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Ordering in the Distributed Real-Time System


  The distributed computer system performs a 
multitude of different functions concurrently. 
o  The monitoring of RT-entities 
o  The detection of alarm conditions 
o  The display of the observations 
o  The execution of control algorithms 

  All nodes process all events in the same consistent 
order. 
o  To guarantee a consistent behavior of the entire 

distributed system 
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Temporal Order


  A timeline consists of an infinite set {T} of instants with the following 
properties. 
o  {T} is an ordered set, if p and q are any two instants, then either p is 

simultaneous with q, or p recedes q, or q recedes p, where these relations 
are mutually exclusive. We call the order of instants on the timeline the 
temporal order. 

o  {T} is a dense set : There is at least one q between p and r iff p is not the 
same instance as r, where p, q and r are instants. 

  A section of the time line is called a duration. 
  An event takes place at an instant of time. 
  If two events occur at an identical instant, then the two events are said to 

occur simultaneously.
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Causal Order


  In many real-time applications, the causal 
dependencies among events are of interests. 
o  A nuclear reactor equipped with many sensors. 
o  In case a pipe ruptures, what is the primary event that 

triggers the alarm shower?  
o  The temporal order of two events is necessary, but not 

sufficient, for their causal order. 

  Causal order is more than temporal order. 
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Delivery Order


  A weaker order relation than temporal or causal 
order is a consistent delivery order. 

  All host computers in the nodes see the sequence of 
events in the same delivery order. 

  The delivery order is not necessarily related to the 
temporal order or the causal relationship between 
events.
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Why need Temporal Order in Real-Time Systems?


  In case of sudden unexpected changes in the nuclear reactor, 
system causes an alarm shower. 

  What is the primary event that triggers the alarm shower? 
o  Knowledge of the exact temporal order is helpful to identify the 

primary event. 
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Nuclear Reactor 

<RealTime entitiy> 
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Issues in the Temporal Order


  What is the condition to reconstruct temporal order 
between two events? 

  Need the following concepts  
o  Clocks 

  Physical clock 
  Reference clock 
  Timestamp 
  Offset , Precision and Accuracy 

o  Time measurement 
  Global Time 
  Reasonableness Condition of Global Time 
  Condition to reconstruct temporal order. 
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Clocks : Physical Clock

  Physical Clock 

o  A device for measuring time with counter and a physical oscillation 
mechanism. 

o  Microtick : The periodic event generated by a oscillation mechanism. 
(Denoted by microticki, k for i th microtick of clock k) 

o  Granularity : The duration between two consecutive microticks.


1 2 
(microtick3,k) 

3 4 5 Clock k 

Oscillator 

Granularity  
(Digitization Error) 
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Clocks : Reference Clock

  Reference Clock 

o  Assume an omniscient external observer who can observe all events that are of 
interest in a given context. 

o  A unique reference clock z with granularity gz which is in perfect agreement 
with the international standard of time. 
  (Assume gz is really really really small, say 10-15 second) 

  The relationship between reference clock z and a given clock k 
o  nk : a nominal number of microticks of clock z which occur between 

microticki,k and microticki+1,k 

1 2 3 4 5 
Clock k 

gk = nk 

Clock z 
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Clocks : Timestamp

  Clock(event) : denotes the timestamp generated by 

the use of a given clock to timestamp an event. 
o  Ex) z(e) : The timestamp of event e which is observed by 

clock z (the absolute timestamp) 

  What if the interval of two events is less than gz? 
o  The temporal order of events that occur between any two 

consecutive microticks of the reference clock z cannot be 
reestablished from their absolute timestamps. 

o  => Limitation of this time measurement. 
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Clocks : Offset

  Offset 

o  The offset at microtick i between two clocks j and k with 
the same granularity. 

o  Offsetj,k(i) = |z(microticki,j) – z(microticki,k)| 

1 2 3 4 5 
Clock j 

Offsetj,k(2) 

Clock k 
1 2 3 4 5 
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Clocks : Precision

  Precision 

o  Given an ensemble of clocks {1, 2, …, n}, the maximum offset between any 
two clocks of the ensemble 

               ∏i = max{offsetj,k(i)} for all 1≤ j, k ≤ n 
o  The precision of ensemble ∏ : the maximum ∏i of over an interval of interest. 

  Internal synchronization  
o  The process of mutual resynchronization of an ensemble of clocks to 

maintain a bounded precision 

1 2 3 4 5 
Clock j 

Offsetj,k(2) < Offsetk,m(2) < Offsetj,m(2) 

Clock k 
1 2 3 4 5 

1 2 3 4 5 Clock m 
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Clocks : Accuracy 

  Accuracy  

o  accuracyk(i) : The offset of clock k with respect to the reference 
clock z at microtick i 

o  accuracyk : The maximum offset over all microticks i that are of 
interest in clock k 

  External synchronization 
o  The process of resynchronization of a clock with the reference clock 


1 2 3 4 5 
Clock z 
Clock j 

1 2 3 4 5 
1 2 3 4 5 Clock k 

accuracyj(2) 

accuracyk(2) 
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Clocks : Precision and Accuracy

  Relationship between Precision and Accuracy 

o  If all clocks are externally synchronized with an accuracy 
A, then the clocks are also internally synchronized with a 
precision of at most 2A. 

o  The converse is not true 

1 2 3 4 5 
Clock z 
Clock j 

1 2 3 4 5 
2 3 4 5 Clock k 

A A 
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Time Measurement

  Easiest way to achieve temporal order of every event 

o  Having a perfect synchronization with a single reference clock z 
among all real-time clocks of nodes  

  Challenge  
o  In loosely coupled distributed system, every node has its own local 

clock.  
o  A tight synchronization of clocks is not possible. 

  The concept of global time 
o  A weaker notion of a universal time reference 
o  With local clock, achieve local implementation of a global notion 

of time. 
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Global Time(1/2)

  How to achieve the local implementation of a global notion of 

time? 
  Assumption 

o  Each node has its own local physical clock ck with granularity gk. 
o  All local clocks are internally synchronized with a precision ∏. 

       |z(microtickj(i)) – z(microtickk(i))| < ∏ 
       for any two clocks j, k and all microticks i 

  Macrotick 
o  A subset of the microticks of each local clock. 
o  The local implementation of a global notion of time. 
o  Ex) Every tenth microtick of a local clock k may be interpreted as the 

global tick, the macrotick tk(i).


16




9 

Global Time(2/2)

  Illustration of the relationship between microtick and 

macrotick.


1 2 3 4 5 
Clock j 

6 7 8 9 

1 2 3 4 5 
Clock k 

6 7 8 9 

Oscillator 
(clock j) 

tj(1)
 tj(2)
 tj(3)

tk(3)
tk(2)
tk(1)


microtick


macrotick(or tick)
g (The global granularity) 
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Reasonableness Condition(1/3)

  The global time t is called reasonable. 

o  If all local implementations of the global time satisfy the 
condition 

       g > ∏ 

  The impact of reasonable condition 
o  The synchronization error is bounded to less than one 

macrogranule g. 
o  For a single event e, that is observed by any two different 

clocks which satisfy the reasonable condition 
            |tj(e) – tk(e)| ≤ 1 

o  i.e. the global timestamps for a single event can differ by at 
most one tick. This is the best we can achieve. 
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Reasonableness Condition(2/3)


  Illustration of the reasonableness condition (g > ∏) 
o  Timestamp of a single event,|tj(e) – tk(e)| ≤ 1 

Clock j 
(macrotick) 

Reference 
 clock z 

Clock k 

∏  


1 2 3 4 5 6 7 8 0 

1 2 3 4 5 6 7 8 0 

1 2 3 4 5 6 7 8 0 

Event occurrence


g  
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Reasonableness Condition(3/3)

  Illustration of the impact unless the reasonableness 

condition meets.  
o  Timestamp of a single event |tj(e) – tk(e)| > 1 at some 

point. (not all points.) 

Clock j 
(macrotick) 

Reference 
 clock z 

Clock k 

∏  


1 2 3 4 5 6 7 8 0 

1 2 3 4 5 6 7 8 0 

1 2 3 4 5 6 7 8 0 

Event occurrence

g  
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The meaning of one tick difference

  Both duration (17, 42), (67, 69) observed by clock j and k 

have one tick difference. 
  Problem ? z(67) < z(69), but tk(67) > tk(69) 

o  Because of the accumulation of the synchronization error and the 
digitalization error.


Clock j 
(macrotick) 

Reference 
 clock z 

Clock k 

1 2 3 4 5 6 7 8 0 

1 2 3 4 5 6 7 8 0 

1 2 3 4 5 6 7 8 0 

17
 42
 67
69

Event 17 : 2 by j 
Event 42 : 3 by k Event 67 : 7 by j 

Event 69 : 6 by k 
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The Condition to Reconstruct Temporal Order


  One tick difference between two events 
o  Not possible to reconstruct the temporal order.  
o  (We are not sure : Some of them can be reconstructed, 

but some cannot be.) 

  Two tick difference between two events 
o  The temporal order can be reconstructed. 
o  (Guaranteed : All such events can be reconstructed.) 
o  WHY? The sum of the synchronization and 

digitalization error is always less than 2 granules.
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Why need Clock Synchronization?


  Failure modes of a clock 
o  Error in Counter (state error) 
o  Error in Drift (rate error)
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Time of the Local Clock


Time of the  
Reference Clock


Perfect Clock

Error in Drift 
(rate error)


Error in Counter 
(state error)


A good clock with a bounded drift rate  
stays in the shaded area.


Internal Clock Synchronization


  The parameters for synchronization condition 
o  Resynchronization interval : Rint 
o  Convergence function : the offset of the time values 

immediately after the resynchronization. 
o  Drift offset  : the maximum divergence of any two good 

clocks from each other during Rint. 
o  The maximum specified drift rate : ρ
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The Synchronization Condition


  The synchronization condition 
o  Φ + Г ≤ ∏ 
=>The synchronization algorithm must bring the clocks so close together 

that the amount of divergence during the next resynchronization interval 
will not cause a clock to leave the precision interval
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Time of Reference Clock


Local 
Clock


Convergence  
function Φ


Rint


Drift offset Г = 2ρRint


Precision ∏


All good clocks operate  
within the shaded area


Synchronization Algorithms (1)


  The goal is to achieve the synchronization condition. 
  Central Master Synchronization 

o  A unique node, the central master, periodically sends the 
value of its time counter in synchronization messages to 
all other nodes, the slave nodes. 

o  The slave node corrects the clock based on the master’s 
time and the latency of the message. 
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Synchronization Algorithms (2)


  Distributed Synchronization Algorithms 
o  Step 1) Every node acquires knowledge about the state of 

the global time counters in all the other nodes. 
o  Step 2) Every node analyzes the collected information to 

detect errors, and calculate a correction value for the 
local global time counter. 

o  Step 3) The local time counter of the node is adjusted by 
the calculated correction value. 
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External Clock Synchronization


  External synchronization links the global time of a 
cluster to an external standard of time. 
o  Time server 
o  GPS 

  Internal and external synchronization 
o  Internal sync. : a cooperative activity among all the 

members of a cluster. 
o  External sync. : an authoritarian process ( the time server 

forces its view of external time on all its subordinates.) 
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Clock Synchronization 

  State correction 
  Rate correction 
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Event-Triggered versus Time-Triggered 

  Chap 4.4 (pp. 82-86) 
  Event-triggered (ET) system – the control signal 

derived from state change, an event, in the 
environment or within the computer system 

  Time-triggered (TT) system – the control signal 
derived from the progression of time 

  Example in Elevator   
o  Two buttons pushed repeatedly, very closed to each 

other 
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