state with “memory”

o E.g., using 100,000 states to count 100,000 key strokes; 

or, using one extended state with a variable “count”.

Spring '10 CIS 541 7



States vs Extended States
Example: Counting Number of Keystrokes (<= 100,000)

States

 One state represents one 

number

 Needs 100,000 states

Extended States

 One state represents all

 Needs one state with one 

variable

Spring '10 CIS 541 8

Keystrokes=1

Keystrokes=2

Keystrokes=100,000

No concept of variable „keystrokes‟, using 

different states to represent them.

….key key key key

key / keystrokes++

One state and one variable to 

represent all.

EFSM: Definitions

 Guards are

o boolean conditions on extended state variables which 

enables or disables certain operations (e.g., change of 

states).

o evaluated dynamically based on the extended state 

variable values.

o immediate consequence of using extended state variables.

 An event 

o is an occurrence in time and space that has significance to 

the system.

o may also be parametric which conveys quantitative info.

Spring '10 CIS 541 9



EFSM: Definitions

 Actions

o are performed when an event instance is dispatched.

o include 

 changing a variable;

 performing I/O;

 invoking a function;

 generating another event instance; or

 changing to another state (state transition).

 Transitions

o can be triggered by events.

o can also have a guard.

Spring '10 CIS 541 10

EFSM Variants: An Example

 Two Communicating EFSMs

o with event channel “press”

 How to model “pressing twice fast”?

o need time variables – timed automata

Spring '10 CIS 541 13



EFSM: Variants

 Input/output Variables

o can serve as enhanced messages in communicating EFSMs

 Communicating EFSMs

o input/output events are properly defined to convey info

o EFSMs communicate by sending and receiving events via channels

 Timed Automata

o “clock” variables are added, increasing automatically as 

 clock ticks (discrete) or 

 time elapses (continuous)

 Hierarchical EFSMs

o inside a state, the system behavior is also like an EFSM

Spring '10 CIS 541 14

STATE MACHINE CODING 

SCHEMES



State Machine Coding Schemes

 State Machine Interface

 A Running Example

 Coding Schemes

o Nested Switch Statement

o State Table

o Object-oriented State Design Pattern

o Multiple-threaded Implementation

 Tradeoffs between EFSM Implementations

State Machine Interface

 Three methods

o init() – take a top-level initial transition 

o dispatch() – dispatch an event to the state machine

o tran() – take an arbitrary state transition

 Each coding scheme virtually implements these

 To use an EFSM in the main logic of the code

o create an EFSM instance

o invoke init() once 

o call dispatch()

 repetitively in a loop

 or sporadically based on detected events

o dispatch() will then call the corresponding trans() function

Spring '10 CIS 541 17



The C Comment Parser Example

 A comment in the C language: /* comments */

code

star slash

comment

CHAR, 

SLASH

STAR

SLASH SLASH

CHAR, 

SLASH

CHAR

STAR
STAR

CHAR

The Nested Switch Statement

 Nest switch statement with

o a scalar state variable in the first level for states,

o an event signal in the second level, and 

o transition logic (actions) in the innermost level

 Two alternatives

o Switch with events first and then states

o Use one switch that combines both.

Spring '10 CIS 541 19



The Nested Switch Statement: Example

enum Signal {                                  // enumeration for CParser signals

CHAR_SIG, STAR_SIG, SLASH_SIG

};

enum State {                                    // enumeration for CParser states 

CODE, SLASH, COMMENT, STAR

};

class CParser1 {

private:

State myState;                                    // the scalar state-variable

long myCommentCtr;                                // comment character counter

/* ... */                                         // other CParser1 attributes

public: 

void init() { myCommentCtr = 0; tran(CODE); }             // default transiton

void dispatch(unsigned const sig);

void tran(State target) { myState = target; }

long getCommentCtr() const { return myCommentCtr; }

};

Spring '10 CIS 541 20

state machine interface

The Nested Switch Statement: Example

void CParser1::dispatch(unsigned const sig) {

switch (myState) {

case CODE:

switch (sig) {

case SLASH_SIG:

tran(SLASH); // transition to SLASH

break;

}

break;

case SLASH:

switch (sig) {

case STAR_SIG:

myCommentCtr += 2; 

tran(COMMENT);               

break;

case CHAR_SIG:

case SLASH_SIG:

tran(CODE);                    

break;

}

break;

Spring '10 CIS 541 21

case COMMENT:

switch (sig) {

case STAR_SIG:

tran(STAR); 

break;

case CHAR_SIG:

case SLASH_SIG:

++myCommentCtr; 

break; 

}

break;

first switching the states

then switch signals inside each state

then switch signals inside each state

then switch signals inside each state

finally the 

business 

logic



The Nested Switch Statement: Example

case STAR:

switch (sig) {

case STAR_SIG:

++myCommentCtr;                     // count STAR as comment

break;

case SLASH_SIG:

myCommentCtr += 2;            // count STAR-SLASH as comment

tran(CODE);                            // transition to CODE

break;

case CHAR_SIG:

myCommentCtr += 2;                // count STAR-? as comment

tran(COMMENT);                         // go back to COMMENT

break;

}

break;

}

}

Spring '10 CIS 541 22

one more time, for state STAR

The Nested Switch Statement

 Nest switch statement with

o a scalar state variable in the first level for states,

o an event signal in the second level, and 

o transition logic (actions) in the innermost level

 Advantages

o Simple and straightforward – just enumeration of stats and triggers

o Small memory footprint – only a state variable necessary

 Disadvantages

o Does not promote code reuse

 all elements of an EFSM must be coded specifically for problem at hand.

o Manual code is prone to errors

 when logic becomes complex

o Difficult to maintain in view of design change

Spring '10 CIS 541 23



State Table

 A table of arrays of transitions for each state

o function pointers are stored for easy management

o fast event dispatching

 store states and signals as integers, then calculate with pointer offsets
trans *t = tableAddress + state * numSignals + sig;

Spring '10 CIS 541 24

CHAR_SIG STAR_SIG SLASH_SIG

code doNothing(),

slash

slash doNothing(),

code

a2(),

comment

doNothing(),

code

comment a1(),

comment

doNothing(),

star

a1(),

comment

star a2(),

comment

a1(),

star

a2(),

code

Signals 

S
ta

te
s
 

* a1() and a2() are respective action functions

State Table

 Advantages

o Direct mapping from a tabular representation of an EFSM

o Fast event dispatching

o Code reuse of the “generic event dispatching process”

 Disadvantages

o Table maybe large

and wasteful

Spring '10 CIS 541 25

CHAR_SIG STAR_SIG SLASH_SIG

code doNothing(),

slash

slash doNothing(),

code

a2(),

comment

doNothing(),

code

comment a1(),

comment

doNothing(),

star

a1(),

comment

star a2(),

comment

a1(),

star

a2(),

code

Signals 

S
ta

te
s
 

* a1() and a2() are respective action functions



State Table: Example

Spring '10 CIS 541 26

class StateTable {

public:

typedef void (StateTable::*Action)();

struct Tran {

Action action;

unsigned nextState;

};

StateTable(Tran const *table, unsigned nStates, unsigned nSignals)

: myTable(table), myNsignals(nSignals), myNstates(nStates) {}

virtual ~StateTable() {}                          // virtual xctor

void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig; 

(this->*(t->action))();

myState = t->nextState;

}

void doNothing() {}

protected:

unsigned myState;

};

private:

Tran const *myTable;

unsigned myNsignals;

unsigned myNstates;

struct for transitions 

struct for transitions 

a generic state table class

fast dispatching

State Table: Example

Spring '10 CIS 541 27

// specific Comment Parser state machine ...

enum Event { CHAR_SIG, STAR_SIG, SLASH_SIG, MAX_SIG };

enum State { CODE, SLASH, COMMENT, STAR, MAX_STATE };

class CParser2 : public StateTable {                    // CParser2 state machine

public:

CParser2() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}

void init() { myCommentCtr = 0; myState = CODE; }              // initial tran

long getCommentCtr() const { return myCommentCtr; }

private:

void a1() { myCommentCtr += 1; }                              // action method

void a2() { myCommentCtr += 2; }                              // action method

private:

static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];

long myCommentCtr;                                // comment character counter

};

table size

constructing

customized state 

table

business logic 

implemented as 

private functions 

of the table
static field 

holding the 

state table



State Table: Example

Spring '10 CIS 541 28

#include "cparser2.h"

StateTable::Tran const CParser2::myTable[MAX_STATE][MAX_SIG] = {

{{&StateTable::doNothing, CODE },

{&StateTable::doNothing, CODE },

{&StateTable::doNothing, SLASH}},

{{&StateTable::doNothing, CODE },

{static_cast<StateTable::Action>(&CParser2::a2), COMMENT },

{&StateTable::doNothing, CODE }},

{{static_cast<StateTable::Action>(&CParser2::a1), COMMENT },

{&StateTable::doNothing,STAR },

{static_cast<StateTable::Action>(&CParser2::a1), COMMENT }},

{{static_cast<StateTable::Action>(&CParser2::a2), COMMENT },

{static_cast<StateTable::Action>(&CParser2::a1), STAR },

{static_cast<StateTable::Action>(&CParser2::a2), CODE }}

};

filling out the table 

statically

State Design Pattern [Gamma+ 95, Douglass 99]

 An abstract state class

o defines a common interface for handling events

o each event corresponds to a virtual method

 Concrete states are subclasses of an abstract state class

 A context class delegates all events for processing to the 

current state object (myState variable)

 State transitions are explicit and are accomplished by 

reassigning the (myState variable)

 Adding new events corresponds adding it to the abstract 

state class

 Adding new states is to subclass the abstract state class

Spring '10 CIS 541 29



State Design Pattern [Gamma+ 95, Douglass 99]

Spring '10 CIS 541 30

(1)

(1) A class for abstract states, contains all possible 

signals as virtual methods.

State Design Pattern [Gamma+ 95, Douglass 99]

Spring '10 CIS 541 31

(2)

(2) A state in an EFSM is an object of a subclass of the 

CParserState. (CodeState, SlashState, etc.)



State Design Pattern [Gamma+ 95, Douglass 99]

Spring '10 CIS 541 32

(3)

(3) The parser has exactly one object for each concrete 

state class (e.g., myCodeState, mySlashState, etc.)…

State Design Pattern [Gamma+ 95, Douglass 99]

Spring '10 CIS 541 33

(4)

(4) … as well as a myState variable, which can points to 

any of them.



State Design Pattern [Gamma+ 95, Douglass 99]

Spring '10 CIS 541 34

(5)

(5) State transition is just reassigning myState variable.

State Design Pattern [Gamma+ 95, Douglass 99]

Spring '10 CIS 541 35

(6)

(6) Event dispatching relies on C++ virtual function 

dispatching rules. (If concrete class has the method, use 

it; otherwise use the virtual methods.) – Fast dispatching.



State Design Pattern: Example

Spring '10 CIS 541 36

class CParserState {                                // abstract State

public:

virtual void onCHAR(CParser3 *context, char ch)  {}

virtual void onSTAR(CParser3 *context) {}

virtual void onSLASH(CParser3 *context) {}

};

class CodeState : public CParserState {      // concrete State "Code"

public:

virtual void onSLASH(CParser3 *context);

};

class SlashState : public CParserState {    // concrete State "Slash"

public:

virtual void onCHAR(CParser3 *context, char ch);

virtual void onSTAR(CParser3 *context);

};

class CommentState : public CParserState { //concrete State "Comment"

....

};

class StarState : public CParserState {      // concrete State "Star"

....

};

The same story 

once more, in code.

(1) A class for abstract states, 

contains all possible signals as 

virtual methods.

(2) A state in an EFSM is an object of 

a subclass of the CParserState. 

(CodeState, SlashState, etc.)

State Design Pattern: Example

Spring '10 CIS 541 37

class CParser3 {                                     // Context class

friend class CodeState;

friend class SlashState;

friend class CommentState;

friend class StarState;

static CodeState myCodeState;

static SlashState mySlashState;

static CommentState myCommentState;

static StarState myStarState;

CParserState *myState;

long myCommentCtr;

public:

void init() { myCommentCtr = 0; tran(&myCodeState); }

void tran(CParserState *target) { myState = target; }

long getCommentCtr() const { return myCommentCtr; }

void onCHAR(char ch) { myState->onCHAR(this, ch); }

void onSTAR() { myState->onSTAR(this);  }

void onSLASH() { myState->onSLASH(this); }

};

The same story 

once more, in code.

(3) The parser has exactly 

one object for each concrete 

state class (e.g., 

myCodeState, mySlashState, 

etc.)…(4) … as well as a myState

variable, which can points to 

any of them.(5) State transition is just 

reassigning myState variable.(6) Event dispatching relies 

on C++ virtual function 

dispatching rules. (If concrete 

class has the method, use it; 

otherwise use the virtual 

methods.) – Fast dispatching.



State Design Pattern: Example

Spring '10 CIS 541 38

#include "cparser3.h“

CodeState CParser3::myCodeState;

SlashState CParser3::mySlashState;

CommentState CParser3::myCommentState;

StarState CParser3::myStarState;

void CodeState::onSLASH(CParser3 *context) {

context->tran(&CParser3::mySlashState);

}

void SlashState::onCHAR(CParser3 *context, char ch) {

context->tran(&CParser3::myCodeState);

}

....

void StarState::onSTAR(CParser3 *context) {

context->myCommentCtr++;

}

void StarState::onSLASH(CParser3 *context) {

context->myCommentCtr += 2;

context->tran(&CParser3::myCodeState);

}

The same story 

once more, in code.

(7) Implementation of 

individual actions are writing 

transition functions on need. 

(Default behavior is 

doNothing() as in the 

virtual function.)

State Design Pattern [Gamma+ 95, Douglass 99]

 Advantages

o It localizes state specific behavior in separate (sub)classes.

o Efficient state transition – reassigning a pointer.

o Fast event dispatching – using C++ mechanism for function look up.

o Parameterized events made easy – passing function parameters.

o No need for enumeration of states or events beforehand.

 Disadvantages

o Adding states requires creating subclasses.

o Adding new events requires adding handlers to state interface.

o In some situations where C++ or Java is not supported (e.g., some 

embedded systems), mockups of OO design maybe an overkill.

Spring '10 CIS 541 39



Multiple-threaded Implementation

 Approach I

o Each EFSM is implemented inside one thread.

o Threads run simultaneously, scheduled in round-robin.

o EFSMs share variables in the process.

 Advantage

o Straightforward transformation from model.

o EFSM communication easily implemented with thread messages.

 Disadvantage

o In some situations, no ready thread support in specific platform.

o Related analysis (progressiveness if semaphores are used, timing 

properties, etc) may be difficult.

Spring '10 CIS 541 40

Multiple-threaded Implementation

 Approach II

o Event detectors are implemented in threads.

o Transition actions are implemented in functions.

o Location information is stored with a variable.

o When event detector threads detects, calls corresponding functions 

and switching locations.

 Advantage

o Easy adaption to model changes.

 Disadvantage

o In some situations, no ready thread support in specific platform.

o Code may be unstructured/unreadable.

Spring '10 CIS 541 41



Multiple-threaded Implementation: Example 

(Approach II)

 A transition logic is written inside a 

function

o Wait for semaphore for triggering 

signal.

o If succeeded, check state 

(WAIT_VRP) and guard (TRUE).

o Execute updates.

 Print out timer value (for debugging)

 Reset timer value

 Change state

 All threads initialized and run in main

Spring '10 CIS 541 42

void *trans3(void *ptr) {

int t;

while(1) {

sem_wait(&Sense);

if(current==WAIT_VRP && TRUE) {

t=getTimer(&v_x);

printf("Sense:%d\n", t);

clearTimer(&v_x);

current=ST_IDLE;

sem_post(&ST_IDLE);

} 

}

}

int main(int argc, char *argv[]) {

pthread_t thread1, thread2,thread3;

// ... initilization code ...

pthread_create( &thread1, NULL, trans1, NULL);

pthread_create( &thread2, NULL, trans2, NULL);

pthread_create( &thread3, NULL, trans3, NULL);

pthread_join( thread1, NULL);

return 0; 

}

Optimal EFSM Implementation

 Does there exist one?

 A trade off based on 

o platform (available libraries? languages to use?)

o purpose of coding

 just for implementation or for analysis? 

 what type of analysis? etc.

o efficiency requirement

o possibility of model changes

Spring '10 CIS 541 43



THE EFSM TOOLSET

The EFSM Toolset

 Introduction

 The EFSM Language

 Checking for Non-determinism and Totality

 Translations to Other Languages

 Test Generation from EFSMs

 Script Generation

 Code Generation

 Simulation



Introduction to EFSM Toolset

 Targets designers and engineers without specialized 

training in formal methods

 Uses easily human-readable languages in description

 Features

o based on communicating EFSMs

o using communication channels as well as shared variables

o with input, output, and local variables

Spring '10 CIS 541 46

The EFSM Language

 Example

Spring '10 CIS 541 47

SYSTEM LampSystem:

Channel: press, sync, B;

EFSM Lamp {

States: off, low, bright;

InitialState: off;

LocalVars:

bint[0..5] y =0,

boolean x = false;

Transition: From off to low when true==true do press ? x , y =0;

Transition: From low to off when y>=5 do press ? x;

Transition: From low to bright when y<5 do press ? x;

Transition: From bright to off when true==true do press ? x;

}

EFSM User {

States: idle;

InitialState: idle;

LocalVars:

boolean x = false;

Transition: From idle to idle when true==true do press ! x;

}



The EFSM Language: Channels

 Specification: Channel: <name>, <type>, <r/w/b>;

o <type> maybe “sync” or “async”

 “sync”: one-to-one, blocking synchronization of two EFSMs

 “async”: one-writer-to-many-readers, non-blocking for writer, non-

consuming from the readers, asynchronous

o <r/w/b> – reader channel, writer channel, or both

 Communication action: <channel name> <action> <arg>

o <action> can be !, ?, !!, ??

 ! means writing, ? means reading

 single mark means synchronous; double marks means asynchronous

o <arg> is a typeless value

Spring '10 CIS 541 48

Non-determinism and Totality

 Definitions

o An EFSM is non-determinism if there exists some state 

with two or more outgoing transitions which maybe 

enabled at the same time.

o An EFSM is total (or complete) if at any state S, there is at 

least one outgoing edge enabled.

 Checking Non-determinism and Totality

o The EFSM Toolset utilizes the satisfiability checker zChaff

 systematically transform logic formula over guards to DIMACS 

(zChaff accepted format)

 feed into zChaff and interpret the result

Spring '10 CIS 541 49



Non-determinism and Totality

 Example: A system with a bounded integer x in [1..5] and

(1) From start to discard if x<=4;

(2) From start to use if x>3;

(3) From start to redo if x==5;

 To check for non-determinism for the “start” state, we need to check

(a) (x<=4) ∧ (x>3)

(b) (x<=4) ∧ (x==5)

(c) (x>3) ∧ (x==5)

which are transformed to (xk means x==k is true)

(a) (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x4 ∨ x5)

(b) (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x5)

(c) (x4 ∨ x5) ∧ (x5)

 (a), (c) are satisfied, which means there are non-determinisms between

o the first and the second transitions, and 

o the second and the third transitions

Spring '10 CIS 541 50

Translations to Other Languages

 Table – CSV format most Spreadsheet programs can open

 Text – Human readable text file

 Dotty – Input format of the “dot” program for drawing

 Promela – The Spin model checker input language

o systems with only synchronous channels are supported now

o setting channel buffer size to 0 in Promela

 Uppaal – The Uppaal model checker XML format

o systems with only synchronous channels are supported now

o value passing must take place through shared variables

 SMV format – the NuSMV model checker

o currently supports systems without communication channels

o shared variables are supported

o can utilize the verification results from NuSMV for test case generation

Spring '10 CIS 541 51



Test Generation from EFSMs

 Test Generation

o create a set of traces through the EFSM

o for testing an implementation of the system

o coverage criteria

 state coverage – go through each state at least once

 transition coverage – ensures that every transition is take once

 definition-use coverage – makes a trace from every definition of a 

variable to each of its subsequent uses

 Output of Test Generation

o a sequence of assignments of variable values

o necessary to lead the EFSM to take particular paths

Spring '10 CIS 541 52

Test Generation from EFSMs

 Model Based Approach using NuSMV

 Direct Test Generation Algorithm

o DFS algorithm to discover set of paths covering all states

o It keeps track of constraints and assignments along the path.

o A transition can be added to the path if compatible with other constraints.

o The algorithm starts with initial state and a set of constraints corresponding 

to the initial assignments of variables.

o If a transition can be added (compatible), add it and make a recursive call. 

o Can keep a snapshot of visited states to guarantee termination.

o Need to use a satisfiability checker.

Spring '10 CIS 541 53



Script Generation

 Script Generation

o takes a set of traces (from test generation)

o makes a set of scripts

o which can be run on an implementation

 Approach

Spring '10 CIS 541 54

Code Generation

 Allows mapping state machine variables to arbitrary input/output 

functions

o input function is called each time the variable is read

 condition like x==2 will be translated to readX()==2

o output function is called each time the variable is written

 assignment like x:=y-2 will become writeX(y-2)

 C

o limited to single EFSM model without communication channels

o repeatedly executing a series of if-else statements like

 if (state==X and condition==c) { doSomething(); … }

 Java

o supports multiple communicating machines, utilizing JCSP library

o each EFSM is run inside a thread, and they are all run in parallel

o scheduled round-robin

Spring '10 CIS 541 55



Example: Generated Code Snippet in C

Spring '10 CIS 541 56

while (transition_taken) {

transition_taken=0;

if ((currentState==1)&&(current < getNumBots())) {

PRE_TRANSITION_HOOK;

current=current+1;

currentState=2;

transition_taken=1;

//printf("rolling:From:incrementTo:check

//Guard:current <=numBotsAction:current=current+1\n");

POST_TRANSITION_HOOK;

}

....

if ((currentState==2)&&(getSwitch()==1)) {

PRE_TRANSITION_HOOK;

setAllAngles(1);

currentState=1;

transition_taken=1;

//printf("rolling:From:checkTo:increment

//Guard:switchValue==trueAction:setAngles=true \n");

POST_TRANSITION_HOOK;

}

}

Example: Generated Code Snippet in Java

Spring '10 CIS 541 57

import jcsp.lang.*;

public class gaitThread implements CSProcess {

private final String name="gaitThread"; ....

public gaitThread() {}

public void run() {

final Skip skip= new Skip(); ....

while ( true ) {

switch (alt.priSelect()) {

case 0:

if ((currentState.equals("footArming")) & (TwoSecondDelay == true )) {

currentState="spineArming";

System.out.println("gait: From: footArming

To:spineArming

Guard:TwoSecondDelay== true

Action:spine=-20");

}

if ((currentState.equals("spineArming")) & (TwoSecondDelay == true)) {

....

} ....

....

}

}

}

}



Simulation with the EFSM Toolset

 Simulator generates Java code 

which walks through the EFSM 

model. 

 At each step, it asks the user for 

input variable values, if any.

 Example screen on the right.

o Either choose variables to set value and 

“Step”, or

o Auto with “Probabilistic”.

 Simulator reports error message if 

no transitions available.

Spring '10 CIS 541 58

References

 Miro Samek, Practical Statecharts in C/C++, 

CMPBooks, 2002

o Source code available online

o http://www.state-machine.com/psicc/

 David Arney, EFSM Toolbox Manual, University of 

Pennsylvania, 2009

Spring '10 CIS 541 60



Thank you!

Spring '10 CIS 541 61


